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Summary

In times of market turmoil volatility increases and stock values and interest rates de-
crease, so that the risks in the balance sheets of insurance companies increase. An
important part of these risks is due to the guarantees that are embedded in insurance
policies. Life insurers sell products like unit-linked, profit sharing and variable annu-
ity products. These contracts contain guarantees to the policyholders. Such contracts
embedded in the insurers’ liabilities are called embedded options.

The value and cash flow of these contracts are respectively relevant for the balance
sheet and the profit and loss account. Typically in periods of volatile markets, the value
of these embedded options increase, so that the insurance company must hold a larger
liability value on the balance sheet in order to be able to pay out future cash flows. The
valuation of these embedded options in insurance liabilities is therefore important to
insurers for risk management applications. In this thesis we consider various topics re-
garding the valuation of these embedded options.

We consider the risk neutral valuation methodology to compute option values. The
underlying economic variables, such as stocks, interest rates and inflation, are in this
case modeled by a set of stochastic differential equations. The correlation structure
among the economic variables makes the risk neutral model involved. Such models are
called hybrid models. The derivation of semi-analytic formulas for such models for val-
uation and calibration is hard if not impossible. Alternatively, one has to resort to the
numerically expensive Monte Carlo simulations for valuation. The derivation of semi-
analytic formulas for valuation using hybrid risk neutral models and the application of
Monte Carlo simulations for valuation are the main topics of this thesis.

In Chapters 2 and 3 we consider the derivation of semi-analytic valuation formu-
las. Such formulas lead to fast computation speed, which is desired from practice. The
point of departure in this thesis is a Heston type inflation model in combination with a
Hull-White model for nominal and real interest rates, in which all the correlations can be
non-zero. Inflation is an important risk factor for pension funds and insurance compa-
nies. Due to the presence of the Heston dynamics our derived inflation model is able to
capture the implied volatility skew/smile, which is present in the inflation option market
data. We derive an efficient semi-closed form pricing formula to approximate the value
of index- and year-on-year inflation options. The derived pricing formulas allow for an
efficient calibration of the inflation model. We illustrate our approach using a real-life
pension fund example, where the Heston Hull-White inflation model is used to deter-
mine the value of conditional future indexations.

In Chapter 3, we propose a valuation model for real estate derivatives. We aim to
value derivatives that are coupled to real estate indices with a degree of autocorrela-
tion. Since the underlying asset cannot be traded in a frictionless market, it is impossible
to use classic pricing formulas for derivatives, because these formulas fully rely on no-
arbitrage assumptions. We therefore first model the underlying efficient market price of
real estate and then construct the observed index value. Using this real estate model, we
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x SUMMARY

derive closed-form pricing solutions for forwards, swaps and European put and call op-
tions. We demonstrate the application of the model by valuing a put option on a house
price index. Autocorrelation in the index returns appears to have a large impact on the
option values.

To forecast the balance sheet and solvency capital requirements, the technique of
real world scenarios is applied. A real world scenario is a possible evolution of the future
state of economic variables, such as interest rates, inflation and equity returns, that is
consistent with a clear set of assumptions. At each time step of a real world scenario one
has to value the embedded option. The number of valuations increases enormously in
this case, so that fast valuation methods are required.

Semi-analytic formulas are ideally used for valuation, because they are fast. These
formulas do however not exist for more advanced risk neutral models, so that one has to
apply numerical techniques for the purpose of valuation. Valuation by means of Monte
Carlo simulations is the preferred method, but comes at a cost of large computation
time. The application of Monte Carlo simulation may lead to nested simulations. The
real world scenarios are called the outer scenarios and the risk neutral scenarios the in-
ner scenarios. In Chapters 4, 5 and 6 we focus on accelerating and modeling of these
nested Monte Carlo simulations.

In Chapter 4, we introduce the Option Interpolation Model for approximating em-
bedded option values. The proposed method is based on interpolation with radial basis
functions, which can be adopted to interpolate scattered data. To reduce computation
time we present an inversion method to determine the interpolation function weights.
The robustness, accuracy and efficiency of the Option Interpolation Model are analyzed
by means of a number of numerical experiments. We show that the proposed approxi-
mation method results in highly accurate estimates.

In a nested simulation it is important that the risk neutral model at hand is consis-
tent with the generated implied volatilities at each time point. In Chapter 5, we propose a
modeling framework for risk neutral stochastic processes nested in a real world stochas-
tic process. We make use of the class of State Space Hidden Markov models for modeling
the joint behavior of the parameters of a risk neutral model and the dynamics of option
market instruments. This modeling concept enables us to perform non-linear estima-
tion, forecasting and robust calibration. The proposed method is applied to the Heston
model for which we find highly satisfactory results. We use the estimated Heston model
to compute the required capital of an insurance company under Solvency II.

In Chapter 6, we present a high performance computing framework to improve the
performance of nested simulations. We aim to take full advantage of the parallelism of
Graphical Processing Units (GPUs). The parallel structure of modern GPUs makes them
more efficient than general-purpose Central Processing Units (CPUs) for algorithms where
the processing of large blocks of data can be done in parallel. We manage to reduce the
computation time of a nested simulation application from several hours to tens of min-
utes.

We note that all the work presented in this thesis is based on published or submitted
papers written during the PhD research.



Samenvatting

In tijden van crisis neemt de volatiliteit in de financiële markten toe en dalen de aande-
len en rentes, zodat de risico’s toenemen op de balans van een verzekeraar. Een belang-
rijk deel van deze risico’s is te wijten aan de garanties die ingebed zijn in verzekeringspo-
lissen. Levensverzekeraars verkopen unit-linked, winstdeling en variable annuity pro-
ducten. Deze contracten bevatten garanties aan de polishouder en worden ook wel in-
gebedde opties genoemd.

De waarde en de kasstromen van deze opties zijn respectievelijk belangrijk voor de
balans en de winst- en verliesrekening. Typisch in tijden van hoge volatiliteit stijgen
de waarden van deze ingebedde opties. Dit betekent dat de verzekeraar een hogere
verplichting moet nemen op de balans om toekomstige kasstromen te kunnen uitbeta-
len. De waardering van deze ingebedde opties in verzekeraarsverplichtingen is daarom
belangrijk voor verzekeraars voor risico managementtoepassingen. In dit proefschrift
behandelen we verschillende onderwerpen met betrekking tot de waardering van inge-
bedde opties.

We gebruiken de methodologie van risico neutralewaardering voor het berekenen
van optiewaarden. De onderliggende economische variabelen zoals aandelenrende-
menten, rentes en inflaties worden in dit geval gemodelleerd door een set van stochas-
tische differentiaalvergelijkingen. De correlatiestructuur tussen de economische varia-
belen maakt het risico neutralemodel moeilijk oplosbaar. Dergelijke modellen worden
hybride modellen genoemd. Het afleiden van semi-analytische formules voor zulke mo-
dellen voor waardering en kalibratie is moeilijk, zo niet onmogelijk. Als alternatief wordt
de numeriek duurdere Monte Carlosimulatie gebruikt voor waardering. Het berekenen
van optieprijzen op basis van semi-analytische formules en op basis van Monte Carlosi-
mulaties staat centraal in dit proefschrift.

In de Hoofdstukken 2 en 3 bespreken we de afleiding van semi-analytische waarde-
ringsformules. Het gebruik van deze formules resulteert in snelle rekentijden, wat zeer
wenselijk is in de praktijk. Het startpunt in dit proefschrift is een Heston-type model
voor inflatie gecombineerd met een Hull-White model voor de modellering van nomi-
nale en reële rentes, waarbij de correlaties ongelijk aan nul kunnen zijn. Inflatie is een
belangrijke risicovariabele voor pensioenfondsen en verzekeraars. Vanwege de Heston
dynamica in het inflatiemodel is het mogelijk om belangrijke eigenschappen in de optie-
markt data (smiles/skews) te modelleren. We bepalen een efficiënte half-gesloten waar-
deringsformule om de waarde te benaderen van index- en jaar-op-jaar inflatieopties. De
waarderingsformules kunnen gebruikt worden voor efficiënte kalibratie van het inflatie-
model. We gebruiken een pensioenenvoorbeeld om de relevantie van het inflatiemodel
te laten zien. We gebruiken het Heston Hull-White inflatiemodel voor de berekening van
conditionele toekomstige indexaties.

In Hoofdstuk 3 presenteren we een waarderingsmodel voor vastgoedopties. Het doel
is om opties te waarderen met als onderliggende een vastgoedindex met een hoge mate
van autocorrelatie. Omdat de onderliggende index niet verhandeld kan worden, is het
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niet mogelijk om klassieke waarderingsformules te gebruiken (omdat deze formules ge-
baseerd zijn op de aanname dat arbitrage niet voorkomt). Daarom modelleren we eerst
de onderliggende efficiënte marktprijs van vastgoed en vervolgens de geobserveerde in-
dexwaarde. Als toepassing gebruiken we het vastgoedmodel voor de waardering van een
put-optie met de huisprijsindex als onderliggende. We laten zien dat autocorrelatie in
de index een groot effect kan hebben op de optiewaarde.

Om de balans en kapitaalvereisten te simuleren, wordt de techniek op reële wereld-
scenario’s toegepast. Een reële wereldscenario is een mogelijke toekomstige ontwikke-
ling van economische variabelen, zoals rentes, inflaties en aandelenrendementen, die
consistent is met een set aannames in de reële wereld. Op elk toekomstig tijdstip van
een scenario moet een waardering van de ingebedde opties gedaan worden. Het aantal
waarderingen neemt daarom enorm toe zodat snelle waarderingsmethoden bijzonder
gewenst zijn.

Semi-analytische formules zijn ideaal voor zulke waarderingen, omdat ze snel zijn.
Deze formules bestaan alleen niet voor geavanceerde risico neutralemodellen waardoor
men gebruik zal moeten maken van Monte Carlosimulaties. Waarderingen op basis van
Monte Carlosimulaties zijn voldoende nauwkeurig, maar de bijbehorende rekentijden
zijn hoog. De toepassing van Monte Carlosimulaties leidt tot zogeheten geneste Monte
Carlosimulaties. De reële wereldscenario’s worden de buitenscenario’s genoemd en de
risico neutralscenario’s de binnenscenario’s. In de Hoofdstukken 4, 5 en 6 ligt de focus
op het versnellen en verbeterd modelleren van deze geneste Monte Carlosimulaties.

In Hoofdstuk 4 introduceren we het Optie Interpolatie Model voor de benadering
van ingebedde optiewaarden. De methode is gebaseerd op interpolatie op basis van
radiale basisfuncties, die ongestructureerde data kunnen interpoleren. Om rekentijden
te verbeteren, stellen we een inversie rekenmethode voor om de interpolatie gewichten
te bepalen. De robuustheid, nauwkeurigheid en efficiëntie van het Optie Interpolatie
Model worden geanalyseerd door middel van een aantal numerieke experimenten. We
laten zien dat de voorgestelde methode resulteert in nauwkeurige schattingen.

In een geneste simulatie is het belangrijk dat een risico neutraalmodel consistent is
met de gegenereerde marktdata op elk tijdstip. In Hoofdstuk 5 stellen we een modelle-
ringsraamwerk voor om op een consistente manier risico neutrale processen te modelle-
ren in een reële wereld scenarioset. We maken gebruik van State Space Hidden Markov-
modellen voor de modellering van de gecombineerde dynamica van de modelparame-
ters en de optie marktdata. De methode stelt ons in staat nietlineaire en robuuste kali-
bratie door te voeren en model parameters en optieprijzen nauwkeurig te voorspellen.
We passen de methode toe op het Hestonmodel, waarvoor we goede resultaten behalen.
We gebruiken het geschatte Hestonmodel voor de berekening van het vereiste kapitaal
van een verzekeraar onder Solvency II regulering.

In Hoofdstuk 6 presenteren we een wetenschappelijk rekenraamwerk voor voor het
versnellen van de geneste simulaties. Het doel is om volledig gebruik te maken van de
parallelle structuur op grafische kaarten (GPUs). De parallelle structuur van moderne
GPUs maakt ze efficiënter dan Central Processing Units (CPUs) voor algoritmes waar-
voor grote blokken data parallel tegelijk verwerkt kunnen worden. We verlagen de re-
kentijd van een geneste simulatietoepassing van enkele uren naar tientallen minuten.

We merken op dat het werk dat wordt gepresenteerd in dit proeschrift is gebaseerd
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op gepubliseerde of reeds ingediende artikelen die geschreven zijn tijdens het PhD on-
derzoek.





CHAPTER 1

Introduction

1.1. INSURANCE

Insurance is about the protection against future losses and the agreements of the insur-
ance are represented by a policy. In case of a loss, the policyholder receives protection
from an insurance company. Individuals buy insurance policies based on their assess-
ment of a possible loss in the future, and insurers offer them cover based on their as-
sessment of the cost of covering any claims. So, the insurance industry works on the
principle of risk. There are nowadays many types of insurance policies available. The
most common types of personal insurance policies are car, health, homeowners and life
insurance policies. See [41] for more information.

The insurance market is large with a total of e1,200 billion premiums turn over in
2015. Europe, United States and Asia are approximately equally large, each contributing
about 30%. Compared to the non-life and health insurance markets, the life insurance
market is largest withe730 billion premiums (60% market share).

Forms of insurance were already practiced by Chinese and Babylonian traders in
the third and second millennia before Christ [135]. Chinese merchants distributed their
wares across many vessels to limit the loss due to any single vessel’s capsizing. If a mer-
chant received a loan to fund his shipment, he would pay the lender an additional sum
in exchange for the lender’s guarantee to cancel the loan should the shipment be stolen,
or lost at sea.

The first known insurance contract dates from Genoa in 1347, and property insur-
ance as we know it today can for example be traced back to the Great Fire of London,
which in 1666 destroyed more than 13,000 houses. The devastating effects of the fire
converted the development of insurance from a matter of convenience into one of ur-
gency.

Insurance became more sophisticated during the Enlightenment period (17th and
18th century) as the industrial changes called for insurance solutions. It provided the
basis for accepting actuarial sciences as a rational means to conduct better business.
Towards the end of the 18th century the first modern and global insurance company,
The Phoenix, was founded in London.

As a big step ahead in time, the insurance market changed rapidly in the 1990s when
the internet emerged. This, in response to consumer behavior, improved technology and
the increase of available data, which is also known as big data. The internet has changed
the way customers buy insurance and maintain contact with the insurance providers.
Big data refers to the massively increasing volume, velocity and granularity of data sets
that are being accessed. Big data applications gained interest in the last 5 years.

The ability to compile and analyze those granular data sets is now transforming the

1
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way insurers see large pools of consumers and how they price risks. This has implica-
tions for the cost and availability of insurance for all consumers. Insurance provides
financial protection to the community by pooling resources to manage risks. That ap-
proach is now being significantly refined by insurers’ increased capacity to examine risks
in greater detail through the analysis of large volumes of granular data. The outcome is
that increased individual risk pricing will make premiums tailored in the way that they
will be more reflective of that risk.

Given the rapid changes in the insurance market, the study of risk management be-
comes more essential.

1.2. EMBEDDED OPTIONS

Life insurance companies provide contracts that contain guarantees. They for example
sell unit-linked (UL), profit sharing and variable annuity products. Such contracts em-
bedded in the insurers’ liabilities are called embedded options. Embedded options are
contracts (rights) in life insurance policies that may provide a profit to policyholders, but
never a loss. The value of these contracts depends on one or more underlying variables
such as interest rates, inflation and equity. This makes the future cash flows uncertain.

A UL life insurance contract is a savings policy that pays at maturity date. The initial
lump sum and premiums paid during the contract are invested according to a certain
asset allocation with an embedded investment guarantee. This means that when the
invested capital at maturity date is lower than the guaranteed capital, the insurer has to
pay the difference to the policyholder. Otherwise the policyholder receives the invested
capital. For the insurer it’s important to accurately compute the current liability value
in order to be able to pay out the (uncertain) cash-flow after 30 years. Answering this
fundamental question is the main focus of this thesis.

In the life insurance market, 20% of the e730 billion premiums is part of UL type
that often consist of guarantees. The modeling of these option structures in insurance
liabilities is therefore essential to insurers for risk management applications.

The value and cash flow of these contracts are respectively relevant for the balance
sheet and the profit and loss account. Due to the hybrid nature of these embedded op-
tions, different movements in the variables can influence the embedded option values.
Especially in financial crisis the valuation of these embedded contracts is important. In
times of crisis, the volatility increases and stock values go down and it’s likely that the
invested capital is lower than the guaranteed capital leading to high liability values for
UL products on the balance sheet of a life insurer. Assigning a realistic value to these
contracts is therefore important.

1.3. EMBEDDED OPTIONS IN PENSIONS

Pension is about saving for an income after retirement. Defined Benefit (DB) and De-
fined Contribution (DC) are the main pension schemes. In a DB plan an income in re-
tirement is determined based on the employee’s earnings history, tenure of service and
age. In this case the pension funds bear the investment risk and can benefit from sur-
pluses. In a DC plan, each member owns an investment account to build up an income
after retirement. The contributions are fixed, but the future benefits fluctuate on the



1.4. STRATEGIC RISK MANAGEMENT OF EUROPEAN INSURANCE COMPANIES

1

3

basis of investment earnings. So, the pension fund members bear the investment risk
(instead of the pension fund itself).

DB pension funds and life insurers are both providers of old-age income provisions.
The main difference lies in the mitigation of risk. The risks are borne by either benefi-
ciaries and the sponsor (in a DB plan) or the beneficiaries (in a DC plan). In the case of a
life insurer it is borne by external shareholders, i.e. there is no risk for the policyholders
(except in the case of bankruptcy).

Pension funds are also different from insurance companies because they have the
ability to use risk-mitigating instruments such as steering mechanisms (e.g. higher con-
tributions, additional sponsor support) and adjustment mechanisms (e.g. conditional
indexation, cutting benefits) for improving the financial position of the fund.

On the so-called traditional balance sheet of a DB pension fund, the asset and liabil-
ity values of the fund are stated to reflect the financial position. Steering and adjustment
instruments are however not taken into account in the traditional balance sheet.

To deliver a more complete picture of the financial position of a pension fund and to
be able to compare pension funds, EIOPA proposed the holistic balance sheet (HBS) in
2011 to assess pension funds [30]. The HBS is in essence similar to a traditional balance
sheet as it shows all assets and liabilities in a single overview. However, in the HBS the
value of additional steering mechanisms is also taken into account. The HBS and the
valuation of steering mechanisms are new concepts and are still in the early stages of
development.

For most steering mechanisms, the conditional pay-off depends on some underly-
ing decision variables. The HBS approach does include the steering and adjustment in-
struments of a pension fund and values them as embedded options on the HBS. Hence,
assigning accurate option values to these steering and adjustment instruments is impor-
tant for risk management applications.

A transition from DB to DC has been underway for a couple of decades. The main
reasons for this transition are (amongst others) the high employer costs, volatility and
unpredictability of contributions and possibilities for tailoring (choose your own risk
profile). Under a DC scheme there would be no need for a HBS framework because
DC is individually based instead of collectively under DB. Given the recent increase in
attention for DC schemes, it is uncertain how the development of HBS will evolve.

1.4. STRATEGIC RISK MANAGEMENT OF EUROPEAN INSURANCE

COMPANIES

Risk management consists of identifying and analyzing loss exposures and to minimize
the financial impact of the risks the insurance company are exposed to. This includes
the analysis of the effects of financial risks to the organization. For example, changes
in interest rates are an important financial risk. For the protection against these risks,
hedging tools are used to manage the exposure to interest rate volatility. A hedge is an
investment to reduce the risk of price movements in an asset. Normally, a hedge consists
of taking an offsetting position in a related security, such as a futures contract. See [73]
for more information.

Risk management computations in the insurance industry improved rapidly after the
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World War II. First, because of the increased use of derivatives as risk management in-
struments in the 1970s and 1980s. Derivatives are contracts that protect the holder from
certain risks and are popular hedging tools. Second, insurers began to consider portfolio
and Asset Liability Management (ALM) [140] in the 1980s and 1990s.

The objective of ALM is the management of the assets, liabilities and solvency re-
quired capitals on the future balance sheet and to specify an investment strategy that
given the specified risk limits maximizes the ambition of an insurance company. This
can for example be to achieve a maximum dividend to shareholders or profit sharing to
policyholders. The objective of strategic risk management is to manage these risks and
returns in a changing environment.

International risk regulation began in the 1980s, and financial firms developed inter-
nal risk management models and capital calculation formulas to hedge against unan-
ticipated risks and reduce regulatory capital. Governance of risk management became
essential and the chief risk officer positions were created. See [39] for more information.

Solvency II is a European wide solvency regulation that came into effect on January 1,
2016. It’s designed to ensure consistency of supervision and reserving across European
insurers. Solvency II replaces the Solvency I framework that was introduced in 1973 and
was in need of replacement due to all the changes over the years. Solvency II consists
of three pillars: quantitative requirements (pillar 1), governance & supervision (pillar
2) and disclosure & transparency (pillar 3). In pillar 1 the solvency capital requirement
is defined in such a way that insurers can meet their obligations to policyholders and
beneficiaries over the following 12 months with a 99.5% probability. This should limit
the probability of falling into financial ruin less than once in 200 cases.

Under Solvency II an insurer is required to value the liabilities at market value (in-
stead of book value under Solvency I). Furthermore, at the latest January 1, 2021, all
insurance companies across the world must report their income statements in terms of
market value instead of book value, based on a new insurance industry accounting prin-
ciple called the International Financial Reporting Standards 17 (IFRS 17). Typically for
life insurers this results in valuation challenges as they sell products that contain guar-
antees. Due to the uncertain future cash flows it is a challenge to compute the market
values of those products.

Most insurance companies are nowadays able to generate the necessary Solvency II
and other reports that show the current balance sheet and financial position. Gener-
ating consistent forward-looking projections of the balance sheet and solvency capital
requirements, which is necessary in ALM analysis to support strategic decision making
in general, is still a challenge.

To find the desired investment strategy, ALM studies utilize the technique of so-
called real world scenario analysis. Scenarios are future trajectories of financial variables
that managers must take into account in their policy determination and evaluation. Ex-
amples of financial variables are inflation, interest rates, currencies, the returns of the
various investment categories, and the development of instruments deduced from these,
such as financial derivatives. ALM studies calculate, with the use of a corporate model
of the insurance company, for every year and each scenario, what the consequences are
of the strategy to the ambition of the insurance company.

Regulations, governance rules and risk management methods failed to prevent the
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worldwide financial crisis that began in 2007. Improvements of regulation and risk man-
agement computations hence remains essential despite the progress seen in the last 50
years.

The worldwide financial crisis of 2007-2009 still has an enormous impact on the
worldwide economy and has led to financial problems for insurance companies. In
order to stimulate the economy most central banks intervened in the market by using
the so-called Quantitative Easing (QE) monetary policy. QE is implemented by buying
amounts of fixed income products from commercial banks and other financial institu-
tions. The goal is to increase private-sector spending and return inflation to its target.
Consequently, QE raises the prices of those fixed income products and lowers their yield,
so that interest rates are artificially kept at a low level.

This low interest rate environment and the desire to keep profitability at acceptable
levels force insurance companies to a search for yield. First of all, there is more invest-
ment focus on more risky asset classes, which in general provide a higher return. Insurers
will have to take risk. Secondly, there is a liability focus on the profit margins of insur-
ance products, which have deteriorated. The search for yield is therefore also concerned
with the product mix an insurer offers.

The Solvency II framework puts high capital charges on most of the higher yield as-
sets, because of the higher risks. Given the low yield environment and the high capital
charges on most of the higher yield assets, the search for yield becomes more complex.

Asset allocation decisions directly impact the Solvency II required capital, but they
also impact the available capital. That is, risky assets that provide for higher expected
returns, would increase the available capital but would also increase the required capital.
It is hence a challenge to manage the available and required capital and the interactions
between these two in order to find the optimal asset mix.

The challenge becomes even bigger when the insurer sells products that contain
guarantees. For such products it is difficult to incorporate the products risk profile in
a consistent way. This will be a research topic in this thesis.

1.5. VALUATION OF EMBEDDED OPTIONS

Research in this thesis is about the valuation of embedded options in ALM for insurance
companies. Computing accurate option values is important to insurance companies in
order to be able to pay out future cash flows and perform accurate risk management. The
computation of the values of embedded options (and their sensitivities) is a mandatory
part of Solvency II for European insurance companies and becomes mandatory under
IFRS 17 for insurance companies. An insurance company deals with the computation of
present and future option values.

Present option values and the corresponding risks are computed at a certain (his-
torical) point in time for reporting and internal steering. Besides the present value, ad-
ditional valuations are performed to quantify risks with respect to the important risk
drivers, such as interest rate and implied volatility.

Insurers also wish to compute accurate option values at a certain time point in the
future, that are relevant for ex-ante (i.e. forward looking) risk management applications
such as ALM. In such applications, one starts with the generation of real world projec-
tions of all relevant economic variables. At each time step of a scenario, one is interested
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in computing all balance sheet items, so that the relevant risks can be assessed. Hence,
at each time step of a scenario one needs to evaluate option values, because they are
part of the balance sheet. The modeling of these option structures in insurance liabil-
ities is essential to insurers for ex-ante risk management applications, as they become
dominant on the balance sheet and the profit and loss account in times of stress (crisis).

Present prices of assets are obtained by the computation of the expected values of
discounted future cash flows. The prices hence depend on the asset’s risk. Investors for
example demand more profit when they are exposed to more uncertainty. For consistent
valuation, the calculated expected values need to be adjusted for an investor’s risk pref-
erence. Unfortunately, discount rates vary between investors and the risk preference of
an individual is difficult to quantify.

According to the fundamental theorem of asset pricing, there is an alternative way to
price assets. Instead of first taking the (real world) expectation and then adjusting for an
investor’s risk preference, one can adjust the probabilities of future outcomes such that
they incorporate all investors’ risk premia, and then take the expectation under this new
probability distribution, the risk neutral measure. Once the risk neutral probabilities are
found, every asset can be priced by simply taking the present value of its expected payoff.

The risk neutral measure is different from the real world measure, because in the
real world investors demand risk premia, whereas in a risk neutral world all individuals
are indifferent to risk and expect to earn on all securities a return equal to the (instan-
taneous) risk-free rate and thus do not incorporate any such premia. The method of
risk neutral pricing is considered a useful computational technique for valuing financial
derivatives.

Since the risk neutral pricing methodology is widely accepted, and alternatives hardly
exist, this risk neutral pricing framework has become the pricing standard for embedded
options in the insurance industry. The valuation of embedded options consists of three
steps: the choice of the risk neutral model and the calibration and valuation steps.

Modeling derivative products in finance often starts with the specification of a sys-
tem of stochastic differential equations (SDEs). Such a SDE system consists of economic
state variables like stock prices, inflation, nominal and real interest rates and volatility.
By imposing a correlation structure (between the Brownian motions) on this system of
SDEs one can use them for pricing exotic derivatives.

Calibration is the estimation of the unknown model parameters in a mathematical
model. Once the risk neutral model is chosen, the model parameters are determined in
such a way that the model replicates market prices as accurately as possible. Calibration
cannot be done in a closed form and numerical optimization routines are used to solve
the calibration problem. That is, the sum of squared errors (or another error measure)
is used to measure the error between market and model prices. The calibrated model
is then used to value the embedded option. Analytic formulas are highly desired for
computing the option values because they are fast to evaluate.

The most well-known example is the Black-Scholes formula for put/call equity in-
dex options. The Black-Scholes model is one of the most important concepts in modern
financial theory, which was developed in 1973 and is still widely used. The authors re-
ceived the 1997 Nobel Memorial Prize in Economic Sciences for their work.

Due to the complexity of embedded contracts, analytic formulas often don’t exist.



1.6. NUMERICAL AND MODELING CHALLENGES

1

7

Therefore, numerical Monte Carlo simulations [64] need to be employed to approximate
the option values. Monte Carlo methods (or Monte Carlo experiments) form a broad
class of computational algorithms that rely on random sampling to obtain numerical
results. They are often used for problems in physics and mathematics and are useful
when it is difficult or impossible to use other approaches.

Computing option values at present time t = 0 is rather straightforward. We can ob-
tain option market data, calibrate the model parameters and compute the embedded
option values. However, the calibration of the risk neutral model at a future time step and
the computation of future option values is more involved. In each real world scenario the
market option prices need to be simulated, which should be used for calibration. This
means that in each scenario a numerical optimization routine should be performed in
order to obtain the model parameters. Furthermore, because option values are ideally
computed by using risk neutral Monte Carlo simulations, in each real world scenario one
should generate a set of risk neutral Monte Carlo simulations. The combination of these
two simulations is called a nested simulation. The nested simulation framework is illus-
trated in Figure 1.1. The real world scenarios are called the outer scenarios and the risk
neutral scenario the inner scenarios.

Figure 1.1: The dashed lines refer to risk neutral scenarios and the straight lines refer to real world scenarios.
At each time point, a risk neutral valuation should be performed. So, for 10.000 real world scenarios and 5 time
steps per scenario, (50.000+1) risk neutral valuations (including t = 0) should be performed.

0 1 2 3 4 5 6 7 8 9 10
Time t , future →

Start risk neutral scenario set

1.6. NUMERICAL AND MODELING CHALLENGES

Given the importance of computing present and future option values in risk manage-
ment applications, there are a number of numerical and modeling challenges an insur-
ance company faces. In this thesis we focus on two challenges which we discuss below.
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Extending the Black-Scholes model In order to compute accurate option values, risk
neutral models are used that can model the relevant stylized facts in the option market
data. The Black-Scholes model for example assumes that the log of the returns follows
a normal distribution, but when markets are in stress, these assumptions may be vio-
lated. The Black-Scholes model is furthermore not able to reproduce the markets im-
plied volatility smile/skew. The volatility value that produces a theoretical value which
is exactly equal to the market price is called the implied volatility. The implied volatility
smile/skew gives rise to an implied distribution of the underlying asset which has fatter
tails than a log-normal distribution.

Model extensions are proposed based on the analysis of financial data. It’s observed
that for example interest rates and volatility are typically not deterministic but instead
follow a stochastic process. Therefore, stochastic models have also been proposed for
interest rates and volatility. A popular extension of the Black-Scholes model is the use of
stochastic volatility or local volatility models for equity.

Although these risk neutral models can be easily defined, real use of these models is
only guaranteed when they provide a satisfactory fit with the option market data.

The nested simulation problem Most nested simulation applications found in finan-
cial applications can run for several days on modern computers, an obvious bottleneck
to their viability. Furthermore, these long-running simulations discourage any research
on new models and new methodologies.

There are two procedures that make nested simulations expensive. First, Monte
Carlo simulations [64] are used to compute the risk neutral option values. Applying an-
alytic formulas is advantageous regarding the computation time, but restrictive when
expanding the model set-up to hybrid models [65], that are generally required to ob-
tain a high quality-of-fit with the option market data. In other words, analytic formulas
can only be derived for specific cases, such as the Black-Scholes and Heston models for
call/put options, but are often not available for hybrid models such as the Heston Hull-
White model.

Second, the calibration of the model parameters at each time and in each scenario
can not be done in a closed form. Numerical optimization techniques that can be used
for calibration are expensive and even more time consuming in the case of using Monte
Carlo simulations for valuations.

Many valuation techniques are available in the academic literature to accelerate nested
simulations. These techniques have their pros and cons. The trade-off for choosing a val-
uation technique is between accuracy, monotonicity of solutions, computation time and
ease of implementation. The trade-off generally depends on the application at hand.
Ease of implementation is important for both applications. Popular valuation tech-
niques are: the nested simulation, analytic formulas, curve fitting, regression methods
and interpolation methods. In [6] an overview is given of existing valuation methods.

Future embedded option values are approximated in four steps, see Figure 1.2. First
of all, the option’s pay-off function to determine the relevant risk drivers is analyzed.
Risk drivers can either be economic or non-economic variables. Examples of economic
risk drivers are interest rates, inflation, equity and implied volatilities. Examples of non-
economic risk drivers are costs, premiums, benefits and mortality. Secondly, the em-



1.7. OUTLINE OF THIS THESIS

1

9

pirical probability distribution function (PDF) of the risk drivers is identified. This PDF
is used to generate relevant interpolation points for the subsequent option valuation.
Thirdly, the interpolant is calibrated and validated for error assessment. Fourthly, the
method is used for density forecasting in an ex-ante risk management application. This
means that real world realizations of the underlying risk drivers are not used in the ac-
tual (Monte Carlo) valuation function, but the method is used to compute risk neutral
option values.

Figure 1.2: Flowchart of approximating embedded options.

1. Choose
risk drivers

2. Specify PDF
of risk drivers

3. Calibrate
and validate

4. Construct
density forecast
of option values

• Economic:
interest rate,
equity,
inflation,...

• Non-economic:
mortality,
premium, ...

• Run a realistic
set of scenarios.

• Inference of
fitting points and
model
parameters.

• Error assessment.

• Realization of the
risk drivers are
used to
approximate
option values.

A way of accelerating nested simulations is by using High Performance Computing
(HPC). This area of research is developing rapidly due to improved hardware. HPC be-
comes more and more essential in the insurance industry. HPC is a general term for
techniques to make applications run faster than on regular desktops or workstations.
Examples of HPC are: a grid of regular desktops, a cluster of compute nodes or offload-
ing parts of the calculations to other available hardware or even a combination of all. The
scope of HPC is still growing and gets more accessible for small companies and even in-
dividuals. For example, Amazon offers an on-demand service for using different HPC
instances like GPU clusters, I/O clusters or storage optimized clusters. The scope of ap-
plications using such techniques is still growing.

Applying HPC solutions is not easy. Since preparing applications for HPC can be
hard, the concepts of HPC are mainly applied by early adaptors in the industry. Com-
panies have to consider the additional investment in developing and maintaining HPC
applications against the performance gain.

1.7. OUTLINE OF THIS THESIS

In this thesis, we improve risk neutral valuation techniques for financial option products.
The methods derived in the thesis are relevant for risk management for pension funds
and insurance companies. This thesis is organized as follows.

In Chapters 2 and 3 we focus on the challenge of extending the Black-Scholes model
and in particular on the modeling of- and calibration to options on inflation and real
estate indices, which are important risk variables for insurance companies and pension
funds.
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In Chapter 2, we consider a Heston type inflation model in combination with a Hull-
White model for nominal and real interest rates, in which all the correlations can be
non-zero. Due to the presence of the Heston dynamics our derived inflation model is
able to capture the implied volatility skew/smile, which is present in the inflation option
market data. We derive an efficient approximate semi-closed pricing formula to approx-
imate the value of two types of inflation dependent options: index and year-on-year
inflation options. The derived pricing formulas allow for an efficient calibration of the
inflation model. We also illustrate our approach using a real-life pension fund example,
where the Heston Hull-White model is used to determine the value of conditional future
indexations. This chapter contains essentially the contents of the article [121].

In Chapter 3, we propose a risk neutral valuation model for real estate derivatives. We
demonstrate the application of the model by valuing a put option on a house price index.
Autocorrelation in the index returns appears to have a large impact on the option value.
We also study the effect of an over- or undervalued real estate market. The observed
effects are significant. This chapter contains essentially the contents of the article [129].

In Chapters 4, 5 and 6 we focus on the challenge of nested Monte Carlo simulation.
In Chapter 4, we introduce the so-called Option Interpolation Model for accurate

approximations of embedded option values in insurance liabilities. Such a method is
important for ex-ante risk management applications. The method is based on interpo-
lation with radial basis functions, which may be used to interpolate scattered data. To
reduce computation time we present an inversion method to determine the appearing
interpolation function weights. The robustness, accuracy and efficiency of the OIM are
analyzed by means of a number of numerical experiments. We show that the proposed
approximation method results in highly accurate estimates.

In Chapter 5, we propose a modeling framework for risk neutral stochastic processes
nested in a real world stochastic process. The framework is important for insurers that
deal with the valuation of embedded options and in particular at future points in time.
We make use of the class of State Space Hidden Markov models for modeling the joint
behavior of the parameters of a risk neutral model and the dynamics of option market
instruments. This modeling concept enables us to perform non-linear estimation, fore-
casting and robust calibration. The proposed method is applied to the Heston model for
which we find highly satisfactory results. We use the estimated Heston model to com-
pute the required capital of an insurance company under Solvency II.

In Chapter 6, we present a HPC framework to improve the performance of nested
simulations. We aim to take full advantage of the parallelism of GPUs. We manage to
reduce the execution time of a nested simulation application from several hours to tens
of minutes. This chapter contains essentially the contents of the article [33].

In Chapter 7 conclusions are presented, as well as an outlook for future research.



CHAPTER 2

Pricing inflation products with stochastic volatility and

stochastic interest rates

We consider a Heston type inflation model in combination with a Hull-White model for

nominal and real interest rates, in which all the correlations can be non-zero. Due to the

presence of the Heston dynamics our derived inflation model is able to capture the implied

volatility skew/smile, which is present in the inflation option market data. We derive an

efficient approximate semi-closed pricing formula for two types of inflation dependent

options: index and year-on-year inflation options. The derived pricing formulas allow for

an efficient calibration of the inflation model. We also illustrate our approach using a

real-life pension fund example, where the Heston Hull-White model is used to determine

the value of conditional future indexations.

2.1. INTRODUCTION

Inflation-dependent derivatives are increasingly important in financial engineering. As
a consequence, inflation markets are becoming more active, liquid and transparent. In-
flation is defined as a rise in the general level of prices of goods and services in an econ-
omy over a certain period of time (usually one year). The price level is measured by a
so-called Consumer Price Index (CPI), which reflects the actual price level of a basket of
typical consumer goods. The inflation rate is then defined as the percentage change of
the CPI. Inflation derivatives have been traded for over a decade starting in the U.K. in
the early 1990s. Since 2000, the market for inflation derivatives has seen a rapid growth
in volumes and in types of products across various markets and linked to various do-
mestic and regional inflation indices, such as, French CPI, Euro-zone HICP, U.S. CPI, etc.
Broker volumes increased substantially from late-2002, driven by a rise in the need to
hedge, for example, retail products.

This chapter is based on the article ’Pricing Inflation Products with Stochastic Volatility and Stochastic Interest
Rates’, published in Insurance: Mathematics and Economics, 52(2):286–299, 2013 [121].

11
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Figure 2.1: Historical overview of CPIs and inflation rates.
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(b) Inflation rates (yearly data (31/12/1971-
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Many pension funds, life insurance companies and banks trade these inflation de-
pendent derivatives. For life insurance companies it is important, due to (among others)
regulation and new accounting standards, to value their liabilities, which contain infla-
tion dependent embedded options, as market consistent as possible. Pension funds are,
for example, interested in the conditional future indexation of pension rights, which can
be viewed as an exotic derivative depending on the CPI.

The well-known Fisher equation [52] defines a relation between the nominal and real
interest rates on the market and the break-even inflation rate. The break-even inflation
rate is the yield spread between nominal and inflation-linked bonds and is a fundamen-
tal indicator of inflation expectations. The use of stochastic nominal and real interest
rates is crucial for an accurate inflation pricing model. Furthermore, as it turns out, ac-
cording to [84], there is a significant skew/smile present in the inflation option market
data in the sense that the implied Black-Scholes (BS) volatilities are not constant for dif-
ferent strike levels and maturities (like in the stock or currency option markets). In Figure
2.2 the market implied volatility smile is clearly visible.
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Figure 2.2: Market implied volatilities of (Euro) inflation indexed options as of September 30, 2010.
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Because of this smile/skew effect in the inflation option market data, the Heston
model [70] is often used in practice, as this model is capable of capturing this effect.
The Heston model is for example well established for pricing stock and currency deriva-
tives, however, not yet for pricing inflation derivatives. The variance process of the CPI
is then modeled by a so-called Cox-Ingersoll-Ross (CIR) process (see [32]). Recently,
much attention has also been devoted in the literature to stochastic volatility driven by
a Schöbel-Zhu process (see for example [133]) in combination with stochastic interest
rates to model the CPI. In [133] also a special case of the Heston model in combination
with stochastic interest rates was investigated, where some correlations were assumed
to be zero. However, the case of a full correlation structure is of particular interest in this
chapter. It turns out that these correlation parameters can be influential when pricing
exotic derivatives.

We model the CPI by the Heston model, coupled with stochastic nominal and real
interest rate processes that are driven by the one-factor Hull-White model. A Hull-White
model is a special case of a (multi-factor) Gaussian model (see [18, Chap. 3 and 4]).
Our focus is on the fast valuation of inflation index cap/floor options and year-on-year
(YoY) inflation cap/floor options1, because for these products the speed of valuation is
crucial for calibration. We derive an efficient pricing engine for these options, so that
calibration of our inflation model can be done relatively fast. The key to obtaining the
pricing formulas is the derivation of the discounted log-CPI characteristic function (ChF)
under the T -forward measure. Since the ChF to be derived contains expressions which
have to be evaluated numerically, efficient numerical techniques are developed as well.

This chapter is organized as follows. In Section 2.2 we discuss the coupled inflation-

1YoY cap/floor options are defined as a series of forward starting call/put options.
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interest rate model and derive the model under the T -forward measure. In Section 2.3
we discuss the valuation of two inflation-dependent options: inflation index caps/floors
and YoY inflation caps/floors. In Section 2.4 we present numerical results, which include
calibration results. We also devote attention to the comparison between the Heston and
the Schöbel-Zhu model. In Section 2.5 we illustrate our approach using a real-life pen-
sion fund example, where the Heston Hull-White model is used to determine the value
of conditional future indexations. We conclude in Section 2.6.

2.2. SPECIFICATION OF THE INFLATION MODEL

We consider the Heston model in which interest rates are modeled by the one-factor
Hull-White interest rate model (see [18, p. 71-80]) to model the CPI. We call this inflation
model the Heston Hull-White inflation (HHWi) model.

2.2.1. THE HULL-WHITE INTEREST RATE MODEL

Term structure models, such as the Hull-White (HW) model, describe the evolution of
the interest rate curve through time. Modeling the stochastic behavior of the interest rate
term structure is particularly important when pricing interest rate-dependent deriva-
tives. The HW model is an example of a no-arbitrage model, because it is designed to
exactly fit today’s term structure by producing an interest rate behavior which is consis-
tent with this term structure at all times.

The HW model allows for the occurrence of negative rates. Because of the underlying
Gaussian distributions it is possible to derive explicit formulas for a number of financial
instruments, like interest rate derivatives and bond prices. The different model parame-
ters also provide flexibility and give insight into the dynamic behavior of the term struc-
ture.

The nominal and real interest rates, rn and rr , under the risk neutral nominal and
real economy measures Qn and Qr , respectively, are modeled by one-factor HW models:

drl (t ) = (θl (t )−κl rl (t ))d t +σl dW rl (t ), rl (0) ≥ 0, (2.1)

where κl is a mean-reversion parameter and σl a volatility parameter with l ∈
{
n,r

}
. The

time-dependent function θl (t ) is determined by the nominal/real initial term structure
as observed in the market via:

θl (t ) =
∂ fl (0, t )

∂t
+κl fl (0, t )+

σ2
l

2κl

(
1−exp

(
−2κl t

))
, l ∈

{
n,r

}
. (2.2)

The time-dependent function fl (t ,T ) (0 ≤ t ≤ T ) denotes the instantaneous forward
curve at time t for maturity T . See [18, p. 73] for details.

Nowadays, the quadratic Gaussian and Libor Market Models (among others) are be-
coming increasingly important to model interest rates (see for example [4, 66]), because
they can model an interest rate smile. However, the application of these models is not
part of the present work.



2.2. SPECIFICATION OF THE INFLATION MODEL

2

15

2.2.2. THE HESTON HULL-WHITE INFLATION MODEL

We model the evolution of the CPI, denoted by I , and the coupled stochastic variance
factor ν by the Heston model under the nominal economy spot measure2, Qn (where the
nominal and real interest rates follow a Hull-White model, see Eq. (2.1)). The dynamics
are given by:





d I (t ) = (rn(t )− rr (t ))I (t )d t+
√
ν(t )I (t )dW I (t ), I (0) ≥ 0,

dν(t ) = κν(ν̄−ν(t ))d t+ σν

√
ν(t )dW ν(t ), ν(0) ≥ 0,

(2.3)

where κν is a mean-reversion parameter, σν a volatility parameter and ν̄ denotes the
long-term variance level. The inflation rate is defined as the percentage change of the
CPI, i.e. I (t )

I (t̃ )
−1 for 0 ≤ t̃ < t .

Remark.

• There exists an analogy between our inflation model and the modeling of currencies,

which is also remarked by [76]. It turns out that the inflation model can be used

to model currencies by replacing the real interest rate by the foreign interest rate.

The CPI then denotes the exchange rate. See for example [66] which employs a very

similar model as our inflation model to model the exchange rate.

• The instantaneous inflation,
(
rn(t )− rr (t )

)
d t, in Eq. (2.3) is equal to the instanta-

neous break-even inflation, which is an important feature in our model.

• Seasonality in inflation rates can become important when modeling quarterly or

monthly inflation rates. One way to model seasonality is to assume that we have

already modeled the seasonally adjusted CPI, I (t ), using our inflation model. We

can then add a seasonal component, say ξ(t ), to obtain the CPI value with season-

ality, Ĩ (t ). Different approaches can be used to estimate the ξ(t ) function, but this is

outside the scope of the present section.

We now need to determine the process for the real interest rate in the nominal econ-
omy. Therefore, we apply a change of measure (i.e. change of numéraire) from the risk
neutral real economy measure, Qr , to the nominal economy measure, Qn . The authors
in [18, p. 46] show that this change of measure is equivalent to a change of measure of
the numéraire Mr (t ) to Mn(t )/I (t ), where Mn(t ) and Mr (t ) are money-savings accounts
in the nominal and real economy, respectively, which evolve according to:

d Ml (t ) = Ml (t )rl (t )d t , with l ∈
{
n,r

}
. (2.4)

By applying the two-dimensional version of Itô’s lemma we derive the following SDE
of the numéraire Mn(t )/I (t ) under Qn :

d

(
Mn(t )

I (t )

)
=

(
Mn(t

I (t )

)
rr (t )d t −

(
Mn(t )

I (t )

)√
ν(t )dW I (t ), I (0) ≥ 0.

2In the nominal economy this measure is generated by the nominal money-savings account, Mn (t ), which
evolves according to Eq. (2.4).
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Using [18, Prop. 2.3.1], we then obtain the following real interest rate dynamics under
Qn :

drr (t ) = (θr (t )−ρI ,rσr

√
ν(t )−κr rr (t ))d t +σr dW rr (t ), rr (0) ≥ 0.

The correlation structure between the Brownian motions

dWt =
(
dW I

t ,dW ν
t ,dW

rn
t ,dW

rr
t

)T
is defined by the following symmetric instantaneous

correlation matrix:

dWt

(
dWt

)T =




1 ρI ,ν ρI ,n ρI ,r

. 1 ρν,n ρν,r

. . 1 ρn,r

. . . 1


d t . (2.5)

2.2.3. INFLATION DYNAMICS UNDER THE T -FORWARD MEASURE

To value inflation-dependent derivatives it is convenient to use the inflation model un-
der the T -forward nominal economy measure (instead of the spot measure), which we
denote by QT

n (see for example [132]). This measure is generated by the nominal zero-
coupon bond, Pn(t ,T ). In other words, under the T -forward measure the forward CPI,
IT , is a martingale, i.e.

Pn(t ,T )ET
[
IT (T ) | Ft

]
= Pn(t ,T )IT (t ) = Pr (t ,T )I (t ), (2.6)

where Pn(t ,T ) and Pr (t ,T ) are nominal and real zero-coupon bonds, respectively. The
inflation model under this T -forward measure is given in Proposition 2.2.1.

Proposition 2.2.1. The inflation model under the T -forward nominal economy measure(
QT

n

)
, with a full matrix of correlations, is given by:





d IT (t ) =IT (t )
(√

ν(t )dW I
T (t )+σnBn(t ,T )dW n

T (t )−σr Br (t ,T )dW r
T (t )

)
,

dν(t ) =
(
κν(ν̄−ν(t ))−σνσnρν,nBn(t ,T )

√
ν(t )

)
d t +σν

√
ν(t )dW ν

T (t ),

where IT denotes the forward CPI under the T -forward measure. The interest rate pro-

cesses are given by:





drn(t ) =
(
θn(t )−σ2

nBn(t ,T )−κn rn(t )
)

d t + σndW
rn

T
(t ),

drr (t ) =
(
θr (t )−ρI ,rσr

√
ν(t )−σnσrρn,r Bn(t ,T )−κr rr (t )

)
d t + σr dW

rr

T
(t ),

where the time-dependent function θl (t ) is given by Eq. (2.2) and

Bl (t ,T ) =
1

κl

(
1−exp

(
−κl (T − t )

))
,

for l ∈
{
n,r

}
.
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The dynamics of the forward CPI are simplified by changing to logarithmic trans-

formed coordinates, where we define xT (t ) := log IT (t )3:

d xT (t ) = −
1

2

(
ν(t )+σ2

nB 2
n(t ,T )+σ2

r B 2
r (t ,T )+2ρν,nσnBn(t ,T )

√
ν(t )

− 2ρν,rσr Br (t ,T )
√

ν(t )−2ρn,rσnσr Bn(t ,T )Br (t ,T )
)

d t

+
√
ν(t )dW I

T (t )+σnBn(t ,T )dW n
T (t )−σr Br (t ,T )dW r

T (t ).

Proof. The general outline of the proof is as follows. From Eq. (2.6) it follows that

IT (t ) = I (t )
Pr (t ,T )

Pn (t ,T )
, (2.7)

where the dynamics of I (t ) are given in Section 2.2.1. The dynamics of IT (t ) are obtained
by applying Itô’s lemma to Eq. (2.7) in combination with the dynamics of I (t ) and the
dynamics of the real and nominal zero-coupon bonds, Pr (t ,T ) and Pn(t ,T ), under the
nominal economy measure

(
Qn

)
. Expressing the full model in terms of independent

Brownian motions simplifies the derivation of the Radon-Nikodým derivative (see [18,
p. 45 and 911]). By computing the Itô derivative of this Radon-Nikodým derivative the
Girsanov kernel for the transition from Qn to QT

n is derived and finishes the proof. For
the full proof we refer to [66].

From Proposition 2.2.1 we note that under the T -forward nominal economy mea-

sure
(
QT

n

)
the forward CPI does not depend directly on the real and nominal interest

rate processes, rr (t ) and rn(t ), but only depends on the Brownian motions dW rn (t ) and
dW rr (t ). Actually the forward CPI depends on all the Brownian motions since the corre-
lations can be non-zero. The key is the independence of the state variables.

2.3. PRICING FORMULAS

We discuss the pricing of two inflation dependent options. The pricing of inflation index
options is discussed in Section 2.3.1 and the pricing of YoY inflation options is discussed
in Section 2.3.2. In Section 2.3.3 we show numerical results of the derived pricing formu-
las of forward starting options.

2.3.1. INFLATION INDEXED OPTIONS

We briefly discuss the pricing of inflation indexed cap and floor options. The inflation
model, which we use for option pricing, is given in Section 2.2.1 under the measure Qn

and by Proposition 2.2.1 under the measure QT
n .

The model price of an inflation indexed cap/floor option maturing at time T with
strike level4 K := (1+ k̃)T (the expression (1+ k̃)T means 1+ k̃ to the power T) written on
the inflation index (the CPI) (with ω= 1 for a cap option and ω=−1 for a floor option) is

3Note that this transformation is well defined since I (0) > 0 and, thus, IT (0) > 0.
4The strike level k̃ is (market data) input.
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given by

η
Π

(t ,T, k̃,ω) := Mn(t )EQn




max
(
ω

(
I (T )−K

)
,0

)

Mn(T )
| Ft


 , (2.8)

where Mn(t ) indicates the nominal money-savings account, which evolves according to
Eq. (2.4). We denote the market price by Π. Since the stochastic expressions Mn(T ) and

max
(
ω

(
I (T )−K

)
,0

)
are not independent, the computation of the expectation under the

Qn measure is rather involved.
It turns out that the complexity of the problem is greatly reduced under the T -forward

measure. We then get the following pay-off structure:

η
Π

(t ,T, k̃,ω) = Pn

(
t ,T

)
EQ

T
n

[
max

(
ω

(
IT (T )−K

)
,0

)
| Ft

]
. (2.9)

From the two pay-off structures in Eqs. (2.8) and (2.9) we note that the pay-off structure
under the T -forward measure has a simpler form since the price of the pure discount
bond at time t = 0 is directly observable in the market.

η
Π

(t ,T, k̃,ω) in Eq. (2.9) can also be formulated in integral form:

η
Π

(t ,T, k̃,ω) = Pn

(
t ,T

)∫

R

max

(
ωK

(
exp

(
y
)
−1

)
,0

)
f̃ (y |x)d y,

where f̃ (y |x) denotes the probability density function of y := log
(

IT (T )
K

)
given

x := log
(

IT (t )
K

)
.

Fourier-based methods5 can be used to compute these integrals in the case the den-
sity function is not known in advance. These methods rely on the existence of the ChF.
The derivation of the ChF for this particular option is discussed in [66]. We denote the
corresponding approximation of the full-scale HHWi model by HHWi-i. For this model
we can employ Fourier-based methods for efficient pricing of inflation index options.

2.3.2. YEAR-ON-YEAR INFLATION OPTIONS

We discuss the pricing of YoY inflation cap/floor options by describing the general pric-
ing methodology. In general, a cap/floor option, Π̃, is defined by a series of so-called
caplet/floorlet options, Π̂, i.e:

Π̃(ω, t ,τ,T, k̄) =
n∑

k=1

Π̂(ω, t ,Tk−1,Tk , k̄),

where ω= 1 for a cap/caplet option and ω=−1 for a floor/floorlet option. Furthermore,
τ := Tk −Tk−1 defines the tenor parameter with T0 = 0 and Tn = T . The integer n denotes
the number of caplets/floorlets in the cap/floor option. This integer is dependent on the
tenor parameter, which is in practice often a fixed interval. The strike level is given by k̄.
So, the pricing of a YoY inflation cap/floor option reduces to the pricing of a series of YoY
inflation caplet/floorlet options.

5See for example [28, 47].
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The model price of a YoY inflation caplet/floorlet option starting at time Tk−1 (0 ≤ t ≤
Tk−1) and maturing at time Tk (Tk−1 ≤ Tk ), written on the inflation index, is given by

η
Π̂

(ω, t ,Tk−1,Tk , k̄) = Mn(t )EQn




max

(
ω

(
I (Tk )

I (Tk−1) − (k̄ +1)
)

,0

)

Mn(Tk )
| Ft


 ,

where Mn(t ) indicates the nominal money-savings account, which evolves according to
Eq. (2.4).

By changing the measure from Qn to the Tk -forward measure, Q
Tk
n , with k = 1, . . . ,n,

and by using K ∗ := 1+ k̄, we arrive at the following pricing problem:

η
Π̂

(ω, t ,Tk−1,Tk , k̄) = Pn(t ,Tk )ETk


max


ω

(
I (Tk )

I (Tk−1)
−K ∗

)
,0


∣∣Ft


 .

Since the Tk -forward CPI, ITk
(t ) = Pr (t ,Tk )

Pn (t ,Tk ) I (t ), under the Tk -forward measure is a mar-
tingale with numéraire Pn(t ,Tk ) and ITk

(Tk ) = I (Tk ), we can simply write:

η
Π̂

(ω, t ,Tk−1,Tk , k̄) = Pn(t ,Tk )ETk


max


ω

(
Pr (Tk−1,Tk )

Pn(Tk−1,Tk )

ITk
(Tk )

ITk
(Tk−1)

−K ∗
)

,0


∣∣Ft


 .

The dynamics for ITk
(t ) under the Tk -forward measure are given by Proposition 2.2.1.

For numerical experiments we make use of the put-call parity to price options of call
type, so in this case caplet options. In other words, when for example a floorlet option,
η
Π̂

(−1, t ,T1,T2, k̄), with strike k̄ and times 0 ≤ t ≤ T1 < T2, is computed, the price of the
corresponding caplet option η

Π̂
(1, t ,T1,T2, k̄) is computed by:

η
Π̂

(1, t ,T1,T2, k̄) = η
Π̂

(−1, t ,T1,T2, k̄)+Pn(t ,T1)Pr (T1,T2)−Pn(t ,T2)
(
1+ k̄

)
,

where Pn and Pr are nominal and real zero-coupon bonds, respectively.
As already mentioned, to apply Fourier-based pricing methods we have to derive the

(forward) ChF belonging to this option, which is the topic of the next section.

DERIVATION OF THE (FORWARD) CHARACTERISTIC FUNCTION

By setting6

X (Tk−1,Tk ) =
Pr (Tk−1,Tk )

Pn(Tk−1,Tk )

IT (Tk )

IT (Tk−1)
, for k = 1, . . . ,n,

we perform the log-transformation:

x(Tk−1,Tk ) := log X (Tk−1,Tk ) = log

(
Pr (Tk−1,Tk )

Pn(Tk−1,Tk )

ITk
(Tk )

ITk
(Tk−1)

)

= log ITk
(Tk )− log ITk

(Tk−1)+ logPr (Tk−1,Tk )− logPn(Tk−1,Tk ).

6We note that the same approach, for deriving the forward ChF, is used as in [133]. For convenience, the
notation is analogue to the notation in [133].
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We derive the forward ChF for the process x(Tk−1,Tk ):

φY oY (u, t , x(Tk−1,,Tk )) := ETk

[
exp

(
i ux(Tk−1,Tk )

)∣∣Ft

]
. (2.10)

By substitution we have:

φY oY (u, t , x(Tk−1,Tk )) = ETk

[
exp

(
i u

(
log ITk

(Tk )− log ITk
(Tk−1)

+ logPr (Tk−1,Tk )− logPn(Tk−1,Tk )
))∣∣Ft

]
.

Now, by iterated expectations we find:

φY oY (u, t , x(Tk−1,Tk )) = ETk


ETk

[
exp

(
i u

(
log ITk

(Tk )− log ITk
(Tk−1)

+ logPr (Tk−1,Tk )− logPn(Tk−1,Tk )
))∣∣Fk−1

]∣∣Ft

]
.

Since IT (Tk−1), Pn(Tk−1,Tk ) and Pr (Tk−1,Tk ) are ITk−1 measurable7, we can write:

φY oY (u, t , x(Tk−1,Tk )) = ETk

[
exp

(
−i u

(
log ITk

(Tk−1)− logPr (Tk−1,Tk )

+ logPn(Tk−1,Tk )
))
·ETk

[
exp

(
i u log ITk

(Tk )
)∣∣Fk−1

]∣∣Ft

]
.

The last expectation equals the characteristic function for log ITk
(Tk ), i.e.

φi (u, log IT (Tk ),Tk−1,Tk ) := ETk

[
exp

(
i u log ITk

(Tk )
)∣∣Fk−1

]
.

In [66] an affine approximation is found for this ChF, i.e.:

φi ,1 := exp
(

A(u,Tk −Tk−1)+ i u log ITk
(Tk−1)+C (u,Tk −Tk−1)v(Tk−1)

)
, (2.11)

with functions A(u,τ) and C (u,τ) given by Eqs. (2.12) and (2.13). By subscripts (like the
φi ,1 in Eq. (2.11)) we indicate subsequent approximations.

In [66] it is noted that the Kolmogorov backward partial differential equation, for
which φ in Eq. (2.10) is the solution, contains non-affine

p
ν-terms, so that finding the

solution is nontrivial. Approximation of these
p
ν-terms by a linearization technique

leads to an approximating closed-form solution of the ChF.
The functions A(u,τ) and C (u,τ) in Eq. (2.11) are given by:

A(u,τ) :=
∫τ

0

(
κνν̄−ρν,nσνσnϕ(s)Bn(s)(1− i u)−ρν,r σνσrϕ(s)Br (s)

)
C (s)d s

+(u2 + i u)

∫τ

0
Ψ(s,ϕ(s))d s, (2.12)

C (u,τ) :=
1−exp

(
−dτ

)

σ2
ν(1− g exp

(
−dτ

)
)

(
κν−ρI ,νσνi u −d

)
, (2.13)

7See [18].
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where ϕ(t ) := E

[p
ν(t )

]
8, d :=

√
(κν−ρI ,νσνi u)2 −σ2

νi u(i u −1) and g := κν−ρI ,νσνi u−d

κν−ρI ,νσνi u+d .

Furthermore,

Ψ(t ,ϕ(t )) := (ρI ,rσr Br (t ,T )−ρI ,nσnBn(t ,T ))ϕ(t )+ρn,r σnσr Bn(t ,T )Br (t ,T )

−
1

2

(
σ2

nB 2
n(t ,T )+σ2

r B 2
r (t ,T )

)
.

The ChF, φ, is then approximated by:

φY oY ,1 = ETk

[
exp

(
−i u log ITk

(Tk−1)+ i u logPr (Tk−1,Tk )− i u logPn(Tk−1,Tk )
)
φi ,1

∣∣Ft

]
.

Due to Eq. (2.11) we have:

φY oY ,1 = ETk

[
exp

(
A(u,Tk −Tk−1)+C (u,Tk −Tk−1)v(Tk−1)

)
×

exp
(
−i u logPn(Tk−1,Tk )

)
exp

(
i u logPr (Tk−1,Tk )

)∣∣Ft

]
. (2.14)

As the underlying nominal interest-rate model is the Hull-White model, the zero-coupon
bond (ZCB) Pn(Tk−1,Tk ) is given by, see [18, p. 75-78]:

Pn(Tk−1,Tk ) = exp
(

An(Tk−1,Tk )−Bn(Tk−1,Tk )rn(Tk−1)
)

, (2.15)

with analytically known functions An(Tk−1,Tk ) and Bn(Tk−1,Tk ). However, since we
work under the nominal economy measure Qn , the dynamics of the real interest rate are
not affine and, as a consequence, the dynamics of Pr are not affine. Hence, the deriva-
tion of the dynamics of Pr is nontrivial.

By approximating the variance process under Qn (see Section 2.2.1) by its expecta-
tion, the process of the real interest rate, conditional on Fs , is affine and normally dis-
tributed. Following the approach as outlined in [18, Chap. 3.3] we derive:

Ar (Tk−1,Tk ) = log
Pr (0,Tk )

Pr (0,Tk−1)
(Br (Tk−1,Tk ) fr (0,Tk−1)+Λ(Tk−1,Tk )

−
σ2

r

4κr
(1−exp

(
−2κr Tk−1

)
)Br (Tk−1,Tk )2),

Br (Tk−1,Tk ) =
1

κr

(
1−exp

(
−κr (Tk −Tk−1)

))
,

where

Λ(Tk−1,Tk ) = E

[√
ν(Tk )

] ρI ,rσr

κr
(Tk −Tk−1 −Br (Tk−1,Tk )−Bn(Tk−1,Tk )

+
1

κn +κr
(1−exp

(
−(κn +κr )(Tk −Tk−1)

)
)).

8In [65] approximations are proposed for E
[p

ν(t )
]

, which are also used for the numerical experiments.
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By substituting the nominal and real ZCB expressions into the expression in Eq. (2.14)
the approximating ChF in Eq. (2.14) is now given by:

φY oY ,1 = exp
(
i u

(
Ar (Tk−1,Tk )− An(Tk−1,Tk )

))
exp

(
A(u,Tk −Tk−1)

)
×

ETk

[
exp

(
C (u,Tk −Tk−1)v(Tk−1)

)
×

exp
(
i u

(
Bn(Tk−1,Tk )rn(Tk−1)−Br (Tk−1,Tk )rr (Tk−1)

))∣∣Ft

]
. (2.16)

The Laplace transform in Eq. (2.16) is of a very complicated form. In order to find a
closed-form solution for Eq. (2.16), additional assumptions of independence between
processes are required.

A basic approximation to Eq. (2.16) is given by:

φY oY ,2 = exp
(
i u

(
Ar (Tk−1,Tk )− An(Tk−1,Tk )

)
+ A(u,Tk −Tk−1)

)
×

ETk

[
exp

(
C (u,Tk −Tk−1)v(Tk−1)

)∣∣Ft

]
×

ETk

[
exp

(
i u

(
Bn(Tk−1,Tk )rn(Tk−1)−Br (Tk−1,Tk )rr (Tk−1)

))∣∣Ft

]
.(2.17)

The approximation above consists of two expectations under the Tk -forward measure.
Since the nominal and real interest rates, rn(Tk−1) and rr (Tk−1), are normally distributed,
the sum of these two normally distributed random variables is also normally distributed
and the ChF of this sum can be found analytically. Furthermore, since v(Tk−1) is non-
central chi-square distributed the corresponding ChF can also be found analytically. Re-
sult 2.3.1 and Lemma 2.3.1 provide these solutions.

Result 2.3.1. For given times 0 ≤ s ≤ t ≤ T , nominal and real interest rate processes rn

and rr , as defined in Proposition 2.2.1, and Y (t ,T ) := Bn(t ,T )rn (t )−Br (t ,T )rr (t ), the

following holds:

ET
[

exp
(
i uY (t ,T )

) ∣∣Fs

]
≈ exp

(
i uET

[
Y (t ,T )

∣∣Fs

]
−

1

2
u2VarT

(
Y (t ,T )

∣∣Fs

))
,

where rn evolves under QT
n according to Proposition 2.2.1. To ensure that the real interest

rate process is normally distributed under QT
n , we assume that it evolves according to

drr (t ) =
(
θr (t )−ρI ,rσrE

[√
ν(t )

]
−σnσrρn,r Bn(t ,T )−κr rr (t )

)
d t +σr dW

rr

T
(t ).

The random variable Y (t ,T ) is then normally distributed with expectation and variance

given by:

ET
[

Y (t ,T )
∣∣Fs

]
= Bn(t ,T )ET

[
rn(t )

∣∣Fs

]
−Br (t ,T )ET

[
rr (t )

∣∣Fs

]
,

VarT
[

Y (t ,T )
∣∣Fs

]
= B 2

n(t ,T )VarT
[

rn(t )
∣∣Fs

]
+B 2

r (t ,T )VarT
[

rr (t )
∣∣Fs

]

−2Bn(t ,T )Br (t ,T )CovT
[

rn(t ),rr (t )
∣∣Fs

]
,
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with

CovT
[

rn(t ),rr (t )
∣∣Fs

]
= ρn,r

√
VarT

[
rn(t )

∣∣Ft

]
VarT

[
rr (t )

∣∣Fs

]
.

Proof. By approximating the variance process under Qn (see Section 2.2.1) by its expec-
tation the process of the real interest rate, conditional on Fs , is normally distributed.

Next, since the random variable Y (t ,T ) is defined as a (weighted) sum of normally
distributed random variables9, Y (t ,T ) is also normally distributed. The characteristic
function for any normally distributed random variable X with expectation µ and vari-
ance σ2 is given by

φX (u) = E[exp(i uX ] = exp

(
i uµ−

1

2
σ2u2

)
.

The proof is finished by the appropriate substitutions.

Lemma 2.3.1. For 0 ≤ s ≤ t ≤ T the Laplace transform of ET
[

exp
(
C (u,T − t )v(t )

) ∣∣Fs

]

is given by:

ET
[

exp
(
C (u,T − t )v(t )

) ∣∣Fs

]
= ψ(u, s, t ,T )

2κν v̄

γ2 exp
(
ψ(u, s, t ,T )exp

(
−κν(t − s)

)
×

C (u,T − t )v(t )
)

, (2.18)

where

ψ(u, s, t ,T ) :=
1

1− 2γ2

4κν

(
1−exp

(
−κν(t − s)

))
C (u,T − t )

≥ 0.

The function C (u,T − t ) is given in Eq. (2.13).

Proof. Since the variance process ν(t ), conditional on Fs , is distributed as a constant

c := σ2
ν

(
1−exp(−κν(t−s))

)

4κν
times a non-central chi-square distribution with d := 4κνν̄

σ2
ν

degrees

of freedom and non-centrality parameter λ := 4κν exp(−κν(t−s))
σ2
ν

(
1−exp(−κν(t−s))

) , the proof is straightfor-

ward, see [32].

We denote the approximation in Eq. (2.17) of the full-scale HHWi model by HHWi-
YoY. For this model we can employ Fourier-based methods for efficient pricing of YoY
inflation options.

2.3.3. NUMERICAL EXPERIMENT: VALUATION OF YEAR-ON-YEAR INFLATION

OPTIONS

To analyze the performance of the approximations introduced for the YoY inflation op-
tions we compute the initial (t = 0) implied Black-Scholes volatilities for different strike
levels using the full-scale HHWi model and the HHWi-YoY model. This is done by in-
verting the characteristic function using Fourier-based methods. We consider two test
cases:

9rn (t ) and rr (t ), conditional on Ft , are normally distributed [18, Chap. 3.3.1].
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• Case I: the forward starting option starts at T1 = 4 and matures at T2 = 5.

• Case II: the forward starting option starts at T1 = 29 and matures at T2 = 30.

For the generation of risk neutral (RN) scenarios we make use of an advanced sim-
ulation scheme including exact simulation (also called unbiased simulation) for the in-
terest rate and variance processes (see, for example, [3, 19]). To reduce the variance of
the MC estimator we use 100.000 scenarios in combination with two variance reduction
techniques (i) antithetic sampling and (ii) Empirical Martingale Simulation (EMS) (see
[43, 64]).

As the base parameter setting we use the parameters as specified below:

κν = 0.3, ν(0) = 0.04, ν̄= 0.04, σν = 0.6, ρI ,ν =−0.7,

with interest rate volatilities σn = 0.0089, σr = 0.0084 and correlations ρI ,n = ρI ,r =
ρν,n = ρν,r = 0 and ρn,r = 0 (unless stated otherwise). To test the pricing accuracy we
use an extreme test case, i.e. the Feller condition, 2κνν̄> σ2

ν, is not satisfied, so that in-
flation volatilities can attain zero. These parameters are not calibrated to market data;
this topic will be discussed in Section 2.4.

First we investigate the sensitivity of the pricing of YoY inflation options to the cor-
relation parameters by performing a MC simulation. We therefore vary the correlations
ρI ,n and ρn,r . The results for cases I and II are presented in Figures 2.3a and 2.3b, respec-
tively.

Figure 2.3: Sensitivity to correlations using a Monte Carlo simulation to the full-scale HHWi model.

(a) Case I

−2 0 2 4 6
5

10

15

 

 

Strike (%)

Im
p

li
ed

vo
la

ti
li

ty
(%

)

base

ρI ,n = 0.5

ρI ,n =−0.5

ρn,r = 0.5

ρn,r = 0.5

(b) Case II
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Observing Figures 2.3a and 2.3b we conclude that for this parameter setting the cor-
relation parameters ρI ,n and ρn,r are influential regarding the change in implied volatil-
ity.

Next, we perform the same experiment using the HHWi-YoY model. The results for
cases I and II are presented in Figures 2.4a and 2.4b, respectively.
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Figure 2.4: Sensitivity to correlations using the HHWi-YoY model.
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Figures 2.5a and 2.5b show the difference in implied volatility between the full-scale
HHWi and HHWi-YoY model.

Figure 2.5: Difference between the HHWi and HHWi-YoY model.
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From Figures 2.5a and 2.5b we can conclude that the maximum error for cases I and
II is equal to 0.6% point and 0.4% point in terms of implied volatilities, respectively. In
both cases we considered τ= 1, which is common when YoY forward starting options are
considered.

2.4. CALIBRATION RESULTS

A calibration procedure consists of the computation of minΩ

{
‖C −ηC‖

}
, where C de-

notes the market price, ηC the model price, Ω the set of parameters (including con-

straints) and ‖ · ‖ some norm. In our case market data are available for pairs
(
T ,K

)
,
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with T denoting the option maturity and K the strike level. For the norm we take the
Euclidean norm, so that calibration in our case consists of computing:

min
Ω

{
‖C −ηC‖p

}
= min

Ω








m∑

j=1

n∑

k=1

∣∣∣C (T j ,K k )−ηC (T j ,K k )
∣∣∣

p




1
p





, (2.19)

where we use p = 2. We note that also the p-norm of the difference of market and model
implied volatilities could be minimized. However, since then in every iteration step of
the optimization procedure an extra numerical inversion has to be performed, which
may lead to numerical difficulties, this is not the method of choice. Market prices of
plain vanilla options are often used for calibration, because this data is available.

In the calibration procedure it is possible to incorporate both types of inflation op-
tions. This is easily done when we specify the market option price C (and, thus, also
the corresponding model value ηC ) as an inflation indexed cap/floor or a YoY inflation
caplet/floorlet with corresponding strike level and maturity. It is also possible to assign
different weights to different calibration points.

The minimization problem in Eq. (2.19) is solved iteratively using a numerical min-
imization algorithm. We first sample random starting points and then we refine this
solution using the well-known Levenberg-Marquardt least-squares algorithm, which is
a local minimization method. This procedure is repeated and the best solution is kept.

We show calibration results for the full-scale HHWi model (see Section (2.2.1)). We
first calibrate the one-factor Hull-White interest rate model to interest rate options, like
swaptions and/or interest rate cap/floor options, see [18, Chap. 2 and 3], to determine
the interest rate model parameters κn , κr , σn and σr (see Section 2.2.1). Conditional on
the parameters of the interest rate model, we calibrate the inflation model to inflation in-
dexed cap/floor options and/or YoY inflation caplet/floorlet options with Fourier-based
methods.

For the correlation parameters we perform the following calibration:

1. The correlation parameters between ‘observable’ variables, i.e. ρI ,n = 0.36, ρI ,r =
−0.29 and ρn,r = 0.78 are determined using historical information10 in the sample
period 1985−2009.

2. The correlation parameter ρI ,ν is determined in the calibration process. Appro-
priate bounds for this parameter are used in the calibration process so that the
correlation matrix remains positive definite.

3. The correlation parameters, ρr,ν and ρn,ν are derived from a conditional sampling
method.

Because of the procedure mentioned above, we start the calibration with the following

10This is industrial practice.



2.4. CALIBRATION RESULTS

2

27

correlation matrix, which is defined in Eq. (2.5):




1 ρI ,ν ρI ,n ρI ,r

. 1 ρν,n ρν,r

. . 1 ρn,r

. . . 1


=




1 ρI ,ν 0.36 −0.29
. 1 ρν,n ρν,r

. . 1 0.78

. . . 1


 , (2.20)

where the correlation parameters ρI ,ν, ρν,n and ρν,r are to be determined.
The inflation option market data, as of September 30, 2010, which is used in this

section for calibration consists of two inflation option products, namely inflation index
caps/floors and YoY inflation caps/floors. For both options market data is available for
a whole range of strikes and maturities and prices are quoted in terms of base points
(bp.). To compare calibration results, option prices are expressed here in terms of im-
plied Black-Scholes volatilities.

Since YoY inflation caps/floors are essentially a series of YoY caplets/floorlets we per-
form a so-called stripping method, which is explained in [18, p. 682], to obtain the
market data for YoY inflation caplets/floorlets. Obviously, performing a calibration to
YoY caplets/floorlets instead of to YoY caps/floors reduces the computation time signif-
icantly.

2.4.1. CALIBRATING THE INTEREST RATE MODEL

For the calibration of the Euro nominal interest rate model we use the zero-coupon in-
terest rate curve of September 30, 2010. The zero-coupon real interest rate curve as
of September 30, 2010 is constructed using available information about zero-coupon
break-even inflation as derived from index-linked swaps11 (as of September 30, 2010).

We then obtain an estimate of the initial real zero-coupon curve by applying the
Fisher equation

rr (t ) =
1+ rn(t )

1+bei (t )
−1,

where bei denotes the break-even inflation, rr the real interest rate and rn the nominal
interest rate. The resulting interest rate curves are shown in Figure 2.6a.

We calibrate the one-factor Hull-White model using market prices as of September
30, 2010 of forward-at-the-money options on Euro swap contracts (Euro swaptions). We
calibrate the two parameters of the model, the mean-reversion and the volatility param-
eter, using a large set of swaptions, with option maturities ranging from 1 to 15 years and
swap maturities ranging from 1 to 10 years. Swaptions with long maturities, > 15 years,
and swap lengths, > 10 years, have deliberately been omitted from the calibration set.
Liquidity for such contracts is often limited, which may result in not very representative
market quotes. The optimal mean-reversion parameter is 0.0300; the optimal volatility
parameter is 0.0089. A comparison between the model and market prices is shown in
Figure 2.6b, where prices are expressed in terms of implied Black volatilities.

11The maturities of these swaps range from 1 to 50 years. We set the short break-even inflation equal to the
1-year break-even inflation. Missing maturities are approximated by linear interpolation.
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Figure 2.6: Calibration results of interest rates.
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Figure 2.6b shows that the difference between model and market prices is very small.
The average absolute error is 1.5% points. The fit is less accurate for short maturing
options. This is due to the used objective function ‖C −ηC‖2 in our optimization pro-
cedure. Since the values of long maturing options are higher than the values of short
maturing options the long maturing options automatically have a ‘higher weight’ in the
optimization procedure. This can be overcome by introducing weights in the calibration
procedure, however this refinement is outside the scope of the present work.

Option markets for real interest rates are still very limited. Therefore we set the mean-
reversion parameter of the real interest rate model equal to the mean-reversion param-
eter of the nominal interest rate model.

Remark. The choice of equal mean reversion parameters is justified when we estimate a

Vasicek model (see [18, Chap. 3.2.1]) using a maximum likelihood estimation to historical

nominal and real interest rates in the sample period 1985− 2009. It turns out that the

resulting mean reversion parameters are of the same order.

The volatility parameter of the real interest rate model is determined by a scaling
factor based on the volatility of historical nominal and real interest rates. The correlation
parameter ρn,r is also based on historical data (see Eq. (2.20)). The resulting parameters
of the interest rate model are found to be:

κn = 0.0300, κr = 0.0300, σn = 0.0089, σr = 0.0084 and ρn,r = 0.78.

2.4.2. CALIBRATION TO INFLATION MARKET DATA

The calibration of the inflation model can be performed using inflation market data. The
specific inflation options were already explained in Section 2.3. To derive a reliable set of
parameters, we use relevant liquid market data so that market conditions are captured
well. We perform a calibration to YoY inflation caplets/floorlets. In the calibration rou-
tine the approximate model HHWi-YoY is applied.

Note that a combined calibration to two different sets of inflation market data, namely
to inflation index caps/floors and YoY inflation caplets/floorlets, can also be performed.
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In such a calibration routine the approximate models HHWi-i and HHWi-YoY would be
applied. It depends, however, on the ‘problem at hand’, which calibration is preferable.
For example, when one is interested in pricing an out-of-the-money (inflation depen-
dent) option, one should calibrate the inflation model to out-of-the-money options.

In Figures 2.7a and 2.7b the calibration results of the calibration to YoY inflation op-
tions are presented.

Figure 2.7: Quality of fit of the calibrated inflation model to YoY inflation options.

(a) Market implied volatilities (%)

−2
0

2
4

6

0

10

20

30
0

1

2

3

4

5

Strike (%)Maturity (year)

Im
p

li
ed

vo
la

ti
li

ty
(%

)

(b) HHWi implied volatilities (%)
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The calibration errors are very small; the average absolute error is 0.12% point and
the maximum absolute error is 0.4% point, which indicates that the inflation model can
be well calibrated to YoY inflation options.

The calibration results in the following model parameters:

κν = 0.095, ν(0) = 3.040 ·10−4, ν̄= 2.401 ·10−3, σν = 0.051,

ρI ,ν =−0.890, ρν,r = 0.261 and ρν,n =−0.323.

Observing this parameter setting, we note that the Feller condition, 2κνν̄ > σ2
ν, is not

satisfied, hence,
P

(
ν(t ) = 0 | t > 0

)
> 0.

This implies that the variance process has a fat tailed distribution.
To get an impression of the results, 50 percentiles12 for the inflation rate13 and the

volatility process are visualized in Figures 2.8a and 2.8b; the red line represents the aver-
age value over all scenarios and the blue line represents a randomly selected scenario.

12We have used 10.000 scenarios, so that 200 scenarios are in between each lines in the scenario graphs.
13As already mentioned, the inflation rate is defined as the percentage change of the CPI.
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Figure 2.8: Graphical impression of the generated risk neutral scenarios of the inflation rate and the volatility
process for a horizon of 30 years.
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The average inflation rate is approximately equal to the difference between the (aver-
age) nominal and real rates. The volatility of changes in the price inflation is high (1.6%
in year 1 and 3.8% in year 30). As a result, the probability of negative inflation (deflation)
is high (up to 20%). The fat tailed distribution of the volatility process is clearly visible in
the percentile graphs.

2.4.3. MODEL COMPARISON: HESTON VS. SCHöBEL-ZHU

As already mentioned, much attention has been devoted in the literature to stochastic
volatility models driven by a Schöbel-Zhu (SZ) process (see for example [133]) in com-
bination with stochastic interest rates to model the CPI. Therefore, we compare the SZ
Hull-White inflation model (the SZHWi model) with our proposed model, the Heston
Hull-White inflation (HHWi) model.

A summary of the differences between the Heston and the SZ model is listed below.

• Whereas in the Heston model the variance of the inflation is simulated, in the SZ
model the volatility is simulated. The dynamics of the SZHWi model are given by:





d I (t ) = (rn(t )− rr (t ))I (t )d t+ νSZ (t )I (t )dW I (t ), I (0) ≥ 0,

dνSZ (t ) = κν,SZ (ν̄SZ −νSZ (t ))d t+ σν,SZ dW ν
SZ (t ), νSZ (0) ≥ 0,

where κν,SZ is a mean-reversion parameter, σν,SZ a volatility parameter, ν̄SZ de-
notes the long-term volatility level and νSZ (0) denotes the initial volatility level.
The interest rate dynamics are given in Section 2.2.1.

• Since the volatility is conditional normally distributed, there is a positive proba-
bility of negative volatilities. Therefore, there is a positive probability that the sign
of the instantaneous correlations with the Wiener process of the inflation process
collapses in the simulation. This possibly leads to mispricing of (embedded) op-
tions.
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• It turns out that there exists a direct relation between the Heston model and the
SZ model14. More specifically, the SZ model is a specific Heston model, when the
following parameter settings hold:

κν = 2κν,SZ , σν = 2σν,SZ and ν̄=
σ2
ν,SZ

2κν,SZ
=

σ2
ν

4κν
. (2.21)

.

By using the Heston model to simulate the SZ model using the parameter specifica-
tion in Eq. (2.21), we note that the Feller condition is always not satisfied, i.e.

2κνν̄

σ2
ν

=
1

2
< 1.

Using this relation between the Heston and the SZ model we calibrate the SZ model
using the Heston model. In the Figures 2.9b and 2.9c calibration results are shown of the
HHWi model and the SZHWi model.

Figure 2.9: Quality of fit of the HHWi and SZWHi model to YoY inflation options.
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(b) SZHWi implied volatilities (%)
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(c) HHWi implied volatilities (%)
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It turns out that by using the SZWHi model the average absolute error is 0.16% point
and the maximum absolute error is 0.40% point, which indicates that (on average) the
SZHWi model can also be well calibrated to YoY inflation options. However, after analysing
the Figures 2.9b and 2.9c we observe that the HHWi model is better able to model the
skew/smile effect in the market implied volatilties.

To gain more insight in the flexibility of modeling implied volatility skews/smiles
by the HHWi and the SZHWi models, we again use the parameter relation given in Eq.
(2.21). It turns out that the calibrated long term volatility of the SWHWi model is equal
to 3.8%. Whereas in the case of the SZHWi model this parameter is fully determined by
the mean reversion and volatility of variance parameter, this long term volatility can at-
tain different values when using the HHWi model. By using different long term volatility
parameters for the HHWi model, different types of implied volatility skews/smiles can
be modeled. In this range of implied volatility skews/smiles only one implied volatility
skew/smile is modeled by the SZHWi model, exactly when the parameter setting in Eq.
(2.21) holds.

14See for more information [132].
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We perform a Monte Carlo experiment by using the calibrated SZHWi model and
vary the long term volatility parameter in the HHWi model, i.e. this long term volatility
is set to 1%, 2%, 5% and 6%. Using these parameter settings we value in Figure 2.10a a
range of ATM YoY inflation options with different maturities and in Figure 2.10b we value
a range of YoY inflation options with different strike levels all maturing after 5 years. All
option prices are quoted in terms of implied volatilties.

Figure 2.10: Implied volatilities produced by the SHHWi model and different HHWi models.
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(b) 5-year IVs for different strike levels
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The Figures 2.10a and 2.10b clearly show that the HHWi model is more flexible in
modeling implied volatility skews/smiles.

2.5. VALUATION OF THE INDEXATION PROVISION OF A PENSION

FUND

Risk neutral (RN) scenarios are mainly used for valuation purposes. Such special pur-
pose scenarios can, for example, be used for a market-consistent valuation of premiums,
benefits, and indexations of a pension fund (PF), to support strategic decision-making
and provisioning. This valuation of premiums, benefits, and indexations is becoming in-
creasingly important for risk management to assess the consequences of policy changes
to the different stakeholders of a PF15. Furthermore, the valuation of indexations is im-
portant for hedging strategies. See for similar experiments, for example, [130].

We perform several MC simulations to obtain a value for the conditional indexations
provision16 of a PF. For this numerical experiment we use a stylized PF. The liabilities of
this PF can be viewed as a general liability setting in the Netherlands. The initial funded
ratio (FR) is equal to 110%. The PF makes use of a conditional indexation policy. In-
dexation is linear when the FR is between 105% and 115%; when the FR is below 105%
pension rights are not indexed. We assume that the PF invests in three main investment

15Stakeholders of a PF are for example: pensioners, the sponsor and employees.
16The indexation provision of a PF can be viewed as an ‘embedded option’ on the balance sheet of the PF.
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categories, 20% MSCI Europe stocks, 10% Euro direct real estate (RE) and 70% Euro gov-
ernment bonds.

Note that the inflation rate is the main driver of the initial indexation provision of a
PF. We assume that indexation follows the price inflation for the inactive members of the
PF and the wage inflation for the active members. In order to obtain the initial indexation
provision we generate a consistent set of RN scenarios, so that all future indexation cash
flows can be discounted with the nominal risk-free interest rate. The option price is then
computed by:

1

N

N∑

k=1

(
T∑

t∗=t

Mk,n(t )

Mk,n(t∗)
C̃k (t∗)

)
,

where t ≤ t∗ ≤ T , N denotes the number of scenarios, C̃k (t∗) denotes the indexation
cash flow in year t∗ and scenario k, and Mk,n denotes the nominal money-savings ac-
count (see Eq. (2.4)) in scenario k. We note that for this experiment we assume yearly
time steps, i.e. t∗, t ,T ∈ N. In order to obtain an accurate option value, the number of
scenarios N should be chosen as high as possible.

Since liquid inflation option market data only recently became available we take as
the benchmark the fact that the price inflation model is calibrated to historical data. The
historical volatility of the inflation rate is equal to 0.81%, which results in the following
Heston parameters: κν = 1, ν(0) = ν̄= 0.46 and σν = 0, as benchmark parameter setting.
The full matrix of correlations is then also calibrated to historical data so that numerical
inconsistencies are avoided.

Wage inflation, which is used for the (conditional) indexation of pension rights of
active members, is modeled as price inflation plus 1% point. Furthermore, direct RE
is modeled using a special purpose model, which is based on the Heston Hull-White
model, where we explicitly model auto-correlation in the returns (see for more informa-
tion [129]). The investment category MSCI Europe stocks is also modeled by a Heston
Hull-White model and is, for simplicity, calibrated to the historical volatility. Further-
more, an appropriate underlying bond portfolio is used for the investment category gov-
ernment bonds.

We perform the following two numerical experiments:

Experiment I Since the indexation provision of the PF is based on the price and wage
inflation, we apply several calibrations of our price inflation model17. Besides the
inflation market data as of Q3 2010 we use a shifted set of market inflation option
prices w.r.t. the market data of Q3 2010, using factors ±10% and 30%. The cali-
brated models are then used for a market consistent valuation of the indexation
provision. The results are shown in Figure 2.11a.

Experiment II To show the effect of different correlation parameters on the indexation
provision, we perform a valuation of the indexation provision using different cor-
relation values for ρI ,n ρI ,r and ρn,r . As a starting point we use the calibrated in-
flation model (see Section 2.4.2). The results are shown in Figure 2.11b.

17In Section 2.4.2 we have shown that our inflation model can be well calibrated to inflation option market
data, so that market conditions are replicated well and, therefore, a realistic (market consistent) value of the
indexation provision can be obtained.



2

34
2. PRICING INFLATION PRODUCTS WITH STOCHASTIC VOLATILITY AND STOCHASTIC

INTEREST RATES

For the numerical experiment we use N = 10.000 scenarios18, so that sufficiently ac-
curate results are obtained (other specifics of the MC simulation can be found in Section
2.3.3). Since the horizon of the liabilities is long we use as a simulation horizon T = 80
years so that all indexation cash flows are included in the MC simulation.

Figure 2.11: Overview of numerical results. Option values are expressed in terms of the pension fund provision.
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Observing Figure 2.11a we can conclude that calibrating the inflation model to in-
flation option market data results in different indexation provisions compared to the
benchmark inflation models. The benchmark inflation models are insensitive to a change
of the inflation option market prices, which justifies the usefulness of calibrating the in-
flation model to inflation option market data.

Observing Figure 2.11b we can conclude that changing the correlation parameters
can have a significant effect on the indexation provision; especially when ρn,r changes.
When for example the correlation, ρn,r , changes from 0.78 to −0.7 then the indexation
provision changes from 22.4% to 26.3%. Therefore, we can conclude that the indexation
provision is influenced by the correlations, which confirms that all correlations should
indeed be incorporated in a valuation model.

2.6. CONCLUSIONS

We derived an approximate closed-form solution of inflation indexed cap/ floor options
and year on year inflation caplet/floorlet options, where the CPI follows a Heston model
in which the nominal and real interest rates are modeled by one-factor Hull-White mod-
els. Using Fourier-based methods calibration can be done highly efficiently.

Using the developed models we performed a calibration of the inflation model to
year-on-year inflation options. Our inflation model is able to model the market implied
volatility skew accurately, so that market conditions are replicated well. Although the
Schöbel-Zhu Hull-White inflation model can be well calibrated to inflation option mar-
ket data, the proposed inflation model is better able to model the smile/skew effect in

18See Appendix 2.A for validation experiments.
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the market implied volatilities. Furthermore, the proposed inflation model is more flex-
ible in producing different sorts of implied volatility patterns.

Using the calibrated inflation model we performed a market consistent valuation of
the conditional indexation provision of a stylized pension fund. It turns out that the re-
sults change significantly when performing a calibration to market inflation option data
instead to historical data, so it is recommendable to use market data instead of historical
data for valuation purposes. By changing the correlation parameters, indexation provi-
sions may change significantly, which justifies the use of a full correlation matrix.

The focus in this chapter is on the modeling of inflation and the calibration to infla-
tion options, since inflation is an important risk variable for insurance companies and
pension funds. However, there are many other risk variables that are of importance. In
this context we focus on the risk neutral modeling of direct real estate indices in the next
chapter.

APPENDIX 2.A
To illustrate the fact that the MC simulation (using 10.000 scenarios and a horizon of 100
years) of the HHWi model performed in Section 2.5 fulfills the martingale condition we
perform two martingale tests. We first perform a (simple) MC experiment in which we
price a series of zero-coupon bonds with different maturities. The payoff of this exper-
iment is obviously equal to the principal of each bond for all scenarios. This payoff is
then discounted back along the path of the short nominal interest rate for each scenario.
The average discounted value (over all scenarios) then yields the MC price of each bond.
This price can be converted into an equivalent interest rate for each maturity. If the gen-
erated scenario set is indeed arbitrage free, these interest rates should coincide with the
initial nominal interest rate curve. The results are shown in Figure 2.12a.

As a second test, we price a series of index-linked zero-coupon bonds with different
maturities. The principal of each bond is now indexed at the end of each year with the
price inflation. The final payoff is then again discounted back along the path of the short
nominal interest rate for each scenario. The average discounted value (over all scenarios)
then yields the MC price of each index-linked bond. This price can subsequently be
converted into an real interest rate for each maturity. If the generated scenario set is
indeed arbitrage free, these interest rates should coincide with the initial real interest
rate curve.

This comparison is made in Figure 2.12b. Note the perfect agreement between the
real interest rates as implied by the scenario set and the initial real interest rate curve.
This is due to the application of the empirical martingale simulation technique, which
detects and corrects deviations from the desired martingale property.
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Figure 2.12: Comparison between the nominal/real interest rates as determined by the scenario set and the
initial nominal/real interest rate curve.
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(b) Real interest rate
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Observing Figure 2.12a a good agreement between the nominal interest rates as im-
plied by the scenario set and the initial nominal curve is visible. This indicates that the
interest rate scenarios are arbitrage free with respect to the initial nominal interest rate
curve. The remaining differences will further diminish when a larger scenario set is used.



CHAPTER 3

Risk neutral valuation of real estate derivatives

We propose a risk neutral valuation model for real estate derivatives. We first model the

underlying efficient market price of real estate and then construct the observed index value

with an adaptation of the price update rule by [15]. We derive closed-form pricing solu-

tions for forwards, swaps and European put and call options. We demonstrate the appli-

cation of the model by valuing a put option on a house price index. Autocorrelation in the

index returns appears to have a large impact on the option value. We also study the effect

of an over- or undervalued real estate market. The observed effects are significant and as

expected.

3.1. INTRODUCTION

Recently, the interest in real estate derivatives has surged. This interest has for instance
been fueled by the introduction of real estate futures on the Chicago Mercantile Ex-
change (CME) in 2006. These futures give investors the opportunity to directly manage
house price risk. Currently, trading is possible using 20 regional indices and two com-
posite indices [11, 118]. The authors in [45, 46, 62] also provide an overview of other
real estate derivatives markets, such as swap trading on the U.K. Investment Property
Database index (IPD) or the U.S. NCREIF Property Index (NPI).

Currently, the most mature property derivatives market is the U.K. IPD derivatives
market. At the end of 2008 some GBP 19.3 billion of swaps referenced IPD indices. In
the beginning of 2009, trading in IPD derivatives has decreased significantly, however,
mostly because fewer deals between banks were executed with Lehman Brothers exit-
ing the market and several other banks cutting back on new business activities. The U.S.
CME futures market does not yet have much liquidity, with only occasional trades. Prop-
erty derivatives markets in France and Germany are also still very small.

We develop a risk neutral valuation model for real estate derivatives. Our main goal
is to value derivatives that are coupled to private real estate indices with a significant
degree of autocorrelation. It is well known from the real estate literature (see for example
[63] for an overview) that autocorrelation can occur in appraisal-based indices because
appraisers slowly update past prices with new market information. Transaction-based
indices can exhibit a positive autocorrelation because private real estate markets are less
informationally efficient than public securities markets. As a result, the price discovery
and information aggregation functions of the private real estate market are less effective.
This can cause noisy prices and inertia in asset values (and returns) (see [118, p. 4] and

This chapter is based on the article ’Risk Neutral Valuation of Real Estate Derivatives’, published in The Journal

of Derivatives, 23(1):89–110, 2015 [129].
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the references given in that paper).

A significantly positive autocorrelation implies a (partial) predictability of future re-
turns and opportunities for arbitrageurs. It is not possible, however, to trade the assets
which constitute a private real estate index in a liquid market and at low costs. In prac-
tice, the index is thus not a tradable asset and arbitrage possibilities are very limited.
This can also cause significant problems for suppliers of real estate derivatives since they
cannot easily trade the underlying assets and (delta) hedge their positions. Nevertheless,
derivatives markets for forward and swap contracts have been emerging in recent years.

The authors in [62] note, however, that a 2006 survey of (potential) market partic-
ipants identified a lack of confidence in how real estate derivatives should be priced.
They also note that this concern is understandable, since the underlying asset cannot
be traded in a frictionless market. This makes it impossible to use classic pricing formu-
las for derivatives (such as the relationship between spot and forward prices), since these
formulas only apply under the no-arbitrage assumption. The authors in [62] argue, how-
ever, that the valuation of real estate derivatives is still possible using equilibrium pricing
rules, provided that the dynamic behavior of the underlying real estate index is properly
taken into account. We take the next step by proposing a quantitative risk neutral valua-
tion model, which can be used for actual pricing purposes.

A small body of related research exists in the equity option literature. The authors in
[93] study the effect of predictability of asset returns in a continuous-time model. They
propose an adjustment of the Black-Scholes pricing formula for stock options [14] to ac-
count for the effect of predictability. The paper [77] develops a discrete-time model to
derive an analytic pricing formula for options on a stock index which exhibits positive
correlation due to infrequent trading of the underlying stocks. There, it is assumed that
the unobservable true liquidation value of the index follows a random walk process. The
observed (autocorrelated) index is then modeled as the weighted average of current and
past returns. More recently, the authors in [89] derived a closed-form formula for a Euro-
pean option on an asset with returns following a first-order moving average process. The
paper [46] uses mean-reverting continuous-time models, that exhibit predictability for
the drift term, for deriving closed form solutions of the main property derivatives traded
in the financial markets.

The real estate literature also contains a few pioneering papers on risk neutral val-
uation. Early examples of risk neutral valuation techniques are given by [22, 25, 81].
The last paper is especially important, because it describes how a risk neutral valua-
tion model can be used to value derivatives that are related to commercial real estate
indices. Throughout their paper, these authors assume that the real estate index follows
a random walk process with drift. By construction, such a process leads to uncorrelated
index returns. The authors in [25] note, however, that their model can also be used in
the case of autocorrelated indices provided that a proper transformation can be found
to switch (back and forth) between the autocorrelated index (which is observed) and the
uncorrelated variable (which is explicitly modeled).

A different approach is followed by [119] in their paper on home equity insurance.
They first fit the observed real estate returns by a simple autoregressive (AR) model with
one lag. Using this model, the conditional returns and volatilities can be determined
analytically. The assumption is then made that options on the house price index can be



3.2. MODELING FRAMEWORK

3

39

valued using an adaptation of the familiar Black-Scholes equation [14]. This adaptation
consists of replacing the expected risk-free return with the expected real world return
and the implied volatility by the estimated value from the AR model. One aspect of this
approach is adopted by us, namely modeling the real estate returns with an AR model.
We view the second, heuristic, step (in which the real world return is directly used as an
input for a risk neutral valuation formula) as problematic, however.

Our approach circumvents this problem by following the approach of [77]. We thus
explicitly model the (underlying) efficient market value of the real estate index and then
construct the observed index. We argue that an adaptation of the price update rule
proposed by [15] serves this purpose well. The first modification of this update rule is
straightforward and consists of adding multiple lag terms. This leads to an AR model
which can be estimated using standard econometric techniques. A second modifica-
tion is more fundamental from a valuation perspective and consists of using the accrued
value of past observations. Empirical results confirm that the volatility and autocorre-
lation of a (transaction-based) Dutch house price index can be replicated quite well (on
an annual basis) with our model. As a second example, we consider monthly data for
the U.S. 10 city S&P/Case-Shiller house price index. Our analysis shows that modeling
seasonality and stochastic volatility is important for such monthly data.

The remainder of this chapter is organized as follows. In Section 3.2 we introduce
our theoretical framework and analyze the properties of the real world and risk neutral
process for real estate indices with autocorrelation. We also explain how the real estate
model can be coupled to a stochastic interest rate model. Section 3.3 contains closed-
form pricing formulas for forwards, swaps and European options. In Section 3.4 we es-
timate the real estate model using historical information for house price indices in the
Netherlands and the U.S. Section 3.5 discusses the valuation of a European put option
on a house price index using Monte Carlo simulation. We also assess the quality of the
derived closed-form option pricing formula. Section 3.6 concludes.

3.2. MODELING FRAMEWORK

We present a risk neutral model that consists of a discrete-time model for the observed
real estate index in combination with continuous-time models for the efficient market
process of real estate and for interest rates. The current point in time is denoted as t =
0. Time is measured with respect to the period between two price updates of the real
estate index. Unless stated otherwise (and without loss of generality), we assume that
the time step between two price updates is equal to one year. Hence, t = 1 corresponds
to one year ahead, t = 2 to two years ahead, etc. In the continuous-time models, the
non-integer points in time are also sampled. To avoid confusion, we therefore denote
the continuous-time variable with τ in the remainder of this section.

3.2.1. REAL WORLD PROCESS

PRICE UPDATE MODEL

We model the real world process of a real estate index by an adaptation of the price up-
date rule proposed by [15]1. They suggest that the new price is a weighted sum of the

1An earlier application of this update rule can be found in [21].
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current market price and the last period’s price. More precisely, they propose the follow-
ing price update rule2:

a(t ) = w0 y(t )+ (1−w0) a(t −1), (3.1)

where a(t ) is the current price, a(t −1) is the previous price, y(t ) is the true market price
and w0 is a constant, 0 ≤ w0 ≤ 1. The parameter w0 is commonly referred to as the
confidence parameter. If w0 is close to 1, the market price y(t ) is weighted heavily; if w0

is small, the emphasis is more on the previous price a(t −1). The simple price update
rule in Eq. (3.1) is frequently used to model appraisal smoothing in real estate indices.
See [63] for an extensive overview of research in this area. We show that this price update
rule can also be used to describe the dynamic behavior of autocorrelated transaction-
based indices.

The model in Eq. (3.1) is equivalent to an exponentially weighted moving average
(EWMA) model, see [73, p. 479–480]. By substituting the expression for a(t −1) in a(t ),
the expression for a(t −2) in a(t −1), etc., we find that

a(t ) = w0

m∑

i=1

(1−w0)i−1 y(t − i +1)+ (1−w0)m a(t −m), (3.2)

where 1 ≤ m ≤ t . This equation shows that the current value a(t ) partly consists of a
basket of previous y-terms, where the weight of these terms decreases at an exponential
speed (as controlled by the w0 parameter). By setting m equal to t we also see that the
weight of the index value at time 0, a(0) is equal to (1−w0)t at time t .

It is important to note that the price update rule in Eq. (3.1) does not account prop-
erly for the time value of money because the previous value a(t −1) is not accrued. From
a valuation perspective this leads to a systematic underperformance of the real estate
index. To correct for this effect, we adapt the price update rule in Eq. (3.1) and accrue
the past index value with the expected (annual) return π:

a(t ) = w0 y(t )+ (1−w0) (1+π) a(t −1). (3.3)

Using accrued prices is common practice when appraisers set new prices for real estate
objects. In this case, the reference price level is often formed by previous transactions
for similar objects with a correction for the price increase (or decrease) of the real estate
market up to the current point in time. The expected return is not modelled in detail at
this point to keep the analysis as simple as possible. In practice the expected return may
depend (positively) on the amount of risk associated with the real estate investment. In
the risk neutral model the expected return is coupled directly to the level of the interest
rate, as we explain in detail in Section 3.2.2.

Substitution of a(t −1) in a(t ), a(t −2) in a(t −1), etc., again yields the EWMA form
of Eq. (3.3):

a(t ) = w0

m∑

i=1

(1−w0)i−1 y∗(t − i +1)+ (1−w0)m a∗(t −m), (3.4)

2Equation (3.1) assumes that the price update rule is constant over time. Generalizations with time-varying
parameters can be found in [20].
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where 1 ≤ m ≤ t and

a∗(t −m) ≡ a(t −m)(1+π)m ,

y∗(t − i +1) ≡ y(t − i +1)(1+π)i−1. (3.5)

Equation (3.4) is thus equivalent to Eq. (3.2) if we accrue past values.
We can easily determine the evolution of annual returns based on Eq. (3.3):

r a(t ) = w0
y(t −1)

a(t −1)
r y (t )+ (1−w0)

a(t −2)

a(t −1)
(1+π)r a (t −1), (3.6)

where r a(t ) ≡ a(t )/a(t−1)−1 is the index return and r y (t ) ≡ y(t )/y(t−1)−1 is the unob-
served return, both using annual compounding. A much simpler expression is derived
when the index series are expressed in logarithms, see [63]. In this case, continuously
compounded returns can be expressed as log differences:

r a
c (t ) = w∗

0 r
y
c (t )+ (1−w∗

0 )r a
c (t −1), (3.7)

and thus

r
y
c (t ) =

1

w∗
0

r a
c (t )−

1−w∗
0

w∗
0

r a
c (t −1), (3.8)

where r a
c (t ) is the index return and r

y
c (t ) is the unobserved market return, both using

continuous compounding. The parameter w∗
0 has a similar interpretation as the confi-

dence parameter w0. This parameter determines which fraction of the index return is
explained by the unobserved market return (the remaining fraction is explained by the
past index return). Note that the effect of accrual disappears when we take log differ-
ences (that is, when we assume that past values accrue with the same return π).

THE EFFICIENT MARKET PROCESS

We now assume that the underlying market returns follow a random walk process with
drift:

r
y
c (t ) =π+ǫ(t ), (3.9)

where ǫ(t ) is a normally-distributed, serially-uncorrelated noise term with zero mean
and variance σ2

ǫ . Note that the drift parameter π is assumed to be constant here to keep
the analysis as simple as possible. However, in successive periods of appreciation and
depreciation of the price levels this assumption is not always valid. A more appropriate
specification would then be to allow π to change over time. An example of such a model
is a local linear trend model, which is for example used in [58].

The confidence parameter w∗
0 can be calculated from the first-order autoregressive

(AR) process that we obtain by substituting Eq. (3.9) in Eq. (3.7):

r a
c (t ) = w∗

0 π+ (1−w∗
0 )r a

c (t −1)+w∗
0 ǫ(t ). (3.10)

The parameter w∗
0 is thus equal to 1 minus the first-order autocorrelation of the index

returns. In practice, we can also neglect the difference between w0 in Eq. (3.6) and w∗
0 in

Eq. (3.7) because (on average) y(t −1) ≈ a(t −1) and a(t−2)
a(t−1) ≈

1
1+π . Under these simplify-

ing assumptions, the functional form of Eqs. (3.6) and (3.7) becomes the same. Annually
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and continuously compounded returns also have almost the same first-order autocorre-
lation.3 It thus follows that w0 ≈ w∗

0 .
A word of caution is appropriate at this point. The assumption that the underlying

market returns follow a random walk with drift is probably too strong for the private real
estate market since these markets are less informationally efficient than public securities
markets, see also [63]. We should therefore be careful not to directly equate the under-
lying random walk process with the true market process. A better interpretation would
be to state that the observed index returns can be modeled using an underlying efficient
market process in combination with the price update rule in Eq. (3.1). In the remainder
of this section, we therefore refer to y(t ) as the efficient market price at time t . We will
show in Section 3.2.3 that assuming an underlying efficient market process makes it pos-
sible to analyze the properties of the constructed real estate index with autocorrelation.
This facilitates the derivation of several pricing formulas in Section 3.3.

PRICE UPDATE RULES WITH MULTIPLE LAGS

The price update rule in Eq. (3.1) can easily be extended with multiple lag terms. For the
general case of p lags (with p ≥ 1) we have:

a(t ) = w0 y(t )+
p∑

i=1

ωi a(t − i ), where w0 +
p∑

i=1

ωi = 1. (3.11)

The generalization of Eq. (3.10) then becomes:

r a
c (t ) = w∗

0 π+
p∑

i=1

ω∗
i r a

c (t − i )+w∗
0 ǫ(t ), where w∗

0 +
p∑

i=1

ω∗
i = 1. (3.12)

Equation (3.12) is an AR model of order p. To estimate the expected return π, the weights
ω∗

i
and the variance σ2

ǫ of an AR(p) model different approaches can be followed, see [98]
or [123, p. 43–129] for detailed overviews. Note that the restriction that the sum of the
weights should be equal to one does not complicate the estimation of the model since
both w∗

0 and π are free parameters.
A simple approach is to estimate the model parameters with an ordinary least squares

(OLS) regression method. This method basically minimizes the one-step-ahead predic-
tion errors. An alternative approach is to choose the weights in such a way that the au-
tocovariance function of the AR process is exactly equal to the autocovariance function
of the observed real estate index. This correspondence can be achieved by using the
Yule-Walker equations, see [123, p. 46].

To decide which model is most appropriate several order selection criteria have been
proposed in the literature, see for example [123, p. 82–84]. These selection criteria typi-
cally choose the model order in such a way that the prediction error is minimized while
putting a penalty on the number of parameters estimated. The estimation of the real
estate model is discussed in detail in Section 3.4.4

3We can, at any given point in time, convert a continuously compounded return r a
c (t ) into an annually com-

pounded return r a (t ) with the relation r a (t ) = exp(r a
c (t ))− 1. Let us now consider a given time series for

r a
c (t ). We can convert these returns into annually compounded returns (using this relation).The temporal

correlation between the two time series is almost the same since changes in r a (t ) and r a
c (t ) are in first-order

approximation the same.
4A natural extension of the price update model is to model the constant w0 by a time-dependent function, so
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SEASONALITY

Seasonality in real estate returns can become important when modeling quarterly or
monthly returns. Let us assume that we have already modeled the seasonally adjusted
index a(t ) using Eq. (3.1) or (3.11). We can then add a seasonal component g (t ) to obtain
the index value with seasonality, ã(t ):

log(ã(t )) = log(a(t ))+ g (t ), (3.13)

or, equivalently:

ã(t ) = a(t )exp(g (t )). (3.14)

Different approaches can be used to estimate the g (t ) function. A natural assumption is
to assume that seasonality does not have a net effect on an annual basis. For simplicity,
one can also assume that the seasonal pattern is constant over time. Given these as-
sumptions one could then use so-called dummy variables in the OLS regression. These
dummy variables are equal to one for the respective periods. For example, a January
dummy is equal to one for all January (log) returns and zero for all other months; a
February dummy is equal to one for all February returns and zero otherwise, etc. The
g (t ) function is then easily constructed using the estimated weights of the dummy vari-
ables. Another (even simpler) method consists of detrending the log index and then
fitting a (shifted) sine function with a period of one year to the data. The first approach
(i.e., a regression on monthly dummies) is used in Section 3.4.4.

3.2.2. RISK NEUTRAL PROCESS

PROCESS FOR INTEREST RATES

We model the evolution of the short interest rate by the familiar one-factor Hull-White
(HW) model, see [73, p. 688–689]. Within the large family of interest rate models, the HW
model is a typical example of a no-arbitrage model. Such a model produces interest-rate
scenarios that are consistent with the current term structure. This no-arbitrage feature is
extremely important for option pricing applications, since a small error in the underlying
bond prices can cause large errors in the price of interest-rate options, see [73, p. 686].

Technically speaking, the one-factor HW model assumes that the risk neutral process
for the nominal short rate r is as follows:

dr (τ) =
(
θ(τ)−κr r (τ)

)
dτ+σr dW r (τ). (3.15)

We denote time in this equation by the symbol τ to indicate that we now use a continuous-
time model. This model assumes that the short interest rate fluctuates around the mean
reversion level θ(τ)/κr . The parameter κr controls the amount of mean-reversion. The
θ-function is deterministic and chosen in such a way that the model satisfies the no-
arbitrage constraint. The one-factor HW model is in fact an extension of the model in
[134] in the sense that the mean reversion level is time-dependent instead of constant.
Parameter σr controls the volatility of the Wiener process W r .

that the constant w0 can change with market circumstances. This extension is, however, not investigated in
this section.
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PRICE UPDATE MODEL

We now derive the risk neutral process for real estate indices with autocorrelation. The
risk neutral process for the evolution of the index value can be derived analogously to
Eq. (3.3):

a(t ) = w0 y(t )+ (1−w0)π(t )a(t −1),

where π(t ) ≡ exp

(∫t

t−1
r (τ)dτ

)
exp(−q). (3.16)

The expected return π is thus a time-dependent function in a risk neutral world and
depends on the level of the (short) interest rate and the direct return. More precisely, the

term exp
(∫t

t−1 r (τ)dτ
)

is the risk-free return on a bank account between time t −1 and

t . The term exp
(
−q

)
is a correction for the direct return q associated with real estate

investments. By setting q equal to zero a total return index is modeled.
Substitution of a(t − 1) in a(t ), a(t − 2) in a(t − 1), etc., again yields the following

EWMA form of Eq. (3.16):

a(t ) = w0

m∑

i=1

(1−w0)i−1 y∗(t − i +1)+ (1−w0)m a∗(t −m), (3.17)

where 1 ≤ m ≤ t and

a∗(t −m) ≡ a(t −m)exp

(∫t

t−m
r (τ)dτ

)
exp

(
−qm

)
,

y∗(t − i +1) ≡ y(t − i +1)exp

(∫t

t−i+1
r (τ)dτ

)
exp

(
−q(i −1)

)
. (3.18)

Equation (3.16) can be extended for the general price update model with p lag terms:

a(t ) = w0 y(t )+
p∑

i=1

ωi a∗(t − i ) where w0 +
p∑

i=1

ωi = 1. (3.19)

The EWMA form of Eq. (3.19) can also be derived. Let us assume that T > t ≥ 0. We
can now substitute a∗(T −1) in a(T ), a∗(T −2) in a∗(T −1), etc., until an expression is
obtained with only the terms y∗(t +1), · · · , y∗(T ) and a∗(t ), · · · , a∗(t −p +1):

a(T ) =
T−t∑

i=1

ci y∗(t + i )+
p∑

i=1

di a∗(t − i +1), (3.20)

where cT−t = w0. Explicit expressions for the ci and di coefficients of this equation can
be determined using a software package which is able to perform symbolic algebra cal-
culations.

THE EFFICIENT MARKET PROCESS

We also need to specify the risk neutral process for the underlying efficient market price.
Analogously to Eq. (3.9), we use a random walk process with drift (geometric Brownian
motion):

d y(τ) = (r (τ)−q)y(τ)dτ+σy y(τ)dW y (τ), (3.21)
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where the volatility σy is constant and W y follows a Wiener process. By means of Ito’s
lemma it can be shown that log y(τ) is governed by the following process, see [73, p. 270–
271]:

d log y(τ) =
(
r (τ)−q −σ2

y /2
)

dτ+σy dW y (τ). (3.22)

For numerical reasons Eq. (3.22) is commonly used in practice instead of Eq. (3.21). Note
that these equations are equivalent to the Black-Scholes price process [14] for a dividend
paying stock in case of stochastic interest rates.

MODEL EXTENSIONS: REAL INTEREST RATES, INFLATION, STOCHASTIC VOLATILITY

It is also possible to model real interest rates and inflation in a consistent way. [18, p.
646–647] for example develop a consistent risk neutral model for nominal and real inter-
est rates as well as the CPI index (see also Chapter 2). To keep the analysis as simple as
possible, we do not consider such an extended model. Including inflation may be very
important for practical applications, however, since real estate cash flows (like rental in-
come or maintenance costs) are often inflation-linked.

Another extension consists of modeling stochastic volatility. This is especially impor-
tant when considering high-frequency data, like monthly or quarterly returns. An exam-
ple is given in Section 3.4.4 for monthly U.S. house price data. A quite general stochastic
volatility model is the constant elasticity of variance (CEV) model:





d y(τ) = (r (τ)−q)y(τ)dτ+
√

ν(τ)y(τ)dW y (τ),

dν(τ) = κν(ν̄−ν(τ))d t +σνν(τ)βνdW ν(τ).

This model is a natural extension of the geometric Brownian motion in Eq. (3.21) and has
for example been studied by [78]. Theκν parameter controls the speed of mean reversion
of the variance ν(τ). The ν̄ parameter denotes the long variance level and σν controls the
volatility of the variance process. The initial variance should, of course, also be specified
as a boundary condition. The elasticity parameter βν must satisfy 0.5 ≤βν ≤ 1.0 to retain
the uniqueness of option prices. Both limiting cases are in fact well-known stochastic
volatility models. For βν = 1/2 we have the model of [70] and for βν = 1 we have the
continuous-time GARCH model as in [102]. Maximum likelihood estimation of the CEV
model parameters, based on option prices, is discussed in [2].

3.2.3. MARTINGALE PROPERTIES

THE EFFICIENT MARKET PROCESS

If there are no arbitrage opportunities, the expected price of a traded security has to
increase in the same way as a bank account in a risk neutral world, see [73, p. 630]. To
verify this no-arbitrage restriction, we consider the realization of the efficient market

price y(t ) and the nominal bank account M(t ) ≡ M(0)exp
(∫t

0 r (τ)dτ
)

up to time t and

determine the expected value of the ratio y(T )/M(T ) for T > t ≥ 0. Let us first consider
the situation where all direct returns are reinvested in the index (i.e., we have a total
return index). This situation can also be modeled by setting the direct return q equal to
zero. We then have that (see Appendix 3.A for the proof):

EQ
[

y(T )

M(T )

∣∣Ft

]
=

y(t )

M(t )
, (3.23)
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where EQ
[

y(T )/M(T )
∣∣Ft

]
means that the expected value of y(T ))/M(T ) in a risk neu-

tral world and conditional on the filtration up to time t is considered. The expected value
of y(T )/M(T ) is thus constant for T > t ≥ 0. That is, this ratio is a zero-drift (martingale)
process. A total return index thus satisfies the martingale requirement for traded securi-
ties if its dynamics is governed by Eq. (3.22).

Note that a price index with q > 0 is not a tradable asset, comparable to the situation
for an index of dividend-paying stocks. Consequently, the martingale property is not
satisfied by a price index if q > 0. In this case:

EQ
[

y(T )

M(T )

∣∣Ft

]
=

y(t )

M(t )
exp

(
−q(T − t )

)
, (3.24)

see again Appendix 3.A. A price index is thus not a tradable asset if direct returns are paid
out.

THE REAL ESTATE INDEX PROCESS

We now consider the realization of the real estate index a(t ) up to time t and determine
the expected value of the ratio a(T )/M(T ) for T > t ≥ 0. In Appendix 3.B we also prove
that

EQ
[

a(T )

M(T )

∣∣Ft

]
=

exp
(
−q(T − t )

)

M(t )

[
y(t )(1−αw0,T (t ))+a(t )αw0,T (t )

]
, (3.25)

where αw0,T (t ) ≡ (1− w0)T−t . a(T )/M(T ) is thus a martingale if a(t ) = y(t ) and q = 0.
Since a(t ) = y(t ) holds in general only when w0 = 1, Eq. (3.16) does not represent (the
risk neutral process of) a tradable asset when w0 < 1. Arbitrage opportunities would
thus exist in case of a complete market when trading an autocorrelated real estate index.
The reverse argument also holds: the index value may well be different from the effi-
cient market price, but active trading in the index is not possible in this case: otherwise
arbitrageurs would quickly force the index value toward the efficient market price.

Another important observation is that the future development of a total return real
estate index with autocorrelation (i.e., q = 0 and w0 < 1) is unbiased if the index is in
equilibrium at time t (i.e., when a(t ) = y(t )). With unbiased we here mean that
EQ[a(T )/M(T )] = a(t )/M(t ) for T > t . Stated otherwise, if the real estate index starts
from an equilibrium situation, the expected return is in line with the return on a risk-free
bank account. As a consequence, the pricing formulas for linear instruments (forwards
and swaps) all collapse to the classic no-arbitrage formulas if a total return real estate
index is in equilibrium at the valuation date. This will be proved more formally in the
next section.

A generalization of Eq. (3.25) also exists for the price update model with more than
one lag term, as specified in Eq. (3.19). Using the same procedure as in Appendix 3.B, the
counterpart of Eq. (3.25) follows:

EQ
[

a(T )

M(T )

∣∣Ft

]
=

exp
(
−q(T − t )

)

M(t )

[
y(t )

T−t∑

i=1

ci +
p∑

i=1

di â(t − i +1)

]
,

where â(t − i +1) ≡ a(t − i +1)exp

(∫t

t−i+1
r (τ)dτ

)
exp

(
−q(i −1)

)
.
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Incorporating seasonality is also straightforward (see Eq. (3.14)):

EQ
[

ã(T )

M(T )

∣∣Ft

]
= exp(g (T ))EQ

[
a(T )

M(T )

∣∣Ft

]
, (3.26)

where ã(t ) is the index value with seasonality. We developed a risk neutral model for au-
tocorrelated real estate indices, which can be coupled to existing risk neutral models for
interest rates, inflation, stochastic volatility, etc. By studying the martingale properties
of the real estate index we find that the no-arbitrage restriction is only satisfied under
very specific conditions (i.e., for total return indices without autocorrelation). In gen-
eral, arbitrage possibilities thus exist. These cannot be exploited easily, however, since
the underlying index cannot be traded actively. We will use the derived results in the next
section to derive pricing formulas for various real estate derivatives.

3.3. PRICING FORMULAS

We derive pricing formulas for derivatives that are linked to autocorrelated real estate
indices. We first present results for the simple price update model with one lag term and
then for a model with multiple lags.

3.3.1. FORWARDS

We can easily determine the price of a forward contract on a real estate index. Let us
assume that the forward contract expires at time T > t and that the agreed-upon delivery
price is FT (t ). For the owner of the forward contract, the payoff at time T is then equal to
the difference between FT (t ) and the index a(T ). If we denote the price of this contract
at time t as η f (t ) ( f denotes the market price), we have that:

η f (t ) = M(t )EQ
[

FT (t )−a(T )

M(T )

∣∣Ft

]
. (3.27)

Using Eq. (3.25) we then arrive at the following result:

η f (t ) = P (t ,T )FT (t )−exp
(
−q(T − t )

)
[y(t )(1−αw0,T (t ))+a(t )αw0,T (t )],

where P (t ,T ) denotes the price at time t of a zero-coupon bond which matures at time
T > t . The scaling factor αw0,T (t ) is equal to (1−w0)T−t . The price of this forward con-
tract is equal to zero if

FT (t ) =
exp

(
−q(T − t )

)

P (t ,T )
[y(t )(1−αw0,T (t ))+a(t )αw0,T (t )] if η f (t ) = 0. (3.28)

When the index value a(t ) is also equal to the efficient market price y(t ) we obtain the
classic relationship between the (spot) value of the index and the forward price:

FT (t ) =
exp

(
−q(T − t )

)

P (t ,T )
a(t ) if y(t ) = a(t ) and η f (t ) = 0.

The above analysis is easily extended to more general price update models with season-
ality and multiple lag terms. By substituting Eq. (3.26) in Eq. (3.27) we arrive at:

F̃T (t ) =
exp

(
g (T )

)
exp

(
−q(T − t )

)

P (t ,T )

[
y(t )

T−t∑

i=1

ci +
p∑

i=1

di â(t − i +1)

]
,
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with F̃T the forward price including the seasonal component.
The authors of [62] note that the forward market can signal that the real estate market

is over- or undervalued. Equation (3.28) makes this price discovery function of the for-
ward market explicit: using an estimate for the confidence parameter w0, together with
the actual forward price F (T ) and the index value a(t ), the underlying efficient market
price y(t ) can be derived. The accuracy of the extracted efficient market price is of course
strongly depending on the degree of liquidity and density in the forward market. A re-
liable price reporting system is also crucial. The authors of [62] mention that the U.K.
IPD swap market appears to be performing the price discovery function well since IPD
swap prices have fallen dramatically in 2006, even as the IPD index itself has continued
to climb. The IPD swap market has thus correctly signaled overvaluation in the U.K.
property market.

If there is a liquid forward market it also becomes possible to (delta) hedge move-
ments of the underlying efficient market price. For example, if we calculate the sensitiv-
ity ∂FT (t )/∂y(t ) using Eq. (3.28) we find that:

∂FT (t )/∂y(t ) =
exp

(
−q(T − t )

)

P (t ,T )
[1−αw0,T (t )+w0αw0,T (t )],

where we have used Eq. (3.16) to determine ∂a(t )/∂y(t ). Changes of the efficient mar-
ket price y(t ) are thus directly reflected in changes of the forward price FT (t ). This is
an important result because we implicitly assumed (see Section 3.2.2) that continuous
trading in the underlying efficient market index is possible. This, obviously, cannot be
achieved by trading in the primary real estate market (due to a limited liquidity and high
trading costs). Using forward contracts it however becomes possible to replicate the
efficient market process in accurate approximation, provided this secondary market is
sufficiently liquid. This also provides a method to replicate the cash flows of more com-
plicated real estate derivatives (like options) using delta hedging. A liquid forward mar-
ket would thus serve as the foundation of the risk neutral valuation method developed
in this section.

We should also note that in case of stochastic interest rates forward and futures prices
are not equal. This is caused by the daily settlement procedure for futures contracts. As-
sume for instance that the real estate index is strongly positively correlated with interest
rates. When the real estate index increases, the gain of a long futures contract is invested
with a high probability at an above average interest rate. The opposite holds when the
real estate index drops and the resulting loss probably needs to be financed at a below
average interest rate. It thus follows that in case of a positive correlation between the real
estate index and interest rates a long futures contract will be more attractive than a long
forward contract. Other factors may also cause significant differences between forward
and futures contracts (like taxes and transaction costs).

3.3.2. SWAPS

We assume that the swap contract starts at time T0 ≥ t and ends at time Tn > T0. To
fix the notation: the owner of a receiver swap receives the price return of the real estate
index in each period and pays the floating rate. The floating payments are based on
the index values at the beginning of each period. The floating rate can, for example, be
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the LIBOR spot rate. We also assume (without loss of generality) that the cash flows are
swapped annually. Results for a total return index can be obtained by setting q equal to
zero in the equations below. We denote the market price of a swap by Π and the market
price of a swaplet by Πk , where 1 ≤ k ≤ n.

We first determine the model value of the swaplet which is active during the time
interval [Tk−1,Tk ], where 1 ≤ k ≤ n. If we denote the model price of this swaplet by
ηΠk

(t ), we can use the following result by [12]5:

ηΠk
(t ) = LM(t )EQ

[
a(Tk )

M(Tk )
−

a(Tk−1)

M(Tk−1)

∣∣Ft

]
,

where L is a scaling parameter which can be used to set the notional amount of the swap
to the right amount6. The total value of the swap, ηΠ(t ), is thus equal to:

ηΠ(t ) =
n∑

k=1

ηΠk
(t ) = LM(t )EQ

[
a(Tn)

M(Tn)
−

a(T0)

M(T0)

∣∣Ft

]
. (3.29)

Substituting Eq. (3.25) and rearranging terms, we find that

ηΠ(t ) = L exp
(
−q(TN − t )

)[
y(t )(1−αw0,TN (t ))+a(t )αw0,TN (t )

]

− L exp
(
−q(T0 − t )

)[
y(t )(1−αw0,T0 (t ))+a(t )αw0,T0 (t )

]
. (3.30)

When a(t ) = y(t ) and q = 0 the value of the swap contract is equal to zero. The same
holds if w0 = 1 and q = 0. This is in line with the result obtained by [12], which proves
that the value of a total return real estate swap is exactly equal to zero if the real estate
index follows a random walk process with drift7.

Results for the general model with multiple lags and seasonality can easily be derived
by substituting Eq. (3.26) in Eq. (3.29). If the swap market is sufficiently liquid it also
becomes possible to (delta) hedge movements of the underlying efficient market price.
For example, if we calculate the sensitivity ∂ηΠT (t )/∂y(t ) using Eqs. (3.30) and (3.16), we
find that:

∂ηΠ(t )/∂y(t ) = L exp
(
−q(TN − t )

)[
1−αw0,TN (t )+w0αw0,TN (t )

]

−L exp
(
−q(T0 − t )

)[
1−αw0,T0 (t )+w0αw0,T0 (t )

]
.

A liquid swap market can thus also be used to delta hedge more complicated derivatives.
If there is no access to either a liquid forward or swap market the risk neutral valuation
approach cannot be applied. One should then resort to methods developed for pricing in
incomplete markets. A good example of this approach is given in [126]. They study the
effect of market frictions (like transaction costs, transaction time, and short sale con-
straints) to explain why property returns are swapped against a rate that can deviate
significantly from LIBOR.

5 We do not assume (as is the case in [12]) that direct returns are reinvested. This situation is, however, easily
obtained by setting q equal to zero in the derived equations.

6The notional is thus not a fixed amount but is adjusted periodically by the appreciation and depreciation of
the index, see the description in [25, p. 22].

7The authors in [106] have extended this result by considering the effect of counterparty default risk. They find
that the swap price is no longer equal to zero in this case because a compensation for the additional risk is
required.
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3.3.3. EUROPEAN OPTIONS

We value the option at time t . We consider a European option which expires at time T >
t ≥ 0 and cannot be exercised before that date. If w0 = 1, an exact pricing formula exists.
This formula is a modification of the familiar equation in [13]. The crucial modification
is an adjustment of the implied volatility parameter to account for the effect of stochastic
interest rates. This adjusted volatility, denoted by σ∗

y (t ,T ), can be calculated as follows,
see [18, p. 888]:

σ∗
y

2(t ,T ) =
σ2

r

κ2
r

(
T − t +

2

κr
exp(−κr (T − t ))−

1

2κr
exp(−2κr (T − t ))−

3

2κr

)

+σy
2(T − t )+2ρ

σrσy

κr

(
T − t −

1

κr
(1−exp(−κr (T − t ))

)
,

withρ the correlation between the Wiener processes for the short interest rate (see Eq. (3.15))
and the efficient market process (see Eq. (3.22)).

If w0 < 1, a simple, approximating pricing formula can be derived. Equation (3.17)
shows that the index value at time T is equal to a weighted sum of T − t log-normal dis-
tributions. We thus have an Asian basket option. To value this option, we first calculate
the first moment µ1 and the second moment µ2 of the exact probability distribution at
time T , see [73, p. 578–579]:

µ1 = µ1,0 +
T−t∑

i=1

µ1,i ,

µ1,0 = exp
(
(rN ,T (t )−q)(T − t )

)
a(t )(1−w0)(T−t ),

µ1,i = exp
(
(rN ,T (t )−q)(T − t )

)
y(t )w0(1−w0)i−1, (3.31)

and

µ2 =
T−t∑

i=1

µ2
1,i exp

(
σ∗

y
2(t , t + i )

)
+

∑

i< j

µ1,iµ1, j exp
(
σ∗

y
2(t , t + i )

)
. (3.32)

Using these moments, we can fit the exact distribution with an approximating log-normal
distribution. This approach was first proposed by [87]. The forward price FT (t ) and the
implied volatility σ can then be approximated using the following equation, see also [73,
p. 565]:

FT (t ) =µ1, σ=

√√√√ 1

T − t
log

(
µ2

µ1

)
.

Closed-form pricing formulas for European put and call options are then given by
the familiar price for an option [13] on a forward contract:

ηp (t ) = exp
(
−rN ,T (t )(T − t )

)[
K N (−d2)−FT (t )N (−d1)

]
,

ηc (t ) = exp
(
−rN ,T (t )(T − t )

)[
FT (t )N (d1)−K N (d2)

]
,

where

d1 =
log(FT (t )/K )+σ2(T − t )/2

σ
p

T − t
, d2 = d1 −σ

p
T − t . (3.33)
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ηp (t ) here denotes the price of a put option, ηc (t ) the price of a call option and K the
strike price. The market prices of a put and call option are denotes by p and c, respec-
tively.

Equations (3.32)-(3.33) are also valid for models with multiple lag terms and season-
ality. Equation (3.31) should be generalized, however, in this case. The proper form is:

µ1 = µ1,0 +
T−t∑

i=1

µ1,i ,

µ1,0 = exp(g (T ))exp
(
(rN ,T (t )−q)(T − t )

) p∑

i=1

di â(t − i +1),

µ1,i = exp(g (T ))exp
(
(rN ,T (t )−q)(T − t )

)
y(t )ci .

The accuracy of this option pricing formula is tested in Section 3.5.2. It is important to
note that alternative pricing techniques for Asian options are available in the literature.
The paper [95] provides an overview of the current state-of-the-art in this field. We rec-
ommend these techniques, however, when option pricing with a very high accuracy is
required. We also note that an accurate valuation of American options is possible using
the least squares Monte Carlo method by [94].

The accuracy of the proposed valuation model is of course strongly depending on
the ability of the valuation model to properly capture the dynamic behavior of the real
estate index. Model selection and estimation issues are therefore discussed in detail in
the next section.

3.4. ESTIMATION OF THE MODEL

Our real estate model could be calibrated (at least partly) using market data if a liquid
real estate option market would exist. The standard approach for equity option models
is for example to fit the model parameters as good as possible to prices of equity op-
tions with different maturities and strike levels (see also the discussion in Chapter 2).
The market-implied volatilities (and sometimes also the market-implied correlations)
are thus the key inputs for the model estimation. This approach is currently not feasible
for real estate, however, due to a lack of trading in real estate options. We thus have to
resort to an estimation of the model using historical index data.

We therefore base our analysis on historical data for the Dutch and U.S. residential
markets. We first provide an overview of the data in Section 3.4.1. Calibration results
for the Dutch and U.S. interest rate models are then presented in Section 3.4.2. We sub-
sequently present calibration results for the Dutch and U.S. real estate models in Sec-
tion 3.4.3 and 3.4.4.

We mainly focus on annual historical data for the Dutch real estate market and monthly
historical data for the U.S. real estate model. Note that it would of course be possible
to do everything at the monthly interval. This would, however, limit the accessibility
of this section since the analysis at the monthly interval requires much more advanced
model estimation techniques and does not directly lead to analytical prices for real es-
tate derivatives (due to seasonality and stochastic volatility which become important at
the monthly interval).
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3.4.1. DESCRIPTION OF THE DATA AND MODEL ASSUMPTIONS

Calibration results highly depend on the underlying data8. Therefore, it is important
to investigate the data before calibrating the model. As a first example, we consider a
transaction-based index of Dutch house prices. We use monthly returns for the period
12/1973−3/20119. The index for the period 12/1973−12/1994 is based on data from the
Dutch Association of Realtors and Property Consultants (NVM), see [131]. The index for
the period 1/1995− 3/2011 is from Statistics Netherlands (CBS). For more information
about the latter index, see [36].

As a second example, we consider the S&P/Case-Shiller Home Price Indices10. These
indices measure the residential housing market in metropolitan regions across the United
States. All indices are constructed using the repeat sales pricing technique. This method-
ology collects data on single-family home re-sales, and captures re-sold sale prices to
form sale pairs. The S&P/Case-Shiller Home Price Indices are calculated monthly and
published with a two month lag. The index point for each reporting month is based
on sales pairs found for that month and the preceding two months. This index fam-
ily consists of 20 regional indices and two composite indices as aggregates of the re-
gions. We here consider the 10 city composite index, which tracks the house price in
the original 10 S&P/Case-Shiller indices, because more historical data is available (com-
pared to the 20 city composite index). We use the monthly index levels for the period
2/1987− 3/2011. Figure 3.1 contains an overview of the statistics of the Dutch house
prices and the S&P/Case-Shiller Home Price Indices.

8We note that the choice of historical data (for example, the region, type etc.) depends on the application at
hand.

9The annual returns are calculated using the monthly returns in a certain year.
10More information about the Case-Shiller indices, including historical data and information about the index

construction, can be found on http://www.homeprice.standardandpoors.com.
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Table 3.1: Summary statistics

Yearly Monthly
Period 1973−2010 1987−2010 12/1973−3/2011 2/1987−3/2010

NL. Average 0.0536 0.0563 0.0535 0.0556
St. dev. 0.0809 0.0483 0.1178 0.0720
Skewness 0.6677 0.4112 1.0660 0.2738
Excess Kurt. 1.5437 0.5992 4.3780 0.2321
Acf(1) 0.7316 0.6809 0.3814 0.3276
Acf(2) 0.3161 0.3398 0.2864 0.4679
Acf(3) 0.0455 0.2579 0.2977 0.4375
Acf(6) 0.3265 0.4883
Acf(12) 0.2550 0.4346
Acf(24) 0.1276 0.2983

U.S. Average 0.0379 0.0365
St. dev. 0.0874 0.1088
Skewness -0.7899 -0.7671
Excess Kurt. 0.7526 1.0274
Acf(1) 0.6915 0.9372
Acf(2) 0.3329 0.8200
Acf(3) -0.0519 0.6777
Acf(6) 0.4127
Acf(12) 0.6305
Acf(24) 0.3752

In Figure 3.1a we show the development of the transaction-based index of Dutch
house prices and the corresponding annual log returns. We observe that house prices
increased until 1977, when they experienced a sharp fall. From the mid-1980s until the
early 2000s, house prices exhibited a sharp increase. The most recent period, the late
2000s, which coincides with the global financial crisis, witnesses a decrease of house
prices.

Figure 3.1b shows the development of the S&P/Case-Shiller Home Price Indices and
the corresponding monthly log returns. Notice the sharp increase (more than 250%) of
the house price in the period 1997 through 2006, followed by the sharp decline in prices
in the last years. Looking more closely, we can also see that the log returns exhibit an
oscillatory pattern with a period of approximately one year. This is due to a seasonal
effect. In addition, the volatility of the log returns appears to be non-stationary over
time. For example, the volatility in the quiet upward trending market (1995-2005) was
much lower than during the recent market crash.
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Figure 3.1: Overview of Dutch and U.S. house price index development.

(a) The CBS / NVM index of Dutch house prices be-
tween December 1973 and March 2011
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(b) Development of the 10 city composite
S&P/Case-Shiller index between February 1987 and
March 2011
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The total expected return on owner-occupied housing is the expected house price
appreciation plus a convenience yield, see [34]. A convenience yield represents the (non-
monetary) benefits from the housing services. When we assume that the convenience
yield is a constant fraction of the house value we can model this aspect by setting the
direct return q equal to the convenience yield. The authors in [34] refer to the con-
venience yield as an imputed rent and give an estimate of 0.67% per year for the U.S.
housing market. The same percentage is used for the Dutch housing market. Note that
this estimation of the convenience yield is lower than a typical rental rate. This is due
to related expenses for house owners, such as depreciation, maintenance and repairs,
property taxes, insurance and mortgage interest payments.

It is also important to specify the ratio of the initial index price level a(0) and the ef-
ficient market price y(0). If a(0) > y(0), the house market is overvalued; if a(0) < y(0),
the house market is undervalued. The question whether the Dutch housing market is
overvalued or not has been investigated by [59] using different models. Unfortunately,
all models estimate the overvaluation of the Dutch market differently, ranging between
approximately 0% and 12% overvaluation. Because the precise amount of overvaluation,
thus, cannot be determined very accurately, we first take a neutral stance in Section 3.5.1
by assuming that the house market is in equilibrium. The effect of over- or undervalua-
tion is then studied in a sensitivity analysis in Section 3.5.2.

3.4.2. CALIBRATION OF THE INTEREST RATE MODEL

The valuation date is March 31, 2011. For the Euro area, we use the Euro (zero-coupon)
swap curve as published by Bloomberg as the reference nominal interest rate curve. We
estimate the stochastic interest rate model, a continuous-time one-factor Hull-White
model, using market prices of forward-at-the-money options on Euro swap contracts
(data also from Bloomberg). The two parameters of the one-factor Hull-White model
(the mean-reversion parameter κr and the volatility parameter σr ) are estimated using
a large set of swaptions, with option and swap maturities ranging from 1 to 15 years.
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Swaption prices are typically quoted in terms of implied (Black) volatilities. Figure 3.2a
gives a graphical overview of these volatilities.

We use the Levenberg-Marquardt least-squares algorithm to find the optimal model
parameters. The Hull-White parameters with the best fit are a mean reversion κr of ≈
0.0341 and a volatility σr of ≈ 0.0097. A comparison between the model and market
prices is shown in Figure 3.2b. In this figure we show the difference between the model
and market implied volatility for the entire set of swaptions. The average absolute error

Figure 3.2: Calibration results of the Hull-White model.
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(b) Quality of fit of the estimated Hull-White model
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is equal to 0.68-% point; the maximum absolute error is 2.16-% point (for a 2-year option
on a 1 year swap). We also used a more elaborate two-factor Hull-White model. This does
not improve the results significantly, however, so we continue with the one-factor model.
The correlation between the Wiener processes for the short interest rate (see Eq. (3.15))
and the efficient market process (see Eq. (3.22)) is estimated using historical data. More
precisely, we use the correlation between historical changes in the short interest rate and
the derived efficient market returns. This correlation is equal to 0.16.

The U.S. interest rate model is calibrated in the same way as the Euro interest rate
model, i.e. the same data range for swaptions is used and also the same optimization
procedure. The Hull-White parameters with the best fit are a mean reversion equal to
≈ 0.0625 and a volatility parameter equal to ≈ 0.0146. The correlation parameter is also
estimated using historical data and is equal to 0.45.

3.4.3. EXAMPLE 1: DUTCH HOUSE PRICE INDEX

Using annual historical data, we compare the quality of price update models with up to
3 lags. The parameters of Eq. (3.12) are estimated with ordinary least squares (OLS) re-
gression using annual log returns for the period 1977−2010. By applying the augmented
Dickey-Fuller test, the null hypothesis of a unit root is rejected at the 5% level for these
returns, i.e. the process is stationary. The main estimation results are summarized in
Table 3.2.
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Table 3.2: Characteristics of the estimated price update models.

1 lag 2 lags 3 lags
w∗

0 0.394 0.458 0.530
w∗

1 0.606 0.878 0.902
w∗

2 N.A. -0.336 -0.387
w∗

3 N.A. N.A. -0.045
π 0.025 0.035 0.028

w∗
0 π 0.010 0.016 0.015
σǫ 0.102 0.093 0.082

w∗
0 σǫ 0.040 0.043 0.043

Durbin-Watson 1.380 1.870 1.870

Because we assume in our valuation model that the efficient market returns follow
a random-walk process with drift, it is important to check if the residuals indeed have a
serial correlation close to zero. In this case, the Durbin-Watson test statistic should be
close to 2. Table 3.2 shows that this is indeed the case for the models with 2 or 3 lags.

There exist several order selection criteria to select the best AR model. These criteria
typically choose the model order in such a way that the prediction error is minimized
while putting a penalty on the number of parameters estimated. The prediction error
is here measured using the maximum likelihood residual variance. This variance is not
corrected for the number of parameters estimated. The number of parameters is equal
to the order of the AR model plus an additional parameter for the strength of the random
walk process. We use the final prediction error criterion (FPE), the Akaike information
criterion (AIC), the Schwarz criterion (SC) and the Hannan and Quinn criterion (HQ)11.
The order for which the value of the criterion is minimized is seen as the model which is
closest to the true model and is therefore the optimal order. Each of the criteria assumes
that the models are estimated including a constant term. Table 3.3 shows that the model
with 2 lags is unanimously selected.

When we select a model with two lags, one additional historical observation (1976)
can be used (compared to the model with three lags). We therefore reran the calibration
for the model with two lags, including this additional observation. This results in the
following model parameters: w∗

0 = 0.404, w∗
1 = 1.028, w∗

2 = −0.431, π = 0.041, w∗
0 π =

0.017, σǫ = 0.111, w∗
0 σǫ = 0.045. This model is used in the remainder of this section.

Table 3.3: Selecting the optimal order of the estimated price update models.

1 lag 2 lags 3 lags selected order
1. FPE 0.038 0.034 0.036 2
2. AIC -3.276 -3.386 -3.330 2
3. SC -3.186 -3.252 -3.151 2

4. HQ -3.245 -3.340 -3.269 2

11The constant c that is used in the HQ criterion is set equal to 1.1.
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3.4.4. EXAMPLE 2: U.S. HOUSE PRICE INDEX

We calibrate a monthly price update model of the U.S. S&P/Case-Shiller Home Price
Index in this section. The price update model that we consider is thus different than the
annual price update model that we used in the previous section. For higher frequency
data aspects like stochastic volatility and seasonality become more important and these
effects are therefore explicitly modeled here.

We model seasonality and stochastic volatility as follows. First, we estimate an au-
toregressive (AR) model with seasonal dummies using OLS (see the description in Sec-
tion 3.2.1). We allow for at most 14 lags, i.e. a lookback period of at most 14 months12.
We estimate the optimal model using the automatic model selection option in PCGive13.
We then remove all AR coefficients that are not significant and extend this model with
a GARCH(1,1) stochastic volatility model, see [16]. This model can be written in the fol-
lowing form:

(σ(t ))2 =α0 +α1(r a
c (t −1))2 +β1(σ(t −1))2,

where σ(t ) is the volatility of the monthly log return r a
c (t ). The AR coefficients, the co-

efficients of the seasonal dummies and the GARCH(1,1) coefficients (α0, α1, and β1) are
then determined by maximum likelihood estimation in PCGive. In order to generate risk
neutral scenarios using the GARCH(1,1) model the corresponding parameters α0, α1,
and β1 are projected to the continuous counterpart. For more information we refer to
[73, p. 482].

The characteristics of the estimated model are summarized in Table 3.4. The pa-
rameters of Eq. (3.12) are estimated with ordinary least squares (OLS) regression using
monthly log returns for the period 3/1988−3/2011.

Table 3.4: Characteristics of the estimated Case-Shiller model, including seasonality and stochastic volatility.
The AR model consists of 14 lags, of which only the 5 significant coefficients are included. Three seasonal
dummies (for the months February, March and June) are also included. The α0, α1 and β1 parameters are the
coefficients of the GARCH(1,1) stochastic volatility model.

Model with 14 lags Coefficients Standard Error t-Stat p-value
r a

c (t −1) 1.145950 0.03714 33.1 0.000
r a

c (t −3) -0.367669 0.07172 -5.76 0.000
r a

c (t −4) 0.127003 0.05567 2.55 0.011
r a

c (t −11) 0.182534 0.03585 5.15 0.000
r a

c (t −13) -0.130242 0.03579 -3.53 0.000
r a

c (M ar ch) 0.00142174 0.00046 2.34 0.020
r a

c (Apr i l ) 0.00167801 0.00046 3.10 0.002
r a

c (Jul y) -0.00143169 0.00048 -2.80 0.005
α0 3.599e-8 9.621e-8 0.450 0.653
α1 0.061430 0.02898 2.07 0.040
β1 0.937042 0.04248 24.1 0.000

The residuals of the regression have a serial correlation close to zero: the Portman-
teau test statistic is equal to 36.1 (with p-value 0.2418). The residuals are also (in accurate

12Results do not improve significantly when we use more than 14 lags.
13See [40].
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approximation) normally distributed: the normality test statistic is equal to 0.63 (with a
P-value of 0.72). The results are shown in more detail in Figure 3.3.

Figure 3.3: Estimation results for the 10 city composite S&P/Case-Shiller index.
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The top left figure shows how well the model fits the historical data period. The top
right figure displays the (scaled) residuals. The evolution of conditional volatility is dis-
played in the middle left figure. Notice the increasing volatility in the most recent period.
The histogram in the middle right figure shows the histogram of the residuals. Notice
that these are (approximately) normally distributed. The bottom figures display the au-
tocorrelation functions (ACF) of the residuals. These autocorrelations should be close
to zero if the model fits the data well. This is indeed the case. The applied GARCH(1,1)
model thus successfully describes the stochastic volatility component that is present in
the data.

3.5. MODEL APPLICATION: DERIVATIVE PRICING

We consider a house owner who buys a (hypothetical) at-the-money put option with a
maturity of 10 years on his/her house. This option can only be exercised at the maturity
date, i.e. it is a European option. The underlying index is the Dutch house price index
that we introduced in Section 3.4.3. We use the price update model with two lags. The
direct return q (i.e. the convenience yield) is set equal to 0.67%.

It is important to note that a property derivative market does currently not exist in
the Netherlands (a liquid derivatives market does also not exist in the U.S at this mo-
ment). The example given in this section is thus only provided to illustrate the developed
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valuation framework. We should also note that our valuation model assumes that con-
tinuous trading in the underlying efficient market price is possible. We explained before
(see Section 3.3.1 and 3.3.2) that it is possible to replicate continuous trading in the un-
derlying index using forward or swap contracts. Once a liquid forward or swap market
has emerged in the Netherlands, the applied valuation framework can thus be applied to
value (arbitrary complex) property derivatives. In practice, it is of course also important
to distinguish between global and more local real estate risk. Derivatives trading typi-
cally focuses on the main (metropolitan) areas, that can make it more difficult to hedge
house price risk in local areas using derivatives.

As an interesting side line: in the Netherlands a real-life option on the house price ex-
ists. Under certain (specific) conditions the so-called ’Waarborgfonds Eigen Woningen’
(WEW) pays out to the bank (the lender) when the owner of the mortgage is not able to
fulfill his payments. This guarantee is backed up by the Dutch government if the buffer
of the WEW turns out to be insufficient in the future.

3.5.1. OPTION PRICING RESULTS

We value the 10-year at-the-money put option using Monte Carlo simulation. This is
done by generating 1,000,000 risk neutral scenarios and discounting the option payoffs
back to time zero along the path of the short interest rate14. To determine the effect of
autocorrelation in the index returns on the option value we also generated results with
alternative model parameters. For these alternative models, the confidence parameter
w0 is varied between zero and one. The other weights (w1 and w2) are proportionally
scaled up or down in order to keep the sum of all weights equal to one. Note that we
assume in this section that the current real estate index level a(0) is equal to the current
efficient market level y(0), see Eq. (3.19). The impact of overvaluation (when a(0) > y(0))
or undervaluation (when y(0) < a(0)) will be studied in the next section.

The results are shown in Figure 3.4. Recall that returns are highly correlated if w0 =
0. If w0 = 1, returns are almost completely uncorrelated. Also keep in mind that the
estimated value of w0 is equal to 0.404, as indicated in the graph. The option premiums
are expressed as percentages of the notional amount. Figure 3.4 clearly shows that the
option premiums decrease when the autocorrelation of the returns increases (i.e. w0

decreases). This is due to the smaller (cumulative) volatility of the autocorrelated real
estate returns.

14We use antithetic sampling to reduce the standard error of the Monte Carlo estimate.
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Figure 3.4: Price of a 10-year at-the-money put option on a house price index as a function of the confidence
parameter w0.
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← w0 = 0.404

The quality of the approximate analytical pricing formula that we derived in Sec-
tion 3.3.3 is also investigated in Figure 3.4. This analytical pricing formula is very accu-
rate for high values of the confidence parameter w0. In this case, the terminal proba-
bility distribution of the index value is determined to a large extent by only a few log-
normal distributions. The terminal distribution function can be fitted well with a single
log-normal distribution in this case, so the approximation error is small. When w0 de-
creases, the terminal probability distribution of the index value becomes the sum of a
series of different log-normal functions. As a result, the fit with one log-normal function
deteriorates. However, the quality of the approximation remains quite satisfactory. For
alternative approximation methods, the interested reader is referred to the overview in
[95].

3.5.2. EFFECT OF OVER- OR UNDERVALUATION

We can model overvaluation and undervaluation of the real estate market by setting the
current efficient market level y(0) lower respectively higher than the current index level
a(0), see Eq. (3.19). The results are shown in Figure 3.5.
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Figure 3.5: Effect of over- or undervaluation on the option price.
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In this figure, the confidence parameter is set equal to the default value (0.404). Over-
valuation is measured as (a(0)− y(0))/y(0). The option premiums increase, to be ex-
pected, when the initial index level is higher than the efficient market price (and vice
versa). Figure 3.5 also demonstrates that the agreement between the Monte Carlo price
and the analytical price is very good in the case of under- or overvaluation. Information
about the degree of under- or overvaluation of the real estate market may be obtained by
using information in the forward or swap market (see [62] and Section 3.3) or by using
information in the public real estate market, see [63].

3.6. CONCLUSIONS

We proposed a risk neutral valuation model for real estate derivatives that are linked
to autocorrelated indices. Following [77], we first model the (unobserved) underlying
market fluctuations using a simple random walk process with drift. We then reconstruct
the observed index using an adaptation of the price update rule by [15].

The first modification of the update rule by [15] is straightforward and consists of
adding multiple lag terms. This leads to an autoregressive (AR) model which can be
estimated using standard econometric techniques. A second modification is more fun-
damental from a valuation perspective and consists of using the accrued value of past
observations. We show, using real (annual and monthly) data, that this model is able
to reproduce the dynamic behavior of a transaction-based house price index with auto-
correlation. For high-frequency data (like monthly house prices) aspects like seasonality
and stochastic volatility can become important. It is possible to model such phenom-
ena as well within the developed framework. We analyzed the resulting model analyt-
ically and we derived closed-form pricing solutions for forwards, swaps and European
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put and call options. The developed model can be applied once a liquid forward or swap
market has been established. In this case it becomes possible to (approximately) repli-
cate the underlying efficient market process. The risk neutral assumption of continuous
trading in the underlying asset is then satisfied and arbitrarily complex derivatives can
be hedged and priced. Given actual market prices for forwards or swaps, the derived
pricing formulas can also be used to estimate the difference between the current index
level and the efficient market price. This facilitates the price discovery process: informa-
tion about market over- or undervaluation can be extracted from the derivatives markets
for forwards or swaps. This, in turn, can also make the primary real estate market more
efficient because the price update process is facilitated.

We valued a European put option on a house price index. We first generate bench-
mark (Monte Carlo) results and then test our approximate closed-form pricing formula.
This example highlights the strong effect of autocorrelation in the underlying index on
the option price. As is well known from the real estate literature, a high degree of au-
tocorrelation reduces the (annual) volatility of the real estate index returns, compared
with the (annual) volatility of the underlying true market price. This causes lower op-
tion prices, since the time value of the option decreases in this case. Using the proposed
model, the effect of over- or undervaluation of the real estate market is also studied.

The proposed real estate model can be applied for different purposes. First, it can be
used to price existing derivatives in real estate markets, see the examples in [11, 25, 62].
Second, it can also be used for the valuation of so-called hybrid forms of sales, see [83].
In this case a housing corporation sells a house with a discount to the tenant. In addi-
tion, there is a profit and loss sharing mechanism when the house is sold in the future.
By determining the present value of the future profits and losses, the corporation can
determine if the initial discount (given to the home buyer) is reasonable. This informa-
tion can also be used when the corporation reports on a pure market-value basis and
includes the present value of future profits and losses on the balance sheet.

The focus of the first two chapters is on the modeling and calibration of economic
series. For calibration we constructed (semi-)analytical formulas to achieve fast compu-
tation times. These chapters belong to the first challenge of extending the Black-Scholes
model, as described in the Section 1.6. In the Chapters 4, 5 and 6 we focus on the second
challenge, which is about the nested Monte Carlo simulation issue.

APPENDIX 3.A
Using Eq. (3.22) we find that

EQ
[

y(T )

M(T )

∣∣Ft

]
= EQ




y(t )exp
(∫T

t r (τ)dτ−σ2
y (T − t )/2−q(T − t )+σy W y (T − t )

)

M(t )exp
(∫T

t r (τ)dτ
)

∣∣Ft


 .

(3.34)
The right-hand side of this expression can be simplified to

y(t )

M(t )
exp

(
−q(T − t )

)
exp

(
−σ2

y (T − t )/2
)
EQ

[
exp

(
σy W y (T − t )

)∣∣Ft

]
. (3.35)
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Since we also have that

EQ
[

exp
(
σy W y (T − t )

)∣∣Ft

]
= exp

(
σ2

y (T − t )/2
)

, (3.36)

we arrive at Eq. (3.24).

APPENDIX 3.B
The proper starting point for the analysis is Eq. (3.17), since this equation enables us to
write a(T ) as a basket of previous (accrued) efficient market prices and the (accrued)
index value at time t . This becomes clear when we set t equal to T and m equal to T − t

in Eq. (3.17):

a(T ) = w0

T−t∑

i=1

(1−w0)i−1 y∗(T − i +1)+ (1−w0)T−t a∗(t ). (3.37)

Let us first determine whether the accrued prices y∗(T −i +1), at time T and conditional
on the filtration up to time t , are martingales for 1 ≤ i ≤ T − t if q = 0. This is indeed the
case, since

EQ

[
y∗(T − i +1)

M(T )

∣∣Ft

]
= EQ




y(T − i +1)exp
(∫T

T−i+1 r (τ)dτ
)

M(T − i +1)exp(
∫T

T−i+1 r (τ)dτ)
exp(−q(i −1))

∣∣Ft




= EQ
[

y(T − i +1)

M(T − i +1)
exp(−q(i −1))

∣∣Ft

]
. (3.38)

Using Eq. (3.24) we also find that

EQ

[
y∗(T − i +1)

M(T )

∣∣Ft

]
=

y(t )

M(t )
exp

(
−q(T − t )

)
. (3.39)

The following result then easily follows:

EQ
[

a(T )

M(T )

∣∣Ft

]
=

exp
(
−q(T − t )

)

M(t )

(
y(t )w0

T−t∑

i=1

(1−w0)i−1 +a(t )(1−w0)T−t

)
. (3.40)

Since w0
∑T−t

i=1 (1−w0)i−1 = 1− (1−w0)T−t , Eq. (3.25) is obtained.





CHAPTER 4

Approximation of insurance liability contracts using radial

basis functions

We present the Option Interpolation Model (OIM) for accurate approximation of embed-

ded option values in insurance liabilities. Accurate approximation is required for ex-ante

risk management applications. The OIM is based on interpolation with radial basis func-

tions, which can interpolate scattered data, and does not suffer from the curse of dimen-

sionality. To reduce computation time we present an inversion method to determine the

interpolation function weights. The robustness, accuracy and efficiency of the OIM are

investigated in several numerical experiments. We show that the OIM results in highly

accurate approximations.

4.1. INTRODUCTION

Classical interpolation methods suffer from the curse of dimensionality in higher dimen-
sions and can often only be applied in low-dimensional settings (i.e. up to two or three
dimensions). RBFs have the major advantage of being able to interpolate scattered data
and therefore they do not suffer from the curse of dimensionality, which is an important
requirement in practical risk management. Implementation is intuitive and the method
also performs well in higher dimensions. Interpolation using RBFs is widely used in the
field of time series prediction, control of nonlinear systems exhibiting a sufficiently sim-
ple chaotic behavior and 3D reconstruction in computer graphics. Overviews of inter-
polation using RBFs are presented in [23, 55] and textbooks [48, 74, 75, 138].

RBFs often contain a shape parameter, which influences the shape of the basis func-
tions. RBF interpolants are known to be sensitive towards the trade-off between accuracy
and numerical stability [49, 56, 57]. Numerical rounding errors can spoil the results of
theoretically accurate interpolations, especially for small values of the shape parameter.
Research has been dedicated to this trade-off, resulting in techniques to perform stable
computations for a wide range of values for the shape parameter [49, 56, 57].

Popular calibration techniques for the shape parameter are the Leave-One-Out-Cross-
Validation (LOOCV) [109] method and Maximum Likelihood Estimation (MLE) [113]. In
LOOCV, the shape parameter is calibrated by minimizing a cost function which mimics
the behavior of the root mean square error between the interpolant and the (unknown)
function from which the data is sampled. MLE selects the shape parameter as the value
for which the observed data is deemed most likely to occur. The LOOCV method is con-
sidered in this chapter.

This chapter is based on the article ’Approximation of insurance liability contracts using radial basis functions’,
submitted for publication, 2017.
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We introduce the Option Interpolation Model (OIM) to approximate risk neutral op-
tion values. OIM uses radial basis functions (RBFs) [74, 100] for interpolation. The num-
ber of input variables, i.e. the risk drivers, for option valuation can be large, so that stan-
dard interpolation methods cannot be applied. Only the most important risk drivers
are typically used in OIM, but there are typically more than five problem dimensions
involved.

Smoothing techniques [27] can account for a possible loss in accuracy if not all risk
drivers are used to determine the option value. Smoothing is also applied when the op-
tion data contains measurement noise. We will also consider smoothing in the OIM to
improve stability. The modeling framework therefore also involves a smoothing param-
eter. The calibration of the smoothing parameter can be well incorporated in the LOOCV
method which is used for calibration.

The specification of the interpolation points (as scattered data) is somewhat involved.
In most publications, the interpolation points are chosen as a low-discrepancy (or quasi-
random) point set [103], such as Chebyshev nodes and Halton sequences. These point
sets approximate a uniform discretization of the high-dimensional domain. Next to
these data-independent sets, there are data-dependent approaches to specify the inter-
polation points. The so-called Greedy algorithm that produces near-optimal point sets
is proposed in [35]. Such sets are constructed by recursively adding points to minimize
an error bound.

In [72] the RBF interpolant is used to numerically solve the Black-Scholes partial dif-
ferential equation (PDE). The resulting approximation scheme is compared to the finite
difference method and the true solution, the Black-Scholes formula. The method [72]
leads by construction to an interpolant for the Black-Scholes formula and for its deriva-
tives. The authors in [72] show that the method results in accurate mesh-free approxima-
tions for both European and American equity options. Instead of solving the PDE, Monte
Carlo integration is nowadays the standard method for solving such pricing problems.

We evaluate the modeling framework by several numerical experiments. As a real-
istic test function we use the Black-Scholes formula for modeling option values. The
advantage of such a test is that we can compare the approximation values with analytic
reference values. In particular, we study accuracy, monotonicity and numerical stability
of the OIM. We find that interpolation via RBFs results in highly satisfactory results.

The remainder of this chapter is organized as follows. In Section 4.2, we introduce the
OIM and describe the related properties. In Section 4.3, we propose an inversion method
to determine the appearing weights of the interpolant. This method is particularly useful
for an iterative calibration method and results in rapid computations. In Section 4.4, we
explain the ex-ante risk management application, the related approximation problem
and we test the proposed methodology. We conclude in Section 4.5.

4.2. MODELING FRAMEWORK

We consider a dX -dimensional random vector X ∈ X ⊂ RdX , where dX ∈ N+ denotes
the number of risk drivers for the embedded option value and X the domain of X . The
random variable X represents the set of risk drivers and is governed by a PDF fX : X →R.
The mapping η : X →Y that computes the option value Y given the realizations of X , so
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that Y := η(X ), with Y ∈Y ⊂ R a one-dimensional random variable. The corresponding
PDF of Y , fY , can generally not be obtained in closed form, due to the involved mapping
η representing the option value. Option values Y are often determined by Monte Carlo
simulations [64], which is market standard. In the proposed Option Interpolation Model
(OIM) we approximate the expensive mapping η by a computationally cheaper mapping
η̃. The method is outlined in the sections below.

Remark. In practice, the number of dimensions dX is often too large to construct the ap-

proximation function η̃. Therefore, a smaller number of dimensions than dX is used to

construct the approximation function. That is, only the relevant risk drivers are used.

However, here we consider an equal number of dimensions dX for both mappings η and η̃.

4.2.1. INTERPOLATION OF SCATTERED DATA USING RADIAL BASIS FUNC-

TIONS

Consider N instances of the random variable X denoted by x =
{

x1, . . . xN

}
⊂ X . Each

instance is a combination of the dX risk drivers. Now yi = η(xi ) for i = 1, . . . , N denote the

true option values, such that (x, y) =
{
(xi , yi )

}N
i=1 are available data points. We assume

that there exists a univariate function φ : [0,∞) → R with the property φ
(
X

)
= φ

(
‖X ‖

)
.

The function φ is called the radial basis function (RBF). Radial basis functions are used
to build up function approximations of the form:

η̃(x) =
N∑

k=1

wk φ
(∥∥x −xk

∥∥
)
, for x ∈X . (4.1)

The approximation function η̃(x) is represented by a sum of N radial basis functions,
each associated with a different center xk and weighted by to be estimated weights wk .

Eq. (4.1) is known as the interpolation equation. We refer to this model as the bench-
mark Option Interpolation Model (OIM), which is used as a benchmark model in Section
4.4. In Section 4.2.2 we discuss three techniques for improvement. We note that η̃ de-
pends on a number of arguments such as the shape parameter, the interpolation points
and the RBF. For notational convenience and readability, we omit the dependency on
these arguments in η̃.

Table 4.1 lists several popular choices of the RBFφ; these are also the most commonly
used choices in the academic literature. There are other choices of RBFs, such as the
Matérn family; for a more elaborate overview of these choices we refer to [23].
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Table 4.1: Common choices of radial basis functions.

RBF Definition

Gaussian φ(r,ǫ) = exp−(ǫr )2

Multiquadric (MQ) φ(r,ǫ) =
√

1+ (ǫr )2

Inverse multiquadric (IMQ) φ(r,ǫ) = 1/√
1+ (ǫr )2

The optimal RBF is case-specific and depends upon three aspects: numerically sta-
bility, accuracy and monotonicity. With ‘optimal’ we mean that a small number of inter-
polation points can be used for an acceptable degree of numerical stability and accuracy.
The first two requirements are common to many applications, and are often referred to
as the trade-off between stability and accuracy. Accuracy comes at the cost of numer-
ical instability. Monotonicity is another important requirement here for hedging (risk
management) applications. In Section 4.4, we further explore these properties.

The RBFs listed in Table 4.1 contain the so-called shape parameter, ǫ ∈ R+. In the
majority of publications a single shape parameter is chosen. We illustrate the influence
of the shape parameter in Figure 4.1 for the Gaussian, MQ and IMQ RBFs. The IMQ RBF
has a similar shape as the Gaussian RBF. We consider φ(x,ǫ) for different values of x ∈ R

around one data center, the zero-point. Generally, the RBF tends to get wider for smaller
values of the shape parameter ǫ.

Figure 4.1: Shape of the Gaussian RBF and MQ RBF for different values of the shape parameter ǫ.
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−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

 

 

φ

x

ǫ= 0.5
ǫ= 2
ǫ= 5

(b) MQ

−4 −2 0 2 4
0

5

10

15

20

25

 

 

φ

x

ǫ= 0.5
ǫ= 2
ǫ= 5

(c) IMQ

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

 

 

φ

x

ǫ= 0.5
ǫ= 2
ǫ= 5

The area in which the RBF is different from zero is also known as the region of influ-

ence. As Eq. (4.1) suggests, if φ
(∥∥x −xk

∥∥ ,ǫ
)
6= 0 the interpolant η̃(x) at x ∈ X is affected

by data center xk ; otherwise it is not. For the RBFs listed in Table 4.1, the region of influ-
ence is the whole RdX . However, as Figure 4.1 shows, the Gaussian and IMQ RBFs tend
to zero, such that in a numerical sense, these RBFs are compactly supported. A ‘wide’
RBF gives rise to a higher probability that x ∈X is affected by one or more data centers.
This is achieved by choosing a small shape parameter1. Consequently, small shape pa-
rameters are henceforth the standardized approach. This comes however at the cost of
numerical stability, see Section 4.2.3.

1This depends generally on the definition of the RBF.
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As Figure 4.1 shows, the shape parameter ǫ regulates the shape of the RBF φ. For the
Gaussian and IMQ RBF, we have 0 ≤φ(r,ǫ) ≤ 1 and

lim
ǫr→∞

φ(r,ǫ) = 0, lim
ǫr�0

φ(r,ǫ) = 1. (4.2)

For the MQ RBF, we have φ(r,ǫ) ≥ 1 and

lim
ǫr→∞

φ(r,ǫ) =∞, lim
ǫr�0

φ(r,ǫ) = 1. (4.3)

For the Gaussian and IMQ RBF, the interpolant may tend to zero due to lack of data
influencing the interpolant, as φ(

∥∥x −xk

∥∥ ,ǫ) tends to zero. To avoid this behavior, the
shape parameter is relatively small. For the MQ RBF, the interpolant does not tend to
zero due to lack of data influencing the interpolant. More precisely, for the MQ RBF, at
any x ∈ X we have φ(

∥∥x −xk

∥∥ ,ǫ) ≥ 1 for each data center xk and any shape parame-
ter ǫ > 0. Thus, each data center influences the interpolant η̃(x) (see Figure 4.1b). As
limǫr→∞φ(r,ǫ) =∞, it is again preferred that the value of the shape parameter be rela-
tively small, this time to avoid overfitting.

The interpolation weights w =
(
w1, . . . , wN

)T
in Eq. (4.1) are determined by requiring

that η̃ be an interpolant of η, i.e.

η̃(xk ) = yk , for k = 1, . . . , N . (4.4)

Using the abbreviation φi j := φ(‖xi − x j ‖,ǫ), the interpolation statement (4.4) can be
written as Φw = y , where the interpolation matrix Φ is defined as

Φ=




φ11 · · · φ1N

...
. . .

...
φN 1 · · · φN N


 . (4.5)

Note that the diagonal elements of Φ equal 1, independent of the shape parameter, for
all RBFs listed in Table 4.1. Furthermore, for these RBFs the interpolation matrix Φ is
guaranteed to be non-singular if the data centers x1, . . . , xN are unique. However, ill-
posedness can be a serious problem. For the Gaussian and IMQ RBF this was proved in
[114], for the MQ RBF in [100]. Non-singularity of Φ implies existence and uniqueness of
the interpolation weights w , so that the interpolant η̃ is well-defined if the data centers
x1, . . . , xN are unique.

For the Gaussian and IMQ RBFs, the interpolation matrixΦ is symmetric and positive
definite (SPD). This does not depend on the (unique) locations of the data centers. For
the MQ RBF this is not the case; the interpolation matrix is not positive definite, but
symmetric. If Φ is SPD, efficient numerical techniques for solving the system Φw = y

can be used, such as the Cholesky decomposition. If Φ is not SPD, an LU decomposition
can be used to solve the system Φw = y . A Cholesky decomposition is approximately
twice as efficient as an LU decomposition for solving a system of linear equations [108].
The Gaussian RBF will be used from this point on.
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Extrapolation behavior The RBF interpolant can also be used for extrapolation pur-
poses. Generally, approximating within the so-called convex hull is more accurate than
approximating outside the convex hull. For x =

{
x1, . . . , xN

}
∈RdX , the convex hull of the

data centers is defined as

C =
{

x ∈RdX : x =
N∑

k=1

λk xk for 0 ≤λ1, . . . ,λN ≤ 1 such that
N∑

k=1

λk = 1

}
. (4.6)

In the case of extrapolation, η̃ is evaluated at some x ∈ X \ C . Hence, when x is further
from the convex hull C , the distances

∥∥x −x1

∥∥ , . . . ,
∥∥x −xN

∥∥ will be larger. The limiting
behavior ofφ(r,ǫ) as r →∞determines the extrapolation behavior. For the Gaussian and
IMQ RBF, Eq. (4.2) gives limǫr→∞φ(r,ǫ) = 0. As a consequence, limr→∞Φ = I indepen-
dent of the shape parameter, with I the N ×N identity matrix, and limr→∞ w = y . This
shows in the limit r →∞, the interpolant η̃ will tend to zero. For the Gaussian and IMQ
RBF, the extrapolation thus tends to zero. For the MQ RBF we have limr→∞φ(r,ǫ) =∞,
such that the extrapolation tends to infinity.

As extrapolation is typically less accurate than interpolation, the region X \ C is
preferably as small as possible. To reduce the necessity of extrapolation, we specify
boundaries on the dX risk drivers, such that X ∈ D, with D ⊂ X a bounded domain.
As a consequence, the region of extrapolation D \ C is bounded as well. Values outside
this bounded domain are simply truncated.

Similar to polynomial interpolation, RBF interpolation suffers from Runge’s Phenomenon
[110], an observation of divergence near the boundary of the interpolation domain. In
[17, 54], several techniques to reduce Runge’s Phenomenon in RBF interpolation are dis-
cussed. An effective technique, which also extends to higher dimensions, is the addition
of a low-order polynomial, see Section 4.2.2.

4.2.2. REDUCING OSCILLATORY EFFECTS TO IMPROVE STABILITY

A stable and accurate approximation function is important for risk management appli-
cations. For hedging applications, the option derivative behavior should also be well
incorporated within the OIM. Oscillations in the OIM are highly undesirable, which can
be analyzed by the derivatives of the interpolant with respect to the relevant risk drivers.

As the RBF interpolant (see Eq. (4.1)) has an attractive form, a closed-form expression
of the derivatives is easily obtained. See Appendix 4.A for a short overview. The RBF
interpolant as in Eq. (4.1) may exhibit an oscillatory behavior. There are three techniques
to overcome this phenomenon; these will be described below. In Section 4.4, we test
those techniques via numerical experiments.

Data-dependent shape parameter Alternatively to the specification in Eq. (4.1), a
shape parameter can be specified for each individual data point. Although this leads
to more flexibility, the number of parameters to calibrate increases as well. Instead, we
will apply a data-dependent shape parameter [53], which has the following form:

ǫk = ǫ
max j d min

j

d min
k

, (4.7)
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where ǫ > 0 serves as a scaling parameter, d min
k

is the Euclidean distance between data
center xk and its nearest neighboring data center; the numerator in Eq. (4.7) is the maxi-
mum separation distance between any two neighboring data centers. The fraction in Eq.
(4.7) thus never falls below 1. This choice of shape parameter ǫk relates to the distribu-
tion of the data centers. When the nodes are close to each other, the corresponding ǫk are
large, leading to tight RBF kernels. When the nodes are further away, the corresponding
ǫk are small, leading to wide RBF kernels.

The SPD property of Φ is not preserved in case of the data-dependent shape parame-
ter, so that a Cholesky decomposition can no longer be used to determine the interpola-
tion weights. Furthermore, the Φ matrix can no longer be guaranteed to be non-singular
[53]. However, the authors in [53] find that independent of the distribution of the inter-
polation points and the ǫ parameter in Eq. (4.7), the eigenvalues follow a regular pattern.
This would not be the case if the matrix Φ were singular. A formal proof is missing in this
context.

Figure 4.2 shows two interpolants, for the data-independent and the data-dependent
shape parameters.

Figure 4.2: The effect of data-dependent shape parameters. Two Gaussian interpolants (in red) based on ǫ= 0.1
and 8 data centers (red asterisks) and the actual function (in blue) are shown, for the data-independent (left)
and the data-dependent (right) shape parameter.
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Affine term The addition of a polynomial term to the interpolation equation in Eq.
(4.1) [54] has two main advantages. Undesired oscillatory effects are reduced, i.e. it re-
duces the effects related to Runge’s phenomenon. This fits well with the option pricing
context because the option’s derivative behavior is important for hedging applications.
We choose to add a first-order polynomial, as typically low-order polynomials reduce the
effects of Runge’s phenomenon better than higher-order polynomials. In Figures 4.3a
and 4.3b we illustrate the impact of an affine term in combination with the interpolant,
for a specific test case.
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Figure 4.3: The effect of adding an affine term. Two Gaussian interpolants (in red) based on ǫ = 1 and 4 data
centers (red asterisks) and the actual function (in blue) are shown, without (left) and with (right) the addition
of an affine term.
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Let P : X → R be a first-order polynomial. With the addition of this affine term, the
interpolation equation becomes

η̃(x) =
N∑

k=1

wkφ
(∥∥x −xk

∥∥ ,ǫ
)
+ P(x), for x ∈X . (4.8)

The affine mapping P can be written as

P(x) = v ·
(

1
x

)
= v0 +

dX∑

k=1

vk xk ,

with x =
(
x1, . . . , xdX

)T
and where v =

(
v0, . . . , vdX

)T
are the affine weights. The interpo-

lation equation then reads

η̃(x) =
N∑

k=1

wkφ
(∥∥x −xk

∥∥ ,ǫ
)
+ v0 +

dX∑

k=1

vk xk . (4.9)

Adding an affine term often improves both the accuracy and the monotonicity of the in-
terpolant, because it reduces oscillations in the interpolant. These oscillations originate
from the first summation in Eq. (4.9). The addition of an affine term also reduces the
oscillations near boundaries of the convex hull of the data centers as a result of Runge’s
phenomenon [54].

With the addition of an affine term, the interpolation statement (4.4) readsΦw+P v =
y , where

P =




1 — xT
1 —

...
...

1 — xT
N —


 (4.10)
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is an N × (dX +1) matrix. The additional equations necessary to solve the interpolation
statement for w and v come from the requirement that affine data should be reproduced
exactly. In [88] the equation wT P = 0 is shown to imply exactly this. With the affine
addition, the interpolation statement becomes

Φ̃

(
w

v

)
=

(
y

0

)
, with Φ̃=

(
Φ P

P T 0

)
. (4.11)

Applying the affine term leads to a symmetric Φ̃ matrix, but positive definiteness and
non-singularity are not preserved.

Smoothing technique Another extension to the RBF interpolant is the smoothing tech-
nique. By replacing the interpolation statement Φw = y by

(Φ+αI ) w = y, (4.12)

with α ∈ R the smoothing parameter (see [88]), we are often able to improve the sys-
tems condition number and ‘smooth’ the interpolation points. That is, by using such a
regularization technique we correct the option data y1, . . . , yN by smoothed option data
ỹ1, . . . , ỹN satisfying

yk = ỹk +αk ,
(
k = 1, . . . , N

)
. (4.13)

So, in fact we force the interpolant to pass through the ỹk instead of the yk values. To

avoid overfitting we choose the values α =
(
α1, . . . ,αN

)T
as α = −αw , with smoothing

parameter α ∈R. In Section 4.2.3 we analyze the impact of the smoothing parameter on
the numerical stability.

It depends on the smoothing parameter whether or not the SPD property is preserved
for (Φ+αI ). It turns out that if α > −λmin where λmin is the minimum eigenvalue for
Φ, then the matrix (Φ+αI ) is SPD. Here we have used the fact that all eigenvalues are
positive for an SPD matrix.

Remark. Smoothing is applied when the option data is noisy. In the option valuations

context, data is noisy when the dimension of the risk drivers of η̃ is smaller than the true

dimension of the risk drivers or when the option values are obtained by a small number of

risk neutral scenarios, hence contain statistical noise. The latter is typically encountered

within the LSMC method context [7].

4.2.3. NUMERICAL STABILITY

The shape parameter regulates the width of the RBFs and thus controls the range of in-
fluence of the data centers. The optimal value of the shape parameter with respect to a
certain error measure appears to be case-specific. That is, it depends on the function to
be approximated. The widths of these RBFs depend on the number of data centers and
their locations. The RBFs should ideally be peaked (large shape parameter) where the
data centers lie close to each other, and wide (small shape parameters) where the data
centers are further away from each other. This is achieved by shape parameters of the
form displayed in Eq. (4.7). However, choosing smaller shape parameters comes at the
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cost of numerical stability. This is known as the trade-off between accuracy and numeri-
cal stability [56, 136]. In theory, the shape parameter is preferably as small as possible; in
practice numerical rounding errors will spoil the results for too small values of the shape
parameter.

Numerical stability for Φw = y is quantified by the condition number of the interpo-
lation matrix Φ. When the condition number is large, a small error in y may cause a large
error in w . For an N ×N matrix Φ, the condition number is defined as

κ(Φ) =
σmax

(
Φ

)

σmin
(
Φ

) , (4.14)

with σmin and σmax denoting the smallest and largest singular values of Φ, respectively.
When Φ is SPD, Eq. (4.14) is simplified to

κ(Φ) =
λmax

(
Φ

)

λmin
(
Φ

) , (4.15)

with λmin > 0 and λmax > 0 denoting the smallest and largest eigenvalues. When Φ is
symmetric but not positive definite, Eq. (4.14) is simplified to

κ(Φ) =
∣∣∣∣∣
λmax

(
Φ

)

λmin
(
Φ

)
∣∣∣∣∣ . (4.16)

The shape and smoothing parameters and the addition of an affine term all influence
the numerical stability and the accuracy of the interpolant. Combinations of the shape
and smoothing parameters that lead to large condition numbers should be avoided, be-
cause numerical rounding errors will corrupt the results. We therefore specify a thresh-
old κmax for the condition number. During the calibration, combinations of shape and
smoothing parameters that lead to a condition number larger than κmax will not be con-
sidered. In other words, the parameters will be calibrated in the parameter set

{
(ǫ,α) ∈R2 : κ(Φ) ≤ κmax

}
or

{
(ǫ,α) ∈R2 : κ(Φ̃) ≤ κmax

}
,

depending on whether the affine term is added.

Impact of the shape parameter We assume the interpolant η̃ is defined by Eq. (4.1),
i.e. without the addition of an affine term and without smoothing2. As stated in Section
4.2.1, the interpolation matrix Φ is non-singular for the RBFs listed in Table 4.1 if the data
centers are unique. However, Φ is a dense matrix, and it can become ill-conditioned. As
Φ depends on the shape parameter, this parameter influences the numerical stability of
the system Φw = y . For the Gaussian and IMQ RBFs, we have

lim
ǫ→∞

Φ= I , (4.17)

with I the identity matrix, so that limǫ→∞ κ(Φ) = κ(I ) = 1. On the other hand, we have

lim
ǫ�0

Φ= J , (4.18)

with J an all-ones matrix. Hence, limǫ�0 κ(Φ) = κ(J) =∞.

2The behavior of the data-dependent shape parameter is similar as for the data-independent shape parameter.
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Impact of the smoothing parameter The smoothing parameter also influences the
condition number of the interpolation matrix and therefore the numerical stability of
the interpolation matrix Φ as well. If λ is an eigenvalue of Φ, then for any α ∈ R, λ+α is
an eigenvalue of Φ :=Φ+αI . If Φ is SPD, the condition number of Φ :=Φ+αI reads

κ(Φ) =
∣∣∣∣∣
λmax(Φ)

λmin(Φ)

∣∣∣∣∣=
∣∣∣∣∣
λmax(Φ)+α

λmin(Φ)+α

∣∣∣∣∣ ,
(
α 6= −λmin(Φ)

)
. (4.19)

To understand the influence of the smoothing parameter α on the condition number of
Φ, the relation between κ(Φ) and κ(Φ) is derived. To do so, we consider the following
regions for α:

I1 =
(
−λmin(Φ),0

)
,

I2 =
(
−λmax(Φ),−λmin(Φ)

)
,

I3 = R\
(
−λmax(Φ),0

)
.

Note that for α ∈ I1 ∪ I3 the condition number reads κ(Φ) = λmax(Φ)+α
λmin(Φ)+α .

For α ∈ I1 we have

κ(Φ) =
λmax(Φ)

λmin(Φ)
·

α

λmin(Φ)+α
+

λmax(Φ)

λmin(Φ)+α

<
α

λmin(Φ)+α
+

λmax(Φ)

λmin(Φ)+α
=

λmax(Φ)+α

λmin(Φ)+α
= κ(Φ), (4.20)

because λmax(Φ)
λmin(Φ) > 1 and α

λmin(Φ)+α < 0. Forα ∈ I1 smoothing thus decreases the numerical
stability.

For α ∈ I2 no relation between κ(Φ) and κ(Φ) can be derived.
For α ∈ I3 we have

κ(Φ) =
λmax(Φ)

λmin(Φ)
·

α

λmin(Φ)+α
+

λmax(Φ)

λmin(Φ)+α

>
α

λmin(Φ)+α
+

λmax(Φ)

λmin(Φ)+α
=

λmax(Φ)+α

λmin(Φ)+α
= κ(Φ), (4.21)

because λmax(Φ)
λmin(Φ) > 1 and α

λmin(Φ)+α > 0. For α ∈ I3 smoothing thus improves the numerical
stability.

Impact of affine term The addition of an affine term also affects the numerical stabil-

ity. To derive a relation between κ(Φ) and κ(Φ̃), with Φ̃=
(

Φ P

P T 0

)
, a relation between

the eigenvalues of Φ and Φ̃ is required. Since Φ is SPD and Φ̃ is symmetric, according to
[9] (Theorem 3.5) the eigenvalues of Φ̃ belong to the union of I1 and I2, with

I1 =
[

1

2

(
λmin(Φ)−

√
λ2

min(Φ)+4σ2
max

)
,

1

2

(
λmax(Φ)−

√
λ2

max(Φ)+4σ2
mi n

)]
,(4.22)

I2 =
[
λmin(Φ),

1

2

(
λmax(Φ)+

√
λ2

max(Φ)+4σ2
max

)]
, (4.23)
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where λmin(Φ) and λmax(Φ) denote the smallest and largest eigenvalues of Φ and σmi n

and σmax denote the smallest and largest singular values of P , respectively. Theorem 3.5
applies when λmi n , σmi n > 0.

We use the bounds in Eqs. (4.22) and (4.23) to derive a relation between κ(Φ) and
κ(Φ̃). We note that there is no assurance that these bounds are attained.

Since λmin(Φ), λmax(Φ), σmi n , σmax are all positive, the smallest and largest eigen-
values of Φ̃ are given by

λmin(Φ̃) =
1

2

(
λmin(Φ)−

√
λ2

min(Φ)+4σ2
max

)
, (4.24)

λmax(Φ̃) =
1

2

(
λmax(Φ)+

√
λ2

max(Φ)+4σ2
max

)
. (4.25)

The condition number of Φ̃ is then computed as

κ(Φ̃) =
∣∣∣∣∣
λmax(Φ̃)

λmin(Φ̃)

∣∣∣∣∣ ,

=

∣∣∣∣∣∣∣∣∣

1
2

(
λmax(Φ)+

√
λ2

max(Φ)+4σ2
max

)

1
2

(
λmin(Φ)−

√
λ2

min(Φ)+4σ2
max

)

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

λmax(Φ)+
√

λ2
max(Φ)+4σ2

max

λmin(Φ)−
√

λ2
min(Φ)+4σ2

max

∣∣∣∣∣∣∣
.

Since

λmax(Φ) < λmax(Φ)+
√

λ2
max(Φ)+4σ2

max , (4.26)

λmin(Φ) > λmin(Φ)−
√

λ2
min(Φ)+4σ2

max , (4.27)

we have κ(Φ̃) > κ(Φ) when adding the affine term. So, conditionally on the shape param-
eter the numerical stability worsens in this case. This may not be the case with respect
to accuracy, which is tested in Section 4.4.

4.3. COMPUTING INTERPOLATION WEIGHTS

In practice, the computational budget of an insurer does not facilitate the generation of
many input option data for approximating the option function. So, the goal is to cali-
brate the interpolant as accurately as possible, while keeping the number of interpola-
tion points as small as possible. An iterative (adaptive) calibration method is desired to
determine the interpolation points and the shape and smoothing parameters. In this
way, a smaller number of points is used for approximation, which meets the demands of
an insurer better. We constructed a method to compute the interpolation weights where
we add new information to the interpolant. This method is applicable to a fixed shape
parameter. That is, we assume k = 1, . . . , Ni ter iterations (with Ni ter ∈ N+) and in each
iteration we add m data centers to the interpolant. The m data centers are adaptively
added by optimizing a relevant error measure (such as the LOOCV).

To form the RBF interpolant, a linear system of equations needs to be solved. Pre-
conditioning techniques are proposed to speed up this process [67, 69, 92]. The analysis
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in Section 4.2 focuses on the RBF method itself and its properties, instead of solving lin-
ear systems of equations. The decomposition method that we propose in this section
can be combined with preconditioning. However, the decomposition method aims at
efficiently solving an iteratively growing system of equations rather than solving a sin-
gle system of equations. To properly analyze the effect and the computational gain of
the proposed decomposition method itself, we choose not to apply additional precondi-
tioning here.

In Section 4.3.1 we discuss the method and in Section 4.3.2 its numerical complexity.
The method is constructed on the basis of LU decomposition.

4.3.1. THE DECOMPOSITION METHOD

The interpolation weights w are determined by solving a linear system of equations. We
discuss a solution method for the system Φw = y , and also extend the results to the
system corresponding to the affine addition (see Eq. (4.11)). Smoothing only alters the
diagonal elements of the matrix Φ, and hence does not affect the methods discussed.
Since the matrix Φ is non-singular, an LU decomposition can be defined, Φ = LU , such
that the interpolation system Φw = y can be solved as3

w =U−1u where u = L−1y. (4.28)

Based on N data centers, Φ1 is of the form Φ1 =




φ11 · · · φ1N

...
. . .

...
φN 1 · · · φN N


 .

Assuming m ≥ 1 new data centers are added, i.e. xN+1, . . . , xN+m , the interpolation
system then reads




φ1,N+1 · · · φ1,N+m

Φ1

...
. . .

...
φN ,N+1 · · · φN ,N+m

φN+1,1 · · · φN+1,N φN+1,N+1 · · · φN+1,N+m

...
. . .

...
...

. . .
...

φN+m,1 · · · φN+m,N φN+m,N+1 · · · φN+m,N+m







w1
...

wN

wN+1
...

wN+m




=




y1
...

yN

yN+1
...

yN+m




. (4.29)

The solution to the interpolation equation can be based on the solution of the previ-
ous interpolation equation, which saves significant computation time. Note that when
extra option data points are added, the matrix Φ1 does not change for fixed shape and
smoothing parameters. In other words, the interpolation system is augmented with m

rows and m columns. We write Eq. (4.29) as:

(
Φ1 Φ2

Φ3 Φ4

)(
w1

w2

)
=

(
y

y2

)
. (4.30)

3Eq. (4.28) contains inverses, though in practice these inverses are never computed explicitly, as solving the
whole system is more accurate and faster than explicitly computing the inverse, as is well-known.
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Using the LU decomposition we get

(
Φ1 Φ2

Φ3 Φ4

)
=

(
L1 0
L3 L4

)(
U1 U2

0 U4

)
, (4.31)

so that solving Eq. (4.30) is equivalent to solving

(
L1 0
L3 L4

)(
u1

u2

)
=

(
y

y2

)
and

(
U1 U2

0 U4

)(
w1

w2

)
=

(
u1

u2

)
. (4.32)

Note that L1U1 =Φ1, where L1 ≡ L and U1 ≡U , with L and U the original lower and upper
triangular matrices in the LU decomposition of Φ1. Therefore, u1 = L−1

1 y = L−1 y = u. To
solve Eq. (4.30), part of the LU decomposition is thus known from the previous iteration.
We do not need to compute the matrices L1 = L and U1 =U and the auxiliary vector u1 =
u, thus saving computation time compared to a full LU decomposition. The solution to
Eq. (4.30) is then obtained as

L3u1 +L4u2 = y2 =⇒ u2 = L−1
4

(
y2 −L3u

)
,

U4w2 = u2 =⇒ w2 =U−1
4 u2 ,

U1w1 +U2w2 = u1 =⇒ w1 =U−1
1

(
u −U2w2

)
.

(4.33)

Addition of affine term With the addition of an affine term, the interpolation system
becomes (

Φ P

P T 0

)(
w

v

)
=

(
y

0

)
, (4.34)

with corresponding LU decomposition

(
Φ P

P T 0

)
=

(
L1 0
L3 L4

)(
U1 U2

0 U4

)
. (4.35)

The solution to Eq. (4.34) is obtained by

(
L1 0
L3 L4

)(
u1

u2

)
=

(
y

0

)
and

(
U1 U2

0 U4

)(
w

v

)
=

(
u1

u2

)
(4.36)

as
L1u1 = y =⇒ u1 = L−1

1 y ,

L3u1 +L4u2 = 0 =⇒ u2 =−L−1
4

(
L3u1

)
,

U4v = u2 =⇒ v =U−1
4 u2 ,

U1w +U2v = u1 =⇒ w =U−1
1

(
u1 −U2v

)
.

(4.37)

When m data centers are added, matrixΦ is again augmented with m rows and m columns,

similar to Eq. (4.30). Matrix P is augmented with m rows to

(
P

P2

)
, where P2 is an m×(d +
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1) matrix. The new interpolation system thus reads




Φ1 Φ2 P

Φ3 Φ4 P2

P T P T
2 0







w1

w2

v


=




y1

y2

0


 , (4.38)

with LU decomposition




Φ1 Φ2 P

Φ3 Φ4 P2

P T P T
2 0


=




J1 0 0
J4 J5 0
J7 J8 J9







V1 V2 V3

0 V5 V6

0 0 V9


 . (4.39)

Using this LU decomposition, solving Eq. (4.38) is equivalent to solving




J1 0 0
J4 J5 0
J7 J8 J9







t1

t2

t3


=




y1

y2

0


 and




V1 V2 V3

0 V5 V6

0 0 V9







w1

w2

w3


=




t1

t2

t3


 . (4.40)

The construction of the LU decomposition can again be based on results of the previous
iteration:

L1U1 =Φ1 = J1V1 =⇒ J1 = L1 and V1 =U1,

L1U2 = P = J1V3 = L1V3 =⇒ V3 =U2,

L3U1 = P T = J7V1 = J7U1 =⇒ J7 = L3.

(4.41)

Furthermore, t1 = J−1
1 y = L−1

1 y = u1. To solve Eq. (4.38), we do not need to recompute
the matrices J1,V1,V3 and J7 and the auxiliary vector u1, thus again saving computation
time compared to a full LU decomposition.

4.3.2. COMPUTATIONAL COMPLEXITY

To gain insight into the computational complexity we study the number of floating-point
operations (flops) necessary to compute the interpolation weights. The gain in compu-
tational cost of the decomposition method proposed in the previous section is deter-
mined. To do so, the computational cost of performing a full LU decomposition of the
(N +m)× (N +m) matrix Φ is compared to the computational cost of performing an LU

decomposition of the (N+m)×(N+m) matrixΦ given the LU decomposition of the N×N

matrixΦ. This analysis is performed for N , m ≥ 1. Note that for m = 0, the computational
cost of the proposed decomposition method is zero, as no new data centers are added,
so that no new LU decomposition needs to be calculated. We focus on a certain iteration
j . The cumulative gain can be analyzed by considering all iterations j = 1, . . . , Ni ter . Two
steps are required for solving Eq. (4.30): forming the LU decomposition and performing
a forward/backward substitution (for more information we refer to [24]).

The computational complexity of the LU decomposition of an N × N matrix Φ is
equal to 2

3 N 3 − 2
3 N . This cost is determined as follows. During the LU decomposition,

N − 1 iterations of Gaussian elimination are performed. In the i th iteration, the lower
right block of size (N − i )× (N − i +1) is altered. Each iteration consists of a subtraction
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and a multiplication. In the i th iteration, the computational cost is thus equal to 2(N −
i )(N − i +1), so that the total computational costs of the LU decomposition are equal to,

2
N−1∑

i=1

(N − i )(N − i +1) =
2

3
N 3 −

2

3
N . (4.42)

After the LU decomposition is formed, the computational cost of solving the system
Φw = y through a forward/backward substitution (see Eq. (4.28)) is equal to 2N 2 −2N ,
because in both the forward and the backward solve, N steps are performed, with i −1
subtractions and i − 1 multiplications in the i th iteration. The forward and backward
solves thus have a computational cost equal to

N∑

i=1

2(i −1) = N 2 −N , (4.43)

so that the total cost equals 2N 2 − 2N . Solving Eq. (4.30), where the matrix is of size
(N +m)× (N +m) instead of N ×N , using a full LU decomposition would thus involve a
computational cost of

2

3
(N+m)3−

2

3
(N+m)+2(N+m)2−2(N+m) =

2

3
(N+m)3+2(N+m)2−2

2

3
(N+m). (4.44)

However, as seen in the previous section, a full LU decomposition is not necessary,
as matrices L1 and U1 in Eq. (4.31) are already known. Therefore, in the first N iterations
of the Gaussian elimination process, only (N +m − i )(N +m − i +1)− (N − i )(N − i +1)
elements need to be altered. In iterations i = N + 1, . . . , N +m again (N +m − i )(N +
m − i +1) elements are altered. The computational cost of efficiently computing the LU

decomposition thus equals

2
N+m−1∑

i=1

(N +m − i )(N +m − i +1)−2
N∑

i=1

(N − i )(N − i +1) =
2

3
m3+2N 2m+2N m2−

2

3
m.

(4.45)
After this LU decomposition, the solution is obtained through the forward/backward
substitution of Eq. (4.33). Matrices L4 and U4 are m ×m, so that the computational cost
of determining u2 and w2 is 2m2−2m. Similarly, as matrix U1 is N×N , the computational
cost of determining w1 is N 2−N . The total computational cost of the forward/backward
substitution of Eq. (4.33) is thus equal to N 2+2m2−N −2m, and the computational cost
of efficiently solving Eq. (4.30) equals

2

3
m3 +2N 2m +2N m2 +N 2 +2m2 −N −2

2

3
m. (4.46)

The computational complexity of solving Eq. (4.30) is thus reduced from Eq. (4.44) to Eq.
(4.46).

Let F : N+×N+ 7→R be the reduction factor of computation time, given by:

F (N ,m) =
2
3 (N +m)3 +2(N +m)2 −2 2

3 (N +m)
2
3 m3 +2N 2m +2N m2 +N 2 +2m2 −N −2 2

3 m
. (4.47)
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When the current data set is of size N and m new data points are added, the proposed
LU method to compute the new interpolation weights is F (N ,m) times more efficient
than computing the new interpolation weights using a full LU decomposition.

Let n̄(F ) denote the numerator and d̄(F ) the denominator of the fraction in Eq. (4.47),
such that F (N ,m) = n̄(F )/d̄(F ). Then the difference between n̄(F ) and d̄(F ) is given by

n̄(F )− d̄(F ) =
2

3
N 3 +N 2 +4N m −

5

2
N +

8

3
m, (4.48)

which implies n̄(F ) > d̄(F ) and hence F (N ,m) > 1 ∀ N ,m ∈N+. So, there is always a gain
in computation time when using the proposed method.

Note that
lim
N↑∞

F (N ,m) =∞ and lim
m↑∞

F (N ,m) = 1. (4.49)

The gain in computation time is thus largest for large N and small m. This is as expected,
and according to the practical use of this technique in the insurance industry, as the
reduction factor describes the gain in computation time when the current data set is
of size N and m new data points are added. Figure 4.4 illustrates the reduction factor
F (N ,m) for different values of N and m.

Figure 4.4: Theoretical reduction factor of computational complexity for computing the interpolation weights.
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4.4. NUMERICAL EXPERIMENTS

We show the impact of the data-dependent shape parameter, the addition of an affine
term and smoothing to the benchmark OIM in Eq. (4.1) by means of numerical ex-
periments. We focus on the Gaussian RBF, see Section 4.2.1. As a test case we use the
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Black-Scholes option formula, see Eq. (4.50). The Black-Scholes formula can be seen
as a generic option pricing formula for calls and puts. Such options are comparable to
unit-linked guarantee options, that are sold by insurance companies. Black-Scholes op-
tion values [14] are computed by

V :=V (σ,r, q, A,K ,τ,ω) =ω
(

A exp
(
−qτ

)
N (ωd1)−K exp(−rτ)N (ωd2)

)
, (4.50)

with K the strike level, τ> 0 the time to maturity, r the deterministic interest rate, σ the
volatility, q the fixed dividend yield, A the asset price index, and

d1 =
(

log

(
A

K

)
+ (r −q +

1

2
σ2)τ

)
/

(
σ
p
τ
)

, d2 = d1 −σ
p
τ. (4.51)

Furthermore, N (·) denotes the cumulative distribution function of the standard normal
distribution and ω= 1 for a call and ω=−1 for a put option.

We assume q = 0 and a 10-year maturing put option, with K = 120%. Hence, we re-
strict ourselves to the economic variables (i.e. the risk drivers) interest rate and volatility,

i.e. X =
(
r,σ

)T
. The function to be approximated is

V :=V (σ,r,0,1,1.2,10,−1). (4.52)

After applying the chain-rule the derivatives of the Black-Scholes formula are known
in closed-form as well. In Eqs. (4.53) and (4.54) the formulas of the first-order derivatives
with respect to interest rate and volatility are given, because they will be used in the
numerical experiments to follow.

∂V /∂r = ωK τ exp(−rτ)N (ωd2), (4.53)

∂V /∂σ = K
p
τ exp(−rτ)N (d2), (4.54)

In Sections 4.4.1 and 4.4.2 we assume the risk drivers to follow a uniform distribution
with r ∈ [−0.01,0.1] and σ ∈ [0,0.6], so that D = [−0.01,0.1]× [0,0.6]. Based on historical
data such a distribution would be unrealistic; therefore we consider a realistic distribu-
tion in an insurance case in Section 4.4.3.

We aim to approximate this Black-Scholes formula using the OIM. We define the fol-
lowing 4 models for comparison:

OIM1 the benchmark OIM as in Eq. (4.1);

OIM2 the OIM1 extended by the polynomial term;

OIM3 the OIM1 extended by the data-dependent shape parameter;

OIM4 the OIM1 extended by the smoothing parameter;

4.4.1. TRADE-OFF BETWEEN ACCURACY AND STABILITY

The number of interpolation points that can be used in the OIM depends on the com-
putational budget of the insurer. These interpolation points are computed on the basis
of Monte Carlo valuations, which are generally expensive. An important requirement for
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constructing the OIM is therefore to keep the number of valuations as small as possible.
So, rapid convergence is crucial for the method to work in practice. From this perspec-
tive, an iterative (adaptive) sampling method may be preferred, because each iteration
one can benefit from the information obtained in previous iterations. There are several
ways of performing such iterative sampling method.

Error bounds [112] and convergence rates are available for interpolation based on
RBFs. However, the precise convergence rate depends very much on the problem at
hand and the structure of the interpolation points. As it turns out, quantifying conver-
gence factors in the general setting is involved due to the presence of the shape (and pos-
sibly the smooth) parameter. Instead of analyzing convergence, we analyze the trade-off
between accuracy and stability. This trade-off is highly non-linear and sensitive to the
number of interpolation points.

In this numerical experiment we gain insight in the trade-off between numerical sta-
bility and accuracy for OIM1 and OIM2. We vary the number of interpolation points with
N = 9,16,25,36,49,64 and the shape parameter between 1 and 50 with step size 5. The
interpolation points are evenly distributed in the domain D. For each combination of
N and ǫ, we compute the LOOCV error measure (see Appendix 4.A) and the condition
number. The advantage of the LOOCV error measure is that it is based on out-of-sample
testing.
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In Figures 4.5a, 4.5b and 4.5c, 4.5d we illustrate the trade-off between accuracy and
stability for OIM1 and OIM2, respectively. We compute the log of the condition number
for better visibility.

Figure 4.5: Trade-off between accuracy and stability.
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(b) Log condition number (OIM1)
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(c) LOOCV error (OIM2)
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(d) Log condition number (OIM2)
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We observe that the accuracy gets worse for larger shape parameter values, and even
more so for small numbers of interpolation points. Accuracy also gets worse when the
number of interpolation points increases for small values of the shape parameter. The
condition number increases when the number of interpolation points increase, hence it
becomes nontrivial to calibrate the shape parameter when a large sample size is used.
For a (relatively) large number of interpolation points large shape parameters result in
stable systems. However, this comes at the cost of less accurate results.

We observe in this experiment that the OIM2 has a much better trade-off between
accuracy and stability than OIM1. This means that OIM2 can be calibrated with higher
accuracy for a given numerical stability measured by the condition number.



4.4. NUMERICAL EXPERIMENTS

4

85

4.4.2. COMPARISON OF INTERPOLATION MODELS

The calibration of the interpolation points and the model parameters is involved due to
the trade-off between accuracy and stability, but also due to the dimensionality. Each in-
terpolation data point may be interpreted as a parameter to be estimated. A large num-
ber of interpolation points gives rise to a higher-dimensional optimization problem. In
order to avoid high-dimensional calibrations we generate 100 uniformly distributed in-
terpolation points sets with N = 9. Since we randomly generate the interpolation points,
they are not evenly distributed (as in Section 4.4.1). We use a small number of interpola-
tion points because this is to be preferred in practice.

The advantage of such an experiment is that the set of interpolation points is the
same for each model, which enables fair comparison of the interpolation capabilities of
the different models. We note that calibration results can be improved for each model
by carefully choosing the interpolation points. The performance of the calibration de-
pends on the target function used for calibration. For each set of interpolation points
and model, we again calibrate the shape parameter and, if applicable, the smoothing pa-
rameter using the LOOCV method. We avoid combinations of the shape and the smooth-
ing parameters for which κmax = 106, so that stability is sufficiently guaranteed.

To compare the models OIM1-OIM4 we make use of the RMSE measure. The RMSE
is defined by

RMSE
(
η̃,η

)
:=

√√√√ 1

NRMSE

NRMSE∑

j=1

(η̃(x j )−η(x j ))2, (4.55)

where x j ∈D with j = 1, . . . , NRMSE and NRMSE = 105 are test points chosen in such a way
that they discretize the region D. Next to this RMSE quantity, computed in D, we also
compute the RMSE in the tail region Dtail ⊂ D, which we define such that η is highest
in Dtail. The Black-Scholes formula gives the highest option values for low interest rates
and high volatility and therefore we choose

Dtail =
{
(r,σ) ∈D : r ∈ [−0.01,−0.0045] and σ ∈ [0.57,0.6]

}
,

which corresponds to a 95%-tail event. A high-quality fit in these tails is required in
practice. The RMSE in Dtail is then calculated by generating a large and fixed sample that
discretizes the region Dtail. Figure 4.6 shows the box-plots of the RMSE in D and Dtail for
each OIM.
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Figure 4.6: Insight in the accuracy.
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We observe that there is no model that clearly outperforms the other models. The
OIM4 results in the best calibration results, i.e. small LOOCV errors, and second best is
the OIM2. The quality of fit in Dtail depends on the number of test points outside the
convex-hull and the ability of the model to deal with extrapolation. In this experiment
we test the latter as the interpolation points are the same for each model. The OIM2
model results in the best accuracy in Dtail. Hence, the addition of the affine term results
in highly satisfactory results here.

To gain insight in the monotonicity, we compare derivatives of the interpolant to the
true derivatives. We focus on the sign of the derivative, as this gives important informa-
tion on the behavior of the interpolant (i.e. indicating increase or decrease). For each
model and for each test point x j ∈ D, the exact first derivatives with respect to r and σ

are compared to the corresponding derivatives of the interpolant. The exact derivatives
are given by Eqs. (4.53) and (4.54). The derivatives of the interpolant can be computed in
closed-form as well (see Appendix 4.B). We measure the monotonicity by the percentage
of derivatives that has the wrong sign. Hence, the smaller this percentage the better the
monotonicity. Figure 4.7 shows the monotonicity for each model, depicted as the per-
centage of approximated first derivative that has the wrong sign, for both risk drivers r

and σ.



4.4. NUMERICAL EXPERIMENTS

4

87

Figure 4.7: Insight in the monotonicity.
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With respect to monotonicity there is more variety in the results. The model OIM2
outperforms the other models with respect to monotonicity. This model results in a
small percentage and has a small average percentage of wrong signs and low variance.
So, the addition of the affine term also improves the monotonicity of the interpolant
here.

4.4.3. INSURANCE CASE

We test the OIM for a fictional insurance company XYZ to approximate future embedded
option values in an ex-ante risk management application.

The balance sheet We assume the insurer sells unit-linked products of which we con-
sider a simplified version. The starting balance sheet in Euros of insurance company XYZ
is summarized in Table 4.2. We assume a perfectly matching asset portfolio for the guar-
anteed liability cash flows, an asset portfolio (denoted by A) and an embedded option
(denoted by V ).

Table 4.2: Balance sheet of XYZ at t = 0.

Assets Liabilities

Matching portfolio e700

Assets e200 Embedded option e100
Surplus e100

Total e900 Total e900

We consider the unit-linked product to be of European type, where capital is invested
in a single equity series. The unit-linked product then becomes an equity index put
option, and the value is relevant to the insurer’s balance sheet. We consider again a
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120% in-the-money put option with maturity equal to 10-years, which we value using
the Black-Scholes formula. The function to be approximated is found in Eq. (4.52).

Projection of the balance sheet To project the balance sheet for t ≥ 0, the asset process{
A(t )

}
t∈[0,T ] and the embedded option process

{
V (t )

}
t∈[0,T ] are relevant, because the

surplus (available capital)
{
S(t )

}
t∈[0,T ] is computed by the difference of the value of the

asset and the value of the liabilities: S(t ) = A(t )−V (t ). Other balance sheet items are
neglected in this simplified example. Using the set-up of the balance sheet in Table 4.2
we are able to directly compare the approximation to V (t ) and hence also S(t ).

We assume that
(

A(t ),ν(t ),r (t )
)

are modeled by a Heston-Vasicek model [18], where
σ(t ) :=

p
ν(t ).

d A(t ) = (r (t )+µA) A(t )d t +
√

ν(t ) A(t )dW A(t ),

dν(t ) = κν (ν̄−ν(t ))d t +σν

√
ν(t )dW ν(t ),

dr (t ) = κr (r̄ − r (t ))d t +σr dW r (t ),

with

A(0) = 200, µA = 0.02, ν(0) = 0.02, ν̄= 0.04, κν = 0.02,

σν = 0.01, r (0) = 0.02, r̄ = 0.04, κr = 0.02, σr = 0.01,

and where W A(t ),W r (t ),W ν(t ) are correlated Wiener process with correlation matrix Σ

Σ=




1
ρA,σ 1
ρA,r ρσ,r 1


=




1
−0.75 1
0.20 −0.10 1


 . (4.56)

Approximation of the embedded option Here, we use the true option value in Eq.
(4.50) and the approximation OIM2 to compute the embedded option process V (t ). We
favor the OIM2 from Section 4.4.2 based on the monotonicity and quality of fit. We select
the optimal set of interpolation points and corresponding shape parameter from the 100
randomly generated sets interpolation points based on the LOOCV error measure. These
interpolation points are visualized in Figure 4.9. We generate a large sample of one mil-
lion scenarios of

(
A(t ),r (t ),σ(t )

)
with a t = 1-year horizon. In Figures 4.8b and 4.8c we

compare the embedded option and surplus processes (V (1) and S(1)).
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Figure 4.8: Comparison of V1 and S1.
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We observe a highly satisfactory resemblance for the embedded option and surplus
processes. These approximation results are based on a randomly generated set of in-
terpolation points with N = 9. The results can be further improved by extending the
number of interpolation points or by carefully selecting the interpolation points.

Comparison of computation times For ease of implementation, we make use of the
exact Black-Scholes formula for numerical approximation. However, in practice such a
closed form formula of an embedded option does not exist due to the complexity of the
option structure. Monte Carlo simulations are therefore used as numerical approxima-
tion. To compare computation times, we therefore make use of a nested Monte Carlo
simulation approach.

For numerical implementation we use the Euler scheme of the Black-Scholes stochas-
tic differential equation (SDE) in combination with a small discretization step∆t = 1/100.
We note that the implementation of the nested Monte Carlo simulation is not optimized
with respect to high performance computing (HPC) [33] although the simulation code
is vectorized. The comparison of computation times is performed in the computation
program Matlab.

We find that for a single valuation the OIM2 is 42 times faster than the Monte Carlo
simulation using 500 risk neutral scenarios and 82 times faster using 1,000 risk neutral
scenarios. Although the computation time of a single valuation of the Monte Carlo sim-
ulation is still highly satisfactory (0.0162s and 0.0296s respectively), in a nested frame-
work this computation time increases with the number of valuations. An increase in the
number of valuations from 1 to 1,000 or from 1 to 10,000 results in an increase of the
computation by factors 1,000 and 10,000 respectively. The resulting computation times
then become too high.

Given the interpolation points we can pre-compute the interpolation weights for
OIM2. Next, increasing the number of interpolations in OIM2 from 1 to 1,000 results
in an increase of the the computation time of a factor 3 (instead of 1,000). An increase
in the number interpolation points from 1 to 10,000 results in an increase of the compu-
tation time by a factor 14 (instead of 10,000). These factors are thus much smaller than
those of the nested simulation framework.

Furthermore, we find that increasing the number of interpolation points from 9 to
64 results in an increase of the computation time by a factor 5. Given the exponential
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convergence rates of RBF interpolants [139], this leads to satisfactory trade-offs between
accuracy and computation time.

Computing the required capital Next, we analyze the impact of computing the re-
quired capital at t = 0, which is comparable to the Solvency Capital Requirement (SCR)
under Solvency II. Insurers use internal models to compute the required capital for in-
ternal steering and/or reporting to the regulator. The required capital is the amount of
capital the insurer must hold against unforeseen losses during a one-year period. The
required capital is the VaR of a loss-function on a certain horizon (often the 1-year hori-
zon). A common loss function (see [7]) is given by

Lt+∆ = St (1+ rt ,∆)−St+∆ with ∆= 1, (4.57)

with rt ,∆ the ∆-year risk-free rate in year t . This loss function will be used in our ex-
periments. For a certain confidence level α ∈ [0,1], the required capital Rα at t = 0 is
computed by:

P
(
L1 ≥ Rα

)
≤ 1−α,

(
L1 = S0(1+ r0,1)−S1

)
(4.58)

where we set r0,1 = 0.025 as the one-year risk-free rate at t = 0. Hence, the probability
that the loss in one year exceeds the required capital is less than or equal to 1−α. In
practice, this confidence level is often set to 99.5%.

In Table 4.3 we give an overview of numerical values of the required capital at t = 0 for
different confidence levels. Insurance companies with a higher credit rating are obliged
to compute their required capital with a lower confidence level α. The values in paren-
thesis are the solvency ratios, i.e. the surplus divided by required capital. We also show
the results of an improved version of OIM2, where we add 4, 9 and 16 interpolation
points. We sample these additional points evenly distributed in the 90% tail-event of
σ1 and 10% tail-event of r1. In this way we provide insight in the accuracy gain when
we sample additional points in the tail of the distribution. We compute the SSE of the
approximation models based on confidence levels α = 99.5%,97.5%,95%,90%. In Fig-
ure 4.9, the marked region refers to the relevant tail-event, the 16 additional sampled
interpolation points are marked by x and the existing interpolation points are marked
by ∗.
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Figure 4.9: Additional 16 interpolation points.
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Table 4.3: Required capital at t = 0

SSE 99.5% 97.5% 95.0% 90.0%
True 122.0 (0.82) 85.1 (1.18) 66.9 (1.50) 46.7 (2.14)
OIM2 12.5 118.9 (0.84) 85.2 (1.17) 67.8 (1.47) 48.3 (2.07)
OIM2 + 4 2.7 121.7 (0.82) 84.3 (1.19) 66.0 (1.52) 45.6 (2.19)
OIM2 + 9 0.4 122.3 (0.82) 85.3 (1.17) 67.2 (1.49) 47.1 (2.12)
OIM2 + 16 0.1 121.9 (0.82) 85.0 (1.18) 66.9 (1.49) 47.1 (2.13)

In this fictional example, the insurance company XYZ has solvency issues for α =
99.5%, because in that case the required capital is larger than the available capital. The
OIM2 gives highly satisfactory results up to a VaR of 97.5%. We again note that these
results are already obtained by a randomly generated set of interpolation points with
N = 9. Accuracy improves considerably when we increase the number of additional in-
terpolation points in the relevant tail of the distribution. The SSE decreases from 12.5 for
OIM2 to 0.1 when we add 16 additional interpolation points.

4.5. CONCLUSIONS

We introduced the Option Interpolation Model (OIM) for modeling option values in ex-
ante risk management applications. The method is easy to implement and results in fast
computation times compared to the nested Monte Carlo simulation method. The OIM is
based on interpolation using radial basis functions. This interpolation method does not
suffer from the curse of dimensionality, which is a requirement in practice. The usage of
nested Monte Carlo simulations is avoided using OIM.
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We explained the different settings for the OIM and showed the impact of the param-
eters on accuracy and numerical stability, as well as the trade-off between accuracy and
stability. In particular, we analyzed the shape parameter, smoothing and the addition
of an affine term. We constructed a matrix inversion method to obtain interpolation
weights. The method is especially useful in the case of an adaptive calibration proce-
dure. Such a procedure is often preferred in practice. The method is most efficient when
the number of additional data points is small.

All method components are compared with the Black-Scholes option formula. We
find highly satisfactory improvements compared to benchmark settings. The addition
of the affine term improves monotonicity, which is a desired property in practice. How-
ever, we note that the calibration of the interpolation points and the shape and smooth-
ing parameters is a challenging topic. The accuracy results depend on the criteria to be
optimized, and the calibration of the interpolation points is a high-dimensional prob-
lem, which can result in large computation times. Calibration is more difficult when the
condition number is high.

We tested the OIM to an insurance case, where we computed the required capital at
t = 0. The method already gives highly satisfactory results for only N = 9 interpolation
points. The approximation results are improved by carefully sampling extra interpola-
tion points. This confirms that the OIM is a good choice as an approximation method
for ex-ante risk management applications for insurance companies.

The OIM is based on pre-computed option values, that are computed in pre-selected
economic states. The OIM is used to approximate the option value in a real world sce-
nario. In the next section we consider also the nested simulation framework and in par-
ticular the calibration of a risk neutral model in a certain real world scenario.

APPENDIX 4.A
In general it is quite easy to construct a model with good quality in-sample fits, but
to construct a model with good quality out-of-sample fits is more involved. We make
use of the Leave-One-Out Cross-Validation (LOOCV) method [109], which is a power-
ful method for out-of-sample error forecasting. In the LOOCV method we consider N

instances of the random variable X , denoted by x =
{

x1, . . . , xN

}
⊂ X , and the corre-

sponding interpolation η̃, based on some RBF φ. For k = 1, . . . , N , let x(k) = x\{xk } be the
set of data centers obtained by removing xk from the original data set. Let η̃(k) denote
the interpolation based on data set x(k) and consider the following error vector

E =




E1
...

EN


 , with Ek =

∣∣∣η(xk )− η̃(k)(xk )
∣∣∣ . (4.59)

Ek is thus the absolute difference between the function value η(xk ) = yk and the inter-
polated value at xk , where the interpolation is based on all data centers except xk . The
optimal shape parameter is then chosen as arg minǫ>0 error(ǫ), where error(ǫ) =‖E‖, for
some norm ‖·‖. The evaluation of error(ǫ) is computationally expensive; N systems of
size (N − 1)× (N − 1) need to be solved for a single evaluation of error(ǫ). In [109] an
attractive form of Ek is proposed which reduces this computational burden.
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Note that Ek depends on the shape parameter ǫ, as Ek assesses the interpolation
η̃(k). In [109], the LOOCV was therefore introduced as a method to calibrate the shape
parameter, by minimizing error(ǫ). This can be extended to include the smoothing pa-
rameter. With smoothing, η̃ depends on both the shape parameter ǫ and the smoothing
parameter α, such that the optimal parameters can be chosen as the pair (ǫ,α) ∈R>0 ×R

minimizing error(ǫ,α) =‖E‖.
The LOOCV algorithm for selecting a value for the shape parameter as presented in

[109] is a specific case of Leave-p-Out Cross-Validation (LPOCV), where not one, but p

data centers are removed from the original data set. In LPOCV, the error is thus measured
as in Eq. (4.59), where x(k) is obtained by removing p data centers from the original
data set. This enables the use of other error measures (such as the R2 statistic) and the
use of more holdout sets. Other interesting adaptations of the LOOCV framework are
a maximum likelihood estimation and a comparison between actual and interpolated
values using a local cost function (see [113] and [111]).

APPENDIX 4.B
We again consider N instances of the random variable X , denoted as x =

{
x1, . . . , xN

}
⊂

X , and the corresponding interpolation η̃, based on some RBF φ. Closed-form expres-
sions of the derivatives of the interpolation equation in Eq. (4.1) can be obtained. The
corresponding expressions are derived for the first-order derivatives of the RBFs listed in
Table 4.1, see also [99]. We consider the first derivative of the interpolation η̃ with respect
to the j -th dimension, where j = 1, . . . ,dX (denoted by superscripts):

∂

∂X j
η̃(x) =

∂

∂X j

N∑

k=1

wkφ
(∥∥X −xk

∥∥ ,ǫ
)
=

N∑

k=1

wk
∂

∂X j
φ

(∥∥X −xk

∥∥ ,ǫ
)
, (4.60)

where

∂

∂X j
φ

(∥∥X −xk

∥∥ ,ǫ
)
=

∂

∂r
φ

(
r,ǫ

)
∣∣∣∣∣
r=‖X−xk‖

·
∂

∂X j

∥∥X −xk

∥∥=
∂

∂r
φ

(
r,ǫ

)
∣∣∣∣∣
r=‖X−xk‖

·
(X −xk ) j

∥∥X −xk

∥∥ .

(4.61)
Here (X −xk ) j denotes the j -th entry of the point X −xk . This leads to the following first
order derivatives:

- Gaussian:
∂

∂X j
η̃(X ) =−2

N∑

k=1

ǫ2 wk · (X −xk ) j ·exp−
(
ǫ
∥∥X −xk

∥∥
)2

, (4.62)

- MQ:
∂

∂X j
η̃(X ) =

N∑

k=1

ǫ2 wk
(X −xk ) j

√
1+

(
ǫ
∥∥X −xk

∥∥
)2

, (4.63)

- IMQ:
∂

∂X j
η̃(X ) =−

N∑

k=1

ǫ2 wk
(X −xk ) j

(
1+

(
ǫ
∥∥X −xk

∥∥
)2

)3/2
. (4.64)

With the addition of an affine term, the first-order derivatives of Eqs. (4.62), (4.63),
(4.64) are augmented by an extra term vk .





CHAPTER 5

On the modeling of nested risk neutral stochastic

processes with applications in insurance

We propose a modeling framework for risk neutral stochastic processes nested in a real

world stochastic process. The framework is important for insurers that deal with the val-

uation of embedded options and in particular at future points in time. We make use of

the class of State Space Hidden Markov models for modeling the joint behavior of the pa-

rameters of a risk neutral model and the dynamics of option market instruments. This

modeling concept enables us to perform non-linear estimation, forecasting and robust

calibration. The proposed method is applied to the Heston model for which we find highly

satisfactory results. We use the estimated Heston model to compute the required capital

of an insurance company under Solvency II and we find large differences compared to a

basic calibration method.

5.1. INTRODUCTION

We present a modeling framework to compute values of options in insurance that start at
a future point in time. Such a modeling framework is important for ex-ante risk manage-
ment for insurance companies. Since valuation via Monte Carlo simulations [64] is the
market standard, this gives rise to a so-called nested Monte Carlo simulation problem, as
discussed in Chapter 1. Instead of solving the nested simulation problem [6, 7, 33], here
we propose a different modeling framework for the risk neutral models to compute fu-
ture option values. In order to compute future option values at given monitoring dates,
we need a risk neutral model that is consistent with the generated real world dynamics
of interest rates and implied volatility at each monitoring date.

In [8] a mathematical framework is provided for the derivation of the required risk
capital under the European regulatory framework Solvency II. The Option Interpolation
Model presented in Chapter 4 can also be used in this context. Different alternatives for
the numerical implementation based on nested simulations are reviewed. The model
parameters should vary in each scenario in order to obtain consistency with the real
world scenarios. The calibration to the simulated real world dynamics of option mar-
ket prices would be too time consuming to perform for each real world scenario set and
hence avoiding such calibrations is desired in practice. We specify and calibrate a simu-
lation model for the model parameters, so that calibration time is reduced.

In [50] (and related articles [124, 125]) the computation of exposure distributions at a

This chapter is based on the article ’On the Modeling of Nested Risk Neutral Stochastic Processes with Appli-
cations in Insurance’, published in Applied Mathematical Finance, 1-35, 2017 [122].
The notation in this chapter is slightly different than in the other chapters.
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future point in time is discussed. These distributions are required for the computation of
a credit valuation adjustment and potential future exposure, that are relevant for banks.
Nested simulations are avoided by deriving an efficient approximation technique based
on regression. First, risk neutral scenarios are generated, that are used to calculate op-
tion values via regression. Second, real world scenarios are generated and linked to the
earlier regressed option values for the risk neutral scenarios. Our methodology is differ-
ent, we directly forecast the model parameters under the real world measure and hence
we embed the risk neutral measure dynamics in the real world measure dynamics.

The problem of modeling the dynamics of equity index option prices (often in terms
of implied volatility) has been investigated intensively in the academic literature. The
focus is however typically on the empirical facts in implied volatility surfaces and not on
the link with an underlying risk neutral model that can be used for out-of-sample valua-
tion. The latter is relevant to be able to determine the future value of embedded options
and is therefore considered in this chapter. In [71] a survey of methodologies is carried
out for constructing implied volatility surfaces at a certain time t . In [61] the Stochas-
tic Volatility Inspired (SVI) parametrization method for equity option implied volatilities
(IVs) is discussed. In [31] a study to the dynamics of the IV surfaces is performed and it is
shown that they are driven by a small number of random factors. A factor model is pro-
posed, which is compatible with the empirical observations. In [29] a partial differential
equation (PDE) approach is presented to model the dynamics of IVs.

We make use of the class of the well-known State Space Hidden Markov (SSHM) mod-
els [42], that provide us a general modeling framework. SSHM models gained interest in
the last 20 years due to the increased computational power and the improved estimation
techniques. SSHM models are applied in many applications like navigation, time series
analysis or robotic motion planning and control. By using the class of SSHM models,
we can connect the dynamics of the model parameters of a risk neutral model to the
dynamics of the option market prices. By modeling the model parameters as stochastic
processes under the real world measure we enforce consistency with the option market
price dynamics and the risk neutral model can be used for (out-of-sample) valuation at
a monitoring date.

During the calibration of the SSHM models we reduce the dimension of the calibra-
tion problem to improve the numerical stability of the model parameters with respect
to the option market data, i.e. we wish to avoid overfitting issues. Numerical stabil-
ity is an important requirement in practice, because stable balance sheet valuations are
desired. We reduce the dimension by distinguishing static and dynamic model parame-
ters, where static model parameters do not change over time. This is also beneficial for
present value calibrations (and valuations) because only the dynamic part needs to be
calibrated.

We apply the proposed framework to the risk-neutral Heston model [70], which is
popular in practice due to its flexibility in modeling implied volatility structures, and
use S&P-500 index option data for calibration. Although the Heston model can be well
calibrated to market option data, we show that some industry standard numerical tech-
niques suffer from numerical instability, which results in undesired noisy calibrations.
Using the proposed modeling framework we reduce the 5 risk factors, i.e. the mean re-
version, initial variance, long term variance, volatility of variance and correlation, of the
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Heston model to one single hidden risk factor. The calibration fit to the market data is
highly satisfactory with respect to accuracy and stability.

The remainder of this chapter is organized as follows. In Section 5.2 we outline the
problem and formulate the mathematical framework. In Section 5.3 we propose the
modeling framework for predicting the risk neutral model parameters under the real
world probability measure. In Section 5.4 we apply the proposed methodology to the
Heston equity model and we show the impact of the proposed methodology by valuing
an unit-linked insurers product. We conclude in Section 5.5.

5.2. METHODOLOGY

5.2.1. MATHEMATICAL FRAMEWORK

Risk neutral valuation Let (Ω,F ,Q) be a probability space, where Ω represents the
space of all possible states in the financial market, Q is the so-called risk neutral prob-
ability measure and the filtration

{
Fu

}
u∈[0,Tu ] represents all information about the fi-

nancial market up to time u where Tu ∈ R+ is the maturity of the longest-term option
in the option portfolio. We assume that investors can trade continuously in a friction-
less financial market. We introduce a dZ -dimensional Markov process

{
ZΘ(u)

}
u∈[0,Tu ], to

model the uncertainty in the financial market required for option valuation, where Zu,Θ

evolves under Q according to the stochastic differential equation (SDE) in Eq. (5.1) and
is parametrized by a dΘ-dimensional vector Θ ∈RdΘ ,

d ZΘ(u) =µZ ,Θ(ZΘ)du +σZ ,Θ(ZΘ)dW Z (u),
(

ZΘ(0) ∈RdZ ,0 ≤ u ≤ Tu

)
, (5.1)

with model parameters Θ ∈ RdΘ . Here µZ ,Θ : RdZ 7→ RdZ denotes the drift process, σZ ,Θ :
RdZ 7→RdZ ×dZ the volatility process and W Z are (correlated) standard Wiener processes.

We consider the valuation of tradable options in the market and embedded options
in insurance liabilities. We let V denote a set of dV tradable options and analogously
we let Ṽ represent a set of dṼ embedded options that are part of the balance sheet of
an insurance company. We are interested in the valuation of V and Ṽ given the risk
neutral model ZΘ(u) with model parameters Θ. For notational convenience, we define
the valuation mapping of V as ηV : RdΘ 7→ RdV . That is, the function ηV gives the values
of the options in V with respect to the risk neutral model ZΘ(u), given a set of model
parameters Θ. Analogously, we define the mapping ηṼ as the valuation function of the
embedded options Ṽ . Prices for V are observable in the market, but this is not the case
for the embedded options Ṽ .

Let us denote the pay-off functions of V and Ṽ respectively by pV : RdZ ×R 7→ R and
pṼ : RdZ ×R 7→R, so that the future cash flows of the options are given by, respectively,

CV (u) = pV (u, ZΘ), CṼ (u) = pṼ (u, ZΘ).

The most well-known example is an equity put option with pay-off function CV (u) =
max

(
K −S(Tu −u),0

)
, where K denotes the strike level, Tu the option maturity and S(u)

the equity index. The cash flows CṼ (u) are in practice generated by the actuarial system
of an insurer. Under Q, option payments can be computed as expected discounted cash
flows with respect to a chosen numéraire process, e.g. the bank account

{
M(u)

}
u∈[0,Tu ],
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with M(u) = exp
(∫u

0 r (v)d v
)
, where

{
r (u)

}
u∈[0,Tu ] is the risk neutral risk-free interest rate

process. We furthermore define the discount factor by M−1(u) = 1
M(u) . In the risk neutral

world all individuals are indifferent to risk and expect to earn on all assets a return equal
to the instantaneous risk free short rate. The risk neutral option value is then computed
as the expected value under the risk neutral measure:

ηV (Θ) = EQ

[∫Tu

0
M−1(u)CV (u)du

]
, ηṼ (Θ) = EQ

[∫Tu

0
M−1(u)CṼ (u)du

]
.

Given a set of observed option prices V , we would like to find the parameters Θ such
that ηV (Θ) is the best approximation of V . We define the calibration function χ : RdV 7→
RdΘ by

χ(V ) = arg min
Θ∈DΘ

‖V −ηV (Θ)‖, (5.2)

where DΘ ⊂ RdΘ denotes the relevant domain of Θ. So, Θ = χ(V ) is the best fit to
V with respect to norm ‖ · ‖. We will use the Euclidean norm, which in particular means
that all option values are weighted equally, but note that it can be useful to apply weights
for extreme in or out of the money options. This calibration function is computed using
numerical optimization techniques, because closed form solutions usually do not exist.

Once we have fitted the model parameters to the data, i.e. when we have computed
χ(V ), the values of the embedded options readily follow from

ηṼ (χ(V )) = EQ

[∫Tu

0
M−1(u)CṼ (u)du

]
. (5.3)

In Section 5.3.4 we discuss the numerical stability of this function, and in particular how
it relates to ηV .

Nested simulation We let P denote the real world (physical) probability measure and{
Y (t )

}
t∈[0,Tt ] with Tt ∈R+ be a dY -dimensional Markov process to model the uncertainty

of the real world financial market. We let Tt denote the horizon of the real world simu-
lation and t denotes time in the real world simulation. The market variables, i.e. the
interest rate curve R and option instruments V , that are required for calibrating Θ follow
hence stochastic processes:

{
R(t )

}
t∈[0,Tt ] and

{
V (t )

}
t∈[0,Tt ]. Since the model parameters

Θ of ZΘ(u) are connected to these stochastic market variables as shown in Eq. (5.2), they
cannot be fixed given the uncertainty of the real world market. Therefore, we model
them by a stochastic process {Θ(t )}t∈[0,Tt ].

This means that at each time t ∈ [0,Tt ] a risk neutral model is parametrized, as

Θ(t ) 7→
{

ZΘ(t )(u)
}

u∈[0,Tu ] .

By modeling the stochastic process Θ(t ) we generalize the nested simulation framework
in [8] because we also take the implied volatility risk factor into account. In [8] the pa-
rameters in Θ are kept constant during the real world scenario simulation. The proposed
modeling framework leads to a more realistic modeling of market IVs and model param-
eters of a risk neutral model. We note that the embedded option values also follow a
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stochastic process
{

Ṽ (t )
}

t∈[0,Tt ]
given the link with Θ in Eq. (5.3), and the IV of an eq-

uity index option is obtained by solving for the volatility parameter of the Black-Scholes
formula.

During numerical computation, we simulate a stochastic process given a discretiza-
tion in the time domain t ∈ [0,Tt ]; the random sample is called a scenario set. This
can be applied to generate NP independent paths of the real world variables Y j (t ) with
j = 1, . . . , NP. However, in order to calculate ηV (Θt ) using NQ Monte Carlo simulations

given a scenario set for Θ(t ), we have in turn to simulate
{

Z
Θ( j )(t )(u)

}
u∈[0,Tu ]

for each

t ∈ [0,Tt ] and scenario j = 1, . . . , NP of Θ(t ). This is a nested simulation, see Chapter

1. The scenarios for
{

Z
Θ( j )(t )(u)

}
u∈[0,Tu ]

are the inner scenarios, those for Y (t ) the outer

scenarios. In the nested modeling structure in Figure 1.1, the dark gray lines refer to the
stochastic process

{
ZΘ(t )(u)

}
u∈[0,Tu ] given a scenario set of Θ(t ) and the black (and light

gray) lines refer to the real world stochastic process
{
Y (t )

}
t∈[0,Tt ].

In the proposed modeling framework, which we discuss in Section 5.3, we avoid the
numerical calibration procedure to obtain Θt given the market variables Yt , see Eq. (5.2).
We make use of the class of State Space Hidden Markov (SSHM) models to directly model
the stochastic process Θt . The observable process Vt is subsequently modeled via the
valuation mapping ηV (Θt ). We also discuss numerical stability of the model parameters
with respect to changes in the market option data for calibration.

5.3. MODELING FRAMEWORK

We explain the proposed modeling framework. In Section 5.3.1 we first elaborate on the
State Space Hidden Markov (SSHM) models. In Section 5.3.2 we discuss the estimation
of SSHM models. In Section 5.3.3 we discuss our proposed modeling framework. An
important requirement is to improve numerical stability of the model parameters Θ with
respect to the option market data, which we discuss in Section 5.3.4.

5.3.1. STATE SPACE HIDDEN MARKOV MODELS

State Space Hidden Markov (SSHM) models provide a general and flexible framework for
modeling time-series in a broad range of applications. A thorough introduction into the
field can be found in the books [26, 42]. These models provide a flexible framework in
financial modeling for stochastic processes. The most popular SSHM model is the linear
Gaussian model, which can be estimated in closed form using the well-known Kalman
filter [44]. However, in most cases the Kalman filtering method can not be applied due
to the non-linear behavior of the observable process.

For notation1 we let Xn := X tn and X1:n :=
{

Xk

}tn

k=t1
(and similar for V ). In an SSHM

modeling structure we consider a hidden state process Xn ∈X that evolves according to

X1 ∼ f1,X ,ψ(X1), Xn |
(
Xn−1 = xn−1

)
∼ fX ,ψ(xn | xn−1), (5.4)

where Xn is the state at time tn , f1,X ,ψ a probability density function (PDF) and fX ,ψ

describes the transition from xn−1 to xn , where xn is a realization of Xn , with unknown
parameters ψ ∈Ψ⊂Rdψ . The hidden states are conditionally independent.

1We use similarly notation as in [42].
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We are interested in the hidden states X1:N , but in our case we can only observe the
Vn ∈ V process for n = 1, . . . , N . Conditional on X1:n , the observations Vn are assumed to
be independent and their marginal densities are given by

Vn |
(
Xn = xn

)
∼ fV ,ψ(vn | xn), (5.5)

where fV ,ψ describes the transition from xn to vn , with vn a realization of Vn . The non-
linear relation between xn and vn makes the SSHM model involved. In general, the PDFs
fX ,ψ and fV ,ψ are chosen to be well-known distribution functions. We assume that all in-
formation in the observed data is explained by the underlying hidden process X1:N , so
that specification of the correlation between Xn and Vn is redundant. Such an assump-
tion is standard in classical state space models. An overview of alternative representa-
tions is provided in [101].

5.3.2. ESTIMATION

State inference Given the observed process V1:N = v1:N and fixed parameters ψ, we are
interested in inferring the states X1:N = x1:N . In a Bayesian framework, inference of X1:n

given a realization v1:n of V1:n relies on the posterior distribution fψ(x1:n | v1:n):

fψ(x1:n | v1:n) =
fψ(v1:n , x1:n)

fψ(v1:n)
=

fψ(v1:n | x1:n) fψ(x1:n)

fψ(v1:n)
, (5.6)

with fψ(v1:n | x1:n) the likelihood, fψ(x1:n) the prior, fψ(v1:n) the evidence and fψ(v1:n , x1:n)
is often referred to as the complete data likelihood. The prior, likelihood and evidence
(also known as the marginal likelihood) are defined by

fψ(x1:n) = f1,X ,ψ(x1)
n∏

k=2

fX ,ψ
(
xk | xk−1

)
, (5.7)

fψ(v1:n | x1:n) =
n∏

k=1

fV ,ψ
(
vk | xk

)
, (5.8)

fψ(v1:n) =
∫

fψ(v1:n , x1:n)d x1:n . (5.9)

For the linear Gaussian model the posterior distribution is a Gaussian distribution
whose mean and covariance can be computed in closed form [44]. For most non-linear
non-Gaussian models, it is not possible to compute these distributions in closed-form
and we need to employ numerical methods.

We are interested in the filtering and marginal likelihood computations, i.e. the se-

quential approximation of the distributions
{

fψ(x1:n | v1:n)
}

n≥1
and marginal likelihoods

{
fψ(v1:n)

}
n≥1

, because directly solving Eq. (5.6) is problematic due to the high dimen-

sionality. In this sequential computation, one often relies on the so-called prediction
and update equations [42]; the recursion satisfies the marginal distribution fψ(xn , v1:n).
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The prediction and update equations are respectively given by

Prediction : fψ(xn |v1:n−1) =
∫

fX ,ψ(xn |xn−1) fψ(xn−1 |v1:n−1)d xn−1, (5.10)

Update : fψ(xn |v1:n) =
fV ,ψ(vn |xn) fψ(xn |v1:n−1)

fψ(vn |v1:n−1)
, (5.11)

where

fψ(vn |v1:n−1) =
∫

fV ,ψ(vn |xn) fX ,ψ(xn |xn−1) fψ(xn−1 |v1:n−1)d xn−1:n . (5.12)

If we can compute fψ(x1:n |v1:n) and thus fψ(xn |v1:n) sequentially, then the evidence
fψ(v1:n) can also be evaluated recursively using

fψ(v1:n) = fψ(v1)
n∏

j=2

fψ(vn | v1:n−1),

where the fψ(vn |v1:n−1) are computed by Eq. (5.12).
Once the filtering stage is completed, one may smooth the filtered state process. Fil-

tering is the estimation of the distribution of the current state xn based upon the obser-
vations received up until current time v1:n . Smoothing implies estimating the distribu-
tion of the state xn given all observations up to some later time v1:N , i.e. fψ(xn |v1:N ).
In general, smoothing is computationally more challenging than filtering. The trajectory
estimates obtained by such methods, as a result of the additional information available,
tend to be smoother than those obtained by filtering.

Non-linear Hidden Markov models Unfortunately, in most applications the SSHM model
is non-linear and non-Gaussian. Therefore, various numerical approximations were de-
veloped over the years. The well-known Extended Kalman Filter (EKF) and Unscented
Kalman Filter (UKF) were introduced shortly after the Kalman Filter. In general, the UKF
can acquire more accurate estimation results than the EKF, but can lead to serious errors
for non-Gaussian distributions [68, 120]. Since we want our approach to be as general as
possible we make use of so-called Sequential Monte Carlo (SMC) methods.

SMC methods represent a set of flexible and powerful simulation-based methods
which provide samples distributed approximately according to posterior distributions
and facilitate the approximate calculation of fψ(v1:n). The main idea behind SMC meth-
ods is to obtain a large collection of weighted random samples, named particles, whose
empirical distribution converges to the distribution we wish to sample from, the pos-
terior distribution fψ(x1:n |v1:n). For this reason SMC methods are also referred to as
Particle Filters in the filtering context. They have become a popular class of methods for
inference in non-linear non-Gaussian state space models. An overview of the theory and
applications of different SMC methods can be found in [42].

Combined state and parameter inference Because the transitional PDFs in Eqs. (5.4)
and (5.5) are parametrized by ψ we are also interested in inferring these parameters
given the observed process V1:N = v1:N . The Expectation-Maximization (EM) algorithm
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[38] is an efficient method for combined state and parameter inference. The EM is an it-
erative method for maximizing the likelihood fψ

(
v1:n

)
in Eq. (5.9). This method is useful

when it is not possible to evaluate and optimize this likelihood directly. The method can
be used for combined state and parameter inference in SSHM models. The algorithm is
based on the insight that the auxiliary function

Q(ψ,ψ′) =
∫

log fψ(v1:n , x1:n) fψ′ (x1:n | v1:n)d x1:n , (5.13)

may be used as a surrogate for fψ(v1:n), because increasing Q(ψ,ψ′) forces an increase

of fψ(v1:n) [26]. The EM algorithm is initialized by ψ0 ∈Ψ and x(0)
1:N and iterates between

an expectation (E) step, which facilitates state inference, and a maximization (M) step
for parameter inference:

E-step : Conditional on ψk−1 compute Q(ψ,ψk−1),

M-step : Conditional on x(k)
1:N compute ψk = argmax

ψ∈Ψ
Q(ψ,ψk−1).

This EM-algorithm generates a sequence
{
ψk , x(k)

1:N

}NE M

k=0
, which converges to a sta-

tionary point of the likelihood for NE M →∞, with the number of iterations NE M ∈ N+.
We solve the M-step of the EM algorithm using optimization techniques from the Matlab
library.

Note that since the computation of the E-step includes a complicated multi-dimensional
integral, we can approximate it by using Monte Carlo integration. Assuming we can sam-
ple from fψk−1 (x1:N |v1:N ) using a particle filtering method, we replace the E-step by the

simulation of Npar ∈N+ realizations {X
j

1:N }
Npar

j=1 from fψk−1 (x1:N |v1:N ) and the computa-

tion of

Q̃k

(
ψ

)
=

1

Npar

Npar∑

j=1

log fψ(X
j

1:N , v1:N ).

This leads to the Monte Carlo EM algorithm (MCEM). Unfortunately, a drawback of this
approach is that it requires the number of particles Npar to grow with each new itera-
tion of the algorithm k ≤ NE M [26]. Besides this, we need to sample a whole new set

of realizations of the hidden states {X
j

1:N }
Npar

j=1 at each iteration, that are not re-used in

later iterations. The Stochastic Approximation EM (SAEM) algorithm [37] makes more
efficient use of the simulated variables by replacing Q̃k

(
θ
)

with a stochastic averaging
procedure

Q̂k

(
ψ

)
= (1−γk )Q̂k−1

(
ψ

)
+γk


 1

Npar

Npar∑

j=1

log fψ(X
j

1:N , v1:N )


 ,

where {γk }k≥0 is a decreasing sequence of weights that satisfy
∑
γk =∞ and

∑
γ2

k
<∞.

As k →∞, the SAEM algorithm converges to a local maximum of the likelihood function
[37]. The computational advantage of the SAEM algorithm is especially significant in
problems where maximization is much cheaper than simulation.
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The MCEM and SAEM methods cannot be applied directly, because for non-linear
non-Gaussian SSHM models it is not possible to directly sample from the posterior dis-
tribution. Using a particle filter method for sampling from the posterior distribution
leads to an SMC-analogue of the previous methods, the PSEM method described in
[115]. If we take the SAEM approach, it is sufficient to generate a single sample each
iteration.

In [85] it is shown that for convergence of the SAEM algorithm, it is not necessary to
sample exactly from the posterior distribution. We can also sample from a family of so-
called Markov kernels {MKψ(x1:N |x ′

1:N )}ψ∈Ψ on X
N that leaves the family of posterior

distributions invariant. Assume that we have such a family and let in iteration k ≤ NE M

of the SAEM method x1:N [k −1] be the previous draw from the Markov kernel. We then
sample X1:N [k] ∼ MKψk−1 (x1:N |x1:N [k −1]) and update Q̂ according to

Q̂k

(
ψ

)
= (1−γk )Q̂k−1

(
ψ

)
+γk log fψ(X1:N [k], v1:N ).

The next approximation of ψ is then obtained by maximizing this quantity w.r.t. ψ ∈
Ψ (the M-step) using conditional particle filters (CPF) as the required Markov kernel.
We use the SAEM method using conditional particle filters (CPF), which is referred to as
CPF-SAEM [90, 91]. In this method the Markov kernel is constructed by running a SMC
sampler in which one particle trajectory x ′

1:N is specified a priori, a so-called CPF. We can
think of this reference trajectory as guiding the simulated particles to a relevant region
of the state space. The path x ′

1:N is ensured to survive all re-sampling steps.

5.3.3. MODELING CONCEPT

For notational convenience, we denote time t ≤ Tt and u ≤ Tu via subscript. The pro-
cess Yt models the uncertainty of the real world financial market, and consists amongst
others of the processes Rt and Vt . To avoid a numerical calibration procedure to obtain
Θt , see Eq. (5.2), we model the process Θt directly. Given the process Θt , we compute
the observable process by Vt = ηV (Θt ) and the embedded option values by Ṽt = ηṼ (Θt ).

Modeling the joint behavior of possibly a large number of variables in Θt without any
constraints is generally problematic, because estimating an underlying model may result
in a high-dimensional problem. To reduce the dimension of the problem, we assume the
dΘ-dimensional process

{
Θt

}
t∈[0,Tt ] to be generated by a latent (hidden) dX -dimensional

process
{

X t

}
t∈[0,Tt ] ∈X , with

Θt =Υ(X t ), Υ : RdX 7→RdΘ . (5.14)

The dimension of the calibration problem is controlled by dX ≤ dΘ. We aim to vary the
model parameters that are most significant with respect to the calibration fit, hence by
keeping dX as small as possible. The parameters of Υ (including X t ) are still determined
by maximizing the calibration fit to the option market data Vt . This is beneficial for
interpretation and can improve numerical stability.

When dX ≤ dΘ, we achieve an effective dimension-reduction, since the model pa-
rameters Θt are then driven by a lower-dimensional process X t . Several ways of defining
the mapping Υ exist and three requirements for Υ should be taken into account. First,
the mapping should lead to a satisfactory fit to the market data. Second, the mapping
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should lead to a realistic representation of the model parameters. Third, the mapping
should lead to numerically stable results. A basic assumption is a linear mapping be-
tween X t and Θt in Eq. (5.15), i.e.

Θt =Υ(X t ) := aΥ X t +bΥ,
(
aΥ ∈RdX ×dΘ ,bΥ ∈RdΘ

)
(5.15)

where aΥ and bΥ are unknown parameters. The mapping in Eq. (5.14) can be split into
a dynamic part X t and static part

{
aΥ,bΥ

}
. That is, the static part does not change over

time and is calibrated once. Calibration to available market data then only takes place
with respect to the dynamic part (while the static part is kept fixed). This reduces com-
putation times of calibration, because (by construction) the parameter space is smaller.
In Section 5.4 we estimate these dynamic and static parts for the Heston model.

The mapping Υ should be specified in such a way that Θt belongs to domain DΘ ⊂
RdΘ . For example, the correlation matrix should be positive definite, the correlation pa-
rameters should be in [−1,1] and volatility parameters should be non-negative. To en-
sure that Υ maps values of X t to the correct domain for Θt , we truncate values that are
outside the domain DΘ, i.e.

Θt ∈
[
DΘ,mi n ,DΘ,max

]
,

where the minimum and maximum domains are respectively denoted by DΘ,mi n ∈ RdΘ

and DΘ,max ∈RdΘ .
Using this approach we compute the process Vt by the following composite function:

Vt = ηV (Υ(X t )),
(
Θt =Υ(X t )

)
. (5.16)

Next, we let the hidden states X t evolve through time via the transition PDF fX ,ψ

and given a realization X t = xt , the option price Vt = vt is computed via Eq. (5.16).
We model the (calibration) error between the valuation function ηV and the observed
process Vt as a stochastic process by means of the PDF fV ,ψ. This is required because the
underlying risk neutral model is generally not able to perfectly fit the market option data.
The Black-Scholes model can for example only model flat IV surfaces, whereas the IV
typically varies per strike and maturity. Secondly, we introduce an error by reducing the
number of degrees of freedom in the risk neutral model for calibration: dX ≤ dΘ. A basic
assumption for fV ,ψ would be a normal distribution. In this case the error vt −ηV (Υ(xt ))
is symmetric around zero.

The proposed SSHM model is given by

State : X1 ∼ f1,X ,ψ(X1), Xn |
(
Xn−1 = xn−1

)
∼ fX ,ψ(xn |xn−1), (5.17)

Observation : Vn |
(
Xn = xn

)
∼ fV ,ψ(vn |ηV (Υ(xn))), (5.18)

The SSHM model defined in Eqs. (5.17)-(5.18) is non-linear due to the non-linearity of
the valuation function ηV . Hence, analytic solutions do not exist. We condition on the
state xn (as in Eq. (5.5)), but we incorporate the valuation function ηV in the PDF fV ,ψ,
which we highlight by conditioning on ηV (Υ(xn)), n ≤ N .

Given the observed process V1:N = v1:N , we wish to infer states X1:N = x1:N and pa-
rameters ψ, where the static part of Υ (i.e. aΥ and bΥ) are part of ψ. We use the EM
algorithm (see Section 5.3.2) for combined state and parameter inference. That is, the
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dynamic part of Υ, the hidden states X t , is determined via the expectation step and the
fixed model parameters ψ are determined via the maximization step. We aim to keep
the dimension dX as low as possible, but by optimizing the fit to the market data via
maximizing the Q-function in Eq. (5.13).

5.3.4. NUMERICAL STABILITY

We wish to achieve a satisfactory fit to the option market data V by using as few pa-
rameters as possible, but we also wish to achieve stable valuations of the embedded op-
tions Ṽ , i.e. we wish to avoid overfitting issues. For notational convenience we drop
the subscript t in this section. Numerical stability is important in practice because the
calibrated model parameters are used by insurers to value the (out-of-sample) embed-
ded options on their balance sheet. If changes in the market data imply undesired large
changes in the model parameters this can result in noisy valuations of embedded op-
tions. Overfitting occurs when a model has too many parameters relative to the number
of observations or has an incorrect model structure. Overfitting may lead to poor pre-
dictive performance, as it typically results in excessive reactions to minor fluctuations in
the option market data used for calibration.

On the other hand, a modeling setup that does not react to changes in the market
data at all may be numerically very stable, but will not result in realistic embedded op-
tion values. We therefore also require that our modeling setup fits market prices well
enough. So, there is a trade-off to be made. Below we will focus on the numerical stabil-
ity, but we emphasize that the quality-of-fit should also be checked when evaluating the
modeling approach.

In Section 5.2.1 we have explained that the model parameters are determined via the
calibration function χ in Eq. (5.2). These calibrated model parameters are then used to
compute the embedded option values via Eq. (5.3). By applying the chain rule to the
composite function ηṼ ◦χ in Eq. (5.3) we have

DηṼ ◦χ = DηṼ
Dχ,

where D denotes the Jacobian matrix. Hence, the sensitivity of ηṼ to the option market
data V can be decomposed to the sensitivity of ηṼ to Θ and the sensitivity of Θ to V .

We use the operator norm ‖ ·‖op to quantify numerical stability, where we recall that
the operator norm is defined as

‖A‖op = sup

{‖Ax‖
‖x‖

: x ∈Rn , x 6= 0

}
,

for any linear map A : Rn → Rm , and any n,m > 0. We use the Euclidean norm to com-
pute ‖ · ‖. We also recall that the operator norm equals the largest singular value of A.
The operator norm quantifies the direction that is amplified the most by A.

A small change in the market option prices δV will result in a change in embedded
option values DηṼ ◦χδV , up to first order. The operator norm therefore provides an upper
bound to how strong embedded option values change as a result of a small change in
observed market prices, and is therefore a measure of numerical stability. Using the
chain rule and the Cauchy-Schwartz inequality, we obtain an upper bound of ‖DηṼ ◦χ‖op :

‖DηṼ ◦χ‖op = ‖DηṼ
Dχ‖op ≤ ‖DηṼ

‖op ‖Dχ‖op .
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The sensitivity of ηṼ to Θ = χ(V ) follows from the actuarial system of an insurer (see
Section 5.2.1). We focus on the sensitivity of the calibration function χ in Eq. (5.2), as
we assume the actuarial system of the insurance company as given. More concretely, to
keep ‖DηṼ ◦χ‖op as small as possible, we require the operator norm ‖Dχ‖op to be as small
as possible for stable calibrations of Θ.

Since we have no closed form expression forχ, and numerical calibration of its deriva-
tive is expensive, we relate Dχ to DηV for which we don’t have to perform numerical op-
timizations. In order to do this, we assume that ηV is locally an embedding near Θ, so
in particular DηV has maximal rank. This is a very modest assumption because a zero
vector of DηV would be a salient over-parametrization: a change in parameter would not
lead to any change in option values up to first order.

We proceed to decompose the tangent space TηV (Θ) into the image of DηV (Θ), imDηV(Θ),
and its ortho-complement, (imDηV(Θ))

⊥. Let us denote the orthogonal projection onto
imDηV(Θ) by πηV

πηV (imDηV(Θ))
⊥ = 0, πηV (x) = x, ∀x ∈ imDηV(Θ).

Since DηV (Θ) has a trivial kernel, the following defines a pseudo-inverse of DηV (Θ):

D+
ηV (Θ) = (D⊤

ηV (Θ)DηV (Θ))
−1D⊤

ηV (Θ).

This is also a left-inverse of DηV (Θ), and moreover DηV (Θ)D
+
ηV (Θ) is the orthogonal projec-

tion on the image of DηV (Θ), i.e.

DηV (Θ) D+
ηV (Θ) =πηV .

We now claim that

Dχ(V ) = D+
ηV (Θ),

(
Θ=χ(V )

)
. (5.19)

To see this, consider a first order perturbation δV of the option market data V . This
decomposes into

δV =πηV (δV )+ (δV )⊥, (δV )⊥ := δV −πηV (δV ) ∈ (imDηV )⊥.

Let us write δΘ= D+
ηV (Θ)(δV ), so that

DηV (Θ)δΘ= DηV (Θ)D
+
ηV (Θ)(δV ) =πηV (δV ).

Using this, we have up to first order that

χ(V +δV ) = arg min
Θ∈DΘ

‖V +δV −ηV (Θ)‖,

= arg min
Θ∈DΘ

‖V +δV −DηV (Θ)δΘ−ηV (Θ−δΘ)‖+O
2(δV ),

= arg min
Θ∈DΘ

‖V + (δV )⊥−ηV (Θ−δΘ)‖+O
2(δV ). (5.20)
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Now, to determine for which Θ the minimum is attained, we observe that

d

dΘ

∣∣∣∣∣
Θ+δΘ

‖V + (δV )⊥−ηV (Θ−δΘ)‖2 = −2
(
V + (δV )⊥−ηV (Θ)

)
DηV (Θ),

= −2
(
V −ηV (Θ)

)
DηV (Θ),

=
d

dΘ

∣∣∣∣∣
Θ

‖V −ηV (Θ)‖2.

Since the last term equals zero for Θ= χ(V ), it follows that the minimum in Eq. (5.20) is
attained at Θ=χ(V )+δΘ, and so

χ(V +δV ) =χ(V )+δΘ+O
2(δV ),

which proves Eq. (5.19).
Note that this implies that the singular values of Dχ(V ) are equal to the reciprocals

of the singular values of DηV (Θ) (which is a general fact about pseudo-inverses). Conse-
quently,

‖Dχ‖op =σDχ,max =
1

σDηV
,mi n

,

where σDχ,max and σDηV
,mi n are respectively the largest singular value of Dχ and small-

est singular value of DηV . We conclude that for numerical stability of the calibration part,
we would like σDηV

,mi n to be as large as possible. In Section 5.4 we compute σDηV
,mi n

for the Heston model.

Dimension reduction We use the parametrization Υ in Eq. (5.14) to reduce the dimen-
sion of Θ. More precisely, we use the following adjusted calibration function

χΥ(V ) =Υ

(
arg min

x∈RdX

‖V −ηV (Υ(x))‖,

)
.

We assume that Υ is an embedding, and therefore ηV ◦Υ as well, so that we can apply
exactly the same arguments as used above to prove Eq. (5.19), but now applied to ηV ◦Υ
instead of ηV . We omit the points in which derivatives are taken for brevity. This results
in

DχΥ = DΥ D

(
arg min

x∈RdX

‖V −ηV (Υ(x))‖,

)
= DΥ (DηV ◦Υ)+.

We argue that using Υ to parametrize Θ generically improves numerical stability. To this
end, observe that D+

ηV
DηV = I , and so

DχΥ = D+
ηV

DηV DΥ (DηV ◦Υ)+ = D+
ηV

DηV ◦Υ (DηV ◦Υ)+,

= DχπηV ◦Υ, (5.21)

where we have denoted the orthogonal projection operator onto the image of DηV ◦Υ by
πηV ◦Υ. Eq. (5.21) can be used to compare the operator norms of Dχ and Dχ◦Υ. On the
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one hand we have that

‖Dχ‖op = ‖Dχ ◦πηV ‖
op = sup

{
‖DχπηV x‖

‖x‖
: x ∈RdX , x 6= 0

}
,

= sup

{
‖Dχx‖
‖x‖

: x ∈ imDηV , x 6= 0

}
, (5.22)

whereas we also have

‖DχΥ‖op = sup

{
‖DχπηV ◦Υx‖

‖x‖
: x ∈RdX , x 6= 0

}
,

= sup

{
‖Dχx‖
‖x‖

: x ∈ imDηV◦Υ, x 6= 0

}
. (5.23)

Since imDηV◦Υ ⊆ imDηV , we can conclude from Eqs. (5.22) and (5.23) that

‖DχΥ‖op ≤ ‖Dχ‖op . (5.24)

Since the intention of using Υ is to reduce the dimension of the parameter space, we
can safely assume that imDηV◦Υ is a strict subset of imDηV , in practice in fact of high
co-dimension. Under this assumption, Eq. (5.24) will generically be a strict inequality.
The only case in which this does not hold, is when the right-singular vector of Dχ, cor-
responding to the largest singular value, lies in the image of DηV ◦Υ. Obviously, this is
generically not the case for a subspace of positive co-dimension.

The extent to which ‖DχΥ‖op is smaller than ‖Dχ‖op , and so the extent to which we
have improved numerical stability using Υ as parametrization, of course depends very
much on the details of the situation. In the special case that we use only a single di-
mension to parametrize Θ, i.e. dX = 1, we can make the operator norm ‖DχΥ‖op more
explicit. Let us now consider this univariate case.

We use Eq. (5.23) to compute the operator norm, so suppose x ∈ imDηV◦Υ. This is of
the form x =λDηV DΥ for some non-zero λ ∈R, so

DχΥ x = DΥ (DηV ◦Υ)+x = DΥ (DηV A)+ (λDηV DΥ) =λDΥ,

because (DηV DΥ)+DηV DΥ = 1. It follows that

‖DχΥ x‖
‖x‖

=
|λ|‖DΥ‖

|λ|‖DηV DΥ‖
=

‖DΥ‖
‖DηV DΥ‖

,

for any x ∈ imDηV◦Υ. By Eq. (5.23) it then follows that

‖DχΥ‖op =
‖DΥ‖

‖DηV DΥ‖
. (5.25)

Given the formulation of Υ in Eq. (5.15), we have

DΥ = aΥ ∈RdX ×dΘ .

In Section 5.4 we will use the expression in Eq. (5.25) to quantify numerical stability of
the proposed method.
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5.4. APPLICATION

We perform a calibration to historical equity option market data. We use the Heston
model [70] for numerical experiments. We calibrate by using a basic calibration method
(B asi c), wherein we calibrate the full parameter space Θ, and the proposed method
(Pr oposed) in respectively Sections 5.4.1 and 5.4.2. We compare the results and we also
analyze the numerical stability. In Section 5.4.3 we compare the calibrated models by
computing the present and future embedded option values of a fictive insurance com-
pany.

The Heston model Under the Heston model we model the stock index Su , the variance
process νu and the money market account Mu under the risk neutral measure Q by





dSu = (r −q)Su du+
p
νu Su dW S

u , S0 = 1,

dνu = κν(ν̄−νu)du+ σν
p
νu dW ν

u , ν0 ≥ 0,

d Mu = r Mu du, M0 = 1,

(5.26)

with Zu =
{
Su ,νu , Mu

}
and u ∈ [0,Tu], r denotes the risk free interest rate, q the dividend

yield, κν the mean reversion, ν̄ the long term variance level, σν the volatility of variance
and ρ the correlation between the Wiener processes dW S and dW ν.

We consider the dividend yield to be zero and the interest rate r is equal to the ob-
served interest rate in the market, such that we have Θ =

{
κν,ν0, ν̄,σν,ρ

}
. The volatility

parameter σν affects the kurtosis (peak) of the probability distribution function of eq-
uity (log) returns. The lower the volatility of variance parameter, the higher the kurtosis
(peak). The correlation parameter ρ affects the skewness of the probability distribu-
tion function of equity (log) returns. The lower the correlation parameter (between the
stock index and the variance process), the higher the skewness, i.e. heavy tails to the
left. Hence, these parameters affect the modeling of IVs in the strike dimension. In eq-
uity, ρ is often negative. The Heston model enables semi-analytic pricing of equity index
put/call options via the so-called COS method [47]. We use this method for valuation.

The calibration data We use IV surfaces of S&P-500 equity index options. Multiple
S&P-500 index options are quoted with different strike levels and maturities, but we use
the most liquid option data. For calibration we use strikes K =

{
0.8,1,1.2

}
and maturities

T =
{
0.25,1,2

}
, with dK = 3 and dT = 3 and hence dV = 9. For notation we use V

i , j
t with

i = 1, . . . ,dK and j = 1, . . . ,dT to refer to the option value with strike Ki and maturity T j .
We define a discrete set of (historical) times T =

{
t1, t2, . . . , tN

}
for which we can observe

the process Vt for t ∈T , where N denotes the number of observations. We assume that
the index n = 1, . . . , N refers to time tn ∈ T . We use historical data available from June
2005 until March 2014 with a monthly frequency, which leads to N = 106 observations.

In the literature much research has been performed to study the empirical behavior
of IV surfaces, see for example [31] and the references therein. It turns out that for a given
maturity the IVs increase when relative strike levels decrease2. Long maturing options

2Possible explanations for this phenomenon are the (see [80]) negative correlation between asset returns and
volatility changes (leverage effect). Big jumps in the asset (spot) price tend to be downwards rather than
upwards.
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are less volatile than short maturing options. The volatility of the IV is level dependent.
That is, the higher the (average) level of the IV, the more skewed the IV surface and hence
more volatile. This may be due to the fact that investors sell their call options and buy
put options for protection in case of high volatility, i.e. in times of crisis.

Given these empirical facts, IV surfaces tend to dynamically change over time. That
is, the skew or smile in the strike dimension and the term structure of IVs changes dy-
namically over time. In times of crisis the (average) IV level is typically higher, the mean
reversion from short term IVs to long term IVs is faster and the IV surface is more skewed.
Opposite IV structures hold in less volatile periods. The VIX index is a popular measure
of the implied volatility of short maturing S&P 500 index options. It represents a measure
of the market’s expectation of equity market volatility over the next 30 day period.

5.4.1. THE BASIC CALIBRATION APPROACH

In the basic calibration approach, we calibrate the full parameter spaceΘt at each histor-
ical time t by using the calibration function χ in Eq. (5.2). We let ηi , j refer to the option
with strike Ki and maturity T j with i = 1, . . . ,dK and j = 1, . . . ,dT . We set the calibration
bounds equal to DΘ,mi n =

{
0.01,0.001,0.001,0.1,−1

}
and DΘ,max =

{
5,0.5,0.5,1,−0.1

}
.

We specify small lower limits for the volatility parameters to avoid numerical difficulties
and the upper limits are specified based on expert opinion. For each time we (indepen-
dently) calibrate 5 parameters to obtain the best fit with the market data, so in total we
calibrate 5×106 = 530 parameters.

Quality-of-fit The Heston model fits well to the available data. The R2 errors are > 0.99
for all times t ∈ T , see Figure 5.4a, which is highly satisfactory. To gain insight in the
quality-of-fit of separate parts of the option market data, we show in Table 5.1 the sum
squared errors (SSE) per option and for all t ∈T .

Table 5.1: Quality-of-fit of Heston model.

K = 0.8 K = 1.0 K = 1.2
T = 0.25 T = 1 T = 2 T = 0.25 T = 1 T = 2 T = 0.25 T = 1 T = 2

Av. SSE (×10−5) 0.25 0.15 0.15 0.35 0.26 0.04 0.08 0.09 0.05
Max. SSE (×10−4) 0.49 0.07 0.11 0.16 0.13 0.02 0.20 0.09 0.09

The fit is worse for shorter maturing options. This is due to the fact that the skew
in the maturity dimension from the Heston model decreases linearly [60], whereas the
market data contains more curved behavior. The Heston model is hence not powerful
enough to model such behavior.

Numerical stability of Θ The calibrated model parameters Θ are visualized in Figure
5.1.
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Figure 5.1: Model parameters Θt .
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The parameters κν and ρ show a constant, but spiky, behavior around 0.4 and −0.7
respectively. The parameters ν0, ν̄, σν show common behavior, see Figure 5.1a, with
correlations 


1

ρν0,ν̄ 1
ρν0,σν ρν̄,σν 1


=




1
0.65 1
0.76 0.90 1


 . (5.27)

The determinant of this correlation matrix is close to zero: 0.08. The determinant of
a correlation matrix approaches zero when some of the variables are strongly correlated.
The long term variance level shows lagged behavior relative to the initial variance, the
lag one cross-correlation is 0.75.

We recall from Section 5.3.4 that ‖DηV ‖op measures the numerical stability of V to Θ

and ‖Dχ‖op measures the numerical stability of Θ to V . The operator norm is equal to
the maximum singular value and, in particular, we have showed that the singular values
of Dχ are equal to the reciprocals of the singular values of DηV . This means that, the
higher the minimum singular value σηV ,mi n of DηV , the lower the maximum singular
value σχ,max of Dχ and hence the better the numerical stability.

In Figure 5.2a we show the singular values of DηV , where we emphasize the minimum
singular value σηV ,mi n in black. In Figure 5.2b we show the singular values of Dχ, where
we emphasize the maximum singular value σχ,max in black. For reference, we show the
VIX index in Figure 5.2c. Using the VIX index we gain insight in the dynamic behavior of
numerical stability.
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Figure 5.2: Numerical stability.
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(b) Singular values of Dχ
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(c) The VIX index
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We find that there is less variation in the Heston model in volatile periods and vice
versa. This means that the Heston model is less sensitive to market changes in volatile
periods. There is a significant negative correlation between the market volatility, repre-
sented by the VIX index, and maximum singular value of Dχ. The Pearson correlation
coefficient over this period is −0.71.

In times of a low VIX index, the IV surfaces in the market are typically relatively flat.
The Heston model has too many degrees of freedom in this case and is therefore sensitive
to changes in the market data, see [70]. In times of a high VIX index, the IV surfaces are
typically not flat. In this case more degrees of freedom in the Heston model are used to
obtain a good fit. Therefore, in times of high values of the VIX index, the Heston model
is less sensitive to changes in the market data.

5.4.2. THE PROPOSED CALIBRATION APPROACH

We apply the proposed methodology in Section 5.3 to the Heston equity model in Eq.
(5.26). The methodology can be applied to other models as well. By using the proposed
methodology we aim at reducing the number of parameters in the risk neutral model to
improve stability, but in such a way that the fit to the option market data is satisfactory.

Model specification We use the mapping Υ in Eq. (5.15) to reduce the dimension of Θ.
We consider a 1-dimensional hidden state process, i.e. dX = 1 and vectors aΥ,bΥ ∈R5. To
model the hidden state process X t and the observable process Vt we need to specify the
PDFs fX ,ψ and fV ,ψ. For both PDFs, we consider a (simple) normal distribution and an
(advanced) non-normal distribution. This results in 4 cases, which we describe below.

We consider the Ornstein-Uhlenbeck (OU) and Cox-Ingersoll-Ross (CIR) models [18]
for modeling the hidden process X1,t and X2,t , which are respectively presented by the
following Stochastic Differential Equations (SDEs):

d X1,t = κ1,X

(
X̄1 −X1,t

)
d t + σ1,X dW X1 (t ), X1,0 ∈R,

d X2,t = κ2,X

(
X̄2 −X2,t

)
d t + σ2,X

√
X2,t dW X2 (t ), X2,0 ≥ 0,

(5.28)

where κ.,X ∈ R+ is a mean reversion parameter, X̄ . ∈ R+ a long term state parameter and
σ.,X ∈ R+ a volatility parameter (with · = 1,2). The transitional PDFs for respectively the
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OU and CIR model are known in analytic form:

fX ,ψ(x1,n |x1,n−1) = fnor m

(
x1,n ; x1,n−1 exp

(
−κ1,X ∆t

)
+

X̄1

κ1,X

(
1−exp

(
−κ1,X ∆t

))
,
σ2

1,X

2κ1,X
(1−exp

(
−2κ1,X ∆t

)
)


 ,(5.29)

fX ,ψ(x2,n |x2,n−1) =
1

C
fnccs

(
x2,n/C ;d ,λX ,t

)
, (5.30)

where fnor m denotes the PDF of a normal distribution and fnccs denotes the PDF of a
Non-Central Chi-Squared (NCCS) distribution where

C =
σ2

2,X (1−exp
(
−κ2,X ∆t

)
)

4κ2,X
, d =

4κ2,X X̄2

σ2
2,X

and λX ,t =
4κ2,X x2,n−1 exp

(
−κ2,X ∆t

)

σ2
2,X (1−exp

(
−κ2,X ∆t

)
)

,

(5.31)
with ∆t = tn − tn−1 = 1

12 , because we use a monthly frequency of the historical data.
We consider a normal and a skewed normal distribution for modeling the observ-

able process Vt conditional on the hidden process X t . The two choices for modeling the
observable process denoted by V1,t and V2,t are given by the following PDFs:

fV1,ψ(v1,n |x.,n) = fnor m

(
v1,t ;ηV (Υ(x.,t )),σ1,V

)
, (5.32)

fV2,ψ(v2,n |x.,n) =
2

σ2,V
fnor m

(
v2,t −ηV (Υ(x.,t ))

σ2,V
;0,1

)

·Fnor m


αV

(
v2,t −ηV (Υ(x.,t ))

σ2,V

)
;0,1


 , (5.33)

with · = 1,2 and αV ∈ (−1,1). The skewed normal PDF equals the normal PDF when
αV = 0. In the normal distribution the error between the observed option price and the
model option price are centered symmetrically around zero. Under the skewed normal
distribution we are able to model a skewed distribution of these errors via the parameter
αV . This is for example relevant if the Heston model is only able to model certain com-
binations of K and T of the option market data. Negative option values are truncated to
zero.

We consider four cases in which we use either the OU or the CIR model for the state
process, and either the normal or the skewed normal distributions for the errors of the
option prices with respect to the fit. Summarizing, we consider the following 4 cases:

• Case I: The state process follows the PDF in Eq. (5.29) and the observable pro-
cess follows the PDF in Eq. (5.32). The model parameters to be estimated are

ψ =
{

aΥ,bΥ,κ1,X , X̄1,σ1,X ,σ1,V

}
. This results in the estimation of 120 parameters

(including the hidden states for t ∈T ).

• Case II: The state process follows the PDF in Eq. (5.29) and the observable pro-
cess follows the PDF in Eq. (5.33). The model parameters to be estimated are

ψ=
{

aΥ,bΥ,κ1,X , X̄1,σ1,X ,σ2,V ,αV

}
. This results in the estimation of 121 parame-

ters (including the hidden states for t ∈T ).
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• Case III: The state process follows the PDF in Eq. (5.30) and the observable pro-
cess follows the PDF in Eq. (5.32). The model parameters to be estimated are

ψ =
{

aΥ,bΥ,κ2,X , X̄2,σ2,X ,σ1,V

}
. This results in the estimation of 120 parameters

(including the hidden states for t ∈T ).

• Case IV: The state process follows the PDF in Eq. (5.30) and the observable pro-
cess follows the PDF in Eq. (5.33). The model parameters to be estimated are

ψ=
{

aΥ,bΥ,κ2,X , X̄2,σ2,X ,σ2,V ,αV

}
. This results in the estimation of 121 parame-

ters (including the hidden states for t ∈T ).

In each case, we hence use a much smaller number of parameters than in the basic
calibration method where we used 530 parameters. We reduce the number of parame-
ters by a factor ≈ 4.4.

Next, in Section 5.3.2 we have discussed the estimation of SSHM models. We use
the EM algorithm in combination with particle filtering. We have implemented the nu-
merical methods in Matlab. In particle filtering, the estimation results depend on the
EM iterations NE M , the number of particles Npar and the initial parameter settings. Un-
fortunately, it is beforehand difficult to specify NE M and Npar . Ideally, we specify those
values as large as possible to guarantee convergence, but this would slow down the es-
timation process. There is hence a trade-off to be made. We take NE M = 50, Npar = 10
and set the initial parameters equal to:

aΥ = (0.0,0.0,0.0,0.0,0.0), bΥ = (0.35,0.1,0.1,0.4,−0.7),

σ.,X =σ.,V = κ.,X = X̄ .,X = 0.1, αV = 0,

with · = 1,2. We find that this parameter setting leads to satisfactory results for all exper-
iments.

Estimated parameters The estimated state processes X t = xt are shown in Figure 5.3
for Cases I-IV.
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Figure 5.3: Estimated state process.
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We observe similar estimations. The estimated processes for Cases III and IV are
positive due to the underlying CIR process; the NCCS distribution has a positive domain.
It turns out that the state processes are highly correlated with the VIX index; the Pearson
correlations are

Case I : 0.884, Case II : 0.922, Case III : 0.929, Case VI : 0.936. (5.34)

In Case IV we find the highest correlation with the VIX index. The estimated parameters
ψ are given in Table 5.2.

Table 5.2: Overview of model parameters ψ.

κX X̄ σX σV αV

Case I 0.8379 0.1048 0.1539 0.0050 -
Case II 0.8813 0.0835 0.1364 0.0039 -0.0991
Case III 0.3600 0.1162 0.3506 0.0043 -
Case IV 0.3387 0.1230 0.3461 0.0039 -0.3450

a1 a2 a3 a4 a5 b1 b2 b3 b4 b5

Case I 0.1210 0.2725 0.3122 0.3625 -0.06300 0.1914 0.0132 0.1232 0.3475 -0.6647
Case II 0.1100 0.3529 0.3631 0.4043 -0.07100 0.2302 0.0114 0.1133 0.3779 -0.6751
Case III 0.1300 0.3182 0.5336 0.3988 -0.06400 0.2678 0.0111 0.0750 0.3970 -0.6780
Case IV 0.1400 0.3852 0.4296 0.6328 -0.09000 0.4584 0.0111 0.0562 0.4132 -0.6820

The estimated skewness parameter αV is negative for Cases II and IV, so that the
PDF fV ,ψ is negatively skewed. This means that market prices are overestimated by the
Heston model, i.e. the model prices are (on average) higher than the market prices. The
PDF fV ,ψ corrects for this via the negative αV parameter.
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The estimated long term states X̄ are comparable, but the X̄ is highest for Case IV.
The mean reversion and correlation parameter are almost constant, i.e. the correspond-
ing elements in aΥ are approximately zero. The estimated ρ and κν are comparable al-
though Cases III and IV estimate some higher mean reversion parameters than Cases I
and II. The parameters ν0, ν̄ and σν change dynamically over time because the corre-
sponding elements in the vector aΥ are non-negative and hence these parameters are
directly connected to the dynamic part xt . We observe that the elements in aΥ of ν0, ν̄
and σν are all positive which indicates positive correlations between ν0, ν̄ and σν. This
coincide with the correlations computed in Eq. (5.27).

Quality-of-fit The R2-error for Cases I-IV and the basic calibration method is visual-
ized in Figures 5.4a and 5.4b.

Figure 5.4: Quality-of-fit.
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We observe in Figure 5.4a highly satisfactory results, i.e. R2 > 0.93 and by removing
the spike at October 2008 we have R2 > 0.98 for all time points. The data quality of Oc-
tober 2008 is bad due to illiquidity in the market. These results are obtained for dX = 1.
The results typically improve when we increase the dimension dX ; for dX = 5 the results
would be similar to the basic calibration approach since all model parameters are used
in that case.

The largest error is when the VIX index is highest, i.e. when there is turmoil in the
market. In times of market stress the IV surface is typically more skewed due to (amongst
others) the higher demand for put options for protection. Typical in those periods, the
correlation parameter becomes more relevant. In the proposed methodology this pa-
rameter is estimated by approximately a constant and hence there is not enough flexi-
bility to model this extreme skew.

The Cases I and II perform worst. This is due to the underlying normal distribution
for the state process X t , which is not capable of modeling the heavy tails in the data. We
find in Figure 5.4b that the Cases III and IV perform better than Cases I and II respec-
tively, because the underlying CIR process is able to model the heavy tails in the data.
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Case IV performs best given the fit to the available data. The mean R2 = 0.9974 is slightly
smaller than the R2 of the benchmark model R2 = 0.9997. Therefore, we favor Case IV.
We obtain a similar fit as the basic calibration method, but by using a much smaller pa-
rameter space. We recall that we reduce the number of parameters by a factor of 4.4
(from 530 to 121 in case of Case IV).

To gain insight in the performance of separate parts of the option surface we show in
Table 5.3 the sum squared errors (SSE) per option type and for all t ∈T . The results are
shown for Case IV.

Table 5.3: Quality-of-fit of the Heston model.

K = 0.8 K = 1.0 K = 1.2
T = 0.25 T = 1 T = 2 T = 0.25 T = 1 T = 2 T = 0.25 T = 1 T = 2

Av. SSE (×10−4) 0.07 0.09 0.23 0.35 0.10 0.17 0.02 0.13 0.18
Max. SSE (×10−3) 0.31 0.17 0.21 0.37 0.24 0.10 0.03 0.15 0.21

The overall fit to the market data is still satisfactory. Since we use a much smaller pa-
rameter space, we obviously lose flexibility with respect to the basic calibration method.
We observe that the model is less capable of calibrating the longer maturing options.

From Table 5.2 we observe that the dynamic part, i.e. the non-zero element of aΥ,
is related to the parameters ν0, ν̄ and σν. The parameters κν and ρ are approximately
constant. This parametrization of Θ is able to model the height of the term structure
of IVs (via ν0 and ν̄), but with approximately a fixed mean reversion κν. This might be
restrictive in extreme market circumstances. We are able to model dynamic skews in the
IV surface via σν, but perhaps not well enough in extreme events since the parameters
ν0, ν̄ and σν are linked to the same (single) risk driver xt . Since the correlation parameter
is approximately fixed over time we model fixed skews in the IV surface. This can be
restrictive in extreme cases, because skewness is important in high volatile periods; see
Figures 5.4a and 5.4b.

Numerical stability By using the proposed methodology we also aim at improving the
numerical stability, see Section 5.3.4. Since we assume dX = 1 we have 1 singular value
(instead of 5 in Section 5.4.1). We compute the operator norm of DχΥ by using Eq. (5.25)
and is illustrated in Figure 5.5. For comparison, we also show the operator norm of Dχ

from the basic calibration method in Section 5.4.1 denoted by B asi c. We show the re-
sults of Case IV, but the results for Cases I-IV are similar.
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Figure 5.5: Numerical stability of the χ and χΥ mappings.
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We observe a major improvement of numerical stability with factors up to 1000 with
respect to the B asi c method. Contrary to the basic calibration method, there is more
variation in the Heston model in volatile periods and vice versa. This is due to the lower
number of risk drivers, i.e. dX = 1 ≤ 5 = dΘ. This means that the Heston model under the
proposed method is more sensitive to market changes in volatile periods. There is a sig-
nificant positive correlation between the market volatility (represented by the VIX index)
and the (maximum) singular value of DχΥ . The Pearson correlation coefficient between
‖DχΥ‖op and the VIX index over this period is 0.89. Despite the variation in volatile peri-
ods, the Pr oposed method is for all t ∈T more stable than the B asi c method.

Matching empirical facts We use the Υ mapping in Eq. (5.15) to reduce the dimension
of the Θ space. As mentioned in Section 5.3.3 the mapping consists of a static part and a
dynamic part X t , which are estimated as is described in Section 5.4.2. We have showed
that the proposed method leads to a highly satisfactory fit, obtained with numerical sta-
bility. We aim to get insight in the ability of the proposed method to model the relevant
empirical facts in the data. The results described below are generated using the settings
from Case IV.

In Figure 5.6 we show the IV surfaces belonging to xmi n = 0, xav = 0.15 and xmax =
0.5, i.e. the surface belonging to the minimum, average and maximum values of the
hidden states X t = xt .
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Figure 5.6: IV structures in the maturity dimension.
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(b) xav = 0.15
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(c) xmax = 0.5
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In the market data we observe that the level of the IV surface is high in times of tur-
moil, i.e. in times of a high VIX index. The estimated hidden states are highly correlated
with the VIX index, see Eq. (5.34). We also observe that when the level of the IV sur-
face is high, then there is more skew for the short term options. This is also observed in
historical option market data.

To gain more insight in the match with the empirical facts we perform a principal
component analysis (PCA) to the historical S&P-500 equity index IV as seen in the market
and the corresponding IVs generated by the proposed model. We investigate whether
the PCA factors are comparable. PCA factors are orthogonal (zero correlation) linear
combinations of a time series that explain the largest part of the total variance. These
factors are determined by assigning a weight (loading) on each of the input time series.
The weights are determined such that the resulting factors describe the largest part of
the joint movements (correlations) of the input time series.

We perform a PCA to the historical S&P-500 equity index IV market data and to the
IV surfaces calibrated by the Pr oposed model. We use the option maturities 0.25, 0.50,
1.00, 1.50 and 2.00 years and strike levels 80%, 90%, 100%, 110% and 120%. It turns
out that the first PCA component of the historical data accounts for 97.6% and the first
PCA component of the Pr oposed model 98.0%. The first components, that account for
most of the variance, are very similar, so that the proposed model is able to model the
dynamics in the historical IV surfaces rather well. The first PCA factors are shown in
Figure 5.7.
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Figure 5.7: First PCA factor.
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(b) Pr oposed model
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We observe indeed a satisfactory resemblance of the first PCA factor. The most signif-

icant skews are observed for out-of-the-money strike levels (for put options) and short
maturing options. We find an almost flat/linear implied volatility structure for the in-
the-money strike levels (for put options) and long maturing options.

The second PCA factors account for 1.5% and 1.4% of the total variance of respec-
tively the historical data and the Pr oposed model. The second PCA factors are shown
in Figure 5.8.

Figure 5.8: Second PCA factor.
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(b) Pr oposed model
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Although the IV pattern is similar for different maturities and strikes, we observe
some deviations in the second PCA factors. We note however that, the second PCA fac-
tor only contributes for a small part to the total variance, so that these deviations are less
important.
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5.4.3. IMPACT STUDY

In Sections 5.4.1 and 5.4.2 we have calibrated the B asi c and Pr oposed methods to op-
tion market data. We found that the calibration fit is highly satisfactory for both meth-
ods. However, we have showed that for the Pr oposed method the model parameters are
less sensitive to changes in the option market data. Therefore, we favor the Pr oposed

method. We compare both methods by valuing an embedded option of an insurance
company. That is, we compute the composite functions ηṼ ◦χ and ηṼ ◦χΥ, which we
discussed in Section 5.3.4. We first focus on computing present embedded option val-
ues and after that we compute future embedded option values.

We assume a fictive insurer XYZ which sells unit-linked products of which we con-
sider a simplified version. We assume the unit-linked product is of European type, where
policyholders capital is invested in a single equity series. The unit-linked product then
becomes an equity index put option. We consider a 120% in-the-money put option with
maturity equal to 10-years. The embedded option value is relevant to the insurers bal-
ance sheet.

COMPUTING PRESENT EMBEDDED OPTION VALUES

For comparison, we use the B asi c and Pr oposed methods to compute the embedded
option value of insurance company XYZ, which we respectively denote by Ṽ B and Ṽ P .
For the proposed method we use Case IV.

We first consider the computation of present embedded option values, and an option
notional of 500. We use the operator norm to measure numerical stability, see Section
5.3.4. In Figure 5.9a we compare the embedded option values Ṽ B and Ṽ P . We gain in-
sight in the B asi c and Pr oposed models in Figure 5.9b by computing the maximum
singular values of ‖DηṼ ◦χ‖op and ‖DηṼ ◦χΥ‖op (see Section 5.3.4).

Figure 5.9: Comparison of the B asi c and Pr oposed models.
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(b) Numerical stability
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From Figure 5.9a we observe that differences between the basic and proposed meth-
ods can be substantial. For the embedded option value we observe differences up to
e25, which is around 17% relative difference.
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It depends on how large the embedded option value is with respect to the total lia-
bility value to gain insight in the impact to the surplus, for example. The surplus is the
difference between the assets and the liabilities on the insurer’s balance sheet and is an
important quantity of an insurer. The larger the embedded option value with respect
to the total liability value the larger the impact of the differences between B asi c and
Pr oposed to the surplus. Considering the balance sheet in Table 5.4, the impact of a
17% difference in the embedded option value would result in relative difference of 20%
in the surplus value.

We observe in Figure 5.9b that, as expected, the Pr oposed method is more stable
than the B asi c method.

COMPUTING FUTURE EMBEDDED OPTION VALUES

We compare the proposed methodology (Pr oposed) with a basic modeling approach
(B asi c), which is often applied in practice, to compute future embedded option values.
The starting balance sheet in Euros of insurance company XYZ is summarized in Table
5.4. We assume a perfectly matching asset portfolio for the guaranteed liability cash
flows, an asset portfolio (denoted by A) and an embedded option (denoted by Ṽ ). The
notional of the embedded option is determined in such a way that the embedded option
value is equal toe100 for the B asi c and Pr oposed models.

Table 5.4: Balance sheet of XYZ at t = 0.

Assets Liabilities

Matching portfolio e700

Equity e200 Embedded option e100
Surplus e100

Total e900 Total e900

To project the balance sheet for t ≥ 0, the asset process At and the embedded option
process Ṽt are relevant. The surplus (available capital) St is computed by the difference
of the value of the asset and the value of the liabilities:

St = At − Ṽt . (5.35)

Other balance sheet items are neglected in this simplified example.
We show the impact of the B asi c and Pr oposed methods to the embedded option

value, the surplus of the balance sheet and the required capital. Special attention is de-
voted to the t = 1-year horizon because this is important for Solvency II computations.
Under Pr oposed we again consider the estimated model Case IV from Section 5.4.2 for
the model parameters. Under Pr oposed we forecast the model parameters Θt using the
transitional PDF fX ,ψ in combination with Eq. (5.15).

Under the B asi c method, valuation is based on a fixed parameter setting (as in [8,
50]), so independent of t ≥ 0: Θt = Θ0. For comparison we use the same parameter
settings as the initial parameters of Case IV:

Θ0 =
{
κν,ν0, ν̄,σν,ρ

}
0 = aΥ x0 +bΥ =

{
0.4630,0.0236,0.0702,0.4338,−0.6830

}
,
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where aΥ and bΥ are found in Table 5.2. Using the Pr oposed and B asi c valuation mod-
els we are able to compare the approximation of the embedded option Ṽ P

t and Ṽ B
t . Via

Eq. (5.35) we can also compare the surplus values which we denote by SP
t and SB

t .
In this stylized example we assume that Yt =

{
At ,rt , X t

}
models the uncertainty in

the real world financial market. Therefore, these processes are modeled under the P

measure, see Section 5.2.1. We assume that the return equity portfolio At is modeled by
a Black-Scholes OU model. So, we assume a fixed volatility, but stochastic interest rates
generated by the OU model [18]. The state process X t follows the estimated CIR process
of Case IV from Section 5.4.2.

d At = µA At d t +σA At dW A
t ,

drt = κr (r̄ − rt )d t +σr dW r
t ,

d X t = κX (X̄ −X t )d t +σX

√
X t dW X

t ,

with

A0 = 200, µA = 0.06, σA = 0.2r0 = 0.02, r̄ = 0.04, κr = 0.02, σr = 0.01,

X0 = 0.0326, X̄ = 0.1230, κX = 0.3387, σX = 0.3461.

Since we are interested in computing the embedded option values Ṽt , we only con-
sider the estimated PDF fX ,ψ from Case IV to generate the model parameters Θ via Eq.
(5.15). The PDF fV ,ψ is not needed in this experiment.

We remark that the B asi c model only depends on the stochastic interest rates, be-
cause the model parameters are kept fixed during the simulation. Besides the stochastic
interest rates, implied volatility risk is also taken into account for the Pr oposed model
because the model parameters follow a stochastic process. We assume the following cor-
relation matrix Σ between the Wiener processes (W A

t ,W r
t ,W X

t ):

Σ=




1
ρA,r 1
ρA,X ρr,X 1


=




1
0.10 1
−0.60 −0.05 1


 .

The joint modeling of X t and rt is important, because both risk drivers affect the
embedded option value. We assume ρA,X is negative, because the process X t is highly
correlated with implied volatility, which in turn are negatively correlated with the asset
returns. In the numerical experiments, we vary the correlation ρr,X between −0.8 and 0.7
to gain insight in the impact. We generate NP = 10,000 real world scenarios of

(
At ,rt , X t

)

with a Tt = 1-year horizon. For each time point we value the unit-linked option under
the Pr oposed and B asi c methods using the Heston pricing formula [47].

The embedded option process In Figures 5.10a and 5.10b we compare the embedded
option process for the Pr oposed and B asi c methods. In Figure 5.10a a density plot is
shown. In Figure 5.10b insight is provided in the (right) tail risk. We compute tail risk

by means of Value-at-Risk (VaR), i.e. we compute the value V such that P
(
Ṽ1 ≤V

)
= α,

where we vary α ∈ [0.9,1] (the right tail is relevant). The gray filled area in Figure 5.10b is
computed by varying the correlation parameter ρr,X between −0.8 and 0.7.
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Figure 5.10: Comparison of the embedded option values.
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We observe that the PDF of Pr oposed has a wider range of embedded option values,

i.e. the embedded option process is more volatile under the Pr oposed method. This is
due to the extra stochastic process for modeling the equity volatility part of the Heston
model. Due to the wider PDF, the right tail is more heavier in the Pr oposed method,
which results in differences up to e30. Varying the correlation parameter ρX ,r results in
different valuations of the Pr oposed method. The upper line of the filler area belongs
to ρX ,r = 0.7 and the lower line to ρX ,r =−0.8.

The surplus process In Figures 5.11a and 5.11b we compare the surplus process St for
Pr oposed and B asi c. In Figure 5.11a a density plot is shown and in Figure 5.11b insight
is provided in the tail risk. We again compute tail risk by means of Value-at-Risk (VaR),

i.e. we compute the value S such that P
(
S1 ≤ S

)
= α, where we vary α ∈ [0,0.1] (the left

tail is relevant). The gray filled area in Figure 5.11b is again computed by varying the
correlation parameter ρr,X between −0.8 and 0.7.
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Figure 5.11: Comparison of the surplus.
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We again observe that the PDF of the Pr oposed method has a wider range of values,
although the impact is smaller compared to the embedded option process. Due to the
wider PDF, the left tail is more heavier using the Pr oposed method, which results in
differences up to e25. The choice of the correlation ρA,X is crucial in this case. When
At decreases, then X t increases due to the negative correlation, so that the value of the
embedded option Ṽt increases. The latter results in a decrease of the surplus.

The required capital Lastly, we analyze the impact of computing the required capital
(RC), which is comparable to the Solvency Capital Requirement (SCR) under Solvency
II. Insurers use internal models to compute required capital for internal steering and/or
reporting to the regulator. The required capital is the amount of capital the insurer must
hold against unforeseen losses during a one-year period. The required capital is the VaR
of a loss-function on a certain horizon (often the 1-year horizon). A common loss func-
tion (see [7]) is

Lt = St−∆(1+Rt−∆,∆)−St for
(
∆= 1, t ≥∆

)
,

with Rt−∆,∆ the the∆-year risk-free rate in year t−∆. This loss function will be used in our
experiments. Based on a one-year horizon and for a certain confidence level α ∈ [0,1],
the RC, RCα, is computed by:

P
(
L1 ≥ RCα

)
≤ 1−α,

(
L1 = S0(1+R0,1)−S1

)
,

where we set R0,1 = 0.025 is the one-year risk-free rate at t = 0. Hence, the probabil-
ity that the loss over one year exceeds the RC is less or equal to 1−α. In practice, this
confidence level is often set to 99.5%.

In Figures 5.12a and 5.12b we compare the loss function for Pr oposed and B asi c. In
Figure 5.12b the PDF is illustrated of the loss function. In Figure 5.12b insight is provided
in the right tail of the distribution. The gray filled area in Figure 5.12b is again computed
by varying the correlation parameter ρr,X between −0.8 and 0.7.
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Figure 5.12: Comparison of the loss function.
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We again observe that the PDF of the Pr oposed method has a wider range of values

compared to the B asi c method. Due to the wider PDF, the right tail is more heavy in the
Pr oposed method, which results in differences up toe40.

In Table 5.5 we give an overview of numerical values of the required capital for differ-
ent confidence levels. Insurance companies with an higher credit rating are obligated to
compute their required capital with a lower confidence levelα. The values in parenthesis
are the solvency ratio, i.e. the ratio between the surplus and required capital.

Table 5.5: Comparison of the required capital (in Euro).

99.5% 97.5% 95.0% 90.0%
Pr oposed 121(0.81) 92(1.08) 74(1.34) 56(1.78)
B asi c 86(1.16) 64(1.53) 51(1.92) 37(2.67)

We observe that the absolute difference in RC between Pr oposed and B asi c be-
comes smaller when the confidence value α decreases from 99.5% to 90.0%. For α =
99.5% the difference ise35, which is 35% of the surplus. The differences in the solvency
ratio is even larger: 81% for Pr oposed and 116% for B asi c.

These differences show the relevance of taking the implied volatility risk factor into
account, i.e. to apply the Pr oposed method. The impact of the differences between
B asi c and Pr oposed heavily depends on the initial balance sheet settings and in par-
ticular the value of the embedded option portfolio with respect to the total liability value,
which is in this simplified example 14% (100/700).

5.5. CONCLUSIONS

We presented a method for modeling risk neutral models in a real world scenario model
to perform nested Monte Carlo simulations. This is important for ex-ante risk manage-
ment applications for insurance companies. In such applications, an insurer is required
to compute their embedded option values at a future point in time. We make use of the
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well-known State Space Hidden Markov models, which provide for a flexible modeling
framework. By introducing a hidden state process we are able to reduce the dimension
of the calibration problem. In this way we reduce the computation time and we improve
the numerical stability of the model parameters with respect to option market data. The
latter is desired in practice for transparency and stable valuations of embedded options.

We applied the proposed method to the well-known risk neutral Heston model. Al-
though the Heston model consists of five model parameters, i.e. the mean reversion, ini-
tial variance, long term variance, volatility of variance correlation parameters, we show
that in our proposed methodology a one-dimensional state process already results in
highly satisfactory calibration results. That is, we obtain a maximum dimension reduc-
tion. We also show that numerical stability of the model parameters with respect to op-
tion market data is greatly improved. We measure numerical stability by means of the
operator norm.

To show the relevance of our method, we compared the estimated Heston model
from the proposed methodology to a basic parameter setting. We used both models to
compute the present and future values of a (simplified) unit-linked product of a fictive
insurer. The results differ substantially and especially the tails of the distributions differ,
which are important in practice. Given the large differences in this simplified case study,
we advice to use the proposed methodology for calibration, valuation and simulation.

Now we have a modeling framework for risk neutral models available, we seek a
method to accelerate nested simulations. Such a method would also speed-up the cali-
bration process as the method is also based on many Monte Carlo simulations. There-
fore, we focus in the next chapter on high performance computing techniques to accel-
erate valuations based on Monte Carlo simulations.





CHAPTER 6

FiNS: A framework for accelerating nested simulations on

heterogeneous platforms

To keep computation times of nested simulations within acceptable limits high perfor-

mance computing is required. We present a framework designed to significantly improve

the performance of nested simulations by using heterogeneous computing. Specifically,

we use modern features from CUDA - streams, Hyper-Q, and Multi-Process Service, to take

advantage of the parallelism of Graphical Processing Units. We manage to reduce the ex-

ecution time of a nested simulation application from several hours to tens of minutes.

6.1. INTRODUCTION

Our aim is to improve the performance of nested simulations (see Chapter 1), making
them feasible for both production and more empirically-driven research. Given that
Graphical Processing Units (GPUs) are a proven technology in finance for performing
Monte Carlo valuation simulations [1, 86], we aim to make use of these massively parallel
architectures to accelerate financial nested simulations. The main challenge is improv-
ing efficiency, because the multiple layers of parallelism of nested simulations require a
tight collaboration of the CPU and the GPU.

We introduce the Financial Nested Simulations (FiNS) framework; a CPU-GPU het-
erogeneous solution for improving the performance of nested simulations in financial
applications. FiNS is driven by two important requirements: performance improvement
and ease-of-use for financial specialists.

FiNS makes use of a set of advanced CUDA abstractions available in the latest NVIDIA
architectures (Kepler and newer) to improve performance: CUDA streams [96], Hyper-Q
[104], and Multi-Process Service (MPS) [105] are all used to efficiently offload simula-
tions to the GPU. FiNS is built as a skeleton that can be easily adapted to different appli-
cations, which provides flexibility to financial specialists.

Financial nested simulations are increasingly important due to new regulations, so
their performance becomes a production-level concern. Therefore, the authors in [8] de-
scribes several numerical methods for reducing the computational intensity of Solvency
Capital Requirement (SCR) calculations, making it computationally feasible. Comple-
mentary to their study, our work demonstrates that the FiNS framework can render the
same simulations feasible by using CPU-GPU heterogeneous computing.

The utility of GPUs in Monte Carlo valuation methods is becoming a proven technol-
ogy in finance [86]. Such work is focusing strictly on improving the performance of risk

This chapter is based on the article ’FiNS: A Framework for Accelerating Nested Simulations on Heterogeneous
Platforms’, published in European Conference on Parallel Processing, 246–257, 2015 [33].
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neutral simulation. In [1], a CPU-GPU performance comparison is made, achieving up
to 10 times speed-up for both European and American contracts. Additionally, a lot of
research has been dedicated to GPU-accelerated solutions for several risk neutral mod-
els [10, 51, 79, 127, 128]; the observed speed-ups range between 4 and 150. In our work,
we focus on simulation models that require the cooperation of the CPU and the GPUs
towards efficient nested simulations.

Using heterogeneous computing for large scale simulations is already established as
a feasible solution to improve performance for many classes of applications. Systems
such as Glinda, Qilin, or Insieme [82, 97, 116, 117] focus on static partitioning of one
workload to multiple devices, under the assumption that the GPU is overloaded. Such
systems are not suitable for our nested simulations, because in our scenarios the GPU is
“underloaded”. An alternative is to use a runtime-based system for heterogeneous com-
puting, such as OmpSS or StarPU [5, 107]. However, none of these approaches supports
sharing devices by multiple kernels, which is an essential performance booster for FiNS.

To demonstrate both the performance and usability of FiNS, we build a mock-up
model of an existing Asset Liability management (ALM) tool, which emulates the behav-
ior of a full nested simulation. Our results show significant performance improvement
over the sequential code, with speed-ups ranging between 26 and 6 for light and heavy
cases, respectively. This significant gain is due to our efficient use of both the CPU and
the GPU. Although the reference sequential code is by no means optimized, FiNS brings
a significant improvement in the way nested simulations can be used in production and
research.

The main contribution of this work is threefold. First, we propose an original way
to exploit streams for increasing the efficiency of heterogeneous CPU-GPU platforms in
the case of applications with multiple layers of moderate parallelism. Second, we design
FiNS, a generic framework for using heterogeneous platforms in financial nested simu-
lations. Third, we demonstrate how FiNS can be used to accelerate ALM, a specific case
of nested simulation used in risk management for institutional investors like insurance
companies or pension funds.

The remainder of this chapter is organized as follows. In Section 6.2 we provide a
high-level background to GPUs. In Section 6.3 we present the FiNS framework. We apply
FiNS to a ALM application in Section 6.4. We conclude in Section 6.5.

6.2. GPU BACKGROUND

GPUs1 are massively parallel processing units, originally designed for graphics. A GPU
has multiple streaming processors (SMs), each grouping tens of simple cores. With hun-
dreds to thousands such cores, the performance to be achieved can easily reach a couple
of TFLOPs for applications with enough concurrency. Additionally, GPUs have a layered
memory system, including private memory per core, shared memory and L1 cache per
SM, L2 cache and a global, off-chip memory. Memory bandwidth is typically signifi-
cantly higher than for CPUs, but it is still the limiting factor for performance in many
applications.

1We focus on NVIDIA GPUs and we make heavy use of CUDA concepts. In theory all other GPUs have the
required features, yet programming them remains a challenge.
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GPUs are working as accelerators, i.e. they are not stand-alone processing units, but
require a host to manage their involvement in computation. Such host is typically a
CPU; in such a CPU-GPU platform, the GPU is called a device. Note that the host and
the device run separate codes: the host code is the main application from which parts
are being offloaded for computation by kernels running on the device. Also note that the
memory spaces of the CPU and GPU are separated, which means that any application
that offloads computation kernels to the GPU might also need to copy data from host to
device and/or the other way.

For programming these GPU kernels, the most popular solution is CUDA, a propri-
etary programming model from NVIDIA. While portable models like OpenCL and higher
level models like OpenACC exist and can be successfully used for many applications,
they are not suitable for this work because the special features we are using are not yet
available in these models. We further describe these features in the paragraphs below.

6.2.1. CUDA STREAMS AND HYPER-Q
A CUDA stream is an abstraction of a series of tasks run by the GPU. By tasks we mean
(1) memory copies, (2) synchronization, and (3) kernels (i.e., computational tasks). The
tasks in a single stream are ordered, but they are independent from tasks in different
streams.

Using streams can improve the concurrency of an application. For example, within
nested simulation we repeat a sequence of tasks for every outer scenario in every pe-
riod. By embedding this sequence of tasks in a stream, and launching a new stream for
each node in the outer simulation, we have an elegant solution to launch multiple inner
simulations that will not interfere with each other.

The most important features of streams necessary for this work are: first, stream
launches can be asynchronous, allowing the CPU to compute while the GPU is running.
Furthermore, tasks for different hardware engines within streams can run concurrently,
i.e. computational tasks (kernels), executed by the GPU SMs and memory copies (D2H
and H2D), executed by the GPU copy engines. And finally, streams can run concurrently
on the device. We further detail the way we exploit these features in the following para-
graphs.

CPU-GPU concurrency Stream launches are asynchronous by default. To ensure an
asynchronous launch, care must be taken that memory copies are initialized with the
asynchronous API and that the host memory allocations are pinned [104]. If synchro-
nization between device and host is required, this can be accomplished by either several
CUDA synchronization methods or by implicit synchronization. Unintentionally syn-
chronizing the streams on the device is the main difficulty of working with streams.

Compute and memory accesses overlap Within a stream, it is possible to overlap the
memory transfers with computational work by invoking the tasks with the asynchronous
API. If this is crucial for the application performance, one needs to chunk the work such
that the overlap is optimal. Furthermore, memory copies of a stream can overlap the
computations of another stream.
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We note that, implicitly, this solution increases application parallelism by decreasing
the granularity of the tasks and making use of the engine parallelism in the hardware
platform.

Concurrent Kernel execution The latest developments in NVIDIA cards increase the
concurrency possibilities of the streams within a work queue. This is accomplished by
NVIDIA’s Hyper-Q feature [104].

Concurrent kernel execution is strictly bound by computational capacity and the de-
vice architecture. The latter is at the time of writing a dominant factor. The Kepler (and
newer) cards support Hyper-Queuing, which has an important effect on performance.

To illustrate this effect, we present in Figures 6.1a and 6.1b a comparison of the Fermi
and Kepler architectures for streams concurrency. The streams contain two kernels: a
large generatePaths kernel followed by the tiny priceOptions kernel. In Figure 6.1a
we observe a two-way concurrency; because the final (tiny) task of a stream is running
concurrently with the first (much larger) task of the subsequent stream. Hardware uti-
lization in this case is low. On the contrary, Figure 6.1b displays the benefits of the hyper-
Q allowing higher concurrency between streams, resulting in higher hardware utiliza-
tion.

Figure 6.1: Concurrent Kernel execution.

(a) Stream concurrency on Fermi architecture (b) Stream concurrency on Kepler architecture

6.2.2. MULTI PROCESSING SERVICE

Another way to increase the utilization of GPUs is to share the device for kernels from
different (local) processes. In order to manage GPU sharing between processes, we used
NVIDIA’s Multi Processing Service (MPS) [105]. This software layer provides a context
manager to handle work launched from different processes. MPS is exclusively avail-
able on Linux and is only provided by NVIDIA Tesla cards with compute capability 5 or
higher. Although these restrictions limit applicability, it is a relatively cheap way to ex-
plore the concept of kernel offloading from multiple processes to a single GPU. This is
an important feature when a single host process cannot generate sufficient work for the
GPU, as it allows multiple cores or even multiple machines to collaborate in keeping a
single device busy.
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We note that previous work on offloading streams in a multi-threaded or multipro-
cessing environment [137] showed significant GPU utilization in benchmark cases. We
implemented the same ideas as [137] for local Python processes. Section 6.4 provides
more detail on how this feature affects our FiNS framework.

6.3. FRAMEWORK ARCHITECTURE

An ideal scenario is for the outer and inner scenarios to run in parallel. In this case, a per-
fect overlap provides optimal performance. Specifically, this means that within the dura-
tion of a real world simulation step (typically tens to hundreds of milliseconds), we must
complete a full risk neutral simulation. This requirement demands a heterogeneous so-
lution, which matches CPU + GPU architectures quite well, as seen in Figure 6.4. Our
work therefore focuses on building a framework that significantly outperforms existing
solutions for nested simulations, but is flexible enough to support multiple types of such
applications, where the analysis and end-results of the inner and outer simulations can
vary in complexity.

The key to efficient heterogeneous programming is in designing the right solution
to utilize the available hardware efficiently. In our case, the main challenge is GPU uti-
lization: one inner simulation offloaded to the GPU can not, for most applications, fully
utilize a GPU on its own. In order to increase GPU utilization multiple inner simulations
will have to run concurrently.

Without the concept of streams a custom implementation is needed, and it can be-
come quite complex as one needs to build an aggregated kernel, as an artificial concate-
nation of kernels, which limits their flexibility in accepting different data sources or data
types. When using CUDA streams these kernels can remain independent - thus flexible
and fully reusable - and the task of concurrently executing them is offloaded to the device
itself. From the perspective of flexibility this is an ideal solution for a generic framework,
even if it comes with a small performance penalty.

The Framework FiNS offers a skeleton-like infrastructure for the designers of nested
simulation applications. Essentially, we provide a high-concurrency template that needs
to be instantiated for a specific application. Using FiNS a developer needs to focus only
on the implementation of the outer and inner simulation functionality. The framework
will make sure that the mapping of these tasks on the real heterogeneous platform will
be optimized for massive parallelism and efficient usage for both the CPU and the GPU.

To achieve this high level of flexibility we make use of CUDA streams, as seen in
Figure 6.2, displaying the concurrency between host and a number of streams running
on the device. The CPU prepares the workload for the GPU and launches the work in
streams to the device. The device receives the streams and stacks the work in a Hyper-Q.
Note here that the issue order of the streams is not necessarily the order of execution,
which clearly requires the computations in streams to be completely independent. If
this is not the case, FiNS cannot be used. As mentioned earlier, it is important to have
all host memory allocations page-locked or else the CPU-GPU concurrency will break
when memory transfers are initialized.

Furthermore, the Hyper-Q takes care of optimal hardware utilization by scheduling
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the streams concurrently. All streams are launched asynchronously, so that the GPU
computations can overlap with the CPU tasks. These tasks can consist of, for example,
calculating real-world simulation steps, calculating statistics or memory flushes to the
hard drive.

Figure 6.2: Using streams in FiNS. The CPU and all GPU streams can run concurrently. The level of concurrency
achieved in practice is determined by the actual hardware.

Streams in practice To show the performance behavior of kernel concurrency with
streams, we set up a sample workload of 256 streams for the generatePaths kernel.
We evaluated different sizes of offloaded work, determined by the number of risk neu-
tral scenarios. To understand the performance gain for concurrency, we launched the
sample both with and without kernel concurrency.

We observe that the average duration of the kernel increases when streams are run-
ning concurrently (Figure 6.3a). However, for a lower number of scenarios (till around
2,000), the concurrency contributes such that it is faster than the non-concurrent vari-
ant (Figure 6.3b). Moreover, for larger numbers of scenarios there is no performance
penalty.

This behavior indicates that the CUDA Work Scheduler assigns more resources to
single sequential streams than it does to concurrent streams. As a result, kernel con-
currency in streams only benefits performance when the offloaded kernels are not large
enough to fully utilize the GPU, whereas for larger cases performance remains equal.



6.4. NESTED SIMULATION FOR ALM TOOLING: A CASE STUDY

6

135

Figure 6.3: Overview of performance.

(a) Average kernel duration (b) Total runtime

6.4. NESTED SIMULATION FOR ALM TOOLING: A CASE STUDY

For performance reasons the available ALM software is not equipped with the nested
simulation features. Instead, we use analytical methodologies, often less accurate. This
also means that we have no real reference code to compare against. Therefore, we build
a mock-up model of an ALM tool. In this mock-up model outer simulations are emu-
lated by a sleep statement. Since we are interested in the impact on the user-time per-
formance (wall-clock performance) for this application, we assumed three benchmark
cases. They differ in the duration of a real world simulation step per scenario per period.
We assumed normally distributed duration with means 75, 150 and 300 milliseconds for
respectively a light, medium and a heavy case and a 5 millisecond standard deviation.

Figure 6.4: Overlapping real and nested simulations. Note that all RNs are different, yet independent, thus they
can be executed concurrently.

Figure 6.4 displays the concept of offloading risk neutral calculations to the GPU
in comparison with a sequential version. With this concept the goal is to perform all
risk neutral tasks within the runtime of a real world period. This is important since
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ALM models are used in a decision-making process. Any additional runtime on current
methodologies is unwanted by its users.

In contrast with Figure 6.4, modern ALM tools perform real world simulations in a
multiprocess or multi-threading setting. This makes it more challenging finishing the
offloaded risk neutral simulation within the duration of its parent real world simulation
step, since the GPU will be receiving tasks from all processes simultaneously.

The framework presented in Section 6.3 serves as the greatest common divisor of sev-
eral FiNS applications. For the ALM applications we extended the framework with multi-
processing support. This way, each host process is launching streams for its risk neutral
calculation tasks to a daemon process hosted by the MPS (6.2.2). This daemon process
manages all GPU requests from its slave processes and queues all received streams in a
single hyper-Q. Using a single hyper-Q results in concurrent stream execution over the
different processes.

Results Consider, again, the case of 2,000 real world scenarios with a horizon of 5 years
(annual frequency), which are common dimensions for an insurer’s ALM study. In a
single process setting, simulations for the benchmark cases take resp. 12.5, 25 and 50
minutes. Note that we assumed perfect performance scaling for higher numbers of pro-
cesses.

We measured that a single inner simulation of 1,000 scenarios with a horizon of 100
years and a 120 time steps per year takes 1.875 seconds on a state-of-the-art CPU. These
simulation dimensions are representative for current CPU models. Given that the inner
simulations are run 10,000+ 1 (including t = 0) times for the complete run, the inner
simulations represent a workload of over 5 hours in a single process setting.

For evaluating the use case on FiNS we used a NVIDIA K20 GPU. Table 6.1 displays
the measured runtime of the mockup model with the heterogeneous framework. We
observe that for the smaller number of cores the GPU is keeping up with the offloaded
work. For a larger number of cores offloading work to the GPU, we observe that tasks
stack in the hyper-Q and the CPU has to wait for the GPU results to be finished. Note
that the single core results are below the theoretical reference for the Light and Medium
case; this is caused by the assumption of normally distributed benchmark timings for
the outer simulation.

The maximum speed-up of the heterogeneous framework versus the theoretical se-
quential runtime is bound by the fraction of the tasks to be offloaded. Amdahl’s law tells

us that the maximum achieved speed-up is defined by
1

B
, where B represents the frac-

tion of time the models is strictly serial. This results in theoretical maximum speed-ups
of 26.0, 13.5 and 7.25 for all processes in resp. the Light, Medium and Heavy benchmark
cases. Table 6.2 displays the speed-up of the GPU accelerated model versus the theo-
retical CPU runtime. The results show that for most of the cases a near to maximum
speed-up is reached.
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Table 6.1: Runtime full nested simulation on
GPU framework

Case Light Medium Heavy
# Cores (in minutes)
1 12.3 24.9 51.3
2 6.6 12.8 25.3
4 3.7 6.5 12.7
8 3.7 3.9 6.4
16 3.3 3.4 3.9

Table 6.2: User time speed-ups (maximum
theoretical speed-up)

Case Light Medium Heavy
# Cores (26.0) (13.5) (7.25)

1 26.46 13.53 7.07
2 24.68 13.17 7.16
4 22.03 12.95 7.12
8 11.01 10.83 7.05
16 6.10 6.15 5.76

The results in Table 6.1 indicate that, if resources can be scaled (usage of multiple
GPUs), the proposed architecture would in theory be able to close in to the theoretical
maximum speed-up for every case defined in Table 6.2. Although scalability of the ar-
chitecture is not implemented yet, we can conclude that the proposed architecture is
most promising, since streams are easily distributable over multiple GPUs and MPS has
multiple GPU support. To reveal the importance of NVIDIA MPS we also run the same
tests with MPS disabled. We observed that speed-ups as displayed in Table 6.2 were up
to 40% lower.

6.5. CONCLUSIONS

Due to the compute-intensive nature of nested simulations, CPU-only implementations
lack the ability to provide sufficient performance, while GPU-only solutions are unable
to efficiently utilize the hardware and lead to disappointing results. We proposed FiNS,
which is a flexible heterogeneous framework based on modern technologies such as
CUDA Streams, Hyper-Q and NVIDIAs MPS. FinNS is able to utilize both the CPU and
the GPU to accelerate nested simulation applications.

We demonstrated the use of FiNS for an Asset Liability Management application,
which required multiple CPU processes to offload calculations to the same GPU. To
tackle this challenge, we customized the MPS functionality to handle local Python pro-
cesses and achieved concurrency between streams owned by different local processes.
The results demonstrate that FiNS achieves very good parallel efficiency.

Although the usage of HPC is an essential part of solving the nested simulation prob-
lem, the risk management software used by insurers is nowadays not flexible enough to
use the latest hardware in the HPC area. Although this area is developing rapidly, ap-
proximation techniques that can be evaluated cheaply, such as the Option Interpolation
Model discussed in Chapter 4, are often preferred.





CHAPTER 7

Conclusions and Outlook

7.1. CONCLUSIONS

In this thesis, we solved various problems with respect to the calibration and simula-
tion of risk neutral models and the valuation of embedded options in risk management
applications for insurance companies.

In Chapters 2 and 3, we focused on extending the Black-Scholes model. We discussed
the modeling and calibration of inflation and real estate indices, that are relevant risk
variables for insurance companies and pension funds.

In Chapter 2, we derived an approximate closed-form solution to compute the value
of inflation indexed cap/ floor options and year on year inflation caplet/floorlet options,
where the CPI follows a Heston model in which the nominal and real interest rates are
modeled by one-factor Hull-White models. Using Fourier-based methods, calibration
can be done highly efficiently. The inflation model is able to model the market implied
volatility skew accurately, so that market conditions are replicated well. Using the cali-
brated inflation model we performed a market consistent valuation of the conditional
indexation provision of a stylized pension fund. It turns out that the results change
significantly when performing a calibration to market inflation option data instead to
historical data. By changing the correlation parameters, indexation provisions change
significantly, which justifies the use of a full correlation matrix.

In Chapter 3, we proposed a risk neutral valuation model for real estate derivatives.
We valued a hypothetical European put option on a house price index. This example
highlights the strong effect of autocorrelation in the underlying index on the option
price. Using the proposed model, the effect of over- or undervaluation of the real es-
tate market is also studied. The observed effects are significant.

In Chapters 2 and 3, we focused on the derivation of analytic formulas for fast cal-
ibration. Since Monte Carlo simulations are more flexible they became the preferred
method for valuation. This results in the challenge of the nested simulation problem,
which we consider in Chapters 4, 5 and 6.

In Chapter 4, we introduced the Option Interpolation Model (OIM) for modeling
option values in ex-ante risk management applications. The usage of nested simula-
tion is avoided using OIM. The method is easy to implement and has fast computation
speed. The OIM is based on interpolation using radial basis functions. This interpola-
tion method does not suffer from the curse of dimensionality. We explained the different
settings in the OIM and showed the impact of the parameters on accuracy and numerical
stability. This insight is required for a trade-off between accuracy and stability. In par-
ticular, we have analyzed the shape parameter, smoothing and the addition of an affine
term. We constructed a matrix inversion method to obtain interpolation weights. The
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method is especially useful in the case of an adaptive calibration procedure, which is of-
ten preferred in practice. All the relevant settings are tested to the Black-Scholes option
formula. We find satisfactory results compared to benchmark settings. This confirms
that the OIM is a useful technique as an approximation method for ex-ante risk manage-
ment applications for insurance companies.

In Chapter 5, we presented a method for modeling risk neutral models in a real world
scenario model to perform nested Monte Carlo simulations. We make use of the well-
known State Space Hidden Markov models. By introducing a hidden state process we are
able to reduce the dimension of the calibration problem. In this way we reduce the com-
putation time and we improve the numerical stability of the model parameters with re-
spect to option market data. The latter is desired in practice for transparency and stable
valuations of embedded options. We apply the proposed method to the well-known risk
neutral Heston model and show that in our proposed methodology a one-dimensional
state process already results in highly satisfactory calibration results. We also show that
numerical stability of the model parameters with respect to option market data is greatly
improved. To show the relevance of our method, we compared the estimated Heston
model from the proposed methodology to a basic parameter setting. We use both mod-
els to compute the present and future values of a unit-linked product of a fictive insurer.
We find large differences in this simplified case study, and therefore we advice to use the
proposed methodology for calibration, valuation and simulation.

In Chapter 6, we presented the Financial Nested Simulations (FiNS) framework, which
is a high performance computing framework. FiNS is able to utilize both the CPU and the
GPU to accelerate nested simulations. Due to the compute-intensive nature of nested
simulations, CPU-only implementations lack the ability to provide sufficient performance,
while GPU-only solutions are unable to efficiently utilize the hardware and lead to dis-
appointing results. We demonstrated the use of FiNS for an Asset Liability Management
application, which required multiple CPU processes to offload calculations to the same
GPU. The results demonstrate that FiNS achieves very good parallel efficiency.

7.2. OUTLOOK

Due to more strict regulatory requirements of insurance companies, improved quality of
computation hardware and increased availability of data, models for valuation and risk
management are constantly improving. After completing the research in this thesis we
came up with the following ideas for future research.

We choose basic risk neutral models, such as the Heston and Hull-White models, for
solving calibration and valuation problems. Other models may also be considered, that
are, for example, better able to model the implied volatility structures observed in the
option market data.

When we considered the valuation of options, we always applied the risk neutral val-
uation methodology. However, the assumption of a complete market does not hold in
this context. The Black-Scholes model assumes that there is always enough liquidity in
the market for hedging, i.e. a complete market. In reality, this is unfortunately not the
case. Furthermore, the market of insurance products is far from complete. This is on the
one hand due to the relative small size of the market and on the other hand due to fact
that insurance companies compete with each other to provide the best insurance prod-
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ucts to their current and future policyholders. So, the assumption of a complete market
may not be realistic in this context. Much is known about the valuation in incomplete
markets although an industrial standard valuation methodology is still missing.

The calibration of the risk neutral models is a crucial step in the valuation process
since the value of the embedded options heavily depends on those parameters. It’s mar-
ket practice to use option market data for the calibration of risk neutral models. How-
ever, such data is only available for trade-able assets. An interesting research area is
how to calibrate variables that are not trade-able such as direct real estate, infrastruc-
ture and private equity. The complete market assumption should also be relaxed here.
Furthermore, an interesting area is to not only focus on available option market data for
calibration, but also on data of embedded options. In this way the risks of the insurance
product could be better valued.

There are a number of research directions with respect to high performance comput-
ing. The implementation on any many-core architecture, like Intel MIC. The possibility
of providing an intuitive front-end for a computation framework together with a com-
putational infrastructure (e.g., in the cloud), enabling financial specialists to use it as a
computational service.

The stability of the radial basis function (RBF) is important for accurate calibration
to option data. We have explored the standard RBFs, but other RBFs may also be consid-
ered that lead to even better calibrations of the shape parameter, i.e. with high accuracy
and numerical stability.

The big data application increasingly gains popularity in practice and machine learn-
ing techniques are developing fast. The combination of these two can be used to extract
important information from the available data. The relevant signals can for example be
used in combination with the Option Interpolation Model discussed in Chapter 4 or to
improve the linear mapping that is used in Chapter 5.
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