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Chapter 60 )
Exploring the Potential of Neural e
Networks for Bicycle Travel Time

Estimation

Giulia Reggiani, Azita Dabiri, Winnie Daamen, and Serge P. Hoogendoorn

Abstract A tool for travel time estimation of cyclists approaching a traffic light can
monitor level of service of intersections in bike crowded cities. This work represents
a first step in developing such a tool. Neural Network models are evaluated on
how they perform in estimating individual travel time of cyclists approaching a
signalized intersection. Based on simulated scenarios, in cities with low bicycle
levels (deterministic scenario), Neural Networks are good travel time estimators
whereas, in places with high bike volumes (where cyclists depart with a discharge
rate) information on queued cyclists is crucial for travel time information.

60.1 Introduction

While some cities are struggling to increase bicycle usage, others are successful
in encouraging adoption of cycling but become victims of their own success. Such
‘cycling cities’ struggle with high levels of bike flows, long queues at traffic lights
and discontent cyclists due to the delay in their travel time. Traffic management solu-
tions can mitigate the situation by reducing delay using adaptive traffic controllers
or rerouting users to intersections with short delays. In order to deploy such sys-
tems, a tool that estimates cyclists travel times, as proxy for bike level of service at
intersections, is crucial.

To develop a tool that serves the needs of a bike travel time monitoring system
at intersections the following data requirements are set: (1) enabling to derive travel
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time (2) collected over an extensive time frame, (3) representative of user population,
(4) readily and real-time available and (5) privacy proof. Some studies investigated
the potential of GPS to measure delays (see [3] and references therein). However,
GPS only fits the first of the five data requirements: GPS data are collected either via
sport apps which enable collection over extensive time frames, but can only represent
the “sport” trips, or it is collected via expensive data collection methods, which can
equip a representative sample of the population with GPS trackers, but for a limited
amount of time (thus not satisfying condition 2). In addition GPS data is not readily
available from municipalities and stores sensitive user information. Therefore, this
research will use a data set, potentially available from an intersection equipped with
loop sensors, a traffic light and a bike queue measurement system because such
simulated data set has the potential of meeting all data requirements. Part of this data
is readily available to dutch municipalities, due to the extensive deployment of loop
sensors on signalised intersections in the Netherlands. Loops are usually installed as
shown in Fig.60.1: 2 upstream of the traffic light (for direction measurement) and
one downstream at the stop-line.

Within this work we investigate the properties of a Neural Network (NN) model,
when estimating individual cyclists’ travel times. Previous studies have explored
the possibility of extracting travel times with more “easy to interpret” odels like
regressions but were not successful [1]. Our work will go one step further by exploring
the potential of a more complex models like NNs.

The wide applicability of NN in the transport domain [4] and scalability would
allow these models to easily scale up to incorporate more variables from the same
intersection but also from other intersections in a network-oriented approach. We
train and test the model on simulated data because it allows for the evaluation of both
the model and its input variables.
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Section 60.2 presents the methodology describing the simulation settings, the
input features and the model. Section60.3 contains the performances of NN, in
order to investigate if the deployment of these models in reality is effective. Finally,
the conclusions are reported in Sect. 60.4.

60.2 Research Methodology

Our research methodology consists of 3 major steps: (1) Simulation of the arrival-
departure process of cyclists at the traffic light, (2) Identification of variables to extract
from the simulation to use as features for the NN, and (3) Computation of estimation
error. Figure 60.2 shows how the research steps interrelate. We decide to test different
feature combinations on each scenario (see Fig. 60.3), in order to investigate which
feature variables carry more information depending on the simulated setting.

60.2.1 Simulation for Data Generation

We use simulation and not real data from a signalised intersection with sensors
because of 4 main reasons. (1) Simulation allows a controlled environment to measure
the performances of NNs as complexity is added. (2) We can simulate data not yet
available (like queue of cyclists) and assess if collecting such data is valuable for a
NN. (3) It allows us to train the model on correct ground truth data that loop sensors
alone are not able to deliver, due to occlusion error (see [2] for the definition) in the
downstream loop. (4) Based on the NN performance on simulated data, it will be
clear if to pursue testings on real data.

Data is simulated based on four scenarios which vary depending on the cycling
time, queuing model of cyclists, and high demand of cyclists. Hereafter the four
scenarios simulating arrival-departure process of cyclists are described (from simple
to more complex):
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Fig. 60.2 Flow of the research steps
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— Deterministic scenario: cycling time is the same for all individuals and cyclists
depart from the stop line as soon as the traffic light turns green.

— Discharge Rate scenario: similar to the deterministic scenario with the added com-
plexity that cyclists do not depart from the downstream sensor all at the same time
but with a discharge rate.

— Stand over queues scenario: road capacity constraints are considered and arrival
rate is modelled to simulate high cyclists demand, so more cyclists are in the queue
than can be discharged in one cycle. Cyclists may stay in the queue for more than
one red light cycle.

— Stochastic scenario: based on a random arrival-departure process, cycling time
between 2 loops is not fixed but modelled according to a normal distribution.

60.2.2 Selection of Feature Variables

Herealfter, a set of five features has been defined based on the data potentially avail-
able, the moment a cyclist approaches the upstream senors of bicycle intersections,
in the Netherlands.

— Aurrival time: this variable contains date-time information of the moment a cyclist
reaches the upstream loop sensor.

— Upstream traffic light: carries a 0—1 information to represent green (0) and red
light (1) state when the cyclist reaches the upstream sensor.

— Downstream traffic light: carries a 0—1 information to represent green (0) and red
(1) light state when the cyclist reaches the upstream sensor (this data might not be
available in real settings, but is used as a check).

— Elapsed time from traffic light change: defines, at the arrival time of the cyclist,
the seconds passed since the last change in state of the traffic controller.

— Bike queue: defines the number of cyclists waiting for a green light.

Seven combinations of these five features define the data-sets used for the different
experimental scenarios (see Fig. 60.3).

60.2.3 The Model

NN models have shown to be extremely versatile and perform well even without a
priori assumption on the variable distribution. Their generalization properties make
NN suitable for our purpose. Like all data driven models that learn by minimising
the predicted error, NNs need labels (i.e. travel time) of past observations in order
to learn how to estimate future ones. Once the NN is trained on past travel time
observations (in this case simulated), it will be able to estimate travel time of never
seen before observations.
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Fig. 60.3 Mean square error for bicycle travel time estimation: Estimation performance (on test
data) of the NN on the 4 scenarios, tested on different feature combinations. Feature combinations
with queue information are not considered in the Deterministic and Stochastic case, since these
scenarios are simulated without cyclists’ discharge rate

60.3 Numerical Results

In this section we report results form the numerical experimentations. For repro-
ducibility, we first describe the structure and parameters of the NN used, as resulting
form the numerical experiments. Follows, a description of the NN performance,
based on mean square errors in the different scenarios tested on the various feature
variable combinations.

60.3.1 Neural Network Structure

Throughout the numerical experiments, a shallow Feed-forward Neural Network,
with 6 neurons, emerged as the architecture with the smallest validation error. The
NN was implemented in MATLAB software. A structured investigation indicated
that the network architecture is adequate, because increasing the number of layers or
neurons per layer on average did not improve test performances. Where performances
were measured through the mean square error (MSE) as performance function.

60.3.2 Model Performance

Via simulation, a data set of 7200 instances is generated, 70% of which is used for
training, 15% for validation and 15% for testing the NN model. Estimation perfor-
mance of the NN on the different scenarios is reported in Fig. 60.3.

The Deterministic process is the one the NN can estimate better, as expected, since
the process is simple. This is deduced by the very small test error, of tenth of a second,
on all the scenarios, compared to the other three processes. The data in the feature
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combination 2 will not be available in real cases; we use it as a check case to see how
well the model can predict if we provide it with signal of the traffic light at the time
the cyclist would arrive at the downstream (in real life the time the cyclist arrives
downstream is not known). The second lowest error in the deterministic scenario is
with features: arrival time and elapsed time from traffic light change. This means
that, the model estimates better when knowing how many seconds have passed since
the change in traffic light state, because it is a FIFO based scenario.

If the process incorporates a queue discharge rate of cyclists, as in the Discharge
Rate and Stand Over Queue scenario, feature combinations with bike queue have the
smallest estimation error. Having the queue as feature reduces the estimation mean
square error up to 2 orders of magnitude. The main reason is that the queue feature
incorporates the dynamic information of the arrival-departure process at signalised
intersections (i.e. a cyclist has to wait for the queue ahead to discharge, before it can
depart again). The Stand Over Queue scenario, incorporated high peak of cyclists
arriving at the intersection and Fig. 60.4 shows how accurately the model can estimate
travel times in high peak (longer waiting time) when queue information is provided
and how it would perform without it. Without queue information the NN can not
reproduce the longer travel times that occur when cyclists need to stand in the queue
for more than one traffic light cycle. Among the feature combinations that have queue
information including the elapsed time form traffic light change improves estimation
error in the Stand Over Queue but not in the Discharge rate process. The reason being
that in the former process a cyclist is always discharged within the first traffic light
cycle, thus elapsed time does not provide as useful information as when the cyclist
stays more than one cycle.

Overall, in the Stochastic process, the reached performances are not sufficiently
accurate. As information used in the second data-set is not available, on average the
error reached by the NN is of 19 s. This indicated that, as the process is more complex,
the information considered is not enough for the NN to reproduce the underlying
process that generated the data.
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Fig. 60.4 Visualization of model performance in the Stand Over Queue scenario, considering
feature combination 3 (without queue info) and 7 (with queue info)
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60.4 Conclusions

This work provides a structured investigation, based on a simulation methodology, on
how Neural Networks perform for individual travel time estimation. This is the first
study on bicycle travel time estimation at intersections, in order to develop real-time
bike level of service measures. The investigation of effectiveness of Neural Networks
made clear the potentials and limitations of these models. In cities with low bicycle
levels (deterministic scenario), NNs are good travel time estimators since with all
data sets the reached error is of tenth of a second. Whereas, in places with high bike
volumes (where cyclists depart with a discharge rate), only data sets with information
on queued cyclists lead to acceptable error of 1-2 s. The main limitation of using
NN models to estimate individual bicycle travel time is the availability and richness
of the data.

The results enable us to quantify the estimation error in the four scenarios with
the different input data. As a consequence, this quantitatively encourages us in future
research to develop queue estimation algorithms (of cyclists) that can improve overall
travel time estimation. Moreover, future steps should look into the opportunity to
cover more complex processes, and more intersections with this methodology.
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