
Comparing Exploration Approaches in Deep
Reinforcement Learning for Traffic Light Control

Yaniv Oren, Rolf Starre, and Frans Oliehoek

Delft University of Technology

Y.Oren@student.tudelft.nl, R.A.N.Starre@tudelft.nl, F.A.Oliehoek@tudelft.nl

Abstract

Identifying the most efficient exploration approach for deep reinforcement learning
in traffic light control is not a trivial task, and can be a critical step in the development
of reinforcement learning solutions that can effectively reduce traffic congestion. It is
common to use baseline dithering methods such as ε-greedy. However, the value of
more evolved exploration approaches in this setting has not yet been determined. This
paper addresses this concern by comparing the performance of the popular deep Q-
learning algorithm using one baseline and two state of the art exploration approaches,
and their combination. Specifically, ε-greedy is used as a baseline, and compared to
the exploration approaches Bootstrapped DQN, randomized prior functions, and their
combination. This is done in three different traffic scenarios, capturing different traffic
profiles. The results obtained suggest that the higher the complexity of the traffic
scenario, and the larger the size of the observation space of the agent, the larger the gain
from efficient exploration. This is illustrated by the improved performance observed
in the agents using efficient exploration and enjoying a larger observation space in the
complex traffic scenarios.

1 Introduction

Traffic congestion is a global pandemic. For instance, in the EU alone its cost is estimated
to be 1% of the EU’s GDP [1]. One approach for reducing this cost is optimization of traffic
flows by improving traffic light control policies. To find such policies, reinforcement learning
(RL) has a strong appeal as a paradigm that is able to find high performance solutions to
sophisticated problems. Research has been done into the application of RL to the problem of
traffic light control optimization in the past [2]–[6], often specifically concerning application
of deep RL algorithms [2], [5], [6].

In RL, an agent operates in an environment, observes a state, executes actions, receives
rewards, and ultimately, attempts to find an optimal policy for maximized cumulative reward
over time. Often, the state-action space is too large for the agent to be able to keep a tabular
representation of its learned policy. This led to the development of deep RL [7]. In deep
RL, the agent makes use of neural networks as nonlinear function estimators. The agent can
then use this estimation to prioritize between the different actions available in each state of
the environment.

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



A fundamental principle of RL is exploration, and the balance between exploration and
exploitation. Namely, how much does the agent explore its environment, versus how much
it opts for actions that it expects to return the most cumulative reward. Many different
exploration approaches and algorithms exist for reinforcement learning, from the common
baseline ε-greedy [7], to addition of random noise [8], optimism in the face of uncertainty [9],
Bootstrapped DQN [10], randomized prior functions [11], and others. These approaches
often perform differently in different settings, in addition to having different computational
costs [10], [11]. It has been shown that for some RL settings, simple exploration approaches
such as ε-greedy are insufficient for RL to be able to perform well, or at all [10],[11], which can
be caused by the reward function used and the complexity of the specific problem tackled.
This illustrates the importance of identifying effective exploration techniques for specific RL
settings. To the best of our knowledge, there has not been an attempt to investigate the
importance of efficient exploration in deep RL in the setting of traffic light control.

This paper investigates a comparison between different exploration approaches in deep
RL for traffic light control. This, to facilitate better deep RL by identifying the value of
evolved exploration approaches in this setting, such as higher sample efficiency, or higher
final policy score. For that purpose, this paper compares the performance of the popular
deep Q-learning algorithm (DQN) [7] using one baseline and two state of the art exploration
approaches, and their combination. Specifically, ε-greedy is used as a baseline, and compared
to the exploration approaches Bootstrapped DQN, randomized prior functions, and their
combination. This is done in three different traffic scenarios, ranging from simplified to
simulating real traffic, in order to investigate the effect of exploration in different traffic
profiles.

This paper first introduces a theoretical background for deep RL and exploration. Sec-
ond, a description of the exploration techniques compared, along with the modeling of traffic
light control as an RL problem, are given. This is then followed by an explanation of the
research methodology and the experimental setup, leading to a presentation of the results
obtained and their analysis. Last, ethical and epistemic concerns are considered, implica-
tions of the work are discussed and conclusions are drawn.

Altogether, the results obtained suggest a link between the complexity of the traffic
scenario, the amount of information accessible to the agent, and the gain from efficient
exploration. This is illustrated by the improved performance observed in the agents using
efficient exploration and enjoying a large observation space, in the complex traffic scenarios.

2 Background

This section introduces background information relevant to the work presented in this pa-
per. First, an overview of reinforcement learning (RL), is given, laying the basis for an
introduction to deep RL and a description of the deep Q-learning (DQN) algorithm [7] that
follows. Last, the principle of exploration is explained, followed by an overview of dithering,
deep and directed exploration.

2.1 Reinforcement learning
In RL, an agent operates in an environment. The environment provides information regard-
ing the state the agent is in and what actions it can execute. The environment is usually
described in the form of a Markov decision process (MDP), a stochastic control process often
used to model decision making in partially stochastic domains. A Markov decision process

2



is represented as a four-tuple, M = (S,A, P,R), where S represents the state space, A the
action space, P the transition function and R the reward function.

The agent interacts with the environment by observing a state st ∈ S, executing an action
at ∈ A, and receiving a reward rt ∈ R for the action executed. The agent is attempting
to learn a policy π, such that the expected reward over time E[Rt] = E

[∑∞
k=0 γ

krt+k+1

]
is maximised. This, where 0 ≤ γ ≤ 1, is a discount factor, rt+1 is the reward received
for the action at, the action chosen at time t, and rt+k+1 is the reward expected to be
received for executing the action at moment t + k, chosen based on the policy π. There
are different RL approaches to finding such a policy. The algorithms investigated in this
paper use an approach that focuses on the agent learning the expected reward over time
from taking specific actions in specific states. The value of this state-action pair in terms
of its expected reward is termed the Q-value, and the RL algorithm based on learning it is
called Q-learning [12].

In the Q-learning algorithm, the value of state-action pairs is estimated by the agent,
using iterative Bellman updates: Qt+1(st, at) = Qt(st, at) + α[yt − Qt(st, at)], where α is
the learning rate, and the target yt = rt + γmaxaQt(st+1, a). st+1 denotes the new state
arrived at after choosing action at in state st, and a any action available at state st+1.
In many scenarios however, the state-action pair space is too large for the computation
or memorisation of each value Q(s, a) to be tractable. To avoid this problem, function
estimators such as neural networks can be used to estimate the Q value. This gives rise to
the use of neural networks in reinforcement learning, and specifically the deep Q-Learning
(or deep Q-networks) algorithm, commonly referred to as DQN [7], [13].

2.2 Deep reinforcement learning with DQN
The DQN algorithm uses deep neural networks to estimate a mapping from states to Q-
values [7]. Instead of saving or computing each Q(s, a) value separately, the algorithm learns
a parameterized value function Q(s, a; θt). As a result, rather than learning the Q-values
directly, the algorithm learns the parameter set θ of the Q-function. The previous Q-learning
update then becomes:

θt+1 = θt + α(yt −Q(st, at; θt))∇θtQ(st, at; θt)

Here, yt = rt+1 + γmaxaQt(st+1, a; θt). To prevent instabilities, the DQN algorithm uses
an additional network, termed the target network, θ− [7]. The target network is the same
as the regular, or online, network. However, it only updates every certain τ time-steps, by
copying the parameters θ of the online network. This target network is used by the DQN
algorithm in the target term, which becomes instead: yt = rt+1 + γmaxaQt(st+1, a; θ

−
t ).

An additional mechanism to further improve the performance and stability of the DQN
algorithm is experience replay. Experience replay saves previous experiences, in order to
decouple learning from action taking [7]. In the learning process, a batch of experiences are
sampled uniformly from the replay, and used for the iterative learning updates.

Since its publication in 2015, several modifications, extensions, and improvements have
been proposed to the DQN algorithm, to further improve stability, learning rate, and overall
performance. Among them are prioritized experience replay [14], dueling networks [15],
noisy-networks [8] and double-DQN [16]. Prioritized experience replay attempts to utilize
the observation that some experiences can be more valuable then others for learning. Dueling
networks (Dueling DQN) suggests a different network architecture to the original DQN
architecture. The architecture suggested consists of a network that learns two components

3



of the Q(s, a) values separately: the value function of states V (s) and the advantage function
A(s, a), defined as A(s, a) = Q(s, a)−V (s). Noisy networks (NoisyNet) attempts to achieve
better exploration by introducing parametric noise to the agent’s network’s weights, instead
of using the common ε-greedy strategy.

Double DQN aims to reduce overoptimism that DQN is prone to due to estimation errors,
by decoupling the selection of an action from its evaluation [16]. In vanilla DQN, in the term
yt = rt+1 + γmaxaQt(st+1, a; θ

−
t ), the agent uses the same network θ− for both selecting

and evaluating an action. This is illustrated by expanding the target term presented above
to:

yt = rt+1 + γQt(st+1, argmax
a

Qt(st+1, a; θ
−
t ); θ

−
t )

This term is equivalent to the original target term, but here the implicit use of two
networks is apparent. The double-DQN algorithm proposes using the online network θ to
choose the action, and the target network θ− to evaluate the choice. The target term yt
used in the double DQN update then becomes:

yt = rt+1 + γQt(st+1, argmax
a

Qt(st+1, a; θt); θ
−
t )

This successfully achieves reduction of over-optimism of the Q-values [16], and is a com-
monly used modification in implementations of DQN.

2.3 Exploration in reinforcement and deep reinforcement learning
In order to find an optimal policy through experience alone, which is the general premise
of RL, the agent must encounter the rewards that are part of an optimal policy at least
once. This leads directly to a necessity to explore the environment - if the agent does not
explore, how will it encounter valuable rewards that do not lie over its existing policy’s
path? However, the agent is also expected to efficiently converge into an optimal policy,
and not only explore its environment. This leads to one of the fundamental principles of
RL - exploration vs exploitation. Different approaches have been developed - ranging from
dithering, random action choosing exploration [7], to more evolved notions such as deep and
directed exploration [10], [11], and more. These approaches each attempt to achieve efficient
exploration through different means - from simplicity of computation to effective analysis of
the agent’s knowledge and uncertainty.

Dithering exploration

The common baseline exploration strategy used in DQN is a dithering exploration method,
or ε-greedy. In ε-greedy, the agent takes a random action (i.e., explores) with probability
ε, and with probability 1 − ε the agent takes the best action according to its current Q
value estimation. ε-greedy achieves state of the art performance against many popular
benchmarks [10], [16]. However, as discussed in [10], in environments where rewards are
scarce and far away from each other in the state-action space, and their values have a large
spread, the dithering exploration of ε-greedy can take an exponentially long time to arrive at
high-valued rewards. This raises the necessity for a more advanced type of exploration, that
can be directed over over multiple time steps. These concepts have been coined ’directed
exploration’ and ’deep exploration’ [10].

4



Deep & directed exploration

The concept of directed exploration attempts to improve the efficiency of the agent’s explo-
ration by directing it. For example to previously unexplored or under-explored areas of the
state-action space. To achieve a measure of directed exploration, an uncertainty measure
can be used - the more uncertain the agent about the value of some state or action, the
more it can prioritize exploration. However, in many environments, it does not suffice for
exploration to be directed, it must be directed over multiple time steps, and thus termed
’deep exploration’.

As an illustration of the importance of deep exploration, consider the problem presented
in figure 1, used by [10] for this purpose. In this RL problem, the agent starts each episode
in state s2, and can step one step left or one step right at each timestep. Each episode lasts
N + 9 steps. Upon stepping left from s2, the agent encounters a reward of 1

N , N being the
number of cells in the environment. In position sN there is a reward of size 1. All other
actions reward zero. An agent using ε-greedy is expected to identify the reward in position s1
very quickly, and require an exponential number of steps to identify the much more valuable
reward at position sN , as is illustrated empirically in [10]. With deep exploration, the agent
can direct its exploration towards the yet-unexplored areas of the environment, thus finding
the reward at position sN , and overcoming the problem.

Figure 1: A toy, chain environment used by [10] to illustrate the importance of deep exploration.

3 Exploration In Deep Reinforcement Learning for Traf-
fic Light Control

This section will first motivate the choice to evaluate exploration techniques that focus on
deep and directed exploration. Following that, the agent used in the experiments is outlined,
and the exploration approaches it implements are described. Last, the modelling of traffic
light control as an RL problem used in this paper is presented.

3.1 Motivation
This paper opts to specifically identify the value of exploration approaches that focus on
achieving deep exploration, in the setting of traffic light control. These approaches have
been chosen not only for being state of the art in this field, but also for their potential in
this setting. In heavy traffic scenarios, suboptimal actions may carry a long term effect.
They may immediately cause congestion, and once there, it may be difficult to return to less
congested states [2]. Deep exploration may be able to improve the agent’s ability to escape
such scenarios, by directing its exploration along a specific path. While this path will not
necessarily pay in the short run, it may allow the agent to recover from congestion in the

5



longer run. Additionally, the ability of the agent to more efficiently explore areas of the state
action space that lie beyond areas plagued by negative rewards, as a result of employing deep
exploration, may allow the agent to learn optimal policies that will otherwise be unlikely for
a dithering agent to ever achieve.

3.2 The agent
The agent used in the experiments presented in this paper is a DQN agent, using the
double-DQN [16] modification. This is the only modification implemented from the ones
listen in section 2.2, for two related reasons. First, it is frequently used in state of the art
implementations of DQN, because of the simplicity of its implementation and performance
gains it provides. Second, the differences from regular DQN are not significant, which allow
the conclusions drawn in this paper to relate more directly to a general DQN agent.

The agent implements the following exploration mechanisms: ε-greedy, Bootstrapped
DQN (BDQN) [10] and randomized prior functions [11]. The implementation used in this
paper, based on [17] and modified for the setting of traffic light control, allows the agent
to use any combination of the three different mechanisms listed above. ε-greedy has been
described in section 2.3, and has been chosen as it is the common baseline exploration used
in DQN [7], [16]. BDQN and randomized prior functions have been chosen as state of the
art exploration approaches that aim to achieve efficient deep exploration, and in addition,
for their ability to elegantly combine for even better exploration. BDQN and randomized
prior functions are described below.

Bootstrapped DQN

BDQN has been developed in an attempt to achieve a measure of deep exploration, discussed
in section 2.3. In order to achieve deep exploration, BDQN approximates a distribution over
Q-values, using a bootstrap. Bootstrapping is a technique used to approximate a population
distribution from a sample distribution, using random sampling with replacement [18].

The bootstrap is implemented efficiently by using a shared neural network with several
heads. The shared network’s role is to learn a feature representation, while each head is
providing an independent Q-values estimation. A visualization can be found in figure 2. In
learning, the algorithm randomly samples an estimator (a ’head’) out of the bootstrap, and
follows the policy which is optimal for that estimator for some number of steps greedily or
ε-greedily. In the experiments done in this paper ε-greedy is used. The resulting experiences
are gathered in a buffer, and are available for all estimators to learn from, under some prob-
ability that decides which experiences will be available to which estimator. Each estimator
is trained against its own target network / target network head.

In evaluation, an ensemble voting policy is used to evaluate which action has been chosen
by most heads. If there is no majority vote, an arbitrary choice is made between the actions
chosen by the most heads. The action is then chosen and executed.

BDQN attempts to achieve a measure of deep exploration by following the policy of one
of the estimators for some number of steps. For this to be effective, the agent must guarantee
that in areas of uncertainty (under-explored areas of the state action space), the different
estimators will have different estimations. However, in BDQN this uncertainty, or variety in
the Q-value estimations, is only based on the observed data [11]. This can be problematic,
because in environments where rewards are very scarce, the agent may learn to believe that
there is no reward, and lose all uncertainty, rather than direct its exploration to remote,
unexplored areas of the state action space in the hope that they may contain rewards. Such

6



Figure 2: The BDQN architecture proposed in [10].

’prior’ drive for exploration, that is independent from the data, is proposed in [11] in the
form of randomized prior functions.

Randomized prior functions

While usable with a regular DQN agent, the randomized prior functions algorithm is de-
signed to be combined with the BDQN model. To achieve independent uncertainty, the
randomized prior functions model consists of one additional neural network for each Q-value
estimator, or one shared neural network with one head for each estimator. This additional
network or head p is combined with the original estimator f to form the final output Q,
through a scaling factor β: Q = f + βp [11]. Q is then used in the learning process to
minimize the training loss. This results in uncertainty that is independent from the data:
the Q value estimation always includes a neural network initialized with random parameters.
No matter the uniformity of experiences the agent encounters (for example, only similar,
negative rewards), it will still consider some additional prior ’assumption’, in the form of the
prior function, in regard to previously un-encountered states. As a result, each estimator
will always approximate the Q value of as yet un-encountered states differently. This allows
the agent to better direct its exploration, by guaranteeing diversity between the estimations
of the different bootstrap heads for previously un-encountered states.

3.3 The model
The modeling of the traffic light control problem as an RL problem used in this paper is
follows work done in [2]. The problem is modelled as an MDP M = (S,A, P,R), where S is
the state space, A is the action space, P the transition function and R the reward function.
The open source traffic simulator SUMO [19] is used to generate the environment.

State space, action space & transition function

The state provided to the agent is represented as a set of stacked frames of size x ∈ Z+.
Each frame is a matrix containing current locations of vehicles in the agent’s observation
space, and the current traffic light configuration. The observation space of the agent is a
square centered at the intersection controlled. Each location of a vehicle is marked with a
1, and empty locations with a 0. The traffic lights configuration is presented in the matrix
as numbers between 0 and 1 chosen arbitrarily. Stacking several frames allows the agent to
extrapolate vehicle speed from the state representation. x = 4 was used in the experiments,
to achieve a balance between too much information (complicating the learning process), and
too little information (hindering the capacity of the agent to learn effective policies).

7



The actions available to the agent at each time step are one of two traffic light config-
urations, representing which lanes receive a green light. The transition function is defined
by SUMO.

Reward function

The reward function used is a modified version of the reward function developed in [2]. At
each time-step t, the agent receives a reward rt, computed by iterating over all vehicles
currently in the agent’s observation space, and summing different penalties:

rt = −1.5c− 0.2

N∑
i=1

ei − 0.3

N∑
i=1

di − 0.3

N∑
i=1

wi

This, where i represents the vehicle index. c is a penalty for switching the light configu-
ration, to prevent flickering. ei is a penalty for sharp decelerations, to penalize emergency
stops. di is a penalty for the ’delay’ of a vehicle, defined as 1 − vehicle speed

allowed speed . Finally, wi
is a waiting penalty, defined as 0.5 for the first step of a car standing still, and 1 for any
consecutive step.

The modification included removal of a term that punishes teleportation of vehicles
(used in SUMO to mark traffic collisions) due to implementation challenges. Additionally,
the coefficient of the term c was increased from 0.1 to 1.5, after observation that otherwise
the penalty for light switching is barely noticeable with almost any number of cars.

4 Research Methodology

This section first describes and motivates the methodology used to evaluate the exploration
approaches in the setting of traffic light control. This is followed by a description of the
three traffic scenarios used to evaluate the exploration approaches.

4.1 The method
To evaluate the impact of exploration in the setting of traffic light control, this paper com-
pares the performance of agents using ε-greedy, BDQN [10], randomized prior functions [11]
and a combination of the above for exploration, in three different scenarios. The perfor-
mance is evaluated using three different metrics, by averaging the results achieved by the
agents over several of experiments.

The compared agents

As all three exploration approaches investigated are designed to be combined, the perfor-
mance of the following six agents is compared: a regular DQN agent ad regular DQN agent
with a randomized prior function, both employing ε-greedy; Two BDQN agents with in-
creasing bootstrap size: 4 & 10 bootstrap samples (or neural network ’heads’); Last, two
similar BDQN agents, combining randomized prior functions in their bootstrap mechanism.
The number of bootstrap samples has been chosen based on a relation between computa-
tional complexity (the larger the bootstrap, the larger the complexity), and gain from the
bootstrap (the larger the bootstrap, the better the average performance). As shown empir-
ically in [10], the relative gain from sizes larger than 10 becomes insignificant very quickly.

8



The experimentation with different combinations of those techniques allows to evaluate, in
essence, even more exploration techniques, and is the reason it is done in this paper.

As an additional baseline, two more ’agents’ are included in each experiment conforming
to the above experimenting methodology (termed ’the baseline agents’). These are a random
agent and a constant agent. The random agent chooses a random action each time step,
while the constant agent chooses a different action (switches the traffic light configuration)
every set number of time steps c. c = 20 was chosen for the experiments as a balance
between too similar to the random agent and too infrequent to have a sufficient measure of
efficiency. These agents are included in the results presented as ’sanity checks’, to illustrate
both the overall quality of the policies learned by the agents, and the type of policies that
score well in each environment.

The parameters of the agents investigated are not tuned for the specific setting of traffic
light control. For the purpose of full reproducibility, a full list of the experiment parameters
and agents’ hyper-parameters used is available with the code base used in the experiments.

The evaluation

The evaluation is done as follows: an experiment is done, for each agent in each scenario
and each intersection considered. Each experiment consists of N learning episodes. Every
evaluation_frequency learning episodes, an evaluation phase is ran. In order to reduce
sensitivity to stochastic noise from the random nature of the traffic used in the experiments,
in the evaluation phase the agent’s policy is evaluated over number_evaluations evaluation
episodes, with ε = 0. The average episodic reward is then used for evaluation. The exact
parameters evaluation_frequency, number_evaluations used in each experiment are de-
tailed in section 5. To further reduce the impact of stochasticity, the entire experiment is
repeated X times for each agent and the results averaged. Finally, the performances of the
different agents are plotted against each other, in the form of their averaged evaluations’
rewards. The results are presented in section 5.

The different parameters mentioned above were chosen in the following way: N was cho-
sen from experimentation, as the range within which the agents’ learning starts to plateau,
in order to present the differences between the evaluations of the agents’ in the clearest
way. The evaluation_frequency used for each experiment set is chosen to achieve balance
between the number of episodes each experiment is ran for, and the number of total evalu-
ation episodes in the experiment. The number_evaluations parameter has been chosen as
a balance between the total number of evaluation phases and the total number of episodes
in each experiment. The larger the number of learning episodes, and lower the evaluation
frequency, the larger the number_evaluations parameter. To balance computational costs
and time constraints with reliability of results, each experiment was chosen to be averaged
over X = 10 repetitions. This, except for the baseline agents which achieve a very similar
performance every experiment. Their experiments repeat 5 times.

For the purpose of full reproducibility, all random generators used are fully seeded, and
the seeds logged. Each experiment is initiated with a different random seed, to guarantee
random initialization of the agents’ neural networks’ weights. The environment’s traffic
generator however is seeded with the same set of seeds for all experiments. This is done to
guarantee that while all agents experimented with are different, they are tested against the
same traffic simulations.

9



The metrics

When analyzing the comparison between the agents, this paper considers three fundamental
metrics as measures for performance: the learning rate, the stability of the learning and the
score of the policy achieved after certain final number of episodes. The main concerns for
an RL agent are: how good is the solution it acquires for the problem, how long did it take
it to arrive at that solution, how likely it is to converge to the solution and how stable the
convergence. These concerns are covered by the metrics listed above: quality of solution by
policy score, time to convergence by learning rate, and stability and likelihood to converge
by stability of the learning. In the analysis of the results, these metrics are considered
independently. However, when all three appear to coincide, they are simply referred to as
the agent’s ’performance’.

4.2 The traffic scenarios
The impact of the exploration approaches investigated in this paper is evaluated using the
traffic simulator SUMO [19], in three different traffic scenarios. In the first scenario, one set
of experiments is done. In the second and third scenarios, two separate experiment sets are
done, evaluating the agent against traffic of slower and faster average speed.

Scenario 1: The grid

The first scenario is a basic grid-like road network, with one intersection in the center, and
four roads going one in each direction from the intersection: north, east, south and west.
A visualization of the grid scenario is presented in figure 3 a. The first scenario is meant
to capture a simple, independent intersection profile, that does not consider or experience
the behavior of other neighboring intersections. The traffic in this scenario is generated
randomly, based on a set number of vehicles over a set spawning time.

Scenario 2: Real traffic simulation in Manhattan, New York

The second scenario, visualized in figure 3 b, is based on a section of the road map of
Manhattan, New York, and is a more complex network containing several interconnected
intersections. The specific road map used in our experiments is a 700 m2 section centered
around the corner of Waring and Woodhull Avenues. The map has been imported using
SUMO’s web-wizard. This scenario means to evaluate the effect of efficient exploration in
a more complex traffic profile, where the agent may observe and consider the behavior of
neighboring intersections. Manhattan enjoys a grid road-map design, that for the purpose
of this work serves as both realistic and practical to use.

The red squares marked in figure 3 point to the two intersections given to the agent to con-
trol, as two separate experiments sets in this scenario. These intersections were chosen due
to their encapsulation of different traffic profiles. The top intersection, Waring-Woodhull,
presents a gentler form of traffic with significantly lower vehicle speed average. The bottom
intersection, Eastchester-Waring, experiences much higher average vehicle speed, and more
strongly resembles a central road. The throughput of both intersections is rather similar,
with a slightly heavier load going through Eastchester-Waring. In every experiment, all
intersections in the network except the one controlled by the agent are controlled by SUMO.
To generate traffic for the Manhattan scenario, a random routes generator is used, based on
real population distributions in the area, for the time of day 08:30 AM to 09:00 AM. The
traffic data is imported using SUMO’s web-wizard as well.

10



Scenario 3: Custom traffic simulation in Manhattan, New York

A third scenario is introduced in order to evaluate exploration under heavier traffic settings.
This scenario uses the same map, and experiments with the same intersections illustrated in
figure 3 b. However, in this scenario a random traffic generator is used for traffic generation,
in order to introduce much heavier traffic loads than the ones generated to simulate real
traffic. Again, two different sets of experiments are done in this scenario, one on each of the
two marked intersections in figure 3 b. The difference of the traffic profiles between the two
intersections is similar to the one in the second scenario: the top intersection enjoys slower
average speed, and the bottom faster.

(a) The basic grid scenario. (b) The Manhattan scenario. The
top red box marks the intersection
Waring-Woodhull, and the bottom
the intersection Eastchester-Waring.

Figure 3: The road maps used in the traffic scenarios.

Observation space specification

An important difference between the scenarios is the observation space provided to the agent
in each one. The observation space provided in the experiments done with the grid scenario
and the Eastchester-Waring intersection in either scenario, was 50m2. This is done because
in all of the three a significantly larger observation space would be outside the bounds of
the environment. The observation space provided in the experiments done with the Waring-
Woodhull intersection in either scenario was 84m2. This is done to allow the agent access
to more information, which (1) contains the adjacent intersections, enabling the agent to
take their behavior into account, and (2) providing the agent with the ability to react to
incoming traffic earlier, as a result of the larger observation space.

5 Results

This section presents and analyzes the results obtained in the experiments described in
section 4, divided between the different scenarios investigated and intersections controlled.
For each set of experiments, the results presented are the episodic rewards attained in
the evaluations, as described in section 4.1. This is presented alongside a plot of the 95%
confidence interval of the mean, computed using the standard error of the mean (SEM) [20] of
the different experiments for two sample agents. These agents are chosen independently for
each experiment: the one that performed, on average, the best, and the one that performed
the worst. This is done to illustrate how significant are the differences observed between

11



the evaluations of the different agents in each experiment. Only two agents are presented
in order to reduce clatter in the plot. A simple moving average (SMA) of window size 5 is
applied to the data presented in order to smoothen the stochastic effect, to facilitate visual
analysis of the results.

5.1 Scenario 1: The grid
The results of evaluating the performance of eight different agents, six learners and two
baselines, against the grid scenario can be found in figure 4. The agents’ policies are evalu-
ated every five learning episodes, and averaged over three evaluation episodes. Additionally,
the 95% confidence intervals of the means of the two sample agents are presented.

Figure 4: Evaluating the agents against the grid scenario. The left figure presents the evaluations. The
number describes the size of the bootstrap sample (number of heads), and the p whether a randomized
prior has been incorporated. The right figure presents the same for two chosen agents, including the 95%
confidence interval of the mean.

Figure 4 illustrates that while all agents learn, the agents that appear to have the sharpest
learning rates and higher averaged evaluation scores are the regular DQN with and without
prior function applied. However, as can be seen in the right plot in figure 4, there is overlap
in the confidence intervals of the means. As a result, the differences observed cannot be
considered significant.

A situation where the regular DQN performs better than the more evolved agents can
be explained with the fact that the regular learns from all experiences attained in learning,
while the larger bootstraps each learn from a different set of those experiences. While this
keeps the different bootstrap heads varied, it can slow down learning of solution to simple
problems.

Additionally, none of the agents appear to overcome either of the two baselines, in the
number of learning episodes used in the experiment. This effect is attributed in part to the
moving average, which while hiding the instability of the results, also hides the peaks, which
achieve similar score to the random agent. These results can be found in figure 8a.

5.2 Scenario 2: Real traffic simulation in Manhattan, New York
The results of evaluating the agents against the Manhattan scenario simulating real traffic
can be found below, separately for each set of experiments, controlling each of the two
intersections marked in figure 3 b. The agents’ policies are evaluated every training episode,
over two evaluation episodes, and averaged.

12



Figure 5: Evaluating the different agents against the Waring-Woodhull intersection, simulating real traffic.
The left figure presents the evaluation of the different agents. The number describes the size of the bootstrap
sample (number of heads), and the p whether a randomized prior has been incorporated. The right figure
presents the same results for a sample of the agents, including the 95% confidence interval of the mean.

Traffic of low average speed

Figure 5 presents the results of experimenting control of the intersection Waring-Woodhull,
the top of the two intersections in figure 3 b, capturing a traffic profile of slower average
speed.

As observable, the difference between the evaluation scores in relation to the confidence
interval of the means, is mostly negligible, with the exception that the regular DQN achieves
inferior scores prior to episode 20. However, these scores are still well within the confidence
interval of the means of the other agent’s, and thus cannot be considered significant. This
behavior is attributed to the simplicity of the traffic profile, in relation to the amount
of information accessible to the agent in this scenario. As mentioned in section 4.2, the
observation space of the agents in this experiment is 84m2. While the scenario can be
viewed as complex (several interconnected intersections, whose behaviors directly influence
each other’s traffic), which can translate to the learning process being more difficulty, the
volume of the traffic, including the average speed, is rather low, and thus the policy required
is not complex.

Traffic of high average speed

Figure 6 presents the results of experimenting control of the second intersection, Eastchester-
Waring. Eastchester-Waring enjoys both traffic of higher average speed, as well as higher
traffic loads. The main observation that can be made here is the mostly negligible differ-
ence in performance between the different agents, with the exception of the regular DQN
employing a prior, between episodes 20 and 30.

A related observation is that the two agents with the largest average evaluation score
difference, appear to be two of the arguably most similar agents - regular DQN and regu-
lar DQN incorporating a prior. Taking into account the confidence interval of their means
presented in figure 6, the differences are attributed to stochastic behavior. A possible expla-
nation of this observation is that due to the small observation space and high traffic speed,
the agent cannot react to the traffic in time, which results in a problem that is not very
complex, and thus all exploration approaches achieve similar scores over time.

5.3 Scenario 3: Custom traffic simulation in Manhattan, New York
The results of evaluating the agents against the Manhattan scenario simulating random,
heavy traffic can be found below. The agents’ policies are evaluated every second training

13



Figure 6: Evaluating the different agents against the Eastchester-Waring intersection, simulating real traffic.
The left figure presents the evaluation of the different agents. The number describes the size of the bootstrap
sample (number of heads), and the p whether a randomized prior has been incorporated. The right figure
presents the same results for a sample of the agents, including the 95% confidence interval of the mean.

Figure 7: Evaluating the different agents against the Waring-Woodhull intersection in the custom scenario.
The left figure presents the evaluation of the different agents. The number describes the size of the bootstrap
sample (number of heads), and the p whether a randomized prior has been incorporated. The right figure
presents the same results for a sample of the agents, including the 95% confidence interval of the mean.

episodes, and averaged over two evaluation episodes.

Traffic of low average speed

The results for the intersection Waring Woodhull are presented in figure 7. The variance
between the performances of the different agents appears slightly higher than in previous
experiments. In this setting specifically, the advanced agents (the agents incorporating a
prior and / or a larger bootstrap) appear to achieve a higher score than both the regular
DQN agent and the regular DQN incorporating a prior, throughout most of the evaluations,
and in the order of their relative complexity.

In other words, the bootstraps of sizes 10 and 4 with priors achieve the highest evaluation
scores throughout most of the experiment, while the bootstraps of size 10 and 4 without
priors achieve very similar scores to each other, secondary to the above, throughout most of
the experiment.

It is important to consider here the specific parameters of this experiment - traffic of
slow average speed, that the agent can react to. Larger observation space (84m2) and
traffic volumes, such that the agent must consider more information in its learning and
evaluation. While the differences are not significant, and still within the confidence interval
of the means, this may still imply that in scenarios that are (1) more complex, (2) the
agent has a better chance to react to the changes in traffic, (3) the amount of information
accessible to the agent is high (complicating the learning process), efficient, or specifically
deep exploration approaches show advantage.

Last, the different agents do not appear to converge to policies that score as high as
either of the baselines. This is attributed to the application of the moving average. Figure

14



(a) The grid scenario. (b) The Waring-Woodhull intersection in the custom
scenario.

Figure 8: Evaluating the different agents, without application of a moving average. The number describes the
size of the bootstrap sample (number of heads), and the p whether a randomized prior has been incorporated.

8b presents the average episodic evaluation results without the moving average applied. As
can be observed, the agent achieves evaluation scores that are similar to the baseline agents,
but the policies have yet to stabilize.

Traffic of high average speed

The results of experimenting control over the intersection Eastchester Waring are presented
in figure 9. There does not seem to be any significant difference between the evaluations of
the different agents, especially considering the confidence interval of the means, presented
in the right plot in figure 9. This is explained similarly to the findings of the experiment
simulating real traffic with same intersection, presented above.

5.4 Analysis
Many different factors can influence the results obtained by the different agents, ranging
from the reward function, the observation space, the state abstraction, the complexity of
the traffic scenario to plain stochasticity. This in addition to the specific configuration of
the hyper parameters. The type and complexity of the traffic scenario, along with the
observation space, are the main parameters that have not been kept static between the
experiments. For this reason, they are the main parameter considered. Here, the complexity
of the scenario, while not weighted exactly, considers the volume and variety in the traffic
and the number of surrounding interconnected intersections.

It appears that when the agent is given sufficient information of sufficient complexity,
deep exploration approaches are able to outperform the ε-greedy approach, by achieving
faster learning. Information complexity is considered as both the amount of information (size
of the observation space) and traffic complexity (measuring both diversity and intensity).
This implies the following: (1) it is important to consider efficient exploration approaches
when applying RL to complex traffic scenarios, provided a sufficiently large observation space
is used. (2) Optimization of hyper-parameters, including choosing a fitting reward function
and state abstraction, are essential parameters to the relevance of a certain exploration
method. However, it is important to mention that the differences observed were generally
small and within a 95% confidence interval of the means, and as such, the strength of this
implication is limited.

15



Figure 9: Evaluating the different agents against the Eastchester-Waring intersection in the custom scenario.
The left figure presents the evaluation of the different agents. The number describes the size of the bootstrap
sample (number of heads), and the p whether a randomized prior has been incorporated. The right figure
presents the same results for a sample of the agents, including the 95% confidence interval of the mean.

6 Responsible Research

This section discusses the ethical and epistemic concerns of the research presented in this
paper, and its possible implications. The discussion is divided between the two concerns.

In terms of ethical concerns, the experiments done in the work presented were all virtual
simulations, based on data that is fully anonymized. The only information considered about
the vehicles is their location and speed. Additionally, conclusions made based on the work
done in this paper are not expected to directly influence real-life application of RL to traffic
light control. As such, the authors of this paper do not believe there are any concerns of
safety or privacy, or any other significant ethical concerns warranting specific consideration.

In terms of epistemic concerns, reproducibility, data credibility, and cherry-picking are
considered as the main items of discussion. In regard to reproducibility, the code used to
generate and run the experiments is accessible upon request from TUDelft, and is based on
algorithms presented in papers that are publicly accessible [10] [11], and an implementation
from a publicly accessible repository [17]. All the parameters used in the experiments
are logged and accessible with the codebase, and all the experiments are seeded based on
randomized and logged seeds and should therefore be fully reproducible.

In regard to data credibility, the simulation of real traffic was generated in the follow-
ing way: population statistics were collected from sources such as the United States Census
Bureau, the New York State Legislature, and the New York City Department of Transporta-
tion, publicly accessible at data.census.gov. These were used to generate a traffic profile that
is realistic as the statistics allow.

In regard to cherry picking, the experiments presented are a representative sample of all
experiments done as part of this research. None of the results of the other experiments done
imply conclusions conflicting with those drawn in this paper.

7 Discussion

The results obtained suggest a link between the complexity of the scenario and the infor-
mation accessible to the agent, and the gain from deep exploration, as discussed in section
5.4. However, the advanced exploration approaches investigated are expected to have sig-
nificant gain especially when utilized in environments with scarcity of significant positive
rewards, and abundance of smaller negative rewards [10], [11]. This implies that the reward
function can directly dictate the results - reward shaping that successfully leads the agent

16



progressively towards optimal policies may completely negate the need for effective deep ex-
ploration, while a harsher reward function may require deep exploration for any real chance
at success. The reward function used was not designed for any specific exploration approach.
It is therefore very plausible that under a tailored reward function the gain from deep explo-
ration would have been much higher. Future work could therefor investigate for performance
difference between different exploration approaches under different reward functions in this
setting. This can be especially relevant in the case of reward functions that are known for
promoting good traffic light control policies, while hindering learning.

Additionally, the size and complexity of the parameter space is important to consider.
Other parameter configurations than the one used might have produced different results.
Future work could attempt to optimize these parameters for each of the different agents or
approaches studied, and measure performance differences under optimized parameters.

8 Conclusions and Future Work

This paper investigated the value of efficient, and specifically deep exploration in the setting
of traffic light control, by comparing agents using different exploration approaches in three
different traffic scenarios of rising complexity. Specifically, the state of the art approaches
Bootstrapped DQN [10] and randomized prior functions [11] were compared to a baseline
ε-greedy. This, to facilitate better deep RL in traffic light control, by identifying the value
of evolved exploration approaches in this setting, such as higher sample efficiency or higher
final policy score.

The results presented in this paper suggest a link between the complexity of the traffic
scenario, the size of the observation space of the agent, and the gain from efficient explo-
ration, achieved with Bootstrapped DQN and randomized prior functions, under a specific
parameters configuration. Specifically, the more complex the scenario, and the larger the
observation space, the larger the gain observed from efficient exploration.

The results presented leave the following open questions, however. What is the exact
relation between the gain from efficient exploration and the complexity of the scenario? How
sensitive is this relation to specific parameter configurations, and specifically under param-
eters optimized for the specific setting? Does this conclusion apply for other exploration
approaches? These questions are left for future work.

Acknowledgements
We would like to thank the students in the research-project group, Pepijn Tersmette, Cian
Jansen, Emanuel Kuhn & Chris van der Werf, for their ready assistance and availability
for discussion, along with their contributions to the creation of the traffic scenarios and the
development of the reward function used. Additionally, we would like to thank the TUDelft
ILDM research group for their helpful comments and support. An additional thanks goes to
the TUDelft for granting us access to the INSY cluster, which was a crucial computational
resource used in this research.

References

[1] H. R. TO and M. M. Barker, “White paper european transport policy for 2010: time
to decide,” 2001.

17



[2] E. Van der Pol and F. A. Oliehoek, “Coordinated deep reinforcement learners for traffic
light control,” Proceedings of Learning, Inference and Control of Multi-Agent Systems
(at NIPS 2016), 2016.

[3] M. Rezzai, W. Dachry, F. Mouataouakkil, and H. Medromi, “Reinforcement learning for
traffic control system: Study of exploration methods using q-learning,” International
Research Journal of Engineering and Technology, vol. 4, no. 10, pp. 1838–1848, 2017.

[4] B. Bakker, S. Whiteson, L. Kester, and F. C. Groen, “Traffic light control by multia-
gent reinforcement learning systems,” in Interactive Collaborative Information Systems.
Springer, 2010, pp. 475–510.

[5] H. Wei, G. Zheng, H. Yao, and Z. Li, “Intellilight: A reinforcement learning approach for
intelligent traffic light control,” in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2018, pp. 2496–2505.

[6] M. Coşkun, A. Baggag, and S. Chawla, “Deep reinforcement learning for traffic light
optimization,” in 2018 IEEE International Conference on Data Mining Workshops
(ICDMW). IEEE, 2018, pp. 564–571.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[8] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih,
R. Munos, D. Hassabis, O. Pietquin et al., “Noisy networks for exploration,” arXiv
preprint arXiv:1706.10295, 2017.

[9] K. Ciosek, Q. Vuong, R. Loftin, and K. Hofmann, “Better exploration with optimistic
actor critic,” in Advances in Neural Information Processing Systems, 2019, pp. 1785–
1796.

[10] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration via bootstrapped
dqn,” in Advances in neural information processing systems, 2016, pp. 4026–4034.

[11] I. Osband, J. Aslanides, and A. Cassirer, “Randomized prior functions for deep rein-
forcement learning,” in Advances in Neural Information Processing Systems, 2018, pp.
8617–8629.

[12] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–
292, 1992.

[13] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau, “An intro-
duction to deep reinforcement learning,” arXiv preprint arXiv:1811.12560, 2018.

[14] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” arXiv
preprint arXiv:1511.05952, 2015.

[15] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Dueling network
architectures for deep reinforcement learning,” in International Conference on Machine
Learning, 2016, pp. 1995–2003.

[16] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double
q-learning,” in Thirtieth AAAI conference on artificial intelligence, 2016.

18



[17] J. Hansen, “bootstrap_dqn,” GitHub repository, 2019.

[18] B. Efron and R. J. Tibshirani, An introduction to the bootstrap. CRC press, 1994.

[19] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd, R. Hilbrich,
L. Lücken, J. Rummel, P. Wagner, and E. WieBner, “Microscopic traffic simulation us-
ing sumo,” in 2018 21st International Conference on Intelligent Transportation Systems
(ITSC). IEEE, 2018, pp. 2575–2582.

[20] M. P. Barde and P. J. Barde, “What to use to express the variability of data: Standard
deviation or standard error of mean?” Perspectives in clinical research, vol. 3, no. 3, p.
113, 2012.

19


