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Preface

‘If you find a path with no obstacles, it probably doesn’t lead anywhere’
Frank A. Clark

During a discussion early on in the project, a seemingly simple structure with interesting but, most impor-
tantly, ungraspable behavior caught our attention. At that time, I could not have foreseen that it would lay the
foundation of this thesis. The initial stimulus behind the research that followed, was curiosity. What seems to
be an ungrounded motivation at first, has repeatedly proven its usefulness throughout history. Some of the
greatest inventions of this era, as the first television (and arguably future generations derived from that), we
owe to this incentive. The findings presented in this thesis will probably not have such a social impact, but
might inspire and lead to ones that do. Evidently, in this case, the observed behavior was of relevance within
the research field, but no specific application was thought of and none has been given throughout this thesis.
It is left to the curiosity of the reader to find some.

I have enjoyed the freedom that was given to me to direct the focus of the project. There are several things
I have learned, that I would never have expected beforehand. Many times I had to remember myself to the
exiting, but also immensely humbling fact that doing research is ‘exploring the world of the unknown’. And,
inevitably, you also encounter less motivating moments wherein you have to deal with setbacks. But this often
leads to a creative process that forms the breeding grounds of new insights. It has enabled me to appreciate
the experience of learning, even more than I already did. So to all fellow soon-to-be graduate students that
find themselves in the middle of this: stay curious and value the process of learning. Do not compare yourself
to others but let enthusiasm be the driving force towards your goals. I am sure you will finish with a satisfying
result!

For some time, I have been looking forward to the moment of writing this, but I must admit that now I
approach the end of this endeavor, the feeling of euphoria simultaneously makes room for a healthy amount
of ambivalence. During my years as a student in the vibrant environment of the Technical University of Delft, I
have been inspired in many ways. It has been a tremendously valuable experience that I wouldn’t have missed
for the world. But I am also sure that, with the right amount of curiosity, new and unforeseen challenges lay
ahead.

Sjaak Kok
Amsterdam, September 2020
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Summary

Elastic neutral stability involves elastic deformation without stiffness or loads. It is a remarkable appearance,
since the deformation of materials is normally associated with an increase of potential energy and a result-
ing opposing reaction force or moment. Neutrally stable mechanisms can be used to overcome unnecessary
actuation which makes them an interesting topic for the aerospace industry, space exploration and the de-
velopment of wearable assistive devices. This last group benefits from the use of spatially-curved thin-walled
elastic structures, called compliant shell mechanisms. A literature review aims to give an overview of oc-
currences of elastic neutral stability and aims to find methods for creating neutrally stable compliant shell
mechanisms. Single element mechanisms are herein further emphasized and a division between the appli-
cation of pre-stress and the application of geometrical boundary conditions is proposed. So far, all neutrally
stable (shell) mechanisms require either of the two conditions to be imposed.

A new type of compliant shell structure, featuring a neutrally stable deformation mode without requiring
one of the aforementioned conditions, is presented. The structure is composed of two initially flat compliant
facets that are connected via a curved crease. It can be reconfigured into a second zero-energy state without
apparent effort via propagation of a transition region. Both the structure’s local width and the local crease cur-
vature turn out to be effective parameters for tuning the behavior regarding stability during transition. This
structure shows potential for combining geometric simplicity with complex and highly tune-able behavior.
However, its discontinuity obstructs physical realization.

Therefore, a monolithic variant of this structure is investigated. The transition of a double-curved dis-
tributed compliant shell towards its second equilibrium configuration forms the basis of this investigation.
A varying material thickness profile, described by an ideal set of design parameters, is obtained using an
optimization procedure. Numerical analysis of the resulting optimized shell structure predicts a significant
region of near-constant energy and associated near-zero loads within this unique deformation mode. Proto-
types are manufactured using a 3D-printing process and demonstrate the validity of the modelled results by
featuring a continuous equilibrium within a significant range of motion. These results lay the foundation for
compliant beam elements with an internal statically balanced bending degree of freedom.

Finally, a different deformation mode, involving crease actuation of the same type of structure, is exam-
ined. Curved creases are characterized by the coupled facet deformation upon actuation. The forces exerted
by the facets can be used to oppose the effects of crease stiffness during actuation to achieve an overall stiff-
ness decrease. An analytical approach, based on a combination of a pseudo-rigid-body model (PRBM) and
plate theory, predicts the potential for constant-force actuation around its second stable, or ‘inverted’ state.
The accuracy of the model is validated by numerical simulations. However, due to prototype inaccuracies, the
experimental results do not feature the desired constant force behavior. Nevertheless, a stiffness decrease, or
‘softening’ is experienced, verifying the concept and marking a first step towards statically balanced curved
creases.
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Samenvatting

Elastische neutraal-stabiele systemen hebben de eigenschap zonder stijfheid of externe belastingen te kun-
nen vervormen. Het is opmerkelijk gedrag, want elastische vervorming van materialen gaat normaal gespro-
ken gepaard met een toename van potentiële energie en een tegenwerkende reactiekracht of -moment. Neu-
traal stabiele systemen kunnen worden gebuikt om onnodige actuatie te vermijden, wat het een interes-
sant onderwerp maakt voor de lucht- en ruimtevaartindustrie en voor de ontwikkeling van draagbare on-
dersteunende hulpmiddelen. Deze laatste groep profiteert van het gebruik van ruimtelijk gekromde dun-
wandige elastische structuren, zogenaamde (buigzame) schaalstructuren. In een literatuuronderzoek wordt
een overzicht van de verschillende verschijningen van elastische neutrale stabiliteit gegeven. Dit dient als
doel om methoden te vinden die hieraan ten grondslag liggen. Mechanismen bestaande uit één enkel ele-
ment worden hierin benadrukt en er wordt een categorisatie op basis van het toepassen van voorspanning
en geometrische randvoorwaarden geïntroduceerd. Tot op heden vereisen alle neutraal stabiele schaalstruc-
turen één van deze twee voorwaarden.

In dit onderzoek wordt een nieuw soort schaalstructuur geintroduceerd met een neutraal stabiele ver-
vormingsmodus, zonder dat één van de hiervoor genoemde voorwaarden vereist is. De structuur bestaat
uit twee aanvankelijk platte buigzame facetten, die met een gekromde vouwlijn met elkaar zijn verbonden.
Een tweede stabiele, geïnverteerde modus kan worden bereikt door de voortstuwing van een transitie gebied,
ogenschijnlijk zonder moeite. Zowel de lokale breedte als de lokale kromming van de vouwlijn van de struc-
tuur blijken effectieve parameters te zijn om het gedrag omtrent stabiliteit tijdens de transitie te beïnvloeden.
Dit toont het potentieel voor het combineren van geometrische eenvoud met complex maar zeer program-
meerbaar gedrag. De vervaardiging van prototypes wordt echter belemmerd door de discontinuïteit in de
structuur.

Een monolitische variant van deze structuur is daarom aansluitend onderzocht. Hierin wordt de ba-
sis gevormd door de transitie van een dubbel-gekromde buigzame schaal naar de tweede, geïnverteerde,
evenwichtsconfiguratie. Door middel van een optimalisatieprocedure zijn de ideale parameters voor een
variërend dikteprofiel verkregen. Numerieke simulatie van de geoptimaliseerde structuren voorspelt een
aanzienlijk gebied van constante energie tijdens de transitie. Prototypes zijn vervaardigd met behulp van
een 3D-printprocess en tonen de validiteit van de gemodelleerde resultaten aan. Ze vertonen statisch even-
wicht binnen een aanzienlijk gebied van het transitieproces. Deze resultaten leggen de basis voor statisch
gebalanceerde buigzame balkelementen.

Ten slotte is er nog een andere vervormingsmodus van dezelfde type structuren onderzocht waarbij de
vouwlijn wordt geactueerd vanuit geinverteerde toestand. Gekromde vouwlijnen worden gekenmerkt door
de gekoppelde facetvervorming tijdens het actueren. De tegenwerkende krachten die worden uitgeoefend
door de facetten kunnen worden benut om de effecten van vouwlijn stijfheid tegen te gaan om zo een algehele
afname van stijfheid te bereiken. Een analytische benadering, gebaseerd op een combinatie van een ‘pseudo-
rigid-body-model’ (PRBM) en plaattheorie, toont de mogelijkheid voor actuatie met constante kracht aan. De
nauwkeurigheid van het analytische model wordt gevalideerd door de numerieke simulaties. Vanwege on-
nauwkeurigheden in de prototypes vertonen de experimentele resultaten echter niet het gewenste constante-
krachtgedrag. Des-alniettemin is er sprake van stijfheidsvermindering, wat het concept valideert en een
eerste stap markeert naar statisch gebalanceerde gekromde vouwlijnen.
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1
Introduction

Energy-free systems form a unique group of mechanisms that are in static equilibrium within their range of
motion and therefore do not require any operating effort [7]. Not only energy efficiency is improved, also
inherent safety is introduced and aspects as force-feedback benefit from more energy-efficient systems [7].
Intersection with the field of compliant mechanisms results in statically balanced compliant mechanisms
(SBCMs), originally introduced by Herder and Van den Berg [3, 6] and includes the additional advantages of
compliant mechanisms, e.g. monolithic fabrication and the absence of backlash. These SBCMs are typically
designed for weight balancing and exhibit neutrally stable behavior in presence of an external gravitational
force, either distributed in case of the structure’s own weight [1, 16], or in the form of a payload [15]. There
exists a balance between internal and external forces within the range of motion as gravitational energy is
exchanged with elastic energy through deformation of the compliant components [3].

A more specific group of SBCMs operate in the absence of external loads and its state of neutral stability
solely relies on the intricate balance between its elastic components. In this case, the elastic energy in the
compliant mechanism is required to remain constant within the range of motion. This can be considered as a
remarkable phenomenon, since deformation of elastic materials is generally accompanied by energy increase
and an opposing reaction force or - moment. This state of elastic neutral stability was first mentioned in
1867, where the lack of a preferred axial orientation of an initially straight broomstick under a bending load is
described [11]. The focus of recent research is directed towards neutrally stable compliant shell mechanisms,
i.e. thin-walled structures capable of undergoing large elastic deformation, with applications in the context
of space exploration, where lightweight and compact deployable booms are currently being developed [13,
14, 17, 19]. However, a recurring property of these neutrally stable shells is the need for pre-stress, either in
the form of pre-stressed assembly [4, 5, 12, 18, 22] or boundary conditions imposed during operation [2, 11,
20, 21]. These requirements cause performance loss over time [9] and obstruct the potential applicability
respectively [8]. A more comprehensive overview of occurrences and working principles of elastic neutral
stability is given in chapter two: A literature review.

The research in this thesis aims to contribute to the library of neutrally stable mechanisms, by devel-
opment of compliant shells that feature neutral stability without having to rely on pre-stressed assembly or
externally applied boundary conditions. Throughout this thesis, variations to a specific, double-curved, shell
geometry are investigated, whereby two very different deformation modes are brought to the attention.

The first part is based around a unique deformation mode that emerges while connecting the curved
inner edges of two arch-shaped flat elastic plates in a hinged fashion. Because of their curved nature, a curved
crease is created and actuation is accompanied by plate deformation. Neutral stability seems to occur after
the initially opposing faces are inverted at one of the ends and the resulting transition region is propagated
through the structure. Its simplicity in combination with this neutral stability differentiate the structure from
existing neutrally stable examples and motivate further investigations. Its behavior is characterized in chapter
three, as the suspicion of a neutrally stable deformation mode is confirmed.

However, material discontinuity and fabrication challenges limit the applicability. Therefore, the succeed-
ing part describes the design process towards a continuous, monolithic and distributed compliant variant of
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2 1. Introduction

the curved-crease shell structure, with the goal to omit the aforementioned limitations. This paper, which
forms the core of this thesis, is presented in chapter four and is to be submitted to the Journal of Extreme
Mechanics Letters (EML).

Along the way, another interesting potential of the investigated structure stood out: its capability of bal-
ancing out elastic crease forces, with relevance for e.g. origami mechanisms. Despite its different deformation
mode and the seemingly absent relationship to the main thesis subject, this behavior is further analysed and
described in the form of a short paper in chapter five.

It is followed by a finalizing conclusion in chapter six, wherein the overall contributions of this thesis are
discussed. The appendices contain supplementary information of the last three papers, in which, among
other things, details on the modelling procedure, the fabrication of prototypes and suggestions for future
work are set forth.

The main body of this thesis is presented in the form of scientific papers, often with more than one author.
In all cases, the first author is responsible for the content, whereby the subsequent authors fulfilled the role
of reviewers and provided the indispensable feedback during the process.
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Literature review of occurrences and working principles of elastic
neutral stability

Sjaak Kok, Giuseppe Radaelli and Ali Amoozandeh Nobaveh

Abstract— Zero-stiffness systems are widely discussed in the
field of mechanics. Elastic neutral stability also requires the
external loads to be zero over a finite deformation path. It is
a remarkable appearance, since the deformation of materials is
normally associated with an increase of potential energy and a
resulting opposing reaction force or moment. Neutrally stable
mechanisms can be used to overcome unnecessary actuation
which makes them an interesting topic for the aerospace industry,
space exploration and the development of wearable assistive
devices. This last group benefits from the use of spatially-curved
thin-walled elastic structures, called compliant shell mechanisms.
Work has been done on characterizing their behavior by creating
a library of building blocks. So far, no building blocks that show
neutrally stable behavior have been discussed. Therefore, this
paper aims to give an overview of occurrences of elastic neutral
stability and aims to find methods for creating neutrally stable
compliant shell mechanisms. Examples consisting of single and
multiple elements have been found in literature. In addition,
several examples with their origin in nature are mentioned,
some of which functional, others mere incidental occurrences.
Mechanisms containing multiple components obtain their neu-
trally stable properties by modifying the constitutive components
individually. Single element mechanisms are further emphasized
and a division between the application of pre-stress and the
application of geometrical boundary conditions is proposed.
While both are methods for retaining the elastic potential energy,
the applied method has implications for the practical feasibility
and design freedom of the resulting mechanism.

I. INTRODUCTION

When, in general, a system is in equilibrium, a system
is in balance and forward and reverse actions occur with
the same equal but opposite magnitude. This can create the
illusion of no activity while many hidden processes take place.
When equilibrium occurs in mechanical systems, all forces and
moments are balanced out within the system. When the sum of
the loads on a body is zero, it is said to be in static equilibrium.
When the state of equilibrium persists while a mechanism
is deformed, it is said to have a continuous equilibrium. As
a net result, no potential energy is added to or withdrawn
from the system. In literature, this mechanism is said to be
in neutral equilibrium and is often referred to as ‘neutrally
stable’. While in this case, ‘stable’ actually describes the
nature of the equilibrium point.

The reaction force or moment of a mechanism is defined
as the first derivative of the potential energy with respect to a
spatial degree of freedom. The stiffness of a mechanism, being
the second derivative of the potential energy with respect to
a spatial degree of freedom, is a measure of how the reaction
forces and moments change during displacement. Both proper-
ties are instantaneous, meaning they provide information about

a single configuration of the mechanism. However, in litera-
ture, ‘zero-stiffness’ often refers to mechanisms with constant
reaction forces and moments over a certain displacement path.
Figure 1 shows a classification of zero-stiffness mechanisms.
When a gravitational force is part of the system, the elas-
tic energy has to be exchanged with gravitational potential
energy. These ‘gravity balancers’ or ‘gravity equilibrators’
are only in neutral equilibrium with a constant gravitational
load. When the required reaction forces and moments are
not only constant, but also equal to zero, the total elastic
potential energy remains constant upon deformation. Internal
elastic loads are balanced out by other elastic loads and no
reaction forces or moments are required to maintain the state
of equilibrium: the mechanism has a neutrally stable elastic
deformation mode. Tarnai [1] and Schenk [2] give intuitive
examples and discuss the difference between occurrences of
zero-stiffness and neutral stability.

Elastic neutral stability is a remarkable appearance since,
normally, the deformation of materials with a positive modulus
of elasticity is associated with an increase of potential energy
and a resulting opposing reaction force or moment. An elastic
mechanism in neutral equilibrium can only deform without
load if the necessary energy is already stored inside the system
and redistributed upon deformation. Because of this unique
property, the focus in this report will be on this specific
group of neutrally stable mechanisms. Neutrally stable elastic
mechanisms can either consist of multiple constitutive elastic
components [3] or only one single elastic component [4].
This division forms the first step in the classification process
discussed further in this paper.

Fig. 1. The tree captures an important division within zero-stiffness mecha-
nisms. Situations with zero external load and non-zero external load can be
distinguished.



5

Compliant shell mechanisms form a group within compliant
mechanisms and have become an interesting research topic
over the last years. Because of their versatile potential, they are
recently circumstantially investigated in the aerospace industry
and in the field of assistive devices [5] [6] [7]. They can be
described as spatially curved thin-walled structures able to
transfer or transmit force, motion or energy through elastic
deflection. In contrast to classical compliant elements, these
three-dimensional shaped compliant shells allow for large
deformations and have potential to be tuned through shape
optimization to achieve any desired load path [8]. Work has
been done on characterizing their behavior by creating a
library of building blocks [9]. So far, no building blocks that
show neutrally stable behavior have been discussed.

This paper aims to give an overview of the occurrences of
elastic neutral stability and categorize examples, with the goal
to find methods for creating neutral stability in compliant shell
mechanisms.

Emphasis in this paper will be on single element shell
mechanisms, but other examples will be discussed for better
understanding and to expose the working principles of their
behavior.

The approach to the literature review will first be discussed
in the method section of this paper. Several results of examples
will then be reviewed and a categorization structure is formed
in the third chapter. Examples belonging to each class are then
reviewed in detail in chapter four, where an effort is made to
categorize their working principles. In the discussion, methods
for creating neutrally stable mechanisms are qualitatively com-
pared and an attempt is made to give an integral explanation
of their working principles.

II. METHOD: A LITERATURE SURVEY

In literature, neutrally stable mechanisms are often hidden
within the broader term ‘zero-stiffness’. Therefore, the term
zero-stiffness is also included in the search query and examples
without neutral stability are excluded manually. In order to
find results in other disciplines, an iterative search process
was used, where synonyms originating from other fields where
added to the query.

TABLE I
SEARCH QUERY USED TO SEARCH IN THE MECHANICAL DOMAIN.
VERTICAL TERMS IN EACH COLUMN ARE COMBINED WITH ‘OR’.

Aspects combined with AND
Neutral* stable Mechanism
Neutral stability Shell
Neutral equilibrium Structure
Neutral* elastic Tape spring
Continuous equilibrium Tape loop
Static* balanc*
Zero-stiffness
Zero W/5 stiffness
Zero W/5 elastic

Next to the expected results within the mechanical disci-
pline, examples of neutral stability were also discovered in
biology. Two separate search queries are used to find relevant
results. Table I and table II present the queries that focus on
the mechanical and the biological domain respectively.

TABLE II
SEARCH QUERY USED TO SEARCH IN THE BIOLOGICAL DOMAIN.
VERTICAL TERMS IN EACH COLUMN ARE COMBINED WITH ‘OR’.

Aspects combined with AND
Growing Leaf* Pre-stress*
Growth Shell* Prestress*
Morphing Birod* Self-stress*
Wrinkling Selfstress*

Buckling

III. RESULTS: OCCURRENCES AND CLASSIFICATION

A division within the group of neutrally stable elastic
mechanisms, based on the amount of constitutive elastic com-
ponents, was proposed in the introduction. In this chapter, two
cases are discussed: systems containing multiple and systems
containing one single elastic element. A complete overview of
the classification can be found in figure 2.

A. Mechanisms of multiple elastic elements

The constitutive components of neutrally stable elastic sys-
tems are often connected at the end effector. They co-operate
in parallel, so they all share the same degree of freedom. The
majority of the examples found in literature consist of only two
elements with two separate functionalities. An elegant example
is given by Herder [10], where two of the most simple spring
elements are used to create a statically balanced mechanism
(fig. 3(a)). This results in a system with constant elastic energy,
independent of the configuration of the degree of freedom.
This behavior can be explained intuitively by imagining two
‘basic’ gravity balancers as building blocks that are tilted
on their sides and connected through their end effector. By
adjusting their design parameters, they both deliver the same,
but opposite horizontal force and cancel each other out.

A different example is described by Tolou [11], where
a micro mechanism is statically balanced by adding a pre-
stressed buckled beam. Multiple leaf spring flexures provide
the positive stiffness and positive force part of the mechanism.
A buckled beam is then designed to exactly match the mirrored
behavior of the leaf spring flexures, all within a certain range
of motion (fig. 3(b)). Within that region, forces cancel each
other out and neutrally stable behavior can be observed.

Elastic mechanisms that deform with positive stiffness can
be balanced by adding a second elastic element in parallel
that behaves in an exact opposite way. Addition of an element
with solely opposite stiffness is not sufficient for the neutrally
stable requirement. Also, the loads needs to be balanced out
to zero, meaning that the load-displacement curve needs to
be mirrored in the displacement axis, corresponding to zero
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Fig. 2. A tree that captures the classification of all neutrally stable mechanisms found in literature. A first division is based on the number of involved
elements, a second is based on the working principle. The research fields and origin of the examples are finally provided in the last layer.

force or moment. Herein, the two given examples differ and, in
general, two different situations can be distinguished: neutral
stability by (1) opposed linear portions of load curves and (2)
opposed non-linear load curves. Mechanisms with a positive
linear load-displacement relationship are most common since
most materials deform according to Hooke’s law, resulting in
true linear or affine functions. A true negative linear load-
displacement relationship is not possible, as this would imply
an infinite source of elastic energy. Instead, this behavior
can be observed in a certain finite range of motion. Non-
linear relationships exist in the form of constant load curves,
higher-order curves or hybrid curves, constructed from the
aforementioned.

(a) (b)

Fig. 3. Two neutrally stable mechanisms are shown. (a) shows a spring-to-
spring balancer by Herder [10] and (b) shows a balanced micro mechanism
based on buckled beam flexures by Tolou [11].

B. Single element mechanisms
The occurrence of neutrally stable elastic behavior of sys-

tems containing only a single element is even more interesting.

In contrast to systems where the behavior of the constitutive
independent elements can individually be tuned and added up,
their behavior is more complex and their working principles
can not easily be explained. By comparing examples from
multiple disciplines, an effort is made to categorize these and
clarify the explanation behind their existence.

During research on bi-stability of shell elements, Guest [12]
developed pre-stressing conditions for a cylindrically curved
rectangular plate that shows neutrally stable behavior when
rotating the axis of curvature. This was achieved by two
consecutive same-sense pre-stressing steps. The initially flat
rectangular strip was first cylindrically deformed around its
longitudinal axis and later around its (perpendicular) trans-
verse axis. With the correct amount of pre-curvature and
resulting residual stress, this resulted in bi-stable behavior with
the energy barrier in between reduced to zero. In other words, a
continuous equilibrium where all bending axis-orientations in
between longitudinal and transverse were energetically equally
preferable (fig. 4(a)).

An other interesting neutrally stable element arises when
the two ends of a carpenters tape spring are connected into
a closed-loop structure, creating a so-called tape loop. Vehar
[13] showed that a tape loop can potentially be used as a
linear guide, where the two parallel portions of the loop can
be translated alongside each other without any force. Relative
translation of the parallel portions of the tape spring results
merely in shifting of the deformed regions, but no change
in overall geometry (fig. 4(b)). Although the elastic energy
associated with deformation is difficult to model, it remains
constant during deformation in its neutrally stable mode and no
load is required. The cylindrically single-curved cross-section
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(a)

(b)

Fig. 4. Two neutrally stable single-element mechanisms are depicted. (a) The
neutrally stable cylindrical shell by Guest [12] and (b) a tape loop: an endless
configuration of a tape spring where the two ends are connected.

of the tape spring results in a tape loop that has significant
stiffness in other degrees of freedom and therefore has the
potential to bear loads. The striking ease of manufacturing
contrasts the relatively complex and sensitive pre-stressing
method discussed by Guest.

Residual stress in the equilibrium state of a system sup-
plies the necessary energy for that equilibrium state to be
potentially neutrally stable. This self-stress can be imposed
during a controlled pre-stressing action. The system is then
in equilibrium but also in a state of geometric frustration,
where it can not meet the resolving deformations correspond-
ing to all imposed stresses simultaneously [14]. When truly
balanced, these systems exhibit neutrally stable behavior in
a degree of freedom the pre-stress was optimized for [12]
[15]. Alternatively, the application of boundary conditions can
be the used to generate self-stress. When the tape spring
is elastically deformed and thereby closed in on itself, the
resulting continuous loop is already in a state of self-stress
that can not be resolved by any deformation [16] [4]. Based on
this inherent difference, two groups within the single element
category can be distinguished: (1) self-stress by the application
of boundary conditions and (2) self-stress by a controlled
pre-stressing step. These two methods can be used to create
mechanisms with a finite or an infinite range of motion in their
neutrally stable degree of freedom, as will be discussed next.

IV. NEUTRAL STABILITY PER CATEGORY

A. Mechanisms composed of multiple elements

1) Opposed linear load curves: In linear elastic mecha-
nisms, the load increases linearly with deformation. They are
naturally most common since most involve a Hookean material
that, without transmissions or geometrical aspects, deforms
accordingly. Examples are torsion bars and leaf springs that
are used sufficiently close around their equilibrium. Hoetmer
[17] analyses the use of negative-stiffness building blocks
to compensate for linear elastic behavior. As a design case,
buckled beams with rectangular cross-section are used to
statically balance a compliant gripper (fig. 6(a)). The buckled
beams show bi-stable behavior, but only the linear region with
negative slope within the force-deflection curve is used for
this application. The working principle is similar to that of
Tolou. Morsch [18] proposes a method for statically balancing
a cross-flexure hinge that normally shows positive stiffness
behavior. The additional leaf springs provide a counteracting
moment with negative stiffness in the degree of freedom of the
mechanism (fig. 6(b)). Torsional stiffness is compensated in
the work of Lachenal [19] and Daynes [20], where the constant
positive stiffness of an airfoil skin and airfoil construction
members respectively is balanced out (fig. 5(a) and 5(b)). Both
provide a moment-free pitch adjustment method suitable for
airplane wings and wind turbine blades.

(a)

(b)

Fig. 5. Two mechanisms are shown to compensate for the torsional stiffness
of (a) the airfoil’s skin by Lachenal [19] and (b) the structural frame members
of the wing by Daynes [20].
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2) Opposed non-linear load curves: Constant force curves
are considered as non-linear curves because of the existence of
a zero-load resting state. A comprehensive overview of spring-
to-spring balancing mechanisms is given by Herder [10]. Fig-
ure 3(a) shows an example of the simplest of mechanisms that
involves two linear zero-free-length springs. Mechanisms that
consist of more than two spring elements are also discussed.
The working principle of the majority of these, sometimes
multiple degrees-of-freedom, balancers can be explained by in-
tricate compositions of the fundamental single spring constant-
force balancer. Neutral stability of the end effector is then
achieved by a summation of all constant force curves that
add up to zero. It should be mentioned that the constant
force assumption depends on the degree of freedom that is
considered. Spring-to-spring balancing mechanisms that also
involve higher-order springs (i.e. springs wherein the force
is proportional to a positive integer power of its length) are
discussed in the work of Soethoudt [21]. The performance of
this group of balancers can be evaluated analytically, while
assuming springs that meet the zero-free-length condition.

(a)

(b)

Fig. 6. Two mechanisms are shown where an element with positive constant
stiffness is combined with an element with negative constant stiffness. (a)
shows statically balanced grippers by Hoetmer [17] and (b) shows a statically
balanced compliant cross-flexure by Morsch [18].

A potential energy field approach to the design of a statically
balanced straight-line mechanism is proposed by Radaelli
[22]. Four identical shape-optimized leaf springs co-operate to
provide sufficient stiffness to the end-effector in all directions,
except for the direction of the linear degree of freedom
(fig. 7(a)). During that motion, two groups of two flexures
contribute each in an opposite way to the overall stiffness and
force in that direction. Figure 7(b) shows the two components,
each consisting of a pair of flexures, that result in zero
stiffness and zero force 1. Both components have a non-
constant stiffness, resulting in a non-linear, roughly quadratic
force increase or decrease as their separate contribution.

(a) (b)

Fig. 7. The statically balanced straight-line mechanism by Radaelli [22] uses
four identically shaped leaf spring flexures. The mechanism is shown in (a)
and the resulting stiffness in its neutrally stable degree of freedom is shown
in (b).

B. Single element mechanisms

1) Application of pre-stress: Finite range of motion
An example of a neutrally stable deployable rectangular

strip is given by Murphey [23]. In contrast to the method used
by Guest, two cylindrical shells with opposite curvature senses
and perpendicular curvature directions are bonded together.
The separate shell elements can either be constructed from
initially flat, plastically deformed sheet metal or from fiber
reinforced plastic composite, molded around a cylindrical
surface. The result is a single element with the same me-
chanical characteristics as the shell produced by Guest (fig.
8(a) and 8(b)). Murphey also described the possibility of
other pre-stressing techniques as, for example, extensional
fiber pre-stressing. When anisotropic materials are used, their
anisotropic properties can be exploited for creating pre-stress.
Doornebal [24] and Stacey [25] describe a method based
on the difference in thermal expansion coefficients of the
components and stresses that remain after curing.

So far, neutrally stable behavior had occurred as a conse-
quence of present pre-stress. The energy level is kept constant,
but non-zero when compared to the undeformed geometry as
reference. Schultz and Liuyi handle the following less rigorous
definition of neutral stability in the context of deployable

1The zero force condition can not be confirmed based on the information
given in this figure. The reader is referred to the work of Radaelli for more
details.
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(a) (b)

(c) (d)

Fig. 8. Neutrally stable deployable shell structures are shown in the form of
(a) a rectangular plate that consists of (b) two bonded pre-stressed layers by
Murphey [23], (c) a neutrally stable deployable boom by Liuyi [26] and (d)
Schultz [5].

booms for space exploration: ‘a structure that will show neither
an inclination to spring out nor to roll up when partially rolled
to any position [5] [26].’ Here, a fiber reinforced laminate is
used in combination with carefully chosen matrix material.
The specific Poisson ratio of the matrix in combination with
the layup sequence, results in zero bending stiffness. In
practice, little stiffness is present but is shadowed by internal
damping, rendering the structure effectively neutrally stable
(fig. 8(c) and 8(d)). Another example where neutrally stable
elastic behavior is achieved via constitutive relations is given
by Kumar [27]. He describes self-propagating edge disloca-
tions in the crystal structure of materials during bending as
the ‘materials analogue of zero-stiffness structures’. Bending
a plate that contains an edge dislocation results in a constant
level of stored elastic energy throughout the deformation
process for a finite, but significant range of motion.

2) Application of pre-stress: Infinite range of motion
The pre-stressed neutrally stable shell that was investigated

by Guest showed neutrally stable behavior because of accu-
rately designed levels of pre-stress. No configuration exists
wherein relaxation of all stresses occurs. As a result, every
configuration is associated with the same non-zero elastic
stain energy (fig. 4(a)). Guest discussed the similarities with
a bimetallic flat disk and found a ‘hidden symmetry’. Upon
heating, the difference in expansion coefficient results in a
dome-shaped structure. At some point, a bifurcation takes
place in order to reduce in-plane stretching, associated with
high energy costs. A cylindrical shape is adopted that re-
quires the storing of less elastic potential energy. The axis
of bifurcation is arbitrary and deformation on a continuous
path with varying direction does not change the stored energy.
Deformation along this path is thus a neutrally stable mode
(fig. 9(c)).

Expansion of a bimetallic disk, in combination with the
arbitrary axes of bifurcation, was first mentioned by Wittrick
in the year 1953 [28] and recently investigated by Seffen [29].
Lamacchia [30] mentioned an annular plate with circumferen-
tially distributed moments and suggested symmetry breaking
bifurcation as an explanation for the emerging neutrally stable
mode. Hamouche [31] utilized the neutrally stable precession
path of the axis of principal curvature of a pre-stressed circular
plate for generating an infinite motion of a propagating wave,
shown in figure 9(b). The working principle is identical to
the neutrally stable shell described by Guest. The disk is pre-
stressed by plastic deformation into a cylindrical shape, with
two perpendicular curvature directions. All axes with curvature
directions in between require equal amounts of elastic bending
energy. But, in contrast to Guest’s shell, the axially symmetric
circular undeformed geometry results in a deformed geometry
that remains invariant when the axis of curvature is rotated.

Similarities can be found when circular disks are stretched
or compressed along radial curves. Klein [32] investigates the
result of lateral nonuniform shrinkage of flat elastic sheets.
When compression stresses dominate along the perimeter of
the disk, wavy patterns emerge. The locations of the peaks and
valleys is arbitrary and can be moved along the edge without
the need to change the elastic energy potential of the system
[32]. This state of self-stress also occurs in the context of
origami, where curved creases cause the outer perimeters to
experience compression stresses [14] (fig. 9(a)). Holmes [33]
and Pezulla [34] utilize swelling of compliant disks in the
context of soft actuation. They describe the emergence of 3D-
shaped objects from initially 2D-shaped flat disks. Again, due
to the symmetry of the initial circular shape, no single buckled
orientation is preferred: a neutrally stable mode exists.

3) Application of boundary conditions: Finite range of
motion

Equivalent to the tape loop is a Rolamite mechanism [35].
This concept consists of a thin flat strip that is enclosed by
a set of rollers and two rolling surfaces (fig. 11(c)). The
additional elements constrain the strip to follow a certain path
that remains invariant upon deformation of the mechanism.
Actuation of the rollers in other degrees of freedom always
load the strip in tension, its stiffest direction. Similar to the
tape loop, the region of deformation propagates through the
mechanism, without change in the resulting geometry, thus
keeping the amount of deformation and associated elastic
energy constant. While the geometry of the tape loop is
determined by a single contact constraint at the endpoints,
this geometry is determined by contact constraints along the
complete length of the curved strip. But in contrast to the
always-in-tension-loaded strip in the Rolamite mechanism,
the tape loop is relatively compliant when actuated in other
deformation modes due to the lack of additional supporting
constraints.

The unstressed cylindrically-shaped cross-section of the tape
spring causes it to buckle when subjected to the boundary
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(a) (b)

(c)

Fig. 9. Several occurrences of neutrally stable deformation are shown. (a)
depicts the wave pattern result of compression in the outer perimeter of a flat
disk, either by (1) swelling [32] or (2) curved crease paper folding [14]. (b)
shows the neutrally stable precession of the bending axis by Hamouche [31]
and (c) illustrates the under laying principle of the occurrence of a neutrally
stable deformation mode of an initially flat disk.

condition and forms two opposed regions with defined perpen-
dicular curvature. Figure 10(b) and 10(a) show a theoretical
example where this geometry is forced by an extra constraint.
A leaf spring flexure with non-curved cross-section and piv-
oting ends is compressed between two parallel surfaces. In
this case, this extra constraint forces the deformation to be
localized in a specific region and excludes the ends from
the elastic deformation process. Relative translation of the
plates results in propagation of the deformed region, without
changing the elastic energy of the system. Similarly, an infinite
range of motion emerges when the two ends of the leaf
spring are connected. This is an intermediate example wherein
more than a single constraint at the end points determines the
equilibrium geometry, without constraining contact over the
complete length.

A comparable rotational example is given by reverse-
rotating an elastic helicoid, as depicted in figure 10(c) and
10(d). The structure is initially free of stress and first twisted
opposite to the direction of its pitch. After initial buckling, a
portion of the structure will obtain an inverse twist in order
to meet the applied boundary condition. The length of this
portion will then increase linearly with the rotation, resulting
in a constant moment throughout the deformation. Moreover,
when after rotation both sides are fixed, the location of this
region with inverse pitch can be shifted through the structure
without applying a moment or adding energy to the system.

(a) (b)

(c) (d)

Fig. 10. When a initially straight flexure is compressed between to surfaces
(a), deformation is located in a finite region that can be shifted without adding
energy to the system (b). Similarly, reverse rotating an elastic helicoid (c)
results in a inverted region that can be shifted around energy free.

4) Application of boundary conditions: Infinite range of
motion

Elastic neutral stability was probably first mentioned by
Thomson and Tait [16] in the book ‘Treatise on natural
philosophy’, that was published in 1867. There, an initially
straight rod is described that exhibits a state of neutral equi-
librium around its centroidal axis when bent into a circle
and connecting the ends. Rotation can occur without the
need to introduce a load or to add energy to the system.
This concept is exploited by Baumann [36] to drive circular
rings of pre-stressed polymer fibers that are exposed to a
temperature gradient. The temperature difference between the
top and bottom of the ring causes a stress gradient similar but
perpendicular to the already present stress-gradient as a result
of the pre-stressing step. The ring restores its lowest energy
potential by rotating its cross-section so that it coincides
with the geometrically imposed pre-stress gradient (fig. 11(a)).
These simple motorized mechanisms are potentially suitable
for small-scale applications [36].

In fact, a similar motorized machine on DNA level is
described by Kulic [37]. There, a ring of DNA, called a
miniplasmid, is formed out of an unstressed straight DNA
chain, bending it into a circle and connecting the ends. By
selective heating of the ring, rotation around the centroidal
axis occurs and the ‘twirling’ ring generates a hydrodynamic
flow field. Small, deliberate differences in bending stiffness of
the straight DNA chain are used to create the ‘ratchet effect’ to
boost the efficiency of the propulsion, but these can be avoided
creating a truly neutrally stable deformation mode.



11

(a) (b)

(c) (d)

Fig. 11. Multiple axial symmetric variants of neutrally stable mechanisms
are shown. (a) depicts the fiberdrive mechanisms by Baumann [36], (b) a
similar molecular motor composed of DNA molecules by Kulic [37]. The
basic concept and a rotational infinte variant of the Rolamite mechanism is
illustrated in (c) and (d) respectively.

The Rolamite concept can also be used for creating mech-
anisms with an infinite range of motion, as depicted in figure
11(d). By connecting the ends of the strip, a continuous
and neutrally stable rotational deformation mode exists where
contact constraints cause the geometry to remain invariant.
However, the cross-section of the strip does not need to be
constant to create a force generator, as analysed by Cadman
in the year 1969 [38] and recently in the context of a modified
version of a tape spring by De Jong [39].

Several occurrences of neutrally stable elastic behavior in
nature can also be found in literature. Marko [40] describes
the internal ‘slithering’ of supercoiled DNA as an elastic
deformation with no energy costs. When DNA strands are
translated, the double helix is cut, untwisted and later sealed
up. Residual twist causes DNA to become supercoiled (fig.
12(a)). Many examples are known where two distant portions
of DNA need to be brought into physical contact in order
for the gene to be expressed. Molecules connected to the
DNA strand inside the supercoil help the DNA strand ‘slither’
without resulting energy costs until the required contact has
taken place.

For a more intuitive understanding of this phenomenon, an
example is given in the book ‘mathematics and mechanics
of biological growth’ by Alain Goriely [41]. He describes
the twisting of an initially straight wire of isotropic section.
When after a finite amount of twist, the ends are connected,
the resulting equilibrium geometry depends on the amount
of applied twist. After the critical twist is reached, the ring
buckles into a figure-eight-shape. But the locations where
bending occur are arbitrary and the location of intersection can
be ‘slithered’ through the structure (fig. 12(c)). A neutrally sta-
ble mode has emerged. This phenomenon can be experienced
when coiling up an electrical cord or garden hose.

Another example of a neutrally stable twisted ring is a
Mobius band, where an initially flat unstressed ribbon under-
goes a twist of half a rotation, after which the two ends are
connected. In the translation of a paper by Wunderlich, first
published 1962 [42], the equilibrium geometry of a Mobius
strip is analyzed using both geometrical and mechanical mod-
els by considering differential geometry and strain energy (fig.
12(b)). It is mentioned that the location of the concentrated
deformations is entirely arbitrary and could be relocated with
no energy penalty. In fact, the Mobius ring is an example of a
whole family of twisted rings of which the supercoiled DNA
geometry is part of. Herein, the deformations can be relocated
without adding energy to the system.

(a) (b)

(c)

Fig. 12. The formation of neutrally stable shapes in twisted loops is shown
by (a) Marko [40] in the ‘slithering’ motion of DNA strands that can be
explained by (c) increasing torsion in a endless ring from the book of Goriely
[41]. Such a twisted configuration can also be found in (b) Mobius strips [42].

Active propulsion in organisms is often achieved by prop-
agation of a wave along the edge of the body’s structure.
When a viscous medium is introduced, the resultant thrust
propels the organism. This mechanism is used in biology on
both micro- and macro scales and is referred to as ‘Taylor’s
swimming sheet’ [43]. Similar to the propagation of the
waves on the perimeter of an edge-stretched disk, this wave
continuously redistributes the elastic energy along the edge.
During research on the optimal shape of an elastic flagellum,
Spagnolie [43] mentioned the ability to pass through the elastic
energy between portions contributing on the propagation of the
wave. In practice, the open ends of the finite structure provides
a location where the stored elastic energy can flow out. The
previously discussed actuated ‘gear-less motor’ developed by
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Hamouche [15] (fig. 9(b)) can be considered as the rotational
equivalent of Taylor’s swimming sheet with an infinite range
of motion.

Although not as salient, neutrally stable structures also arise
in biology in the form of growing structures, but no further
functions are mentioned in literature. Growing organisms
undergo bending and wrinkling due to inhomogeneous growth.
When two connected rods (birods) grow with unequal rates,
the resulting stresses can be relaxed by bending in the direction
that results in extension of the rod under compression. This
mechanical system provides the basis for directional growing
of plants under influence of sunlight [44] . Changing to an
axisymmetric variant of the situation, where the complete outer
mantle is under tension and inner fiber under compression,
a preferred bending direction no longer exists and bending
around any axis is equally favorable. The structure can be
brought into a different equilibrium state by precession of the
bending axis while maintaining minimal potential energy. In
a planar growing case, leaves undergo geometric frustration
by inhomogeneous growth. In order to grow a stress-free
planar surface, cell multiplication should meet the quadratic
requirement for area increase, while cell multiplication occurs
exponentially naturally. Promotion and inhibiting of growth
is regulated through the endocrine system and determines the
appearance of the leaf on macro scale [45].

When tension dominates in the outer perimeters, the leaf
becomes dome shaped. Compression in outer rings, however,
creates out of plane wrinkling to resolve the compression
stresses. But the location of the peaks and valleys is without
preference. The associated non-zero bending energy is less
than the energy associated with in-plane stresses and does not
change upon propagation of the deformation wave.

Nath [45] discussed the relation between growth hormone,
the presence of stresses and the spatial geometry of growing
leaves. Audoly [46] [47] created the first model of the for-
mation of ripples in plant leaves that was based on elasticity.
In a subsequent paper, he discussed the occurrence of self-
similar structures near the boundaries of stretched edges. This
research links to the paper by Klein (fig. 9(a)), discussing
the formation of waves upon waves on edge-stressed disks.
Wave pattern-formation was also investigated by Sharon [48]
[49], who emphasized the similarities between occurrences
in biology and man-made structures, as for example ripples
in torn garbage bags (fig. 13(c)). Figure 13(a) and 13(b)
show the wrinkled edge of a leaf that forms curved strips
when flattened. Liang [50] investigated the relation between
in-plane stresses and resulting geometry of long leaves and
Rudraraju [51] researched the wavy pattern formation in
growing sea shells (fig. 13(d)). These can be considered as
the biological examples of the edge-stressed neutrally stable
geometries discussed earlier. Although, it is worth saying that
the examples mentioned above are approached theoretically
to illustrate the relation between self-stress and energy-free
deformation. Processes as lignification and stress relaxation
probably prevent the neutrally stable propagation of the wave
to be ever experienced.

(a) (b)

(c) (d)

Fig. 13. The (a) winkled edge of a leaf forms (b) circular strips when flattened
as analysed by Sharon [48]. Also garbage bags form wrinkles on the edge
due to compression stresses after tearing [49] and sea shells grow wrinkled
because of inhomogenous growth, explained by Rudraraju [51].

V. DISCUSSION

An important distinction between the application of geo-
metrical boundary conditions and the application of pre-stress
can be made based on practical feasibility. The manufacturing
process of pre-stressed structures was described as ‘difficult’
and ‘sensitive’ by Guest and Murphey whereas the application
of boundary conditions seems to be less of a challenge. This
can be explained by the fact that control over internal stress
is indirect. When the application of boundary conditions is
considered, accurate control over dimensions and material
continuity is required which is direct and therefore more easy
to achieve. A disadvantage of the application of boundary
conditions is the necessity of constraining reaction forces and
moments. This problem is bypassed by the creation of a looped
geometry, where the reaction forces and moments are applied
to itself. However, the geometry will always be restricted to
a loop. Shape-freedom is obtained by accurate pre-stressing,
resulting in neutrally stable mechanisms that can be optimized
for their application.

The occurrence of a neutrally stable closed-loop mechanism
can be explained intuitively. If an initially unstressed elastic
system is subjected to a boundary condition, a neutrally
stable deformation mode is present when infinitely many
energetically equally preferred solutions for the equilibrium
geometries exist. This is often the case when the initial
geometry shows axial symmetry. Two examples are used to
demonstrate this intuitive explanation. After that, a theoretical
mechanism showing two neutrally stable deformation modes
is synthesised.

Consider the bent rod described by Thomson and Tait.
A full rotation is applied at the endpoints of the rod with
finite length that brings them together. Because of the rod’s
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initial axial symmetry, the rotational orientation of the rod
does not matter: the rod is free to rotate around its centroidal
axis throughout the deformation process. A different, non-
axisymmetric example is given by the tape loop. A full
rotation is applied to the endpoints of a tape spring with
finite length and the ends are connected. Two half-turn folds
are energetically more favorable than a continuous loop or
three folds, so a flat loop with two parallel contours and two
localized bending regions emerges. However, the locations of
these folds is arbitrary due to the initial constant cylindrically-
shaped cross-section and can be moved with no energy penalty.

Consider the situation where the two deterministic proper-
ties are combined into an initial geometry with axial symmetry
that shows softening upon bending. Similar to the tape loop,
a non-circular shape results when the two ends are connected.
The localized regions of accumulated deformation form as
a result of the minimal potential energy condition. Similar
to the tape loop, the locations of the localized regions of
deformation are arbitrary. But because of the isotropic nature
of the initial bending stiffness, this non-circular structure
also features a second neutrally stable deformation mode.
There exists no preferred bending direction, resulting in an
energetically allowed rotation around the centroidal axis that
is also neutrally stable.

VI. CONCLUSION

The goal of this literature survey is to give an overview of
the occurrences of elastic neutral stability, categorize examples
and find methods for creating neutral stability in compliant
shell mechanisms. Examples of neutrally stable elastic systems
have been found in both mechanical and biological disciplines.
In mechanical systems, they overcome the need for additional
‘parasitic’ actuation. The occurrence of neutrally stable struc-
tures in biology is not unexpected, since also organisms would
benefit from efficient actuation. However, only a few with
a defined purpose have been identified in literature, others
are mere incidental occurrences where theory predicts the
presence of a neutrally stable deformation mode.

Mechanisms consisting of multiple separate components
can obtain their neutrally stable properties by modifying
the constitutive components individually. Neutral stability in
single element mechanisms seems to originate from different
mechanisms for maintaining a constant energy level. However,
similarities between methods for retaining the elastic energy
were found. Therefore, as the main contribution of this paper,
a division between the application of pre-stress and the appli-
cation of geometrical boundary conditions as an approach for
creating neutral stability is proposed.

When pre-stress is applied, the potential energy remains
within the mechanism by a phenomenon called geometric
frustration: no deformation mode exists that relaxes all present
stresses simultaneously. The directions and magnitude of the
pre-stress can then be optimized for the required neutrally

stable deformation path. When, on the other hand, boundary
conditions associated with an increase in potential energy are
imposed, energy remains stored in the system because no
deformation mode that does not meet the boundary conditions
is allowed to exist. For a neutrally stable deformation mode to
arise, infinitely many equally favorable solutions to that bound-
ary condition should exist. The neutrally stable deformation
mode is then defined by the continuous path that contains all
solutions. Looped geometries are a special case and result from
an angular boundary condition that involves a full rotation.

In this paper, effort is made to explain the occurrence
of elastic neutral stability on a practical level. New insight
into their working principles was obtained and often involved
geometric symmetry. Future work can be done to reveal the
influence of the presence of symmetry in the initial geometry
on the resulting neutrally stable geometry and associated
deformation path.
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Abstract—Elastic neutral stability in compliant mechanisms is
a remarkable appearance since it requires the energetic state of
the structure to remain unchanged during deformation. Several
examples in literature require either plastic deformation or
external constraints to be enforced for obtaining a state of pre-
stress and often require the use of anisotropic materials. This
paper presents a new type of compliant shell structure featuring
a neutrally stable deformation mode without requiring one of
the aforementioned conditions. The structure is composed of two
initially flat compliant facets that are connected via a curved
crease. It can be reconfigured into a second zero-energy state via
propagation of a transition region, without any apparent effort.
Both the structure’s local width and local crease curvature turn
out to be effective parameters for tuning the behavior regarding
stability during transition. The modelled results are verified by
several prototypes that match the modelled predictions qualita-
tively, as well as by measurement results that show quantitative
agreement. The new type of structure introduced here features
neutral stability without relying on the application of pre-stress
during manufacturing or externally applied boundary conditions.
Moreover, it shows potential for combining geometric simplicity
with complex and highly tune-able behavior.

I. INTRODUCTION

A surprisingly simple yet intriguing structure arises when
two flat arched-shaped compliant sheets are stacked and con-
nected in a hinged fashion along their shortest curved edges.
The resulting mechanism features two obvious stable zero-
energy equilibrium configurations: as-fabricated and inverted,
with either the top sides or the bottom sides of the arches
facing each other. However, transition between the stable
states is not straightforward since the curved nature of the
hinge does not allow energy-free operation. This type of
hinge can be considered a curved crease and based on the
presence of it, the structure can be classified as curved-crease
origami, where actuation of the curved crease is coupled to
inherent deformation of the facets [1]. The structure can then
arguably be classified as a compliant facet origami mechanism
(COFOM), an origami mechanism wherein compliance of the
facets is used to incorporate energy storage [2].

The transition is initiated when the edges at an arbitrary
end are flipped with respect to each other (figure 1). As
the transition region is propagated through, it progressively
inverts the structure until it has been completely flipped over.
A significant part of this transition appears to be an energy-
free process since the transition region merely shifts through
the structure. The mechanism then features a continuous
equilibrium as its behavior resembles the fascinating class of
statically balanced structures. In that particular situation, it is
said to be ‘neutrally stable’.

Elastic neutral stability is a remarkable appearance since,
normally, the deformation of materials is associated with
increasing potential energy and a resulting opposing force or
moment. An elastic mechanism in neutral equilibrium can only

deform without load if the necessary energy is already stored
in the system and redistributed upon deformation [3]. This
unique property is investigated by Guest et al. [4], who utilize
plastic deformation of an initially flat rectangular plate as a
source for pre-stress and describe the behavior of the resulting
neutrally stable cylindrically curved shell. Because of residual
stresses, rotation of the axis of curvature does not change the
strain energy, thereby rendering all possible curvature-axes
configurations equally preferable. Schultz et al. [5] describe
a neutrally stable deployable composite boom that is stable in
both the coiled and extended state and every configuration in
between.

Elastic neutral stability was probably first mentioned by
Thomson and Tait [6] in the book ‘Treatise on natural phi-
losophy’ (published in 1867). There, an initially straight rod
is described that exhibits a state of neutral stability around
its centroidal axis when the ends are connected to form a
circular, pre-stressed, geometry. Rotation can occur without
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Fig. 1. The transition between the two stable zero-energy states is depicted
both schematic (left) and using a physical prototype (right). After the transition
is initiated (top), the transition region propagates through the structure
(middle) until it reaches the opposite end (bottom).
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the need to introduce a load or to add energy to the system.
The tape loop, first thoroughly investigated by Vehar et al.
[7], is a more recent example where boundary conditions
applied to a compliant shell structure result in a neutrally stable
deformation mode. When the two ends of a tape spring are
connected into a loop, the equilibrium configuration associated
with minimal potential energy consists of two localized folds.
Because of the invariant cross-section, the location of these
folds is arbitrary and can be propagated collectively through
the structure without energetic costs. The structure presented
here closely resembles the tape loop, apart from the notable
difference that no loop formation is required, resulting in an
open-ended structure with beam-like properties.

Until now, all neutrally stable shell structures described
in literature require either plastic deformation [4], [8]–[11],
the use of anisotropic materials [5], [12]–[14] or external
constraints to be enforced (e.g. form a loop) [6], [7], [15], [16]
to create the desired state of pre-stress. The first two result in
a complex and sensitive manufacturing process and the latter
limits design freedom, thereby narrowing down the potential
applications. The structure presented here requires neither of
the aforementioned conditions. In order to be considered a
new class of neutrally stable structures, its neutrally stable
properties need to be verified. Therefore, this study aims to
characterize the unique deformation mode of this structure
by examining the influence of the design parameters on its
stability.

The method section of this paper addresses the approach
taken to investigate the behavior during transition, as well as
the influence of two design parameters hereon. The numerical
IGA-based model setup is discussed, together with a unique
choice for controlling the state of transition by manipulating
the geometry of the transition region locally. The results of
the numerical analysis are presented in the results section and
illustrated by physical realisation of several variants of the
mechanism that show different behavior. The results are quan-
titatively validated by measurements taken in an experimental
setup. All findings are further discussed and concluded in the
subsequent discussion and conclusion.

II. MECHANICS OF TRANSITION

The stability of the mechanism can be determined by the
potential energy stored in the form of material strain. The
energetic state during propagation of the transition region is a
measure for the stability and existence of equilibria throughout
the deformation path. The location of the transition region can
be described by the location of the inflection point along the
crease line. Here, the curvature of the crease line changes
sign. The inflection axis is the material axis perpendicular
to the crease line at the inflection point (figure 2). It is the
infinitesimal location within the transition region that tends to
neither of the flat equilibrium configurations and is therefore
assumed to be locally undeformed.

The structure consists of two identical sandwiched shells
that, when assumed to be inextensible, are only subjected to
bending [17]. Each can be considered a developable ruled
surface (i.e. the mid-plane resembles a ruled surface with

In�lection	point

In�lection	axis

Fig. 2. The inflection point and associated inflection axis is depicted for
two states during transition (left). The inflection axis is locally undeformed
and directed perpendicular to the inner perimeter at the inflection point. A
schematic representation of the deformation projected on the undeformed
geometry is depicted (right), where the yellow and blue lines represent the
generators with positive and negative curvature respectively.

zero Gaussian curvature), where the local bending axes form
the generators (figure 2). Everywhere on the surface one of
the two principal curvatures equals zero, relating the local
curvature directly to the bending magnitude around the lo-
cal bending axis. However, it should be mentioned that the
generators’ directions are not invariant but are determined by
the current location of the transition region. It can be observed
that the transition region is consistently subjected to relatively
high strains, suggesting that the total energy is predominantly
determined by the energy stored around the inflection point
(figure 3(a)).

The course of the energy curve during propagation of the
transition region can be manipulated by design parameters of
the undeformed geometry. Energy storage around the inflection
point can locally be influenced by changing the amount of
material (figure 3(b)). The local width of the arch-shaped
geometry is directly proportional to the amount of material
and will therefore be used as the first design variable (figure
4(a)). The local curvature of the crease at the location of the
inflection point also influences the required material defor-
mation (figure 4(b)). For instance, the limit case of a crease
with zero curvature (i.e. a straight folding line) would be able
to operate without deforming the material. In this work, the
effect of introducing variable arch width and variable crease
curvature on the behavior of the structure during transition is
further investigated.

III. METHOD

In order to investigate the complex geometrical config-
urations that occur during transition, a numerical approach
is substantiated. In this section, expressions for the variable
geometry are defined and modelling details are discussed.
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Fig. 3. (The stress distribution within the structure is visualised using a
phenomenon called photoelasticity where color gradients in the material
represent stress gradients (a). A schematic representation of the energy
distribution as a function of the material coordinate s is also depicted (b). The
two curves each represent a possible distribution for certain design parameters
where the surface area equals the total elastic potential energy within the
system.

A. Numerical model setup

An isogeometric framework (IGA) [18] forms the basis of
the numerical analysis. A shell model based on the Kirchhoff-
Love plate theorem is used and a linear isotropic elastic
constitutive law is applied. The geometry is modelled as
the mid-plane surface of a shell of uniform thickness and
described by B-splines. These are defined by a set of control
points and make up a planar grid, with the primary and
secondary material directions perpendicular to and along with
the curved crease line respectively (denoted with d1 and d2
respectively in figure 5). The boundaries of the surface are
given by the inner and outer perimeter, rin and rout and a
subtended angle, θ. The local width of the structure is defined
as the distance between rin and rout perpendicular to rin. The
control points are placed along the inner perimeter with equal
angular intervals (n = 60) and spaced linearly along the width
(m = 10). Because of symmetry, only a single half of the
structure is modelled. The effect of the interaction between the
two halves is replaced with a geometrical constraint, enforcing
the control points that describe the crease line to live on the
symmetry plane.

The effects of variations in local width and curvature are
investigated separately. The local width is varied by altering
the geometry of the outer perimeter while maintaining a

crease of constant curvature. The addition of a sine-function
of parameterized amplitude p is chosen to perturb the outer
perimeter, creating a smooth transition through the structure.
A parameterization of the investigated curves is given as:

rw,in(θ) = r0 (1)

rw,out(θ) = (1 + p sin θ) w0 + r0, (2)

with
0 < θ < π,

where rw,in describes the inner perimeter, or crease line, of
constant curvature and rw,out describes the perturbed circular
outer perimeter. r0 is the standard radius of curvature, w0 is
the standard width (table I) and θ is the angular coordinate
with respect to the positive x-axis. The period is chosen so
that the width at the boundaries equals w0. The amplitude p
is used to produce geometries of different width profiles with
−0.4 < p < 0.4 with equal intervals of ∆p = 0.1, resulting
in geometries with both narrower and wider middle sections.

An elliptical geometry is used to study the effect of local
curvature. A parameterization of the investigated inner curve
is given as:

rc,in(θ) =
a1b1√

(b1 cos θ)2 + (a1 sin θ)2
, (3)

with

a1 = r0

b1 = r0 q

and
0 < θ < π.

Variables a1, b1 are the semi-minor and semi-major axis of
the inner and outer part of the perimeter respectively. The
ratio between the semi-minor axis and semi-major axis is
represented by the factor q, with 0.8 < q < 1.2 with equal
intervals of ∆q = 0.05. A value of q = 1 results in a circular
segment and a ratio q > 1 results in a geometry with higher
curvature towards the boundaries. The outer perimeter rc,out
is traced out by the last control points in the d1-direction,
defined as the normal to the inner perimeter rc,in (figure 5).
The width of the curve, measured in the direction of d1, is kept
constant and equal to w0. Values for other design parameters
are denoted in table I.

B. A moving constraint

The control points on the inner perimeter rin of the mod-
elled half of the shell structure are constrained to live on the
symmetry (xy-) plane, i.e. z = 0. One (arbitrary) control
point along rin is fixed in space. The local geometry of
the inflection axis can be considered as a straight line and
invariant throughout the deformation process. Propagation of
the transition region is therefore modelled by locally aligning
the structure perpendicular to the symmetry plane (figure 6).
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Fig. 4. A graphical representation of the design variables used to control
the behavior of the transition. Either (a) the local width is varied while
maintaining a constant crease curvature or (b) the local curvature is varied
while maintaining a constant width.
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Fig. 5. The parameters used to describe the undeformed geometry are depicted
in both the Cartesian and polar coordinate system. The design variables (rin,
rout, θ), material directions used to define the control points (d1, d2) and
the curvelinear material coordinate s are denoted.
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Fig. 6. The constraints used to model the propagation of the transition region.
Only one half of the shell is modelled, whereby the inner perimeter rin lives
on the symmetry plane. Control point 1,2 and 3 are subjected to angular
constraints.

TABLE I
DESIGN VARIABLES

Parameter Value Unit
r0 0.1 m
w0 0.03 m
θmax π rad
p −0.4 < p < 0.4 -
q 0.8 < q < 1.2 -
t 5e−4 m
E 2.e9 N

m2

ν 0.37 -

The direction from control point (1) to (2) is aligned with
the x-axis. Control point (3) is constrained to share its y-
coordinate with point (1), such that control points (1), (2)
and (3) span the xz-plane. This condition is consecutively
imposed on all control points along the curved crease. The re-
sulting moving constraint affects the geometry locally, thereby
omitting parasitic deformations resulting from a more general
clamped loading condition. The elastic potential energy during
propagation is investigated as a measure for the stability of all
encountered intermediate configurations.

C. Experimental validation

Validation of the modelled results is achieved by repro-
ducing the constraint conditions in an experimental setup.
The setup, depicted in figure 7, is based on a three-point
bending framework that constrains three symmetrically ori-
ented material points to be aligned over a distance dc at a
specific location along the curved crease. A 9N miniature
S-beam load cell (Futek LSB200) is used together with a
signal conditioner (Scaime CPJ2S) and a data acquisition
module (NI USB-6008) to measure the reaction force on the
middle contact point. Due to symmetry and static equilibrium
conditions, the remaining two opposing reaction forces can be
derived. The reaction force is a measure for the tendency of the
structure to reconfigure towards an equilibrium configuration.
Measurements are taken at discrete intervals of π

20 rad along
the crease line.

Prototypes are constructed from 0.5mm polycarbonate (PC)
sheet with a Young’s modulus of 2.5GPa. Designs are mod-
elled in CAD-CAM software and a CNC-operated drag knife
is used to accurately reconstruct the modelled geometries. The
curved crease is realised using glass fiber reinforced adhesive
tape (3M 8959) on both sides of the PC sheets. Since a fixed
distance dc between the contact points is imposed in this
setup, only geometries featuring a constant width, i.e. ellip-
tical variations, are used for quantitative analysis. Prototypes
with varying width are used to validate the modelled results
qualitatively.

IV. RESULTS

A. Modelling results

Figure 8 and 9 show the elastic energy during transition
of the structure with varying local width and varying local
curvature respectively. In both figures, a schematic graphical
representation of the state of the structure is depicted. Every
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Fig. 7. The measurement setup based on a three-point bending framework.
Reaction forces are measured by the middle contact point that is connected to
a force transducer (1), while opposing forces are provided by two adjustable
contact points (2) connected to the frame (3). Three material points are aligned
on the structure to be analysed (4), representing the inflection axis (5).

curve represents unique behavior, where the geometry is
determined by a certain value of the the parameters p and q.
The dashed curve represents the same, circular, geometry with
constant width in both figures. Note that the zero-energy states
are not depicted here since they do not feature an inflection
axis and fall therefore outside the analysis window.

B. Experimental results

Figure 10 shows the reaction forces on the static contact
points of four variations to the elliptical geometry. A geometry
with a third equilibrium (q = 1.2), a constant energy region
(q = 1.05), a circular geometry (q = 1) and an unstable ge-
ometry (q = 0.9) are investigated. The dashed lines represent
the boundaries of the discrete measurement results and the
markers denote the discrete measurement locations. Locations
where contact was barely present are denoted with zero.
The shaded area illustrates the variance in the measurement
results. A change of sign of the measurement signal required
a physical flip of the analysed structure to ensure continuous
contact with the contact points.

Prototypes that represent the most extreme variations to the
elliptical and the circular geometries have been constructed.
The two variations with a predicted stable equilibrium halfway

through the transition (p = −0.4 and q = 1.2) also show
this behavior in practice. Structures with a predicted unstable
equilibrium (p = 0.4 and q = 0.9) always showed a tendency
towards their flat configurations. Finally, prototypes with a
predicted region of near-constant energy (p = −0.1 and q =
1.05) have been constructed and showed no tendency towards
any configuration. Within that region, no external loads were
required in order to maintain static balance. Prototypes of the
elliptical extremes are depicted in figure 11.

V. DISCUSSION

A. Results of the numerical analysis

A local energy maximum represents an unstable equilib-
rium, while a local energy minimum predicts the existence of
a stable equilibrium. It can be seen that both geometric groups
feature stable and unstable equilibria.

A circular geometry of constant width (corresponding to
p = 0 and q = 1 and the interupted curves in figure 8 and
figure 9 respectively) does not show stable behavior. When the
structure is symmetric with respect to the inflection point and
both sides are equal in size, a local maximum exists. This
effect is amplified when the middle of the structure either
features higher width or higher curvature with respect to the
ends (corresponding to values of p > 0 and q < 1). For
values of p < −0.05 and q > 1.05, the structure exhibits
a third stable, albeit non-zero-energy equilibrium. The local
energy minimum implies a tendency of the mechanism to
maintain this symmetric configuration. For values of p around
p = −0.05 and q = 1.05, the potential elastic energy curve
neither shows local maxima nor local minima around this
symmetric configuration, extending the state of equilibrium
over a significant portion of the investigated range of motion.
This shows that compensation for the edge-effects of the open
ended structure is possible, by geometrical variations to the
standard circular structure of constant width. Note that this
unique property is not a result of a specific optimization
procedure but arises simply due to the variation of either of two
principal design parameters. This aspect could be generalized
by stating that the behavior is tune-able to a high extend,
creating the potential to be optimized for customized behavior.

B. Results of the experimental analysis

Measurement results show similar behavior when compared
to the modelled predictions. However, measured forces are
notably lower then predicted, which could be due to several
discrepancies between simulations and the physical realisation
of the structure. The crease is modelled to have zero stiffness,
while this is evidently not achievable in practice. Crease forces
could have opposed the reaction forces of the shell elements,
thereby affecting the measurements. Also, visco-elasticity of
the prototype material was not taken into account in the
numerical simulations. Moreover, the finite width of the crease
allowed for some relative motion between the structure’s
components, resulting in another mismatch with the modelled
conditions. Finally, the manual operations allowed for some
inconsistency regarding positioning and propagation velocity
and left some room for interpretation of the measured forces.
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Fig. 8. The energetic paths for different values of the design parameter p, associated with a varying local width are depicted. The curves show the elastic
energy during transition between the two stable zero-energy states. The dashed curve represents a structure of constant width.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

q= 0.8

q= 1.2

E
/J

Fig. 9. The energetic paths for different values of the design parameter q, associated with a varying local curvature are depicted. The curves show the elastic
energy during transition between the two stable zero-energy states. The dashed curve represents a structure of constant curvature.

Qualitative analysis showed stable or un-stable behavior as
predicted and confirmed the existence of a neutrally stable
geometry in between.

VI. CONCLUSION

In this paper, a new type of compliant shell structure
featuring a curved crease is presented. Transition between two
stable zero-energy states occurs by propagating a transition
region through the structure without apparent effort. This
unique behavior is characterized by analyzing the influence
of two principal design parameters on the stability of the
encountered configurations.

It has been shown that the energetic path during transition
can be manipulated by both the structure’s local width and
local crease curvature. For a unique set of design parameters,
a third prolonged equilibrium exists within a significant range
of motion, rendering the structure neutrally stable and veri-
fying its potential to be optimized for specific behavior. The

modelled results are substantiated qualitatively by constructing
several prototypes that show behavior in agreement with
the modelled predictions. Moreover, measurement results of
pronounced stable and unstable geometries show quantitative
agreement with the modelled results. This verifies the validity
of the modelling approach.

In contrast to existing neutrally stable compliant structures,
operation of the structure presented here neither requires mate-
rial anisotropy, nor taylored plastic deformation nor boundary
conditions to be enforced. Therefore, we present a new type of
neutrally stable compliant structure that does not rely on the
application of pre-stress during manufacturing and therefore
allows an unstressed configuration to exist. Moreover, isotropic
material is allowed and no external constraints are required
during operation. This type of structure allows geometric
simplicity to be combined with behavior that is generally
considered complex.
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Fig. 10. The modelled and measured reaction forces depicted for an elliptic
geometry for various values of the design parameter q. The solid line
represents the modelled results while the shaded area depicts the spread of
measurement results.

Fig. 11. Prototypes are constructed for qualitative comparison to the modelled
results. Here, the two most extreme variations to the elliptical geometries,
corresponding to q = 1.2 (top) and q = 0.9 (bottom) are shown.
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Neutrally stable double-curved shells by inflection point propagation
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Abstract—Compliant mechanisms that can deflect without
effort form a remarkable group within their field, since it requires
the energetic state to remain unchanged during elastic deforma-
tion. Several examples in literature obtain this state of neutral
stability by the application of pre-stress, either as a result of
manufacturing processes or the application of imposed boundary
conditions. In this paper, we present a new type of statically
balanced compliant mechanism that exhibits neutral stability as
part of a continuous deformation process, while allowing a stress-
free configuration to exist. The transition of a double-curved
compliant shell towards its second equilibrium configuration
forms the basis of this investigation. A varying material thickness
profile, described by an ideal set of design parameters, is obtained
using an optimization procedure. Numerical analysis of the
resulting optimized shell structure predicts a significant region of
near-constant energy and associated near-zero loads within this
unique deformation mode. 3D-printed prototypes demonstrate
the validity of the modelled results by featuring a continuous
equilibrium within a significant range of motion. These results
lay the foundation for compliant beam elements with an internal
statically balanced bending degree of freedom.

I. INTRODUCTION

Compliant shell mechanisms have become an interesting
research topic over the last years and are recently circum-
stantially investigated. Relevant applications can be found in
e.g. the aerospace industry and wearable devices, where the
potential arises for organically-shaped functional structures
that fit close to the human body. As a group within the
increasingly popular research area of compliant mechanisms,
compliant shells can be described as ‘spatially curved thin-
walled structures able to transfer or transmit force, motion
or energy through elastic deflection’ [1]. A high degree of
design freedom allows for development of compliant mech-
anisms with non-linear force-deflection behavior, e.g. weight
balancing mechanisms. As a design tool, shape optimization
can be used to develop complex shell geometries that follow
a desired load-displacement path [1].

Compliant shell mechanisms that are in static equilibrium
throughout their range of motion belong to the group of
statically balanced compliant mechanisms (SBCMs) [2], [3].
SBCMs are typically designed for weight balancing and ex-
hibit neutral stability in presence of an external, gravitational
force [1], [4], [5]. Other applications require this state of
neutral stability to occur in absence of external loads [6], [7].
In the last case, the elastic energy in the compliant shell is
required to remain constant within the range of motion. Energy
is stored in the form of pre-stress and redistributed within the
structure itself to allow deformation to occur.

Pre-stress can be the result of an assembly process wherein
multiple elastic elements are connected in such a way that
no zero-energy configuration exists. Lachenal and Daynes
describe a moment-free pitch adjustment in airplane wings,

realized by adding a compliant shell structure that provides
negative stiffness [8]–[11]. Likewise, the composition of two
cylindrical shells with opposite curvature senses and perpen-
dicular directions can result in neutral stability, with applica-
tions such as deployable booms for space exploration [7]. Shell
mechanisms containing only a single element obtain their state
of pre-stress via various processes, as shown by the authors
in [12]. For example, Guest describes a cylindrically curved
compliant shell that shows neutral stability after introducing
pre-stress by plastic deformation [13]. Also, the curing process
of anisotropic laminates leaves residual thermal stresses behind
and can be used to generate the required pre-stress. This
has been successfully implemented as a method for reducing
stiffness of compliant shells, as described by Doornenbal [14]
and Stacey [15]. The tape loop, first thoroughly investigated
by Vehar, is an example of pre-stress resulting from boundary
conditions [16]. The location of the folds, which arise when
connecting the ends of a standard tape spring into a loop, is
arbitrary due to its constant cross-section. The folded regions
can be propagated through the structure without energetic
costs, creating a neutrally stable deformation mode.

Until recently, all neutrally stable shell structures described
in literature required either the introduction of pre-stress
during the manufacturing process or external constraints to
be enforced during neutrally stable operation [12]. Combining
multiple components in a pre-stressed assembly (1), plastically
deforming material to obtain a state of self-stress (2) and
introducing residual thermal stresses during the curing process
of laminates (3), all result in a complex and sensitive manu-
facturing process. In addition, a structure that is pre-stressed
during fabrication may suffer from deteriorating performance
over time because of creep and relaxation [17]. The required
presence of boundary conditions, either in the form of external
- or internal constraints, e.g. a looped geometry, limits design
freedom, thereby narrowing down the potential applications.
Prior work by the authors [18] resolves these issues by
introducing a neutrally stable compliant shell structure that
does not rely on pre-stressed fabrication. Similar to the tape
loop, it involves the propagation of a region of localized
strains, though it omits the requirement of a looped geometry,
resulting in an open-ended structure with beam-like properties.
However, an idealized zero-stiffness crease is assumed, caus-
ing a discontinuity in the structure that complicates physical
realization and obstructs its potential applications.

The goal of this research is to develop a monolithic compli-
ant shell mechanism that features a neutrally stable deforma-
tion mode without the need for pre-stressed manufacturing and
boundary conditions to be applied. A unique and promising
deformation mode of a double-curved compliant shell structure
will be investigated. It features the transition between two
naturally occurring stable configurations via elastic, ideally



25

energy-conserving, deformation. Interplay occurs between the
so-called ‘flange’ - and ‘crease’ sections. The influence of the
geometric design parameters on its neutrally stable potential
is therefore examined.

In the next section, the shell structure with its intended
deformation mode is introduced. The geometrical aspects
and the mechanics of the transition are illustrated and its
natural bi-stable behavior is explained by derivation of an
analytical approximation of the kinematics. In the methods
section, a design approach is substantiated and the modelling
setup and optimization procedure are described. The design
of an experimental setup and practical considerations for
manufacturing prototypes are also discussed. The last part
of this section will focus on modelling of the transition
using an IGA-based approach and the optimization of design
parameters to obtain the desired neutrally stable behavior. The
results section presents both the modelled and the experimental
results, followed by a discussion and a conclusion.

II. MECHANICS OF TRANSITION

This section serves to introduce the shell structure by
describing its features and design parameters and to give the
reader an intuitive understanding of its mechanical behavior.
Aspects around the intended deformation mode, featuring
a transition region, are first elucidated and illustrated by a
schematic representation of the expected energy-deflection
behavior. This is further substantiated by an attempt to an-
alytically derive the mechanics of an alternative deformation
mode that predicts the same bi-stable behavior. The reader is
free of choice to skip this last section, as it merely serves a
supportive purpose.

A. Geometry description and design parameters

This investigation is based on a compliant shell structure
with specific geometrical features, wherein two parts with
different functionalities can be distinguished. The base of the
mechanism resembles the surface section of a torus with neg-
ative Gaussian curvature, effectively forming a curved crease.
Its two principal curvatures are perpendicular in direction and
opposite in sign (figure 1). The two longitudinal edges are
tangentially extended to create two symmetric ruled surface
sections, from now on referred to as the ‘flanges’.

The undeformed geometry is parameterized by the width of
the flanges, w, the longitudinal - and transverse radius, rl,0 and
rt,0 and the associated longitudinal - and transverse subtended
angles, θl,0 and θt,0, that determine the overall length of the
structure and the initial angle between the flanges respectively.
Variables tc and tf denote the crease - and flange thickness
respectively. The radius of the circular boundary between the
crease - and flange sections is assumed to be equal to rl,0
since rt,0

rl,0
is designed to be small.

B. Deformation process: initiating a transition region

A characteristic property of this group of shell structures
is the existence of a second stable, though non-zero energy,
configuration, from hereon referred to as the ‘inverted state’.

w

θl,0

θt,0

rt,0

rl,0

tc

tf

x

y
z

Fig. 1. The geometry of the shell structure is composed of a torus surface
section with negative Gaussian curvature and two developable cone surface
sections with zero Gaussian curvature. The design parameters that define the
undeformed geometry are depicted.

Bi-stable behavior of similar compliant shells, both with and
without Gaussian curvature, is discussed in the context of
laminated composites [19]–[22]. In this research, so-called ‘slit
tubes’ form either positive - or negative barrel-shaped coils
at their second equilibrium configuration when a positive -
or negative longitudinal curvature is applied respectively. The
shell structure that forms the basis of this research differen-
tiates itself by its material isotropy, yet shows resemblance
regarding its mechanical behavior.

A practically feasible method to obtain the second stable
configuration involves the introduction and propagation of a
transition region (figure 2, top). It is initiated when the flanges
at one end of the structure are rotated with respect to each
other until the previously opposing faces point away from
each other (1). A comprehensive description of this process
is given in prior research by the authors [18]. The emerging
transition region is characterized by high localized strains,
predominantly present in the flanges. Its location s is defined
as the normalized location of the inflection point along the
symmetry line, or ‘spine’. Its formation can be considered
as the required pre-stressing part of the deformation process
or, analogue to chemical reactions, as the activation energy
required to initiate a sequence of events. The associated energy
is referred to as the ‘transition energy’ and characterized by a
steep energy increase with respect to variable s. Preliminary
numerical analysis resulted in the schematic plots of figure 2.

As the transition region is propagated in the longitudinal
direction, the structure is progressively inverted (2). With
resemblance to tape loop behavior, the transition region ge-
ometry and associated transition energy are roughly preserved
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Fig. 2. The inverted state can be obtained in practice by initiation of a transition region (top). Its location is defined as the location of the inflection point of
the spine, annotated by the normalized dimensionless distance s along the spine of the shell structure. The deformation process is depicted in step (1)-(3) and
a schematic energy plot gives an impression of the energetic state throughout transition. The existence of an inverted stable equilibrium can also be shown
by relating the elastic energy to the inclination angle ϕ of the flanges (bottom) where the energetic paths are plotted based on the analytical expressions from
eq. 15-17. Note that, although the deformation paths are fundamentally different, the end states (3) and associated energy levels E2 can not be distinguished.

along its way. However, an increasing part of the crease
section is deformed, accounting for an approximately linear
energy increase in the succeeding part of the transition. Edge
effects allow the transition energy to gradually decrease to zero
towards the end (elaborated in prior research by the authors
[18]), leaving behind the structure in its inverted, non-zero
energy state (3).

C. An analytical approach

1) Inextensibility and shell assumptions: In this section,
the geometry is assumed to be inextensional, which is valid
for thin shells whereby the energy required for in-plane
stretching is orders of magnitude higher then for bending [23].
As a result of this assumption, Gaussian curvature remains
invariant upon deformation and kinematic relations can be
approximated. A second assumption is that circular cross-
sections remain circular during the application of a load.
Both these conditions enable an analytical approach to the
mechanics of the shell structure. As an attempt to give the
reader a natural understanding of its mechanical properties,
an alternative deformation process is described that predicts
the same bi-stable behavior.

2) Kinematic coupling: The flanges can be considered as
surface segments of a cone and are therefore developable,
meaning one of the two principal curvatures equals zero, i.e.
they have zero Gaussian curvature. The toroidal section that
connects the flanges can be regarded as a curved crease of
circular cross-section. Because of its curved nature, actuation

by varying the angle ϕ also results in deformation of the
compliant flanges. Following the inextensibility assumptions,
the kinematic relationship between the constitutive elements
can be approximated.

Variation of the generalized coordinate ϕ results in a ge-
ometric change of both the crease and the flanges (figure
3(a) and 3(b)), where the following relation applies to the
undeformed geometry:

ϕ0 =
π − θt,0

2
. (1)

The transverse radius and associated curvature of the crease
are directly linked to the angular deflection between the flanges
via conservation of the arc length, according to:

rt =
θt,0 rt,0
π − 2ϕ

(2)

κt =
1

rt
=
π − 2ϕ

θt,0 rt,0
. (3)

Substitution of eq. 1 in eq. 2 results in the initial transverse
radius rt,0.

The longitudinal radius of curvature rl follows from the
inextensibility assumption and can be analytically derived by
projecting the flange geometry on a cone with variable pitch
(figure 3(b)). The kinematic relation between the flange angle
ϕ and longitudinal radius of the crease rl is calculated via the
invariant distance ri:

ri =
rl,0

cos(
π−θt,0

2 )
(4)
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Fig. 3. A cross-section of the torus (a) and cone (b) shows the kinematic
relationship between the crease and flange geometry. The flange angle ϕ is
considered as the generalized coordinate.

rl = ri cos(ϕ), (5)

where substitution of eq. 1 in eq. 5 results in the initial
longitudinal radius rl,0. The longitudinal curvature change of
the crease section is omitted for simplicity, since it is designed
to be small compared to κt.

The curvature of the cone-shaped flanges is approximated
as the average of the surface curvature along the most inner
- and outer perimeter with radius rl and ro respectively, via
calculation of their local radius of surface curvature, according
to:

r′l =
rl

sin(ϕ)
(6)

r′o = r′l +
w

tan(ϕ)
(7)

rm =
r′l + r′o

2
(8)

κm =
1

rm
. (9)

The curvature change of all elements is then given by the
difference between the curvature of the undeformed and the
deformed geometry, as:

∆κt = κt(ϕ)− κt(ϕ0) (10)

∆κm = κm(ϕ)− κm(ϕ0). (11)

3) Elastic energy relations: The energy associated with
elastic deformation that follows a linear material law is given
by [23]:

E =
1

2

∫
A

[
γ
∆κ

]T [
A B
B D

] [
γ
∆κ

]
dA, (12)

where γ and ∆κ denote the membrane stretch and curvature
change vectors respectively that are related to the energy E
via the ABD-matrix and surface area A. For thin shells that
meet the inextensibility condition, no stretching of the mid-
plane is assumed, i.e. γ = 0. Evaluating the elastic energy per
longitudinal radial unit length of shells with initial curvature,
this simplifies to:

E
θl,0

= E ′ =
1

2

∫
S

∆κTD∆κ dS, (13)

where length unit S denotes either the arc length of the circular
crease cross-section or the width w of the flanges. Matrix D
contains the local material properties in accordance with [23]:

D =
Et3

12 (1− v2)

 1 v 0
v 1 0
0 0 1−v

2

 . (14)

When the elastic energy of the curved crease section is
superimposed on the elastic energy of the flanges, the total
energy follows from the sum of its individual components:

E ′c =
1

2
Dc,(1,1) ∆κt

2 θt,0 rt,0 rl,0 (15)

E ′f =
1

2
Df,(1,1) ∆κm

2 (wrl,0 +
1

2
w2) (16)

E ′tot = E ′c + 2 E ′f , (17)

with subscript ‘c’ and ‘f’ denoting the (material) properties of
the crease and the flanges respectively. The bottom right of
figure 2 shows a schematic plot of the energy paths, described
by equation 15, 16 and 17 for a geometry with initially parallel
flanges (i.e. ϕ0 = 0). According to equation 4, 5, 7-10 and
16, the flange energy follows a tan(ϕ)2 trajectory and shows



28

symmetric behavior around the asymptote ϕ = π/2. Energy
approaches infinity when ϕ = π/2, before showing a decrease
in energy for values of ϕ > π/2. The transverse component
of the crease energy follows a quadratic increase (equation 3,
10 and 15). Together, this predicts the theoretical existence of
a second stable, though non-zero energy configuration: the in-
verted state. At this local energy minimum, the tendency of the
flanges to flatten opposes the tendency of the crease towards
its as-fabricated state, resulting in static balance. However,
approaching the inverted state by this deformation process is
not possible in practice since it requires a configuration with
infinite strain energy.

The two discussed energetic paths required to obtain the
second stable state (figure 2) are fundamentally different, yet
the final configurations (3) can not be distinguished from each
other.

III. METHODS

A. Conceptual approach

The energetic path obtained during propagation of the tran-
sition region is the result of a complex interplay between the
various elements in the structure and is ultimately determined
by the design parameters. A stiff crease, either caused by a
small transverse radius or relatively large thickness, results
in a more pronounced energy increase during propagation
of the transition region, as illustrated in figure 2. Since this
effect negatively influences neutrally stable transition, a logical
approach would be to minimize the crease stiffness.

Figure 4 shows the schematic energy profile (blue) of a
standard (dashed) and a desired geometry (solid). Both cases
feature a loading region that can be considered as the pre-
stressing action, which is required for neutral stability to
occur [12]. In case of the standard geometry, it is followed
by a significant region dominated by crease energy increase
and ends with an unloading region, that leaves the structure
in its inverted state. Prior research by the authors [18] has
shown that the energetic contribution of the flanges (black)
during propagation of the transition region is tune-able to a
high extend. This gives rise to the possibility to compensate
for the increasing crease energy (orange) during transition by
manipulation of the local properties of the flanges. Specifically,
it requires an approximately linear decrease of the flange
energy component with equal slope of opposite sign.

Several methods have shown to be effective for manipu-
lating the local energy storage in the flanges [18]. In this
investigation, a material thickness variation in longitudinal
direction is applied to the flanges, while maintaining a con-
stant, sufficiently small, material thickness of the crease.
The rationale behind this choice will be elucidated in the
subsequent sections.

B. Numerical simulation

1) Model setup: The shell structure is modelled according
to the Kirchhoff-Love plate theorem and a linear isotropic elas-
tic constitutive law is applied to describe its elastic behavior.
An isogeometric framework forms the basis of the numerical
analysis, whereby the geometry is described using B-splines
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Fig. 4. A schematic representation of the energy curves belonging to the
constitutive parts during transition. The dashed and solid lines represent the
standard and desired, i.e. neutrally stable, geometry respectively.

[24]. A Newton-Raphson numerical integration scheme is used
to solve for the static equilibrium configurations.

The control points that define the B-splines are placed in
the transverse (u)- and longitudinal (v) direction of the shell
structure to create a two-dimensional grid of control points
(figure 5). Unequal spacing is used in the u-direction, where a
higher model accuracy is obtained in the curved-crease region.
The geometry is defined by m = 35 control points in the u-
direction (of which 17 to describe the curved crease region)
and n = 56 equally spaced control points in the v-direction.

Two geometric variants of the structure are chosen for
investigation by setting either a small or a large crease ra-
dius rt,0, resulting in lumped compliance with a distinctive
crease (e.g. an origami mechanism) or distributed compliance
respectively. Other design variables and material properties
used for modelling are denoted in table I. Note that not all
design parameters are constant throughout the structure, since
the flange thickness is allowed to vary in the longitudinal
direction, as tf = tf(v).

2) Modelling the transition: The transition is initiated when
a transition region forms and an inflection point develops along
the spine curve. An effective way to achieve this involved
modelling the inverted state by estimating its inverted-state
geometry and numerically solving for its closest equilibrium
configuration. From here, two opposing flange ends are rotated
back to their original configuration, while constraining the op-
posing half of the control points on the edge the in vertical(z)-
direction (detailed description in supplementary material, B.1).
Finally, equilibrium is maintained by releasing all but one set
of edge constraints that imposes a fixed constraint distance dc
between two symmetrically located control points on opposite
edges, denoted as the ith set of control points in v-direction
(figure 5). It is located sufficiently close but behind the
inflection point expressed as its location s along the spine.

The location of the transition region can indirectly be
controlled by imposing the constraint to subsequent sets of
control points along the edge in positive v-direction towards
the opposite end. To ensure effective propagation, dc is chosen
to be equal to the maximum distance between the control
points on opposite edges of the inverted state (elucidated in
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Fig. 5. Material directions u and v generate the two dimensional grid of
control points. The transition is modelled by the application of a constraint
on the distance dc between the ith set of two opposing control points on the
edges of the shell. Fi and Fi+1 represent the reaction forces that belong to
two consecutive steps. Distance dc remains constant throughout the transition.

supplementary material, B.1). The location of the transition
region can be controlled as long as its tendency exists to return
to its original position, which is characterized by a positive
constraining force Fi. Consequently, when the force required
to maintain equilibrium equals zero, neutrally stable transition
is obtained.

Apart from spatial fixation to prevent rigid body translation
and - rotation, no clamped boundary conditions are applied
during the modelling of the structure. This enables the analysis
of a free shell and allows for the edge effects to be studied.

3) Optimization procedure: During optimization, the geom-
etry is varied in the search for a unique combination of design
parameters, i.e. the optimization variables, that minimizes the
effort required for transition, i.e. the objective function.

Implementing a thickness variation over the flanges as a
variable design parameter allows for fixed coordinates of the
control points during variation of the optimization variables.
This ensures consistent results from the constraint choice
and decreases computing time (detailed description in sup-
plementary material, B.1). The simplest continuous thickness
variation can be described by a constant gradient and is chosen
as initial strategy, according to:

tf(v) = a
v

n
+ tf,0, (18)

where v is a discrete value that denotes the vth set of m control
points. This choice requires only two optimization variables:

x = [a tf,0]. (19)

To promote the existence of a transition region, the op-
timization window is chosen such that the transition region
is located sufficiently far away from the edges, while still

TABLE I
DESIGN PARAMETERS USED FOR THE OPTIMIZATION PROCEDURE

Parameter Value Unit
Geometry

rt,0 0.01, 0.035 m
rl,0 0.1 m
θt,0

π
2

rad
θl,0 π rad
w 0.4 m
tc 4e−4 m
tf (a v

n
+ tf,0) m

m 35 -
n 56 -

Material
E 1.8e9 N

m2

ν 0.4 -
Optimization

x [a tf,0] m
x0,rt0=0.01 [0 1.6e−3] m
x0,rt0=0.035 [0 8e−4] m
xmin [0 3e−4] m
xtol 1e−6 m
i n

4
< i < 3n

4
-

dc 0.045, 0.060 m

including a significant part of the transition. It is achieved
by application of the constraint within boundaries that span
the middle half of the structure, given by the interval:

n

4
< i <

3n

4
. (20)

The objective function in this optimization problem is
defined as the sum of all encountered constraining forces, as:

f(x) =

3n
4∑

i=n
4

|Fi| . (21)

Note that this value is no measure for the amount of
work done since the movement direction of the constraint is
perpendicular to its reaction force. Though, it becomes zero
when neutral stability is obtained.

Minimizing the value of the objective function is the goal
of the optimization procedure. The function fmincon from the
Matlab R©Optimization toolbox is employed. The optimization
procedure is interrupted when the difference between two
consecutive steps of either of the two objective variables is
within the predetermined tolerance xtol ≤ 1e−6. To ensure a
material thickness above a feasible limit, a lower bound is set
on the objective variables, defined by xmin. Two optimization
runs are performed, i.e. one for each variation of rt,0. The
initial values for the optimization variables, x0, are denoted
in table I.

4) Prototype fabrication: An accessible manufacturing
method, able to deal with the double-curved geometry and
variable shell thickness, is 3D-printing. Multi jet fusion is a
suitable printing technique that provides respectable material
homogeneity, enables material thickness down to the tenth-of-
a-millimeter scale and allows for processing of materials with
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TABLE II
DETAILS ON THE 3D-PRINTING PROCESS

Parameter Value Unit
Material (PA-12)

Tensile strength (XY) 48e6 N
m2

Tensile strength (Z) 48e6 N
m2

E (XY) 1.7e9 N
m2

E (Z) 1.8e9 N
m2

Process
Accuracy 0.3 %
Layer thickness 0.08 mm

TABLE III
OPTIMIZED RESULTS FOR THE OPTIMIZATION VARIABLES

Parameter Value Unit
xrt0=0.01 [1.3411e−3 8.3703e−4] m
xrt0=0.035 [9.5574e−4 3.1856e−4] m

sufficient elasticity (i.e. high yield strength with respect to E-
modulus). The prototypes were constructed out of PA-12 with
material properties denoted in table II.

Printing orientation determines material homogeneity to a
large extent, especially in regions of low thickness. To mitigate
the resulting effects, printing orientation is chosen such that
the printing layers are oriented parallel to the horizontal
construction(xy)-plane, ensuring layer cross-sections with a
consistent line-like appearance.

C. Experimental validation

1) Measurement setup: To verify the simulated results,
a measurement setup is designed that mimics the modelled
conditions (figure 6). A measurement frame (1) with two
contact points formed by grooved rollers (3,4) serves as the
constraint. Rolling is prevented by brake screws and position
is maintained by friction between the prototype’s edges and
the roller surfaces. The distance dc between the contact points
is adjustable and chosen to match the simulated conditions
corresponding to each prototype. A 9N miniature S-beam load
cell (Futek LSB200) is connected to the upper contact point
with its measurement axis in line with the direction of the two
contact points. Vertical orientation of this axis enables elastic
reaction forces to be measured while excluding gravitational
forces. The force signal is processed by a signal conditioner
(Scaime CPJ2S) before fed into a acquisition module (NI
USB-6008).

After manual initiation of a transition region, the specimen
is clamped between the contact points at a discrete location xc
along the edge with intervals of ledge/10 and moved manually
through the measurement setup. Sliding motion as a result of
the parallel component of the reaction force is prevented by
friction. The measured force can be directly compared to the
constraint force obtained from the model.

2
3

4

1

5
dc

g

Fig. 6. The experimental setup used to mimic the simulated conditions during
transition of the shell. The measurement frame (1) holds the force sensor
(2) with primary contact point (3) and the secondary contact point (4). The
prototype is clamped between the contact points at a known distance dc,
thereby mimicking the simulations.

IV. RESULTS

A. Simulation results

This section presents the results of two successful optimiza-
tion runs that were limited by the convergence criterion of
xtol = 1e−6m on the optimization variables. Figure 7 shows
the energetic paths of the two optimized geometries during
transition on the beginning and end of the optimization win-
dow, denoted with (1) and (2) respectively. Values are plotted
with respect to the location of the inflection point s (not to be
mistaken with the constraint location xc). The separate energy
contributions of the flange - and crease sections (distinguished
by shading in figure 1) are indicated by the intermittent lines.
Only data points are plotted for configurations that featured
an inflection point along the spine, accounting for the abrupt
ends.

The optimization procedure resulted in an energy variation
of less than 4% and 2% of its average within the optimization
window for rt0=0.01 and rt0=0.035 respectively. The optimized
design variables are presented in table III and the resulting
optimized flange thickness gradient tf along the v-direction
is depicted in figure 8. The deformation process is shown in
figure 9, where also the volumetric strains are indicated.

Figure 10 shows the reaction forces required to maintain
equilibrium during transition. Results for x = x0 (i.e. prior
to optimization) are represented for comparison by the dashed
lines while the solid lines denote the optimized results. Data
points are solely available for configurations where an inflec-
tion point on the spine could be localized, resulting in the
seemingly abrupt beginning and ending of the plots.

B. Experimental results

Measurements on the dimensions revealed a disparity be-
tween the digital models and the physical, 3D-printed proto-
types. Because of the small dimensions on material thickness,
deviations easily cause large relative differences. In com-
bination with the cubic relation between material thickness
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Fig. 7. The resulting energy paths of the two optimization runs, with respect
to the location of the inflection point, s, during propagation of the transition
region are depicted. The vertical dashed lines, denoted with (1) and (2)
represent the optimization window, i.e. the interval wherein the objective
function (eq. 21) is defined. The horizontal dashed lines illustrate the energy
variation and the markers denote the energy level of the fully inverted state.
Individual flange - and crease components are plotted by the intermittent lines.
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Fig. 8. The optimized local thickness variation tf(v) of both structures. The
crease thickness tc is constant and equal in both variants. The dash-dotted
line represents the optimization minimal bound.

and associated elastic energy, behavior is expected to be
most sensitive to this metric. Measurements taken along the
circumference of both prototypes show that differences as high
as 50% occurred (figure 11).

Figure 10 also shows the measurement results of the reac-
tion forces of both prototypes, required to maintain equilibrium
throughout the transition process. For comparison, simulated
results that are corrected for measured thickness are presented
as dashed-dotted lines. Measurement range was limited by the
force transducer, causing reaction forces above 20N not to
be measured with the current setup. The markers represent

Volumetric strain rt,0 = 0.035 m

1

2

Fn
4

-Fn
4

F n
4
3

-F n
4
3

Volumetric strain rt,0 = 0.010 m

1

2

Fn
4

F n
4
3

-F n
4
3

-Fn
4

Fig. 9. The deformation process during transition and associated volumetric
strains, belonging to configurations at the beginning (opaque) and end
(translucent) of the optimization window, denoted with (1) and (2) in figure
7 respectively.

the upper and lower measurement bounds, following from
measurements taken in a loading or unloading direction re-
spectively. Zero force measurements (i.e. when contact loss
occurred) are denoted with circles. The gray area contains
all possible encountered measurements, independent of ap-
proach direction and indicates the visco-elastic behavior and
hysteresis of the material. Measurements from where ‘self
propagation’ occurred correspond to a negative constraining
force and are therefore discarded.
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Fig. 10. Experimental results of the reaction forces required to maintain
equilibrium are depicted by their upper and lower boundaries (markers),
corresponding to the loading and unloading directions respectively. Optimized
modelled results are presented by the solid lines and the modelled results,
compensated for the prototype thickness, are depicted as dashed-dotted lines.
The reaction forces that belong to the starting parameters of the optimization
procedure x0 are represented by the dashed lines.
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Fig. 11. Measurements on the local thickness of the two prototypes (red) is
compared to the local thickness of the optimized modelled geometry (black).
Measurements are only performed on the accessible perimeter of the shells.

V. DISCUSSION

A. Numerical results

The typical behavior during deformation of a compliant
shell is a result of complex interplay between all parts of
its structure. However, an intuitive approach, whereby several
sub-functions are attributed to separate parts, turned out to be
effective during investigation of this particular type of struc-

ture. The optimization procedure resulted in behavior similar
to the intuitive prediction (figure 4), whereby a distinctive
loading phase could be identified and the energy increase of
the crease region during transition indeed approximates the
expected linear course. To compensate, the flanges provide
the opposite characteristic, whereby superposition results in
a constant energy level, indicating neutral stability. From this
perspective, the crease and the flanges can be considered as the
load-carrying and compensating elements respectively, similar
to the approach taken in most of the previously mentioned
existing examples of neutrally stable shell structures [12].

A remarkable outcome is the apparent simplicity of the
required optimization parameters, i.e. the linearly varying
flange thickness, in order to produce results that approach
this unique state of neutral stability very closely. A constant
thickness gradient might initially sound as a sensible guess,
but close inspection of equation 14 reveals a cubic relationship
between the material thickness and associated deformation
energy. So far, no profound explanation for this phenomenon
has been thought of.

Most of the energy deviations within the optimization win-
dow occur around the window’s borders, while the majority
of the transition features a close-to-constant energy level. This
could be explained by edge-effects and the inability of the
constant thickness gradient to compensate for it.

Another notable feature of the resulting neutrally stable
behavior is the energy level whereat it takes place. The
objective function is designed to reduce the sum of the
constraining forces to zero, creating an energy course with a
derivative that approaches zero. No bounds were set to control
the energy magnitude: this value is arbitrary. However, in
both cases, this energy level matches the energy level of the
inverted state closely, suggesting even a smooth transformation
between the transition phase and the inverted state. This can
indeed be experienced while handling the physical models. A
possible explanation is continuity, which states that an abrupt
behavioral change is unlikely to occur.

The shell in this investigation is considered to be ‘free
floating in space’, i.e. no constraints are imposed on the
structure’s boundaries. However, when one would look at this
structure as to have a clamped base and free end-effector, it can
be regarded as a beam element that exhibits neutral stability
in its bending degree of freedom. This lays the foundation for
compliant building blocks with beam-like appearance and -
kinematic behavior that are internally statically balanced.

B. Experimental results

Although the material thickness of the manufactured pro-
totypes did not match the optimized results, neutrally stable
behavior was experienced during the experiments. In figure
12, various stable configurations during transition from un-
deformed (1) to inverted (6) state are depicted. A possible
explanation is internal friction of the material, responsible for
the hysteresis loop in figure 10. Energy dissipation within
the material enables no reaction force to be measured if the
hysteresis band crosses the zero-force line. Although hardly
noticeable, visco-elastic deformation towards a near stable
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Fig. 12. Several stable configurations during transition from the undeformed
(1) to the inverted (6) state. Although the modelled results do not predict
stability, a continuous equilibrium was observed.

configuration presumably does occur, but on a different, imper-
ceptible timescale. Dynamic analysis that takes into account
the material visco-elasticity would capture this phenomenon.

Hysteresis loss is more notably present in the design that re-
quires higher reaction forces, corresponding to rt,0 = 0.01m.
Apart from a larger average thickness, this shell features higher
stains during transition (figure 9) as a possible cause for higher
energetic losses. Finally, gravity was not taken into account in
the numerical analysis and, although the experimental setup
avoids measuring weight, the presence of a gravitational field
does effect the structure’s geometry. However, this effect is
assumed to be negligible compared to the effects caused by
the elastic forces.

C. Future work

Development of the optimization process towards more
accessible manufacturing methods is desired to increase its
applicability. Prior research by the authors [18] has shown
promising results in the optimization of geometric properties,
e.g. local flange width and local longitudinal curvature, to
influence the energetic path during transition. This allows for
a structure with a uniform thickness that is not solely bound
to a 3D-printing manufacturing process.

VI. CONCLUSION

In this investigation, the transition between the undeformed
and inverted equilibrium configurations of a double-curved
shell structure is analysed. The approach, that involved func-
tional separation of the parts within this distributed compliant
shell, turned out to be useful for the creation of a neutrally
stable deformation mode. Optimization of the design parame-
ters resulted in a constant energy level within a significant
portion of transition. Therefore, we present a new type of

neutrally stable shell structure that, in contrast to examples
in literature, does not rely on pre-stress obtained during the
manufacturing process or boundary conditions to be imposed.
Instead, it features neutral stability as part of a continuous
deformation process, allowing a stress-free configuration to
exist.

Successful optimization runs, based on a variable material
thickness, resulted in shell structures with a significant near-
constant-energy region as part of their transition. Ultimately,
physical realization of 3D-printed prototypes validate the
modelled results by featuring infinitely many equilibrium con-
figurations along the deformation path. Remarkably, a constant
thickness gradient of the flange sections over the length of the
structure is sufficient for this unique behavior to occur. An
explanation thereof is not yet given.

This shell structure can be considered as a beam element
with a neutrally stable bending degree of freedom, laying the
foundation for statically balanced compliant building blocks
with a beam-like appearance and - kinematic behavior. How-
ever, despite the progress made, the variable material thickness
throughout the structure limits the manufacturing method to
3D-printing. Other tactics to tune the behavior that allow for
a uniform material thickness [18] could be investigated to
facilitate manufacturing and applicability.
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Towards constant-force curved-crease compliant shell mechanisms
Sjaak Kok

Abstract—Curved creases are characterized by the coupled
facet deformation upon actuation. The forces exerted by the
facets can be used to oppose the effects of crease stiffness during
actuation to achieve an overall stiffness decrease. In this paper,
a non-developable bi-stable shell structure with a torus-shaped
curved crease and connected facets is investigated. An analytical
approach, based on a combination of a pseudo-rigid-body model
(PRBM) and plate theory, predicts the potential for constant-
force actuation around its second stable, or ‘inverted’ state. The
accuracy of the model is validated by numerical simulations.
However, due to prototype inaccuracies, the experimental results
do not feature the desired constant-force behavior. Nevertheless,
a stiffness decrease, or ‘softening’ is experienced, verifying the
concept and marking a first step towards statically balanced
curved creases.

I. INTRODUCTION

Constant-force generators are used for a variety of applica-
tions, but are arguably best recognised in the form of gravity
balancers, where gravitational energy is exchanged with elastic
energy and stored in spring elements. Herein, conventional
rigid-link mechanisms [1], [2] and compliant mechanisms
[3]–[5] can be distinguished, following the categorization of
[6]. Compliant shell mechanisms form a group within the
compliant mechanisms and are characterized by their potential
for large deformations and highly non-linear behavior. This
increases their applicability but simultaneously requires more
challenging design methods [4].

Structures featuring a curved crease can also be considered
compliant shell mechanisms [7]. Curved creases are widely
discussed in the field of origami and enable the creation of
more complex designs [8]. Where the classical art of origami
typically focuses solely on the geometrical aspects, the field of
origami engineering adds the interest into motion and forces.
The kinematics of a curved-crease structure are especially
interesting, since actuation of a curved crease requires de-
formation of the adjacent facets [9]. When the creases are
a result of folding, i.e. plastic deformation, actuation of which
is accompanied by a stiffness that prevents the deformed
facets from flattening and, instead, equilibrium is settled and
structural stiffness is obtained [10]. Other applications require
crease actuation [9] and deploying [11], [12] and would po-
tentially benefit from internally balanced creases to minimize
actuation effort.

The goal of this paper is to develop a constant-force
curved-crease shell mechanism by taking advantage of the
facet deformation that occurs as a result of crease actuation.
Literature exists wherein the interplay between crease stiffness
and compliant facets is discussed [13], but only straight crease
lines are assumed and facet deformation is a result of the
boundary conditions applied. This study focuses on a non-
developable compliant shell structure, featuring a torus-shaped

curved crease and two extended cone-shaped facets (figure 1).
An inverted configuration exists wherein the stiffness during
crease actuation is decreased by the deformed facets, from
hereon referred to as the ‘flanges’. The study contains prelim-
inary investigations to characterize this behavior and verify its
potential for use as a constant force mechanism.

The methods section is subdivided into three parts, wherein
an analytical, numerical and experimental approach are dis-
cussed. The results of all three approaches are presented in
the results section and compared in the discussion, where an
attempt is made to explain disparities between the outcomes.

II. METHODS

A. An analytical approach

1) Inextensional idealisation: The mechanical behavior of
thin shells can be approximated by a inextensibility assump-
tions [14]. It states that stretching of the midsurface is un-
likely to occur because the energy required overshadows the
energy associated with bending of thin shells. As a result,
the local Gaussian curvature of the shell surface, defined as
the product of the two principal curvatures, remains invariant.
Deformation of this type of shells can be approximated by
bending only, but the result becomes less accurate when the
applied boundary conditions require midsurface stretching, e.g.
by the application of a ‘twist’. The structure presented here
only involves the conical bending deformation of developable
surfaces that maintain zero Gaussian curvature throughout
their deformation, justifying the inextensional approach.

w

θl,0

θt,0

rt,0

rl,0

tc

tf

x

y
z

Fig. 1. The geometry of the investigated shell structure is composed of a
torus surface section and two cone-shaped flanges. The design parameters
that define the undeformed geometry are depicted.
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2) Elastokinematic behavior: Kinematic coupling between
the (curved) crease and the flanges enables this structure to
be considered as a single-degree-of-freedom (1 DOF) mech-
anism, whereby actuation of the crease automatically results
in deformation of the connected flanges. The angle between
the flanges ϕ is chosen as generalized coordinate. The initial
geometry is defined by the initial inclination angle between
the flanges ϕ0, the flange width w, the longitudinal radius rl,0
and the transverse (crease) radius rt,0. The overall size of the
structure is determined by the longitudinal subtended angle
θl,0 (figure 1). In this investigation, a structure of unit length,
i.e. θl,0 = 1rad, is assumed and edge effects are excluded. The
subtended crease angle θt,0 is directly coupled to the initial
inclination angle of the flanges, according to:

ϕ0 =
π − θt,0

2
. (1)

A hybrid pseudo-rigid-body model (h-PRBM) is used to
analytically approach the mechanical behavior. Therefore, the
torus-shaped crease section, assumed to be of circular cross-
section, is replaced by idealized, 1 DOF torsional springs
with a stiffness kc per unit crease length (figure 2). The
longitudinal curvature change of the original crease section
is hereby omitted and the inner perimeters of the flanges are
assumed to coincide as a result of this approach.

Gaussian curvature of the flanges is assumed to remain zero
throughout the deformation process as a result of the inexten-
sibility condition, requiring one of the two principal curvatures
to equal zero. This enables a geometric interpretation whereby
the flanges are formed by surface segments of a cone of
variable pitch (figure 3). The variable longitudinal radius rl
follows from crease actuation and can be approximated via
the invariant distance vector ri by:

ri =
rl,0

cos(
π−θt,0

2 )
(2)

rl = ri cos(ϕ). (3)

The surface curvature, defined by the non-zero principal
curvature, varies along the width, but can be approximated by
the average curvature κm, that follows from the inner - and
outer radius projections r′l and r′o, as:

r′l =
rl

sin(ϕ)
(4)

r′o = r′l +
w

tan(ϕ)
(5)

rm =
r′l + r′o

2
(6)

κm =
1

rm
. (7)

The elastic energy associated with crease actuation is
composed of two elements: (1) the energy required for the
curvature change of the flanges and (2) the energy absorbed
by the crease, represented by a torsional spring. Deformation
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φ

kc
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y
z

Fig. 2. The hybrid PRBM model with generalized coordinate ϕ and dependent
dimensions.
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Fig. 3. The surface curvature of the cone segments can be estimated based
on its cross-section dimensions.

of the flanges can be approximated by plate theory and a linear
material law, where the associated energy is given by [14]:

E =
1

2

∫
A

[
γ
∆κ

]T [
A B
B D

] [
γ
∆κ

]
dA, (8)

where γ and ∆κ denote the membrane stretch and curvature
change vectors respectively that are related to the energy E
via the ABD-matrix and surface area A. With no midsurface
stretching assumed, i.e. γ = 0, this simplifies to:

E
θl,0

= E ′ =
1

2

∫
S

∆κTD∆κ dS, (9)

with variable S denoting the radial dimension and matrix D
containing the material properties, according to:

D =
Et3f

12 (1− v2)

 1 v 0
v 1 0
0 0 1−v

2

 , (10)
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where E, ν and tf denote the modulus of elasticity, the Pois-
son factor and material thickness of the flanges respectively.
Variable vector ∆κ represents the curvature change, given by:

∆κ =

 ∆κm
0
0

 =

 κm(ϕ)− κm(ϕ0)
0
0

 . (11)

This results in an expression for the energy of the two
flanges per longitudinal radial unit length:

E ′f = 2 · 1

2
D(1,1) ∆κm

2 (wrl,0 +
1

2
w2). (12)

The torsional stiffness per radial unit length of the surrogate
crease can be estimated by the properties of the original crease
of circular cross-section, according to:

kc =
Et3c rl,0

12 (1− v2) rt,0
, (13)

where tc denotes crease thickness. This results in the following
expression for the crease energy, expressed as function of the
generalized coordinate ϕ:

E ′c =
1

2
kc (∆ϕ)2. (14)

3) Constant force: Equation 12 is of the form tan(ϕ)2

and shows asymptotic behavior around ϕ = π/2 + k π. The
energy in the crease section is of order O

(
ϕ2
)

according to
equation 14. Figure 4(a) shows the energy path for an arbitrary
geometry with initially parallel flanges, i.e. ϕ0 = 0. It predicts
the theoretical existence of a second stable, though non-zero
energy state, corresponding to the local energy minimum. In
this stable ‘inverted state’, the tendency of the flanges to flatten
opposes the tendency of the crease towards its as-fabricated
state, resulting in static balance.

A translation of the angular generalized coordinate ϕ to
the vertical distance d between the flange edge and the
symmetry plane reveals approximately linear behavior in the
energy domain. The derivative translates this into constant-
force behavior within a specific region of the range of motion
(figure 4(b) and 4(c)).

Several design parameters of the structure can be tuned
to optimize the region of constant force. A change of initial
inclination angle ϕ0 or pre-stressed assembly cause a relative
shift between the contributing elements. A change of rt,0, w
or material thickness tc controls scaling of the contributing
elements (further discussed in supplementary material section
C.2). These design parameters are manually varied to create
the desired constant-force behavior.

B. A numerical approach

1) Model setup: The shell is modelled in accordance with
the Kirchhoff-Love plate theorem whereby a linear isotropic
elastic constitutive law is applied. The numerical analysis is
based on an isogeometric framework that makes use of B-
splines to describe the geometry [15] and a Newton-Raphson
numerical integration approach to solve for the equilibrium
configurations. The control points that define the B-splines
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E
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-1 -0.5 0 0.5 1
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-1 -0.5 0 0.5 1

Reaction force wrt. vertical distance

0

d/w

F
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Fig. 4. A schematic representation of the energy path during actuation of the
inverted curved-crease shell as a function of angular deflection (a) or vertical
distance (b) where the local minimum corresponds to the inverted stable
configuration. The reaction force (c) is equal to zero there, but also shows a
region of near-constant force. The marker denotes the inverted equilibrium.
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create a two-dimensional grid. For these simulations, a model
with m = 35 control points in the transverse (u) direction and
n = 56 control points in the longitudinal (v) direction of the
shell structure is used.

2) Constraint application: An effective method for ob-
taining the inverted equilibrium of the shell structure is by
estimating its inverted geometry and solving for its closest
equilibrium configuration. Figure 5 depicts the initial (a) and
the inverted (b) equilibrium configurations. To achieve crease
actuation, all control points that describe the longitudinal edges
are aligned parallel to the xy-plane. The distance between
the sets of control points to the xy-plane, d, is incrementally
decreased with a step size of ∆d = 1e−3m (c). The associated
reaction forces are obtained.

3) Design optimization: Manual variation of the design
parameters θt,0, rt,0, w and tf resulted in a geometry with
close-to-constant force behavior. Design parameters θl,0, rl,0
and tc are fixed to bound the overall dimensions of the
structure. Table I contains the values of the design parameters
used for evaluation.

C. An experimental approach

1) Prototype fabrication: Due to the requirements on the
material thickness, 3D-printing is chosen as a method for the
fabrication of prototypes. Multi jet fusion is a 3D-printing
technique that allows for small wall thicknesses while pro-
viding reasonable accuracy. The method provides sufficient
material homogeneity and the printing material (PA-12) pro-
vides sufficient elasticity (i.e. high yield strength with respect
to E-modulus). Prototypes are made on a 1 : 1 scale, based on
the optimized geometry discussed in section II-B.

2) Experimental setup: The modelled conditions are mim-
icked in an experimental environment, where a vertical dis-
tance is imposed between the shell edges (figure 6). Two
identical shells (5) are brought into their inverted stable state
and positioned between two parallel plates (1,2), such that the
setup is axially symmetric. The top plate is connected via a
force transducer (4), located in the axis of symmetry, to an end-
effector (3), of which the vertical position can be controlled.
Because of symmetry, no moments will be exerted on the
plates, ensuring their parallel configuration to be maintained
throughout vertical displacement.

TABLE I
DESIGN PARAMETERS USED FOR NUMERICAL EVALUATION

Parameter Value Unit
θt,0

π
2

rad
rt,0 0.01 m
θl,0 1 rad
rl,0 0.1 m
w 0.03 m
tc 4e−4 m
tf 8.5e−4 m
E 1.8e9 N

m2

ν 0.4 -

a

b

c

Deformation states and Gauss curvature

x
y

z

Fig. 5. Visualsation of the Gaussian curvature associated with the undeformed
(a) and deformed (b,c) configurations. Note that the vertically compressed
configuration (c) does not belong to the equilibrium configurations. Colors
suggest little to no Gaussian curvature change during deformation, supporting
the inextensibility assumption.

The signal from force transducer (9N miniature S-beam
load cell, Futek LSB200) is processed by a signal conditioner
(Scaime CPJ2S) before fed into a acquisition module (NI
USB-6008). Data is acquired with a sampling rate of 10Hz.

3) Measurement procedure: Prior to positioning in the test
setup, the shell is brought into its inverted state. A method
that involves the initiation of a transition region (elaborated in
prior research by the authors [16]) allows the inverted state to
be obtained while circumventing the infinite-energy configura-
tion, depicted in figure 4(a). The measurement procedure starts
after the two plates are brought in contact with the entire edges
at a distance of d = 60mm. From there, vertical displacement
is applied in the range 10mm < d < 60mm with a velocity
of 400mm/min where the unloading phase directly succeeded
the loading phase.

III. RESULTS

The reaction forces, estimated with the analytical model,
are presented together with the numerical and experimental
results in figure 7. Also depicted are the modelled results, cor-
rected for the actual dimensions of the 3D-printed prototypes.
Figure 5 simultaneously shows the Gaussian curvature of the
undeformed (a), inverted stable (b) and maximally actuated (c)
configurations.

IV. DISCUSSION

A. On the modelled results

Both the analytical and the numerical model predict the ex-
istence of a near-constant-force region. The required actuation
forces are higher according to the numerical analysis, which
could be explained by the longitudinal curvature change of the
crease section, not accounted for in the analytical model. Also,
the simplification of the flange curvature, i.e. approximate
average instead of an exact integral, could contribute to this
disparity.
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1

2
3 4

5 2d

Fig. 6. The experimental setup used to apply vertical displacement on the shell
edges. The top- and bottom plates (1,2), the vertically moving end-effector
(3), the force transducer (4) and the prototypes are shown. Axial symmetry
of the setup ensures a parallel configuration of the plates.

Figure 5 indicates an invariant Gaussian curvature through-
out the deformation process. This validates the inextensional
assumptions and approves the approach, which involved kine-
matic coupling between the constitutive elements.

A situation wherein the flange energy curve completely
opposes the crease energy curve would result in static balance
during crease actuation. This state of ‘neutral stability’ is
not obtained with the investigated design parameters. Energy
associated with crease bending dwarfs the decreasing flange
energy in most cases. This energy difference can be reduced
orders of magnitude by combining multiple materials with
diverse E-moduli. The results of preliminary multi-material
investigations are described in supplementary material section
C.5.

B. On the experimental results

The prototypes used in the experimental validation featured
multiple deviations from the ideal modelled geometry. Di-
mensions on the thickness, having a significant influence on
the behavior, were off by up to 40%. Moreover, the printing
orientation caused a thickness variability in the crease region
and a loss of material homogeneity (figure 8(a)), with a non-
circular crease cross-section and high localized stress as a
result (figure 8(b)). A correction for these geometric deviations
is made to the analytical and numerical model to represent the
real prototype as good as possible and resulted in significantly
different force curves and loss of the constant-force behavior.
However, ‘softening’ of the crease stiffness did occur and the
corrected results match the experimental data acceptably well.

Discrepancies between the experimental setup and the simu-
lated environment also involved the constraint application. The
parallel plates in the experimental setup represent a contact
constraint, i.e. a constraint that can transfer forces in one
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Fig. 7. Reaction force of a curved crease shell structure, compressed in
its inverted state. The blue and yellow curves represent the results of the
analytical and numerical model respectively. The dashed lines represent the
corrected results for prototype dimensions. The experimental loading and
unloading are presented as the red solid and - dashed lines respectively.

direction only. In the modelled environment, also negative
forces could be applied, which indeed turned out to be present.

Energy loss within the loading-unloading cycle emerge
from material visco-elasticity (internal friction) and Coulomb
friction (external friction). The surface area of the so-called
hysteresis band (shaded red in figure 7) is a quantitative
measure for the energetic losses and is of expected appearance.
External friction, caused by edge-sliding is minimized by
reducing the coefficient of friction between the prototype and
contact plate material to approximately µ ≈ 0.15 (Nylon -
PMMA, with a thin layer of PTFE lubricant).

V. CONCLUSION

In this study, a method is proposed to reduce the stiffness of
a curved crease shell structure by coupled deformation of the
connected facets. Both an analytical and a numerical approach
predict constant-force behavior, i.e. zero-stiffness, within a
significant range of motion. However, experimental validation
of this phenomenon is obstructed by prototype inaccuracies.
Despite the inequalities between the models and physical
prototype, a significant stiffness reduction, or ‘softening’, was
experimentally observed.

Analytical and numerical results are similar for both the
near-constant-force - and the corrected case, supporting the
choices for the simplifications used in the analytical model.
The approach, that involved a hybrid-PRBM model in combi-
nation with the inextensiblity assumptions, shows promising
results. It gives an indication of the mechanical behavior,
which is comparable to the results of the numerical analysis.

Neutral stability of a curved crease, wherein crease forces
are entirely balanced out by facet forces, is not yet achieved
with the current design parameters. Nevertheless, this study
can be considered as a first step towards statically balanced
curved creases, with applications in e.g. origami engineering.
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(a) (b)

Fig. 8. Translucency of the shell material reveals a thickness variation in the
crease region (a) which causes a non-circular cross-section when deformed.

VI. SUPPLEMENTARY MATERIAL

A. The influence of design parameters (Appendix C.2)
B. Video of experimental setup (digital versions only)
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6
Conclusion

This section serves to highlight the main contributions per chapter and discuss the challenges that are still to
be addressed.

6.1. Main contributions
In this thesis, a new type of neutrally stable shell structure is introduced. In contrast to existing examples,
it does not require any pre-stressing actions during the manufacturing process or external constraints to
be applied during operation. Instead, it features neutral stability as part of a continuous, unconstrained
deformation process, which allows a stress-free configuration to exist.

In chapter two, an attempt is made to give an overview of the occurrences of elastic neutral stability,
categorize examples and find methods for creating neutral stability in compliant shell mechanisms. Examples
of neutrally stable elastic systems have been found in both mechanical and biological disciplines, where they
share a common purpose: reducing operating effort. Moreover, a categorization is established wherein pre-
stress obtained by the manufacturing process or externally applied boundary conditions are considered as
the working principles of neutrally stable operation.

In chapter three, a new type of structure is introduced that features a curved crease, but distinguishes
itself from origami mechanisms because of its non-developable nature. It also features a unique deformation
mode that, by tuning of basic design parameters, is neutrally stable. Moreover, it requires neither of the
aforementioned conditions found in literature to be applied.

Chapter four describes the extension towards a monolithic structure that shows similar behavior. The ap-
proach, that involved functional separation of the parts within this continuous shell, turned out to be useful
to gain insight into the mechanical behavior. A new modelling method is proposed that enables equilibrium
configurations to be found by estimating their approximate geometry. This is used effectively and enabled
numerical analysis of the transition and structural optimization towards neutral stability. Herein, a linear
thickness variation of the flange sections was introduced to compensate for crease stiffness and resulted in
a constant energy level within a significant portion of transition. This shell structure can be considered as a
beam element with a neutrally stable bending degree of freedom, laying the foundation for statically balanced
compliant building blocks with a beam-like appearance and - kinematic behavior.

In chapter five, a method is proposed to reduce the stiffness of a curved-crease shell mechanism by utiliz-
ing the coupled deformation of the compliant facets. The inverted stable configuration of the same structure
served as a starting point, but the deformation mode of interest differs from prior investigations. The ‘soften-
ing’ effect was indeed observed and constant-force behavior was predicted by both an analytical model and
numerical simulations. The analytical model, that involved a hybrid pseudo-rigid-body approach, shows
quantitative agreement with the simulations. This study can be considered as a first step towards statically
balanced curved creases, with applications in e.g. origami engineering.
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6.2. Future work
This section serves to sum up the open ends left at the end of this project. It contains improvements on the
already established results and additional areas that can be explored in future research. A more elaborate
description is given in the ‘future work’ sections of appendices A, B and C.

Future studies on the curved-crease structure, described in chapter three, could address aspects as sup-
port stiffness. Structural compositions might be developed to increase stiffness in desired directions, while
maintaining a neutrally stable degree of freedom. Also, the potential for optimizing the neutrally stable equi-
librium path, custom force generation and multi-stability could be investigated.

More research is required on the equilibrium paths of the neutrally stable continuous shell, discussed in
chapter four. A tendency towards a parasitic ‘twisting’ motion with negative stiffness behavior is observed,
which impairs the stability of the inverted configuration. Other recommendations apply to the physical real-
isation of prototypes, currently bound to 3D-printing. Alternative strategies, e.g. varying local flange width
or local curvature, could be investigated and potentially enable other manufacturing methods, thereby facil-
itating applicability.

In order to obtain more accurate analytical predictions, the analytical model presented in chapter five
could be expanded. Cone curvature and longitudinal curvature of the crease section could be incorporated
in the form of an exact integral, without adding significant computational effort. Neutral stability of the
curved crease is obstructed by relatively high crease stiffness, but multi-material structures could be used to
solve this (preliminary investigations in Appendix C). In the context of (developable) origami mechanisms,
the required pre-stress could be obtained by plastic deformation of the fold lines as a first step towards the
creation of statically balanced actuated origami mechanisms.
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Supplementary material - Paper II

A.1. Details on modelling
All modelling involved static analysis using a modified version of the isogeometric analysis (IGA) framework,
developed at the Delft University of Technology. Some adaptations to the code were made for this specific
application. This section serves to provide background information on the modelling environment and elu-
cidate the choices made in the modelling procedure regarding the pre-loading step prior to propagation and
the geometry updating in between the analysis of varying geometries.

A.1.1. IGA framework
The Isogeometric Analysis method makes use of B-splines, defined by a grid of control points, to determine
the geometry of the structure. A big advantage compared to conventional FEA analysis is that the geometry of
the structure to be analysed is preserved, instead of being approximated by meshing. Comprehensive details
of this method are given by Hughes et al. [10].

Force equilibrium is found with a non-linear solver using a standard Newton-Raphson iteration scheme
by finding the solutions of the system of equations:[

K R′
R 0

][
di

Fc

]
=

[
Fi

dc

]
, (A.1)

where matrix K and R denote the stiffness and constraint matrix respectively, di and Fi denote the node
displacements and internal node forces respectively and Fc and dc represent the constraint forces and - dis-
placements at the nodes where constraints are applied.

An adaptation made to the standard code effects the boundary conditions during static analysis. The
‘beams’ and ‘sliders’, normally used to define the clamped base and clamped end-effector, are removed so
displacements and external forces need to be applied to the individual control points. This adaptation makes
modelling a more comprehensive exercise, but simultaneously allows for more modelling freedom, which is
not superfluous as will become clear in the following sections.

A.1.2. Pre-loading
In order to obtain a deformed state that features a transition region, the structure is pre-loaded. This pre-
loading action is no part of the primary analysis (i.e. transition region propagation) and requires different
boundary conditions to be applied. The initially undeformed flat shell is fixed in space at an arbitrary control
point, where also rigid body rotation is prevented by an angular constraint with a neighbouring control point.
Next to that, the structure is constrained along its inner perimeter such that the corresponding control points
are free to move in the x y(symmetry)-plane. A rotation is applied to the radially oriented control points at
one end of the structure and forces the transition towards the second flat zero-energy configuration (figure
A.1). However, certain adaptations to the initial geometry cause a third stable configuration to exist. Figure
A.2 shows the energetic paths resulting from the loading phase, where the local width of the structure is
altered (i.e. narrower middle) and the local curvature of the initially circular geometry is varied (i.e. ellipse
with lower curvature towards the middle) respectively. Rotation is interrupted when the corresponding local
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energy minimum is reached (marked in figure A.2) and the rotational constraint is relaxed, leaving behind the
structure in a (stable) state of self-stress.

In this configuration, the material around the inflection point is directed normal to the x y(symmetry)
-plane. Propagation of the transition region is accomplished by imposing this constraint consecutively on
control points in the longitudinal direction, as discussed in chapter 3.
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Figure A.1: The deformation steps required during the pre-loading step. One of the short edges is rotated πrad while the inner perimeter
of the structure is constrained to the x y(symmetry) -plane. This allows only one half to be modelled. Starting from configuration (4), a
transition region is formed.
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Figure A.2: The effect of a local width (left) or local curvature (right) variation on the energy curves during to the pre-loading step is
shown. The red curves correspond to geometries with the most notable local energy minimum (indicated with the marker) and are used
as the initial geometries for the geometry updating procedure. The down-sloping lines indicate snap-back behavior, not captured with
the current displacement-controlled modelling approach.

A.1.3. Geometry updating
Many geometric variants of the basic circular geometry are investigated. To prevent the labor intensive and
situation specific pre-loading step to be executed for every geometric variation, an alternative strategy is
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chosen. The result of an initial (arbitrary) pre-loaded geometry is stored and used as a starting point for all
following simulations. The description of the initial geometry is changed by variation of a certain design
parameter and solved together with the previously known deformed geometry. When geometric changes to
the undeformed geometry are kept sufficiently small, the resulting displacements with respect to the current
deformed geometry are also sufficiently small and allow the solver to converge within a acceptable amount
of iterations. This way, a loop can be programmed that imports the initial pre-loaded workspace, changes
the undeformed geometry by variation of a desired design parameter and propagates the transition region.
The workflow is schematically presented in figure A.3. This method also allows for the transition modelling
of structures that do not naturally show local energy minima and do not feature a transition region naturally.
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Change initial geo.

 Vary the design par. of 

intereset (stepwise) and solve

Save

Load

Define initial geometry

Choose a geometry that features a 
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Pre-loading

Rotate the radially aligned 

control points until local E min.  

Change constraints
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and align the cp's at the infl. pt.
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Save 
data

Figure A.3: The workflow regarding the geometry-updating process for a stepwise approach in evaluating the behavior of a geometrically
similar series of structures. The pre-loading step is only required once, after which the deformed geometry is updated in a loop.

A.1.4. Validity of inextensibility assumptions
The intuitive approach in chapter 3 required the shell structure to be assumed inextensible. However, sur-
face analysis of the deformed geometry reveals non-zero Gaussian curvature, suggesting mid-plane stretch
around the inflection point (figure A.4, left). This energy-costly deformation could also contribute to the rela-
tively high energy storage within the transition region, as can be seen from figure A.4 (right), where the energy
distribution within the shell is shown during transition. This renders analytical approximation (e.g. by PRBM)
of the deformation during transition with inextensibility assumptions not suitable for capturing the behavior.
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Figure A.4: The Gaussian curvature of the initially flat geometry is depicted (left) and indicates the presence of membrane stretch around
the transition region. This could be the explanation for the high localized energy storage during transition (right) and invalidates the
inextensibility assumptions.

A.2. Manufacturing methods
Prototype fabrication has played an important role during research. Apart from enabling the experimental
validation of the modelled results, it facilitated idea generation throughout the project. In this section, the
evolution of manufacturing methods for prototypes is described and the performance and limitations of ev-
ery method are discussed.

A.2.1. Performance requirements
The requirements depend on their role within the project. Early prototypes, used for idea generation and
proof of concept verification, benefit most from easy manufacturing and can compromise on performance.
However, the ideal prototypes for experimental validation mimic the modelled conditions as close as possi-
ble, which sets the focus on material properties. The guidelines for ideal performance can be separated into
material properties of the flanges and the crease respectively, as follows:

• The flange material should deform according to a linear elastic material law, should not show visco-
elastic behavior and have a high yield strength and low hysteresis.

• The crease should behave as an ideal crease, i.e. has no stiffness and does not add any volume to the
structure.

A.2.2. Early prototypes
First prototype were made of laminated paper, cut by hand, and connected at intervals with duct-tape. Be-
cause of the availability of the materials, many prototypes could be made to explore the design space. In later
versions, laminated paper was replaced by PET sheet material (t = 0.5mm), enabling a better insight into the
elastic behavior.

A.2.3. Prototypes for experimental validation
Material choice For prototypes are fabricated to verify the modelled results, with the emphasis on perfor-
mance. Materials are chosen to match the modelled conditions as close as possible. Polycarbonate (PC) is
a thermoplastic polymer known for its toughness and relatively low internal friction. Apart from that, it is
an available easy-to-work material, creating favorable conditions for manufacturing. A 0.5mm thick sheet is
used.

The crease is formed by glass fiber reinforced adhesive tape (3M 8959). It features excellent tensile strength
and high tensile stiffness while being very compliant in bending. It is sufficiently thin and has good adhering
properties, required to transfer the internal forces.
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Figure A.5: A few examples of early prototypes are shown. Top-left showing two standard geometries with varying width. Bottom left
showing a infinite variant of the structure to mitigate the edge effects. Bottom right shows a variant with concave, convex and straight
portions of crease. Top right illustrates a different attempt to a manufacturing method, where PET sheeting is used as flange material
and the tape is replaced by a wound cross-over ribbon.

From computer to physical model The investigated geometries are modelled by B-splines and are defined
by a grid of control points. Translation between the B-spline surfaces and volumetric models is achieved
using the igesout function in Matlab®. The resulting surface part with ‘.iges’ extension is suitable for post
processing in most of the regular CAD packages. The step between computer model and physical prototype
is bridged by a CNC drag knife plotter. Standard milling toolpaths are created and post processed using the
Dragknife extension in Autodesk ®Fusion to compensate for the lagging contact point with respect to the
spindle axis. The resulting toolpaths (G-code) are tuned for a specific drag knife setup and sent to a CNC
machine.

1 2

34

Figure A.6: The manufacturing process of the modelled flanges is shown in four consecutive steps: The control points that define the
B-spline surface are exported from Matlab (1), made into a solid part in a CAD program where toolpaths are created (2), the toolpaths
are modified for drag knife applications (3), and are sent to a CNC-machine with a drag knife extension that cuts the geometries out of
sheet plastic (4).
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Assembly Two matching flange sections are clamped together to maintain alignment during assembly. A
cardboard dummy between the sections ensures a spacing equal to twice the tape thickness. A narrow strip
(20mm) of tape is placed along the head-end perimeter and slits are cut every 10mm to accommodate for the
radial length increase upon folding. When the tape is folded and adhered properly, the structure is flipped
inside out and the process is repeated on the other side. The cardboard strip ensured equal spacing between
the flanges in both stable configurations.

Figure A.7: The drag knife tool (left) used to cut the desired flange geometry out of plastic sheeting. And a series of prototypes created
with this manufacturing method (right).

Figure A.8: The assembly process (left), where two flanges are connected by a taped crease is shown. A cardboard sheet is inserted
between the flanges prior to taping the first side to ensure equal spacing in both configurations. Incisions are made in the tape to allow
for a smooth curved crease when folded over. The tape used (right) features longitudinal and transverse glass fibers, of which the last is
responsible for the load bearing capacities of this structure.

A.3. Multi-stable shells
Multi-stability can be obtained by projecting a sine-wave with a higher period waveform onto the width of the
initially circular geometry. Figure A.9 shows the energetic paths during transition for increasing amplitude at
a period of π/5 rad. Additional local energy minima arise with a sufficiently high amplitude. The undeformed
geometry corresponding to the red curve is shown below on the left, together with one of its additional stable
configurations on the right.



A.4. Towards a non-zero stiffness crease: a model extension 51

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.01

0.015

0.02

0.025

0.03

0.035
Multi-stability high-period waveform on width

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

-0.3

-0.2

-0.15

-0.1

-0.05

0

0.2 -0.1

0.05

0.1

0.1

0.15

0

0.2

0-0.1
-0.2

Undeformed Geometry Stable Configuration

Figure A.9: The energetic paths (top) correspond to a geometry with oscillating width and variable amplitude. The undeformed config-
uration (bottom left) as well as one of the additional stable configurations (bottom right) is shown.

A.4. Towards a non-zero stiffness crease: a model extension
The idealized assumption of a zero-stiffness crease contradicts the practical feasibility and causes a discrep-
ancy between the modelled and experimental results. An attempt to investigate the influence of a non-zero
stiffness crease is made by extending the numerical model. The goal of this exercise is to explain the differ-
ences between the modelled and experimental results and to work towards a continuous, monolithic shell.

Addition of a torsional stiffness is achieved by imposing a configuration-dependent moment on each of
the control points that make up the crease line. A constant stiffness is assumed that scales the moment lin-
early with the angle between the material segment spanned by two radially adjacent control points and the
x y (symmetry)-plane (figure A.10). The moment is applied in the form of a force Fi on the radially adjacent
control point and decomposed into its x- y- and z- components. Because these forces are configuration de-
pendent and at the same time considered external, convergence of the solver, that uses the internal stiffness
matrix to approach equilibrium, is impeded. Therefore, only relatively low stiffness values are allowed to en-
able convergence. A torsional stiffness of 0.15e−4Nm/rad is applied to every of the n = 60 control points that
form the crease line. This value is estimated to match the stiffness of the double tape layer. The results are
depicted in figure A.11, where the zero-stiffness crease results (red) are compared with the added torsional
stiffness (blue). The energy curve during a half transition is shown for the total energy (top) as well as the
separate flange (middle) and crease (bottom) contributions. The energy distribution at the beginning and
the end is shown above each of the aforementioned plots.
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Figure A.10: A schematic representation of the model wherein the idealized crease is replaced by torsional springs, located at every
control point along the inner perimeter(left). The configuration-dependent moments are applied as external forces on the neighboring
control points (right).

Three important observations on the torsional crease results are: (1) The addition of the torsional crease
constant mainly affects the geometry on the side of the structure where the crease is most actuated. (2) The
contribution of the energy change in the crease is linear over the complete range of motion. (3) The slope of
the energy curve changes from close-to-zero to non-zero.

The first two observations serve to gain insight into the behavior of a monolithic structure. The last obser-
vation could explain the difference between the modelled and measured results, in which case the torsional
crease counteracted the forces applied by the flanges.

A.5. Future work
Succeeding studies could address the issue of support stiffness in order to increase the stiffness ratio. Stiffness
can be evaluated by decomposition of the stiffness matrix at the end-effector, and visualized using stiffness
- and compliance ellipsoids. Degrees of freedom (DOFs) can be identified and, following the theory of ‘Free-
dom and constraint systems’, compositions with a single (neutrally stable) DOF can be developed based on
this neutrally stable element.

The relative motion within the structure can potentially be tuned to match a desired characteristic. Two
design parameters have been shown to be effective for neutrally-stable optimization. Both the ‘path of pri-
mary compliance’ and the associated (infinite) compliance can theoretically be optimized simultaneously.

Other properties that can be investigated are: its effectiveness as a custom force generator (e.g. gravity
balancing), multi-stability and energy-free wave propagation. Finally, crease realisation should be improved
in order to avoid the current labour-intensive and cumbersome procedure and extend the durability and
performance of the structure.
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Figure A.11: The results of a simulation with a zero-stiffness crease (red) and additional torsional crease stiffness (blue). The top, middle
and bottom block correspond to the total, flange and crease energy respectively. The top two plots in each block depict the energy
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B.1. Details on modelling
All modelling involved static analysis using the IGA framework, developed at the Delft University of Tech-
nology. For more details, the reader is referred to section A1.1. This section serves to provide background
information on the modelling procedure by going into the details of the geometry definition, the pre-loading
phase and the choices made regarding the optimization procedure. Also, the effect of these considerations
on the obtained results will be discussed.

B.1.1. Geometry definition
The geometry is defined in a cylindrical coordinate system (ρ φ z), whereby the constant cross-section is
defined in the ρ z-plane. This cross-section consists of the crease section, defined by a circular curve and two
tangent straight line segments. This cross-section is revolved around the z-axis, expressed by the coordinate
φ, with φmax equal to the longitudinal subtended angle.

B.1.2. Pre-loading and constraint choice
For transition to occur in the continuous shell, an inflection point along the crease line must be created. This
first deformation step is unrelated to the succeeding propagation of the transition region, since it requires a
number of steps during which the applied constraints are constantly varied. The following procedure, con-
sisting of a number of steps, describes a successful attempt for transition initiation.

A selective portion of the structure is brought into its inverted state by first inverting the structure in
its entirety. This inverted equilibrium configuration is found using a method here referred to as ‘geometry
estimation’, introduced in chapter 5 and discussed extensively in section C. From this pre-stressed state, half
of the structure’s edges is constrained to move in vertical direction (i.e. clamped between two virtual parallel
plates) while the flanges on the opposite end are rotated back. All but one mirrored set of vertical constraints
on the edges are relaxed, leaving a partially inverted structure that is in static equilibrium by ‘pinching’ of two
control points close to the inflection point (figure B.1). By application of this constraint to neighboring sets
of control points, the transition region can be propagated in both directions.

The location of the transition region can be controlled as long as there is a potential energy increase while
propagating in the direction with the constraint lagging behind, or potential energy decrease while propa-
gating with the constraint leading. The constraint distance affects the energetic path to a certain extent. As
a general guideline, the ‘pinching’ distance should be sufficient for transition region propagation without ex-
ceeding the distance between opposing edge control points in the inverted stable state. The effect of different
constraint distances on the propagation of a close-to-neutrally stable structure is shown in figure B.2.

It can be seen that, although the potential energy level remains close-to constant, the required reaction
forces increase with consequences for the optimization procedure, as will be discussed in section B.1.3. This
phenomenon can be explained by a simplified example of a rain gutter being pinched in its transverse direc-
tion (figure B.3). Translation of this pinching constraint will not result in an energetic change, translating into
zero reaction force and neutrally stable deformation. However, when the constraint distance is increased,
neutral stability is not impeded, but occurs at another energy level. An additional effect is that the transi-
tion region becomes separated from the constraint location, causing the complete transition to occur in a
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Figure B.1: The process of pre-loading the continuous shell structure involves finding the inverted equilibrium (1), back-rotation of the
flanges while constraining a significant part of the edges in height (2) and relaxing all but two of the edge-constraints to locally ‘pinch’
the structure.
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Figure B.3: A schematic representation of the effect of varying the ‘pinching’ distance, illustrated by varying the compression distance
on a rain gutter. When the constraint is moved along the (infinite) structure, the energy remains constant (i.e. implying neutral stability)
but its magnitude depends on the compression distance.

small distance travelled by the constraint. Because of these reasons, a distance is chosen during analysis that
resulted in the lowest energy level.

For visualisation of the results, the location of the pinching constraint is translated into the location of the
inflection point s, defined as the location where the spine of the structure changes curvature sign. This way,
the potential energy curve becomes independent of the constraint location and properties as linearity can be
coupled to the location of the inflection point.
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B.1.3. Optimization procedure
Neutrally stable transition is achieved when the reaction forces during transition are zero. Local adaptations
to the geometry can be made to reach this goal. Out of several tactics, including local width and local cur-
vature variation and local material thickness variation, the later was chosen because of its acceptance of the
constraint choice. Local width and curvature adaptations would potentially obstruct proper constraint be-
havior, with convergence issues as a consequence.

During the optimization process, a varying linear thickness gradient was applied on a fixed net of control
points that defines the mid-surface of the shell structure. Updates on the thickness of the structure were
executed on the pre-loaded geometry, allowing the pre-loading steps to be excluded from the optimization
structure in a similar way as discussed in section A. This procedure requires the geometric changes to be
small in order to converge towards a solution. Therefore, the new set of objective parameters chosen by the
optimization algorithm is compared to the initial set. The difference is then split up in multiple steps with
a known step size and processed in a loop that solves for each of the variable number of intermediate steps
prior to transition (figure B.4).
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Figure B.4: The workflow during the optimization procedure of a thickness variation of the flanges of the continuous shell.

B.2. Manufacturing methods and early prototypes
The construction of prototypes early in the process facilitated the generation of new ideas en validated early
concepts. Later in the process, prototypes were made to exactly match the modelled geometries, requir-
ing more advanced techniques. In the first part of this section, the findings and lessons learned from the
fabrication of early prototypes are described, after which some considerations regarding ‘high-performance’
manufacturing methods are discussed.
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B.2.1. Fabrication of early prototypes
First efforts towards a continuous shell resulted in a very rough prototype whereby the flat flanges are con-
nected by curved strips, acting as torsional crease elements discussed in section A (figure B.5, left). In accor-
dance with the modelled results, a second stable non-zero energy configuration existed (figure B.5, right).

Further attempts for creating a continuous toroidal crease involved a fiberglass lamination process with
a bicycle inner tube (approximate torus) acting as the mould (figure B.6). The method seemed promising,
but the curved crease sections on themselves did not show bi-stable behavior. A new mould was created in-
cluding a toroidal section and two adjacent parallel planes. The resulting fiberglass shells featured an inverted
stable configuration (shown in figure B.7, bottom right). Also, transition between the initial and inverted state
was practically achievable, laying the foundation for neutrally stable transition. At the same time, a pitfall was
discovered: a twisting degree of freedom renders the inverted state not inherently stable.

Fabrication was impeded by the use of directional fiber mats. To facilitate production of prototypes with
smaller radii, a variant was constructed out of chopped strand mat (CSM fibers with random direction). Three
variants of the structure are depicted in figure B.8 (from left to right): CSM with small transverse and longi-
tudinal radius and wide flanges, cross-ply directional fiber mat with small transverse and longitudinal radius
but limited flange width, cross-ply directional fiber mat with two large radii and wide flanges. The behavior of
these prototypes suggested that a small transverse and longitudinal radius and wide flanges promote stability
of the inverted state.

Figure B.5: A connection between the two flat flanges is realized by taping curved sections of elastic material in the very early prototypes.
It featured an inverted stable state, presumably also present in a continuous structure.

Figure B.6: An attempt to fabricate double curved shell sections, representing the crease sections of the shell. On their own, no stable
inverted state was noticed.
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Figure B.7: The manufacturing process for creating the first bi-stable shell prototypes required a mould (top left) and a fiberglass lami-
nation process (top right). The undeformed and inverted state are depicted in the bottom left and bottom right pictures respectively.

Figure B.8: Three prototypes that resulted from the lamination process: (from left to right) CSM with small transverse and longitudinal
radius and wide flanges, cross-ply directional fiber mat with small transverse and longitudinal radius but limited flange width, cross-ply
directional fiber mat with two large radii and wide flanges.

B.2.2. Fabrication of ‘high-performance’ prototypes
Prototypes for situations that demand accurate dimensioning control and material homogenity, require other
types of manufacturing methods. Little manufacturing methods for shells enable accurate control over local
material thickness: the driving force behind the optimized neutrally stable shell geometries. Multi jet fusion
is a 3D-printing strategy that provides respectable material homogeneity, enables material thickness down to
the tenth-of-a-millimeter scale and allows for processing of materials with sufficient elasticity (i.e. high yield
strength with respect to E-modulus), rendering it suitable for this application. The 3D-printed optimized
prototypes are shown in figure B.9.

Printing accuracy below 0.5mm is not guaranteed by the supplier and prototypes indeed showed some
deviation from the computer model (discussed in chapter 4). Also, visco-elastic behavior of the printing
material (PA-12) resulted in internal friction and relatively wide hysteresis bands (chapter 4), which in this
case enabled neutral stability of the prototype.
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Figure B.9: The 3D-printed prototypes used for experimental validation of the modelled results, fabricated with multi jet fusion, are
depicted in their as-fabricated (left) and separated states (right).

B.3. Future work
More research is required on the existence of near equilibrium paths. A tendency towards a parasitic ‘twist-
ing’ DOF is observed whereby the structure’s spine forms an out-of-plane helical shape. This equilibrium
path features negative stiffness (when a clamped condition is assumed) towards its undeformed zero-energy
state. The stability of the configurations encountered during neutrally stable operation can then be related
to how close this negative stiffness path is approached. Solutions could be found in the form of composi-
tions that follow from the theory of ‘freedom and constraint systems’, whereby this structure is considered as
a kinematic building block.

Advances towards a neutrally stable shell with constant thickness include some ideas, but as of today,
these are not yet implemented with success. Two promising tactics involve the application of a width vari-
ation of the flanges or a longitudinal curvature variation over the length of the structure. Preliminary inves-
tigations have shown that the energy increase as a result of crease bending, dwarfs the energy decrease that
can be realised by feasible flange width variation. This also applies to local curvature variation. Possible so-
lutions are geometries with a localized steep decrease in flange width (and thereby compromising the range
of motion) and spiral curves with sufficient curvature change (figure B.10).
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Figure B.10: A steep decrease of flange width (left) and variable decreasing curvature by a spiral geometry (right) are both tactics to
achieve neutral stability with constant material thickness.
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C.1. Details on modelling
C.1.1. Finding second equilibrium
The inverted stable configuration is found using the method discussed in section B. Here, the process is de-
scribed of estimating a deformed geometry before feeding it into the non-linear solver. When the estimation
is sufficiently close to actual equilibrium, the solver experiences no trouble converging. This method enables
the inverted state to be reached without a continuous deformation process and bypasses the infinite-energy
configuration. A downside is that is it hard to predict which equilibrium configuration is found: the solver
may find other equilibria (e.g. the undeformed configuration) during iteration. Figure C.1 illustrates the steps
required to obtain the inverted configuration.
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Figure C.1: The procedure to find inverted equilibrium (blue) involves guessing the geometry (red) after which the non-linear solver
converges towards its closest equilibrium. The undeformed geometry (black) is shown for comparison.

C.1.2. Constraint application
All control points that describe the edges of the shell are vertically aligned by the application constraints in
z-direction. Edge effects cause the vertical location of the edge in the inverted configuration to slightly differ
from point to point. An insurmountable consequence is that the reaction force direction can differ from point
to point, actually ‘pulling’ some parts while the sum of the forces suggest a ‘compressive’ force. This effect is
difficult to mimic in the experimental procedure, where a contact constraint is introduced.

C.2. The influence of design parameters
The analytical model provides insight into the effect of variation of the design parameters. This knowledge
can be used to intuitively iterate the geometry towards zero-stiffness behavior. Two contributors to the en-
ergetic path are investigated: the flange energy due to conical deformation and the crease energy, approx-
imated by single-axis torsional springs. Parameters that are discussed are: (1) initial inclination angle, (2)
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Figure C.2: The influence of the design parameters on the energy contributors is shown. Relative translation and scaling can be used as
an intuitive method for creating the desired energy profile.

pre-stressed assembly, (3) crease radius, (4) flange width and (5) relative material thickness. The first two
mainly result in a relative shift of the energy curves and the latter three cause relative scaling. The effects are
schematically illustrated in figure C.2.

C.3. Considerations on the experimental setup
Given the current (May 2020) circumstances (COVID 19), accessibility to the measurement lab is impeded
and a (sub-optimal) home-brew version of a linear actuating measurement platform is created. Adaptations
are made to a 3D-printer with delta configuration where a load cell is connected to the end-effector (figure
C.3). Commands on position are given via Simplify-3D software without a feedback loop. Meaning that the
actual position is estimated based on commands given and knowledge of the mechanics of the system. The
measurement hardware and a schematic overview of the internal connections of the setup is shown in figure
C.3 (right).

Visco-elasticity is a velocity-dependant resistance. As a result, actuation speed does have an effect on
the internal losses. With the goal to reduce hysteresis in the measurement results, a relatively high vertical
actuation speed is chosen. Moreover, no pause is inserted in between the ‘loading’ and ‘unloading’ phase.
Slower actuation did seem to cause a wider hysteresis band (graphs not included).

C.4. Alternative optimization results
For different results, an optimization procedure using the Matlab®Optimization toolbox is performed. The
function fmincon is used to minimize the following objective function:

f (x) =
n∑

i=i
|Fi | (C.1)

Whereby the force Fi is composed of the sum of the reaction forces along the upper perimeter at a specific
configuration during vertical compression of the flanges. n denotes the number of steps required for the full
deformation process. The objective parameters used to define the geometry of the shell in this optimization
procedure were the crease (transverse) radius, crease thickness and crease and flange material thickness,
given by:
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Figure C.3: The modified 3D-printer used to apply a vertical displacement (left) together with the measurement hardware (top right) are
shown. A schematic overview displays the connections between the individual parts.

x = [rt,0 tc tf] (C.2)

The boundaries were set to feasible fabrication limits, as follows:

xmin = [2e−3 4e−4 4e−4] (C.3)

xmax = [2e−2 2e−3 4e−3] (C.4)

And initial values set by:

x0 = [1e−2 4e−4 1e−3] (C.5)

During the optimization procedure, the geometry is defined, the inverted equilibrium is found using the
method described in B, constraints on the vertical edge displacement are defined dependent on the design
variables, the deformation steps are performed and results on the reaction forces are stored. A fixed optimiza-
tion window of 0.025m < d < 0.05m is used to evaluate the performance and to determine the succeeding set
of objective variables.

The optimization procedure is interrupted when the maximum number of iterations (n = 60) was reached,
with the following optimized objective variables:

xopt = [1.95e−2 4e−4 7e−4] (C.6)

Yet, a satisfying result featuring a near-constant force region resulted (figure C.4). The negative force re-
sulted from a displacement in the opposite direction of the stable inverted configuration and zero force was
measured exactly at the stable inverted configuration. Figure C.4 shows the underformed geometry (black)
and two configurations encountered during deformation: inverted equilibrium (blue) and maximum dis-
placement (red). Other design parameters were chosen as described in chapter 5.
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Figure C.4: The left figure shows the reaction forces during displacement of the optimized geometry. Forces are near-constant in the opti-
mization window, zero in the stable inverted configuration and negative during displacement opposite from the inverted configuration.
Two configurations encountered during edge displacement are shown on the right: the inverted stable state (blue) and the maximum
displacement (red). Also the underformed geometry is depicted (black).

C.5. Towards a neutrally stable curved crease: multi-material structures
C.5.1. Optimization procedure
In order for the decreasing flange energy to compensate for the increasing crease energy, one of the two en-
ergy contributors should scale several orders of magnitude. The approach taken here is the application of a
dual material structure, whereby the crease is made from a material with a much lower material stiffness. Ma-
terial properties of silicone (E = 50MPa, ν= 0.49) are used and locally replace the polycarbonate properties.
A geometry is assumed whereby the crease material thickness, crease radius and flange width variable and
all other design parameters are fixed. Manual optimization of these three parameters resulted in modelled
neutrally stable behavior during a significant part of crease actuation.

C.5.2. Prototype manufacturing
A method for combining stiff flanges with a relatively compliant silicone crease section involves a moulding
process of liquid dual-component chemically curing silicone. A mould, made up of two parts, featuring a
pocket with the desired crease dimensions was 3D-printed, while reserving some space to account for the

Figure C.5: The steps during the fabrication of a prototype with a silicone crease. Numerical analysis predicts neutral stability in the
bending direction.
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flange thickness. Flanges (polycarbonate, 0.5mm ) where cut out using a drag knife (described in section A)
with a slight extension of the inside perimeter where holes (d = 1.5mm) are drilled at small intervals (figure
C.5). The flanges are then inserted into the mould and all gaps are sealed. The mould is filled with liquid
silicone (Smooth On Dragon Skin 10 Fast) and set to cure before releasing from the mould. The resulting
structure interlocks, reinforcing the bond between the two materials.

C.5.3. Results discussion
No neutrally stable behavior was observed with this prototype. Possible explanations are the air pockets
within the silicone that resulted from a tedious filling procedure of the mould and the far-from-ideal material
coupling between the crease and flanges. Future efforts could benefit from silicone with a lower uncured
viscosity and bonding (i.e. gluing) capabilities.

C.6. Future work
The analytical model, used to describe the kinematic of the structure, is simplified a number of occasions.
Cone curvature and longitudinal curvature of the crease section could be incorporated in the form of a con-
tinuous integral, without adding significant computational effort. The accuracy of the analytical model could
potentially be increased such that numerical modelling becomes superfluous.

Subsequent investigations could be directed towards statically balancing crease forces by facet deforma-
tion. In the current setup, crease forces account for most of the experienced stiffness. Multi-material struc-
tures (section C.5) could solve this problem by designing a crease with a relatively low modulus of elasticity.

In the context of origami mechanisms, plastic deformation of crease material results in pre-stress. When
designed properly, (curved) crease stiffness can potentially balance out facet deformation, thereby working
towards the creation of statically balanced actuated origami mechanisms.





Bibliography

[1] Hoessein Alkisaei. Statically Balanced Compliant Walls. Technical report.

[2] Arthur Baumann, Antoni Sánchez-Ferrer, Leandro Jacomine, Philippe Martinoty, Vincent Le Houerou,
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