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1
INTRODUCTION

Balloons are one of the first kinds of human carrying aerial vehicles and yet their applications in
the modern era are very limited. This is mainly due to their weak controllability. Controllability of a
vehicle contributes to its value significantly. Aerial vehicles are free in all six degrees of freedom and
therefore the control task is rather complex compared to, for instance, a system which is restricted
to move only in one direction. In a piloted system, the full control task was initially performed by
the pilot, causing an exhaustive workload. This was noticed very quickly and an automatic control
system was designed in 1912, just nine years after the first flight by Wright brothers [9].

Over a hundred years, flight control systems have got more advanced. Yet it remains as a highly in-
teresting subject due to its endless benefits to aerial vehicles. Advancing flight control systems can
increase the ability to precisely and accurately position a vehicle throughout the mission. An exam-
ple of this benefit is the development of reusable launch vehicles. Fig. 1.1 shows two boosters being
safely and simultaneously landed. These vehicles are also part of a project to launch thousands of
small satellites for a wide range of internet access [10]. The reusability of the launchers provides a
solution for one of the main challenges of the field, efficiency.

Control systems are one of the essential components of aerospace vehicles. Time spent for the de-
sign for these systems is expected to be efficient as well. The aerospace industry comprises of a wide
range of vehicles from civil aircraft to satellites, from rocket launchers to helicopters. The indus-
try keeps growing and demands for new applications and new expectations emerge. For instance,
drones find application in photography, search and rescue missions, surveillance, agriculture, etc.
For these tasks new types of vehicles are designed and it is not efficient to spend extensive time
and effort on a single type of vehicle. Accomplishment of efficiency in regards of design time is
especially challenging because the tasks are expected to be completed even in the presence of un-
expected events. The academics focus on advancing flight control systems in order to overcome this
challenge [11]. Incremental Nonlinear Dynamic Inversion (INDI) is presented as one of the promis-
ing solutions to have a generic flight control system that can be easily applied to various types of
vehicles and handle unexpected conditions [12]. It is also the main focus of this study.

This chapter presents an introduction for the thesis study, Flight Control Design Using Hybrid Incre-
mental Nonlinear Dynamic Inversion. The next section, motivates the study by addressing current
benefits of advanced automatic control systems in aerospace vehicles. The research questions are
presented in Section 1.2 with definitions of the approaches used in the study. Lastly, the outline of
the report is given in Section 1.3.

1



2 1. INTRODUCTION

Figure 1.1: Landing of two side boosters of Falcon Heavy Test Mission on 6 February 2018 [1]

(a) Air Data System, SmartProbe (b) Angle of Attack Sensor

Figure 1.2: Two common sensors widely used in air vehicles manufactured by Collins Aerospace [2]

1.1. RESEARCH MOTIVATION

This section aims to present general benefits and capabilities of flight control systems in order to
emphasize the value added by these systems. The current drawbacks and challenges are stated. The
section can be regarded as performance criteria because newly developed systems shall maintain
the benefits stated here while eliminating the drawbacks.

In principle, flight control systems (FCS) include sensors provide information to flight control com-
puter (FCC) about the current condition of the vehicle. Examples of these sensors, air data system
and angle of attack sensor are shown in Fig. 1.2. FCC includes flight control laws and it determines
the commands that need to be operated and send these to actuation mechanism of vehicle’s control
components. Primary task of FCS is to form a closed loop system that helps to have faster responses
to input signals, supply a better tracking accuracy and to overcome some undesired effects such as
atmospheric disturbances [11]. In other words, they increase the automation by helping or replac-
ing pilot. The increase in automation mainly contributes to the safety and the economy of opera-
tion [13]. The significance of these issues are getting higher because more people are transported in
commercial aircraft.



1.1. RESEARCH MOTIVATION 3

One of the developments that widened the benefits of FCS has been introduction of fly-by-wire
mechanism that mainly contributes to flexibility of the control laws that can be implemented on
FCS. This allows a control law to be applied to different systems without significant changes [14].
In addition, vehicles reach a higher level of automation by the help of advanced FCS. Accuracy of
the model that is used for FCS design has vital importance for an automated flight. In the case of
a model mismatch, the behavior of the system would not be as expected which leads to problems
in performance. Although linear control techniques are well known and are relatively easier to en-
sure stability compared to nonlinear control methods, the flight dynamics are inherently nonlinear.
Using a linear model increases the chance of model mismatches. Advancing flight control methods
with nonlinear methods makes the actual system dynamics to be closer to the one that the controller
is designed for, and reduces model mismatch problems.

Flight control systems improve the dynamical behavior of vehicles. For military aircraft, stability
is compromised to increase maneuverability. Unstable characteristic is utilized to increase agility
without the expense of increased control surface area. Stability augmentation system is supplied
by FCS in order to achieve a stable closed-loop behavior and keep the agility of the aircraft. FCS
also increases performance by actively providing gust suppression and auto trimming so that ride
quality is improved for passengers as well. These benefits reduce the workload of pilots, avoid fa-
tigue, and help them to focus on the tasks where precise control is required such as safe landing and
take-off [15]. Although, the complexity may cause safety issues, the increased automation reduces
human errors and accidents.

The atmospheric disturbance which can be categorized into convective turbulence, clear air turbu-
lence and wind shear, may also cause many flight accidents and fatalities [16]. Therefore, reducing
the effects of atmospheric disturbance should be one of the main concerns in the design of flight
control systems. Another benefit of atmospheric disturbance reduction is to prevent structural fa-
tigue. Fatigue in structure can threaten the integrity of the vehicle.

Aerospace vehicles operate under high loads which might cause structural damage. Any loss in
the effectiveness of critical components jeopardizes the safety of the vehicle. On 4 October 1992,
a cargo plane had structural damage and lost its control effectiveness. In August 1985, an aircraft
crashed due to the breaking of a dome joint [17]. In some situations, although some of the control
surfaces are lost, remaining ones may be sufficient to stabilize the vehicle. A study shows that the
crash of El Al Flight 1862 could have been prevented by implementation of a fault-tolerant control
system [18].

Advancing automatic flight control systems allows use of flexible materials. As propulsion systems
improve, aircraft can reach higher speeds. This requires wings to be manufactured stiffer to ensure
structural stability. Stiffer wings are heavier and thus cause consumption of more fuel. A solu-
tion to decrease wing weight is to use composite materials but they come at a cost of flexibility.
Flexible structures deform under aerodynamic forces and moments causing interactions between
structural dynamics and aerodynamics. Such adverse interactions introduce unwanted aeroelastic
modes such as flutter which causes undamped oscillations and might lead to structural destruction.
Recent developments in FCS make it possible to use highly flexible materials for aerial vehicle design
and invalidate the assumption of a rigid body. For instance, the use of active flight control to sup-
press flutter is explored in the Flutter Free FLight Envelope eXpansion for ecOnomical Performance
improvement (FLEXOP) project by experimenting on a test aircraft shown in Fig. 1.3 [3].

Modern FCS can help a different aircraft feel the same to the pilot by adjusting the control laws.
Therefore, pilot training shortens and a pilot can be assigned to various types of aircraft. This de-
creases costs in the training and increases efficiency in the consumption of resources. A recent
study shows that INDI control is suitable for the design of variable stability training aircraft [19].
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Figure 1.3: FLEXOP Project Test Aircraft [3]

The precision in the position control has increased so that launch vehicles land safely [20]. Such
a development significantly decreases the cost of manufacturing making many projects financially
feasible.

Advanced flight control methods aim to contain the aforementioned benefits as much as possible.
Those benefits come with the cost of increased complexity of the control design which is one of
the major problems. More effort is required from engineers to design a complex system. Therefore,
more resources and time need to be spent. As this is contradictory to the economic benefits of
FCS, it is a problem in terms of certification as well. Before a new control law is implemented, it is
required to be approved by authorities. Being recently developed, civilian use of adaptive controllers
have certification problems since the criteria for this type of controller such as performance metrics,
monitoring tools and analysis methods are not well established [21, 22].

Many of the flight control methods rely on the mathematical model of the system making them
very vulnerable for model mismatches. Ideally, a generic flight control system would only require
a primitive model to be uploaded to a new aircraft. The aerospace industry focuses on generic ro-
bust methods to limit the consumption of resources and efforts. INDI, as a flight control method,
uses sensor information and determines the amount of control increment needed for good perfor-
mance. It is robust to model uncertainties because it has emerged as a sensor-based control strategy.
Data from the sensors would supply sufficient information and significantly decrease the need for
a model. Hence, external disturbances and model mismatches can be compensated.

Relying on sensor measurement has consequences. Sensors have their own dynamics, noise, bias,
drift, etc. which could be unintentionally regarded as external disturbances and model mismatch
by the control system. Sensors might lose their functionality due to damage. This is one of the draw-
backs of the INDI method and this research is dedicated to improve the method by using the aid of
a system model. Some of the signals that are needed for feedback can be obtained from onboard
models. Using the onboard model yields a method that is less dependent on sensor measurement.
Therefore, the impact of a fault or damage on a sensor would be decreased. Differentiation would
not be necessary when a model is used, thereby limiting the noise of a signal. The aim of this study
is to utilize a system model in feedback signaling, to design a reliable flight controller that is robust
to both sensor faults and model mismatches at the same time.

1.2. RESEARCH OBJECTIVES AND QUESTIONS

This section defines three different INDI approaches to prevent any possible confusion. Then, the
main research question and sub-questions are presented for clarification of the objectives.
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Definition 1.1: Sensor-Based INDI

Refers to the INDI method in the literature. Sensor-based feature of the model is emphasized
to avoid confusions. It feeds back sensor measurement for linearization purposes.

Definition 1.2: Model-Based INDI

This method replaces the state derivative feedback that is obtained based on sensor mea-
surement with the system’s mathematical model. The method resembles Nonlinear Dynamic
Inversion although the formulation follows through a modification of Sensor-Based INDI.

Definition 1.3: Hybrid INDI

Hybrid INDI uses sensor measurement and mathematical model simultaneously. The com-
bination aims to maintain robust properties of both of the methods.

The main research question of this thesis is as follows

"How can Sensor-Based INDI and Model-Based INDI be combined in order to formulate a robust
Hybrid INDI such that the performance degradation due to model mismatches and sensor faults
are decreased without compromising nominal performance?"

This question is divided into multiple sub-questions that lead to answering the main question.

1. What is the state of the art of INDI?

In order to observe the improvement by the model aiding, it is essential to first observe the
existing performance results. In addition, the problems and shortcomings of the method
should be investigated to focus on improving these areas. INDI has been studied for over ten
years; therefore, a considerable amount of research is developed to improve it theoretically
and practically. There could be various ways of model aiding to improve the performance for
different theoretical and practical approaches. Studying these methods helps to widen the
benefits of Hybrid INDI.

2. How can Model-Based INDI be structured?

Although Model-Based INDI is formed to reduce the dependence on the sensor measure-
ments, for the model to extract the needed information, sensor measurements should be
supplied. The method has benefits such as being less vulnerable to sensor noise. The Model-
Based INDI approach is expected to be integrated with Sensor-Based INDI. Therefore, both
should be similar in some aspects. In this regard, listed sub-questions need consideration.

(a) How should the synchronization method be modified?

Ideally, control increment and state derivative feedback correspond to the same time.
This is achieved by the synchronization of signals. First the synchronization method
should be determined and then differences in the synchronization should be highlighted
for a better combination.

(b) How should the noise filter be modified?

Sensor measurement contains noise. Noise filtering is a method to mitigate the effect
of noise on the system to improve performance. As the sensor output is processed in a
different manner, noise filter should be modified. Filtering techniques that is used for
INDI might not be ideal for Model-Based INDI.
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(c) What other considerations should be taken for disturbance rejection or tracking perfor-
mance?

Command tracking and disturbance rejection are basic demands from a flight controller.
It should be investigated whether additional modifications are needed.

3. How do Model-Based INDI and Sensor-Based INDI perform compared to each other?

(a) What are the differences in the nominal performance?

The nominal performances are expected to be similar. If this not the case, the reason for
the difference should be identified.

(b) How do the methods perform in robustness analysis?

The two methods are robust against different issues. Factors such as, aerodynamic un-
certainties, measurement delays and disturbance rejection should be investigated to
identify and quantify their robust performance.

The results of questions 1- 3 highlight the main strengths of the two approaches. They are
important to decide on hybridization of these approaches to maintain their benefits.

4. What are the existing methods of hybrid controllers?

(a) What are the problems that are encountered with combining the control systems?

(b) Can these be applied to form Hybrid INDI?

These questions require additional literature study. It is common to combine different control
structures to form a hybrid method. These solutions should be checked and their feasibility
for INDI application should be studied.

5. How can Model-Based INDI and Sensor-Based INDI be combined into a hybrid method and
what are the considerations of the combination?

Ideally approaches are combined in in a way that they compensate each others’ weaknesses
while keeping their strengths.

(a) How is the information from processed sensor signal integrated with the one coming from
the onboard model?

In the hybrid approach, same state derivative feedback is generated from two sources.
It should be determined how to integrate these two signals. The options could be aver-
aging signals’ value or determining the regions where one of them is more reliable than
the other and using the signal accordingly.

(b) How are the signals synchronized?

Hybrid approach combines two techniques with different synchronization methods. There-
fore, it should be determined how to synchronize the control input with the feedback
signal.

(c) What is the effect of hybridization to stability margins?

The hybrid method aims to have a larger stable region although instability might be also
introduced in some regions which should be determined and restricted if possible.

6. Which of the challenges of INDI is solved by Hybrid INDI and what are the challenges of Hybrid
INDI?
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It is important to highlight the success of the method. Therefore, Hybrid INDI control design
needs to be compared to each of its component methods. This can be done by time domain
simulations and the performance comparisons can be presented. For further studies, any
practical challenges or limitations should be listed.

The research questions are connected to each other in a way that answering one of them would be
a requirement to continue for the others. The sub-questions also work as a guideline for answer-
ing the main research question. The questions are answered throughout the report and they are
revisited in Chapter 6 to emphasize the answers.

1.3. REPORT OUTLINE

The outline of the report is as follows: Initially a scientific paper is presented in Chapter 2. The pa-
per focuses on the main results of the research. In the paper, the Hybrid INDI approach is proposed
based on the fusion of sensor measurement and model output by a complementary filter. The state
derivative term in the INDI control law is replaced with state derivative estimation. The chapter
presents robustness analysis against measurement delays. An attitude controller is designed for
F-16 aircraft to test the performance of Hybrid INDI and time-domain simulation results are pre-
sented.

In Chapter 3 Nonlinear Dynamic Inversion (NDI) control method is presented. NDI is important
because its drawbacks inspired INDI and it has a strong resemblance to Model-Based INDI. Chap-
ter 4 is spared for the INDI method. The chapter contains broad literature survey of the method
that includes developments in different perspectives. Studies that utilize both sensors and models
are also presented in this chapter. Furthermore, hybrid controllers and methods to form a hybrid
controller are investigated and their applicability to the INDI is discussed.

The preliminary results are presented in Chapter 5. Sensor-Based and Model-Based INDI con-
trollers are derived specifically for the short period mode and closed-loop systems are formed in-
cluding sensor dynamics and noise filters. Initially, the control design is improved by considering
tracking error and disturbance rejection, optimizing proportional gains, and modifying feedforward
controller. Then, time domain simulations are shown for robustness analysis of the methods which
underline the differences of the approaches in terms of performance.

The main conclusions are presented in Chapter 6. The chapter discusses to what extent the research
questions are answered by revising the research questions. Lastly, Chapter 7 states the limitations of
Hybrid INDI approach and recommends future search to consider these limitations and highlights
possible improvements.
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Flight Control Design Using Hybrid Incremental Nonlinear
Dynamic Inversion

Yagiz Kumtepe ∗

Delft University of Technology, 2629HS Delft, The Netherlands

Incremental Nonlinear Dynamic Inversion (INDI) is a sensor-based control strategy, which
has shown robustness against model uncertainties on various aerospace vehicles. The sensor-
based nature of the method brings attractive properties which has made it popular in the last
decade. INDI globally linearizes the system by making use of control input and state derivative
feedback. The time lag between control input and state derivative is seen as one of the main
challenges of the method. This has been partially solved by synchronization of actuator outputs
with measurement, although the method is still vulnerable to unexpected measurement delays.
This paper proposes Hybrid INDI approach to alleviate measurement delays and to reduce
sensor dependence of INDI. The approach fuses the system model and sensor measurement
via a complementary filter that produces angular acceleration estimation. The estimation
responds fast to the system input thanks to the on-board model. It has also a low-frequency
accuracy because of the sensor measurement. The method is found to retain good performance
in case of model mismatches and measurement delays. An attitude controller is designed for
the F-16 aircraft model and findings are verified with time-domain simulations.

Nomenclature

1, 2̄, ( = Wing span and mean aerodynamic chord, surface area
�; , �<, �= = Aerodynamic moment coefficients
ℎ = Altitude
� = Inertia matrix, cost function
   = Control gains matrix
!, ", # = Aircraft moments
DDD = Input vector
+ = Velocity
HHH = Output vector
GGG = State vector
U, V = Angle of attack and side slip angle
X = Control surface deflection
n = Root mean square of tracking error
Z = Damping coefficient
\\\ = Attitude angles
d = Air density
q, \, k = Roll angle, pitch angle, yaw angle
l, ?, @, A = Angular rates
l= = Natural frequency
Subscripts
3 = desired
4, A, 0, th = elevator, rudder, aileron, thrust
<, B, A = model, sensor and reference
sync, pf = synchronization and pre-filter

∗Graduate Student, Control and Simulation Division, Faculty of Aerospace Engineering
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I. Introduction

Ensuring global stability is one of the main aims of the flight control designers for good performance and safety
of the system. Commonly used classical control approach, namely gain scheduling, does not guarantee the stability

between the design points. In the 90s, Nonlinear Dynamic Inversion (NDI) was proposed as a promising substitute
for gain scheduling since the linear control gains of NDI method do not need scheduling [1]. The control strategy
has appealing properties such as global linearization of input-output relation, decoupling control channels, and being
applicable to different types of vehicles with slight modifications. Requiring a full accurate system model is the main
drawback of NDI. The workload of pilot increases dramatically in case of uncertainties and system failures because the
control system becomes unstable. This problem is initially handled via blending robust control methods and online
system identification [2].

To eliminate the drawbacks of NDI without compromising its above-mentioned appealing properties, Sieberling
et al. proposed Incremental Nonlinear Dynamic Inversion (INDI) by reformulating the simplified NDI [3, 4]. INDI
depends only on the control effectiveness model that makes it robust against the rest of the model parameters. The main
advantage of the method is utilization of true acceleration of the system, which contains direct information about the
system model including nonlinearities, flexible dynamics, and external disturbances such as wind gust. Having direct
information about the system model is especially useful when the modeling is challenging and expensive. Incremental
control system alleviates this challenge by counteracting unmodeled moments and forces as shown in the transition
stage of a hybrid tailsitter UAV [5].

Being a sensor-based control technique, INDI is inherently robust against a wide range of faults and structural
damages. Mainly there is no need to blend INDI with a robust control structure to achieve fault tolerance. The method
showed its effectiveness against actuator faults [6]. The flight envelope of quadrotors is extended by INDI since the
method is tolerant against actuator faults up to two rotors [7, 8]. Besides, INDI has been applied to various aerospace
vehicles. Studies on helicopter and spacecraft dynamics showed the method’s success on tracking performance and
rejecting disturbances as well as the method’s limitations based on sampling frequency and measurement delays [9, 10].
It is shown that the system oscillates unacceptably above 50 ms lag between helicopter dynamics and actuator, and low
sampling frequency significantly degrades the performance [9].

The performance of INDI is impaired by measurement delays. INDI is partially model-independent with the cost of
sensor measurement dependence. Sensors transmit information about model mismatches and disturbances but due to
sampling frequency, noise filtering and additional processes, the measurement corresponds to a previous time sample.
This is considered as one of the main challenges of INDI [11]. The use of angular accelerometers instead of gyroscopes
is one of the methods to decrease the introduction of time lag and they are tested to be beneficial although they are
not very common [12, 13]. Studies show that satisfactory performance is achieved when actuators are matched with
measurement in time via a synchronization filter [14]. Flight tests are successfully performed using synchronous
signals [11] even though the control systems are still vulnerable to unexpected delays. This paper aims to reduce
the dependence of INDI control strategy on measurement by proposing a new INDI approach that is robust against
measurement delays.

The main contributions of the paper are as follows: First, Model-Based INDI is presented as an incremental method,
which is less dependent on measurements, to expose the capabilities of a full-model approach. Second, design and
analysis of a complementary filter for angular acceleration estimation is presented. This filter fuses model output with
sensor measurement keeping beneficial characteristics of both signals. The filter is used in the design of Hybrid INDI
approach. Third, an analysis of Hybrid INDI is presented focusing on the synchronization method and performance
when there are measurement delays. This analysis includes closed-loop pole migrations of the system and time-domain
simulation comparisons of Hybrid INDI and Sensor-Based INDI. Lastly, Hybrid INDI is designed for F-16 aircraft to
investigate and compare robustness of different INDI approaches against sensor delays and aerodynamic uncertainties.

The paper briefly discusses the theory and formulation of INDI in Sec. II. Sec. III introduces Hybrid INDI as well
as the complementary filter used for the angular estimation, and shows improvements in robustness of Hybrid INDI
compared to Sensor-Based INDI. Sec. IV explains the application of Hybrid INDI on by designing an attitude control.
Various simulation results are presented and the INDI approaches are compared in terms of nominal performance,
disturbance rejection, and handling measurement delays in Sec. V. Lastly, the conclusions are presented in Sec. VI.

II. Incremental Nonlinear Dynamic Inversion
INDI is inspired by NDI, which is a subset of feedback linearization. The main principle of NDI is to linearize the

input-output relation of a system by using state feedback and coordinate transformation rather than Jacobian linearization.
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State transformation makes a nonlinear system to appear as linear. The dynamics of controlled variables are reduced to
be simple integrator dynamics. Then, the system is controlled via linear control methods. The method works best when
the model is fully accurate. Real systems are generally highly complex and obtaining their accurate model is difficult.
INDI is proposed to reduce model dependency to the control effectiveness matrix [15]. This section introduces the key
concepts of INDI. Two versions of INDI are presented, (i) Sensor-Based INDI that is referred to as the conventional
INDI method in the literature, and (ii) Model-Based INDI, which is an incremental method that uses the system model.

A. Sensor-Based INDI
A general nonlinear control-affine system has the form of

¤G¤G¤G = 555 (GGG) + 666(GGG)DDD. (1)

HHH = ℎℎℎ(GGG) (2)

where state vector GGG ∈ '=, input vector DDD ∈ '<, output vector HHH ∈ '?, 555 represents system dynamics, ℎℎℎ is a smooth
vector and 666 ∈ '=×< a matrix with smooth vector field columns that represents state-dependent control matrix. The
general nonlinear equation is approximated by Taylor series expansion at the current value of the state GGG0 and control
input DDD0 as

¤G¤G¤G ≈ 555 (GGG0) + 666(GGG0)DDD0 + m

mGGG

[
555 (GGG) + 666(GGG)DDD]DDD0 ,GGG0

(
GGG − GGG0

) + m

mDDD

[
555 (GGG) + 666(GGG)DDD]

DDD0 ,GGG0

(
DDD − DDD0

)
. (3)

The second derivatives and higher order terms are assumed to be negligible, and they are not included. The summation
of first two terms is simply ¤GGG0. In aerospace applications generally controls change much faster than the states. This
leads to assumption of GGG = GGG0, meaning that the change of the state between two time steps is negligible as a result of
time scale separation between states and inputs. The validity of time scale separation is one of the requirements of INDI.
The increment in control input is defined as ΔDDD = DDD − DDD0. Then, Eq. (3) reduces to

¤G¤G¤G ≈ ¤G¤G¤G0 + 666(GGG0)ΔDDD. (4)

The incremental control law is formed based on the relation in Eq. (4). For this system, we assume that state
variables are also the outputs i.e. ¤G¤G¤G = ¤H¤H¤H. A virtual control input is the input to the linearization loop and it is defined as
aaa = ¤G¤G¤G. Virtual control value is designed by linear controllers based on the characteristics of desired state values. The
design method is to be detailed in Sec. IV. With the adequate replacements the control increment is determined as

ΔDDD = 666−1 (GGG0) (aaa − ¤G¤G¤G0). (5)

The new control input is given based on the previous control input, control effectiveness matrix and virtual control input
as

DDD = DDD0 + 666−1 (GGG0) (aaa − ¤G¤G¤G0). (6)

As plant dynamics 555 (GGG) does not appear in the equation, the control law does not depend on it. Dependency of control
law on model reduces to control effectiveness matrix with an expense of obtaining ¤G¤G¤G0. Sensor-Based INDI obtains this
value based on sensor measurements. These measurements are not perfect and contains time lag, bias and noise in the
real life applications. It may also not be possible to directly measure state derivatives ¤G¤G¤G.

There has been several assumptions such as neglecting higher order terms and assuming negligible state change. The
validity of the assumptions are studied in [9, 10]. The results show that sampling time is one of the factors that might
reduce the performance. Using a low-sampling-rate flight computer causes the change in states to be non-negligible.
There are different studies which derive INDI control without using time scale separation and show the stability of the
method with less assumptions [16, 17].

B. Model-Based INDI
Model-Based INDI is formulated based on the same procedure of Sensor-Based INDI. The Taylor series expansion

given in Eq. (3) replaces the true dynamics, 555 (GGG0) +666(GGG0)DDD0, with ¤GGG0. For the derivation of Model-Based INDI, modeled
dynamics, 555 mod (GGG0) +666mod (GGG0)DDD0, replace the true dynamics, and the same assumptions are applied. This yields control
law as

DDD = DDD0 + 666−1 (GGG0)
[
aaa − 555 mod (GGG0) − 666mod (GGG0)DDD0

]
. (7)
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The ideal scenario is 555 mod (GGG0) = 555 (GGG0) and 666mod (GGG0) = 666(GGG0). For this condition, further simplification of the equation
removes the control increment, DDD0:

DDD = DDD0 + 666−1 (GGG0)aaa − 666−1 (GGG0) 555 (GGG0) − DDD0 (8)

DDD = 666−1 (GGG0)aaa − 666−1 (GGG0) 555 (GGG0) (9)

DDD = 666−1 (GGG0)
(
aaa − 555 (GGG0)

)
(10)

The simplified version of the Model-Based INDI is equivalent to NDI control law. The method is less dependent on
sensor measurement but it requires the full system model.

III. Hybrid Incremental Nonlinear Dynamic Inversion
Considering the angular rate control application of INDI, angular rates are regarded to be states and angular

accelerations are state derivatives. Control law requires angular accelerations that are not readily available and angular
accelerometers are not very common [15]. Aircraft are generally equipped with gyroscopes that measure angular
rates. To obtain angular accelerations, angular rates are differentiated. Differentiation of a noisy signal magnifies the
amplitude of the noise, which causes the need for additional noise filtering. Sensor dynamics itself and noise filtering
introduce time lags to the measurements. This is seen as one of the main challenges of Sensor-Based INDI [14]. The
proposed Hybrid INDI approach aims to solve this problem by fusing sensor measurement and system model with a
complementary filter.

Hybrid INDI is designed to include characteristics of Model-Based and Sensor-Based INDI. The difference between
approaches is the way to obtain the state derivative ¤GGG0. In Hybrid INDI, the signals are merged to complement each other
in the frequency domain. Filter residual is referred to as state derivative estimation and denoted by ¤̂GGG0. The estimation
by the complementary filter is given by

¤̂GGG = 5 (GGGB , ¤GGG<) (11)

where 5 is complementary function, GGGB is the measurement of the state and GGG< is the output of the on-board model.
Replacing the state derivative in Eq. (6) with the state derivative estimate, yields the Hybrid INDI control law as

DDD = DDD0 + 666−1 (GGG0) (aaa − ¤̂GGG). (12)

Hybrid INDI uses combination of gyroscope measurement GGGB and model output GGG<. Gyroscope measurement is
different from GGG0 because of measurement dynamics and noise filtering, and model output is different from GGG0 because
the model is not equivalent to the real system and external disturbances are not reflected on GGG<.

A. Complementary Filter for Angular Acceleration Estimation
Traditional complementary filters combine multiple signals to alleviate noise distortions. Signal with low-frequency

noise characteristic is high pass filtered and added to low pass filtered signal with high-frequency noise characteristics.
Setting the cut-off frequency of filters equal to each other complements the signals and an all-pass estimate is
obtained. Complementary filters are well suited for measurements that are related by first-order dynamics [18]. Such
complementary filters are commonly used in the aerospace field for attitude estimation by fusing gyroscope and
linear accelerometers [19, 20]. A block diagram of a classical complementary filter is given at Fig. 1 where H1 is the
measurement of the state G and H2 is the measurement of the state derivative. The filter includes a controller � (B), that
is designed for estimation error dynamics and generally exploits the classical linear control method.

A similar complementary filter is proposed by Jiali and Jihong for the estimation of angular acceleration [21]. It
utilizes angular rate measurements by gyroscopes and angular acceleration calculations by a mathematical model. The
block diagram of the complementary filter is given in Fig. 2. Notice that the integral block is moved to the feedback
signal since the estimation is for the state derivative instead of the state. The filter is designed as PI compensator where
4 denotes the error between gyroscope measurement and estimation, and 8 is the innovation signal.

The dynamics of the estimation is given in frequency domain as

¤̂GGG = [GGGB − ¤̂GGG 1
B
] [ ? +  �

B
] + ¤GGG< (13)
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Fig. 1 Block diagram of a classical complemen-
tary filter for attitude estimation [18]

+
- + +++

Fig. 2 Block diagram of complementary filter for an-
gular acceleration estimation

defining the innovation and error dynamics as

� (B) = � (B) [ ? +  �
B
], (14)

� (B) = GGGB − 1
B
¤̂GGG. (15)

The estimation is the sum of the model output and measurement innovation:

¤̂GGG = � (B) + ¤GGG<. (16)

Eq. 13 can be rearranged as well as
¤̂GGG = ((B)GGGB + ) (B) ¤GGG< (17)

where
((B) =  ?B +  �

B2 +  ?B +  �
B; ) (B) = B2

B2 +  ?B +  �
(18)

((B) and ) (B) complement each other such that 1
B ((B) +) (B) = 1. By the complementary filter, the sensor measurement

is low pass filtered and the model output is high pass filtered. The filter contains low-frequency accuracy of the sensor
measurement which includes external disturbances and model mismatches. The filter also contains the high-frequency
prediction of the model. The system model responds fast to given inputs with a very low magnitude of noise which
makes its high-frequency prediction valuable. The model mismatches act as slowly changing biases and due to their
low-frequency characteristics, they are removed as well. The filter indirectly differentiates measurements and yet
removes the high-frequency noise component. Applying the final value theorem shows that the error of estimation
approaches to the error of the gyroscope [22]. In this way, the Hybrid approach can preserve Sensor-Based INDI’s
robustness against uncertainties. Equation 16 shows that without the innovation from the sensor measurement the
estimation is only based on the model output and the control method becomes Model-Based INDI.

Crossover frequency and damping coefficient of the filter are set by linear controller gains,  � = l2
= and  ? = 2Zl=.

The values are selected based on the characteristics of the signals. A lower l= filters more of the sensor noise, but the
response to external disturbances and model mismatches become slower. Lowering Z also removes more noise, but
the response is not well-damped and causes oscillations. The integral gain,  � , in classical complementary filters are
included for to compensate gyroscope bias [18]. A constant bias in gyroscope does not affect angular acceleration in
INDI applications because of differentiation [23]. The gains set the estimation characteristics, and they also affect the
robustness against measurement delays.

B. Synchronization
Sensor-Based INDI control law, given in Eq. 6, shows that the control input depends on the most recent state

derivative, ¤G¤G¤G0. Sensors measure this value, and the signal is filtered to alleviate the noise. These dynamics cause ¤G¤G¤G0
not to be available for the use of controller. The available state derivative value is denoted as ¤G¤G¤G 5 because it is the
output of the noise filter. Using this value causes degradation in performance and yields oscillations. Studies show that
the oscillatory motion of the INDI controlled system can be prevented by changing the modeled control effectiveness
matrix by a factor [23, 24]. Increasing control effectiveness reduces control input since the control law reverses 666. It
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eventually makes the system less aggressive and more careful. A more common and theoretically proven method is the
synchronization of the input signal with the expected measurement delay [14].

Assuming accurate knowledge actuator deflection angle means that the most recent value DDD0 is available and previous
values are also achievable. In order to match the control input to the measurement, the input is filtered by the sensor and
noise filter dynamics. In this way DDD 5 is obtained and Sensor-Based INDI is rewritten as

DDD = DDD 5 + 666−1 (GGG 5 ) (aaa − ¤G¤G¤G 5 ). (19)

Ensuring synchronous signals is regarded as the key for practical implementations of INDI [11]. As the state
derivative matches with control input in time, dynamics that cause performance deterioration are eliminated [14]. These
dynamics reappear when there is an unexpected additional lag in the signals. As the time mismatch between the signals
increases, the tracking error also increases [25].

The synchronization of Hybrid INDI follows a similar procedure as in Sensor-Based INDI. In Sensor-Based
INDI applications, the noise filter dynamics filter the control input. Hybrid INDI removes measurement noise by a
complementary filter. The filter is utilized to fuse more than one signal therefore, direct application of it to the control
input yields the same signal since the control input itself is the only source of the input. Instead, the low pass component
of the filter is applied to the sensor measurement because the filter output approaches the measurement. A slightly
modified version of ((B) is given as

(′(B) =  �
B2 +  ?B +  �

(20)

is used for synchronization. Note that, ((B) is integrated because there is no need to differentiate the control input.
Moreover,  ?B in the numerator is removed because the term limits the phase shift that needs to be achieved in the
control input. In addition, the measurement values are used in low frequencies and this term is not effective in the low
frequency.

C. Robustness Analysis of Hybrid INDI
In this section robustness and performance of Sensor-Based INDI and Hybrid INDI are compared with the focus

on measurement delays. The analysis shows that Hybrid INDI is inherently more robust against measurement delays.
Linearization by INDI and NDI aims to form an integrator dynamics between desired state derivative a and actual state.
A linear kinematic equation;

¤G = D (21)

is in the form of general nonlinear equation as in Eq. 1 where 5 (G) = 0 and 6(G) = 1. This equation does not need
linearization by INDI and helps to focus on time mismatches analysis instead of success of linearization. To form a
closed loop system a sensor dynamics is added as

! ′(B) = 1
C1B + 1

4−Bg (22)

where C1 is time constant and g is unknown time delay. The actuator dynamics is given by

�(B) = 1
C2B + 1

(23)

where C2 is time constant of the actuator, selected to be 0.05. The noise filter 1
B ((B) as in Eq. 18 is included into the

system. Gains for the noise and complementary filter are set to the same values for a fair comparison. For a real system,
optimal performance is obtained with different values as shown in Sec. V. The synchronization filter comprises of sensor
and noise filter dynamics. ! (B) = 1

C1B+1 is used in the synchronization because the time delay is assumed to be unknown.
Synchronization filter is given by

�sync (B) = ! (B)(′(B) (24)

where (′(B) is given in Eq. 20. The block diagrams for Sensor-Based INDI and Hybrid INDI are given in Fig. 3.
In the nominal case, there is no unexpected time delay, i.e., g = 0. Figure 4 shows that Sensor-Based INDI

outperforms Hybrid INDI in terms of step responses. Initial responses of both control systems are the same, then sensor
innovation of the filter interferes, and the response slows down. The performance of Sensor-Based INDI is determined
based on actuator dynamics since it is the only dynamics that is not canceled by the synchronization. This pole is
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(a) Sensor-Based INDI
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(b) Hybrid INDI

Fig. 3 Block Diagrams for Time Mismatch Robustness Analysis
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Fig. 4 Nominal performances of Sensor-Based INDI (SB) and Hybrid INDI (Hb) are plotted. Measurements
are not subject to additional delay.

highlighted in Fig. 6a. For Hybrid INDI, the dynamics that belong to the complementary filter remain as well, which
corresponds to highlighted complex poles in Fig. 6b. Thereby, the performance degradation in the nominal performance
of Hybrid INDI is expected.

The damping coefficient, Z , of the filter should be designed based on the desired nominal performance. This value
determines the smoothness of transition fromModel-Based INDI to Sensor-Based INDI. Increasing damping coefficients
slows the step response. Figure 5 shows the effect of damping coefficients on nominal performance. Migrations of
significant poles are shown in Fig. 5a. The complex pair shifts from damping value of 0.18 to 0.55 as Z increases from 0
to 1. A low Z causes oscillations and a high value yields a long settling time. Three different step responses are shown
in Fig. 5b. According to this analysis, a damping coefficient around 0.5 yields the best performance. The pole migration
shows that the robustness against measurement delay is affected by Z . A lower damping coefficient causes a faster
transition to the unstable region. Hence, this value is set to 0.7.

To show the robustness of Hybrid INDI against measurement delays, a pole migration analysis is performed. The
time delay g is increased up to 0.20 s by 0.02 s increments. The locations of significant poles are shown in Fig. 6a for
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(a) Complex poles moves left of the plane as damping increases
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(b) The effect of damping coefficient on step response

Fig. 5 Effect of damping coefficient of complementary filter on the closed-loop dynamics of Hybrid INDI
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Fig. 6 Pole locations in complex plane for various measurement delay (a) Sensor-Based INDI, (b) Hybrid INDI.
(c) shows time domain simulation results when measurement delay is 0.07s

Sensor-Based INDI. It is shown that after 0.18 s of delay, the system becomes unstable. As shown in Fig. 6b, Hybrid
INDI poles remain in the stable region. These results are verified by a time-domain simulation. Measurement delay is
selected as g = 0.07 and the step responses of the systems are plotted in Fig. 6c. The results indicate that underestimation
of measurement lag causes significant performance degradation for Sensor-Based INDI. For both systems, performance
degrades but Hybrid INDI outperforms Sensor-Based INDI by achieving less overshoot and faster settling time.

Sensor-Based INDI does not get affected by overestimation of the measurement delay as much as underestimation.
It is shown that INDI is more robust for actuator delays than the measurement delays [25]. A delayed application of
actuator commands makes the system to be more careful about the actual state of the system. The reaction becomes
safer and eliminates oscillations. This is equivalent to expecting a longer time delay or overestimating the measurement
delays. By a modification in the synchronization filter, Sensor-Based INDI can be made robust for the measurement
delays. The new synchronization filter is given as

� ′sync (B) = ! (B)(′(B)4−Bg4 (25)

where g4 is the overestimation of the known time lag to deal with unexpected measurement delays. The modification
helps the system to have a good performance when the specific unexpected delay is encountered. However, the nominal
performance becomes undesirable. This observation is shown in Fig. 7 by setting g4 = 0.07 and keeping g = 0. The step
responses indicate that the cost of designing Sensor-Based INDI as robust with this method is the degradation of the
nominal performance. The Hybrid INDI method is robust against time mismatches inherently. Even though it loses
nominal performances, Sensor-Based INDI loses more when it is modified to be robust against time mismatches.

D. Hybrid INDI as Fault Tolerant System
This section introduces a variant of Hybrid INDI with a slight modification. Using Hybrid INDI together with a

fault detection and isolation (FDI) system for sensor faults proposes an easy method to switch between controllers.
Consider the state derivative estimation given as Eq. 16. The estimation is based on model output and innovation from
the sensor. With a simple logic parameter, the innovation can be canceled if the FDI system detects a faulty sensor. To
simulate a faulty sensor scenario, a fault in pitch rate measurement is used as specified in [26]. An oscillatory fault is
introduced at C = 1 s and assuming the FDI algorithm takes two seconds to detect the fault, the innovation is from the
sensor is canceled at C = 3 s. This transforms the control structure to Model-Based INDI without any additional change.
The simulation result is shown in Fig. 8. It is shown that as soon as the fault is detected, the system starts to converge its
steady-state value. In this simulation, the model is assumed to be accurate. Aircraft generally contain multiple IMU to
prevent the effects of such faults. Small size aerial vehicles contain limited number of sensors and they can benefit from
this application.

IV. Hybrid INDI Flight Control Design for F-16 Aircraft
The objective of this study is to design an attitude controller for the F-16 aircraft model to robustly track the given

pitch angle and roll angle commands while regulating the yaw angle. A cascaded control structure is presented based
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Fig. 7 Nominal performance comparison, syn-
chronization filter of Sensor-Based INDI is mod-
ified to be robust against time mismatches
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Fig. 8 Fault is detected by FDI algorithm and the
control system switches to Model-Based INDI

on the time scale separation between angular rates and angular accelerations. The inner loop is designed for tracking
desired angular rates, and the outer loop is designed to obtain the desired angular rates to achieve commanded attitude
angles.

A. Aircraft Model
The F-16 aircraft model by Russell [27] is used to test proposed control method. The model is valid within

a constrained flight envelope for angle of attack −10◦ ≤ U ≤ 45◦, side slip angle −30◦ ≤ V ≤ 30◦, velocity
300 ft/s ≤ + ≤ 900 ft/s and altitude 5000 ft ≤ ℎ ≤ 40000 ft. The model has three conventional control surfaces: elevator,
rudder and aileron to generate pitch, yaw and roll moments. An engine mounted in the rear fuselage provides thrust.
Actuators of the aircraft controls are modeled as first-order transfer functions. Characteristics of actuators are presented
in Table 1. The actuator dynamics are assumed to be accurate. Additional sensors to measure actuator deflections are
not used.

Table 1 Aircraft Actuator Characteristics

Actuator Upper Level Limit Lower Level Limit Rate Limits Time Constant
Throttle (Xth) 19000 lbf 1000 lbf ±10000 lbf/s 1 s
Elevator (Xe) 25◦ -25◦ ±60◦/B 0.0495 s
Rudder (Xr) 30◦ -30◦ ±120◦/B 0.0495 s
Aileron (Xa) 21.5◦ -21.5◦ ±80◦/B 0.0495 s

The model is augmented with sensor models that are used in a high incidence aircraft model [28]. Sensor dynamics
to measure body axes attitudes (q, \,k) is

! \ (B) = 1
0.00104B2 + 0.0323B + 1

. (26)

Body axes angular rates (?, @, A) are measured by sensors with dynamics of

!l (B) = 0.0001903B2 + 0.005346B + 1
0.0004942B2 + 0.03082B + 1

, (27)

Air data signals (+) ,U, V, ℎ) are measured by

!0 (B) = 1
0.02B2 + 1

. (28)

All the sensors have additional dynamics to consider flight computer’s computational delay and analog to digital
conversion. In addition, air data and attitude sensors are filtered for anti-aliasing. Averaging dynamics are added to
angular rate measurements. The details of these additional dynamics are found in [28]. Uncorrelated zero-mean white

9



noise signals are added to the outputs of sensor measurements. The standard deviations of white noise are presented
in Table 2 which are based on a previous study with the same aircraft model [29].

Table 2 Standard Deviations of Measurement Noise

+ U, V, q, \, k ?,@,A ℎ

1 m s−1 0.1° 0.01° s−1 5 m

The aircraft is modeled symmetric in x-z plane i.e. the moment of inertia �GH = �HI = 0. The inertia tensor is

� =


�GG 0 −�GI
0 �HH 0
−�GI 0 �II


. (29)

Total moment vector around body axes """ is given by

""" = � ¤l¤l¤l +lll × �lll. (30)

where angular rates [? @ A]) are denoted bylll. The moments due to aerodynamics are denoted by !, " and # , they
represent rolling, pitching and yawing moments respectively, and given as

""" =


!

"

#


=

1
2
d+2(


1 �;

2̄ �<

1 �=


(31)

where 1 is wing span, 2̂ is mean aerodynamic cord, d is air density, + is airspeed, ( is wing surface area, and �; , �<, �=
are non-dimensional aerodynamic coefficients. The coefficients are gathered into data tables via wind tunnel tests [30].
The model utilizes coefficient tables given in [31] by linear interpolation. An overview of these values are represented as

�; = �;0 (U, V) + �;A (U)
A1

2+
+ �;? (U)

?1

2+
+ �;X0 (U, V)X0 + �;XA (U, V)XA (32)

�< = �<0 (U, X4) + �<@ (U)
@2̄

2+
+ �I (U, V, X4, @) (-cgR − -cg) (33)

�= = �=0 (U, V) + �=A (U)
A1

2+
+ �=? (U)

?1

2+
+ �=X0 (U, V)X0 + �=XA (U, V)XA (34)

where �I is total z-axis force coefficient and its effect on pitching moment is based on the difference between the
reference center of gravity location, which is constant at -cgR = 0.352̄ and center of gravity location -cg. To bring the
equations of motion in general nonlinear form as given in Eq. 1, control surface moments should be distinguished from
moments due to airframe. The equations of�; and�= are control-affine, which makes the distinguishing straightforward;
however, �< is control-nonaffine. To separate contribution of elevator deflection from �<0 , the rate of change of
coefficients with respect to X4 is calculated. Effect of elevator deflection on �I is assumed to be negligible. The
moments are rewritten as


!

"

#


=

1
2
d+2(


1 �;X0 0 1 �;XA

0 2̄ �< 0
1 �=X0 0 �=XA



X0

X4

XA


+ 1

2
d+2(


1 �;0
2̄ �<0

1 �=0


(35)

where �;0 , �<0 , �=0 denote aerodynamic coefficients of the airframe. Equation (30) and Eq. (35) are combined to
solve for angular acceleration ¤8. This yields

¤l¤l¤l = �−1




1
2
d+2(


1 �;0
2̄ �<0

1 �=0


−lll × �lll



+ �−1 1

2
d+2(


1 �;X0 0 1 �;XA

0 2̄ �< 0
1 �=X0 0 �=XA



X0

X4

XA


. (36)
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B. Angular Rate Control
Angular rate controller is the inner loop of the control structure. The equation for angular acceleration given in

Eq. (36) is in the form of general nonlinear equation as in Eq. (1) which is useful when the controller is designed. The
controls are aileron, elevator and rudder. Engine thrust is kept constant. Control variables, virtual controls, and state
derivative estimates are

DDD =


X0

X4

XA


; a ¤la ¤la ¤l =


a ¤?
a ¤@
a ¤A


; ¤̂lll =


¤̂?
¤̂@
¤̂A


. (37)

Control effectiveness matrix is inverted to apply Hybrid INDI approach as given by Eq. (12) which yields the control
law as 

X0

X4

XA


=


X00

X40

XA0


+ �

1
2 d+

2(


1 �;X0 0 1 �;XA

0 2̄ �< 0
1 �=X0 0 �=XA



−1 


a ¤?
a ¤@
a ¤A


−


¤̂?
¤̂@
¤̂A





. (38)

Virtual input a ¤la ¤la ¤l act as desired angular acceleration. Its dynamics is based on the error between desired angular rates
and measured angular rates. The virtual angular acceleration input is given as

a ¤la ¤la ¤l =  %l
 %l %l (l3l3l3 −lBlBlB) + �l

 �l �l ( ¤l3¤l3¤l3 − ¤lB¤lB¤lB) + ¤l3¤l3¤l3 (39)

where l3l3l3 is the desired angular rates and they are the output of the outer loop, and lBlBlB is measured angular rates.
Derivative of desired angular rate and measurement is obtained based on derivative filter given as

�d (B) = B

30B + 1
. (40)

The linear controller consists of a set of proportional and derivative gains, i.e. the PD compensator is designed for the
error dynamics, and a feedforward term based on the derivative of the desired angular rates is included. Depending on
the required response characteristics, the feedback controller can be adjusted to be PI or PID compensator [25] as well.
The feedforward term can be updated with an additional second derivative of the desired values [11, 32].

C. Attitude Controller
The attitude controller controls roll, pitch, and yaw angles. According to time scale separation, angular rates are

assumed to have reached their desired values very fast compared to the dynamics of the inner loop. Attitude control is
based on NDI. The kinematic relation between attitude angles and angular rates are given as


¤q
¤\
¤k


=


1 tan \ sin q tan \ cos q
0 cos q − sin q
0 sin q/cos \ cos q/cos \



?

@

A


. (41)

Applying NDI control law yields


?3

@3

A3


=


1 tan \ sin q tan \ cos q
0 cos q − sin q
0 sin q/cos \ cos q/cos \



−1 
a ¤q
a ¤\
a ¤k


(42)

The virtual input a ¤\a ¤\a ¤\ is used as desired attitude angle derivatives. It is based on the error dynamics between the attitude
angle commands and measured attitude angles. The relation is given as

a ¤\a ¤\a ¤\ =  %\
 %\ %\ (\A\A\A − \B\B\B) + ¤\A¤\A¤\A (43)

where \A\A\A is reference attitude angle commands and \B\B\B is the measured attitude angles. To define the desired closed loop
dynamics and to avoid unachievable control inputs, these commands are pre-filtered. The filter is designed to track
commands as fast as the system dynamics allow. First-order lag filter is given as

�pf (B) = 1
0.25B + 1

(44)

Setting a lower bandwidth decreases the response time of the system and a high bandwidth reaches to actuator limits
easier then the system cannot respond any faster.
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Fig. 9 Overall block diagram of Hybrid INDI

D. Actuator Saturation
The control laws given in Eq. 38 and Eq. 42 do not consider actuator limits. The performance of INDI degrades as

the actuators are saturated [9]. Pseudo Control Hedging (PCH) is one of the methods to avoid actuator saturation. The
method calculates the amount of control input that cannot be reached due to the actuator limits and feeds the value to the
angular rate controller. The angular rates are then limited based on this value. The inner loop requires a reference model
to be set, which adds an extra tunable set of parameters that are designed to achieve good performance. The hedging can
also be fed to the outer loop. This is not preferred in this study since it requires an additional integration and there is
no improvement in performance. PCH is effective in removing actuator saturation but it causes slower responses. To
maintain a fast response, a limited saturation is allowed by selecting the PCH gain as 20 for all channels. The details of
PCH in INDI applications can be found in [11, 25].

E. Controller Overview
The overall block diagram of Hybrid INDI is given in Fig. 9. The control gains  %\

 %\ %\ ,  %l
 %l %l and  �l

 �l �l are three by
three diagonal matrices. In order to tune these parameters, an optimization algorithm is used. The objectives of the
optimization are root mean square of tracking error of attitude angles and control effort spend by actuators. The control
effort is based on additional deflection of the actuator at each time step, and it is calculated as

X� =
3∑
8=1

#∑
:=0
|X8 (:) − X8 (: − 1) | 3C (45)

where 8 is used for control surfaces and # is the number of sampled data. RMS of tracking error n is given by

n2 =

∑3
;=1

∑#
:=0

(
\\\A (:) − \\\ (:)

)2

#
(46)

where ; denotes control channels of the system. The cost function is simply sum of these two parameters:

� = X� + n (47)

By this method, a single metric to evaluate the performance of the control system is obtained. Additional terms can be
added based on performance requirements. For instance, a metric to detect oscillations is proposed in [33]. The gains
are found by minimizing the cost function and they are given in the Table 3.

Selection of noise filtering in Sensor-Based INDI applications is challenging since more noise filtering means more
time lag and slower response [5]. Similarly, the bandwidth of the complementary filter determines noise alleviation as
well as response time and model mismatch cancellation. A balance between these perspectives should be found. The
limits for bandwidth are selected based on the time scale separation. Angular accelerations are faster than the attitude
angles. Desired attitude angle characteristics are determined by the prefilter given by Eq. 44. Setting the bandwidth
below this value naturally slows down the attitude response. Therefore, the lower limit for the bandwidth is set to 4 rad/s.
Similarly, angular accelerations to respond faster than the actuators do not affect the performance. Hence, the upper
limit is set to the bandwidth of actuators, which is given as 20.2 rad/s in Table 1. Between these values, the balanced
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Table 3 Linear Control Gains

QV) QV8 QJ8 PCH
Roll 1.17 6.68 0.3 20
Pitch 1.60 4.28 0 20
Yaw 1.22 3.73 1 20

value is found at 8 rad/s. Two main factors for the selection of this value becomes noise filtering and response time.
Ideally, with a lower value, more noise is filtered, but this means that the response time is compromised. The damping
coefficient of the filter is set to 0.7 for a nice transition from model-based estimation to sensor-based estimation and
sufficient robustness against time mismatches. Hence, the filter gains are determined to be  � = 64 and  % = 11.2.

V. Simulation Results
This section presents the simulation results of the F-16 aircraft model with the control system described in Sec. IV.

Sampling frequency is fixed at 100 Hz for all simulations. The operating point is selected at altitude of 10000 ft and
velocity is equal to 500 ft/s, in steady flight. The aircraft is trimmed at this operating point and the resulting values are
listed in Table 4.

Table 4 Aircraft trim values

Xth Xe Xa Xr U +) ℎ

2081 lbf −2.25° 0 0 3.60° 500 ft/s 10000 ft

The estimation value is compared with sensor measurement value by using a second order filter,

�NF (B) = 402B

B2 + 56B + 402 (48)

which differentiates angular rates and filters noise. This filter is used for the Sensor-Based INDI simulations as well, and
it is designed based on the best nominal performance. The noise below 40 rad/s is sufficient to be removed; therefore,
there is no need to introduce additional time lag.

To show the differences between INDI approaches, nominal performance is investigated. The aircraft is commanded
with pitch angle doublet. Pitch accelerations, tracking performance, and elevator deflection are shown in Fig. 10 focusing
on different time ranges. Figure 10a shows actual angular acceleration, model output, complementary filter output,
and sensor-based acceleration calculation and focuses on the time of initial command. First, notice that the hybrid
variant of the acceleration has the highest noise value. This noise is allowed not to slow down the system response. The
on-board model matches with the actual aircraft dynamics since no uncertainty is introduced. A difference between the
model output and the actual value is caused by a one-time step delay of control inputs to the model to consider actuator
modeling calculation. The model also uses the aircraft measurements without any noise filtering. Therefore, there is a
slight time lag due to sensor dynamics. In addition, aerodynamic moments due to system states mismatch with the
actual value due to noisy measurement. Sensor-based angular acceleration is the shifted version of actual value. They
match well except the time lag between them. The hybrid angular acceleration increases with the model output that
increases without any time delay. Then, it starts to converge to the sensor-based acceleration until the model output
decreases. For higher magnitudes of commands, the estimation is expected to converge to sensor measurement. Using
Hybrid INDI makes the system to respond earlier than the measured states. The magnitude of the value is lower than the
real value as well. These are the reasons that the oscillations are eliminated in the Hybrid INDI approach.

Figure 10c compares elevator deflections of Hybrid INDI and Sensor-Based INDI. Around C = 1.2 s elevator
deflection reverses since the angular rate reaches its desired value. Hybrid INDI experiences this change at a lower
magnitude. This explains why a slower response is expected from the Hybrid INDI, and less control effort is spent.
Figure 10b shows responses of INDI approaches to doublet command in pitch angle. Both of the responses show similar
characteristics such that after one oscillation they settle down. The settling time of Hybrid INDI is slightly higher
causing its RMS error to increase. The performance criteria were set to be the sum of RMS error and control effort. The
cost value of both approaches is almost the same at the nominal conditions.
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Fig. 10 Response to pitch angle command in nominal conditions sensor and noise filter dynamics are included
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Fig. 11 Robustness comparison of INDI approaches

Two simulations are performed to investigate disturbance rejection and system robustness against aerodynamic
uncertainty. The results are shown in Fig. 11. In order to simulate a constant wind, a step input is introduced to the
system at 1 s and added to the angle of attack measurement. The results of the angle of attack regulation control problem
are shown in Fig. 11a. All approaches initially respond to the disturbance similarly. After a short time, Sensor-Based
and Hybrid INDI remove the effect of disturbance by setting the angle of attack to its steady-state value. Although, the
rejection characteristics are different the settling time of the methods is the same. Model-Based INDI cannot remove
the disturbance and the angle of the attack remain to 0.4◦ above the trim value since 555 mod does not match with real
aircraft dynamics and the difference between them acts as bias given to the control law. In terms of robustness against
aerodynamic uncertainty, Hybrid INDI is successful as seen in Fig. 11b. A step input is commanded in the pitch channel
and the modeled aerodynamic coefficients are increased by 50%. The response of Sensor-Based INDI and Hybrid INDI
does not deviate much from their nominal performances even if the performance of Model-Based INDI significantly
degrades, a large overshoot and oscillations are observed, and a large tracking error remains.

To test Hybrid INDI robustness against measurement delays, a transport delay of 0.05 s is introduced in angular
rate measurement, while maintaining the model mismatches with aerodynamic coefficients that are increased 50%. A
doublet input is given in pitch and roll angles as shown in Fig. 12. The results show that Hybrid INDI is robust against
measurement delays, and deviation from the nominal performance is very little. Oscillations occur with Sensor-Based
INDI. Lateral modes are more vulnerable to time delays. For instance, the roll angle oscillates with a magnitude up to
4◦ of roll angle although the pitch plane is exited. The response of hybrid INDI does not have oscillations. Simulations
with increasing time delays show that SB-INDI becomes unstable when the transport delay is 0.07 s. Hybrid INDI stays
in the stable region up to 0.13 s.
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Fig. 12 Tracking performances in existence of measurement delays and aerodynamic uncertainties

VI. Conclusion
This paper has presented a new approach of INDI by modifying the linearization loop via a complementary

filter. The filter supplies an angular acceleration estimation based on sensor measurement and on-board model output.
By formulating Hybrid INDI it is shown that the approach includes characteristics of both Model-Based INDI and
Sensor-Based INDI. The fast response of on-board model is presented as the key feature for the elimination of drawbacks
of sensor measurement delays. Hybrid INDI persists to be robust against model mismatches and external disturbances
by utilizing low frequency characteristics of measurements.

The effectiveness of the Hybrid INDI has been demonstrated by two types of simulation analysis. The initial analysis
considers a simple system and only the linearization loop of INDI is investigated. This analysis compares Sensor-Based
INDI and Hybrid INDI in terms of tracking performance in nominal conditions, and in the existence of measurement
delays. Consequently, it is shown that Hybrid INDI yields less overshoot and faster settling time when the measurements
delays are underestimated. Further details are presented about the synchronization filter, which is given as a modified
transfer function of the complementary filtering of sensor measurement. Moreover, change in closed loop characteristics
with respect to filter gains and measurement delays are presented.

This analysis is validated by designing an attitude controller for the F-16 aircraft using Hybrid INDI, and showing
its robustness against measurement delays and its ability to maintain the sensor-based nature of INDI. Simulation results
indicated that Hybrid INDI loses very little tracking performance in nominal conditions. This is compensated by having
low control effort. Simulation scenarios with uncertainties in aerodynamic coefficient indicates that the on-board model
of Hybrid INDI does not have to be accurate for the control system to be robust against model mismatches. This finding
is strengthened by the successful rejection of gust disturbance. Finally, measurement delays are introduced and the
aircraft is commanded by doublets of pitch angle and roll angle. As a result, Hybrid INDI insignificantly deviates from
the nominal performance whereas the performance of Sensor-Based INDI becomes undesirable due to oscillations in
the commanded channel as well as other channels.

Hybrid INDI is not without drawbacks which future studies might overcome. One of the main limitations of Hybrid
INDI approach is the noise filtering capability. The bandwidth of the filter design is determined based on the trade-off
between the noise filtering and fast response. To achieve the same noise filtering of Sensor-Based INDI, the bandwidth
of the complementary filter is required to be set to lower value which slows the response of the system dramatically. The
noisy angular acceleration estimation is directly reflected to the actuator. The actuator itself filters the noise as well and
the magnitude of the noise is very low such that the control effort is not affected. However, in real life applications, this
limitation might lead to actuator failures. A future study can investigate the importance of the excess of noise and focus
on mitigating it.
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Different hybridization or estimation techniques could be used for Hybrid INDI. One possible modification that
is worth investigating is to use angular accelerometers instead of gyroscopes. In this study, an angular acceleration
estimation method is used for Hybrid INDI since this method has advantages such as being simple and easily adaptable
to system requirements. The use of accelerometers can be implemented with a slight change in the complementary filter.
A future study may consider Kalman filtering as one of the possible methods which exploits both measurement and
model simultaneously.

A variant of Hybrid INDI is presented as a fault-tolerant system. The approach includes a logical switch that is fed
by an FDI algorithm, which can switch the system to become Model-Based INDI by avoiding sensor measurement
innovation. This variant is not tested in the F-16 aircraft application because of a lack of FDI algorithm. A future study
may implement an FDI algorithm to show the applicability of this feature on an aerospace system.
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3
NONLINEAR DYNAMIC INVERSION

3.1. BACKGROUND INFORMATION

Achieving the necessities of next generation systems requires consideration of full nonlinear model.
Linear models of aerospace systems are approximate so that they are limited in performance. How-
ever, analysis and design of linear systems are considered to be better developed compared to non-
linear systems [23]. Therefore, divide and conquer approach is used where nonlinear control system
design is decomposed into linear subsystems by linearization at several expected operating points.
This method is called gain scheduling and it is one of the most popular and successfully applied
nonlinear control design approach in aerospace field.

Gain scheduling covers overall flight regime by tuning control gains for the specific operating con-
ditions and nonlinear control is obtained by interpolation of the gains. This allows obtaining sat-
isfactory control performance over flight envelope. Incorporating with linear robust control design
techniques is one of the main advantages of gain scheduling. In order to robustify gain scheduling,
its application is blended with H∞ control design, µ synthesis and scheduling with linear fractional
transformations [24, 25].

Gain scheduling uses linearized models of a system so that any kind of linear control method such
as PID tuning, LQR or pole placement can be applied. This makes gain scheduling very appeal-
ing. There are also some challenges such as selection of meaningful scheduling parameters. Slowly
varying parameters, for instance mach number, angle of attack and dynamic pressure, are gener-
ally preferred. The parameter does not have to be one of the states but complexity of interpolation
and computational power requirement increase as more parameters are used. The design process
is time consuming because it is challenging to decide linearization points, there is possibility of loss
of stability within the points and there is need for repetition of procedure as the parameters of the
model is updated. Some of the remedies of these problems are addressed in [26]. Nevertheless, ad
hoc nature of the technique is time consuming for the design engineer and need for a more generic
approach remained [27].

Nonlinear Dynamic Inversion (NDI) has emerged as a promising substitute of gain scheduling. One
of the main motivations is to ensure stability and performance over the entire flight region. This
is a challenge for gain scheduling in between operation points. NDI is a subset of Feedback Lin-
earization (FBL) that is specifically applied to obtaining input-output linearization. Theory of feed-
back linearization is pioneered by Brockett and Krener who aimed to extend results of linear control
studies to nonlinear case in the late seventies [28–30]. The theory is treated extensively in nonlinear
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control system design books [31–33].

The linearization refers to process of making the input-output response of a nonlinear system linear
by using state feedback and coordinate transformation rather than Jacobian linearization. Forming
a simpler state representation helps to find the solution easier. State transformation makes non-
linear system to appear as linear. Then, the system is controlled by linear control methods. The
dynamics of controlled variables are reduced to be simple integrator dynamics. Moreover, the need
to linearize the system in several points as in gain scheduling is eliminated and a single linear con-
trol gain is sufficient to ensure stability and performance. In general, control design is an iterative
process, but NDI can be easily adapted to the changes in the parameters of the system. The per-
formance is satisfactory in large region of state space but not well defined in singular points. In
addition, selecting the gain values diagonally in a system with multiple inputs and outputs decou-
ples control axes. This helps significantly for the control of coupled systems. These benefits of
the method and its feasibility for aerospace systems are proved by practical applications of NDI in
aerospace field for several systems that require high maneuverability [34–37].

There are some limitations to the applications of NDI. The technique works best when the model is
accurately known. In many situations model cannot be accurately known and uncertainties need to
be considered. Hence, robustness is not guaranteed in existence of model uncertainties. Sensitivity
to model inaccuracies and the need for stable internal dynamics will be explained further and the
application method of NDI will be clarified.

3.2. INPUT - OUTPUT LINEARIZATION

The concept of NDI is applied directly on the systems in companion form. These systems are a sub-
set of feedback linearizable systems. It is also possible to use NDI after finding a linear relationship
between the input of the system and the states. Not every system is suitable for this direct appli-
cation since the system may not be in companion form or there may be a nonlinear relationship
with the states and output. This is generally the case in aerospace applications and in this project.
A general nonlinear state space representation is given as

ẋ = f (x)+ g (x)u (3.1a)

y = h(x) (3.1b)

where x is n-dimensional state vector, since a single input single output (SISO) system is considered
u and y are scalar control input and system output, respectively, f and g are n-dimensional smooth
nonlinear vector fields and h is a scalar smooth nonlinear vector field. The term g is referred as
control effectiveness because it determines the effect of the control input on the states. The main
challenge of the control problem is that the output variable y is desired to be controlled whereas
the designer can only determine the value of the input u. The input does not appear directly the
equation of output as seen in Eq. 3.1. Hence, the basic idea of input-output linearization is based on
finding a direct relationship between the output and the input of the system. The approach to find
this relation is to differentiate the output function until the input is apparent in the equation.

Lie derivative is a mathematical operation that eases application of NDI. Since successive differ-
entiation is required to find the relation of input and output, number of differentiation may cause
excessive number of terms. Lie derivative is used to reduce the number of terms and to generate an
expression for undefined number of differentiation.

Assume that h(x) is as defined in Eq. 3.1, a smooth scalar function such that Rn → R and f (x) is a
smooth vector field that Rn → Rn . The first order directional derivative of h(x) along the direction
of f (x) is called first order Lie derivative of h(x) in the direction of f (x). The definition is shown
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as
∇h(x) f (x) = L f h(x) (3.2)

where ∇ is gradient operator and therefore the first terms is

∇h(x) = ∂h(x)

∂x
. (3.3)

The strength of Lie derivative is to show high order directional derivatives in a compact way such
as

L1
f h(x) =∇h(x) f (x)

L2
f h(x) =∇[L1

f h(x)] f (x) = L1
f [L1

f h(x)]

Lk
f h(x) =∇[Lk−1

f h(x)] f (x) = L1
f [Lk−1

f h(x)].

The first step in input-output linearization is to differentiate the output function to find an explicit
relation to input. Every derivation yields a new state. The new states are used to form a linearizing
control law. This is generally the inner loop of the control structure. As the dynamics are trans-
formed to be linear, the last step is to design a linear controller. This control constructs the outer
loop of the system and it is performed according to system requirements. The output of the outer
loop is called virtual control and it acts as an input to the inner loop.

Considering the general system representation in Eq. 3.1, the derivative of the output equation with
respect to time is

ẏ = d y

d t
= ∂h(x)

∂x

d x

d t
=∇h(x)ẋ (3.4)

replacing ẋ with the equation in Eq. 3.1a yields

ẏ =∇h(x)[ f (x)+ g (x)u]. (3.5)

Using the definition of Lie derivative, Eq. 3.5 is rewritten as

ẏ = L f h(x)+Lg h(x)u. (3.6)

Even though, in the first derivation input u appears in the equation, Lg h(x) 6= 0 should be satisfied
for the input-output relation to be exist. It is also possible that some values of x satisfies the con-
dition whereas some does not. A global controller is achieved when all the points do. If this is not
the case, a controller can be designed with singularities at some points. Assuming the condition is
satisfied, the control input transformation is stated as

u = 1

Lg h(x)
[ν−L f h(x)] (3.7)

where the virtual input ν is defined as ẏ = ν. Hence, a direct linear relationship is formed between
y and ν that a linear controller can be designed.

If the condition Lg h(x) 6= 0 is not satisfied then ẏ = L f h(x) and a successive derivation is needed to



30 3. NONLINEAR DYNAMIC INVERSION

make input u apparent in the equation. The second derivative of output is

ÿ = ∂[L f h(x)]

∂x

d x

d t

=∇
[

L f h(x)
][

f (x)+ g (x)u
]

=∇
[

L f h(x)
]

f (x)+∇
[

L f h(x)
]

g (x)u

= L2
f h(x)+Lg L f h(x)u (3.8)

In this case, condition to have an input-output relation changes to be Lg L f h(x) 6= 0. If it is satisfied,
the control input is written as

u = 1

Lg L f h(x)
[ν−L2

f h(x)] (3.9)

and the outer loop dynamics with the virtual control happens to be a double integrator

ÿ = ν (3.10)

If Lg L f h(x) = 0, input-output relation requires further investigation with additional differentiation.
Assume that, this relation is found after r times differentiation such that r is the minimum number
where Lg Lr−1

f h(x) 6= 0 is satisfied. This yields

y (r ) = Lr
f h(x)+Lg Lr−1

f h(x)u (3.11)

where y (r ) is r th order time differentiation of y . The control input is obtained generically as

u = 1

Lg Lr−1
f h(x)

[ν−Lr
f h(x)]. (3.12)

The outer linear controller is designed based on the integrator dynamics. The control law of a track-
ing control problem for a double integrator as in Eq. 3.10 is

ν= ÿd −k1e −k2ė (3.13)

where yd is the desired output or commanded output and e = y − yd . The controller gains are k1

and k2 are tuned according to system requirements. The general control structure of NDI control is
shown in Fig. 3.1.

3.3. INTERNAL DYNAMICS

In the general case as in Eq. 3.11, the relation between the input and the output is found after r times
differentiation. The systems, which do not yield the relationship after infinite differentiation, are not
feedback linearizable. A feedback linearizable system order of n, input-output relation is obtained
at most after n times differentiation, hence r ≤ n for all the systems. The number of differentiation
r defines the number of system dynamics that is controlled through NDI and this is called relative
degree of the plant. If r = n, then every mode of the system is controlled, these dynamics are called
external dynamics. A system that requires less number of differentiation than the order such that,
r < n, contains n− r modes that are unobservable, these are referred as internal dynamics and they
cannot be controlled by NDI controller.

For NDI controlled system to be practical, internal dynamics should be stable. The systems are gen-
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Figure 3.1: A general Block Diagram of NDI Control Structure

erally nonlinear and coupled with the external dynamics, this causes difficulty in evaluation of the
stability of internal dynamics. A method is to observe linear approximation of the systems. Relative
degree corresponds to excess number of poles over number of zeros for linear system. If the system
has zeros on the left half plane of complex coordinate system, i.e. minimum phase system, the inter-
nal dynamics are bounded. For non-minimum phase systems the internal dynamics are unstable,
therefore NDI is not practical. Even though there are existing solutions, they are only applicable for
specific type of systems [38]. When the controlled variables are selected, stable dynamics should be
left to be internal dynamics, if possible.

3.4. TIME SCALE SEPARATION

In a dynamical system, effectiveness of control input on every variable is not the same. Some vari-
ables respond to input faster whereas some others reach the steady state value slower. Dynamic
equations of aircraft is naturally faster than the kinematic equations. For example, effect of elevator
surface deflection on pitch rate would be faster than its effect on pitch angle. Therefore, it is very
common in aerospace field to separate angular rates from attitude angles and control in cascaded
loop structure [39]. Stability analysis of nonlinear dynamic inversion control using time scale sepa-
ration has been studied in [40] and it is found that the system is stable when the selection of gains
are appropriate.

As the dynamics are separated they are considered as individual dynamics and treated in this way.
In the control structure, a single loop is divided into multi-loop structures that the overall inputs
and outputs are in fact the same. The fast dynamics is formed in the inner loop. The output of
the outer loop happens to be the input for the inner loop. Since the outer loop is slower, the inner
loop assumes that its input is constant. Similarly, outer loop assumes that inner loop has reached
steady state since the inner loop is faster. This structure eases mathematical complexity of controller
design. In addition, cascaded design is more robust to disturbances in fast dynamics.

3.5. ROBUSTNESS ANALYSIS

Mathematical models of systems can never perfectly describe the real system itself. Engineers work
with the models that are inaccurate at some points. The controller is designed based on this inac-
curate model but it is desirable that the controller works on the real system as well. This ability is
called robustness to model inaccuracies and an analysis would give an idea about the performance
of the controller even before testing on a real system. The general nonlinear system equation given
in Eq. 3.1a is assumed to be the nominal system. The real system is defined as

ẋ = f (x)+∆ f (x)+ [
g (x)+∆g (x)

]
u. (3.14)
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This equation symbolizes set of functions that is possible to encounter in the real system. ∆ f (x) and
∆g (x) are set of functions that are bounded and show the deviation of the real system from modeled
one. A robust controller would perform sufficiently well within this set of nonlinear equations. As-
suming that the input-output relation is found in the first derivation ẏ = ν and the output is y = x,
the control law that is designed for the nominal system is

u = g−1(x)
[
ν− f (x)

]
. (3.15)

Applying the control law on the modeled dynamics yields

ẋ = f (x)+ g (x)g−1(x)
[
ν− f (x)

]
(3.16)

ẋ = ν (3.17)

which is a linear dynamical equation whereas applying the control law on real system with uncertain
dynamics in Eq. 3.14 yields

ẋ = f (x)+∆ f (x)+ [
g (x)+∆g (x)

][
g−1(x)

[
ν− f (x)

]]
(3.18)

ẋ = [
I +∆g (x)g−1(x)

]
ν+∆ f (x)−∆g (x)g−1 f (x). (3.19)

Introduction of uncertain terms cause nonlinear terms not to be canceled completely. The inner
closed loop dynamics is still a nonlinear one that linear controller is not suitable anymore. Model
mismatch is an issue that needs to be overcome in the applications of NDI and this led many re-
searches to be conducted to improve robustness.

Earlier works on NDI is generally blended with robust control techniques in frequency domain.
In [41], NDI is coupled with structured singular value synthesis and in [42] the outer loop that in-
volves errors due to system uncertainty is shaped using H∞ technique. Another research uses Linear
Quadratic Gaussian outer loop to improve robustness [43]. In this study, a simple example is given
to show that inner linearization loop is not linearized under uncertainties. A further development
of robustness analysis is given in [44] in which uncertain dynamics are included in linear fractional
transformation manner and linearization loop results are given for a general case. The paper con-
siders a reentry vehicle and presents the stability degradation by the uncertainty and investigates
the worst case scenarios in order to gain insights when developing controller design for nominal
system. A similar approach is applied in [45], structured singular value is used for evaluation of ro-
bustness of the closed loop dynamics and paper reveals the sensitivity to model uncertainties and
methods to decrease it to improve robustness.

Another approach is taken in [46] in which artificial neural networks are used to correct errors of
NDI due to model inaccuracies and disturbances as well for a traditional missile system. A reference
model is formed that involves ideal behaviour of missile and autopilot is designed to mimic this
behaviour. A similar Adaptive NDI method is used for spacecraft attitude control that fuel sloshing
effects of the system dynamics [47].
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This chapter consists of four sections. In Section 4.1 derivation of INDI control law is given and ro-
bustness analysis of the method is discussed. The next section reviews INDI literature in detail. This
section answers the research question 1, presents known strengths and weaknesses of the method.
Section 4.3 derives the Model-Based INDI. The section partially answers research question 2 by giv-
ing general structure of the control law but does not go into details of questions 2b and 2c. Lastly,
Section 4.4 presents overview of possible sensor-model integration giving examples from literature.
The section partially answers research question 4.

4.1. INDI FORMULATION

A general nonlinear system that is given in Eq. 3.1a is repeated here

ẋ = f (x)+ g (x)u. (4.1)

This function is approximated by Taylor series expansion at the current value of state x0 and control
value u0. The second derivatives and higher terms are assumed to be negligible and they are not
included

ẋ ≈ f (x0)+ g (x0)u0 +
∂

∂x

[
f (x)+ g (x)u

]
u0,x0

(
x −x0

)+ ∂

∂u

[
f (x)+ g (x)u

]
u0,x0

(
u −u0

)
. (4.2)

The addition of first two term is simply ẋ0. Control surface deflection occurs much faster than the
changes in the states. Due to time scale separation between states and inputs the last term in the
equation becomes dominant and the states are assumed to be constant hence x = x0. The incre-
ment in control input is defined as ∆u = u −u0. Therefore, the equation reduces to

ẋ ≈ ẋ0 + g (x0)∆u (4.3)

The incremental control input law is formed based on this relation. For a system that state variable
is also the output, the first derivative yields relation of output and input as ẋ = ẏ = ν. Thus the
control increment is

∆u = g−1(x0)(ν− ẋ0). (4.4)
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The new control input is found using previous time step control input as

u = u0 + g−1(x0)(ν− ẋ0). (4.5)

This result shows that either measuring or estimating the current value of the derivative of state
would be sufficient for control input calculation. Comparing Eq. 4.5 with Eq. 3.6, it is seen that
dependence on accurate model is limited with control effectiveness. Therefore, accuracy of model is
trade off with accuracy of measurement or estimation of state variables. Robustness of NDI against
modeling uncertainties are investigated in Section 3.5. Similarly, INDI is analysed for robustness.
The real system equation with unknown uncertainties

ẋ = f (x)+∆ f (x)+ [
g (x)+∆g (x)

]
u. (4.6)

Assuming that ẋ0 is accurately available, the control input in Eq. 4.5 is inserted into the equation
which yields

ẋ = f (x)+∆ f (x)+ [
g (x)+∆g (x)

][
u0 + g−1(x0)(ν− ẋ0)

]
(4.7)

expanding the equation

ẋ = f (x)+∆ f (x)+ g (x)u0 +ν− ẋ0 +∆g (x)u0 +∆g (x)g−1(x0)
[
(ν− ẋ0)

]
. (4.8)

The assumption of negligible state change is applicable for this equation as well. Since x ≈ x0, most
of the terms cancel and the remaining is

ẋ = ν+∆g (x)g−1(x0)
[
(ν− ẋ0)

]
. (4.9)

The robustness of INDI method is reduced to accuracy of control effectiveness. For the nominal
system where ∆g (x0) = 0, the relation ẋ = ν is obtained. There has been several assumptions in
order to achieve this result. The assumptions are

1. Second order and higher order dynamics are excluded from Taylor series expansion

2. The change in states are assumed to be negligible. The validity of this assumption increases
as the sampling frequency of the system increases. Less change is expected to be observed in
less time.

3. The controls change relatively fast compared to states.

4. It is assumed that the measurement x0 is accurately available.

Besides the control effectiveness uncertainty, these assumptions are the subject of robustness tests
of INDI method. For the real system it is not possible to obtain ẋ0 since sensors are used and they
have their own dynamics. With these dynamics and other additional ones which are detailed in
Section 5.3 the corresponding measurement has time delay. The measurement corresponds to a
previous time ẋd . The subscript d indicates a known time delay. This time is also subject to uncer-
tainty, hence more accurately ẋd+∆t is used where ∆t is unknown time delay. Measurement is used
for cancellation of many nonlinear parameters stated in Eq. 4.8. Among these terms cancellations
based on u0 are dominant compared to state related ones. The best performance is obtained when
time of control increment matches with the time of the measurement so that ud+∆t should be used.
The challenge is to estimate or restrict the magnitude of uncertain term ∆t .
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4.2. REVIEW ON INDI

This section presents literature of Incremental Nonlinear Dynamic Inversion. Theoretical and ro-
bustness studies are separated in order to increase the readability. The other papers contribute to
these areas as well but the focus is regarded to be different.

4.2.1. THEORETICAL DEVELOPMENT OF INDI
Incremental Nonlinear Dynamic Inversion (INDI) is established to overcome robustness issues of
NDI. The term incremental is merged into NDI in the aerospace community in [12]. The idea of
INDI is first presented as simplified NDI in [42]. The proposed method is based on manipulations
of basic equations of flight mechanics. Smith has found that feeding back angular accelerations
decrease the sensitivity to model mismatches and thus performance is enhanced when subjected
to uncertainties [42]. The method is tested on a test aircraft VAAC Harier and the importance of pitch
rate and pitch acceleration matching and sensor drifting effect are highlighted [48]. The succeeding
studies [49, 50] improved the method by using a reconfigurable approach and testing it with several
failure scenarios. In [51], angle of attack tracking controller is designed referring to their method
as implicit NDI. Robust NDI techniques are model-dependent and in Adaptive NDI for example
numerical computations are required to derive aerodynamic coefficients. In addition, the methods
are complex and the complexity of Adaptive NDI and Robust NDI causes them to be time consuming
and difficult to derive, furthermore clearance of the flight controller gets more challenging.

The basic principle of INDI is feeding angular accelerations and control surface deflections back to
the system. It is primarily shown that feeding sensor information eliminates sensitivity to model
mismatch [12]. In addition, paper concludes insensitivity to center of gravity and inertia as well.
However, desensitising closed-loop system to uncertainties comes with the costs of sensitivity to
time delays of measurement. A linear predictive filter is proposed that uses angular rates to solve
sensor time delay problem. This enables INDI to be applicable to practical systems by only using in-
ertial measurement unit, although this causes actuator signals to be delayed in order to synchronize
all feedback signals. However, it is shown that with the current technology using angular accelerom-
eter sensor directly does not yield better results [52].

Initially, INDI is formulated specifically for UAV attitude control and it is proposed as a method
that is easy to apply and less dependent on the system model. The assumptions of INDI may affect
stability of the system. A study by van ’t Veld et al. investigates stability and robustness analysis
of closed INDI by deriving discrete time INDI and testing on a system with continuous time plant
and discrete time controller [4]. It is shown that as the sampling time gets as higher the region
that the system is stable gets smaller. These results are shown in Fig. 4.1. This is basically due to
assumption of fast changes in states lose its strength. Paper includes the results of simulation tests
for the effect of time delay, control gain, uncertainty and controller frequency on the stability and
proposes solutions for problems caused by sensor bias, noise and time delays.

Wang et al. derived INDI control law without time scale separation assumption for a general arbi-
trary degree system, in order to perform stability analysis of the closed loop system in presence of
external disturbances [53]. The paper also derives general closed loop equations in time domain
for output tracking and for input to state linearized system that is under disturbance. Robustness
analysis includes disturbances, model inaccuracies and singular perturbations.

In [54], the assumptions are not made and a new method formulated which is referred as Extended
INDI method. Instead of linearizing the system equations by Taylor expansion, time derivative of
virtual control ν is calculated so that neglecting higher order terms are not necessary anymore. Re-
lation of virtual control and control input is first determined in Laplace domain and then transferred
back to time domain and the theory is tested on VTOL drone.
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Figure 4.1: The stable regions of system with INDI controller reduces as the sampling time increases [4]

4.2.2. ROBUSTNESS OF INDI
Simplicio presents a similar robustness analysis given in previous section [55] . It states when sam-
pling frequency of the controller is high enough the uncertainties on the control effectiveness does
not affect the closed loop system significantly. Therefore, there is less need to robustify the system,
meaning that less effort is required compared to NDI applications. To highlight the significance of
INDI against NDI, robustness test include uncertainties in model parameters. Final tests are per-
formed for lower sampling rates and it is found that INDI assumption loses its strength after 60 Hz.
The study also states that unsynchronized signals are found to be tolerated until 50 ms. Even though
oscillations are introduced to the system, satisfactory tracking performance is obtained. Smeur
shows that noise filtering delays angular acceleration signal and unsynchronized signals cause sig-
nificant issues in the performance [5]. The oscillations due to time delay of the measurement are
shown in Fig. 4.2.

A research by Acquatella aims to design completely model free control law by eliminating control
effectiveness term as well [56]. INDI and PI controllers are related to each other and gains of PI
controller is selected based on this relation. This is done by reformulating the dynamical equation of
the system by introducing an additional scheduling parameter that acts as proportional gain which
should be chosen according to performance requirements.

INDI trades off the importance of system model to sensor measurement. Sensors include various
phenomenon that can prevent them yielding accurate results. Especially, significance of sensor
delays are crucial for stability and performance of the systems. Therefore, in [8] multiplicative un-
certainty is added to time delay of sensors since there could be additional delays that are known
or expected in real systems. Furthermore, robustness is addressed in terms of parametric uncer-
tainties by including the worst case perturbations of inertia values and aerodynamic coefficients on
nominal model.

Robustness of INDI flight control against external disturbance showed promising results. As INDI
control is tested on a rigid aircraft model and a flexible model, sufficient gust load alleviation and
tracking performance are achieved [57, 58]. Disturbance rejection performance of INDI control has
been tested on a MAV. First experiments showed that three times better performance is achieved in
terms of position error when compared to PID [59]. Later on, INDI is improved with a cascaded
version which increased the performance to be seven times better then classical PID controller
[60].



4.2. REVIEW ON INDI 37

Figure 4.2: Noise filtering cause angular acceleration to be delayed. Signal mismatches yields oscillations in large
magnitudes [5]

4.2.3. OTHER APPLICATIONS OF INDI
INDI has found itself a large number of applications on various aerospace systems. In [61], attitude
tracking performance of a spacecraft is presented using INDI. The method is concluded to be more
suitable than identification or model-based adaptive control architecture. By simulations the per-
formance of INDI is compared to PI and regular NDI and the results showed that INDI has better
stability and performance in nominal case and in the presence of external disturbances, time-delay
and parametric uncertainties. In [55], INDI is used for helicopter flight control, attitude and naviga-
tional controllers are designed. This study offered using pseudo-control hedging which is pioneered
in [62] to overcome actuator saturation problems. Actuator dynamics need to be carefully handled
since the problem of oscillations is frequently encountered in INDI applications. In order to over-
come this challenge suitable actuator modeling has been proposed in [63].

INDI showed effectiveness on lateral control of an under-actuated airship [64] and also on attitude
control of a tiltwing aircraft where fixed-wing coordinate system is used [65]. Silva blends gain
scheduling, NDI and INDI to stabilize VTOL during all stages [66]. In addition, INDI is a promis-
ing tool for urban air mobility since it has effective applications on electrical VTOL [67]. Due to the
nature of VTOL, tiltwing and tiltrotor, control laws need to be blended with control allocation meth-
ods since these systems are over-actuated and contains effector redundancy. Hence, flight control
for tiltrotor is designed with a control allocation algorithm [68, 69]. In these studies, INDI proved
its ability to decouple control variables. A similar result is achieved in [70] where improvement in
control allocation speed is emphasized as well. In [71], an INDI baseline controller is designed for
another redundant aerospace vehicle, F-16 assuming readily available angular accelerations.

Aerospace systems are relatively heavy, have six degrees of freedom, include many components and
they are assigned to perform various tasks. Therefore they are vulnerable for structural damages
and changes. Considering faults on the systems are another area of focus. In the study [72], Lu et
al. uses INDI as a fault tolerant method and its performance in the presence of actuator fault is
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appreciated. The study includes comparison with existing methods in three scenarios and efficient
performance of INDI is observed without sufficient excitation and threshold selection which is a
drawback of adaptive NDI based on online system identification procedure. In [55], the actuator of
tailrotor is assumed to be stuck at certain fixed deflections. The performance degradation is limited
for the deflections at low degrees and INDI controller is able to keep the system stable. In [73],
anti-windup scheme for INDI is proposed to overcome actuator faults. In addition, fault tolerant
performance of INDI is tested in a quadrocopter that reach 9 m/s speed when a single rotor is lost
[74]. A recent study considers complete loss of two opposing rotors and tests the performance of
INDI controller [75]. Bayer in [76] shows that a passenger aircraft can use use INDI adaptively to
compensate a partial failure of the high lift system during landing.

INDI is also strengthened by blending the control architecture with other methods, such as aug-
mentation with model reference adaptive control and differential flatness [77, 78]. INDI based flight
control is shown to be capable of converting Cessna Citation II aircraft into a variable stable system
[19]. The effectiveness of INDI is also validated by aircraft flight tests on a CS-25 certified passen-
ger aircraft [8]. Another flight test is performed to make INDI compatible with a new type electro-
mechanical actuation [79].

4.3. MODEL-BASED INDI

Model-based controllers generally encounter with issues about model mismatches and they are vul-
nerable in conditions that are uncertain for the designer. This situation is presented in Section 3.5
that NDI is not robust for model mismatches. INDI on the other hand is robust for these mismatches
and it requires feedback signal of derivative of its states as shown in Eq. 4.5. The model of a system
can be used to extract the state derivative term. A general nonlinear system dynamics is given in
Eq. 3.1 which could be directly used to obtain state derivative. By using the modeled dynamics, ẋ0
is given as

ẋ0 = f (x0)+ g (x0)u0 (4.10)

Plugging this into the INDI control law yields

u = u0 + g−1(x0)
(
ν− f (x0)− g (x0)u0

)
(4.11)

This new control law can be simplified further by distributing inverse of control effectiveness as

u = u0 + g−1(x0)ν− g−1(x0) f (x0)−u0 (4.12)

u = g−1(x0)ν− g−1(x0) f (x0) (4.13)

u = g−1(x0)
(
ν− f (x0)

)
(4.14)

This control method is a modification of INDI using model parameters instead of sensor measure-
ment. The final result is the same as NDI controller that is given in Eq. 3.12. The form given in
Eq. 4.11 is referred as Model-Based INDI control, because this form calculates the control incre-
ment so that it is an incremental approach. The robustness of this approach is same as NDI. One
of the main difference of Model-Based INDI with Sensor-Based INDI is the Model-Based INDI does
not need to deliberately delay control input to match with the measurement. The measurements
used in this approach are only state related and they are negligible compared to control input re-
lated terms. The input used for model computation is precisely known which indicates that the
cancellation of the input related terms always hold.



4.4. HYBRID CONTROL APPROACHES 39

4.4. HYBRID CONTROL APPROACHES

This section presents the literature that integrates model output with the measurement. Addition-
ally, papers based on multiple controllers are presented. The aim of the section is to partially answer
research question 4 which requires to investigate existing hybrid approaches, identify their weak-
nesses and strength. Applicability of these approaches for Hybrid INDI will be determined in further
studies.

The main goal of this research is to be able to use Model-Based and Sensor-Based INDI together.
This requires merging these two control laws or their utilization of each other. Even though this spe-
cific combination of control laws has not been a subject of a study, there are many researches that
involve multiple controllers. For this purpose, existing hybrid approaches are investigated.

Model and sensor integration is not rare in INDI control designs. Formulation of INDI for over-
actuated system yields over-determined problem. To obtain best performance with least effort,
control allocation is frequently applied [71, 80]. Initially, these studies consider local linearization
of dynamical equations in the form of Eq. 4.2 and virtual control is derived. Then, assumption of
slow change in states applied. This assumption does not cancel model dependence completely.
Control effectiveness appears in the equation as expected. Partial derivative of f (x) with respect to
controlled variables is required for control allocation. Therefore, onboard plant models are imple-
mented for the calculation of these values.

Sun et al. handles a fault tolerant flight control application that combines NDI with Sensor Based
Backstepping (SBB) method [81]. The paper treats NDI as outer controller that produces desired an-
gular rates and SBB as inner loop angular rate controller which yields required actuator deflection.
In this combination, NDI output feeds SBB controller. This approach is referred as hybrid control,
although it is fundamentally different than the approach of this study where the controllers are used
to calculate inputs independently.

In [82], a literature overview of hybrid control is presented, stating the closed loop improvements
by hybrid controllers. A bang bang controller causes problems such as high frequency oscillations
when the control error is small. This can be avoided by a linear controller once the system is brought
near the equilibrium point. The combination of two controllers forms a closed loop system that
has a high response speed and no steady state error. Hybrid controllers achieve better optimality
measures in terms of cost functions and, control and state constraints are guaranteed not to be
violated. Robustness and disturbance attenuation performance can also be increased.

A common hybrid controller approach is to switch between controllers. A supervisor or a switching
algorithm decides which of the designed controller will be used. A general representation of con-
trol architecture is given in Fig. 4.3. In [83], switched controllers are studied with a focus on linear
controllers. Fundamental properties are discussed in terms of stability, controllability, observability
and optimality.

In aerospace field, switching controllers are used for various objectives. One of the reasons why con-
troller loses its effectiveness is a significant change in the system. This change is generally caused
by a damage or a fault. Therefore, switching of controllers is used to form a fault-tolerant system. In
[84], two controllers are designed, one of them only includes elevator and the other utilizes thrust
vector for F-16 aircraft. Different than the other approaches, the proposed solution is not based
on the architecture given in Fig. 4.3 where there is a discrete selection between controllers. On the
contrary, Lu and Wu, uses both of the controllers by a weighting function depending on the severity
of the fault. This is done to eliminate one of the drawbacks of switching control that is discontinu-
ity caused by logic based switching. Another solution proposed in [6] presents a smooth transition
algorithm for the control of aircraft engine that requires a multi-controller structure.
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Figure 4.3: Hybrid Control Architecture - Switching controller based on a decision mechanism [6]



5
APPLICATION TO MISSILE LONGITUDINAL

MOTION DYNAMICS

The preliminary study aims to develop an intuition for the application of the proposed methods and
answer research questions 2 and 3 in detail. Missile equations of motion are selected for primary
applications. The chapter introduces dynamical equations that are interest. Control laws are de-
signed for Sensor-Based and Model-Based INDI. The dynamics of additional components to form
a closed loop system are presented. The control design is improved by considering the error dy-
namics for tracking purposes, disturbance rejection, control gain optimization and modification in
feedforward signal. Lastly, robustness tests are performed which reveal strengths and weaknesses
of the approaches compared to each other.

5.1. MISSILE DYNAMICS

Missile equations of motion are nonlinear and time varying. This nature makes linear controllers
to ignore fundamental behaviour of missiles which a nonlinear controller would include. It is gen-
erally difficult and time consuming to obtain accurate aerodynamic parameters. Due to modeling
errors missile models have uncertainties. Missiles need to be designed to be maneuverable and ro-
bust. The full equations of motion are complex and multivariable. Pitch plane equations are used
in order to have a good understanding of the methods before distracted by the other performance
specifications introduced by multivariable systems. There has been extensive studies using pitch
plane equations of motion. This assists validating the results and observing the performance en-
hancements [85–87].

Body-fixed and earth fixed coordinate sysetems are shown in Fig. 5.1. Longitudinal flight dynamics
deal with longitudinal plane that only includes XB and ZB axes in body coordinate system. State
space is formed by missile velocity V , angle of attack α, pitch rate q and pitch angle θ. For a rigid
body aircraft longitudinal dynamics include two complex eigenmotions; one with short period and
another with long period (phugoid). A missile with constant altitude at 6000 m and constant speed
does not the need for velocity and pitch angle to be state variables. The states reduce to angle of
attack and pitch rate. These two states constitute the pitch plane. The dynamics are approximated
such that only short period mode is kept. Nonlinear equations of motion of the approximated
generic air to air missile is given as

41
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Figure 5.1: Missile Coordinate System [7]

α̇= q + 1

mV
(mg cosγ−L−T sinα) (5.1)

q̇ = M

Iy y
(5.2)

The parameters M ,L and T are pitching moment, lift force and thrust, respectively. Furthermore,
Iy y is pitch moment of inertia, m is mass and γ is flight path angle. The aerodynamic moments and
forces are function of control surfaces, angle of attack and Mach number. Mach number is constant
since the flight velocity and altitude is kept constant. The equations of motion are expanded to show
the effects of control surfaces and angle of attack on aerodynamic values:

α̇= q + 1

mV
QS [Cz (α)+bzδ] (5.3)

q̇ = 1

Iy y
QSd [Cm(α)+bmδ] (5.4)

In this equation, Q represents dynamic pressure, S is surface area, d is reference distance. Aero-
dynamic coefficients for the control effectiveness are constant and donated by bz and bm . Other
aerodynamic coefficients, denoted by Cz and Cm , are third order polynomial functions and depen-
dent on angle of attack. The equations of motion are valid for 1.8 < M < 2.6. Mach number during
flight is constant at M = 2. Furthermore, the equations are valid for −10◦ < α < 10◦. This form of
equations is more convenient for a more general state representation as α= x1 and q = x2:

ẋ1 = x2 + f1(x1)+ g1u (5.5)

ẋ2 = f2(x1)+ g2u (5.6)

The entire aerodynamic contribution of Eq. 5.3 is measurable through linear accelerometers. There-
fore, angle of attack state equation can be stated as

α̇= q + Az

V
(5.7)

Given these equations, the system has three outputs, first two of them are controlled outputs, α
and q and the last one is Az

V . In fact, Az and V are measured with different sensor and in reality
these sensor outputs would be post processed to be used as a feedback term. In this case, it is
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assumed Az
V is measured directly. Nonlinear dynamics of the system can be linearized at equilibrium

point (α = 0, q = 0) by Jacobian linearization. This yields a standard Linear Time Invariant system
dynamics which is in general form shown as

ẋ = Ax +Bu

y =C x +Du
(5.8)

The resulting linear approximated state space matrices are[
α̇

q̇

]
=

[ −0.0982 1
−19.8344 0

][
α

q

]
+

[ −0.022
−27.305

]
δ α

q
Az
V

=
 1 0

0 1
−0.0982 0

[
α

q

]
+

 0
0

−0.022

δ (5.9)

5.2. CONTROLLER DESIGN

NDI and INDI control design techniques, and time scale separation assumption are introduced in
the preceding chapters. The control laws are determined for given missile equations.

NDI CONTROLLER

Since the control variable is α, the relation between angle of attack and control deflection δ needs
to be formed. The first derivative of angle of attack is

dα

d t
= q + Az

V
. (5.10)

Because of the use of measurement instead of Eq. 5.3. The control deflection does not appear di-
rectly. To find input-output relation, the equation is differentiated

d 2α

d t 2 = q̇ + d

d t
(

Az

V
) (5.11)

Plugging into the Eq. 5.4 would yield the desired input-output relation as

d 2α

d t 2 = QSd

Iy y
[Cm(α)+bmδ]+ d

d t
(

Az

V
) (5.12)

The pseudo control is the second derivative of the angle of attack since the relationship is found
after the second derivative.

α̈= ν (5.13)

Now, the controller law is formed as

δ= Iy y

QSdbm
[ν− QSd

Iy y
Cm(α)− d

d t
(

Az

V
)]. (5.14)

This equation is used as inner linearization loop and since a linearized dynamics is obtained the
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outer loop can be designed using a PD controller as

ν= Kp (αd −α)+Kd (α̇d − α̇)+ α̈d (5.15)

NDI CONTROLLER WITH TIME SCALE SEPARATION

Pitch rate responds faster than the angle of attack to controller deflection. There is a time scale
separation between angle of attack and pitch rate. The approach is to find a desirable value for pitch
rate that leads angle of attack to the commanded value. This constructs a cascaded loop structure.
The outer loop gets commanded angle of attack as input and calculates the desired pitch rate and
the inner loop gets desired pitch rate as input and calculated control deflection. Each loop needs a
virtual control. Initially ν1 = q̇ is considered and it is seen that input - output relation is given by the
first derivative in the system equations. The control law is

δ= Iy y

QSdbm
[ν1 − QSd

Iy y
Cm(α)] (5.16)

Pseudo controlν1 is designed according to a single proportional control with a feedforward term:

ν1 = Kp1 (qd −q)+ q̇d (5.17)

Desired pitch rate value is given as (qd ) and it is calculated by the outer loop. The second virtual
control is defined as ν2 = α̇ and using Eq. 5.10 yields

qd = ν2 − Az

V
(5.18)

furthermore the virtual control is
ν2 = Kp2 (αd −α)+ α̇d . (5.19)

INDI CONTROLLER

Time scale separated system consists of two one-degree dynamics. The outer loop is used to calcu-
late the desired pitch rate value while controlling angle of attack as shown in Eq. 5.18. Inner loop
is used to calculate elevator actuator input, given in Eq. 5.16. INDI also make use of time scale
separation. In this regard, the outer loop does not need any modification since Az /V is already a
sensor measurement and the dynamics is linear. Inner loop needs to be modified according to the
linearization law given in Eq. 4.5. The control effectiveness for the pitch rate is given in Eq. 5.4 and
is stated as

g2 = QSdbm

Iy y
(5.20)

INDI inner loop is used to calculate the increment of control deflection as

∆δ= Iy y

QSdbm
[ν1 − q̇o)] (5.21)

The increment of control ∆δ can also be expressed as the difference between current time step
control input and previous time time step input, which is δ−δ0. This change finalizes the control
law as

δ= δ0 +
Iy y

QSdbm
[ν1 − q̇o)]. (5.22)

One can see that, the last term is switched to pitch rate measurement and the equation only con-
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tains model information about control effectiveness where Cm(α) term disappears which decreases
the dependence of control method on system model. Using the linear controller used for virtual
controller ν1 and plugging it into Eq. 5.22 gives the overall control in time domain as

δ= δ0 +
Iy y

QSdbm
[Kp1 (qd −q)+ q̇d − q̇o)]. (5.23)

Control gains Kp1 and Kp1 are two control gains that require tuning. Their value depends on the
performance requirements. A further discussion about the selection of these values is given in Sec-
tion 5.4.

MODEL BASED INDI CONTROLLER

Model based INDI uses system model in order to determine q̇0. As it is given in the system dynami-
cal equations pitch acceleration is a function of angle of attack and control surface deflection. The
measurement of angle of attack is satisfactory to determine pitch acceleration and so direct mea-
surement or estimation through pitch rate measurement of the parameter is not necessary anymore.
State derivative equation for pitch rate given in Eq. 5.4 is written as

q̇0 = 1

Iy y
QSd

[
Cm(α0)+bmδ0

]
(5.24)

Substituting this equation into Eq. 5.22 and rearranging the terms as

δ= δ0 +
Iy y

QSdbm

[
ν1 − 1

Iy y
QSd

[
Cm(α0)+bmδ0

]]
(5.25)

This equation can be simplified further to eliminate current control surface deflection as

δ= Iy y

QSdbm

[
ν1 − QSd

Iy y
Cm(α0)

]
(5.26)

Both of these equations yield the same results and they construct the form of Model-Based INDI
control. For a hybrid approach, it is desirable for the control laws to be similar to each other as
much as possible to ease combination of the signals. Therefore, the form given in Eq. 5.25 is used in
further analysis and simulation.

5.3. SYSTEM COMPONENTS

There are additional components that needs to be integrated with plant in order to form a feedback
structure. Control surfaces are parts of a missile and their effect on the system is aerodynamically
modeled within the plant dynamics. Control surfaces are deflected by actuators. Actuator dynamics
need to be modeled to observe a more practical response of the plant to inputs. Missiles also need
sensors that measure the states of itself to make the judgement whether they are as commanded. A
perfect sensor would have infinitely small sampling time and would show exact value of the state.
The sensor measurements are generally not perfect and need to modeled as well. In this study, noise
of these sensor measurements are included to the system which requires to have a noise filtering
method. Next, synchronization of the commanded control surface deflection and system dynamics
measurement are explained. Lastly, a realizable filter for derivation operation is presented. These
additional dynamics are investigated and detailed in this section.
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(a) Rate and Acceleration Sensors

(b) Air-data Sensors

Figure 5.2: Linearized Measurement Dynamics

5.3.1. SENSORS

The closed loop system involves three sensors for angle of attack, pitch rate and linear accelera-
tion. An air to air missile system is expected to be highly maneuverable and agile. These features
would also be expected to be in a fighter jet. Hence, a similar set of sensors are equipped in the
missile. A model of a combat aircraft is presented for the research of robust control by the Group
for Aeronautical Research and Technology in Europe (GARTEUR) [88]. The same sensor models are
used in this study. Accelerometer and attitude rate sensors are located in IMU and they assumed to
have the same dynamics. Rate and acceleration measurement dynamics comprise sensor dynam-
ics, averaging, computational delay and analog to digital converter. For the air-data measurements
which is used for angle of attack measurement, averaging dynamics is replaced with anti-aliasing
filter. Furthermore, rate sensor dynamics include notch filter as well. The linearized dynamics are
represented in Laplace domain and corresponding block diagrams are given in Fig. 5.2

5.3.2. ELEVATOR ACTUATOR

As shown in Fig. 5.1, the missile has four stationary surfaces on the center for stabilization. There are
four dynamic surfaces on the tail. These are the control surfaces since they generate moment for the
control. The effect of four surfaces are comparable to regular aircraft’s aileron, elevator and rudder.
The surfaces act together to have specific effects. For instance, moment generated on XB and ZB

axes cancel each other and only moment on YB axis remains. This action is comparable to elevator
deflection in conventional aircraft. In this study, the motion is restricted only in the pitch plane. It
is assumed that aileron and rudder effects of the missile always cancel within themselves.

The additional component that needs to be modeled is elevator actuator that transmits the flight
controller’s command to the control surface. For this phase of the study, it is decided to focus on
effects of actuator dynamics in later stages. Nevertheless, for integrity, a simple actuator dynamics
is involved that a first order lag dynamics with low time constant which affects the performance of
the system very slightly. The dynamics is given as

Hact(s) = 1

0.01s +1
(5.27)

This is a fast dynamics that can only affect the system’s behaviour in high frequencies.

5.3.3. NOISE FILTERING

Sensor measurements contain perturbations around the actual signal that is referred as noise. A
noisy signal fluctuates around the true value. Measurement noise has generally characteristics that
its magnitude changes in frequency. In this study, it is assumed that noise is constant for every
frequency. This means that white noise is used for simulations. The variance of noise parameters
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Table 5.1: Variances of white noise of sensors. Values are taken from [8]

Signal Noise Variance (σ2)
Angle of Attack α (rad) 7.5 ·10−8

Pitch Rate q (rad/s) 4.0 ·10−7

Normal Acceleration Az (g) 1.5 ·10−5
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Figure 5.3: Noise with standard deviation of 1 is added to a sinusoidal signal with amplitude 10. The signal is
differentiated and the noise contribution is amplified. A second order filter is activated after 5 seconds.

are taken from [8] where INDI controller is tested for Cessna Citation II aircraft. These values are
presented in Table 5.1. Noisy measurements degrade the performance of the closed loop system. A
control design is expected to alleviate effect of noise therefore a noise filter is added to the closed
loop dynamics.

Noise can be filtered through different ways. Filtering low frequency signals deteriorates tracking
performance of the system and should be avoided. Noise filtering causes additional lag in the sys-
tem. Introduction of high signal lag on the feedback signal should be avoided since it also limits the
performance.

INDI controller given in Eq. 5.22 requires pitch acceleration q̇ . This variable is not directly mea-
sured and generally found through differentiation of pitch rate measurement signal. Derivation of
a noisy signal causes the effect of the noise to be amplified. Numerical derivation techniques use
previous sample points to estimate current derivation value. As the number of sample points used
for derivation increases more accurate results are gathered. Using more sample points also ampli-
fies the effect of noise on the signal. The effectiveness of a second order filter on a differentiated
signal is shown in Fig. 5.3. A more detailed analysis is given in Appendix A. Therefore, a signal that
is differentiated requires to have more rigorous filtering than the ones that are directly used.

First order lag filters are used for three measurements that are directly measured by the sensors. A
second order filter is used for the pitch acceleration. The bandwidth of the noise filters are selected
according to bandwidth of the sensors. Any higher frequencies cannot be measurement by sensor
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Figure 5.4: Bode Plots of Sensors and Noise Filters

therefore they are regarded as noise. The natural frequency is set to 40 rad/s and for the second
order filter damping coefficient is selected as 0.7. The transfer functions are

HN1 (s) = 1

1/40s +1
(5.28)

(5.29)

HN2 (s) = 1600

s2 +56s +1600
(5.30)

The Bode plots of sensor dynamics and noise filters are given in Fig. 5.4. HN F 2(s) is used to filter
differentiated signal in Fig. 5.3.

5.3.4. SYNCHRONIZATION

INDI control determines the next control input based on current state of the system and current
commanded control input. The input is known but there is possibility that this is not realized as ex-
pected due to actuator dynamics. In this case actuator dynamics can be used to obtain real control
input or more directly deflections are measured. Both of the approach give good estimation of con-
trol input. This means u0 is readily available for further calculation. On the other side, the source
of system’s state information is sensor measurement. It is not practically possible to measure the
current states. The measurements are gathered with a time delay and with noise. As discussed pre-
viously, noise is attenuated by filtering high frequency components of the signal. Filtering comes
with cost of additional time delay and thus by the time system knows about it’s state current state
differs already. Our best knowledge of state is represented as filtered variable xd . Therefore, the
form of Sensor-Based INDI given as

u = u0 + g−1(x0)(ν− ẋ0) (5.31)

is not practical unless perfect sensors are assumed. Therefore, time that the Taylor expansion is
applied should be delayed as much as the delay of the state signal. This requires delaying control
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input and using ud . The new Sensor-Based INDI control is

u = ud + g−1(xd )(ν− ẋd ). (5.32)

This process is called synchronization and it is essential to obtain satisfactory results. This synchro-
nization requires transferring the signal u0 to ud . Another synchronization method would be trans-
ferring xd to x0 and thus no modification would be required in control law. The problem with this
type of synchronization is that it requires prediction of the future states which may not be obtained
accurately. On the other side, previous values of control deflections are known accurately.

The first step that needs for the synchronization is keeping the previous commanded control surface
in memory. This would mean obtaining u0. Then, this signal should be delayed as much as the
measurements. The added delay can be pure time delay due to sensor dynamics and noise filtering
or another approach is to filter the signal through the same signals. The drawback of this procedure
is that the sensor dynamics need to be known accurately. In addition there might be unexpected
delays or faults in the measurement.

A single step time delay of a function f (t ) is represented as f (t−d t ) where d t is the time increment.
The sensor dynamics and noise filtering are given in Laplace domain, thus time delay is transferred
into Laplace domain:

L ( f (t −∆t )) = e−∆t s (5.33)

Having a Laplace variable in the exponential format causes computational problems in the linear
analysis. A common approach is to approximate the time delay. Pade approximation that is formed
by ratio of two power series is frequently used for approximation. The first order is given by

e−∆t s =
e−∆t s

2
e∆t s

2

≈ 1− ∆t s
2 + d t 2s2

8 ...+ (( (−d t )s
2 )k

k !

1+ ∆t s
2 + d t 2s2

8 ...+ (( −d t )s
2 )k

k !

(5.34)

This approximation allows limited value of k which determines order and accuracy of the approx-
imation. The computational delay given for the sensor dynamics in Fig. 1.2 is an example of first
order Pade approximation. Another approximation is given in the form of

e−∆t s ≈ 1[
1+ ∆t s

n

]n (5.35)

First two orders of these approximations are compared in Fig. 5.5 with respect to their performance
for a delayed step signal. The signal is delayed 0.1 s.

As the order increases, the approximations approach to pure time delay faster and with less error.
In this regard, second order Pade approximation is selected to be used in Laplace domain analy-
sis. This approximation shows good performance in frequency domain as well especially in low
frequencies. The overall synchronization transfer function is given as

Hsync = HPade ∗Hq ∗HN2 (5.36)

Unsynchronized signals do not affect the performance of Model-Based INDI. Even though, the
form that is used in this study includes the current control input, this signal cancels itself. In the
case the signal synchronized, it still cancels itself; hence there is no compromise in performance.
This form is suitable for an hybrid approach because switching between control types require less
change.
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Figure 5.5: Delayed Step Response

5.3.5. REFERENCE MODEL

The internal dynamics of a system prevents the response for a command to be infinitely fast. A
reference model is planted to shape the commanded input. This improves the tracking error and
input command becomes more realistic for the system to follow. The model is selected to be a first
order system with relatively fast response that the missile can realistically follow. The dynamics is
given as

HRM(s) = 1
1

4.5 s +1
. (5.37)

This function is selected because it yields the fastest response without any overshoot.

5.3.6. DERIVATIVE FILTER

There are several occasions that the signals are differentiated, for instance to obtain angular accel-
eration from angular rate measurements. Derivative signal of the control input is used as the feed-
forward and in addition derivative of the error signal can be used as feedback controller. In order
to avoid noise application, derivation is performed via a filter. This filter also makes the derivation
a realizable operation. It does not differentiate high frequencies since the magnitude rolls off. The
operation is performed with

Hd(s) = s

30s +1
. (5.38)

With this transfer functions every additional components and transfer functions are presented to
construct a closed loop system which will be discussed in the following section.

5.4. CLOSED LOOP SYSTEM

Given the dynamics of the additional components the closed loop systems are formed. The block
diagrams for Sensor-Based INDI and Model-Based INDI are given in Fig. 5.6. There are two distur-
bances (d1, d2) added to the system, to be used in the selection of proportional gains. The other
inputs are noise n and angle of attack command αref. The innermost loop is the linearization loop
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(a) Sensor-Based INDI Closed Loop System

(b) Model-Based INDI Closed Loop System

Figure 5.6

going from ν1 to q . This relation is marked as an integrator in Fig. 5.6 which is true if the lineariza-
tion loop is perfect. First, a non-perfect transfer function which includes additional dynamics is
derived for Sensor-Based INDI.

The are two dynamics in the block diagram that are not linear. The missile dynamics and inverse
of control effectiveness. For this example, the control effectiveness does not depend on any state,
therefore it is constant and be regarded as static gain. The state space form of the missile dynamics
which is linearized at equilibrium point is given in Eq. 5.9. The transfer function representation
is

Gα(s) = −0.022s −27.3

s2 +0.0982s +19.83
(5.39)

Gq (s) = −27.3s −2.245

s2 +0.0982s +19.83
(5.40)

G Az
V

(s) = −0.022s2 +2.245

s2 +0.0982s +19.83
(5.41)

where subscripts are used to indicate the output signal. The synchronization loop that involves
actuator dynamics and synchronization is given by

T F∆u→δ =
Hact

1−HsyncHact
(5.42)
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Figure 5.7: Bode plots of transfer function from virtual input ν1 to pitch rate q of a perfect system (Integrator Dynamics)
and a system with additional dynamics included are compared

Transfer function from ν1 to q is

T Fν1→q = g−1
2 Hact Gq

1−Hact e−∆t s Hq HN2 + g−1
2 Gq Hact Hq HN2 s

(5.43)

An approximation to a perfect system assumes sensors and actuators can transmit the signals as
they are. In addition, no noise is added to system which eliminates the need for noise sensors.
Lastly, time delay’s magnitude approaches to unity at low frequencies and also for small time steps.
With these assumptions, the overall transfer function reduces to

T F
′
ν1→q = g−1

2 Gq

g−1
2 Gq s

= 1

s
(5.44)

which is indeed a single integrator. INDI controller is designed based on perfect linearization which
yields this integrator dynamics. Even though, the additional dynamics deviate the system from be-
ing perfect, a good level of linearization is achieved when they are included. The bode diagrams
of transfer function given in Eq. 5.43 is compared with integrator dynamics in Fig. 5.7. The lin-
earization is close to integrator dynamics around 10 rad/s. Deviation is caused by time delay in low
frequencies and other additional dynamics in higher frequencies.

The outer loop dynamics that is from ν2 to α is easier to observe when assuming a successful con-
trol of linearization dynamics. The time scale assumption between angle of attack and pitch rate
loop states inner loop reaches at steady state much faster than the outer loop and assumption of
a successful controller yields qdes = q . Using this equality, the system dynamics equation is given
by

ν2 = Az

V
−q = α̇ (5.45)

Therefore, the transfer functions from ν2 to α is also a single integrator. The term Az /V is measured
through a sensor. With an ideal sensor, the relation between pitch rate and angle of attack is also an
integrator dynamics. These assumptions form a new block diagram, given in Fig. 5.8, that is suitable
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Figure 5.8: Model-Based INDI Closed Loop System

for linear control gains determination.

The linear controllers have the same form and given as

ν1 = Kp2(q̇d −q)+ q̇d (5.46)

ν2 = Kp1(α̇d −α)+ α̇d (5.47)

There are two proportional gains that needs to be tuned. There has been different criteria and meth-
ods used in order to select the parameters. van ’t Veld assess the success of the controller according
to root mean square of the error signal [4]. Grondman sets an optimization algorithm by first select-
ing gains according to tracking performance and disturbance rejection [8]. Mooij finds integrated
control effort and state derivation, and selects the gains that are satisfactory on both parameters
[89]. Acquatella uses a cost function to minimize tracking error and control effort [61]. In this study,
the error signal is investigated for disturbance rejection and reference tracking. Two disturbances
are included (d1,d2) in the inner and outer loop. The effects are studied for both of the states. There-
fore, four transfer functions from disturbances derived. First, the disturbance transfer function from
d1 to q is derived as

q(s)

D1(s)
= 1

s +Kp1
(5.48)

Note that, d1 is considered as the only input. Desired pitch rate, qdes , is assumed to be zero. Feed-
forward signal does not contribute to this disturbance transfer function. The error dynamics, with
no reference input, represented as

E(s) = qdes(s)−q(s) =−q(s) =−D1(s)
q(s)

D1(s)
. (5.49)

For step disturbance, the error dynamics is

E(s) =−1

s

1

s +Kp1
(5.50)

by applying final value theorem steady state error is found as

lim
s→0

sE(s) = ess =− 1

Kp1
. (5.51)

This result shows that disturbance can be rejected up to a finite value that is determined by the
proportional gain. The disturbance d1 is also effective on angle of attack. This transfer function is
given as

α(s)

D1(s)
= 1

s2 + (Kp1 −Kp2)s +Kp1Kp2
(5.52)
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The steady state error for angle of attack is

lim
s→0

sE(s) = ess =− 1

Kp1Kp2
. (5.53)

As both of the proportional gains are effective on the performance of the angle of attack, Kp2 being
larger than 1 yields a better disturbance rejection compared to inner loop. The outer loop distur-
bance is a better tuning criterion for the linear control gains. This disturbance input directly deter-
mines the desired pitch rate value. It can also be regarded as the tracking command to the inner
loop. The feedforward term in this loop happens to be effective. The error dynamics is directly
extracted as

ė +eKp1 = 0. (5.54)

This shows that the outer loop disturbance is tracked by the pitch rate without any error. The dy-
namics is stable for any Kp1 > 0. The gain value determines the location of the pole and the how fast
the error dynamics responds. The disturbance, d2 is directly transmitted to pitch rate which makes
the outer loop identical to inner loop except the gain changes from Kp1 to Kp2. Disturbance transfer
function to the angle angle attack happens to be similar to Eq. 5.48 as

α(s)

D2(s)
= 1

s +Kp2
. (5.55)

Final value theorem is applied again to determine the steady state error for step disturbance which
yields ess = 1/Kp2 Lastly the tracking error dynamics of the outer loop is given by

ė +eKp2 = 0 (5.56)

since the inner loop is considered to be a static transfer function. These results show that, gains
can be increased for faster response and lower disturbance rejection. As the side effect, the increase
causes overshoot and higher control effort which limits the gains. The initial values for these are
selected as Kp1 = 5 and Kp2 = 2. The disturbance rejection performances are shown in Fig. 5.9 that
the results comply with the theoretical findings.

In terms of tracking performance Eq. 5.54 and Eq. 5.56 indicate that as long as positive gains are
selected the system is stable, if the linearization is perfect. The final value theorem shows that there
is no steady state error. This is an achievement of feedforward term. Two criteria are set in order to
evaluate tracking performance. These are control effort and root mean square (RMS) of the angle
of attack error. An additional one can be set for pitch rate error, though the designed controller
determines the pitch rate input whereas angle of attack reference is an external signal.

The control effort is based on deflection angle of the actuator and it is calculated as

δE =
∫ ts

0
|δ(t )|d t (5.57)

where ts is simulation time. The simulation is based on discrete time increment thus this continu-
ous formulation is modified as

δE =
N∑

k=0

|δ(k)|d t (5.58)

where N is number of sampled data. RMS of angle of attack error is given by

εα =
√∑N

k=0

(
αr e f (k)−α(k)

)2

N
(5.59)
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(a) System and Error Response to Inner Loop Disturbance
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(b) System and Error Response to Outer Loop Disturbance

Figure 5.9: Response to Disturbances
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Figure 5.10: Time Domain Simulations with Various Gain Values

These calculations yield single values that the performance can be evaluated. In order to observe the
step response for various gains, simulations are run within a gain limit such that gains are selected
with linear spacing. The simulation time is determined to be 3 seconds since this time is sufficient to
respond a step input and reach a steady state value. The gains that are used for disturbance rejection
are selected as baseline values and the lower limit is set to half of these values and the upper values
are three times of the values, 2.5 < Kp1 < 15 and 1 < Kp1 < 6. Simulation is repeated with 200 values
and the results are shown in Fig. 5.10a with control effort in the x-axis and RMS error is in the y-axis.
Sensor-Based INDI results are better than Model-Based even though they are relatively close to each
other. This changes when sensors are included in the simulation which results Model-Based INDI
to have better performance values. The results are given in Fig. 5.10b. One of the research questions
is to compare the nominal performance of the methods. Fig. 5.10 presents this comparison and
answers research question 3a. As expected nominal performances are close to each other. This
helps a fair comparison when the methods are tested for robustness.

The results show that there is a global minimum within the range of gains such that the performance
can be optimized. For the optimization, a cost function is set as

J = a ·δE +b ·εα (5.60)

The constants a and b are the weights for the criteria and J is the overall cost. In order to equally
weight the importance for this cost function a = 1 and b = 1 are selected. The optimization penalizes
extra control effort and additional error and determines the gain values that these are minimized.
Using the gains Kp1 = 5 and Kp2 = 2, the cost value for the Sensor-Based approach is 0.0437 and
the optimization finds the gains as Kp1 = 8.77 and Kp2 = 5.96 which yields the cost value as 0.0428.
As the weights of the cost function changes, different gains could be the optimum values. The up-
per boundary can be extended as well to obtain even more optimized results but this might cause
undesirably high control deflection rates.

As it is seen in the Fig. 5.10a, additional dynamics impact the response of the system to be altered for
the gain values. The optimum values that are selected for the system without sensors do not perform
well for a system with sensors. The performances are shown in Fig. 5.11. Oscillations are introduced
and the result is not desirable anymore. Therefore, it is essential to consider sensor dynamics when
the gains are optimized. The same optimization procedure could be followed in order to find a new
set of gains. Although, the controller can be adjusted such that knowledge of sensor dynamics is
used for controller design.

The success of INDI controller mainly based on achievement of linearization loop in forming inte-
grator dynamics. As it is shown in Fig. 5.7, additional dynamics causes deviation of inner loop from
being integrator dynamics. The feedforward differentiator term can form a unity closed loop system
without additional dynamics. This term can be adjusted to compensate additional sensor dynamics
[90]. The effect of sensor dynamics on transfer function from virtual input ν1 to pitch rate q is
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Figure 5.12: Effect of Modifiying Feedforward Term

T Fν1→q = 1/s

1+Hq (s)/s
(5.61)

Feedforward term is designed as the inverse of the transfer function

Fr (s) = s +Hq (s) (5.62)

where s is the differentiator that has already been included. The derivative filter given in Eq. 5.38
is used to make the signals realizable. Hq (s) is the pitch rate sensor dynamics. The improvement
of this modification is shown in Fig. 5.12, where step response of angle attack is plotted. The cost
function improves from 0.1036 to 0.0905. As the optimization is applied to this form of control
structure, cost value decreases to 0.0772.

5.5. ROBUSTNESS ANALYSIS

There are various elements that affect the performance of control system. A robust system can
handle those elements without a significant reduction in the performance. Initially, an indication
on the robustness can be made based on the previous results. Different gains are used within a range
to observe the change in the performance based on two design performance metrics. Those results
are shown in Fig. 5.10. It is seen that when sensors are not included Sensor-Based INDI performance
metrics are better than the Model-Based INDI. As the sensor dynamics are added in the simulation,
Model-Based INDI in general performs better. There is no model mismatches hence the on-board
model acts as perfect sensor. This shows the dependence of Sensor-Based INDI on sensors. As the
sensors get perfect, better results are obtained.

Observation of different gains on the system performance also reveals another result that the se-
lection of gains are more important for the Model-Based INDI. Sensor-Based INDI results are in
compact region that the cost value does not change significantly. Model-Based INDI results spread
more. This is shown with a 3-D plot in Fig. 5.13. Gains are in the X-Y axes and the cost value is
in Z-axis. Maximum cost value of Model-Based INDI is 0.68, for Sensor-Based INDI, this value is
0.18.

A control system is desired to perform under uncertain and unexpected conditions such as time
delays, parametric uncertainties and model mismatches. The range and likelihood of these con-
ditions can be predicted at some level. Robust systems compensate uncertain conditions. In this
section, ability of INDI methods to handle uncertain situations is investigated. This section answers
research question 3b. The methods are expected to be robust against different issues. These issues
are desired to be kept in the hybrid approach.
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(a) Sensor-Based INDI (b) Model-Based INDI

Figure 5.13: Change in Cost Value For Gains

5.5.1. TIME DELAYS

INDI control law calculated the next control input based on previous control input u0 and state
derivative ẋ0. To obtain u0 is relatively easy. The signal passes through the actuator dynamics. Mod-
eling actuator dynamics give a good estimate of u0. Another method is to measure control surface
deflection. The second term, ẋ0, is used by the control law after some process for instance noise
filtering which causes time delays. To prevent time differences between these signals control law is
updated as in Eq. 5.32. Asynchronous signals do not affect the performance of Model-Based INDI,
because control law equations cancels control input feedback u0. This subsection is dedicated to
indicate the effect asynchronous signals and unexpected time delays on state derivative.

Depending on the time difference between the signals, unsynchronized system becomes unstable.
The linearized transfer function has complex poles on the Right-Hand-Plane. Synchronizing the
signals makes the inner linearization loop stable that eases the design of a controller and increases
its performance. The poles shift to the stable region after the signals are synchronized.

A time-domain simulation is performed to observe the effect of additional time delay in the feed-
back signals. In this scenario control input is not delayed accordingly such that it is leading the
state derivative. Pure time delay of 0.04 second is introduced to the system that corresponds to 8
time steps. Its effect on the performance of controllers are shown in Fig. 5.14a for Sensor-Based
INDI and in Fig. 5.14b for Model-Based INDI. The delay that is introduced is the maximum delay
that Sensor-Based INDI can handle before becoming unstable. Model-Based INDI is more tolerant
to unsynchronized time delays. Its performance degrades very limited compared to Sensor-Based
INDI.

In the previous case, unsynchronization is designed such that control signal is leading. The same
simulation is performed with state derivative signal, ẋ0, is leading. This is shown in figure Fig. 5.14d
for Sensor-Based INDI. Even though, the oscillations in the response still exists, their amplitude is
very small and decay quickly. This indicates that, when the control input is the lagging signal it does
not have a severe affect. In practice, this is rarely the case because it is easier to obtain control input
value compared to measurements.

Two approaches behave similar when the additional delay is synchronized. The system easily han-
dles 0.04s of latency. This simulation is shown in Fig. 5.14c. It shows Sensor-Based and Model-Based
controllers affected similarly from synchronous time delays.
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Figure 5.14: Synchronization Related Time Domain Simulations
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Figure 5.15: Effect of Increasing Sampling Time

5.5.2. SAMPLING TIME

An assumption in derivation of INDI controller states that the change of system states between
each sampling time is negligible. This assumption is more accurate as the sampling time is small.
If the next measurement reaches very late this assumption would not be correct anymore. In this
subsection, tolerance of the methods to sampling time is investigated.

Initially, sampling time is set to 0.005 s which corresponds to 200 Hz. Sampling time is increased
up to 0.03 s. Starting from this value Sensor-Based INDI becomes unstable whereas Model-Based
stays in the stable region even though performance decreases as expected. The simulation results
are shown in Fig. 5.15. Sensor-Based INDI results have oscillations and the amplitudes increase in
time.

Based on the assumption 2 listed in Section 4.1, the state increment term has been eliminated from
the INDI formulation. As the sampling time increases the increment increases as well. This term is
included in order to observe the change in its value as the sampling time increases. When sampling
time is 0.005 s, the maximum value of the term is 0.005◦ whereas for 0.03s of sampling time the value
reaches at 0.5◦. Considering the input is 1◦ this value is significant. In addition, this value increases
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(a) Sensor-Based INDI (b) Model-Based INDI

Figure 5.16: Performance under uncertain aerodynamic coefficients and control effectiveness, the parameters are
assumed to have 5% uncertainty. The range of performance is shown in the figures

almost 10 times whereas sampling time is increased by 6 times.

5.5.3. MODEL MISMATCHES

One of the main motivations of INDI controllers to reduce the dependence on system model. Deter-
mination of aerodynamic coefficients is a time consuming process. Moreover, in case of structure
damage or change aerodynamic coefficients are not reliable. Sensor-Based INDI only requires the
control effectiveness of the control surfaces although, Model-Based INDI utilizes system related
aerodynamic coefficients as well.

It is decided to observe performance of the control systems with the aerodynamic coefficients hav-
ing 5% of maximum uncertainly. Therefore, the expectation is that the real values the system would
encounter in a flight are between 5% less and 5% more of the values that are used to design the
controllers. The performances are shown in Fig. 5.16. The graph includes the nominal performance
and the boundary of worst case scenarios.

From the results of Sensor-Based INDI, the advantages of eliminating the use of model is appar-
ent. Within the limit of uncertainty Sensor-Based INDI’s performance is almost the same whereas
Model-Based performance significantly changes and the range of expected performance is very
broad compared to Sensor-Based.

Other sources of model mismatches are in parametric terms such as mass of the system or mass
inertia. These terms are present in the dynamical equations given in Eq. 5.1 and Eq. 5.2. Both of
the approaches can handle the uncertainties on these parameters as a simulation test is performed
with 20% of uncertainty. The worst case and nominal performances are very close to each other and
they are not distinguishable. For this reason, the response plots are shown here.

5.6. RESULTS AND DISCUSSION

The preliminary example is mainly fed from the studies in the literature. The issues that has been
encountered are applied on the system and the literature is verified. In addition, it has been an
opportunity to compare the performances of two approaches. First of all, it was shown that Model-
Based control law is fundamentally same as NDI method depending on the selection of control
increment. The way it has been formulated allows to use delayed control inputs to be increment
which makes the formulation close to Sensor-Based INDI. This formulation is suitable for compar-
ison and combination as hybrid approach.

To improve the control design several issues were handled. Initially, the control scheme that is gen-
erally used in the literature is used. This scheme includes two proportional gains that can be tuned.
At first, disturbance rejection and error response for tracking purposes were considered and a pair
of baseline control gains were decided. Control effort and tracking error were set to be performance
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criteria. The performance is improved by minimization of cost function that is the addition of the
criteria. Another improvement was done by modifying feedforward dynamics which depends on
the idea of making the linearization loop close to integrator dynamics as much as possible. These
improvements increased the performance around 25% in the nominal conditions since the cost
value reduces from 0.1036 to 0.0772.

The robustness analysis revealed how the performances differ for two approaches. The perfor-
mance of the Model-Based INDI alters more based on the selection of proportional gains whereas
for Sensor-Based INDI, performance metric stays within a much more narrow region. On the other
side, performance of Sensor-Based INDI degrades when the assumption of perfect sensor measure-
ment is eliminated. This result is expected since Sensor-Based INDI trades off dependence on the
model with the sensors.

Both of the methods are capable of handling time delays in the feedback signals as long as the signals
are synchronized. Model-Based INDI does not need synchronization of the signals since control
increment cancels. Only 0.04 seconds of additional time delay in the state measurements leads
Sensor-Based INDI to be unstable. The method is more tolerant for the control input time delay
but this case is less likely in a real system. Moreover, high sampling rate of the measurements also
causes instability for the Sensor-Based INDI whereas Model-Based INDI remains stable for the same
sampling rate.

Lastly, it was shown that tracking performance of the Sensor-Based INDI is significantly superior of
Model-Based INDI in existence of aerodynamic uncertainty. Only 5% of uncertainty resulted with
20% of steady state error whereas Sensor-Based INDI affected in a very negligible level.



6
CONCLUSION

The thesis report presents the answers research questions 1 to 6. In this chapter, main results are
concluded and the questions are revisited. It is discussed that to what extent the questions are
answered.

This paper has presented a new approach of INDI by modifying the linearization loop via a comple-
mentary filter. The filter supplies an angular acceleration estimation based on sensor measurement
and on-board model output. By formulating Hybrid INDI it is shown that the approach includes
characteristics of both Model-Based INDI and Sensor-Based INDI. The fast response of on-board
model is presented as the key feature for the elimination of drawbacks of sensor measurement de-
lays. Hybrid INDI persists to be robust against model mismatches and external disturbances by
utilizing low frequency characteristics of measurements.

The effectiveness of the Hybrid INDI has been demonstrated by two types of simulation analysis.
The initial analysis considers a simple system and only the linearization loop of INDI is investigated.
This analysis compares Sensor-Based INDI and Hybrid INDI in terms of tracking performance in
nominal conditions, and in the existence of measurement delays. Consequently, it is shown that
Hybrid INDI yields less overshoot and faster settling time when the measurements delays are under-
estimated. Further details are presented about the synchronization filter, which is given as a modi-
fied transfer function of the complementary filtering of sensor measurement. Moreover, change in
closed loop characteristics with respect to filter gains and measurement delays are presented.

This thesis is validated by designing an attitude controller for the F-16 aircraft using Hybrid INDI,
and showing its robustness against measurement delays and its ability to maintain the sensor-based
nature of INDI. Simulation results indicated that Hybrid INDI loses very little tracking performance
in nominal conditions. This is compensated by having low control effort. Simulation scenarios with
uncertainties in aerodynamic coefficient indicates that the on-board model of Hybrid INDI does
not have to be accurate for the control system to be robust against model mismatches. This finding
is strengthened by the successful rejection of gust disturbance. Finally, measurement delays are
introduced and the aircraft is commanded by doublets of pitch angle and roll angle. As a result,
Hybrid INDI insignificantly deviates from the nominal performance whereas the performance of
Sensor-Based INDI becomes undesirable due to oscillations in the commanded channel as well as
other channels.

1. What is the state of the art of INDI?

The state of the art of INDI has been reviewed in Chapter 4. The chapter examines the method
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in various perspectives. Some studies focus on theoretical development and some mainly
considers robustness of the method. The method has been introduced in 2010 and within this
time period, it has been applied many kinds of aerial vehicles. Literature review enlightens the
issues of the method. Most of the issues are investigated in the preliminary study. In addition,
assumptions of the INDI are highlighted and throughout the study, the assumptions have
been examined to observe whether they are valid or weak under certain situations.

2. How can Model-Based INDI be structured?

Model-Based INDI has been formulated in Section 4.3. The formulation is based on obtaining
state derivative from an on-board model instead of measurement. The final control law is the
same as NDI control law, which is also a model dependent control law. It is highlighted that no
measurement is needed to be differentiated for Model-Based INDI, which is one of the main
advantages of utilizing the system model.

(a) How should the synchronization method be modified?

In Section 4.3, it is shown that the control input term disappears. Therefore, there is no
need for supplying control input feedback and thus no need for synchronization.

(b) How should the noise filter be modified?

Noise filtering issue is treated in subsection 5.3.3. It is shown that differentiation causes
amplification in the amplitude of the noise thus Sensor-Based INDI needs a more ad-
vanced sensor filtering. A second-order noise filter is used for Sensor-Based INDI. For
Model-Based INDI, first-order filter is sufficient for noise reduction.

(c) What other considerations should be taken for disturbance rejection or tracking perfor-
mance?

A cost function is presented in Section 5.4 which considers the control effort that is
spend by the actuators and root mean square of the tracking error. These perspectives
are determined to be sufficient to derive fair control gains. The simulation results in Sec-
tion 5.4 show that similar disturbance rejection and tracking performance are achieved
in nominal conditions, although this changes as the model mismatches are introduced
in Section 5.5.

3. How do Model-Based INDI and Sensor-Based INDI perform compared to each other?

(a) What are the differences in the nominal performance?

The nominal performances are compared in two ways. One with sensor dynamics in-
cluded, another without the sensor dynamics. Both of the method has comparable
nominal performances. The performance values are shown in Fig. 5.10a. As expected
inclusion of sensor dynamics affect the performance of Sensor-Based INDI more than
Model-Based INDI. This is due to achieving the state derivative values with a time lag.

(b) How do the methods perform in robustness analysis?

There has been various time domain simulations to compare the methods for differ-
ent situations. In Section 5.5, robustness of the methods against, aerodynamic uncer-
tainties, time delays and sampling time are tested. The results are summarized in Sec-
tion 5.6, stating that the model mismatches, even in small percentages, significantly de-
grades the performance of Model-Based INDI. On the other side, it is shown that mea-
surement delays cause oscillations in tracking performance of Sensor-Based INDI. These
results are especially important for the design of Hybrid INDI.
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4. What are the existing methods of hybrid controllers?

Hybrid controllers are reviewed in Section 4.4. The main focus has been in the methods that
are applied for aerospace vehicles and two of the promising solutions are discussed.

(a) What are the problems that are encountered with combining the control systems?

One of the considered hybridization method has been switching between control ap-
proaches. Guaranteeing the stability has been regarded as the main challenge of such
controllers. Especially, switching within the methods causes jumps or irregularities in
the control input at the instance of switching. Another issue is to determine the switch-
ing algorithm. Occasionally, the system oscillates around the commanded value, this
causes the switching from one of the approaches to another repeatedly which yields
more oscillations. Due to these problems a frequency based combination is selected
which fuses the approaches based on their frequency components.

(b) Can the existing methods of hybrid controllers be applied to form Hybrid INDI?

As the hybrid approach an existing solution is determined to be the best option. The
angular acceleration estimation based on a specific complementary filtering is used. Al-
though this approach is not presented as a control law, it shown to be suitable for INDI
applications.

5. How can Model-Based INDI and Sensor-Based INDI be combined into a hybrid method and
what are the considerations of the combination?

(a) How is the information from processed sensor signal integrated with the one coming from
the onboard model?

The preliminary study results show the success and failure of the methods for various
conditions. Both of the methods perform well in nominal conditions; therefore, Hybrid
INDI focuses on the robustness issues. Sensor-Based and Model-Based approaches are
formulated to be similar to each other for easier combination. Hybrid INDI includes
beneficial frequency domain of the methods. The bandwidth of the filter is designed
based on noise filtering, response time, robustness against measurement delays.

(b) How are the signals synchronized?

It is shown that Model-Based INDI is not affected by unsynchronized signals. Hybrid
INDI is designed based on this feature of the method. Model-Based INDI can respond
instantly to the given commands and does not have to wait for the measurement. As
shown in Chapter 2, for Hybrid INDI, instead of using noise filtering, complementary
filter function that is applied to angular rate measurement is used. This function is inte-
grated and zero of it is removed to supply sufficient phase lag.

(c) What is the effect of hybridization to stability margins?

It is shown that the method is stable for higher range of measurement delays. As shown
in Chapter 2, for F-16 aircraft application, Hybrid INDI stays in the stable region up to
0.13 s of time delay whereas Sensor-Based INDI becomes unstable with 0.07 s of time
delay. The stability of the method does not affected by uncertainties in aerodynamic
coefficient maintains.

6. Which of the challenges of INDI is solved by Hybrid INDI and what are the challenges of Hybrid
INDI?
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The performances of all three approaches are compared. The results are presented in Chap-
ter 2. Hybrid INDI is found to be more robust for sensor faults and the degradation in nominal
performance is negligible. Measurement delays which is seen as one of the main challenges
of INDI can be compensated by using Hybrid INDI. The noise filtering capability of Hybrid
INDI is emphasized as the one of the main restrictions of the method. To achieve the same
level of noise filtering, a lower bandwidth is required to be set for the complementary filter,
although this causes the response time to be slower. A trade-off between noise filtering and
response time has to made for good performance.



7
RECOMMENDATIONS AND FUTURE

RESEARCH

Hybrid INDI is not without drawbacks which future studies might overcome. One of the main limi-
tations of Hybrid INDI approach is the noise filtering capability. The bandwidth of the filter design
is determined based on the trade-off between the noise filtering and fast response. To achieve the
same noise filtering of Sensor-Based INDI, the bandwidth of the complementary filter is required
to be set to lower value which slows the response of the system dramatically. The noisy angular ac-
celeration estimation is directly reflected to the actuator. The actuator itself filters the noise as well
and the magnitude of the noise is very low such that the control effort is not affected. However, in
real life applications, this limitation might lead to actuator failures. A future study can investigate
the importance of the excess of noise and focus on mitigating it.

Different hybridization or estimation techniques could be used for Hybrid INDI. One possible mod-
ification that is worth investigating is to use angular accelerometers instead of gyroscopes. In this
study, an angular acceleration estimation method is used for Hybrid INDI since this method has ad-
vantages such as being simple and easily adaptable to system requirements. The use of accelerom-
eters can be implemented with a slight change in the complementary filter. A future study may
consider Kalman filtering as one of the possible methods which exploits both measurement and
model simultaneously.

A variant of Hybrid INDI is presented as a fault-tolerant system. The approach includes a logical
switch that is fed by an FDI algorithm, which can switch the system to become Model-Based INDI by
avoiding sensor measurement innovation. This variant is not tested in the F-16 aircraft application
because of a lack of FDI algorithm. A future study may implement an FDI algorithm to show the
applicability of this feature on an aerospace system.

This study has shown that an on-board model can be used without introducing robustness prob-
lems. Additional benefits of on-board models can be used to achieve better performance by Hybrid
INDI. One of the possible improvements is implementation of online delay estimation. The com-
parison of measurement with the model output supply a clue for the measurement delays. How-
ever, for accurate delay detection, high computational power and an accurate model are required.
By feeding this estimated delay value, unexpected measurement delays can be handled.

It is recommended to have in depth analysis of the effects of aerodynamic uncertainties on Hybrid
INDI. This study shows that the approach is robust against aerodynamic uncertainties. The inves-
tigation is limited with only changes in magnitudes but not in signs. Having an opposite sign of
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aerodynamic coefficient in the on-board model can lead to the undesirable performance. A follow-
ing study could investigate whether incorrect coefficient signs cause degradation in the robustness
against measurement delays.

One of the assumptions that is held through the study is the accurate knowledge of control surface
deflection. This assumption is not valid in real life applications. In case of unknown delays in the
measurement of actuator deflection, the synchronization filter causes the incremented control in-
put to belong to a previous time. Previous papers studied these effects for Sensor-Based INDI, which
have not been addressed for Hybrid INDI in this study. The investigation of these effects for Hybrid
INDI is left for a future study.

The study considers a single operating point of F-16 aircraft. Even though the results are expected
to be valid over the flight envelope, this expectation can be verified in a further study by selecting
various operating points. Lastly, it is observed that in case of delayed measurements, Sensor-Based
INDI shows coupling between attitude channels. The explanation of this phenomenon is also left
to be investigated further.



A
NUMERICAL DIFFERENTIATION

The numerical differentiation techniques developed from Taylor series approximation, for the value
at f (ti−1) the expansion is

f (ti−1) ∼= f (ti )+ f ′(ti )(ti−1 − ti )+ f ′′(ti )

2!
(ti−1 − ti )2 + ... (A.1)

where ti−1 − ti = −∆t is the time increment. This equation yield the derivative at time step ti

as

f ′(ti ) = f (ti−1)− f (ti )

−∆t
+O(h) = f (ti )− f (ti−1)

∆t
+O(∆t ) (A.2)

The O(∆t ) is the error term that symbolizes that the error is related to the time step. To derive the
approximation with three point, first find the second derivative approximation;

f (ti−2) ∼= f (ti )+ f ′(ti )(ti−2 − ti )+ f ′′(ti )

2!
(ti−2 − ti )2 + ... (A.3)

Multiplying Eq. A.1 by two and subtracting from this equation yields

f (ti−2)−2 f (ti−1) =− f (ti )+ f ′′(ti )(∆t )2 + ... (A.4)

Solving this for the second derivative:

f ′′(ti ) = f (ti )−2 f (ti−1)+ f (ti−2)

(∆t )2 +O(∆t ) (A.5)

An additional term for the first order derivative approximation in Eq. A.2 is written by addition of
second derivative term as

f ′(ti ) = f (ti )− f (ti−1)

∆t
+ f ′′(ti )

2
∆t +O(∆t )2 (A.6)

The order of error is changed to be O(∆t )2 and inserting the second derivative approximation to this
equation:
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f ′(ti ) = f (ti )− f (ti−1)

∆t
+ f (ti )−2 f (ti−1)+ f (ti−2)

2(∆t )
+O(∆t )∆t +O(∆t 2) (A.7)

f ′(ti ) = 3 f (ti )−4 f (ti−1)+ f (ti−2)

2∆t
+O(∆t 2) (A.8)

The order of error is O(∆t )2 since the multiplication of O(∆t )∆t is the second order as well. There-
fore, using additional point increases the accuracy.

Using additional points amplifies noise as well. Assume a randomly distributed variable with mean
µ= 0 and variance σ2 = 1 is added on a smooth function. Let at time ti the added noise is ni . Two-
point differentiation yields;

f ′(ti ) = f (ti )+ni − f (ti−1)−ni−1

∆t
+O(∆t ) (A.9)

In order to show the effect of noise contribution on the derivation, noise terms are added up

na = ni −ni−1

∆t
(A.10)

The terms ni and ni−1 are both linearly independent random variables with same characteristic as
the noise. A linear function of random variable yields the variance as var(aX ) = a2var(X ). Therefore
expected value would remain at 0, but the variance of the difference of the random variables is
(σ2

i +σ2
i−1/)(∆t )2. Hence the noise contribution is a random variable with 0 mean and variance is

2/(∆t )2.

For three-point differentiation the noise contribution is

na = 3ni −4ni−1 +ni−2

2∆t
(A.11)

This random variable has zero mean as well, we use the variance relationship var(aX ) = a2var(X ),
therefore variance happens to be (32∗var(n)+42∗var(n)+11∗var(n))/(2∗∆t )2. This confirms that
the noise contribution is amplified, as more numbers are used for differentiation. Three-point dif-
ferentiation yields 3.25 times more variance than two-point method. Moreover, as the time step de-
creases this contribution increases. The contribution of time step is quite significant. For a smooth
signal without noise, as time step decreases the error decreases as well but when considering noise,
the error is amplified by a factor of 1/∆t and this value is very large for small time step. Therefore,
noisy signals should be first smoothed then differentiated or filtered after differentiated.
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