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Time-Varying Identification of Human Look-Ahead
Time in Preview Tracking Tasks

S.I.R. Piera, Author
M. Mulder, D.M. Pool, and K. van der El, Supervisors

Abstract—Future human-machine control tasks with preview
(e.g., car driving) are expected to include automation for safety,
but keep operators in charge for liability. Such shared control
applications require time-varying human identification because
the control feedback should be compatible with the operator’s
variable behavior. A promising time-domain identification algo-
rithm is the Dual Extended Kalman Filter (DEKF), estimating
human operator parameters from Van der El’s preview model. In
this article, the DEKF’s time-varying identification performance
is studied with realistic simulations, followed by human operator
experiments in a fixed-base simulator. The investigation focuses
on look-ahead time, indicating how much future information
the operator uses for control. Compared to other parameters,
look-ahead time is adapted most considerably with preview. The
results suggest that this parameter should be initialized in a 0.25
s proximity of its actual value to make the DEKF converge within
30 s. Although only estimating look-ahead time while fixing
the other parameters, the DEKF is capable of identifying time
variations in preview. Based on the sigmoid results, the estimation
bias increases linearly to 0.35 s at the largest 0.75 s steps in
look-ahead time. For sine variations, the DEKF estimations are
in phase with the look-ahead time until 0.03 rad/s. Between 0.03
rad/s and 0.4 rad/s the DEKF behaves as a lag function, and
for higher frequencies the estimation response is decayed. For
the first time, it is quantified how well the DEKF can identify
variations in look-ahead time during preview tracking tasks. With
further research, the DEKF might become capable of real-time
identification, bringing the cybernetics community one step closer
to intuitive shared control applications.

Index Terms—Manual control, cybernetics, preview dis-
play, time-varying identification, Dual Extended Kalman Filter
(DEKF), human-machine interaction (HMI) experiments.

I. INTRODUCTION

OVER the past century, automation has been introduced
in manual control tasks with preview (e.g., car driving),

with the aim to enhance safety, efficiency, and comfort [1]–[3].
Completely autonomous vehicles are not considered a near-
future solution, because it is difficult to establish legislation
around liability. Furthermore, the nature of vehicle operations
is usually highly decentralized and prone to unexpected events,
requiring an adaptive and creative operator (i.e., human) [4].
A promising compromise between autonomous and manual
control is shared control. For effective shared control, the
control system is required to constantly understand the human
control strategy and adapt the tracking feedback in line with
the task [5]–[7]. Currently, many vehicle operators choose

All authors are with the Section Control & Simulation, Department of
Control & Operations, Faculty of Aerospace Engineering, Delft University
of Technology, 2629 HS Delft, The Netherlands.

to disable such assisting functionalities, because the automa-
tion’s control inputs can feel counter-intuitive [5], [8]. For
acceptance, humans should stay well-informed and be able
to adapt their control behavior to task variations [9]–[11].
A requirement for adaptive shared control is time-varying
human identification, described as a key area of improvement
in cybernetics [4]. Van der El developed a preview model [12],
which can serve as a basis for describing human operator
behavior using a range of parameters. Ultimately, it is desired
to determine the preview model parameters in real-time. For
preview tasks, the look-ahead time parameter describes the
amount of future information processed by the operator. A
promising algorithm for identifying variations in look-ahead
time is the Dual Extended Kalman Filter (DEKF) [13], [14].

The DEKF is a simultaneous state-parameter estimation
tool, capable of real-time identification of human operator
behaviour in the time-domain. As alternatives, maximum
likelihood estimations [15], wavelets [16], recursive auto-
regressive exogenous models [17], and Unscented Kalman
Filters [18] have been studied. The DEKF is selected for
preview applications, because it can estimate all the pre-
view model’s parameters simultaneously and the estimation
traces are not dependent on a pre-defined time progression
function. Furthermore, it can sustain estimation performance
when exposed to human remnant and it is a compromise
between computational power and expense [14]. The DEKF
has already been verified and validated for compensatory
tracking tasks [13]. Following this research, Vertregt developed
an algorithm [14] to perform preview task identification.

Until now, research into the DEKF during time-varying
preview tracking tasks focused on developing the algorithm
and on finding workable settings to show its potential [14].
Vertregt’s study implies that the DEKF can estimate look-
ahead time variations and that fixing other human parameters
improves the estimation speed and stability. A couple of cases
have been analyzed thus far, and performance has been shown
for averages of large batches, rather than for individual runs. A
quantitative analysis, stress-testing the DEKF’s behavior and
reporting the performance with statistically substantiated re-
sults, is still missing. Such a validation study requires a tuning
strategy, research into the effect of modeling assumptions, and
an investigation of human parameter time variations. This will
enable the research community to improve and implement the
DEKF for real-life tracking applications.

The aim of this research is to validate the implementation
of a DEKF for the time-varying identification of look-ahead
time in preview tracking tasks. Furthermore, the goal is



MSC THESIS ARTICLE, DELFT UNIVERSITY OF TECHNOLOGY – SEPTEMBER 8, 2022 2

to quantify the limits of the domain in which the DEKF
performs consistently, and to show the expected trends within
the feasible domain. For the first time, a sensitivity analysis
of the algorithm settings is performed for simulation data
and for human experiment data. After that, the identification
performance is studied for sigmoid and sine time variations
in the preview. Such realistic time-varying simulations and
experimental validation runs have never been analyzed be-
fore. All experimentally acquired data are designed to be
complementary to Van der El’s established preview tracking
research [12]. This study can serve as a starting point for the
improvement of the DEKF, aiming for accurate time-varying
identification of human behavior. With such an estimation
algorithm at hand, a first step is made towards intuitive shared
control vehicles, increasing safety, efficiency, and comfort.

This article is structured as follows. In Section II, fundamen-
tal theory is explained to facilitate the reader’s understanding.
First, the preview model is elaborated on, after which the time-
varying model representation is explained, to conclude with
an overview of the DEKF algorithm. Section III describes the
methodology, and Section IV outlines the three main research
steps: (1) the DEKF’s initialization, (2) implementing the
DEKF to only estimate look-ahead time, and (3) DEKF param-
eter identification with time-varying preview, both sigmoidal
and sinusoidal. Results are presented in Section V, followed
by a discussion and recommendations in Section VI. Section
VII presents the research conclusion.

II. BACKGROUND

A. Preview Model in Manual Control

In the early stages of cybernetics research, preview displays
have been developed for human-machine experiments [19]. As
shown in Fig. 1c, experimental preview tasks are abstracted
representations of real-life tracking tasks, with the objective
to anticipate on a target signal ahead, while rejecting the error
on the current state. From a signal processing perspective,
a pursuit display (Fig. 1b) corresponds to a preview display
where the amount of preview time (τp) is reduced to zero. The
conceptually simplest, and best-understood human tracking
tasks include a compensatory display (Fig. 1a), where merely
the state error should be rejected. However, many real-life
manual control tasks are of preview nature, including a current
state (position y(t)), a desired state (target ft(t)), and the
distance between the two (error e(t)). Furthermore, future
information up to a certain point (e.g., a road) is normally
available, described by the display preview time (τp(t)). The
observable preview time is variable with external factors (e.g.,
rain and obstructions [20]) and is a function of other states
(e.g., velocity and heading [21]). How much preview is used
by human operators (HOs) to support their behavior is param-
eterized as the look-ahead time (τf (t), Fig. 1c). Understanding
how an HO processes its position, target and error, and what
the effect is of look-ahead time is essential for creating a
cybernetic model for preview tracking tasks.

(𝑎) (𝑏) (𝑐)

𝑒(𝑡)

+ +
𝑦(𝑡)𝑓௧(𝑡)

𝑒(𝑡)

+
τ(𝑡)

τ 𝑡 = 0 𝑠
τ 𝑡

Fig. 1: Overview of McRuer’s experimental displays for com-
pensatory (a), pursuit (b) and preview (c) tracking tasks [19].

Van der El’s proposed preview model [12] can predict
how humans behave in preview tasks for a range of forcing
function bandwidths and controlled element (CE) dynamics.
Looking at a preview display (Fig. 1b-c), three visible signals
have to be processed by the HO. The model identification
procedure requires frequency response function (FRF) recon-
struction of U(jω)/F (jω) (feed-forward), U(jω)/Y (jω) and
U(jω)/E(jω) (feed-back). For solving these three unknowns,
three uniquely identifiable forcing functions must be included
in the preview tracking task. From an experimental perspec-
tive, this is infeasible, because only one forcing function can
be introduced in the target signal (processed as feed-forward)
and one disturbance signal in the position signal (processed
as feed-back) [12]. As direct consequence, a maximum of two
FRFs can be reconstructed from experimental data. The three
visible preview display signals from Fig. 1b-c are mathemat-
ically related (e(t) = ft(t) − y(t)), making it still possible
to completely model the HO behavioral response (u(t)) with
merely two FRFs. As can be seen in Fig. 2, Van der El
concluded HOt

and HOy
to be the most suitable for modeling.

The superscript TY indicates that the response to the error
signal is omitted and divided over the other two FRFs, as
shown in the equations of Fig. 2.

Human 
Operator

𝐻ை
்

𝐻ை
்

𝑛(𝑡)

+

+
𝐻ா
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+

+ 𝑦(𝑡)

𝑓௧(𝑡)

+

−

𝑢(𝑡)

𝐻ை
் 𝑗ω = 𝐻ை 𝑗ω + 𝐻ை,௧(𝑗ω) 𝐻ை

் 𝑗ω = 𝐻ை 𝑗ω + 𝐻ை,௬(𝑗ω)

Fig. 2: Equivalent two-channel control diagram for preview
tracking including FRF assumptions [12].

Using similar parameterization to McRuer’s Crossover
model [22], the preview model includes a feed-back loop
intended to minimize an error. The error signal is a direct input
(e(t)) to the HO in the Crossover model, but it is an internally
processed signal in Van der El’s preview model (e∗(t)).
This internal error is created by subtracting the CE position
(y(t)) from the processed preview target signal (f∗

t (t)). In the
preview model, the HO feed-forward processes the original
target signal (ft(t)) using the look-ahead time (τf ) and the
low-pass FRF HOf

(jω). The control diagram shown in Fig.
3 includes eight uniquely identifiable parameters that describe
the preview model HO control response.
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Fig. 3: Van der El’s derived preview model [12].

The HO control output is weighted with the target response
gain Kf and smoothed with the preview lag time constant
Tl,f = 1/ωb,f . After the signal is processed to an internal
error, equalization takes place with the error response gain
Ke∗ = Kp for single integrator (SI) CE dynamics. For double
integrator (DI) tasks, a lead time-constant Ke∗TL,e∗ = Kv can
be added (zero for SI tasks). The neuromuscular activation is
described by a break frequency ωnms and a damping ratio
ζnms, differing per HO. A response time delay τv is included,
describing the average time that passes between signal presen-
tation and physical reaction of the operator. Because humans
show non-linear and variable control behavior, the preview
model is considered to be quasi-linear. All unexplained be-
havior is assigned to the HO remnant (n(t)). The FRF blocks
are mathematically elaborated on in Eq. (1)–(3):

HOf
(jω) =

Kf

1 + Tl,f jω
= Kf

ωb,f

ωb,f + jω
(1)

HOe∗ (jω) = Ke∗(1 + TL,e∗jω) = Kp +Kvjω (2)

Hnms(jω) =
ω2
nms

(jω)2 + 2ζnmsωnmsjω + ω2
nms

(3)

B. Time-Varying Model Representation

In previous human preview tracking studies, the preview
model is parameterized using a linear time-invariant (LTI)
methodology [12], [23]–[26]. The first LTI estimation step is
to Fast Fourier Transform (FFT) the measurable signals (ft(t),
u(t), y(t)) to form Ft(jω), U(jω) and Y (jω). Simultaneously,
two model FRFs (Hmod

Ot
(jω) and Hmod

Oy
(jω)) are created in

line with Fig. 2. These FRFs can recreate the relation between
the inputs (ft(t), y(t)) and outputs (u(t)) of the HO control
system, resulting in a modeled output (umod(t)) for every run.
The second step is an iterative gradient search optimization,
minimizing the difference in variance accounted for (VAF,
Eq. (21)) between umod(t) and u(t). Here, the preview model
parameters from Eq. (1)-(3) are altered, after being initialized
at an expected. The LTI estimation’s drawback is that the full
experiment data trace is required to calculate a single param-
eterization. With the ambition of capturing HO adaptation to
time-varying (TV) preview, the model control scheme (Fig. 3)
should be transformed into a TV format.

Preceding this study, a DEKF was developed that can
perform simultaneous state-parameter estimations [14]. Com-
parable to the work of Popovici et al. [13], where the DEKF
was applied to compensatory tracking tasks, the FRFs are
transformed into state-space (SS) format. Transforming a con-
trol diagram to a SS system requires all FRFs to be converted
to polynomial transfer functions (TFs). Time-delays have no

direct transition into polynomial fractions and require a Padé
approximation [27], as shown in Eq. (4):

Hdelay(jω) = e−τjω ≈
∑m

i=0
(2r−i)!
i!(r−i)! (−τjω)i

∑m
k=0

(2r−k)!
k!(r−k)! (τjω)

k
(4)

A higher order (i and k) increases the delay Padé approx-
imation’s fidelity, but leads to more poles and zeros in the
SS system. This increases the system’s states to be estimated
by the DEKF significantly, impeding DEKF’s capability to
focus on HO parameter estimation. A third order delay was
determined an optimum between signal quality and estimation
capability [14]. Look-ahead time τf is effectively a negative
time-delay, but for the Padé approximation equation to hold,
delays should be positive [14], [27]. Furthermore, only positive
delays can be included in a TV model description, because
only signals that are already present in the control loop can
affect the current states. This is solved by transforming look-
ahead time into apparent time-delay (τ∗f = τs− τf ), as shown
in Fig. 4. This means that the time reference is shifted to
the future, which must be further away than τf . The target
signal can then be described as the original signal (ft(t))
suspended into the future (ft(t+τs)). Based on research from
Vertregt [14] and Van der El [23], a τs value of 0.9 s and 1.5 s
is selected for SI and DI dynamics, respectively. A limitation
of this procedure is that the algorithm can estimate no values
larger than the suspension time. Furthermore, Padé approxi-
mations are more accurate for lower delay values, meaning
that low look-ahead time estimations are less accurate. A time
delay block with τ∗f is added to the control diagram and it is
Padé approximated, just as τv’s delay block.

Human 
Operator

𝐻ை

𝐻ை∗𝐻௦𝑒
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𝑒∗(𝑡)

𝑓௧
∗(𝑡)

+

𝑒ିத
∗ ன

𝑓௧(𝑡 + τ௦)

𝐻ா
−

τ = τ௦ − τ
∗

Fig. 4: Preview model, with apparant delay addition [14].

To transform the control diagram (Fig. 3) into a SS system,
the FRFs have to be redefined as polynomial TFs. Three
requirements for the SS system are set. First, the system should
be constructed in controllable canonical form, because this
enables future researchers to repeat the analyses and this form
lends itself well for multiple input multiple output (MIMO)
systems. Simultaneously, the number of canonical states has
to be kept as low as possible for better HO look-ahead time
estimation performance. Last, the polynomial TFs Û(s)/F ∗

t (s)
and Û(s)/Y (s) should be identical in the simulations of
measurable signals and the estimations of HO parameters for
transparency of performance. This way, if estimations differ
from the expected values, it can be analyzed at which state or
parameter exactly the anomaly occurred. The complete TF-SS
relation for the HO behaviour (Û ) can be found in Vertregt’s
work [14], and is schematically presented in Eq. (5):
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As shown in Fig. 2, the two governing TFs for the open-
loop (OL) human response are Û(s)/Ft(s) and Û(s)/Y (s).
A large part of the signal dynamics is shared in the feed-
back loop. Recognizing this shared dynamics, the number of
canonical states can be significantly reduced by specifically
designing the SS system (Appendix A, Part II). The output of
the feed-forward part F ∗

t (s)/Ft(s) is direct input to the same
dynamics as the feed-back loop. This internal transmission
Û(s)/F ∗

t (s) should carry a positive sign, as opposed to the
TF describing the response to the CE state Û(s)/Y (s). The
sub-matrices (Aft/y , Bft/y , Cft/y , Dft/y) are all conform
to the controllable canonical format, and their matrix values
are described by the HO parameters. The canonical state vector
[xy,xft ]

T includes all canonical states [xs,1, ..., xs,9]
T . These

parameterized matrices and state vectors do not necessarily
coincide with the DEKF’s parameter and state vectors, which
can be arbitrarily selected, as explained in Subsec. II-C.

C. Dual Extended Kalman Filter (DEKF)

The ideal TV identification method should be able to
(1) estimate time-delays because the preview model includes
two [28], (2) converge even when exposed to remnant due
to the HO tracking application [14], (3) allow for parameter
estimations that have no pre-defined trace shape in order to
function for a wide range of TV conditions [29], and (4)
directly identify HO preview model parameters to explain
behavior changes in terms of physiological variations [30].
The DEKF is most suitable for the combined state-parameter
estimation problem compared to other time-domain tools.
Maximum likelihood estimations (MLE) [15] can only express
the parameter variations in terms of pre-defined progressions,
which have to be designed beforehand. Wavelets [16] are
too sensitive to HO remnant and the HO model parameters
cannot be directly estimated during the procedure, but have
to be acquired with frequency response analyses. Recursive
auto-regressive exogenous models [17] have their own repre-
sentation of parameters and time delays cannot be estimated,
which impedes the desired HO parameterization for preview
tracking tasks. Unscented Kalman Filters (UKFs) [18] are
relatively costly with regard to computational expense, which
can possibly introduce difficulties for real-time applications.

DEKFs [13] are a good compromise between power and ex-
pense, although their initialization and tuning should be mon-
itored for consistent performance [14]. In car driving experi-
ments, non-linear parameter estimations have been performed
with a DEKF to study advanced driver-assist systems [31].
Additionally, recent research into parameter identification for
permanent magnet synchronous machines has shown that the
DEKF is promising for online identification [32].

1) Parameter prediction

6) Parameter limitation

5) Parameter correction

2) State prediction

4) State limitation

3) State correction
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Fig. 5: Schematic overview of Vertregt’s DEKF algorithm [14].

In preceding research by Vertregt [14], the DEKF was
constructed as a six-step procedure, which is graphically
presented in Fig. 5. A description of the governing differential
equation to be solved is shown in Eq. (6)–(8). The estimation
problem consists of a canonical state update equation (ẋs(t)),
a parameter update equation (θ̇(t)), and one shared output
equation (u(t)). The state filter, is responsible for solving the
state equation, and the parameter filter solves the parameter
equation. Mathematically, it is a design choice which canonical
states and parameters are assigned to which filter [13]. Based
on the preview state-parameter estimation problem, preceding
researchers [14] used xs(t) = [xs,1, ..., xs,9,Kp,Kv]

T and
θ(t) = [ωnms, ζnms, τv,Kf , ωb,f , τ

∗
f ]

T . They decided to place
the equalization gains Kp and Kv in the state filter because
these are only active in the output equation (lower part of
Eq. (5)). The number of canonical states depends on the Padé
approximation order and the manner in which the SS system is
constructed. The nine canonical states in the DEKF model are
the result of performing third order Padé approximations for
e−τ∗

f jω and e−τf jω and of using the minimal SS realization.

ẋs(t) = f(xs(t),θ(t), ft(t+ τs), y(t)) +ws(t) (6)

θ̇(t) = wp(t) (7)

u(t) = g(xs(t),θ(t)) + v(t) (8)

The original Linear Kalman Filter (KF) [33] algorithm
consists of five governing equations, repeated for every time
step. The one-step ahead prediction (x−

s,k, Eq. (9)) is the
model-based update, after which the covariance matrix of the
state prediction error (P−

s,k, Eq. (10)) can be calculated using
the system noise. The prediction error in combination with the
measurement noise can be used to calculate a value between 0
and 1 for the Kalman gain (Ks,k, Eq. (11)), which determines
how confident the KF is in its prediction. A measurement
update (x+

s,k, Eq. (12)) is performed, where the one-step
ahead prediction is altered using the Kalman gain and the
measurement. Again, a covariance matrix (P+

s,k, Eq. (13)) is
calculated to serve the basis for the next iteration.
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x−
s,k = Φs,k−1x

+
s,k−1 +Ψs,k−1uk (9)

P−
s,k = Φs,k−1P

+
s,k−1Φ

T
s,k−1 + Γs,k−1Qs,kΓ

T
s,k−1 (10)

Ks,k = P−
s,kH

T
s,k(Hs,kP

−
s,kH

T
s,k +Rk)

−1 (11)

x+
s,k = x−

s,k +Ks,k(zk −Hs,kx
−
s,k) (12)

P+
s,k = (I −Ks,kHs,k)P

−
s,k (13)

To cope with non-linear behavior in human experiments,
the EKF is applied, which linearlizes the system around the
operating point at every time step and tries to estimate the
increment to provide a prediction on the next step. This
results in the filter needing to converge before it can rely
on its predictions. Knowledge-based initialization is beneficial
for the EKF performance [13], [14], because it can easier
find a global optimum. Another challenge for HO parameter
estimation is that the identification tool should be capable
of simultaneous state-parameter estimations, leading to large
vectors that are computationally expensive to solve. Therefore,
the vector with states and parameters to be estimated is split
over two EKFs, resulting in a DEKF (Appendix B, Part II).

The parameter and state prediction steps of the DEKF (Fig.
5) are used to find an initial prediction (x−

s,k), as a function of
the previous best estimate (x+

s,k−1). In the differential model,
the parameter progression only depends on random walk,
because they are generally assumed to be constant [13] (Eq.
(7)), thus the prediction (θ−k ) is equal to the previous corrected
value (θ+k−1. This is followed by a parameter covariance matrix
(P−

p,k) calculation. The state progression is a function of the
states, parameters, suspended target, CE position and random
walk (Eq. (6)), meaning that the DEKF prediction (x−

s,k) is as
well. Also for the states covariance matrix (P−

s,k) is calculated.
The state correction steps are introduced to make a better
estimation of the new state (x+

s,k) using the Kalman gain
(Ks,k). With the new state estimation comes a new state
covariance matrix (P+

s,k). The state limitation step introduces a
ceiling and floor to the estimated values, resulting in a bounded
a posteriori state estimation (x̃+

s,k). The parameter correction
step and the parameter limitation step work similarly.

As explained by Popovici et al. [13] and Vertregt [14], the
total derivative Gtot

p,k is applied for the parameter correction
step (Fig. 5). For both filters, this should be a step where
the Jacobian is calculated for the output equation g(xs, θ)
with respect to either the states or the parameters. However,
in Subsec. II-B it was shown that the preview processing
parameters (τf , Kf , ωb,f ) are not explicitly represented in the
output equation (Eq. (5)). To still provide sensible values for
this variable, it is chosen to calculate the total derivative d•

dθ ,
rather than the Jacobian. The Jacobian calculation is possible
for the canonical states using δ•

δxs
. The state Jacobian and

the parameter total derivative are used to calculate a Kalman
gain, serving to correct the linearized step that was estimated
based on the DEKF model. The complete DEKF algorithm is
elaborated upon in Vertregt’s work [14].

III. METHODS

A. Research Settings

Preliminary analyses of the DEKF have shown that tuning
and performance are condition-specific [13], [14]. It is difficult
to perform one generalized validation, spanning the complete
range of forcing function bandwidths and CE dynamics. For
that reason, a range of research settings are fixed, in line
with the results of Vertregt’s DEKF study [14]. These design
choices are discussed below.

1) Pure Integrator Dynamics: Only SI tracking experi-
ments (HCE(jω) = 1.5/(jω)) are investigated, meaning that
conclusions only hold for this CE sub-domain. It has been
shown by Vertregt [14] that for SI dynamics, the DEKF
can well estimate the HO look-ahead time based on TV
simulations and time-invariant (TI) experiments. Studying and
improving the identification performance for SI tracking tasks
in TV conditions is considered the most valuable next step,
because it can possibly show TV DEKF behaviour for the
first time ever. Vertregt’s DI dynamics study [14] showed less
promising results with the current DEKF design, because of
the more pronounced low-pass filtering characteristics of the
HO remnant. Also, for DI tasks, the preview lag time constant
Tl,f (= 1/ωb,f ) increases with increasing display preview
time, causing the HO to low-pass filter a higher bandwidth
of the target signal.

2) Fixation of Non-τf Parameters: Only τf is free to
vary during estimations, while all other HO parameter are
fixed at a pre-determined value. Limiting the estimations to τf
ensures that the DEKF converges to feasible solutions. It also
prevents that the algorithm constantly interchanges weights of
HO parameters that have similar effect on HO model output,
while on tracking input level nothing changes. For example,
delay time τv and look-ahead time τf have fairly similar but
opposite effects on the HO model’s output, so the DEKF
may estimate the parameters as constantly varying, where
they should be stationary. This HO parameter fixation is in
line with the observation that look-ahead time is the most
variable parameter as function of display preview time [23].
However, this assumption can cause artefacts in the results,
since all behavioral changes of the HO have to be attributed
to variations in the HO model’s τf parameter, whereas they
might have been better explained by other parameters. If the
DEKF can still identify look-ahead time with this assumption,
that would be a revolutionary development in time-varying
cybernetics research.

3) Baseline HO Parameter Settings: Central in this re-
search is the effect of time variations in the display preview
time τp on HO look-ahead time τf . The sensitivity study of
Van der El and Padmos [23] serves as starting point. They
showed with TI experiments that an HO processes all available
preview information (τf = τp), up until a critical point:
τf,crit = 0.6-0.8 s for SI tracking tasks. The four research con-
ditions spanning this critical region for SI tracking tasks [23]
are τp = 0.00 s, τp = 0.25 s, τp = 0.50 s, and τp = 0.75 s. At
these display settings, the preview model parameters have been
determined by Van der El [23] for eight participants using a
frequency-domain LTI identification method. Looking at these
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LTI identification results, four baseline parameter settings are
determined for further research into the DEKF, as described in
Table I. These parameter settings serve as the basis for both
TI and TV simulations in this article, performed for testing
the DEKF. The gain Kv describing the combined lead time
constant and error rejection gain is excluded because only SI
dynamics are considered.

TABLE I: Four baseline HO parameter settings.

τp Kf ωb,f τf Kp ωnms ζnms τv

[s] [-] [rad/s] [s] [-] [rad/s] [-] [s]

0.00 1.0 80 0.00 1.3 18 0.2 0.31

0.25 1.0 40 0.25 1.3 15 0.2 0.27

0.50 1.0 20 0.45 1.3 12 0.2 0.21

0.75 1.0 15 0.55 1.3 10.5 0.2 0.18

4) Construction of Forcing Functions: The forcing func-
tions for the target signal (ft(t)) and disturbance signal (fd(t))
are generated by summing a range of sine waves (Eq. (14)-
(15)). The signals are composed of a selection of frequencies
using a 4 rad/s bandwidth, comparable to the high-bandwidth
conditions from McRuer’s research [19], later also applied
by Van der El [12], [23]. The disturbance frequencies are
neighboring the target frequencies, but have no direct overlap
to ensure that the power spectra are uniquely identifiable. To
mitigate confounding factors of the signal sequence during
human experiments, five different realizations of the forcing
functions are introduced by shifting the phases of the sines. In
simulations, the same five target functions are used, in order
to create expectations for the experiment results. For HOs, the
target and disturbance signals will appear to be completely
random for every experiment run.

ft(t) =
∑n

i=1
Ai sin(ωit+ ϕi) (14)

fd(t) =
∑m

j=1
Aj sin(ωjt+ ϕj) (15)

5) Time Trace and Sampling: In line with earlier preview
research [14], [34], the sampling frequency fsp of data points
is 100 Hz. For the simulations, a complete run consists of 60
s of run-in time and 120 s of performance assessment time,
summing to a total of 18,000 time steps. This relatively long
run-in time is selected to ensure that the DEKF is converged
during the measurement period for as many settings and
conditions as possible. The validation tracking experiments
entail a run-in time of 30 s, followed by a performance
assessment time of 120 s. This shorter run-in time is a trade-off
between HO focus and DEKF convergence. Both for the TV
simulation of tracking data and for the DEKF estimation of HO
parameters, the time delays are third order Padé approximated.

6) Remnant Model: As described by Levison [35], the
remnant is modeled by passing white noise through a low-
pass filter (Eq. (16)). In this SI research, the remnant break
frequency is fixed at ωb,n = 10 rad/s [14]. The remnant gain
Kn is a function of the remnant to tracking input power
ratio (Pn = σ2

u,n/σ
2
u) [25]. Literature shows that a realistic

remnant power ratio for individual HO trials can be set at

Pn = 0.35 [25]. Before simulating human behaviour, Kn is
tuned to ensure this power ratio. Varying human remnant is
impossible to capture with the current DEKF design, because it
is not explicitly modeled in Van der El’s preview model [12].
To take away the possibility that the DEKF performs only
under specific remnant conditions and avoid artefacts in the
results, different remnant realizations are used, created with
randomly generated white noise signals.

Hn(jω) =
Kn

ωb,n + jω
(16)

B. Data Acquisition and Processing

1) Simulations: Continuing the work of Vertregt [14], in
the TV simulation environment, three main operations are ex-
ecuted. To create signals for y(t) and u(t), a CL simulation is
performed for the entire human-machine system. Simultaneous
to the CL simulation, an OL run is calculated to find how the
remnant-free ũ(t) would look when just ft(t) and y(t) are used
as input. The second operation is a parameter estimation by the
DEKF, applying the same OL structure. The third step serves
as verification, where ˆ̃u(t) is re-simulated using the estimated
HO parameters. If the parameter estimations are exactly the
same as the simulations, the re-simulated ˆ̃u(t) signals exactly
coincide with the original OL ũ(t) signals.

Every condition is simulated with five realizations of the
forcing functions and with 20 differently seeded remnant
signals. This reduces the possibility that the results only
hold for limited and very specific combinations of research
settings. All combinations of the above variations sum up to
a total of 100 CL and 100 OL simulation runs. In real-life, a
remnant realization can never repeat itself, even if the same
person performs an identical task. Still, the same range of
remnant realizations is used for every condition, to facilitate
reproduction of the results. The compilation of these 100
simulations is saved to a batch, which can be unpacked in
the estimation environment.

2) Experiments: The difference for experiments is that
only tracking task variables (i.e., τp) can be varied, instead
of actual HO parameters (i.e., τf ). In previous research by
Van der El [23], for TI task variable analyses, the DEKF’s
time-domain estimations can be compared to a frequency-
domain LTI parameter estimation method. Unfortunately, in
TV experimental analyses, a direct link is missing between
τp and τf . This means that it is impossible to reconstruct
the actual HO parameter values. For experimental data, a
different procedure is applied. The HO tracking input can
be re-simulated to form ˆ̃u(t), which can be compared to the
experimentally acquired – thus CL, remnant-including – signal
u(t). Collecting tracking data from TV preview experiments is
valuable, because it shows how the DEKF reacts when humans
are exposed to such tasks and whether the simulated parameter
variations are representative. Furthermore, the data acquired
can be stored and used for future TV identification studies.

Humans show an identifiable response to isolated task
variations, but simultaneously, other factors uncontrollably
reverberate in their behavior. This can be on a cognitive level
(e.g., fatigue), and on a motor-sensory level (e.g., tremors).
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Some of this stochastic variability can show overlap with how
the HO remnant is modeled in simulations, but chances are
that a large part is not modeled. Therefore, one should at all
times be cautious with drawing conclusions regarding an HO’s
response to TV task variables. The order in which different
conditions are presented matters due to HO variability. To
mitigate the possible confounding effect of condition order,
a balanced Latin Square (Table II) is introduced, facilitating
a within-subject analysis. The experiment counts eight partic-
ipants, which is the minimum required to fully balance the
eight conditions.

TABLE II: Balanced within-subject experiment design.

Condition C1 C2 C3 C4 C5 C6 C7 C8

Subject 1 A B H C G D F E

Subject 2 B C A D H E G F

Subject 3 C D B E A F H G

Subject 4 D E C F B G A H

Subject 5 E F D G C H B A

Subject 6 F G E H D A C B

Subject 7 G H F A E B D C

Subject 8 H A G B F C E D

Available data collection time was the constraining factor.
The data measurements take 150 s per run (Subsec. III-A),
and at least five forcing function realizations are collected
per condition. Not taking into account briefing (Appendix C,
Part II), training, and breaks, this results in approximately
15 minutes of active measurement time per condition. As
design choice, it was decided that volunteers should be able to
finish the experiment within three hours, which was considered
the maximum mental strain for this research. Within the
scope of eight available experiment conditions (approximately
three hours), a selection was made that can show DEKF
performance for different TV conditions.

It was chosen to include three TI baseline conditions (A-
C), which serve as a starting point for the time variations. For
these TI experiments, an LTI-estimated validation of the DEKF
results is possible. Furthermore, two sigmoid conditions were
applied (D-E), investigating how well the DEKF can identify
look-ahead time changes for both a large and a small step in
display preview time during an experiment. In the preliminary
phase of this research (Part III), it was shown that steps up in
preview time are easier to detect for the DEKF. Therefore, both
sigmoid experiments make a step up. Lastly, three sine con-
ditions were studied (F-H), that can help understanding what
the DEKF performance is at different frequencies of preview
variation in tracking tasks. Based on the preliminary study
(Part III), one sine wave is selected with a large amplitude
and a relatively low frequency, to verify that the DEKF can
identify a look-ahead time variation pattern that is comparable
to the preview time variations. A sine with the same amplitude
and a higher frequency is selected to verify that the amplitude
gain and phase delay decrease, comparing the preview time
variation and the look-ahead time estimations. Another sine
experiment with a high frequency and a lower amplitude is

performed to verify whether the DEKF can identify consistent
small HO behavioral changes, when the preview time variation
is small. Even higher frequencies were undesirable to study,
due to the experiment volunteer losing its focus in such an
uncomfortable experiment.

A. TI: τp = 0.75 s
B. TI: τp = 0.50 s
C. TI: τp = 0.25 s
D. TV (sigmoid): τp,1 = 0.25 s, τp,2 = 0.75 s
E. TV (sigmoid): τp,1 = 0.50 s, τp,2 = 0.75 s
F. TV (sine): µτp = 0.50 s, Aτp = 0.25 s, Pτp = 60 s
G. TV (sine): µτp = 0.625 s, Aτp = 0.125 s, Pτp = 20 s
H. TV (sine): µτp = 0.50 s, Aτp = 0.25 s, Pτp = 20 s
Experimental data are acquired in TU Delft’s Human-

Machine Interaction Laboratory (HMILab), a fixed-base sim-
ulator (Fig. 6). The apparatus set-up is to a large extent
identical to Van der El’s TI preview time experiment [23].
The participants are seated in front of the screen (1280x1024
px, 100 Hz), where the display of Fig. 1c is shown with
green indicators and lines on a black background. The side-
stick used to provide control input to the CE was located on the
participant’s right-hand side. The stick is electro-hydraulic and
servo-controlled, it has a 9 cm moment arm and it is limited
to only rotate around the roll axis. The seat is adjustable to
ensure a comfortable distance to the screen.

Fig. 6: TU Delft’s Human-Machine Interaction Laboratory
with LCD screen (a) and servo-controlled side-stick (b).

3) DEKF Estimation: Data sets of tracking input u(t) and
target ft(t) for different conditions are compiled to batches
of 100 (simulations) or 40 (experiments) realizations. Based
on the OL SS system, the DEKF reconstructs the HO look-
ahead time τf from u(t) and f(t) for every realization. For
simulated data, the fixed HO parameters are based on their
set simulated values. For experimentally acquired data, the
non-τf parameters are kept constant at values that have been
LTI identified during a TI run for a specific condition and
participant. This means that for TV simulations, the DEKF can
be verified at every time step by comparing the scheduled τf
values in the closed-loop simulation to the estimated τf values.
Experiment data cannot serve as a validation on parameter
level, because the exact HO parameter values and their time
variations are unknown. Nonetheless, an OL re-simulation can
be performed to compare the original tracking data u(t) to the
reconstruction ˆ̃u(t).
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C. Performance Analysis
Due to the time-domain research, large data sets have to be

analyzed for performance assessment. This performance can
be studied on a DEKF variable level (P , Q, R), on a param-
eter estimation level (τf ) and a behavior reconstruction level
(ˆ̃u(t)). Time traces need to be abstracted to comprehensible
performance indicators to compare conditions. The most im-
portant indicators are convergence time (kCT ), estimation bias,
estimation standard deviation (σ), and variance accounted for
(VAF) between the original an reconstructed behavior trace.

1) Convergence Time: DEKF convergence can be de-
termined by the P -matrix or the filter innovation reaching
constant minimal values. This method cannot directly explain
how well the DEKF estimates τf and the innovation constantly
changes due to the adaptive nature of the DEKF. It is chosen
to investigate convergence time on a parameter estimation
level (Eq. (17)) and on a behavioral level (Eq. (23)). The
τf -level method directly supports the main goal of time-
varying HO parameter identification. The u-level method can
help explaining unexpected τf estimation results, because the
DEKF only observes measurable signals, including tracking
behavior. Convergence time has to be kept as low as possible
in the performance optimization process. In Eq. (17) (Fig.
7), the τf -based convergence time calculation is shown. The
estimated look-ahead time τf,est is compared to a reference
value τf,ref at every time step. For simulations, this reference
is known, and for experiments, it can be LTI-determined. In the
preliminary phase of this research (Part III), it was found that
0.05 s variations in τf have little effect on HO model’s output
behavior. Therefore, convergence is determined to be reached
(kCT ) when τf,est stays within a 0.5 s boundary around τf,ref .

kCT,par = k(|τf,est − τf,ref | < 0.025 | kCT < k < kend)
(17)

τ

𝑘

τ,
τ, +/−0.25

𝑘்,

τ,௦௧

Fig. 7: Schematic representation of how parameter-based con-
vergence time is calculated.

2) Bias: In this research, the bias is expressed on a τf -
estimation level. For a specific range, the τf estimations are
summed and divided by the number of samples considered.
The starting point kstart can be set arbitrarily, or can be based
on the convergence time kCT found before, to prevent the
artefact that non-converged estimations influence the mean
estimated values. From this mean value µτf , the original
look-ahead time is subtracted. This is a known value in the
simulated environment and an LTI-identified value for the
experimentally acquired data. The absolute bias should be low
for optimal DEKF performance.

µτf =

∑kend

k=kstart
τf,est(k)

kend − kstart
(18)

bias(τf,est) = µτf − τf,ref (19)

τ

𝑘

τ,
τ,௦௧
𝑘௦௧௧
μத 

Fig. 8: Schematic representation of how look-ahead time
estimation bias is calculated.

3) Standard deviation: The standard deviation of the es-
timations στf can be calculated by taking the square root of
the equation for discrete variance. The calculation presented
in Eq. (20) is based on Matlab’s built-in std.m function.
Again, a value needs to be specified for kstart. Low values of
the standard deviation correspond to more consistent DEKF
performance, making it desirable.

στf =

√
1

N − 1

∑kend

k=kstart

(τf,est(k)− µτf )
2) (20)

4) Variance Accounted For (VAF): The VAF represents
how well the original behavior is re-simulated using the
HO parameter estimations. It is a measure for similarity
expressed in percentages between two time traces based
on their variance. The best attainable value is 100%. The
VAF can be presented as a single value (Eq. (21), [34]),
or as a windowed value, calculated at every time step (Eq.
(22), [14]). Specifically for experimental data, where actual
HO parameter values are unknown, this windowed VAF can
be used to indicate convergence time (Eq. (23)). The general
description of the VAF is shown in Eq. (21) comparing the
tracking input reconstructed from estimated parameters uest,
with the original tracking input uref in a selected time domain
[kstart, kend]. The windowed VAF (Eq. (22)), performs the
same operation over a smaller domain [k − Nw, k] at every
time step. In this research, the window size Nw is fixed at
1,000 (10 s) as a compromise between transition smoothness
and variation detail. This performance indicator can be used to
calculate behavior-level convergence time for the DEKF (Eq.
(23)). The windowed VAF values for the estimation and ref-
erence trace are determined (VAFw,est,VAFw,ref ), and when
the fraction between the two stays above a certain threshold
THVAF, the DEKF is considered converged. The threshold
value for behavior-level convergence is set at THVAF = 95%
in simulations, meaning that the re-simulated and reference
behavior is nearly equal. An artefact of this methodology
is that the entire sub-domain of 10 s is included in the
VAF calculations, causing a delay between actual convergence
and the detection moment when the convergence threshold
is surpassed. In general, the VAF is aimed to be as high
as possible in the algorithm optimization, meaning that the
original tracking signal is well-reconstructed.

VAF =

(
1−

∑kend

k=kstart
|uref (k)− uest(k)|2∑kend

k=kstart
u2
ref (k)

)
· 100% (21)

VAFw(k) =

(
1−

∑k
l=k−Nw

|uref (l)− uest(l)|2∑k
l=k−Nw

u2
ref (l)

)
· 100%

(22)
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kCT,VAF = k

(
VAFw,est

VAFw,ref
> THVAF | kCT < k < kend

)

(23)

VAF௪

𝑘

VAF௪,
VAF௪, ȉ 𝑇𝐻

𝑘்,

VAF௪,௦௧

Fig. 9: Schematic representation of how VAF-based conver-
gence time is calculated.

To understand how look-ahead time variations relate to HO
behavior, Fig. 10 and Fig. 11 show the effect of changing
the τf values on the HO model’s tracking output. In Fig.
10, the solid line corresponds to the condition in Table I,
where τp = 0.25 s and τf = 0.25 s. For the dashed and
the dotted lines, only the value of τf is changed to 0.00 s and
0.50 s, respectively. Lowering the look-ahead time delays the
HO tracking response and causes the input to increase at the
ultimate values. Increasing look-ahead time effectively results
in a negative delay (preview), while smoothing the tracking
input with lower ultimate values. In Fig. 11, the colored lines
show what happens to the VAF when only the look-ahead time
is varied for three different scenarios. The peaks of the plots
coincide with τp = {0.25 (magenta), 0.50 (blue), 0.75 (red)}
s from Table I. The black markers correspond to the traces
in Fig. 10. At every condition, a similar parabolic relation
is visible between offsetting τf and the VAF. For these case
studies, all τf values in the neighbourhood of the original
values result in comparable HO model tracking input. For all
conditions, a τf mismatch smaller than 0.05 s still reaches a
VAF higher than 95%, comparing the reconstructed signals.
This supports convergence threshold decisions earlier.

10 12 14 16 18 20
t [s]

-3

-2

-1

0

1

2

u 
[-

]

=f set to 0.00 s =p = 0.25 s (=f = 0.25 s) =f set to 0.50 s

Fig. 10: Snippet of simulated tracking input u(t) with τf =
0.25 s (solid), τf = 0.00 s (dashed) and τf = 0.50 s (dotted).
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=
f
 [s]
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=p = 0.25 (=f = 0.25 s)

=p = 0.50 (=f = 0.45 s)

=p = 0.75 (=f = 0.55 s)

Fig. 11: Simulated VAF sensitivity study for τf = 0.25 s
(magenta), τf = 0.45 s (blue) and τf = 0.55 s (red). The
black markers correspond to the τf offsets in Fig. 10.

IV. RESEARCH STEPS

Step 1) Initializing the Dual Extended Kalman Filter

• Effect of τ, on DEKF convergence time
• Effect of 𝑄-, and 𝑅-sensitivity on convergence time, bias, σ & VAF

Step 2) Fixing Estimated Human Operator Parameters

• Effect of fixing 𝐾, ω,, 𝐾, ω௦, ζ௦ & τ௩ on bias, σ & VAF
(6x sensitivity analysis)

Step 3) Estimating Look-Ahead Time With Time-Varying Preview

Sigmoids
• Effect of step size on 

convergence time, bias, 
σ & VAF

Sines
• Effect of frequency on gain & 

phase delay between τ and 
estimated τ

Goal: find a suitable 𝜏,, 𝑞ଶ, 𝑞
ଶ, 𝑟ଶ

Goal: understand estimation artefacts

Goal: quantify DEKF performance for TV 𝝉𝒇 identification in preview tracking tasks

Fig. 12: Overview of the research steps to be taken in
consecutive order.

A. Initializing the DEKF (Step 1)

The DEKF’s initial look-ahead time estimate (τf,0) and the
initial noise covariance matrices (Q, R) are evaluated. Based
on the preliminary research phase (Part III), the convergence
speed is expected to depend on τf,0, Q and R. Bias and
standard deviation after convergence seem to be mostly de-
pendent on Q and R. An example of the effect of τf,0 on
convergence speed is shown in Fig. 13. On the y-axis, the
difference between the initial and actual look-ahead time value
is presented ∆τf = τf,0− τf,ref . For τf = {0.25, 0.45, 0.55}
s (Table I, opaque lines), as well as for their averaged values
(solid lines), it is simulated how the DEKF’s τf estimations
progress in time towards their actual value. The ∆τf values
are thus relative to the three baseline conditions. It can be
seen that the DEKF converges approximately twice as fast
when τf,0 < τf and that after convergence, the algorithm
shows consistent behavior. The significance of τf,0 for DEKF
performance motivates for a further investigation of the look-
ahead time initialization.

Fig. 13: Simulated τf,0-sensitivity study, averaged for individ-
ual conditions (opaque) and for all estimations (solid).

The DEKF’s convergence time kCT can be determined on
both a τf -level (Fig. 13) and on a VAF-level. For the τf -
level calculations, a reference estimation can be performed,
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where τf,0 = τf . Where the investigated estimation stays
within a selected margin from the reference estimation, is
the convergence point. For the VAF-level calculations, the
10 s windowed VAF between the original tracking signal
u(t) and the re-simulated tracking signal ˆ̃u(t) is used, which
shows how well the DEKF was able to capture the measured
behavior change with a τf variation. If the VAF value reaches
a new equilibrium value after the HO variation, the filter is
considered to be converged. Fig. 14 shows an example of such
a VAF plot in a simulated environment. The black dotted line
serves as reference, representing the original CL simulation
data of u(t). The blue line represents the OL simulation (ũ(t))
VAF and the red line shows the VAF of the re-simulated
tracking signal (ˆ̃u(t)). The OL simulation is described as ideal,
because it corresponds to the theoretically best values the
DEKF re-simulation can reach (Subsec. III-B). Where the red
line coincides for the first time with the blue line indicates the
convergence time.

Fig. 14: Simulated VAFw for a τf,0-τf couple, with reference
u (dashed), theoretical ũ (blue) and estimated ˆ̃u (red).

Another influential setting is the sensitivity of the adaptive
Q-matrix and R-value. As presented in Eq. (24)–(26), these
DEKF variables are designed to be a function of variances
for the error e(t), target ft(t), and input u(t). How many
time steps are included in the variance calculation window is
described by Nretro. The value of Nretro is set to 500 [14],
corresponding to five seconds of tracking data. The adaptabil-
ity of Qs,k and Rk enables the algorithm to scale its prediction
confidence with the variations in the system. This way, it can
easily respond and re-converge when sudden changes in the
estimated HO dynamics occur [13]. The design settings of
q2, q2f and r2 determine how sensitive the DEKF becomes to
such variations. The process noise covariance matrix for the
canonical states is only defined for the fifth and ninth state.
This is because in the controllable canonical SS equation (Eq.
(5)), the characteristic polynomials of the system are located
at the fifth and ninth row.

Qs,k(ẋs,5) = q2σ2
e(k−Nretro:k)

(24)

Qs,k(ẋs,9) = q2fσ
2
ft(k−Nretro:k)

(25)

Rk = r2σ2
u(k−Nretro:k)

(26)

Finding optimal values for q2, q2f and r2 is a complex trade-
off between convergence speed, bias, standard deviation and
VAF. The preliminary investigation (Part III) showed that this
optimum lies in the domain {q2, q2f , r2} = [1,100]. The di-
mensionality of the trade-off is too high for a complete Monte
Carlo analysis. Therefore, three selected settings {3,15,60}

are studied for r2, as well as for q2 = q2f . It was chosen
to investigate a rather sparse domain because the aim is to
find settings that are accurate and robust enough to make the
DEKF find feasible solutions at every condition. Complete
optimization of these parameters is dependant on the task
conditions, and computationally expensive. The gravity of this
article is at the TV performance assessment rather than the
DEKF fine-tuning. In this high-level optimization of q2, q2f
and r2, τf,0 = 0.8 ·τf,ref . It is studied which settings produce
the quickest convergence (τf,est − τf,ref < 0.025 s) with an
acceptable bias and variance.

B. Fixing Estimated HO Parameters (Step 2)

As suggested, other HO parameters can be fixed to improve
τf estimation performance. The effects of τf offsets on track-
ing behavior are shown in Fig. 10 and Fig. 11. Fixing other HO
parameters at a different point than their actual value can create
a bias in the τf estimations. To study this sensitivity, baseline
conditions have to be developed, from which the parameters
can be varied systematically. Table III shows the mean and
standard deviation of the LTI-determined HO parameters from
Van der El’s preview time study [23]. Again, the combined
lead and error rejection gain Kv is excluded due to the SI
dynamics nature of the research. The mean values can serve
as starting points for the baseline conditions, and the standard
deviations can help determining the step sizes.

TABLE III: Mean / std of HO parameters (LTI) [23].

τp = 0.25 s τp = 0.50 s τp = 0.75 s

HO par. µ | σ µ | σ µ | σ
τf [s] 0.23 | 0.057 0.44 | 0.032 0.54 | 0.088

Kf [-] 0.98 | 0.017 0.99 | 0.029 1.01 | 0.020

ωb,f [rad/s] 1.2e14 | 3.4e14 2.2e8 | 3.6e8 14.09 | 9.34

Kp [-] 1.28 | 0.27 1.26 | 0.14 1.28 | 0.17

ωnms [rad/s] 15.00 | 3.60 12.02 | 0.97 10.72 | 2.16

ζnms [-] 0.17 | 0.073 0.17 | 0.14 0.19 | 0.19

τv [s] 0.27 | 0.066 0.21 | 0.022 0.18 | 0.033

The three central conditions – corresponding to τp = {0.25,
0.50, 0.75} s – are once more considered for simulations
and experiments. To determine the variation range of the
non-τf parameters for the simulations, all LTI parameter
estimations from Van der El’s study of preview time effect
were analyzed (Table III). Based on these statistical data,
Table IV summarizes the baselines and step sizes for the
HO parameter variations. Assuming normal distributions, three
standard deviation comprises approximately the entire data
set. A standard deviation can thus be an indicative value
for determining the step sizes of HO parameter variations
in a feasible domain. The data set is not large enough to
confirm information about the distribution, thus the step sizes
should still be heuristically selected. To analyze the parameter
sensitivity in the simulated environment, three steps are taken,
both in negative and in positive direction. For experimental
data, the baseline parameter values are the LTI-identified
values for a specific HO-condition combination. From this
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experimental baseline, only two steps are taken to ensure
that no physically impossible values are used, because some
baseline values are already at the fringes of the feasible range.

TABLE IV: HO parameter base and step size.

Base Step Size

HO par. τp = 0.25 s τp = 0.50 s τp = 0.75 s

τf [s] 0.25 0.45 0.55 n.a.

Kf [-] 1.00 1.00 1.00 0.02

ωb,f [rad/s] 40.00 20.00 15.00 6.00

Kp [-] 1.30 1.30 1.30 0.20

ωnms [rad/s] 15.00 12.00 10.50 2.00

ζnms [-] 0.20 0.20 0.20 0.05

τv [s] 0.27 0.21 0.18 0.04

To study the HO parameter fixation, the bias and standard
deviation are calculated for the τf estimation and the VAF is
calculated for the re-simulated ˆ̃u(t). For both simulations (100
realizations) and experiments (40 realizations), the median
value and first and third quantile values are collected for
each performance indicator. The ultimate non-outlier values
are saved as well, following the definition for whiskers in
Matlab’s boxplot.m function. Every fixed HO parameter
in the DEKF model is varied over the range determined by
the step sizes from Table IV. All results for bias, standard
deviation and VAF are normalized with respect to the median
result value of the condition where the non-τf parameters are
fixed at their baseline value. The baseline is in simulations
the actual designed HO parameter value, and in experiments
the LTI-identified parameter value. Due to the normalization,
purely the effect of under- or over-estimating a parameter is
shown. This can show the potential relative effect of fixing
HO parameters at an arbitrary value, in terms of increase or
decrease of look-ahead time estimation performance.

C. Estimating τf With Time-Varying Preview (Step 3)

Knowing the possible effects of the DEKF’s initialization
and only letting τf free for estimation, it is possible to assess
the performance for TV conditions. The DEKF’s capabil-
ity of estimating τf is studied on simulated HO data. The
experiments serve as validation cases for specific simulated
conditions, analyzing whether these simulated HO parameter
variations represented reality in the first place. The eight
experimental conditions, of which five are TV, are outlined
below the Latin Square in Table II. To minimize complexity
and possible confounding factors, TV analyses include simple
variations: sigmoid steps and single sines. For sigmoid steps,
the influence on look-ahead time estimation bias and standard
deviation is registered, as well as the effect on the VAF
of re-simulated bahavior compared to the original. For sine
variations, the amplitude and phase of the estimated traces is
compared to that of the simulated τf traces or experimental
τp traces, respectively.

1) Sigmoid Step Analyses: Sigmoid steps (Fig. 15) in
preview during simulations (τf ) and experiments (τp) influence
HO tracking behavior. It is relevant to study how quickly
the algorithm can reach a new equilibrium after the behavior
changes, since the ultimate goal for shared control applications
would be real-time human identification. For simulations,
convergence time in a TV condition can be studied by com-
paring it to results of a TI condition. If the remnant seed
and forcing function realization are equal for both the TV
and TI simulations, the DEKF’s τf estimation trace should
approach the TI values at some point. For experiments, the
LTI values are used as the reference instead of the simulated
TI parameter values, which make the results less precise
than for the simulations. Another interesting insight is how
the performance (bias, standard deviation, VAF) after the
step and following re-convergence compares to the initial
equilibrium. To visually show the distribution of the data set,
these performance indicators are shown in terms of a median,
the first and third quantile, and the ultimate non-outlier values.

τ
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Fig. 15: Schematic representation of how a sigmoid step
estimation progresses, and how the convergence time and bias
are obtained.

2) Sine Variation Analyses: Periodic variations in preview
can provide knowledge on the DEKF’s performance as a
function of frequencies. It is studied whether sinusoidal τf
variations (Fig. 16) cause a response of the same nature
in the DEKF’s estimations. If the estimations are also sine-
shaped, a fitting function can be used to extract the gain and
delay in the estimated look-ahead time τf,est compared to the
original variations of τf or τp. This can express how the DEKF
performs in the frequency domain. An ordinary least squares
(OLS) regression is performed on the estimated look-ahead
time trace for every run, using Matlab’s fmincon.m function.
The regression procedure outputs a mean, amplitude, phase
and frequency of the regressed sine signal τf,reg . To assess
the validity of the regressed signal results, the normalized root
mean squared error between τf,est and τf,reg is collected for
every condition. This value is expected to be low when the
estimation trace indeed is sine-shaped, and high when this
assumption does not hold.

τ

𝑘

τ,

Amp./phase
drop

τ,௦௧
τ,

𝐴↓

φ↓ ↓

Fig. 16: Schematic representation of how a sine estimation
progresses, and how the gain and phase are obtained.
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V. RESULTS

A. Initializing the DEKF (Step 1)

In Fig. 17, the convergence time Tconv (= kCT /fsp) is
shown as a function of the τf,0 initialization offset ∆τf . The
blue lines represent the simulations and the box plots are
experimental validation data. Looking at the median values,
initialization of τf,0 = τf − 0.25 s, causes the algorithm to
converge in approximately 17 seconds. Conversely, if τf,0 =
τf + 0.25 s, it takes nominally 29 seconds to converge. The
spread in the convergence time significantly increases as well
for ∆τf > 0. The validation with experimental data appears
to be in line with the simulations, looking at the median
values. Also, the lower margins of the box plots coincide well
with the simulated data. However, especially for the larger
absolute ∆τf values, the error margins are significantly larger.
This means that either humans show unanticipated variable
behavior, causing the convergence time threshold not being
reached, or that this threshold should be defined to be less
sensitive to behavior changes. Based on Fig. 17, it is decided
to initialize the DEKF with τf,0 = 0.8 · τf (simulations) or
τf,0 = 0.8 · τp (experiments).
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Fig. 17: Simulations and experimental validation for the effect
of initial look-ahead time on convergence time.

As explained in Subsec. IV-A, a concise Monte Carlo study
was performed for the initialization of r2, q2 and q2f , showing
the convergence time, bias and standard deviation for different
settings. All simulations are performed with τf,0 = 0.8 · τf .
Fig. 18 shows the estimation time traces with the best compro-
mise between performance indicators. The DEKF sensitivity
parameters are r2 = 3 and q2 = q2f = 15. Within 20 seconds,
all three conditions are converged. Furthermore, both in terms
of bias and standard deviation, the expected estimations stay
within the +/- 0.025 s confidence interval of the simulated
τf value. Even the ultimate, non-outlier boundaries (dotted
estimation lines) show reasonable comparison with the actual
look-ahead time values. All other investigated combinations
of DEKF sensitivity parameters showed either a significantly
higher convergence time, an undesired larger spread in the
results, or both. The nine plots of the complete Monte Carlo
analysis can be found in Appendix D (Part II). The selected
settings, combined with the results of τf,0 will be used to
initialize the DEKF for the TV research.
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Fig. 18: Simulations for the sensitivity analysis of Q and R
covariance matrices. Best τf estimation result obtained with
r2 = 3, q2 = q2f = 15.

B. Fixing Estimated HO Parameters (Step 2)

In order to facilitate convergence and prevent the inter-
changing of signal information, the DEKF is designed to only
estimate τf and fix the other HO parameters. Van der El’s
preview model counts seven HO parameters in total for SI
tracking tasks [34], possibly making this a rather limiting
constraint. Analyzing the impact of offsetting the parame-
ters directly quantifies possible confounds in TV analyses.
Furthermore, it provides insights into the risks associated
with either underestimating or overestimating the fixed HO
parameters. The normalized effect of fixing HO parameters
at incorrect values on the τf estimation bias is presented
in Fig. 19a. Fig. 19b and Fig. 19c show the effects on τf
estimation standard deviation and the re-simulated behavior’s
VAF, respectively. For the simulated data, the lines represent
the estimated medians, the first and third quantiles and ultimate
non-outlier values from simulations. The box plots show the
validation based on the experimental TI HO tracking data from
Van der El’s preview time research [23].

Looking at the bias (Fig. 19a), what immediately stands out
is the high risk of underestimating ωb,f and ωnms, compared
to overestimating them. Both simulated data and experiment
data point out that for underestimation, the bias in τf grows
exponentially and the predictability decreases. It is thus safer
to fix these HO parameters at a value known to be too high,
than to choose a value that is possibly too low. This way,
although overestimating could increase the τf estimation bias
slightly, the chances of an extremely large bias in the τf
estimation is minimized. The values for Kp and τv show a
linear effect on the τf estimation bias. The gain Kp appears
to be fairly constant for different preview conditions (Table
III), providing the option to identify the value once per HO
and keeping it constant during the TV analyses. In contrast, the
delay τv varies more with the display preview time τp (Table
III). Depending on the sigmoid step variation’s extreme values,
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the effects of fixing τv on the τf estimation bias can range
from negligible up to approximately 0.15 s. The damping ratio
ζnms shows a moderate linear slope for the estimation bias
compared to τv . The preview gain Kf has little effect on the
τf estimation and can be fixed at an LTI-determined – possibly
even arbitrary – value.

The simulations suggest that the estimation’s standard de-
viation is also affected by incorrectly fixing HO parameters,
as shown in Fig. 19b. Comparable to the bias, the standard
deviation is asymmetrically influenced by ωb,f and ωnms.
Again, overestimating these parameters mitigates the risk for
unreliable τf estimations. In simulations, the gain Kp and
delay τv have a symmetrical increase in standard deviation for
both under- and overestimation. For damping ratio ζnms and
gain Kf , the same observations hold as for the bias. However,
the experimental validation’s box plots suggest that the effects
described above are in real-life less pronounced than the
simulations predict. This can be explained by the generally
much higher values of DEKF estimation standard deviation
for experimental data. Additional variability of the estimations
due to incorrectly fixed parameters do not add to the standard
deviations of the DEKF in experimental conditions.

In some cases, behavior can change seemingly minimally,
while significantly impacting the DEKF’s τf estimations. On
other occasions, the opposite holds, where behaviour appears
to drastically change, while τf estimations remain accurate.
Representing behavior by tracking signal reconstruction (u(t)
vs. û(t)), Fig. 19c shows the effect of incorrect HO parameter
fixations on the VAF. The motivation for overestimating ωb,f

and ωnms is once more supported looking at the lower left two
plots. In the upper left plot, it can be seen that the behavior is
reconstructed well over the entire offset range of Kf . This does
not hold for the damping ratio ζnms, as the top right plot shows
that the VAF drops significantly in case of underestimation.
Underestimating Kp and τv has a small effect on the VAF,
decreasing it with 10-20 %. Overestimation them decreases
the VAF of the behavior re-simulation more significantly.
However, the decrease in reconstructed signal similarity is
expected to be manageable, because the VAF decreases no
more than 20 %. The curves for Kp and τv show an interesting
asymmetry, even increasing the VAF when they are slightly
underestimated. This is only witnessed in the experimental
validation, where the explanation can be attributed to an LTI
determined value that is slightly incorrect.

Concluding, the best look-ahead time estimation results
are found when the other parameters are fixed at their LTI-
determined values. If the DEKF is not capable of correctly
estimating τf , this is most probably due to ωb,f or ωnms being
fixed at a too low value, or due to Kp or τv being fixed at a
value that is far from the actual value. The relations found in
Fig. 19 can help identify the origin of the τf estimation errors.
These insights can be used to explain DEKF performance
during the TV estimations.
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Fig. 19: Simulated (lines) and experimental (box plots) nor-
malized sensitivity of fixing parameters on bias (a), standard
deviation (b) and VAF (c).
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C. Estimating τf With Time-Varying Preview (Step 3)

Besides observing how well the DEKF can estimate τf in
time-varying preview tasks, it is desirable to find patterns in its
performance. For the sigmoid steps, both transient (e.g., time
to re-convergence after step) and static (e.g., bias before and
after step) performance is studied. Here, the non-τf values
can be fixed at either their initial (before step) or terminal
(after step) values while estimating τf . For the sine variations,
making the assumption that the DEKF’s τf estimation traces
are sinusoidal as well, it is studied how these fitted sine
estimations compare to the originally designed signals. In Fig.
20, five simulated examples can be found of the look-ahead
time estimations in the time domain.

(a) Large step up, HO parameters fixed at initial values.

(b) Small step up, HO parameters fixed at terminal values.

(c) Low frequency ( π
200

rad/s), large amplitude.

(d) Mid frequency ( π
30

rad/s), large amplitude.

(e) High frequency ( 11π
60

rad/s), large amplitude.

Fig. 20: Simulated estimation traces (25x, and mean) of a large
(a) and small (b) sigmoid step up, and of a low (c), mid (d), and
high (e) frequency sine variation in τf . Other HO parameters
fixed at their initial (a), terminal (b), and mean (c,d,e) values.

1) Sigmoid Step Results (Fig. 21–24): Fig. 20a–b show
examples of the DEKF estimation in reaction to a sigmoid step
in preview. It takes time for the filter to converge to a new look-
ahead time estimation and bias remains in these estimations.
In Fig. 21, the re-convergence time to a new τf estimate after
sigmoid steps is shown. This figure validates that the filter
managed to find a new equilibrium and it quantifies the time
this takes. This is comparable to the initialization step (Fig.
17), but now the initial state is already converged around an
operating point, rather than set arbitrarily. In the simulations,
the non-τf parameters are fixed at the value that they have
after the behavior step change. For the experiments, these HO
parameter values were fixed at an LTI-determined value based
on the TI conditions that have the same display settings as
the TV conditions after the step. The simulated results in the
figure base convergence on staying between a +/- 0.025 s
margin of a trace where no step occurred. For the experimental
box plots, LTI-estimated values of the TI conditions were
used for the fixed HO parameter values and an expected
bias (Fig. 22) after the step is calculated. The LTI estimate
and the expected bias together form the estimation target
value. Convergence is defined by staying within a +/- 0.050
s margin from the target value, because στf is approximately
twice as high for experiments as for simulations. Because the
measurement domain for convergence time is [40,80] s, the
maximum registered values are 40 s. The plot shows a similar
pattern to the DEKF initialization study (Fig. 17). The median
Tconv for ∆τf = 0 s for simulations shows zero as expected,
but the experimental data do not have zero convergence time,
because of operator variability during the run, breaking with
the convergence threshold. The results show that the DEKF
is expected to re-convergence within approximately 30 s for
∆τf = [-0.3,0.5] using its current settings.
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Fig. 21: Effect of sigmoid step size on convergence time. Other
HO parameters fixed at their terminal value.

After the transient domain has passed and the DEKF has
re-converged, it is studied how the performance of the DEKF
after the sigmoid step in τf compares to before the step. In
Fig. 22–24, the bias, standard deviation and VAF are shown,
respectively. The other HO parameters are fixed at either
their initial value (a), or their terminal value (b). The total
measurement domain, starting after the run-in time, is 120
seconds, of which the first 40 and the last 40 seconds are
compared. The transient domain in between – used for Tconv

calculations (Fig. 21) – is excluded from the analysis, since it
can confound the equilibrium performance analysis.
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The effect of a look-ahead time sigmoid step on the DEKF
bias performance is shown in Fig. 22. The blue results corre-
spond to the first 40 seconds of the measurement domain and
the red points to the last 40 seconds. Near-perfect symmetry
is observed for the two parameter fixation options. Almost no
estimation bias is witnessed when the other HO parameters
are fixed at their scheduled (simulations) or LTI-estimated
(experiments) values. In other words, when the parameters
are fixed at their initial values, no bias is expected before
the step, and when fixed at their terminal values, this holds
for after the step. From the simulated estimations, a linear
relation between sigmoid step size and bias is concluded with
a slope of approximately 0.04 s (|τf,est|) per 0.1 s (|∆τf |).
The three experimental validation points overlap well with
the simulations, although the bias slope appears to be steeper
for the HMI experiment data. The bias is an artifact of the
fixed HO parameters during estimations, but the linear relation
implies that a mapping between estimated and true values can
be synthesised for the DEKF. For example, plots like Fig.
22 can be created for a large range of non-τf HO parameter
fixations and many sigmoid preview time variations. Then,
when certain step changes in look-ahead time are detected by
the DEKF while knowing the fixed non-τf parameter settings,
the expected bias in τf can be determined and used for
estimation correction. This computationally heavy procedure
would require further research before implementation.
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Fig. 22: Effect of sigmoid step size on bias(τf,est). Other HO
parameters fixed at their initial (a) or terminal (b) value.

In Fig. 23, the effect is shown of different sigmoid step
sizes on the standard deviation of the estimated look-ahead
time (στf ). Looking at the simulations, there seems to exist a
square relation between the standard deviation and the size of

the step. For large steps in τf of +/- 0.75 s, στf is expected to
increase by a factor three to four. In the case that a step up is
made and the other HO parameters are fixed at their terminal
value (right side of Fig. 23b), στf is high both before and
after the sigmoid step. This suggests that the way in which
the parameter values are fixed has an effect on the consistency
of the results. When fixing the non-τf HO parameters at their
terminal values, the estimation performance is expected to be
better after the sigmoid step. However, the left side of Fig.
23b shows that this is not the case. This is because the τf
estimation standard deviation generally decreases when the
parameter approaches zero (pursuit tracking). The DEKF has
more difficulty in consistently estimating the look-ahead time,
most probably due to the much rougher tracking input of
the HO. For the experimental validation box plots, the same
relation seems to be present as for the simulations. However,
generally, στf is significantly higher, because the variability of
the DEKF and of the HO are accumulated here. Understanding
how the standard deviation changes can help understanding the
variability of DEKF results in TV conditions. It also has an
immediate effect on analyses, for example on how convergence
can be determined (Fig. 21).
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Fig. 23: Effect of sigmoid step size on στf,est . Other HO
parameters fixed at their initial (a) or terminal (b) value.

In Fig. 24, the effects of sigmoid steps in τf on the VAF
of the reconstructed signal (û(t)) are shown. It is expected
that the re-simulated tracking input corresponds well with
the simulated or measured tracking input, when the non-τf
parameters are fixed at their simulated or LTI-determined
values. Comparable to the bias plots (Fig. 22), a constant and
higher VAF value is expected for the first 40 seconds if the
HO parameters are fixed at the initial value, and for the last
40 seconds if they are fixed at the terminal value. However,
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both the simulation plots and the validation boxplots have
unexpected results. The size of ∆τf seems to make impact,
but this time on both the initial and terminal 40 seconds.
This can be explained by the values at which the non-τf
HO parameters are fixed. If the HO parameters are fixed at a
value corresponding to large preview times, the reconstruction
of the tracking input (û(t)) coincides better with the original
signal (u(t)). The preview model is harder to identify when
less display preview time is available. This is why the left
hand side in Fig. 24a and the right hand side in Fig. 24b show
higher VAF values. Which HO parameters exactly contributes
how much to this phenomenon is left for future research.
The expected VAF values of the reconstructed tracking input
remain higher than 70% for even the largest sigmoid step
changes in display preview. This means that the DEKF is
capable of capturing nearly all signal information by purely
estimating the look-ahead time.
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(b) Other HO parameters fixed at terminal value.

Fig. 24: Effect of sigmoid step size on VAF. Other HO
parameters fixed at their initial (a) or terminal (b) value.

2) Sine Variation Results (Fig. 25–28): The sigmoid
step analyses showed mostly equilibrium performance, both
before and after the change in look-ahead time. Furthermore,
it provided knowledge on how fast the transition between
these equilibria occurred. The sine variation results provide
additional insights in the transient behavior of the DEKF. As
input, the HO look-ahead time is varied with a sine schedule.
After the preliminary phase of this research (Part III), the
DEKF estimation response τf,est to sinusoidal variation in
τf is assumed to be sine-shaped as well. This means that
the τf,est data can be fitted to a sine wave to form the
regressed estimation signal τf,reg , with a specific amplitude
Areg , phase ϕreg , mean µreg and frequency ωreg. These fitted

sine parameters can then be compared to the simulated τf
values or the experiment τp values, respectively.

The HO parameter amplitudes in the simulations are based
on the LTI estimated values of TI runs. The means for the
experimental data are the LTI estimated values for the sine
TV experiments. The gain and phase between the estimated
sine-fitted estimation τf,reg and the originally sine variations
of the preview are shown in Fig. 25. For the experiment data,
the reference amplitude is based on the TI estimations and the
reference phase is assumed to be equal to the τp variations.

Based on the sigmoid step findings on convergence speed,
the DEKF is expected to be capable of keeping track of
relatively slow changes in τf . Every sine variation that takes
30 seconds or more to move from its mean to its peak – thus
with a period of more than 120 seconds – should be identifiable
(Fig. 21) without a delay. The response gain is expected to be
dependent on the amplitude of the HO τ variations, because
fixing the non-τf parameters introduces an estimation bias.
However, this bias is not expected to be larger than 0.1 s (Fig.
22). Looking at the Bode plot domain of Fig. 25, the gain is
expected to be slightly lower than 1, and the delay is expected
to be 0 for the extremely low frequencies (< 0.052 rad/s =
1/120 Hz). From that point onward, the reactive nature of the
DEKF would suggest a lag function in the response. This is
expected to continue until the response is completely out of
phase with the preview variations of the task.
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Fig. 25: Effect of sine frequency on amplitude gain (a)
and phase delay (b) between regressed τf,reg and (expected)
original τf . Other HO parameters fixed at their mean values.
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Looking at the results in Fig. 25, the first observation is
how well the experiment data overlap with the simulations.
Both the experimental amplitude gain and phase delay seem to
follow the same trend as their simulated counterparts. The gain
is systematically lower for the experiments, which could be
explained by the fact that the sine-fitted estimations amplitude
Areg is compared to the amplitude of the preview time in
the display. Humans are expected to use less preview than
provided [23], which can explain the offset with regard to the
simulations. The difference between the fitted sine phase ϕreg

and the phase of the display preview time is smaller for the
experiments than for the simulations. A possible explanation
for this could be that, during the tracking experiments, the
participants created more lead than was expected in the
simulations. This higher lead is then of course also reflected
in the DEKF estimations for look-ahead time.

In the bode plot, the values at 0.016 rad/s for the condition
with a mean of µτp = 0.375 s and an amplitude of Aτp =
0.125 s (yellow) are inconsistent with the rest of the results.
The estimation results of these unexpected values are presented
in the time domain in Fig. 26. The estimation trace does
not manage to follow the small look-ahead time estimations.
When the estimation batch for this specific frequency was
constructed, the only presented scenario is the black line from
Fig. 26, and the DEKF shows a consistent response to this
variation. The estimation first seems to follow the simulated
values, after which it dips back to its original value. In the sine
fitting calculations, an extremely low amplitude was recorded
because the estimations appear fairly constant, resulting in the
unexpected low values for the yellow line in Fig. 25.

(a) Simulated estimations (x25, and mean).

(b) VAF trace during estimation.

Fig. 26: Simulated case study of anomaly in Fig. 25 at 0.016
rad/s with µτp = 0.375 s and Aτp = 0.125 s.

Additional to the anomaly described above, for the frequen-
cies lower than 0.052 rad/s, the spread in the results of the
Bode plot is unexpectedly increasing instead of decreasing.
This is an artefact of the sine fitting method, because no more
than the 120 s measurement domain is used for the regression.
If the sine waves are larger than this domain (Fig. 20c), not
even one entire period can be used, impeding the regression

quality. From a mathematical perspective, longer runs could
have been simulated for the lower frequencies. However, with
a factor 10 to 30 computational expense increase for these
frequencies, it was decided to keep the plots as they are. The τf
estimation time traces of different low-frequency estimations
support the expectation that the look-ahead time tracking is
synchronous to the preview variations.

For frequencies between 0.03 rad/s and 0.4 rad/s, the
Bode plots seems to follow the trend of a lag function (Fig.
27). Within this domain, the response gain and phase delay
gradually decrease to 0.08 and -100 degrees, respectively. This
effectively means that nearly no variation is identified com-
pared to the actual preview variations. When the frequencies
become higher than 0.4 rad/s, the spread of the fitted sine
parameters becomes as large as the entire physically possible
phase delay domain [-180,0] degrees, and the median values
stop following the lag trend. This is because the DEKF is too
slow to adapt its estimation strategy and starts to show a ran-
dom walk for τf between the scheduled sinusoidal values. For
the higher frequencies, it becomes clear that the assumption
of a sine response might be insufficient to accurately fit the
τf estimations. The asymmetrical convergence time plots (Fig.
17, Fig. 21) support this finding. Future research could be done
to investigate what type of periodical function better fits the
DEKF estimation response to sine variations in preview time.
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Fig. 27: Scoped copy of Fig. 25, domain: [0.03,0.4] rad/s.

The experimental data points for gain and phase seem to
coincide well with the results from simulated data. However,
the combined assumptions of a linear relation between the
display and HO behavior on the one hand and a simple
lag relation between HO look-ahead time variations and the
DEKF estimations on the other, can accumulate to estimation
confounds. To check the validity of these assumptions, the
normalized root mean squared error (RMSE) between τf,est
and τf,reg is presented in Fig. 28. From simulations, it is
clear that the lowest frequencies show irregularities because
the domain for the sine fitting was to small. The highest
frequencies come with increased RMSE values, because the
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assumption for a sinusoidal DEKF response appears to be in-
sufficiently accurate. Regardless of the frequency, these RMSE
values are significantly higher for experimental data, meaning
that the sine response assumption’s fidelity is lower for actual
HMI applications than for simulations. All results from the
TV analyses point out that the DEKF can be effectively used
for TV HO look-ahead time estimation. As long as the effect
of constraining assumptions is understandable, it could be a
powerful tool for future identification applications.
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Fig. 28: Effect of sine frequency on normalized RMSE
between regressed τf,reg and estimated τf,est. Other HO
parameters fixed at their mean values.

VI. DISCUSSION AND RECOMMENDATIONS

A. Discussion of Results

Finding the optimal settings for the DEKF can be a tedious
process and depends – amongst other aspects – on the con-
trolled element dynamics. To make a deep-dive in the time-
varying identification performance, it was decided to select
only one type of controlled element. The promising DEKF
performance for single integrator tracking data in Vertregt’s
study [14] motivated to focus on the results and conclusions
of single integrator dynamics tasks. Fundamental cybernatics
research by McRuer [19], [22], [36] often also included gain
and double integrator dynamics. Later, Van der El showed
in a range of studies [34] that the preview parameters are
highly dependent on controlled element dynamics. Human
operators show more pronounced low-pass filtering behavior
while processing gain and double integrator signals. For this
reason, the results presented in this article cannot be directly
transferred to other dynamics types. Still, a large step is
made by quantitatively showing the DEKF’s estimation per-
formance during time-varying human operator tracking tasks.
The knowledge gained can be used as a starting point for the
analysis methodology of other controlled element dynamics.

For single integrator tracking data, seven human operator
parameters from Van der El’s preview model have to be
identified [12]. During the initial time-varying analyses by
Vertregt [14], it was shown that DEKF-estimating all seven
parameters simultaneously comes with a considerable bias
and variance. He proposed to keep other parameters fixed
while studying the identification of a specific human operator
parameter. Quantitative and repeatable results for all seven

preview model parameters could not be acquired within the
researcher’s available time and computational capacity. For
that reason, this study focuses on the highly influential look-
ahead time parameter. Possibly, this scoping operation could
reduce the flexible and complete potential of the DEKF [13],
[31], [32]. This is because behavior variations are in this
case only attributed to the look-ahead time parameter, whereas
they might have originated from other parameters that are
fixed. Fortunately, the constraining effect of this assumption
is much less than expected. With all other human operator
parameters fixed, the DEKF is well capable of identifying
time variations in preview behavior. The results are consistent,
and the simulations match well with reality. For the first
time, performance of the DEKF during time-varying preview
tracking tasks has been quantified, and these insights can be
used to improve the algorithm.

The sigmoid step results show that the DEKF is not yet
capable of real-time human operator identification. The algo-
rithm can take up to 40 seconds to reach a new estimation
equilibrium after a large step change in preview time has
occurred. No initialization settings were found that can reach
an equilibrium faster, while maintaining the desired estimation
accuracy and consistency. Reflecting on the DEKF tuning
strategy, only the sensitivity of the adaptive process and
measurement noise covariance matrices has been quantified
with a limited Monte Carlo analysis. This implies that the
measured convergence speed is not the optimal result. Other
tuning operations could be revisiting the state and parameter
covariance matrices, or the number of measurements included
to update the adaptive process and measurement noise covari-
ance matrices. Furthermore, it can be investigated whether the
optimal tuning parameters are variable with the of preview
time. Artificial intelligence could be used link the measurable
signals of the preview tracking task to optimal DEKF initial-
ization and tuning. The current DEKF design is a baseline
that can be used for the optimization for time-varying look-
ahead time identification. Improving the convergence speed
would facilitate reaching the ultimate goal of real-time human
operator identification in shared control applications [4].

Also for the sine analyses, the DEKF’s convergence speed
is visible in the results. Up until a certain frequency, a
lag function trend can be expected between the variation of
preview time and the look-ahead time estimation. This lag
function is sustained to a frequency of approximately 0.4
rad/s, after which the results on gain and phase become
less predictable while their spread increases. This drop in
predictability is most likely caused by the assumptions that
there is a linear relation between the display preview time and
the human operator look-ahead time variations and that the
estimations can be fitted to a simple sine wave. However, both
the operator’s reaction to display variations and the algorithm’s
reaction to parameter variations can very well be non-linearly
related. The root mean squared error values of the sine-fitted
DEKF response suggest that more complex fitting functions
could enable a better understanding of the DEKF over a larger
preview variation frequency bandwidth. The performance in
the lower frequencies is already well-understood, now the
challenge remains for the higher bandwidths.
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It was impossible to fix human operator parameters other
than look-ahead time at their correct values, because all
parameters vary with the preview. Therefore, it was assumed
that the time-varying parameters can be related to the time-
invariant data traces. For the two sigmoid step experiments, a
time-invariant run was performed for the conditions before and
after the step. The human operator parameters from the time-
invariant run could be identified with the frequency-domain
method from Van der El [12], [23]–[26]. These identified pa-
rameters then served as the baseline for fixing the parameters
in the time-varying estimations. In the seeded simulations, the
parts where the tracking tasks of the time-invariant and the
time-varying simulations overlap result in identical behavior.
For that reason, the simulated time-invariant human operator
parameters can be safely used for time-varying analyses. For
the human control experiments, every estimation trace has a
unique stochastic realization, thus it is possible that the HO
parameters are fixed at an incorrect value during the time-
varying experiments. Nonetheless, looking at the time-varying
estimation results, the validation experiments show a striking
resemblance with the simulations. This supports the procedure
of performing a calibration frequency-domain human operator
parameter estimation for a time-invariant experiment prior to
a time-varying estimation run.

The researcher encountered a limitation in the available
computational power and memory capacity. Because the time-
domain simulation and estimation algorithms are computa-
tionally expensive, a trade-off was made between the num-
ber of investigated conditions and the statistical validity per
condition. The results could be refined by allowing longer
run times, more sustainably coding the DEKF identification
algorithm, and using more powerful computers. Although the
results are not as smooth as the actual distributions should be,
they indicate clearly the trends of the DEKF performance.

Based on earlier research by Vertregt [14], the DEKF was
expected to be a promising candidate for time-varying human
operator look-ahead time identification in single integrator
tracking tasks. Fixing other human operator parameter esti-
mates was suggested to make the look-ahead time estimations
faster and more accurate. The study in this article systemati-
cally investigated the performance following these hypotheses.
It was found that the DEKF indeed can identify preview
time variations for experimental human operator tracking data.
To improve the DEKF output, the algorithm is constrained
to only estimate the look-ahead time. A limitation is that
not the full scope of human operator parameters can be
described. Fortunately, even when making this assumption,
the filter seems to respond predictably and consistently for
a wide range of conditions. From the smallest to the largest
preview time sigmoid steps, the DEKF manages to identify
the look-ahead time variations. Based on the step size, the
estimation delay and bias linearly increase to 40 seconds and
0.4 seconds, respectively. Sinusoidal variations in preview are
identified as well, where the DEKF behaves comparable to a
lag function. In its current design, the DEKF’s look-ahead time
estimation performance is still rather dependent on fixation of
other parameters. Because these fixed parameters correspond
to a specific preview time condition, the DEKF performs best

around this operating point. A key next step would be to make
this initialization and tuning adaptive to the tracking task.
This way, the DEKF truly becomes a competing time-varying
identification algorithm for preview tracking tasks, that can
enable advanced shared control applications.

B. Recommendations for Further Research

A next step in the DEKF validation procedure is to investi-
gate performance for double integrator dynamics tasks. It can
be analyzed what the transient and equilibrium performance
is during sigmoidal and sinusoidal preview time variations
in the display. The initial case studies for double integrator
dynamics look-ahead time estimations by Vertregt [14] were
less promising than their single integrator counterparts. The
estimations had difficulty converging to the correct value for
both time-invariant and time-varying conditions. Pointed out
by Vertregt and repeated in the preliminary investigation of this
study (Part III), the double integrator identification requires a
revision of how the remnant is modeled. For double integrator
tasks, human remnant is modeled by low-pass filtering white
noise with a much lower break frequency than the forcing
function bandwidth. Because of the remnant interfering with
the target signal, crucial signal information might be lost,
which can be accounted for if the remnant is included in the
DEKF’s human operator model.

For the further validation of all future algorithms, more
time-varying experimental preview tracking data should be
collected. As shown in this research, the acquisition of such
data sets is a time-consuming process. The limited number of
eight time-varying experiments required minimally eight – and
always a multiple of eight – participants for a balanced within-
subject data set. Every participant’s tracking behavior was
recorded for 100 minutes in total, making the experiment last
three hours to complete. The box plots in the results section
suggest that not many conditions have been validated and that
the tested conditions’ data are still relatively sparse. Ideally, a
larger range of sigmoid steps in preview time is experimentally
studied, moving both up and down. It would be interesting to
confirm whether there is a linear relation between step size
and estimation bias, or that other dynamics might be under-
lying. Additionally, more sine variation experiments could be
performed, including results for a larger range of frequencies,
and for sines with a different mean and amplitude. This way,
it can be analyzed whether the lag function hypothesis holds,
and what order lag can be expected.

Regarding the validation methodology, it is insightful to
compare the DEKF’s results to other time-varying identifica-
tion algorithms. Especially because the actual time variations
of the look-ahead time are not yet identifiable with a validated
estimation tool, different algorithms should be put side by
side in order to gain understanding in human behavior. A
summarizing study can be performed, where the state-of-the-
art time-varying algorithms [15]–[18] estimate human param-
eters for a few basic time-varying conditions. The strengths
and points of improvements of the different methods can be
systematically analyzed, which can provide lessons for the
DEKF. For example, if the lag of the DEKF is considerably
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larger than for other methods, the comparative study can show
the potential gain for future algorithm implementations. This
way, the DEKF will be more efficiently improved to a desired
optimum, capable of real-time human identification.

VII. CONCLUSION

This study investigated the performance of a Dual Extended
Kalman Filter (DEKF) for human look-ahead time parameter
estimations during single integrator tracking tasks with a time-
varying display preview time. Both for realistic simulation
data and for human-subject experiment data, the algorithm
initialization sensitivity and the performance for sigmoid and
sine preview variations were analyzed. The results suggest
that a linear relation between look-ahead time initialization
offset and convergence time exists. Underestimated initial
look-ahead time values appear to be converging faster than
overestimated values. Initialization that is 0.25 s away from
the correct value is expected to converge within 30 s. When
fixing human operator parameters that are not look-ahead time,
it should be ensured that the preview break frequency and the
neuromuscular break frequency are not underestimated. The
human processing delay should be fixed at a value that is
estimated for a specific human operator with a linear time-
invariant algorithm. If these notions are not taken into account,
this can result in 0.1 seconds look-ahead time biases and a
factor three to four increase in standard deviation of the DEKF
estimations. For sine variations in preview time with the lowest
frequencies, the DEKF shows a synchronous response in the
look-ahead time estimations. For the middle frequencies (one
to ten periods in the 120 s measurement domain), the DEKF
behaves as a lag function, decreasing the estimation gain and
phase delay to 0.08 and -100 degrees, respectively, compared
to the preview time variations. The higher frequencies result in
an estimation response that is better described as random walk.
This research included realistic simulations and validation
experiments to quantify the capabilities of the DEKF for
the time-varying identification during preview tracking. It can
serve as a starting point for future improvements to the algo-
rithm and for investigating additional task variable variations.
This way, the findings contribute to the development of a time-
varying human identification algorithm, which in turn enables
automated shared control applications to increase safety and
efficiency of vehicle operations.
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Padé Approximation can Lead to Instability,” in Proceedings ofthe 40th
IEEE Conference on Decision and Control (Cat. No. 01CH37228),
vol. 5, 2001, pp. 4733–4737.

[28] E. R. Boer and R. V. Kenyon, “Estimation of Time-Varying Delay
Time in Nonstationary Linear Systems: An Approach to Monitor Human
Operator Adaptation in Manual Tracking Tasks,” Systems and Humans,
vol. 28, no. 1, pp. 89–99, 1998.

[29] R. F. M. Duarte, D. M. Pool, M. M. van Paassen, and
M. Mulder, “Experimental Scheduling Functions for Global LPV
Human Controller Modeling,” IFAC-PapersOnLine, vol. 50, no. 1, pp.
15 853–15 858, 2017, 20th IFAC World Congress. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2405896317331440

[30] J. Steen, H. J. Damveld, R. Happee, M. M. van Paassen, and M. Mulder,
“A Review of Visual Driver Models for System Identification Purposes,”
in Conference Proceedings - IEEE International Conference on Systems,
Man and Cybernetics, 2011, pp. 2093–2100.

[31] C. You, J. Lu, and P. Tsiotras, “Nonlinear Driver Parameter Estimation
and Driver Steering Behavior Analysis for ADAS Using Field Test
Data,” IEEE Transactions on Human-Machine Systems, vol. 47, no. 5,
pp. 686–699, oct 2017.

[32] X. Li and R. Kennel, “General Formulation of Kalman-Filter-Based
Online Parameter Identification Methods for VSI-Fed PMSM,” IEEE
Transactions on Industrial Electronics, vol. 68, no. 4, pp. 2856–2864,
apr 2021.

[33] R. E. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” Journal of Basic Engineering, vol. 82, pp. 35–45, 3 1960.

[34] K. van der El, D. M. Pool, M. M. van Paassen, and M. Mulder,
“Effects of Preview on Human Control Behavior in Tracking
Tasks With Various Controlled Elements,” IEEE Transactions on
Cybernetics, vol. 48, no. 4, pp. 1242–1252, 4 2018. [Online]. Available:
https://doi.org/10.1109/TCYB.2017.2686335

[35] W. H. Levison, S. Baron, and D. L. Kleinman, “A Model for Human
Controller Remnant,” IEEE Transactions on Man-Machine Systems,
vol. 10, no. 4, pp. 101–108, 1969.

[36] D. T. McRuer, “Human Dynamics in Man-Machine Systems,” Automat-
ica, vol. 16, no. 3, pp. 237–253, may 1980.





II
Scientific Article Appendices

25





A
State-Space Representation of Preview

Model

F∗
t (s)

Ft (s)
=

−τ∗3
f s3 +12τ∗2

f s2 −60τ∗f s +120

τ∗3
f s3 +12τ∗2

f s2 +60τ∗f s +120
·K f

ωb, f

ωb, f + s
(A.1)
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ẋs =



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0

−a2,0 −a2,1 −a2,2 −a2,3 −a2,4 b1,0 −b1,1 b1,2 −b1,3

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 −a1,0 −a1,1 −a1,2 −a1,3


xs +



0 0
0 0
0 0
0 0
0 −1
0 0
0 0
0 0
1 0



[
ft

y

]
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1) Parameter Prediction

θ−k = θ+k−1
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T
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T
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(B.1)

2) State Prediction

x−
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s,k−1 + f (x+
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s,k =Φs,k−1P+
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T
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T
s,k−1

(B.2)

3) State Correction

Ss,k =Gs,k P−
s,kGT

s,k +R

rk = uk − g (x−
s,k ,θ−k )

Ks,k = P−
s,kGT

s,k S−1
s,k
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s,k +Ks,k rk

P+
s,k = (I −Ks,kGs,k )P−

s,k (I −Ks,kGs,k )T +Ks,k RK T
s,k

(B.3)

4) State Limitation

x̃+
s,k = x+

s,k −DT
s,k (Ds,k DT

s,k )−1(Ds,k x+
s,k −ds,k ) (B.4)

5) Parameter Correction

Sp,k =G tot
p,k P−

p,k (G tot
p,k )T +R

Kp,k = P−
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p,k )T S−1
p,k
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(B.5)

6) Parameter Limitation

θ̃+k = θ+k −DT
p,k (Dp,k DT

p,k )−1(Dp,kθ
+
k −dp,k ) (B.6)
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Experiment Briefing 
Human operator response to time-varying preview times in display 

 

Thank you for your participation. This experiment is part of cybernetics research focusing on human 

behavior identification for tracking tasks with preview, i.e. tasks where the operator aims to align a 

system’s state with a target trajectory ahead. The experiment is performed in the Human-Machine 

Interaction Laboratory (HMI Lab) at TU Delft’s Faculty of Aerospace Engineering. This briefing will 

give an overview of the experiment and explains what is expected from the participants. Please read 

this document carefully. Should any questions or comments remain, always feel free to discuss these 

with the researcher conducting the experiment.  

Experiment Objective 
Originating from the desire to understand human behavior for a range of time-varying tracking tasks, 

efforts are being made to apply time-domain identification methods accurately. This experiment 

collects data on how humans adapt their behavior to time-variations in the display’s available 

preview time. The data can be used to validate results of simulations of time-domain identification 

tools. Such time-varying identification methods are an essential enabler for detecting and 

understanding how humans adapt their behavior over time due to task variations. 

Experiment Set-up 
HMI Lab (Fig. 1) is used to investigate interaction between human operators and controlled 

elements. You are asked to take place in the right chair, where you can control the side-stick with 

your right hand. On the display in front of you, you will find a preview tracking task (Fig. 2), with the 

objective to align the state with the target trajectory. Throughout the experiments, you will 

encounter different scenarios with either time-invariant or time-varying settings of the display 

preview time. Several runs per scenario are collected, and per run, your tracking input will be 

measured for 150 seconds, where the first 30 seconds compose the run-in time needed to calibrate 

the identification software.  

 

Figure 2: Sketch of HMI Lab tracking display (Van der El). 
The goal is to steer the state (circle) to the target (plus). 
The preview time (line) is varied over a range of conditions. 

Figure 1: Illustration of HMI Lab. The participant will be sitting 
on the right (blue) seat and controls the side-stick. 



Experiment procedure 
During the experiment, you are tasked with making the controlled element state (circle) follow the 

target trajectory (plus and line) by giving tracking input to the side-stick. These tasks always include a 

preview display, and a single integrator controlled element. During the experiments, a specific 

condition is scheduled for the display preview time, which can be either time-invariant or time-

varying. The display time-variations can be either one step change, or one periodic sine variation. 

Besides the variations of the target, there exists a small disturbance on the controlled element. While 

these variations occur, you will keep focusing on tracking the target and rejecting the disturbance. In 

total, you will be performing the tracking task for 8 different display conditions. All tracking runs 

collect performance in a specific score, which will be communicated to you by the researcher. Every 

display condition is repeated until 5 consistent runs are collected, before proceeding to the next 

condition. When 4 out of the 8 conditions have been completed, a 15 minute break is held. Should 

more breaks be required, you can request them at any moment. Conducting the experiment for all 

display conditions takes approximately 2-3 hours.  

Covid-19 Protocol 
Due to the COVID-19 pandemic, several measures are taken to reduce the spreading risk. Generally, 
the Dutch governmental guidelines1 are to be followed. This means that both researcher and 
participants confirm they do not have symptoms related to COVID-19, and that they regularly 
disinfect their hands. The experiment-specific measures following "COVID-19 Protocols for Human 
Subject Experiments" (V1.9) of the Control and Simulation department are as follows: 

▪ Entering HMI Lab: The experimenter and participant will avoid being both in the same room. 
This will be achieved by having the participant enter first, and continue directly to the 
experiment room, while the experimenter enters second. Exiting happens in reversed order. 

▪ Briefing: The (de)briefing of the participant will be performed at standing tables outside HMI 
Lab, for which it is recommended to still maintain sufficient distance between experimenter 
and participant (e.g. separate tables for experimenter and participant). 

▪ Experiment: All surfaces and objects the participant and experimenter handle during the 
experiment, shall be disinfected between participants, after each break and after the 
experiment. This includes the side-stick, control room devices and standing tables. 

Your Rights & Consent 
Experiment participation is voluntary. Should you feel uncomfortable, you can decide to stop your 
participation at any time. By participating in the experiment you agree that the collected data may be 
published. Your personal data will remain confidential and anonymous, only the researcher can link 
the collected data to a specific participant. To ensure you understand and comply with the conditions 
of the experiment, you will be asked to sign an informed consent form. 
 

 

Thank you again for participating! 

 
1 https://www.rijksoverheid.nl/coronavirus  

Contact information researcher: 
[name] 
[e-mail] 
[phone] 

Contact information research supervisor 
[name] 
[e-mail] 
[phone] 



Contact information researcher: Contact information research supervisor: 
[name] 
[e-mail] 
[phone] 

[name] 
[e-mail] 
[phone] 

 

 

Experiment Consent Form 

Adaptation to time-varying display preview during tracking tasks 

 
I hereby confirm, by ticking the box, that: 

1. I volunteer to participate in the experiment conducted by the researcher ([name]), under 
supervision of [name], from the Faculty of Aerospace Engineering of TU Delft. I understand 
that my participation in this experiment is voluntary and that I may withdraw (“opt-out”) 
from the study at any time, for any reason. 

 

2. I have read the briefing document and I understand the experiment instructions, and have 
had all remaining questions answered to my satisfaction. 

 

3. I understand that taking part in the experiment involves performing manual tracking tasks 
under varying display conditions in the HMILab simulator at TU Delft. I understand that 
only the recorded time traces of the tracking tasks I perform are saved. 

 

4. I confirm that the researcher has provided me with detailed safety and operational 
instructions for the HMILab simulator (simulator setup, electro-hydraulic side stick, 
emergency procedures) used in the experiment. Furthermore, I understand the 
researcher’s instructions for guaranteeing the experiment’s compliance with current 
COVID-19 guidelines, and that this experiment shall at all times follow these guidelines. 

 

5. I confirm that I currently do not have any COVID-19 symptoms and that I have performed 
a ‘Self-Quarantaine Check’ (https://quarantainecheck.rijksoverheid.nl/en) no more than 24 
hours before my experiment session. 

 

6. I understand that the researcher will not identify me by name in any reports or publications 
that will result from this experiment, and that my confidentiality as a participant in this 
study will remain secure. Specifically, I understand that any demographic information I 
provide (gender, handedness, age range, see next page) will only be used for reference 
and always presented in aggregate form in scientific publications. 

 

7. I understand that this research study has been reviewed and approved by the TU Delft 
Human Research Ethics Committee (HREC). To report any problems regarding my 
participation in the experiment, I know I can contact the researchers using the contact 
information below. 

 

 
 
 

  

My Signature  Date 
 
 
 

  

My Printed Name  Signature of researcher 
 

  



Contact information researcher: Contact information research supervisor: 
[name] 
[e-mail] 
[phone] 

[name] 
[e-mail] 
[phone] 

 

 

Participant Demographic Information 

Adaptation to time-varying display preview during tracking tasks 

 
 

Age range:  

o 18 – 19 

o 20 – 24 

o 25 – 29 

o 30 – 34 

o 35 – 39 

o 40 – 44 

o 45 – 49 

o 50 – 55 

o 55+ 

 

Handedness: 

o Left handed 

o Right handed 

o Ambidextrous 

 

Gender:  __________ 

 

Participant number:  __________ 
(filled out by the researcher) 
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Figure D.1: Limited Monte Carlo trade-off to establish the noise matrix settings of the DEKF. From these nine combinations, r 2 =3 and
q2 = q2

f =15 is optimal combination of convergence speed and estimation stability.

37





III
Preliminary Report (Already Graded)

39





1
Introduction

In control tasks, available infrastructure should be used as efficiently as possible, and safety for the vehicle
operators should be maximized. Most of these tasks rely on a human operator (HO) that tries to influence the
future state of a controlled element (CE). Optimised efficiency and safety could be reached by introducing
automation in the human-machine interaction (HMI) control loop [1]. However, due to operator responsi-
bility [2] and complex operating environments, the human in the loop should stay well-informed [3], and
be able to adapt to input [4]. Currently, automation is introduced to aid operators in their manual control
tasks [5, 6], such as lane assistance in a car. Many operators choose to disable such functionalities, since the
suggestions can feel counter-intuitive [7, 8]. Even though a control system suggests the most fuel-efficient
and safest actions, it is a sub-optimal strategy when a human rejects it. Furthermore, however smart artificial
intelligence is becoming, full autonomy is still something unique for biological operators like humans [9].
The control system must be intuitively cooperative with the HO, by identifying the human control strategy at
any moment, and adapting the feedback accordingly [8, 10, 11].

Human controllers show variable and adaptive control behaviour [12, 13]. A specifically interesting human
behaviour feature is how much future information is processed. This varies with the available future signals,
but also due to intrinsic aspects, such as fatigue and learning [14]. The definition for anticipation on the fu-
ture, or preview, is effectively a negative delay, with additional cognitive smoothing or filtering. How much
preview is used can be described by the look-ahead time parameter, which is a variable human characteristic,
significantly affecting control behaviour [15]. Look-ahead time can vary due to external factors (e.g. obstruc-
tion on road, mist), and due to HO variability (e.g. distraction). Acquiring real-time estimations of this look-
ahead time during a control task would be a large step towards the prediction of human control strategies [12],
comparably relevant to online HO identification during sudden vehicle stability degradation [16].

In preceding research, the Dual Extended Kalman Filter (DEKF) has proven to be a powerful tool for the es-
timation of HO parameters during tracking tasks [17]. These tracking tasks involved a compensatory display,
where no future information is presented, and merely the error between the state and the target is visible.
Many real-life manual control tasks use a preview display, which includes three observable signals: the state,
target (including future) and error between the two [18]. Processing a preview tracking task is more complex,
resulting in more HO parameters, and a more sophisticated identification procedure [15]. Recently, a defini-
tion of the DEKF in preview tracking tasks has been developed [19]. This algorithm showed promising first re-
sults for time-invariant experiments. If the algorithm works well for preview tracking experiments with time-
varying display preview time, this would be a step towards intuitive adaptive control systems [12].

The main goal of this research is to validate the implementation of a DEKF for the time-varying identification
of look-ahead time in preview tracking tasks. Only the measurable state, target, error and tracking input sig-
nals are to be used. By means of a simulation phase, the working principles and sensitivity of the Kalman Filter
are investigated. Furthermore, the DEKF tuning is optimised, in order to achieve sufficient performance in
scenarios where the HO look-ahead time is varied. Then, by designing and executing HMI experiments, real
data will be acquired on variable preview time. With this HMI experiment data, it can be validated whether
the DEKF is capable of reconstructing the look-ahead time parameter in a time-varying scenario. As part of
the preliminary report, the Literature Review can be found in Chapter 2, followed by the Research Objective
and Methodology in Chapter 3. The most important Preliminary Analyses Results are compiled in Chapter 4,
and in the concluding Chapter 5 the Proposed Final Analyses are outlined.
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2
Literature Review

Research in the field of human operator (HO) behaviour while performing preview tracking tasks and while
exposed to time-varying conditions has recently been identified as one of the key areas of improvement
for the global Cybernetics efforts [12]. This call for increased focus on preview tracking and time-varying
conditions has lead to a significant amount of scientific literature being published [14, 20, 21, 22, 23, 24, 25,
26]. In order to contribute to the state-of-the-art in this field of research, it is of paramount importance to
become acquainted with the fundamentals of the theory and the most recent developments. Van der El’s
preview model [14] and Popovici’s Dual Extended Kalman Filter (DEKF) [17] can be combined for the time-
varying identification of HO strategy during preview display tracking tasks. Vertregt has developed such a
DEKF for preview tracking tasks in preceding research [19]. In this chapter, the preview model and DEKF are
elaborated upon in Section 2.1 and Section 2.2, respectively.

2.1. Preview Model
In the early stages of manual control and cybernetics research, it was distinguished that humans may en-
counter three different types of visual displays: compensatory, pursuit and preview [18]. The compensatory
tracking task – which does not provide information on a state or a target but merely on the difference between
the two – has been studied and modeled most elaborately [15]. However, it should be noted that for real-life
applications, the compensatory tracking framework can only be applied to a selection of cases, and an un-
derstanding of pursuit and preview is desired [12]. Below, an elaborate description can be found on preview
displays, the pilot-vehicle system, Van der El’s preview model and simulations with preview.

2.1.1. Preview Displays
The concept of preview can be explained in real-life examples, such as car driving or flying. Such vehicle
control tasks are highly complex, and due to many internal and external uncertainties playing part in these
human actions, it is difficult to acquire cybernetic models from the operator behaviour. Without sufficiently
accurate modelling based on controlled preview tracking experiments, no simulations can be created to re-
produce the human behaviour [14]. For that reason, experimental preview displays are abstracted from the
familiar tasks. Both the real-life and experimental displays are further explained.

Real-Life Preview

A relatively well-understood visual display is found in compensatory tracking tasks. Here, the HO only ob-
serves the error between its state and the target of the controlled element (CE). An example of a compen-
satory tracking task would be keeping an aircraft level with the horizon using the elevators. However, most
real-life human objectives executed with visual cues would be best described by a pursuit tracking task or
a preview tracking task. A pursuit tracking task entails matching a state and target combination without a
predefined path. A preview tracking task requires steering a state to a predefined future target, e.g. driving
a car, where the road is the visual trajectory [18]. In human-machine interaction (HMI) applications, and
especially when it includes vehicle operation, one usually finds preview displays with which humans can as-
sess their performance [24]. This previewed target does not necessarily have to be a physical boundary such
as a road, but can also be a virtually imposed trajectory such as an augmented primary flight display (PFD)
with a navigational tunnel superimposed [27]. Even the concept of a road-to-follow is not a requirement, as
long as the operator can distinguish its state, and the target to follow including preview. Figure 2.1 shows two
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examples of preview encountered in real life. Looking at the two figures, it immediately stands out that there
exists variability and coupling in the perception of states. For example, the preview time can be changed with
other vehicle states, such as velocity and heading, since the time difference between the HO state and the pre-
viewed target is a function of e.g. the velocity [28]. Additionally, the perceived preview can be variable with
external factors, such as rain, lighting, obstructions on or delineation of the road [29]. Note that the coupled
or derivative states (e.g. velocity and heading) can be variable by external factors (e.g. road quality and wind)
as well, which in turn has effect on the preview time. In real-life applications, a human reacts to more than
just visual input, but also to vestibular and somatosensory cues. Besides that, every sensory system might re-
act to several cues simultaneously and the reactions could be coupled, such as roll and pitch input [30]. Even
more complex, there can be coupled cross-sensor reactions. Different types of displays in the same tracking
experiment can also create variable behaviour. In the virtual navigational tunnel display (Figure 2.1) there
exists a preview tracking task of following the trajectory, but also a secondary compensatory tracking task (in
both roll and pitch) of keeping level with the horizon. This altogether introduces many non-linearities and a
poorly observable pilot-vehicle system while investigating real-life preview applications [14].

Figure 2.1: Two examples of real-life preview. (a) physical preview, (b) virtual preview [24].

Experimental Preview

As explained, the understanding of human perception and behaviour in real-life pursuit and preview tracking
exercises is complicated by the variable conditions, the multi-sensory information feed and the multi-loop
observations [30]. Moreover, the human nervous system’s precognitive nature enables operators to antici-
pate on signals that are not even provided by the display, which introduces another non-linearity for actual
physical applications [13]. This occludes the insights in the purely visual response of a human operator (HO)
for specific tasks. Therefore, a specific visual tracking task has been developed, which is since its introduc-
tion and application by McRuer [18] a widely accepted display for experimental preview tracking tasks (see
Figure 2.2). This display contains one optional reference point, one point representing the CE output (state)
and one target signal which is to be followed by the CE as a function of the HO input. Should no preview be
available (preview time τp = 0 s), this display is one-dimensional and would be classified as a pursuit tracking
task. Should the preview time increase, the future trajectory of the target signal will be extended further away
from the reference, such that the preview display becomes two-dimensional. Note that the speed at which
the signal seems to approach the HO is a design parameter, which is out of the HO’s control. The CE dynam-
ics is constrained to move in a single direction, so that only the instantaneous target is to be matched. Using
such an experimental preview tracking set-up comes with advantages [18, 14]:

• There is one single observable CE output (state) signal, which can be directly controlled by one single
HO control input signal

• The HO only responds to visual input, thus there exists no sensory signal coupling, since the dynamics
of the CE are invariable with the state and the simulator is stationary

• The presented states and actions are one-dimensional, simplifying the preview task to a single-axis
experiment, mitigating the need for abstracting multiple responses

• The display is easy to reproduce, verify and implement in many different cybernetics experiments and
for many different purposes
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A sufficient understanding of human behaviour during real-life preview tracking tasks starts with fundamen-
tal research into the isolated feedback and feedforward responses to specific visual cues [18]. Instead of cues
from a driver’s point of view (e.g. the tangent line of a road [31]), this study focuses on how much future infor-
mation is used in terms of time. Ideally, a model is constructed that can predict this behaviour. The display
presented in Figure 2.2 facilitates designing a quasi-linear model of a HO subjected to preview, which will be
elaborated upon in Section 2.1.3. Before explaining the complete model, a short introduction is given into
the pilot-vehicle system and the expected signals in the control loop.

Figure 2.2: Pursuit and preview tracking [14].

2.1.2. Pilot-Vehicle System for Preview Tracking Tasks

Figure 2.3: The complete pilot vehicle system to be modelled [18].

To ensure a fundamental understanding of the HO preview model, and to become acquainted with its under-
lying assumptions, one should oversee the complete pilot-vehicle system. Figure 2.3 showcases a schematic
representation of this system [18]. Central in this system is the Human Pilot (same as HO), which is exposed
to a range of task variables and conditional variables. To facilitate finding a causal relation between the vari-
ables of interest and the HO, all variables except the ones under investigation are to be kept constant as much
as possible. For clarity, the system is elaborated upon with the experimental preview tracking task as leading
example, but in essence, this applies also to real-life applications with preview. The objective in this case
is trying to match the CE output (system state) with the target trajectory (see Figure 2.2). This target signal
progresses in time following a certain path, which can for experimental purposes be controlled with a Forc-
ing Function (FoFu) [32]. To suppress precognitive behaviour [33], it is advised to make these signals appear
random while still being in control of them, i.e. pseudo-random. This is done by summing a range of sine



2.1. Preview Model 46

functions of a known bandwidth. Another uniquely distinguishable FoFu can be injected into the system to
simulate the noisy character of a real-life preview tracking system. Note that this FoFu is not taken up into
the previewed target, making the disturbance rejection a compensatory task. The pilot vehicle system is now
comparable to McRuer’s environment [18], but fundamental differences exist in the modeling procedures of
compensatory and preview tracking tasks [15], which will become clear in the next section.

As can be seen in Figure 2.2, three unique cues of information are available from a preview tracking dis-
play [18]. The target signal ft (t ) and the current CE output signal x(t ) with respect to the reference on the one
hand, and the tracking error between the two e(t ) on the other [14]. This corresponds to the perceived inputs,
outputs and errors presented by the display to the HO in Figure 2.3. It is known that humans use these three
information feeds to form a response with the manipulator (e.g. side stick), which in this case is the control
action u(t ) exerted on the CE. This HO response from the display signals to the tracking action on the manip-
ulator is exactly what should be captured in the preview tracking model. Figure 2.4 shows in its upper part a
schematic representation of the HO [15]. Ideally, it is aimed to find the linear conversion of each signal and
its contribution to the human operator stick input. However, humans are known to be highly time-varying
and adaptive controllers, which inherently show non-linear behaviour. This combination of linear frequency
response functions (FRFs) and a non-linear remnant injection is called a quasi-linear model [18].

As explained, there are only two controllable FoFus in this modelled environment: one injected as the pre-
viewed target signal, and one disturbance signal injected somewhere in the control loop. These are the only
two signals that can be related to the human control action in a frequency response function (FRF) [15]. This
means that just two of the three visual signals can be directly related to HO output, and the third is to be
lumped in the other responses. A substantiated choice is to be made which two out of the three input signals
( ft (t ), x(t ),e(t )) are modeled to be related to the output signal (u(t )). Due to the interrelation of the input
signals (e = ft − x), it is possible to sum FRFs, as can be seen in the center equations of Figure 2.4. The FRFs
relating the target signal and the CE state to the human control action are most suited (see the bottom part
of Figure 2.4) [15], since here two distinguishable FoFus can be injected; one for preview tracking, one for
disturbance rejection. It should be remembered that, due to this underlying assumption, the direct response
to the visual error cue is not observable, but partially included in the other two responses.

Figure 2.4: Upper: human preview control diagram based on available input signals to the operator ( ft ,e, x). Lower: simplified lumped
human control diagram based on identifiable signal responses. [15]

Looking at the lower part of Figure 2.4, it becomes clear that the HO model should describe a feed-forward
response to the target (FoFu 1, ft (t )), and a feedback response to the state disturbance (FoFu 2, fd (t )). Like in
McRuer’s work for compensatory tracking tasks [18], [34], it would be preferred to have a decent physiological
parameterisation, which can predict the behaviour of any HO in varying scenarios with preview [15].
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2.1.3. Van der El’s Preview Model
In the late sixties, McRuer’s Crossover Model for compensatory tracking tasks enabled researchers to estimate
HO control actions for given error signal inputs [18]. By means of a parameterised FRF, the model was able
to predict how the HO would adapt when exposed to different task variables. In such tracking tasks, only
the error signal is visually presented to the HO. Essentially, the state of the CE is constantly perturbed by a
FoFu, and the HO tries to reject this disturbance to keep the CE state level around a reference point. Fig-
ure 2.5 showcases a compensatory display and McRuer’s parameterised Crossover Model. In Equation (2.1)
and Equation (2.2), the formulation of the FRFs can be found relating the error signal to the control action.
In this formula, Ke represents the HO’s static gain to the error signal. TL,e and Tl ,e represent the lead-time
and lag-time constant, respectively. The HO’s neuromuscular response is described by its natural frequency
ωN M , and its damping ratio ζN M . The signal processing delay that is present in the complete HO response
to the error signal is accumulated to the delay time τv . In the closed loop pilot-vehicle system, the CE dy-
namics are outside the control of the HO. However, the response of the vehicle state to the error signal will
often show similar results. This was found during research into compensatory tracking with CE dynamics dif-
fering between gains, single integrators (SI), and double integrators (DI). Humans were concluded to adapt
their control strategy to the presented tasks. For this, HOs can vary their static gain, lead-time constant and
lag-time constant [18].

Figure 2.5: Overview of compensatory display and Crossover Model [18].

HOe ( jω) = Ke
1+TL,e jω

1+Tl ,e jω
(2.1)

HN M ( jω) = ω2
N M

( jω)2 +2ζN MωN M jω+ω2
N M

(2.2)

This CE-adaptive HO behaviour is found for all types of sensory processing and for all types of displays [13].
McRuer’s parameterisation proved to be an extremely powerful tool, which increased the general under-
standing of compensatory operations. Therefore, it will be a significant contribution to technology when the
preview tracking tasks could be parameterised comparably [12]. Some research regarding preview control
models for driver steering tasks have been studied in the past [35], however, this was not as fundamental as
McRuer’s Crossover Model. A state-of-the art preview tracking model has been comprised by Van der El [15].
The two key aspects that distinguish preview displays from compensatory displays are that the HO can an-
ticipate on the target, rather than only react, and that the HO is presented three visual signals, rather than
only one. It was already explained that merely two FRFs can be established, and that the error response will
be lumped to the state-target response. Also, it was elaborated upon that the tracking objective is designed
as a combined target tracking and disturbance rejection task. The target tracking task includes information
on the future (preview), meaning that a feed-forward FRF can be expected there. The state disturbance re-
jection task shows similarities with compensatory tracking, where the new reference point coincides with the
state rather than being static. For that reason, this feedback FRF is expected to be comparable to the FRFs
found in the Crossover Model. Figure 2.6 shows a preview display and Van der El’s parameterised preview
model. The FRFs relating the previewed target signal and CE state signal to the control action are outlined in
Equation (2.3) until Equation (2.5). What immediately stands out is the striking similarity between the closed
loop part of the preview model and the Crossover Model. In the preview model, however, the HO sees no
error, but creates an internal representation of the error e∗(t ) using the processed target signal f ∗

t , f (t ) and the

state signal y(t ). Clearly visible in the grey area of the preview model, the target is presented to the HO as a
signal some time in the future. How much future information is included in the current tracking behaviour
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is described by the look-ahead time τ f . Even when the HO is presented a display with a preview time far
ahead, how much of this preview is used – defined by the look-ahead time – hardly ever extends until fur-
ther than a critical point. Furthermore, if the display showcases constant preview time, the look-ahead time
can still vary considerably and inconsistently. This is exactly the reason why this τ f parameter is decided to
be the focus point of this research. The processed target signal is produced by passing the previewed target
signal ft (t +τ f ) through the low-pass filtering HO f . For SI dynamics, this FRF is mostly described by the tar-
get response gain K f , due to the relatively low values of the preview smoothing time-constant Tl , f (1/ωb, f ).
From HMI experiments examining the influence of preview time τp on K f [14], this response gain shows
to be approximately invariant to preview changes. Variation of Tl , f is more pronounced for DI dynamics,
inducing a shift in the weight of the response gain K f on the tracking action. In this DI case, the preview
FRF is effectively a low-pass filter which can dampen much of the conventional FoFu bandwidth. This is the
main reason for focusing on CE dynamics of SI nature, which will be further elaborated upon in the rest of
this section. The option for an equalising lag time-constant is not included in the preview model, because it
has been validated for SI – requiring pure gain – and DI – requiring lead – control tasks [15]. In the preview
model, there are thus three additional physically interpretable HO parameters that can vary compared to the
Crossover Model. This can be induced by task variation, but it can also occur due to intrinsic HO variability.
The model enables cybernetics researchers to not only predict the outcome, but also illuminate the human
strategy causing behaviour. The remaining challenge is finding an identification method that can recursively
estimate these preview parameters while the HO is performing a preview tracking task [19].

Figure 2.6: Overview of preview display and preview model [14].

HO f ( jω) = K f

1+Tl , f jω
= K f

ωb, f

ωb, f + jω
(2.3)

HOe∗ ( jω) = Ke∗ (1+TL,e∗ jω) (2.4)

HN M ( jω) = ω2
N M

( jω)2 +2ζN MωN M jω+ω2
N M

(2.5)

2.1.4. Time-Varying Simulations with Preview Model
Although preview could be conceptually straightforward to understand, care should be taken from a mod-
elling perspective. This is because look-ahead time – essentially a negative delay – is accompanied by a state
that has not yet been visited [19]. The central problem is how to find characteristics of a signal which has
not yet passed the control loop. Due to the time-varying research focus, it would be wise to model the look-
ahead time compliant with time-domain calculations. Especially for the approximation of time delays in this
time-varying fashion, a negative delay is not preferred [36]. With the reference point in time at the current
CE output and target, the look-ahead time will always be a negative delay. This reference point in time can
be shifted, however, without interacting with the values of the tracking. If one shifts this reference point until
past the look-ahead horizon, the look-ahead time with respect to that reference will be a positive delay. The
amount the reference is translated into the future is called the suspension time τs (sometimes in literature
referred to as anticipation time τa). Using this suspension, the new value representing the look-ahead time
is called the apparent time delay τ∗f [19] (see Figure 2.7). If the suspension time is stored, the look-ahead

time and apparent time delay can always be related to each other by τ f = τs −τ∗f . Note in Figure 2.8 that this

virtually created delay introduces an extra FRF block to the HO model chain.
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Figure 2.7: Converting look-ahead time to apparent delay time with suspension time [19].

Figure 2.8: Isolated human operator model as implemented in the time-varying simulations [15] (edited by Vertregt).

In the frequency domain, calculations are based on how the signals progress through the FRFs, using a sum-
mation of uniquely identifiable input frequencies, and analysing the output signals at these same frequencies.
This can provide a solid estimation of the HO parameters over the entire run of the experiment [15]. For such
a frequency-domain calculation base to hold, a range of underlying assumptions are to be regarded:

• The input signals’ frequencies should fit an integer number of times in the measurement domain

• The frequency, phase and amplitude of the input signals are agreed upon before and fixed throughout
the experiment

• The HO parameters to be estimated are constant values throughout the measurement, specific for the
provided task variables

Such assumptions will occlude essential aspects of HO strategy as described in the preview model. Already
elaborated upon, a HO exposed to a real-life preview tracking task can encounter a highly variable environ-
ment. Additionally, even in a controlled experimental environment such as the preview tracking task pre-
sented here, humans could portray intrinsic time-varying behaviour. Here one can think of learning capa-
bilities and fatigue, which induce less effortful strategies. This motivates for the conversion of the HO model
from Figure 2.8 to a state-space (SS) representation which can capture all the presented parameters in the
time domain [17]. With the SS system at hand, it becomes possible to find the inter-dependency between
the internal system states and the model parameters at every time step. While investigating the isolated
HO model with the FRF blocks, two challenges arise for a time-domain conversion. First, the exponential
functions related to both the look-ahead time (in simulations represented by apparent time delay) and the
response time delay have no direct translation into a time-domain transfer function (TF), meaning that an
adequate approximation is to be made [36]. Second, the combination of different order FRF blocks and two
different points of input into the system slightly complicate the direct conversion into a state space system. It
is preferred to represent the system in controllable canonical form, and for identification purposes, the num-
ber of states should be kept to a minimum [19]. The time delay representation with Padé approximations and
the derivation of the minimal state-space function of the HO model are elaborated upon below.

The Padé Approximation for Time-Domain Delay Functions

To convert a control theoretical block diagram into a controllable canonical state-space system, the blocks
are to be described with fractional TFs. This is already in place for the preview target processing block HO f ,
the HO equalization block HOe∗ and for the neuromuscular limitations HN M . However, the blocks describ-
ing the conversion from suspended target signals to previewed target signals and the physical HO response
time delay contain an exponential TF. These can be converted to a fractional alternative by means of a Padé
approximation [36]. When deciding upon the order of the fractional block, one has to consider the approxi-
mation accuracy, the extent to which the TF would be distinguishable from the other blocks, and the number
of resulting canonical states in the state-space equation that are to be kept at a minimum. After a trade-off
between these factors, the preferred order of this fractional approximation is 3, meeting the accuracy re-
quirements while keeping the number of canonical states relatively low [19]. After this, it can be found that
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the Padé approximations still account for a large part of the canonical states (see Equation (2.7) and Equa-
tion (2.11)). The description of this model’s Padé approximation is presented in Equation (2.6), where m and
r both represent the maximum order assumed for the approximation, in this case 3.

Hdel ay ( jω) = e−τ jω ≈
∑m

i=0
(2r−i )!
i !(r−i )! (−τ jω)i∑m

k=0
(2r−k)!
k !(r−k)! (τ jω)k

(2.6)

Looking at Equation (2.6), the primary motivation for the virtually negative representation of the look-ahead
time becomes evident once more. In the description of the Padé approximation, a positive time delay is to
be included [36]. Look-ahead time is essentially a negative time delay [15], which cannot be incorporated in
the complete state-space equations without making the solution unstable [36]. By means of suspending the
target tracking signal further away than the preview signal, the look-ahead time can be presented as a time
delay, stabilising the estimation procedure [19].

Derivation of the Minimal State-Space Representation

During the identification phase of this research, it is essential to keep the differential representation of the
control problem as small as possible. In order to align the simulation and identification phase, it is chosen
to apply the same differential equations for the simulations as the identification requires. This means that
the dynamics should be described in as few states as possible, defined as the minimal realisation. The time-
varying identification tool should perform a parallel system state and HO parameter estimation. Ambiguity
in explanation of HO control behaviour can be avoided by only keeping the strictly necessary states. At this
point, all FRFs that can be found in Figure 2.8 have a fractional TF description, enabling a controllable canon-
ical SS transformation. These descriptions are summarized in Equation (2.7) until Equation (2.11). The first
and last equation are the third order Padé approximated TFs of both time delays [15, 19].

e
−τ∗f s ≈

−τ∗3
f s3 +12τ∗2

f s2 −60τ∗f s +120

τ∗3
f s3 +12τ∗2

f s2 +60τ∗f s +120
(2.7)

HO f (s) = K f

1+Tl , f s
= K f

ωb, f

ωb, f + s
(2.8)

HOe∗ (s) = Ke∗ (1+TL,e∗ s) = Kp +Kv s (2.9)

HN M (s) = ω2
N M

s2 +2ζN MωN M s +ω2
N M

(2.10)

e−τv s ≈ −τ3
v s3 +12τ2

v s2 −60τv s +120

τ3
v s3 +12τ2

v s2 +60τv s +120
(2.11)

Looking at the equations, the resulting HO parameters that need to be estimated by means of a system iden-
tification method are thus: τ∗f (= τs −τ f ), K f , ωb, f (= 1/Tl , f ), Kp (= Ke∗ ), Kv (= Ke∗TL,e∗ ), ωN M , ζN M , and

τv . To find a causal interaction between the states and the parameters of the HO model, the system should
be converted to a differential format, preferably in state-space form. Converting a block scheme to a con-
trollable canonical state-space system is a particularly powerful operation. This creates a reproducible result
with unique states that relate to each other as derivatives [19]. For a linear control block diagram with a sin-
gle point of input and a single point of output (SISO), the conversion to the state-space system presented in
Equation (2.12) and Equation (2.13).
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Y (s)

U (s)
= b2s2 +b1s +b0

s3 +a2s2 +a1s +a0
(2.12)
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0
]

u

(2.13)

The SISO calculations do not directly reflect the general form of multiple-input-single-output (MISO) and
multiple-input-multiple-output (MIMO) systems. However, they provide a solid basis, since the more com-
plex systems can be constructed with the aid of the SISO logic. The general description of a MIMO state-space
system can be found by looking at which points the signals are injected and at which points they are retreived
with regard to the TFs. A simple case would be two input signals (u(t ) and v(t )) passing through the same TF
as used in Equation (2.12), to form a single output signal (y(t )). The resulting state-space derivations are pre-
sented in Equation (2.14) and Equation (2.15), which essentially represents a summation of the TFs.

Y (s)

U (s)
= b1,2s2 +b1,1s +b1,0

s3 +a1,2s2 +a1,1s +a1,0
&

Y (s)

V (s)
= b2,2s2 +b2,1s +b2,0

s3 +a2,2s2 +a2,1s +a2,0
(2.14)



ẋ1

ẋ2
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ẋ4

ẋ5
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The conversion of the HO control model presented in Figure 2.8 is different from the general MISO/MIMO
calculations. This is mostly because the two feeds of input are injected at a different point. Looking at the
flow of information, the suspended target signal ( ft (t +τs )) passes through all HO blocks and the CE dynam-
ics output (y(t )) only feeds through the equalization and limitation sequence. The two points of signal influx
can be used to divide the model in two state-space systems that interact [19]. The first state-space system
is designed to translate the suspended target signal ( ft (t +τs )) to a perceived (or internal) current target sig-
nal ( f ∗

t , f (t )) based on the preview information. The second state-space system converts this perceived target

signal and the CE dynamics output (y(t )) – the difference is the internal error (e∗(t )) – into the HO control
action. Note that the output of the first state-space system is a direct input to the second. Creating a sep-

arate controllable canonical state-space block for both input-output TFs ( Û (s)
Ft (s) and Û (s)

Y (s) ) would thus yield
an unnecessary high number of canonical states [19]. Remember that for identification purposes, it is de-
sired to have a minimal realisation of the state-space system. There are three input-output TFs that are to

be incorporated in this minimal representation:
F∗

t (s)
Ft (s) , Û (s)

F∗
t (s) and Û (s)

Y (s) . Noting that the the first two TFs are

directly connected as a feedthrough illuminates that the state-space representation should have 2 inputs and
1 output. Equation (2.16) until Equation (2.19) show how the state space system of the isolated HO model is
constructed using the TFs of Equation (2.7) until Equation (2.11).
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The equations above show how the flow of inputs to outputs is handled internally. Note that the state-space
representation is presented in generalised parameterisation, which can be directly calculated by creating a
controllable canonical form of the TFs highlighted in red and in blue. In Equation (2.16) (highlighted in
red), it is shown how the suspended target signal ( ft (t +τs )) is converted to an internal instantaneous target
signal ( f ∗

t , f (t )). The output of this TF is only virtually expressed, since it feeds straight in the second chain

of calculations. Looking at Equation (2.17), the opposite holds, where the input is the virtual internal target
signal, and the output is the explicit HO control action (û(t )). The third equation (Equation (2.18)) shows how
the CE dynamics state (y(t )) converts to the HO control action. Note the negative sign, which is necessary to
represent the calculation of the internal error (e∗(t ) = f ∗

t , f (t )− y(t )). There are only two actual input-output

relations in Equation (2.16)-Equation (2.18), and the hand-over of the internal error signal (e∗(t )) can be
cleverly incorporated by a restructuring of the controllable canonical state-space systems. As showcased in
Equation (2.19), the state matrix and input matrix (A1,B1) resulting from Equation (2.16) (highlighted in red)
can be explicitly expressed. However, since the output is only a virtual representation, which is directly fed
into the new calculation sequence, it has no explicit contribution in the output equation. To still account for
this feed-through effect, the output matrix and feed-through matrix (C1,D1) can be appended to the state
representation (A2,B2) of Equation (2.18). This immediately fits Equation (2.17) in the overall state-space
sytem. The state matrix and input matrix (A2,B2) resulting from Equation (2.18) (highlighted in blue) are
accompanied by the explicit output equation. The output matrix and the feed-through matrix (C2,D2) here
fully describe the simulation of the HO control action.
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At this point, the minimal state-space representation is derived, which entails 9 canonical states. It should be
noted that a different approximation order is accompanied by a different number of canonical states. Since
the third order Padé approximations were concluded to provide the minimal feasible solution space for the
state and parameter estimation, the HO identification is expected to have the form of Equation (2.19). In the
next section, the identification procedure is elaborated upon.

2.2. Dual Extended Kalman Filter
Now that the preview model of Van der El [15] has been explained, it should be possible to describe the be-
haviour of a HO by means of physically interpretable parameters. In more conventional frequency-domain
analyses and prediction methods, data collection over the entire measurement time frame is required to find
single values for the states and parameters [12]. The human capability to adapt to environments and tasks,
and the human limitation of inconsistent behaviour, make the frequency-domain calculations inherently
obscure some of the control responses. Ideally, for preview tracking applications, a time-domain analysis
method is used to identify the states and the parameters of the pilot vehicle system, comparable to Popovici
et al. [17]. This section describes a range of time-varying identification techniques, Popovici’s DEKF for com-
pensatory tracking [17], and Vertregt’s updated DEKF for preview tracking [19].

2.2.1. Time-Varying System Identification
The isolated HO SS system allows for the time-domain – potentially real-time – estimation procedure of states
and parameters [19]. As previously discussed, the most interesting HO parameter is look-ahead time τ f ,
which can also be described as the apparent time delay τ∗f . There exists a range of methods for this time-

domain estimation, which all have their advantages and inadequacies. The ideal estimation method should
be able to (1) estimate time-delays [37], (2) converge even when exposed to remnant [19], (3) allow for free pa-
rameter variation [19] or scheduling in line with experimental data [38], and (4) directly identify HO preview
model parameters [39]. In car driving experiments, non-linear parameter estimations have been performed
with a Dual Extended Kalman Filter (DEKF) to study advanced driver-assist systems [40]. Additionally, re-
cent research into parameter identification for permanent magnet synchronous machines has proven that
the DEKF is promising for online identification [41]. The considerations regarding different identification
methodologies for preview tracking tasks are briefly summarized to substantiate choosing DEKF as the most
suitable option [19].

• Maximum Likelihood Estimations (MLE) [30] can only express the parameter variations in terms of
predefined progressions, which have to be designed beforehand

• Wavelets [42] prove to be too sensitive to HO remnant and the parameters can not be directly estimated
during the procedure, but have to be acquired with frequency response analyses

• Recursive ARX Models [22] have their own representation of parameters, and time delays cannot be
estimated, which impedes the desired HO parameterisation for preview tracking tasks

• Unscented Kalman Filters (UKF) [23] are relatively costly with regard to computational expenses, which
can possibly introduce difficulties for real-time applications

• Dual Unscented Kalman Filters (DUKF) could facilitate the reliability and computational efficiency
increase with regard to the UKF, but have not yet found a sophisticated application in cybernetics

• Dual Extended Kalman Filters (DEKF) [17] are a good compromise between power and expense, al-
though the initialisation and the tuning should be carefully monitored for convergence

2.2.2. Popovici’s DEKF for Compensatory Tracking
The dual Kalman Filter concept has been incorporated for a range of research applications already. Here
one can think of state and parameter estimation for vehicles [43], or batteries [44], but also of compensatory
tracking research using the states and parameters from the Crossover Model [17]. To gain relevant insights in
the application of a DEKF for preview tracking parameter estimation, the past implementations in TU Delft
cybernetics are outlined in this section.
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Working Principles of a Kalman Filter [45], [46], [47]

To formally introduce the Kalman Filter, and to establish some initial understanding of the algorithm, it is
explained using the application it was originally designed for: state estimation. In modern technology, re-
search is highly relying on sensor readings for adequately valid results. Even after calibration, sensors can be
expected to provide readings with the necessary noise and bias. Evidently, smoothing operations can be im-
plemented for the data, in order to create more rigid results, but this will provide no insights in measurements
accuracy. State estimation aims for finding a state vector, for which all the noise and bias features have been
mitigated. In order to reach this goal, the Kalman Filter makes an educated prediction of the signal’s next data
point, based on the current data point and readings of the signal variance. Depending on its confidence in its
prediction, it will make an weighed decision between measurements and predictions [45]. Fundamental for
the Kalman Filter to work optimally, it is required to provide it with statistical information of the system noise
Q and measurement noise R. Q is constructed by placing the expected variances of all system states on the
diagonal, and R is described by the sensor variance.

As initialisation of the Kalman Filter, a value is chosen for the state estimate xk,k and the covariance matrix
corresponding to the state prediction error Pk,k . The value of Pk,k essentially describes xk,k ’s uncertainty.
Using an internal model of the system (e.g. the SS system for preview control tracking), the Kalman Filter’s
predictor tries to make a calculation for the next data point’s state xk+1,k . Again, the uncertainty is evaluated
with a state covariance matrix Pk+1,k , which is constructed using the state prediction and the process noise
statistics that are fed into the algorithm. For this to hold, it is assumed that the system noise and state error are
uncorrelated. With the variables at hand, the Kalman Gain Kk can be constructed. The Kalman Gain is meant
as an optimisation step, where a penalty is given for the offset between the measured and predicted state.
The larger the offset, the larger the penalty, and the higher the associated value for the Kalman Gain. This
gain is expected to decrease until a value is reached corresponding to a converged algorithm. This means
that the Kalman Filter is not more uncertain than the noise statistics that were seeded before. Using the
Kalman Gain, the Kalman Filter’s corrector makes educated estimation for the next time step’s state xk+1,k+1,
which in turn allows the calculation for the next step state error covariance matrix Pk+1,k+1. This process
is repeated for every step in time. This filtering process requires several data points to converge, increasing
the state estimation accuracy to an optimum over time. The state estimation principle can also be applied
to more advanced applications, such as fusing data of different sensors to increase estimation fidelity, and
the simultaneous identification of states and parameters in a system identification problem. Two powerful
features are combined to form the DEKF, which are – as the name suggests – Extended Kalman Filtering and
Dual Kalman Filtering. Both these aspects are slightly elaborated upon to create better understanding of
the HO parameter identification algorithm. Furthermore, due to the generally accepted domain of some
parameter values under investigation, a solution space limiting feature is included in the algorithm, called
Estimate Projection Limitation which will be described as well.

Extended Kalman Filtering [47]

After the introduction of the Linear Kalman Filter (KF), it was quickly discovered that the algorithm was not
applicable to many real-life scenarios. The main drawbacks are that the KF (1) is based on the assumption
that the states to be estimated are linearly related, and (2) requires the system to be fully observable in order
to converge to the optimal solution. Looking at HMI applications, the system and measurement equations
are mostly of non-linear nature. To still adequately estimate the state vector, the EKF has been designed,
which locally linearises the system before the estimation procedure is performed. For this to hold, the state
equation and the output equation are assumed to be a continuous function of the input and the output sig-
nals. With this assumption, it is possible to calculate the Jacobians of both the state differential equation and
the output equation of the state-space system. These Jacobians (Fx , Hx ) can be used to find a discretized ver-
sion of the perturbation equations, including the discrete state transition and input matrices (Φk+1,k ,Γk+1,k ).
It should be noted that the EKF is not guaranteed to converge to a global optimal solution. Due to the low
approximation order of the estimation procedure, only fairly small perturbations can be adequately identi-
fied, which can only be realised if the initial conditions are estimated to be close to their actual values. Later
in this research, it will become evident that the initialisation of the final filter can still be a tedious process
before it provides convergent results. Another disadvantage of the original joint – meaning that all variables
to be estimated are included in the same state vector – EKF is that the convergence is highly dependent on
the length of the state vector. As can be expected, the more states and parameters introduced, the more the
algorithm will explain certain readings with these newly introduced variables. This can even increase to the
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extent that the algorithm cannot uniquely identify a solution space that can explain the readings, leading to a
diverging solution. Splitting the states and the parameters over two individual EKFs (dual filtering) and intro-
ducing boundaries to the solution space (state and parameter limitation) can re-enable convergence of the
EKF algorithm. The EKF is shown in algorithm format while explaining Vertregt’s DEKF algorithm.

Dual Kalman Filtering

In the field of cybernetics, the DEKF has been succesfully applied by Popovici et al. for a compensatory track-
ing task [17]. For Popovici’s research, a comparable state-space system as in Section 2.1.4 was constructed
based on McRuer’s Crossover Model [18], rather than Van der El’s preview model [15]. In this case, the dynam-
ics of the HO executing a compensatory tracking task can be described with 5 canonical states (xs,1, ..., xs,5)
and 5 HO parameters (Kp ,Kv ,ωn ,ζn ,τv ). In Figure 2.9, it can be seen that the DEKF consists of a state filter
(EKF) investigating the faster varying canonical states and pilot gains and a parameter filter (EKF) assess-
ing the less variable HO limitation features. The decision of which states and parameters are attributed to
which filter are a design choice, also creating the possibility for parameter estimation in the state filter. The
two estimation procedures run simultaneously, and they interact with each other during the dual estimation
sequence. Rather than one combination of large sparse covariance matrices for the joint estimation proce-
dure, two smaller sets can be constructed, gaining significantly in computational efficiency and likeliness of
convergence [17].

Figure 2.9: The DEKF applied with McRuer’s compensatory crossover model [17]

As shown in Figure 2.9, the HO equalization gains are included in the state filter, because of their higher
expected variability and more direct expected relation with the internal canonical states of the system [17].
When designing the case-specific state vector and parameter vector, which states and which parameters are
assigned to which vector can be chosen arbitrarily. However, one should clearly keep in mind which assump-
tions are present for the state and parameter dynamics. Both the state filter and the parameter filter have an
individual state equation, with the main difference that the parameter filter’s equation is described as ran-
dom walk. For this reason, the equalization gains are included in the more variable state vector [17]. The
entire estimation procedure has a single output equation, describing the HO control action. Equation (2.20)
until Equation (2.22) show the state and output equations corresponding to Figure 2.9. Usage of the dual
estimation procedure decreases the covariance matrix size of the states and parameters and of the accom-
panying process noise (7x7 and 3x3 matrices rather than 10x10 matrices). This immediately facilitates the
convergence of the process. Note that, although convergence took place, the resulting solution can still be
infeasible when the states and parameters exceed values that are physically possible. For this reason, an
optional solution limitation step is elaborated upon [48].

ẋs (t ) = f (xs (t ),e(t ),θ(t ))+ws (t ) (2.20)

θ̇(t ) = wp (t ) (2.21)

u(t ) = g (xs (t ),θ(t ))+ v(t ) (2.22)
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Estimate Projection Limitation

In the trade-off between time-varying estimation methods, the DEKF’s main advantage over MLE methods
was its ability to freely vary the states and parameters based on the pilot-vehicle dynamics [30, 17]. However,
in the solution space of the states and parameters, some values would not make sense from a physical or
physiological perspective. For example, humans have been witnessed to show only a slight variation in their
expected visual time delay, with a clear minimum and maximum [14]. Converging values for these param-
eters beyond their expected ranges essentially means that behaviour is explained by the wrong parameters.
Limiting the solution space to stay within the feasible boundaries might facilitate the trustworthiness of the
results. In previous research within the field of cybernetics, estimate projection has been applied to limit
the states and parameters [19]. In the results, this is reflected by hard floors and ceilings for the states and
parameters under investigation [48]. When this method is applied, it should be kept in mind that the math-
ematical steps before the final result (e.g. Kalman Gains, Covariance Matrices) are not yet limited, possibly
occluding an infeasible intermediate solution [19]. This is mainly a problem when the parameters approach
their boundaries when the Kalman Filter has already converged. If the limitation step is only used as a tool
to ensure convergence of the filter in the initial phase, than the method can be safely implemented. Estimate
Projection is a relatively simple matrix operation, where the amount that a generic state surpasses the im-
posed limit is substracted from the estimation again. In Vertregt’s DEKF algorithm below, the limitation step
is described both for state and parameter estimations [19].

2.2.3. Vertregt’s DEKF for Preview Tracking [19]
For the HO parameter estimation procedure while the pilots are being exposed to a preview tracking task,
the theory above is combined to form a DEKF with fixed parameter boundaries. As explained, the canonical
states (xs,1, ..., xs,9), and optionally the equalization gains (Kp ,Kv ), are assigned to the state filter. The less
variable human limitation factors (ωnms ,ζnms ,τv ) and the preview task-driven parameters (K f ,ωb, f ,τ∗f ) find

their identification in the parameter filter. It can clearly be seen in Figure 2.10 that the filters show interde-
pendency and thus have to be run in parallel. The steps taken regarding prediction, correction and limitation
are highly comparable looking at the two individual filters. The greatest difference is the assumed differential
basis of the state equations (see Equation (2.20) and Equation (2.21)).

Figure 2.10: The interaction between the state filter and the parameter filter [19].

Both the state and the parameter prediction steps are used to find an initial prediction (a priori) of the values,
as a function of the previous best estimate (a posteriori). The parameter progression was assumed to only
depend on noise (random walk), which motivates for the most sensible prediction (θ−k ) to be the previous
corrected value (Equation (2.23)). This a priori parameter prediction is accompanied by a calculation of the
parameter covariance matrix (P−

p,k ). Since the state progression is a function of the states, the parameters, the

preview target signal and the CE output signal, the current-step prediction (x−
s,k ) is a function of these values

and time (Equation (2.24)). Hereafter, the state covariance matrix (P−
s,k ) is calculated. The state correction

steps as showcased in Equation (2.25) are introduced to make a more substantiated estimation (a posteriori)
of the new state (x+

s,k ). This is done by taking into account the system output and its progression, and by as-
sessing the prioritisation between the a priori state and the measurements with a Kalman gain (Ks,k ). With the
new state estimation comes a new state covariance matrix (P+

s,k ). The state limitation step (Equation (2.26))
introduces a ceiling or floor to the estimated values by means of the D an d matrices, resulting in a bounded a
posteriori state estimation (x̃+

s,k ). The parameter correction step (Equation (2.27)) and the parameter limita-
tion step (Equation (2.28)) work similarly. An important difference between the state filter and the parameter
filter is the definition of Jacobian matrix for the observations Gs/p,k . As explained by Popovici et al. [17] and
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Vertregt [19], the total derivative G tot
p,k is applied for the parameter filter in the correction step. For both the

state filter and the parameter filter, this should a step where the Jacobian is calculated for the output equation
g (xs ,θ) with respect to either the states or the parameters. However, in Section 2.1 it was already shown that
the parameters corresponding to the preview processing (τ f , K f , ωb, f ) are not explicitly represented in the
output equation. To still provide sensible values for this variable, it is chosen to calculate the total derivative
d•
dθ , rather than the Jacobian matrix. The latter is possible for the canonical states: δ•

δxs
.

1) Parameter Prediction

θ−k = θ+k−1

P−
p,k =Φp,k−1P+

p,k−1Φ
T
p,k−1 +Γp,k−1QpΓ

T
p,k−1

(2.23)

2) State Prediction

x−
s,k = x+

s,k−1 + f (x+
s,k−1,θ−k , ft ,k+Ns , yk−1)∆t

P−
s,k =Φs,k−1P+

s,k−1Φ
T
s,k−1 +Γs,k−1Qs,kΓ

T
s,k−1

(2.24)

3) State Correction

Ss,k =Gs,k P−
s,kGT

s,k +R

rk = uk − g (x−
s,k ,θ−k )

Ks,k = P−
s,kGT

s,k S−1
s,k

x+
s,k = x−

s,k +Ks,k rk

P+
s,k = (I −Ks,kGs,k )P−

s,k (I −Ks,kGs,k )T +Ks,k RK T
s,k

(2.25)

4) State Limitation

x̃+
s,k = x+

s,k −DT
s,k (Ds,k DT

s,k )−1(Ds,k x+
s,k −ds,k ) (2.26)

5) Parameter Correction

Sp,k =G tot
p,k P−

p,k (G tot
p,k )T +R

Kp,k = P−
p,k (G tot

p,k )T S−1
p,k

θ+k = θ−k +Kp,k rk

P+
p,k = (I −Kp,kG tot

p,k )P−
p,k (I −Kp,kG tot

p,k )T +Kp,k RK T
p,k

(2.27)

6) Parameter Limitation

θ̃+k = θ+k −DT
p,k (Dp,k DT

p,k )−1(Dp,kθ
+
k −dp,k ) (2.28)

An immediate research contribution by Vertregt [19] is that there now exists an identification tool that can
provide a preview model parameter reading at every time step. In sigmoid step time-varying scenarios, the
DEKF is shown to lag significantly behind the original parameter trace. Also, a significant amount of variance
is present in the individual estimations. These are aspects that will impede the performance when the algo-
rithm is applied to time-varying HMI experimental data. In Figure 2.11 until Figure 2.14, simulation results
of Vertregt’s DEKF are presented [19]. Figure 2.11 and Figure 2.12 show a SI scenario and a DI scenario, re-
spectively. In these scenarios, only τ f was scheduled to vary, and all other parameters were simulated to be
constant. During the DEKF estimation, only the neuromuscular delay τv was fixed to its scheduled value, and
all other parameters were free to vary. For the SI case, the DEKF seems promising, with an estimation spread
of approximately +/- 0.1 s, and a delay of slightly more than 25 s. In the DI scenario, it is harder to evaluate the
DEKF’s performance. The estimation spread is in this case +/- 0.2 s, and within the measurement time frame,
it is inconclusive whether the filter is capable of converging to a constant value. In an attempt to reach more
reliable τ f estimations, all other parameter estimations can be fixed at their simulated values in the DEKF.
Effects of such measures are shown for SI and DI dynamics in Figure 2.13 and Figure 2.14, respectively. The
effect in the SI case is positive, reducing the spread and bringing down the time to reach the terminal estimate
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to approximately 15 s. For DI scenarios, the opposite holds, as the spread nearly doubles, and it is uncertain
whether the filter reacts to the changes in τ f at all. As shown in Figure 2.11 until Figure 2.14, in its current
form, the DEKF has potential for time-varying estimations of HO parameters in preview tracking tasks. In
the initial research, applying the filter to SI dynamics experiments, and leaving only τ f free for estimation,
produces the most reliable results. In the progression of that research, SI tasks and τ f estimation will be focus
areas in the validation of the DEKF.

Figure 2.11: Estimating τ f , while fixing τv (SI) [19] Figure 2.12: Estimating τ f , while fixing τv (DI) [19]

Figure 2.13: Estimating τ f , fixing all other parameters (SI) [19] Figure 2.14: Estimating τ f , fixing all other parameters (DI) [19]

For iterations of the DEKF design, Vertregt suggests to focus on the remnant [19]. For the simulation envi-
ronment, the remnant is injected in the measurable output signal as a colored noise signal. In experimental
applications, the remnant cannot be known. Just as all preview model parameters, remnant can be time-
varying. If the remnant is explicitly modelled as a low-pass filtered noise signal, these parameters could be
included in the DEKF description. This way, the influence of remnant might less easily be attributed to the
preview model parameters. Another point of focus for the future application of the DEKF is its initialisation.
Especially evident for double integrator dynamics, the algorithm’s performance relies on the first estimate
that is presented. Rather than a unique optimal setting, the DEKF is expected to have specific optimal set-
tings for different scenarios. Effort could be invested in establishing some heuristics that determine the ini-
tialisation based on measurable scenario characteristics. Before moving straight to finding one generalised
optimal DEKF, it is desired to validate it in its current form for the estimation of look-ahead time τ f .

2.3. Conclusion for Future Studies
The identification of human control in preview display tracking tasks has been described as a focus area in
future cybernetics research. In vehicle operation, human operators are expected to remain responsible for
the years to come. In order to still increase safety and efficiency, human-machine shared control will become
a more pronounced part of vehicle operations. Such applications require accurate understanding and identi-
fication of human behaviour, and a real-time or time-domain nature of the calculations. Van der El’s preview
model has become a widely accepted describing function of human behaviour in preview tracking tasks. It
is particularly powerful due to the physically interpretable parameters. As addition to McRuer’s crossover
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model, human behaviour can now be predicted accurately when preview is available. A promising candidate
for the time-domain estimation of the parameters is the Dual Extended Kalman Filter, as Popovici proved
for compensatory displays. Its main advantages are the capability of time delay estimation, the robustness
to remnant interference, the unconstrained variation of parameters, and the preservation of the original pa-
rameter definitions. Vertregt’s DEKF, using the parameterisation of the preview model, shows promising first
results for the time-varying identification of human strategy during preview tracking tasks. At this point, HO
parameter estimation with a DEKF seems feasible for a specific range of preview tracking task applications.
The look-ahead time τ f is shown to be the most variable parameter as function of variations in display pre-
view time τp . Additionally, τ f shows most sensitivity towards the HO tracking behaviour compared to other
parameters, within their variation boundaries. For these reasons, the research in this study will primarily fo-
cus on the estimation of τ f , and time-varying estimation of all parameters simultaneously is left as an option
for future studies. Vertregt was able to show that the DEKF can accurately estimate τ f , when the HO is sub-
jected to tracking tasks with single integrator dynamics. When double integrator dynamics was implemented
in the controlled element, the τ f estimation proved to be significantly more difficult. The low-pass filtering
properties of the remnant definition and the HO preview response function seem to impede the accurate
estimation of HO parameters.

The knowledge compiled in this literature review can be used to continue the research regarding time-varying
estimation of HO preview parameters. Before trying to create a robust and consistent DEKF for all possible
scenarios in simulation environment, here, focus will be on validating its capability in the research domain
where it seems to operate well. This has motivated the decision to scope the study around SI dynamics track-
ing experiments, where purely the look-ahead time τ f is estimated, and all other parameter are fixed during
the time-varying identification. The goals are to understand the behaviour of the DEKF, and to investigate
what levers can be pulled to influence the filter performance. Furthermore, it will be studied what assump-
tions can be made, and what the effect of these assumptions is on the identification. This should prepare the
researchers for applying the DEKF on data from experiments with time-varying display preview time. While
assessing the DEKF’s operation, both the variation of parameters, as well as the effect on HO behaviour should
be taken into account. During the identification with HMI experiment data, it should be studied whether the
filter can be set up arbitrarily, or whether some knowledge regarding the HO and the scenario are to be in-
cluded in the filter definition. This experimental phase can prove whether the DEKF can identify changes in
τ f as function of time-varying τp .





3
Research Objective and Methodology

3.1. Research Objective
The Literature Review has provided insights in the working principles of the human operator preview model
and the Dual Extended Kalman Filter. In the variation of human strategy, a parameter of particular interest
is the look-ahead time τ f . The look-ahead time indicates exactly which part of the previewed trajectory is
used by the operator for control. After the proven potential of the DEKF for parameter identification of the
Crossover Model, a research gap exists for its application with the preview model. For this reason, the research
objective can be formulated as follows:

"To investigate the application of a Dual Extended Kalman Filter for the time-varying identifi-
cation of human operator look-ahead time during preview tracking tasks."

As explained in Chapter 2, the preview model is based on the HO response to input signals, consisting of a
bandwidth of uniquely distinguishable sines. Although it is impossible to find out what exactly is the human
strategy, by means of a parameterisation, predictions can be made of human behaviour. Unfortunately, there
will remain non-linearities which cannot be accounted for by a linear model, requiring the introduction of
the non-linear remnant in the signal. The DEKF tries to attribute values to the canonical states and the pa-
rameters of the system’s state-space representation. In this representation, assumptions are made, and some
states or parameters are correlated in terms of their effect on the output. Due to the parameterisation and
the accompanying estimation, the performance of a DEKF cannot be directly linked to human strategy in a
HMI experiment. For this reason, the research question should be split in a preliminary analysis (SIM) and
an in-depth analysis including a HMI experiment (EXP). The main questions are based on the following two
research areas:

SIM: DEKF identification of time-varying HO look-ahead time using simulated scenarios

EXP: DEKF identification of time-varying HO look-ahead time based on HMI experiment data

The first research area is purely regarding the DEKF applied to the preview model, without using any actual
human data. The main goal here is finding the filter’s sensitivity to certain preview model parameters, to tune
the filter to be as effective as possible for the estimation of look-ahead time, and to create some expectations
for the performance for actual HO data. The second research area tries to find a relation between the variation
of the display preview time and the variation in estimated HO preview model look-ahead time. As said, the
actual strategy cannot be found, but it can become evident what the filter detects when certain variations
occur. This could later be linked to human strategy with more elaborate research. The SIM research area will
be supported by the preliminary analyses results found in Chapter 4. These analyses are mostly based on the
simulated variation of preview model parameters, and specifically the influence of varying look-ahead time.
The EXP research area will be addressed by the proposed further analyses as discussed in Chapter 5. During
this phase of the research, emphasis is put on the variation of all preview parameters simultaneously, and on
experiments with time-varying preview time in the display. The research questions aiming to reach the main
objective are summarised below.

61



3.1. Research Objective 62

SIM (Preliminary Analyses)
1. How should a simulation environment be constructed?

(a) What assumptions are to be made?
(b) How should the stochastic simulations be executed?
(c) How should the simulation environment’s signals be verified?

2. What are the most important performance indicators?
(a) What is the sensitivity of look-ahead time to output signals?
(b) What simulated signals provide insights in DEKF performance?
(c) How can performance indicators be acquired to compare scenarios?

3. How can the DEKF be set up for time-invariant scenarios?
(a) What TI scenarios should be introduced for optimal performance?
(b) What is the effect of DEKF initialisation on performance?
(c) What is the effect of covariance matrix sensitivity changes on DEKF?

4. How does the DEKF perform in time-varying scenarios?
(a) What TV scenarios should be introduced for DEKF performance analysis?
(b) How would these scenarios compare to actual human TV behaviour?
(c) What is the effect of the TV scenarios on performance indicators?

EXP (Proposed Further Analyses)
5. How will the DEKF perform if all HO parameters vary simultaneously?

(a) What variations in display preview time are relevant for the experiments?
(b) What HO parameter variations are expected with TV display preview time?
(c) Which stochastic features of the scenarios are required for validation?
(d) Can look-ahead time be identified while all HO parameters are varying?
(e) How does the DEKF performance compare to scenarios of SIM?

6. How does the DEKF perform in time-invariant preview HMI experiments?
(a) Which time-invariant HMI experiment data should be used?
(b) What are the expected values and limitations of the HO parameters?
(c) How do the estimations compare to LTI signal analyses?
(d) What insights in look-ahead time variations are relevant for TV analyses?

7. How does the DEKF perform in time-varying preview HMI experiments?
(a) How should the TV preview HMI experiment be designed?
(b) How do state and parameter estimations vary due to the display changes?
(c) How do estimations for TV experiments (Q7) compare to TV simulations (Q5)?
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3.2. Methodology / Approach
With the research questions defined in Section 3.1, the approach to answering the questions is explained here.
As can be deduced from the research areas SIM and EXP, the goal can be reached by comparing simulations
that have predefined HO parameter variations with experiments that have predefined display variations. This
will aid the validation process of a DEKF for the time-varying identification of HO look-ahead time during pre-
view tasks. Below, the methodology for the simulations and the experiments will be explained, accompanied
by the graphically explained research process of Figure 3.1.

Figure 3.1: Schematic representation of the research process. The dashed box comprises the results included in this document.

Simulations

In previous research by Vertregt [19], a simulation environment including a DEKF algorithm was developed in
Matlab, which enables to analyse the estimation performance in a controlled fashion. Vertregt’s code struc-
ture is recycled in this research. Now, the primary research focus is validating the DEKF, finding its capability
to estimate the look-ahead time, and identifying the origin of its behaviour. Some aspects of the code had
to be restructured or added in order to perform the analyses. The environment should be able to perform
a closed-loop pilot-vehicle simulation to generate HO behaviour using target inputs and HO strategy (pa-
rameters). Furthermore, it should be able to simulate open-loop remnant-free pilot behaviour based on the
target and state inputs and HO strategy, which serves as verification of the DEKF. To keep track of the full
performance at every time-step, the state-space structure of these two simulations should be identical to
the one defining the DEKF. This way, all canonical states and HO parameters estimated by the DEKF can be
compared to the original quasi-linear simulations, and to the perfect linear response. Although the defini-
tions of the simulation and estimation environments now coincide theoretically, it is also important to verify
the solver itself and the produced signals. The closed-loop simulation can also be performed with Matlab’s
Simulink, by including all transfer functions and process signals in a control diagram. Compared to Vertregt’s
Simulink scheme, the target signal processing block is restructured by removing the near-viewpoint signal
and including the apparent time delay transfer function. Only including the far-viewpoint target and com-
bining the equalization and the neuromuscular transfer function allowed for complete resemblance between
the Simulink control diagram and the state-space system from Section 2.1. Simulink also has the possibility to
include Padé approximations for time-delays, which are set to the same order as the state-space system. If the
update frequency coincides with the newly created solver, all system signals can be verified in both the time
domain and the frequency domain. With this updated simulation environment, it is possible to address all
main questions of the SIM research area. Both the simulated scenarios and the DEKF algorithm can be altered
individually. This will provide insights in the working principles and sensitivity of the DEKF for the applica-
tion of HO parameter estimation in preview tracking tasks. It also enables further experimental research to
start with an identification algorithm that is in the vicinity of its optimal initialisation and settings.
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Experiments

Important in the DEKF’s validation process is the analysis of the algorithm’s behaviour when actual HMI sig-
nals are provided. Measurements of these signals will be collected in TU Delft’s Human-Machine Interaction
Laboratory (HMI-Lab). This is a fixed-base simulator, including a display and an electro-hydraulic servo-
controlled side-stick. The side-stick can be limited to only move in controlled fashion around its roll axis.
Human operators can provide input to the side-stick as a response to the previewed target signal and its dis-
turbance on the display. The visual preview time of the target signal can be varied during the experiment.
The acquisition of response data should last 120 second with an update rate of 100 Hz, which is in line with
earlier research and the simulation phase. Note that the goal is not to understand human behaviour in time-
varying tasks, since the DEKF estimations are not proven to be representative for HO strategy. Also, it is not
the intention to analyse the accuracy of the parameter estimations, since there exists little knowledge yet on
how human’s change strategies in the time domain, and to what parameters it can be attributed. What is
sought after is understanding what the DEKF’s reaction is to HO behaviour changes, induced by time-varying
preview time in the display. For this reason, the HMI experiments should be simple and limited to a small
set of scenarios. The experiments should include significant display time-variance at clearly distinguishable
moments, and should be in line with HO parameter time-variance that will be simulated. It would be inter-
esting to see whether there are signs of filter convergence, and whether the estimations are in line with the
expected parameter values based on the preview display.

Research Process

The research questions and sub-questions defined in Section 3.1 should together contribute to reaching the
main objective of this thesis. Figure 3.1 shows in schematic fashion how the research activities will be per-
formed consecutively. The preliminary research activities (dashed line) are already executed, and the results
can be found in this report. The digits on the blocks correspond to the specific research questions 1-7. The
entire research consists of simulations and HMI experiments, which together will show whether the DEKF
can identify time-varying HO look-ahead time if it would be applied in preview tracking control tasks.



4
Preliminary Analyses Results

In this chapter, the results of the preliminary research phase are presented. The structure follows the work-
flow of the research process in Figure 3.1. First, the preliminary research scoping process is elaborated upon
and the decisions are presented in Section 4.1. Then, in Section 4.2, the creation of the simulation environ-
ment is described. After that, Section 4.4 shows the initial tuning process of the DEKF during time-invariant
simulations. The DEKF’s performance during time-varying simulations is analysed in Section 4.5. A reflection
on the preliminary results can be found in Section 4.6.

4.1. Preliminary Research Scope
Although the display and assignment of this study’s preview tracking task look simple, the pilot-vehicle sys-
tem (Figure 2.3) is rather complex. This is mostly due to the wide range of variables influencing the behaviour
of the HO. Furthermore, the simulation environment and the DEKF have many design settings that can be
tuned during the analyses. All these variables and design choices influence the system and signals, meaning
that drawing conclusions should always be limited to the researched domain. Because the entire research is
performed in the time domain, and because time-variance is investigated, a single scenario analysis is com-
putationally expensive. Due to the research time-frame, this requires an educated scoping of the scenario
spaces. Remember that emphasis is put on the investigation of the DEKF, and showing its potential for the
time-varying identification of HO parameters during preview tracking tasks. Below, the scope of the pilot-
vehicle system, the preview model and the DEKF can be found.

Pilot-Vehicle System

In the Literature Review, the pilot-vehicle system is briefly touched upon, and showcased in Figure 2.3. In the
description of the entire system, there are task variables and conditional variables. In quantitative cybernetics
research, only the task variables of interest should be varied, and all others are to be kept constant as much
as possible. The conditional variables, being environmental, operator-centered, or procedural should be
kept constant at all times to not confound the results of the experiment. The task variables comprise of the
Forcing Functions (FoFus), the Display, the Manipulator and the Controlled Element (CE). Central in this
system are Human Pilots (HO), who adapts their behaviour to the presented task variables. All task variables
can be varied over a range of options, and varying these options often heavily influence how the HO behaves.
For that reason, if some generalised insights of HO behaviour are to be retrieved from the experiment, it
is important to show that it is true for all the task variable design options. Since the main research focus
is the DEKF’s parameter estimation, and because the research time is limited, the pilot-vehicle system has
been scoped to a small set. The decisions regarding the FoFus, Display, Manipulator and CE dynamics are
presented below.

The DEKF is a time-domain identification tool, which is capable of making system estimations per time step.
In this research, the goal is to find the tool’s capability of estimating the look-ahead time parameter. It is
not of interest what frequency bandwidth the HO can include in its response. Therefore, only one arbitrary
bandwidth has to be selected for both the target tracking and the disturbance rejection. The only requirement
is that these to multi-sines can be uniquely distinguished from each other. The FoFus used are the same as
used in previous research by Vertregt [19]. For the preliminary analyses, three realisations are generated,
which showed to be a decent trade-off between computational speed and reliability.
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Since this research is about preview tracking tasks, the design options for the Display are limited to preview
displays. Still, the display should show many realisations in this research, since time-variations of the display
preview time are studied. To keep the scope manageable, the parameter traces in this study will be either
time-invariant, single sigmoid steps, single sines or double sines. The maximum research precision, or min-
imum granularity in variations, will be 0.05 s for HO look-ahead time (SIM). The domain of the variation is
determined by the boundaries as determined in earlier research (see Appendix A. The display’s aestetiscs will
be equal to earlier research by Van der El [14].

No specific vehicle control application is under investigation, meaning that the Manipulator can be chosen
arbitrarily, as long as it complies with the tracking task. For that reason, the side-stick configuration in HMI-
Lab is used, and it is limited to move around its roll axis, similar to Van der El’s research [14].

HO tracking behaviour is vastly different in double integrator (DI) CE dynamics tasks, compared to single in-
tegrator (SI) tasks. The difference of this behaviour will be directly reflected in different HO parameters in the
preview model. Ideally, the DEKF would operate adequately for both the SI and DI dynamics. Unfortunately,
this performance aim quickly proved difficult due to HO adaptation in DI tracking tasks. To understand this,
the preview processing transfer function (TF) from the preview model should be regarded again:

HO f (s) = K f

1+Tl , f s
= K f

ωb, f

ωb, f + s
(2.8)

This TF behaves as a low pass filter, where the breaking point is determined by ωb, f (= 1/Tl , f ). This breaking
point parameter can vary as a function of varying preview time in the display. For SI dynamics tracking tasks,
this parameter’s values stay sufficiently high, ensuring that all FoFu signal information is passed through to
the closed-loop. This break-frequency is much more variable with preview time in DI dynamics tracking
tasks, where it drops to values lower than the FoFu’s bandwidth. This is detrimental for the signal observabil-
ity. A vastly different design and optimisation procedure is to be executed to make the DEKF work for both SI
and DI dynamics. Since first insights into the DEKF’s estimation capabilities are to be investigated, and since
it is not desired to re-design the filter at this stage, it is decided to only focus on SI tracking tasks.

Preview Model

In the modelling procedure, it is important as well to keep track of the relevant scope to reach the research
objective. The assumptions underlying the preview model itself are already elaborated upon in Section 2.1.
These include the error response being lumped to the CE state and preview target signals, and the definition
of the new look-ahead reference point at 0.9 s before the current time reference. The additional scope of the
remnant model definition and the Padé approximation are explained below.

The remnant in the quasi-linear preview model should represent all non-linear behaviour that still exists
around the linearised point. In the input response, there is thus a linear model contribution and a remnant
contribution, summing to the total signal u. In a study regarding HO remnant in preview tracking tasks [25], it
was found that the power ratio Pn between the remnant contribution and the total signal is relatively invariant
to display preview time. This remnant power ratio is defined as the remnant contribution variance divided
by the total tracking input variance:

Pn = σ2
u,n

σ2
u

(4.1)

After the introduction of the fundamental Crossover Model, a first-order remnant model was developed by
Levison [49], which is stated as TF in Equation (4.2). In [25], it was confirmed that this model also suffices for
the preview model. The remnant gain Kn can be tuned in order keep the remnant power ratio at a constant
predetermined value. In this research scope, Kn is only determined at the start of each simulation and kept
constant afterwards. Constantly adapting the gain is computationally expensive, so in line with the finding
that Pn is relatively invariable with preview time, this assumption was justified.

Hn(s) = Kn

ωb,n + s
(4.2)
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In the equations above, both the remnant power ratio Pn and the break frequency ωb,n proved to be invari-
able with preview time [25]. However, they are variable with the other task variables. Based on the preview
time processing TF HO f , it was already determined to take only the SI CE dynamics scope into account. In
the conclusions it should be remembered that the remnant scope should be revisited should the validation
process be expanded to DI dynamics tasks.

Besides the remnant, another influential design choice is the definition of time-delays in the preview model.
To make the two delays part of the controllable canonical state-space representation, Padé approximations [36]
are introduced. The higher the order of approximation, the more precise the delay definitions, but also the
more introduced canonical states. In initial research [19], it was determined that third order approximations
for both delays are a compromise between signal precision and state estimation capability of the DEKF. For
that reason, only third order approximations are included in the research scope.

DEKF

The Dual Extended Kalman Filter has a range of design features that influence its performance. Due to the
computational expense and research focus on the capability of look-ahead time estimation, not the entire
scope of design features is taken into account. The research is scoped in terms of the DEKF’s set-up and in
terms of its filtering characteristics.

While setting up the DEKF for state and parameter estimation, some design choices are made and fixed
throughout the analysis. It is decided that the parameters are estimated in the first filter, and the states in
the second. Because primarily focus will exist for look-ahead time estimation, it has no estimation advantage
to move some parameters to the state filter. In the estimation procedure, all other parameter values are as-
sumed fixed at a value they would have for half the critical preview time. This is because only the capability
of look-ahead time estimation is studied. This is the parameter showing most variation and signal expression
(Appendix A) due to varying display preview time. In the filter prediction initialisation, τ f is always assumed
to be 0.3 s, which half the expected critical preview time as described by Van der El [14]. The values for all 9
canonical states are initiated at the arbitrary value of 0. The suspension time is designed to be fixed at 0.9 s
ahead of the current-time reference. This was decided to be far enough to cope with outliers in look-ahead
time behaviour, an to be close enough to generate reliable results.

The initialisation of the parameter estimation varianceσ2
τ f

is set at an arbitrarily large value of 1. The parame-

ter covariance matrix Pp is immediately described by this, since its diagonal contains all values for parameter
variance. The initial guess for the signal variance of the canonical states σ2

x,s is 5, which directly describes
the initialisation of the Ps matrix. During the estimation the HO parameters are limited to their physically
possible range as determined in earlier research. The Q matrix and R value are designed to be a function of
CE state y(t ) and tracking input u(t ). The variation and tuning of these two design features of the DEKF are
described in Section 4.5.

4.2. Creating a Consistent Simulation Environment
It is determined what methods will be applied to complete the research objective, and the research scope
is elaborated upon. To facilitate the further preliminary research questions, a consistent simulation envi-
ronment should be developed. In this section, the transition from control diagram to state-space system is
graphically showcased, after which figures are presented verifying the simulation environment.

From Control Diagram to State-Space System

In Section 3.2 and Section 4.1 it has been discussed that this research builds on earlier thesis work [19], and
that only a specific scope will be addressed. The closed-loop and open-loop control diagrams in this research
are always in line with Figure 4.1. Only third order Padé approximations will be encountered, and only SI
dynamics will be investigated. The closed-loop simulations are necessary for generating all updates for state
and human tracking values. The HO open-loop simulations are relevant because they the best performance
a DEKF can reach, since the remnant is not modeled. It aimed for to design simulations with a solver that
produces nearly exactly the same results as Matlab’s Simulink would. Simultaneously, the underlying dynam-
ics (canonical states, parameters) should be designed exactly like the DEKF estimates them. Remember that
the DEKF requires the state-space realisation to be the minimal, since the canonical states to be estimated
should be kept at a minimum. On the next page, one can find the translation between the open-loop control
diagram and a minimal state-space system in controllable canonical form.
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Figure 4.1: Schematic representation of the closed-loop and open-loop simulation.
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In the figure and equation on the previous page, the relation between canonical states and parameters is
showcased. Should all parameters be known, the canonical state progression ẋ and the remnant-free human
tracking input û can be found with a simple solver. For this to work, all parameter values should be updated
to their scheduled value at every time step. This is exactly what the open-loop simulation does. The measur-
able signals produced by the custom closed-loop and open-loop solver can be verified by comparing them to
Simulink results. For the Simulink results, the realisation of the differential equation is not studied in this re-
search. In Simulink, it is not tracked how many canonical states are to be solved for, or whether the realisation
is minimal. The design of the control diagram is created in such a way that all transfer functions are exactly
identical to the custom solver. For that, the compensatory and neuromuscular blocks are to be combined. In
the time delay blocks, the Padé approximation option should be set to third order.

Verification Results

One environment is created in Simulink by integrating the control diagrams (Figure 4.1), the other is cre-
ated in Matlab code and uses the custom minimal state-space representation. Human behaviour – and its
variations – can be scheduled by defining HO parameter values for every time step. Combined with this
scheduling, the closed-loop simulations can be run with data on the suspended target signal ft (t +τs ), the
disturbance signal fd (t ) and the remnant n(t ). This produces HO tracking input signals including remnant
u(t ), and CE state progression signals y(t ). The signals u(t ) and y(t ) can be used to verify the custom mini-
mal state-space system solver. Note that these signals have to be generated with the same update rate. This is
selected to be 100 Hz, in line with the update rate of the HMI-Lab data collection. Two power spectral density
(PSD) analyses were performed. Figure 4.2 and Figure 4.3 show the PSD of the tracking input u(t ) for both
closed-loop simulations. In the analysis, a number is calculated representing the Pearson Correlation Coeffi-
cient (PCC) between the signals from both simulations. Figure 4.2 and Figure 4.3 show the PSD of the CE state
y(t ), also accompanied by the PCC. Evident from both verification analyses, the simulations are behaving as
they should, since the PSD plots nearly overlap and the PCC is near unity.

Remember that, in the open-loop simulation, the differential equation is exactly the same as the one funda-
mental to the DEKF. This is deemed important, to always be able to explain certain filtering behaviour. The
open-loop simulations also use the scheduled HO parameter values for the definition of behaviour. The in-
put for these simulations are the suspended target signal ft (t +τs ), and the CE state progression signals y(t )
(output of closed-loop). The single output produced by the open-loop simulation is the HO tracking input
signal excluding remnant û(t ). This HO tracking input of the closed-loop and the open-loop simulation can
be compared as verification step. This can be done by performing both a closed-loop and an open-loop simu-
lation with the custom differential equation. If the remnant is set to zero in the closed loop, the results should
be exactly coinciding with the open-loop. Again, a PSD analysis was performed, this time comparing u(t )
with û(t ), the closed-loop and open-loop signal, respectively. It can be seen in Figure 4.6 and Figure 4.7 that
the signals nearly exactly coincide and that the PCC was again nearly 1. What this open-loop simulation will
show, is the best signal reconstruction that the DEKF can theoretically reach. In the performance analysis,
it would be interesting to see how the values for the canonical states and parameters compare for the DEKF
estimation and the open-loop simulation.
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Figure 4.2: PSD plot comparing remnant-free u(t ) signals in
custom simulation environment.
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Figure 4.3: PSD plot comparing u(t ) signals of one remnant
realisation in custom simulation environment.

10-1 100 101

 [rad/s]

10-4

10-3

10-2

10-1

100

101

S
Y

Y

Validating Custom TV Simulation of Y (no Remnant)

Simulink
Custom TV Solver

PCC = 0.999

Figure 4.4: PSD plot comparing remnant-free y(t ) signals in
custom simulation environment.
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Figure 4.5: PSD plot comparing y(t ) signals of one remnant
realisation in custom simulation environment.
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Figure 4.6: PSD plot comparing remnant-free u(t ) signals from
’ideal filter’ simulation to ’original’ simulation.
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4.3. Determining Expectations and Performance Indicators
At this point, a verified simulation environment has been established. This can be used to generate time-
varying human-like behaviour by scheduling variation in the HO parameters, contributing to the assessment
of the DEKF. The parameter of main interest is the apparent time delay τ∗f , which can be directly translated

to the look-ahead time τ f , as defined in the preview model. Before letting the DEKF estimate the look-ahead
time based on the previewed target ft (t+τs ) and the CE state y(t ), the parameter’s effect on the tracking input
u should be investigated. This way, knowledge can be obtained on what variations are likely to be captured by
the Kalman Filter. This section describes the initial τ f sensitivity expectations and the defined performance
indicators for DEKF estimations.

4.3.1. Effect of Look-Ahead Time on HO Tracking Input
Using measurable signals ft , u and y , the DEKF will in its definition make a weighted estimation of the nine
canonical states x and the eight HO parameters. As described in Chapter 2, in the preview model’s formu-
lation, some parameters describe similar signal features, and there is always a non-linear remnant signal
which cannot be accounted for. For this reason, it was decided to focus on the estimation of τ f , and assume
a fixed value for the other parameters. These assumptions are based on the measured parameter values in
time-invariant scenarios (Appendix A). Before applying the DEKF for such a complex constrained estimation
problem, the effect of the look-ahead time parameter should be studied. It is interesting to understand what
difference it makes on HO behaviour when this parameter has a different value, and when it shows time-
variance. Further down this section, results are shown for different simulations. Both the time traces and
the power spectral density (PSD) of the tracking signal u are presented. In both time-domain and frequency-
domain graphs, a similarity score between the two lines is presented to provide a quantitative value for com-
parison.

Simple Look-Ahead Time Variations

In real-life applications, the DEKF will never have knowledge of the actual HO parameter values. The filter can
only observe changes in the measurable signals, and possibly attribute these changes to state and parameter
variations. To gain insights in how look-ahead time variations reflect in the human behaviour, some simple
scenarios have been designed. Next to all scenarios, a baseline simulation is presented showing behaviour
with a constant HO strategy (τ f = 0.35). Without investigating its cause, HO look-ahead strategy can basically
deviate from the baseline in two ways. The look-ahead time can deviate further away from the baseline, or
faster around it. By using a sine variation of τ f , four simple scenarios can be designed with a combination of
small/large amplitude changes and low/high frequency changes. Small amplitude variations are defined as
+/- 0.1 s compared to the baseline look-ahead time. Large amplitudes scenarios show +/- 0.35 s, representing
the minimum and maximum values of τ f that humans show in SI dynamics preview tasks. These variations
can be found in the upper plots of Figure 4.8 until Figure 4.11.

Time-Domain Analyses

The middle plots of Figure 4.8 until Figure 4.11 show the time-domain traces of the human tracking input
u(t ), as a reaction to the same specific FoFus. The baseline (black line) stays the same for all analyses. The
scenario under investigation (blue line) shows what the effect is of HO look-ahead time variations on human
behaviour. The first and last 30 seconds of the run are studied, mostly to enlighten the effect of higher fre-
quency variations, while keeping the shared mean of the plot equal to the baseline. These time-domain values
u(t ) are the signals that the DEKF needs to process. Knowledge on the similarity between the scenario and the
baseline tracking inputs, can create expectations on the accuracy of the DEKF. This is important in terms of
both variance and bias. For example, if the DEKF’s estimates are constantly ranging between -20% and +20%
of the actual value of τ f , this can be easily explained if the human behaviour is very similar for all values.
Similarity can be investigated by comparing time traces. However, care should be taken that visual percep-
tion of similarity can be misleading. For that reason the PCC is included for all time traces. Another detail
to keep in mind is that time-domain analyses often lack to display fundamental signal properties. Therefore,
the frequency-domain representation of the tracking input is studied as well.
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Frequency-Domain Analyses

Often, algorithms tend to interpret measured data differently than humans in their analysis. The DEKF is
a time-domain analysis tool, motivating to analyse signals in this same domain. Still, to ensure that DEKF
behaviour can be best explained, the frequency-domain analysis is considered as well. Human behaviour is
induced by a combination of target and disturbance FoFus. These FoFus are designed as a summation of sines
with uniquely identifiable frequencies. Therefore, if analysed in a PSD, these input signals ft and fd only have
power at their designed frequencies. If these FoFus are processed by the HO, this signal power is converted
to tracking input, which can also be presented in a PSD. In this spectogram, the linearly processed signals
and the remnant can be showcased with specific power again. How exactly these signals are processed by the
HO depends on applied strategy, and thus look-ahead time. In the lower plots of Figure 4.8 until Figure 4.11,
the PSDs of the same HO tracking input signals are shown. This way, it can be studied how specific parts
of the FoFus are translated, and how look-ahead variations are influencing this translation. Again for these
plots, a value is shown, trying to compare the PSD traces to each other numerically. However, note that
the data points in a PSD do not represent a reading in the time domain. Although the same calculations as
for the time-domain analysis are used, this does not represent the actual PCC. Both the time-domain and
frequency-domain plots are shown on the next pages. Some additional descriptions on the findings can be
found there.

Results

The parameter variations in Figure 4.8 and Figure 4.9 show a small and large amplitude, respectively, while
both have a low frequency. In the small amplitude scenario, the look-ahead time varies significantly (roughly
+/- 25%), but hardly any variation is shown in the output signal (PCC nearly 1). On the other hand, when the
look-ahead time is varied further away from the baseline, significant behaviour changes are visible. As can
be expected from a HO that anticipates more, a higher value of τ f translates to earlier target responses and
seemingly less excitation of the manipulator. For lower τ f values, the opposite holds. Looking at the PCC
between the two traces, the value dropped significantly, and this value becomes even lower if time-invariant
scenarios are run with constant τ f values at the sine extremes. These insights in amplitude variations can
create expectations for the DEKF performance. Using the plots below, it is predicted that even the most
thoroughly tuned DEKFs will have difficulty finding small look-ahead time changes. Simultaneously, constant
HO strategy might still provide τ f estimations with heavy noise characteristics.

From initial visual inspection, some expectations have been created regarding the human tracking behaviour,
and thus the DEKF estimation performance. Although the estimation is performed in the time domain, it
was decided to include frequency-domain analyses on the data as well. These results for low frequency vari-
ations are presented in the lower parts of Figure 4.8 and Figure 4.9. As explained, the PCC calculations have
been performed in order to create a numerical comparison between the PSDs. For the small amplitude, low
frequency scenario, the plots nearly overlap, and the similarity value is approximately 1. This supports the
hypothesis that low amplitude look-ahead time variations will be hard to detect for the DEKF. On the other
hand, Figure 4.9 shows that high amplitude variations have a significant effect on the HO tracking input. It
can be seen in the PSD plots that, at the target frequencies (left spikes of duos), there is a lesser uniquely
identifiable response. From a stochastic system analysis perspective, this means that there is some extra
power at the frequencies surrounding the target FoFus, at the cost of the original signal power. In previous
work on frequency-domain analysis of time-varying systems by John Lataire [50], it was proven that the ad-
ditional power surrounding the key frequencies is caused by the parameter’s time variations. Additionally,
it was qualitatively shown that a higher amplitude or frequency of parameter variation comes with a larger
affected bandwidth surrounding the key signal frequencies. The effect of amplitude changes is clearly visible
comparing Figure 4.8 and Figure 4.9. Also, the numerical similarity value is significantly lower. This is in line
with the time-domain expectations.
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Figure 4.8: Sensitivity analysis for low frequency, small amplitude τ f variations.
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Figure 4.9: Sensitivity analysis for low frequency, large amplitude τ f variations.

Figure 4.10 and Figure 4.11 also have different amplitudes for the τ f variations, but now the frequency is
much higher. The motivation for investigating this higher frequency, is that the behaviour changes might be
more pronounced, since there are more abrupt parameter variations. Should specific differences between
the low and high frequency cases be visible, this could later be used to explain certain readings of the DEKF.
For the low amplitude case, again, little variation in the u(t ) signal (middle plots) is witnessed and the PCC is
close to 1. This restates that significant variance is expected to remain for DEKFs, even though properly set
up. With higher amplitudes, the scenario’s behaviour seems to deviate much more from the baseline than in
the low frequency example. However, from the plot, it is inconclusive whether these pronounced differences
originate from the variation of the parameter, or from the moment in the tracking task that the parameter has
a certain value. Still, the DEKF is expected to detect such pronounced changes and attribute this to variations
in τ f . The challenge will mostly be making the trade-off between being sensitive enough to cope with high
frequency variations and being rigid enough to keep the estimation variance within boundaries.

Since the visual time-domain inspection is harder for the high frequency scenarios, the frequency-domain
analyses are especially of importance here. In the lower plot of Figure 4.10, it can be found that the intro-
duction of a higher frequency for low amplitude scenarios induces merely slight differences in the PSD plot.
Compared to the low amplitude, low frequency case, the smearing effect of Lataire [50] could be slightly more
visible in the lower frequencies. However, it should be noted that both variation frequencies of τ f are rel-
atively low. The most notable difference is at approximately 2 rad/s and 3 rad/s, where the time-varying
parameter case seems to have a small spike at those response frequencies, whereas the constant scenario
only shows remnant power. No direct explanation could be established, but this difference could possibly be
attributed to the points in time where the look-ahead time parameter varies, which can be studied in future
work. Nonetheless, the similarity value between the two PSDs is still nearly unity. Showcased in the lower
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plot of Figure 4.11, the large amplitude, high frequency variations of look-ahead time clearly have a signifi-
cant effect on the tracking response. Although the baseline and time-varying scenario seem to mostly overlap
at first sight, this is not the case. Much more frequencies are excited in the response than initially present in
the target signal. From the plots it is visible that when a human is applying a highly variable preview strategy
during an experiment, more high frequency signals can be expected in the response. It can be expected that
the DEKF will detect that such significant variations occur, however unsure to what extent the estimations
will follow the actual strategy. The similarity value in the PSD plots confirms the difference in PSDs. For
comparison, one can look at Figure 4.9.
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Figure 4.10: Sensitivity analysis for high frequency, small amplitude τ f variations.
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Figure 4.11: Sensitivity analysis for high frequency, large amplitude τ f variations.

Looking at all plots in Figure 4.8 until Figure 4.11, it can be concluded that DEKF’s estimation will mostly
rely on the amplitude of the parameter changes, rather than the frequency. This works both ways, thus the
filter can also estimate higher frequency variations within certain τ f boundaries, although the behaviour
is expected to be constant. Whether the DEKF will find the actual values during high frequency parameter
variations depends on the speed at which it can make the required estimation steps. How DEKF estimation
is assessed, can be found in the upcoming subsection on performance indicators.

4.3.2. Performance Indicators of DEKF Analyses
When the DEKF is estimating the HO parameters – or only τ f , if constrained – much information can be
gathered regarding its performance. Before elaborating on the filter settings (Section 4.4), it is described
how to assess this performance. First, it is possible to investigate the estimated HO parameter values them-
selves, and compare them to the scheduling of the closed-loop simulation. Simultaneously, one could study
the estimation of the canonical states, and compare these to the open-loop DEKF best estimate simulation.
However, these canonical states have no direct meaning in the physical world, making it more interesting
to look into the estimation error. These parameters and states only virtually exist in the modeled environ-
ment. For that reason, it is also interesting to look at the physically existing tracking input u, and compare
the DEKF estimations to both the simulations. Lastly, since the DEKF should react to time-varying signals,
the state and parameter covariance matrices can be researched in combination with the tracking error. Below
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all signals of interest and the accompanying performance indicators are elaborated upon. Although no con-
clusions will be drawn on performance here, some actual estimation runs are used in this section to illustrate
the performance indicators. Investigating the complete signal time traces makes it difficult to compare large
numbers of simulations. Therefore, from these time traces, higher level performance indicators should be
abstracted. Below, the signal time traces are shown for both sigmoid and sine time-variance. Besides show-
ing the signals in the time domain, it is elaborated upon how the higher level performance information can
be abstracted.

HO Parameters

The main purpose of the DEKF is estimating the HO strategy parameters, focusing on look-ahead time τ f .
Performance can be expressed in terms of how the estimated parameter values compare to the initial simu-
lated values. Figure 4.12 and Figure 4.13 show examples of the time traces for sigmoidal steps and sine varia-
tions, respectively. The dotted line represents the simulated human strategy in the scenario, and the red lines
are what the DEKF estimates based on the measurable data. Nine runs with different remnant seeds and FoFu
realisations are combined to an averaged estimation, shown with the bold red line. Looking at these plots,
conclusions can be drawn regarding estimation performance. However, due to the large number of scenarios
that are to be investigated, and in order to compare all these runs quantitatively, single data points should be
extracted from the plots. The sigmoid step variations (Figure 4.12) presents a change from one scenario to
another, both time-invariant. Therefore, the time it takes to reach a time-invariant DEKF state is sought after.
Conversely, in the sine variation scenarios (Figure 4.13), there is not a converged strategy, but it is constantly
changing with a specific amplitude and frequency. In the DEKF response, it seems as if the algorithm starts
a periodic response, with the same frequency as the simulated variations. It can be investigated over which
frequency range this holds. If a sine is fitted to the averaged DEKF estimations, it can be compared to the sim-
ulations. Here, one can investigate the gain and phase shift between the simulations and DEKF estimations
as a measure of performance. Lastly, regardless of the variation type, the steady state bias and variance of the
estimations compared to the simulations are a performance indication as well. The performance is in this
case expressed in terms of HO strategy parameters. However, already explained in the previous section, the
parameters might show limited sensitivity towards the actual behaviour. For that reason, also performance
analyses regarding the HO tracking input behaviour are included.

Figure 4.12: Example of τ f estimation for sigmoid step. Figure 4.13: Example of τ f estimation for sine variation.
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HO Tracking Input U

The DEKF’s estimated values for τ f can be included in a re-simulation of the open-loop control system. This
will result in new data for the HO tracking input u(t ) and CE state progression y(t ). The results are expected to
be comparable to the initial open-loop simulations (no remnant), that used scheduled look-ahead time vari-
ations. Note that the values of the re-simulation have only virtual meaning, but they do provide performance
insights that include the parameter sensitivity. Figure 4.14 shows 40 seconds of the tracking behaviour u(t )
for all the 9 individual runs of Figure 4.12. The plots’ central value is 0, where the sigmoid step variation oc-
curs. The blue line represents the open-loop simulation, and the red line the re-simulation using the DEKF’s
estimated look-ahead time values. It is clearly visible that the lines initially overlap well, then deviate more
around the sigmoid step, and finally start to show similar behaviour again. These visual inspections are a
verification step, but have no significant contribution to the performance analysis of the DEKF yet.

Figure 4.14: Example of the tracking input traces for all scenario realisations.

Just visual inspection lacks the possibility to average the results of different realisations of the same scenario.
Furthermore, it is not possible to quantitatively describe the performance of the DEKF re-simulation. For that
reason, a numerical measure for similarity between the open-loop simulation and the DEKF re-simulation
has to be described, which is repeatable for different realisations. A remaining important requirement is that
the performance indicator can be updated at every time step. In previous work [19], the variance accounted
for (VAF) was selected as similarity value. Equation (4.3) shows how this value can be calculated. VAF is
expressed as a percentage, where 100% effectively means complete similarity. The lower the percentage, the
lower the similarity, where negative values are possible as well. This calculation is often used to find one single
value for similarity between two complete traces. However, the calculation can also be windowed, meaning
that a value is calculated for a selected time range in the past relative to the current time step. This calculation
occurs at every time step.

V AF =
(

1−
∑Nmeas

k=1 |u(k)− û(k)|2∑Nmeas
k=1 u2(k)

)
·100% (4.3)

From the selected time window size onward, the windowed VAF can be calculated at every time step. This
is a quantitative value for performance, with the possibility to average results of individual runs. Figure 4.15
shows the VAF plot corresponding to the u(t ) traces of Figure 4.14. The dotted line corresponds with the
actual tracking input u(t ), the blue line represents the averaged simulated open-loop response û(t ) (no rem-
nant), and the red line lines up with the averaged DEKF estimation re-simulation. Due to the open-loop
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nature, the VAF of the re-simulation can only become as good as the blue line. Around t = 0 s, the VAF clearly
dips to below 10%, which is expected since the sigmoid step of τ f occurs there. The value recovers towards
the open-loop simulation’s VAF, meaning that the estimation of τ f is able to reconstruct HO behaviour with-
out remnant again. Since it is still desired to retrieve a single performance indicator from these 9 runs, a
new definition of convergence time is defined. Convergence can be defined relative to the perfect tracking
(dotted line, closed-loop). However, it is preferred to find a description that neglects the effects of remnant
in the conclusion. For that reason, convergence is determined relative to the best possible signal reconstruc-
tion (blue line, open-loop). The point from which the estimation VAF (red) is greater 95% of the open-loop
simulation VAF (blue) is defined as the REL95 convergence time. This performance indicator can be used in
the further analysis steps. As can be seen in Figure 4.16, the VAF data is not all too insightful for the analysis
of sine parameter variations. Note that it is still wise to collect such data in order to verify the estimation
results at later stage. At this point, during the simulations, performance can be analysed in terms of param-
eter estimation precision and in terms of sensitivity on the actual behaviour. Both performance indicators
are defined after a complete run of the DEKF algorithm. Should unexpected behaviour occur, performance
knowledge of intermediate DEKF steps is to be collected as well.

Figure 4.15: Example of VAF plot for all sigmoid steps. Figure 4.16: Example of VAF plot for all sine variations.

DEKF Parameter/State Covariance Matrix and Estimation Error

At this point, the output of the DEKF can be analysed and some performance indicators are established.
Should unexpected performance occur, or should an optimisation of the DEKF be desired, one must also in-
vestigate the dynamics of the filter itself. The DEKF algorithm entails several steps where various values and
matrices are updated. For every time step, the filter performs a weighted estimation of the canonical states
as well as the HO strategy parameters. For general applications where only the state updates are to be found,
the convergence of the DEKF can be found in the state covariance matrix P . This is a matrix containing the
variances of the states on its diagonal. If all variances reach a constant value, the filter should be operat-
ing at its optimum. In this optimum, the weighted inclusion of measurements versus predictions remains
constant.

For this research, the P matrix needs to be approached slightly differently. The DEKF includes two separately
running filters, thus there are both a state covariance matrix Ps and a parameter covariance matrix Pp . In
a time-invariant scenario, both matrices should approach a constant value to showcase filter convergence.
The lower the variance on the prediction, the more the DEKF will rely on its value in the weighted average. If
the variance increases, it should trust its predictions less. Looking at these matrices, filter convergence can
be determined, even before it is visible in the parameter estimations or the HO tracking behaviour. Note that
in this further research – and in actual control applications – parameters are of time-varying nature. In the
simulated environment, emphasis is on sigmoid steps and sine variations. When states or parameters are
expected to vary, it is desirable that the DEKF can deviate from its predictions, after which it tries to converge
to a new optimum. To facilitate this, P matrix values for the standard deviation of the predictions should scale
with the recorded estimation error. The actual state or parameter error can never be known to the DEKF. For
that reason, a measurable value representative for these errors should be included in the definition for at least
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one of the covariance matrices. The matrix Ps includes both the variance of the HO tracking input u(t ) and of
the CE state y(t ) for scaling its values. Concluding, for time-invariant estimations and sigmoid variations, the
main performance indicator is the time it takes for the P matrices to recover to a constant value. For time-
varying sine scenarios, the focus is on the sensitivity of the DEKF to state estimation errors. The covariance
matrix performance indicators are graphically further explained for both sigmoid step variations (Figure 4.17,
Figure 4.18) and sine variations (Figure 4.19, Figure 4.20).

The upper plots of Figure 4.17 and Figure 4.19 show the P matrix values corresponding to the standard devi-
ation of the DEKF’s τ f prediction. In the same figures, the lower plots represent the absolute estimation error
for τ f . In Figure 4.18 and Figure 4.20, one can find similar plots, now for the nine canonical states. The dotted
green line represents the point in time where REL95 convergence was established after parameter variations.
Clearly visible in the sigmoid plots is that at t = 0 s, the variation occurs. The standard deviation values of
the Ps matrix converge to a new optimum, much faster than the REL95 convergence indicates. In the sine
variation case, it can be seen that the state covariance matrix values are updated based on the estimation
error. The values of all these plots can be incorporated as extra verification steps of the DEKF. Note that the
focus is mostly on the parameter estimation and the sensitivity towards the actual human behaviour. The
covariance matrix data is used to ensure decent functionality of the algorithm. Looking at Figure 4.17 until
Figure 4.20, it would be desirable to find some form of reaction of the two P matrices to time variations in τ f .
If the estimations are incorrect or too slowly adapting HO parameter vary, the P matrices can be investigated
to find whether the filter reacts according to changes in individual states and parameters. The sensitivity of
the DEKF to parameter and state variations is defined in the definition of the Q matrices, which is elaborated
upon in Section 4.4.
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Figure 4.17: Example of DEKF parameter sensitivity plot (sigmoid). Figure 4.18: Example of DEKF state sensitivity plot (sigmoid).
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Figure 4.19: Example of DEKF parameter sensitivity plot (sine). Figure 4.20: Example of DEKF state sensitivity plot (sine).
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4.4. Setting up DEKF for Preliminary Results
All types of performance indications have been elaborated upon in the previous section. In the scoping sec-
tion, the high dimensionality of the DEKF estimation process has been outlined. This sections serves the
purpose of finding the best initial settings for the DEKF to perform preliminary analyses. In order to achieve
that, first, the focus points for the set-up are elaborated, after which the results are presented. From these
results the best preliminary settings can be retrieved.

4.4.1. Fixed DEKF Settings
Before focusing on the variable settings, the fixed settings of the DEKF are elaborated upon. As was deter-
mined in the development of the simulation environment, the apparent delay τ∗f and the neuromuscular

delay τv are modeled as a third order Padé approximation. The reason for using exactly the same definitions
for the behaviour simulation and the state-parameter estimation is that every anomaly in the signals can be
detected, rather than only on behavioural or parameter level. The estimation of the apparent delay – and
thus look-ahead time τ f – is dependent on the choice for suspension time τs . This shift of reference makes
sure that the DEKF never has to estimate a negative delay. A value of τs = 0.9 s is selected for all SI dynamics
scenarios. Since solely τ f will be estimated in this research, all other parameters will be fixed at a specific
value. For the preliminary research scenarios, these fixed parameter values are shown in Table 4.1. At later
stage, these parameters can be assigned other values for different scenarios. For example, when data from
HMI experiments are analysed, it can be desirable to feed the DEKF with parameter values that have been
determined in frequency-domain LTI calculations. Should at some point in future research all parameters be
free to vary during DEKF estimations, they should be kept within physically feasible limits. An example of
these physical limitation is presented in Table 4.2.

Table 4.1: Fixed parameter values during DEKF estimation in preliminary research.

Parameter Value Unit

K f 1 -
ωb f 13 rad/s
τ f Varies s
Kp 1.3 -
Kv 0 -
ζnms 0.2 -
ωnms 10.5 rad/s
τv 0.25 s

Table 4.2: Suggested physically feasible limits for DEKF.

Parameter Lower limit Upper limit Unit

K f 0.01 2.5 -
ωb f 5 18 rad/s
τ f 0.01 τs− 0.01 s
Kp 0.01 2.5 -
Kv 0.01 2.5 -
ζnms 0.1 0.5 -
ωnms 8 13 rad/s
τv 0.1 0.5 s

In the DEKF, the P matrices for both the parameters and the states are initialised arbitrarily. In the first phase
of the estimation run, the Q matrix and the R value are constant, which is dependent on some sensitivity
parameters selected by the designer. These sensitivity factors are defined as q2, q2

f and r 2, which can be used

to change the DEKF’s sensitivity to variance of measurable signals. In Table 4.3, the initialisation of P , Q and R
is summarised. The parameter Nr etr o describes how many time steps are included in the variance calculation
of the signals e, ft and u. Up until Nr etr o , the Q matrix and R value are constant, after which they will become
a function of the changing signal variances. In Equation (4.4) until Equation (4.6), the descriptions are shown
for Q and R during the rest of the DEKF estimation run.
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Table 4.3: Initialisation of DEKF values P , Q and R.

DEKF Value Definition of initialisation

Pp,0 1
Ps,0 5 · I
Qp,0 0.06

Qs,0(ẋ5) q2σ2
e(1:Nr etr o )

Qs,0(ẋ9) q2
f σ

2
ft (1:Nr etr o )

R0 r 2σ2
u(1:Nr etr o )

Qs,k (ẋ5) = q2σ2
e(k−Nr etr o :k) (4.4)

Qs,k (ẋ9) = q2
f σ

2
ft (k−Nr etr o :k) (4.5)

Rk = r 2σ2
u(k−Nr etr o :k) (4.6)

In the equations, Nr etr o represents the number of steps of the past that are considered for the variance cal-
culations. By default, this is fixed at 500 data points (5 seconds) to the past. The degree to which the DEKF
variables Qs,k and R should react to changes in behaviour is still to be determined. The optimal settings for
the DEKF for q2, q2

f and r 2 are elaborated upon in the next part of this section.

4.4.2. Convergence Time and Bias in Time-Invariant Scenarios
As many engineering problems, there exists no single best setting for the DEKF algorithm. For example, in
scenarios with high variability of the parameters, it is desired to have a filter that is sensitive to these changes.
On the other hand, when scenarios are rather static, a more rigid filter is preferred to reduce the variance
of the estimations. Simultaneously, robustness is striven for, to ensure acceptable solutions for all scenarios
to be encountered. Testing all the DEKF’s initialisation settings in all types of scenarios (both TI and TV) is
computationally heavy, and outside the scope of this research. For that reason, during the tuning, a scenario
selection is made that can account for both TI and TV runs. The underlying assumption in these scenarios is
that the initial guess for the states and parameters is unchanged. In initial analyses, an arbitrarily high value
for the canonical states, and the value of 0.3 s for τ f were determined to be good starting points. It was also
determined that there was no significant difference in DEKF performance moving the starting point through
the domain of physically possible τ f values. The most important aspect of the scenario was the size of the
step up or down. For that reason, a simple range of scenarios could be designed. These scenarios for the
look-ahead time scheduling are all time-invariant, with three step sizes the DEKF has to make relative to its
initialisation. A small, medium, and large step both upward and downward were investigated. This sums to
a total of six research scenarios, where every scenario is run 9 times (3 remnant seeds, 3 FoFu realisations).
These scenarios are investigated to find the optimal settings for the preliminary research.

As ultimate goal, the DEKF runs in parallel with the measurements. In this case, the measurement trace
cannot be analysed beforehand, and thus initialisation should be designed for as much scenarios as possi-
ble. In the selection of best settings, it is important that the filter does not diverge under any circumstances.
Furthermore, it is required that the filter converges in a decent time frame, so that it keeps up with the hu-
man adaptation. Also, the calculations should be close enough to the actual parameter so that the estimated
human behaviour is representative for reality. All above motivates for finding an optimum for the DEKF’s
convergence speed and its accuracy. As explained before, these features oppose each other, and a trade-off
is to be made. In the analysis, the speed characteristic is expressed in terms of REL95 convergence time (see
Section 4.3) and estimation bias. A constraining requirement is the robustness of the filter, making it fit for
many different situations.
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4.4.3. Optimal DEKF Sensitivity Settings for Q and R
The values for q2, q2

f and r 2 in combination with the measurable signal variances are presented in Equa-

tion (4.4) until Equation (4.6). They represent the reactivity of the DEKF’s Q matrix and R value to changes in
the parameter values. The intention of tuning these variables is to find a starting point for the further time-
varying DEKF analyses. For this, just the order of magnitude already suffices. Due to the virtual nature of the
research, fully optimising the DEKF serves no direct purpose for the experimental phase. Understanding the
effects of these sensitivity parameters on the DEKF performance is most insightful. This ensures that the filter
can be tuned according to specific needs in future research. All three squared values are therefore varied over
the range {0.01,0.1,1,10,100}, and for all six scenarios both the REL95 convergence time and the parameter
estimation bias was investigated.

REL95 Convergence Time

In Figure 4.21 until Figure 4.23, the heatmaps show the REL95 convergence time for different sensitivity vari-
ables in a single scenario. Every individual plot represents a specific setting for the R sensitivity. The Q
sensitivities are presented on the horizontal and vertical axes of the plots. The plots for r 2 = 0.01 and r 2 = 100
are excluded from this report, because too many combinations proved divergent or overly rigid, respectively.
The scenario under investigation is a large step upward from the look-ahead time initialisation (τ f ,0 = 0.3 s,
τ f = 0.7 s). This was the most constraining scenario, and the selected settings that can converge well in this
scenario were also effective in the other scenarios. The values in the heatmaps present how long it takes for
the DEKF re-simulation’s VAF to reach 95% of the open-loop simulation’s VAF, and sustain this until the final
data point. A black bracket means that the filter’s re-simulation never reached the 95% threshold. Values
close to 120 s imply that the VAF reaches 95% at times, but this cannot be sustained.

Figure 4.21: Convergence as function of q2 and q2
f (r 2 = 0.1). Figure 4.22: Convergence as function of q2 and q2

f (r 2 = 1).

Figure 4.23: Convergence as function of q2 and q2
f (r 2 = 10).
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With the plots on REL95 convergence time at hand, one can find the best initial order of magnitude for the
sensitivity variables. The lowest possible value for REL95 convergence can be found in Figure 4.21, corre-
sponding to DEKF settings r 2 = 0.1, q2 = 1 and q2

f = 1. However, these settings prove to be on the fringes of

stability in the q2 and q2
f domain. It can be seen that lower values for these variables result in much higher

convergence time, hinting to never actually sustaining REL95. The second-best – and more stable – solutions
can be found if the the values for r 2 are increased. It was concluded that both robust and fast performance
can be guaranteed if all sensitivity values are in the range {1,10}. One slightly more granular analysis was
performed, selecting

p
10 ≈ 3.16 for all variables as decent optimum for the preliminary analysis.

Estimation Bias

Since it is a trade-off, convergence speed can come at the cost of accuracy and consistency. As a verification
step, the estimation bias after convergence should also be investigated in all the analyses of the set-up. Fig-
ure 4.24 until Figure 4.26 show the offset of the mean of the estimation after REL95 convergence, compared
to the simulated value of τ f . The axes of the figures overlap exactly with the convergence time heatmaps.
Again, a black bucket indicates a run that never reached REL95. Note that the 95% threshold is arbitrarily
determined, and that convergence can continue after reaching it. This results in the introduction of some
bias in every scenario from a theoretical perspective already. Estimating values higher than the initialisation
value always show some negative bias at their optimum. For lower values, positive bias can be expected. In
Section 4.3, some expectations regarding the precision of the estimation were already determined. Due to
the sensitivity of the HO parameter τ f towards behaviour, the DEKF might encounter difficulty in detecting
small changes. Still, averaged over many runs, it is desirable to reach a low value for estimation bias.

Figure 4.24: Bias as function of q2 and q2
f (r 2 = 0.1). Figure 4.25: Bias as function of q2 and q2

f (r 2 = 1).

Figure 4.26: Bias as function of q2 and q2
f (r 2 = 10).
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Besides boosting the performance, the ambition is to create a set-up that shows consistency in terms of speed
and accuracy. In the bias plots, one can verify whether the selected range of {1,10} for all three sensitivity
variables supports this ambition. Looking at the bias found for r 2 = 1, q2 = 1 and q2

f = 1 (Figure 4.25), one can

see a rather large difference with its direct neighbors. This finding suggests that a robuster choice is slightly
increasing the r 2 value. After the more granular analysis, the value of

p
10 for all three sensitivity variables

proved to be an adequate trade-off between convergence and accuracy. After these set-up analyses, these
design settings are trusted to provide stable preliminary results. Now that the DEKF has been initialised, the
first results on time-varying estimation can be acquired.

4.5. Analysing DEKF Performance in Time-Varying Scenarios
As final part of the preliminary research, the DEKF is implemented for the state and parameter estimation
in scenarios with time-varying operating strategies. After the set-up in Section 4.4, the DEKF is expected to
provide converging solutions in a reasonable time frame. Ultimately, the algorithm should be tested in an
experimental environment with actual human operators, or in a simulation environment with human-like,
and stochastic variation. Because it is difficult to predict HO strategy parameter variations in these cases, it is
preferred to investigate a scoped time variation in this phase of the research. The parameter if primary inter-
est is look-ahead time τ f . The time-varying scenarios are designed so that only τ f shows variation. All other
HO strategy parameters are fixed at the value they would have based on a full preview experimental scenario
(Appendix A). These variations of look-ahead time are scheduled in generalised scenarios, in order to ensure
quantitative analysis of the results. The goal of this preliminary performance analysis is to create insights in
the theoretical best possible performance of the algorithm. Should the algorithm be understood in this en-
vironment, more complexity can be added in the simulation. After that, it can possibly be implemented for
actual human experiment data. Two generalised functions for variation are further elaborated upon: sigmoid
steps and (multi-)sines. The experiment descriptions and the accompanying results of both variation types
can be found in this section.

4.5.1. Sigmoid Step Variation
In real-life tracking tasks, there exist many factors influencing the HO look-ahead time strategy of the opera-
tor. For example, a tracking task obstruction or heavy weather can drastically decrease the available preview.
If the HO is forced to focus on the task closer ahead, this means that the look-ahead time is decreased in
terms of strategy. Besides external constraints, a human can also showcase varying look-ahead time due to
internal situations, e.g. distraction or fatigue. Such strategy changes can occur gradually, or rather abruptly,
and the steps can have different sizes. The gradual steps can be modeled as a range of smaller abrupt steps.
In all cases, it is interesting to find whether the DEKF can detect the sigmoid steps in τ f and converge to an
accurate estimation of both the initial and terminal value.

The goal of analysing DEKF performance in sigmoid scenarios is finding whether all changes in the physically
feasible range can be detected by the DEKF. Furthermore, it can provide knowledge on the convergence time
for all possible sigmoid variations. A nearly instant step of 1 s provides best insights in the convergence time
performance indicators. For single integrator tracking tasks, the HO look-ahead time parameter is generally
expected to range between 0.0 s and 0.6 s (Appendix A). To also show the performance in the vicinity of these
expected limits, 0.7 s is selected as upper boundary for the preliminary research. The effect of sigmoid step
size on the DEKF REL95 convergence time is studied. This motivates for introducing all possible step sizes in
the feasible range. Furthermore, the influence of the initial value, the terminal value and the step direction
(increased or decreased τ f ) is to be studied. To facilitate these requirements, a balanced scenario selection
is introduced. These scenarios include 5 possible initial values ({0.0, 0.15, 0.35, 0.55, 0.7} s) and 15 possible
terminal values ({0.0:0.05:0.7} s). All combinations of the value progressions are included as a scenario, except
the cases where the values are equal. Comparable to Section 4.4, 3 remnant seeds and 3 FoFo realisations are
combined to 9 runs per specific scenario. This increases the validity of the simulation results. This sums to
a total of 630 complete runs for an analysis. These analyses were performed for 5 sigmoid function designs
with different steepness. It was found that the most insightful results came from simulations were it took 1
second to vary τ f from the initial to the terminal value. With all DEKF estimations for the individual scenario
runs, it is desired to find how long it takes for the re-simulation’s VAF to recover to REL95 convergence after
the step change. Additionally, it should be visible whether differences exist between starting points and step
directions. All these results should be taken into consideration when creating hypotheses for the human-like
simulations and HO experiments.
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Results

For sigmoid step variations, the preliminary key insight should be how much time it takes for the algorithm to
recover to a new sufficiently accurate equilibrium set of parameters. Figure 4.27 shows how long it takes for
the DEKF’s re-simulation to reach the 95% VAF similarity threshold, compared to the open-loop simulation.
The step time describes the time passed between the initial an terminal τ f value in the simulations. On the
horizontal axis, one can find the absolute step size of the sigmoid function for τ f . The vertical axis represents
the time to re-converge the DEKF estimations, based on the arbitrary REL95 rule. The coloured circles are
the averaged datapoints of the 9 runs for a specific scenario. The bold black line shows the mean REL95
convergence time for scenarios with identical absolute step size. The dotted and dashed line represent the
means for only the steps down and up, respectively.
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Figure 4.27: The effect of sigmoid step size in τ f on the time it takes for the DEKF to reach REL95 convergence.

Clearly visible in Figure 4.27, the sigmoid step size of τ f should be between 0.05 s and 0.1 s to trigger the need
for re-convergence. Evidently, when a lower threshold for convergence (e.g. >90%) is selected, this could
influence the conclusions on convergence time. Still, useful results regarding DEKF performance can be re-
trieved from this plot. Most importantly, for all introduced sigmoid steps, the DEKF managed to accurately
estimate τ f at some point. With these re-converged estimates, the DEKF re-simulations show at least 95%
similarity with the open-loop best estimate simulation. Then, within the feasible range for τ f , there seems
to exist a linear relation between the step size, and the time it takes to re-converge. For large variations in
look-ahead time (e.g. 0.6 s), the DEKF can be expected to take approximately 20 seconds to provide param-
eter estimations that create re-simulation with REL95 convergence. Two final important insights are that the
DEKF seems to be able to equally well estimate positive and negative sigmoid steps, and that specific ini-
tial and terminal points show no significant differences. This means that only the step size is expected to
influence the results.

4.5.2. (Multi-)Sine Variation
Re-visiting the real-life examples, operators can encounter situations that trigger a periodical variation of
look-ahead time. For example, in urban areas, every time an operator drives past a crossing, one can expect
the focus of preview information to become closer to the car. If such driving scenarios are regularly repeated
– some roads have many crossings, nearly equally spaced from each other – the strategy might change peri-
odically with that. Furthermore, purely from a HO perspective, just as for the sigmoid case, the look-ahead
time parameter could also show rhythmic variations intrinsically. For these reasons, further research into the
DEKF performance is executed, now focusing on sine variations of τ f .
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Since the constantly changing values for τ f impede the DEKF from converging, the goal of the sine varia-
tion analysis is to investigate which patterns in parameter estimation can be identified for specific scenarios.
If such a pattern exists, it is interesting to find the influence of the scheduled τ f amplitude and frequency
on the DEKF performance. The experiments for the sine variations are meant to complement the sigmoid
analysis in the DEKF validation. Therefore, the same look-ahead time range of {0.0,0.7} is used. This time,
the performance indicators cannot be expressed in convergence time. Still, it is insightful to know the VAF
similarity between the open-loop simulation and the DEKF re-simulation. In the complete analysis of sine
scenarios, the VAF of both open-loop simulation and DEKF re-simulated can be compared for different am-
plitudes and frequencies. For this investigation, the relative VAF (DEKF re-simulation divided by open-loop
simulation) is collected for every time step. Note that it should be ensured that the estimations show pe-
riodic progression for this method to work. An arbitrary point where this is guaranteed is after 60 seconds
of estimation. The mean value of these relative VAF points provides a similarity score with the open-loop
best estimate. These scores can be presented in a heat map or surface plot, as function of parameter vari-
ation amplitude and frequency. The studied frequencies are expressed in base numbers, which represent
how many complete periods fit in the complete measurement time of 120 s. The range for base numbers is
{0.06,0.15,0.3,0.65,1,1.5,2,3,5,7,11,17}, and for amplitudes, it is {0.1,0.2,0.35} s. If all combinations are re-
peated 9 times to account for remnant an FoFu variations, this adds up to 324 complete runs of 180 seconds
(60 s run-in time, 120 s measurements). The problem can also be addressed from a parameter estimation per-
spective. Since the input frequency for look-ahead time variation is a sine, it can be expected that the DEKF
τ f estimation response is a sine as well. Initial research proved that this expectation holds for the analysis
range that is used. After averaging the 9 estimation runs for a specific scenario, a sine curve can be fitted to
the data between t = 0 s and t = 120 s. Figure 4.28 shows what such a sine fitting looks like for an arbitrarily
chosen scenario trio with equal frequency.

Figure 4.28: Illustration of sine curve regression on averaged DEKF estimation data for τ f .

The figure clearly shows that for a range of amplitude-frequency combinations, the DEKF’s τ f estimation
looks like a frequency response with a constant gain and phase shift. First of all, similarity between the two
traces could be studied using a PCC calculation. Furthermore, a plot can be constructed, which captures the
gain and delay between the originally scheduled parameter trace and the DEKF estimated trace. Perform-
ing this regression and analyses for all amplitude-frequency combination can show fundamental insights in
estimation performance. It is interesting to see within what range the estimation is nearly identical to the
original. Furthermore, it can be investigated at what frequency the performance starts to deteriorate, and
how steep this degradation is. This knowledge, in combination with the sigmoid analysis forms the basis for
further research into more sophisticated simulations and HMI experiments.
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Results

For sine time variations of τ f in SI tasks, the most important results should be showing how the DEKF al-
gorithm performs in the studied amplitude-frequency domain. It is interesting to see whether there exists
a domain where the REL95 criterion is sustained, and to find where this arbitrary definition of performance
is not met anymore. The relative VAF performance as function of amplitude and frequency is shown in Fig-
ure 4.29. For this analysis, the mean value for τ f was set at 0.35 s. Various frequencies (horizontal axis) and
amplitudes (vertical axis) were combined, and the relative VAF between the DEKF re-simulation and open-
loop simulation was documented. The value is presented as a fraction, combined with an associated color
code.
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Figure 4.29: Heatmap of relative tracking VAF as function of τ f scheduling frequency and amplitude.

As can be seen in Figure 4.29, increasing either τ f amplitude or frequency both negatively affect DEKF VAF
performance. In line with expectations, the amplitude of the variation is significantly more influential than
the frequency. Evidently, this is due to the more pronounced behaviour changes due to larger differences in
τ f . Also visible in the heatmap, is that the DEKF in its current design is tailored to relatively low frequency
changes. In practical applications, should the human be periodically changing its strategy with higher am-
plitude and frequency, the DEKF is expected to perform poorly. Investigating the VAF results in the domain,
there seems to exist a pattern between the scheduled variation and the estimated variation.

As more in-depth research, it is interesting to find at which point the estimation performance starts to drop,
and whether there exists an analytical relation between amplitude-frequency and performance. For this fur-
ther investigation, the results are analysed on a parameter estimation level, using the sine regression on the
averaged DEKF output as explained earlier in this section. While exploring the possibility for the sine regres-
sions, it was discovered that this step is only possible in the low frequency domain. After a specific threshold
frequency, the averaged DEKF estimation curve stopped showing characteristics comparable to the schedules
values. Although potentially still a periodic signal, no direct linear frequency response could be retrieved. Fig-
ure 4.30 showcases the PCC, the gain and the delay between the scheduled and estimated values for τ f . Only
the frequency domain where the sine regressions holds is included. On the horizontal axis, the frequency of
the scheduled look-ahead time sine variations can be found can be found on a logarithmic scale. The vertical
axes represent the the PCC, gain (logarithmic), and delay between the scheduled values and estimated val-
ues. The red line corresponds to 0.1 s amplitude variations of τ f , the green and blue line show the 0.2 s and
0.35 s results, respectively. The data points correspond to the amplitude-frequency combinations presented
in Figure 4.29.
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Figure 4.30: Frequency response plot between the scheduled variations and DEKF estimations of τ f .

The results presented in Figure 4.30 support the suggestion that there exists a relation between amplitude-
frequency and parameter estimation performance. These results are unique to the DEKF settings that were
fixed in Section 4.4. Very important for the interpretation of the results, is that they are based on a look-ahead
time parameter level comparison. The actual sensitivity to the corresponding HO behaviour is occluded in
the plots. For example, the small amplitude variations in τ f are expected to have little influence on HO track-
ing input (Section 4.3). Therefore, for these smaller perturbations, the DEKF might not be able to reconstruct
the sine patterns in more elaborate simulations or HMI experiments. Still, the parameter level analysis pro-
vides useful insights for the final research phase.

In the PCC plot (upper sub-plot), one can see that, for the lower frequencies, the DEKF estimated τ f trace
shows a correlation of nearly unity with the scheduled trace of the simulation. In the researched domain, the
PCC progression is approximately equal for the three amplitudes. At f = 0.01 Hz, the estimation begins to
show less correlation, after which the correlation increases again, now in inversed form. Should the analyses
be allowed to go beyond the highest frequency in this plot, the negative correlation is expected to increase
further. Besides this correlation, it should also be investigated what the frequency response looks like.

The plot regarding the response gain (middle sub-plot) shows that the estimation’s gain with respect to the
original simulation stays nearly unity until f = 0.015 Hz. For the gain plots, the difference between the differ-
ent τ f variation amplitudes is more pronounced. The estimation’s response gain drops faster for the higher
amplitude variations in the simulations. Nonetheless, the progression of the gain with respect to variation fre-
quency is similar for all amplitudes. Remember that in these plots, nothing can be immediately distinguished
regarding HO behaviour. For the high amplitude case (0.35 s τ f ), at the end of the analysis domain, only 10%
of amplitude is left in the response. This is 0.035 s, meaning that it consistently under- or over-estimates
the value for look-ahead time with approximately 0.3 s. This would be significantly visible in HO behaviour,
and thus make the τ f estimation insufficient. For this same frequency, the gain for the low amplitude case
(0.1 s τ f ), 20% of the scheduled amplitude is sustained in the response. This corresponds to the DEKF being
consistently off by less than 0.1 s. In terms of behaviour, this is far less significant than the high amplitude
scenarios. One can re-visit Section 4.3 for more elaborate explanation of the sensitivity of HO behaviour. The
little peaks that exceed unity at the lowest frequencies are estimation errors caused by the merely small part
of the scheduled period observable to the DEKF. The measurement time frame counts 120 s, whereas the in-
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vestigated frequency’s simulation should span 2000 s to span one complete period. The actual response gain
of the DEKF estimation trace is expected to be unity, should the measurement duration be extended.

The response delay plot (lower sub-plot) portrays that the DEKF can keep up with the lower frequency varia-
tions, which is as expected. Similar to the PCC plot, the curve is nearly identical for all scheduled amplitudes.
The phase delay, and thus correlated delay time, seems to increase rather slowly until f = 0.01 Hz. For higher
frequencies, the drop in phase becomes steeper, which is sustained toward the upper fringe of the domain.
The plot suggests that for higher frequencies, the estimation will run completely in counter-phase with the
originally scheduled trace. However, this cannot be confirmed yet, as non-linear effect might play a role for
higher frequencies.

4.6. Reflection on Results
The main goal of current DEKF studies is to find a time-varying tool that can estimate the HO strategy based
on the measurable signals in the control loop. In this study, the preview strategy is parameterised following
the theory of Van der El’s preview model [14]. With this preliminary research, it is intended to make a first
step in a validation study of the DEKF as a time-varying identification tool, and to propose final analyses. A
simulation-verification environment has been created, capable of comparing all DEKF estimated states and
parameters with an open-loop simulation. For the estimation of τ f in simulated environments, performance
indicators have been established, both in terms of behaviour as purely the parameter values. Based on these
performance indicators, a DEKF has been set up which is expected to perform relatively well in following
research. During this set-up, knowledge was gained on the effects of DEKF sensitivity and initialisation on
the performance. The preliminary DEKF was implemented in analyses where only τ f was scheduled to vary,
and only τ f was free for the algorithm to estimate. Both for sigmoid steps and for sines, the DEKF response for
simulated τ f schedules was recorded. This provided significant insights in the expected performance of the
DEKF within specific research domains. The minimum time required for filter convergence, and the dynamic
response to specific periodic behaviour changes create the basis for further analyses. This is important for
the understanding of filter limitations, when the algorithm is used for human tracking data.

Some assumptions and scoping decisions should be carefully considered in the interpretation of the results.
The most important scoping decision made is the limitation to single integrator dynamics research. The dou-
ble integrator dynamics have proven to be fundamentally different [21] [19], and require a similar analysis
before conclusions can be drawn. It is expected that more fundamental research is required in the param-
eterisation and the definition of the remnant, before the DEKF can become effective for double integrator
studies. Second, the parameters were scheduled such that only τ f varied, and the estimations were restricted
to solely the estimation of τ f . This effectively means that, if the behaviour is changed due to the parameter
change (depends on sensitivity), the algorithm is expected to attribute this change correctly to τ f . It is there-
fore important to introduce a more complex simulation and tuning phase, where the challenge for the DEKF
is comparable to real-world applications, before the algorithm can be implemented for HMI experiment data.
An additional note on the preliminary results, is that the invariant parameters of the simulations did not co-
incide with the fixed parameter predictions of the DEKF. The first corresponded to a time-invariant scenario
with τp = 2.0 s, and the latter to a scenario with τp ≈ 0.3 s. This anomaly was not intentional and discovered
at later stage, and fortunately, the effect on the results is manageable. Lastly, some care has to be taken for the
interpretation of the DEKF’s sine variation response. For the presented frequencies, it was possible to regress
a sine curve based on the averaged estimated values for τ f . Due to this regressions, it was possible to find
the gain and delay, compared to the originally scheduled τ f variation. The analysis deliberately stopped at
a frequency base number of 17, since this was the highest primal number that would induce an estimation
trace on which a sine could be fitted. The higher the frequencies, the more the estimations move away from
sine-like traces. Looking at the plots, it might seem as if the linear relation would have progressed further for
higher frequencies. This is not the case, and it might even be that the actual estimation response is of non-
linear nature. Still, within this low frequency domain, the DEKF seems to be quite predictable in its output.
This should be used to the researcher’s advantage. If the DEKF’s τ f estimation shows low frequency sine-like
progression, it will most likely represent a slightly different value in the preview model look-ahead time defi-
nition. This frequency response plot might become useful for the investigation of the actual look-ahead time
values when only the DEKF estimation is observable. This is a suggestion for future research. In the process
toward implementing the DEKF for HO tracking task data with time-varying preview, follow-up steps to these
preliminary results are proposed in Chapter 5.



5
Proposed Final Analyses

During the preliminary research phase, Vertregt’s Dual Extended Kalman Filter [19] algorithm has been iter-
ated. One of the research focus points was to create a robust estimator. Another area of focus was to examine
its performance for both time-invariant and time-varying human operator behaviour. The analyses up un-
til this point were performed with highly simplified scenarios. The most important assumptions were that
the algorithm was limited to the estimation of look-ahead time τ f , and that only the look-ahead time varied
during the simulation with simple scheduled strategy variance. Constraining the filter to τ f estimation is
substantiated with the knowledge that this parameter is most variable with display preview, and shows most
sensitivity to the behaviour. Discovering a time-varying identification tool that can accurately describe just
this parameter during HO tracking tasks would already be adding value. However, the isolated and simpli-
fied scheduled look-ahead time variance of the preliminary analyses do not directly translate to HMI exper-
iments. For that reason, the further investigation focuses on preparing the algorithm for simulations where
all HO strategy parameters vary, and for HMI experiments that have highly stochastic human features. If
the DEKF is well-understood in simulated scenarios, it can be implemented for estimation runs on HO data.
Since human strategy – and thus behaviour – is fundamentally different for single integrator and double inte-
grator preview tracking tasks, it is decided to proceed with only the first dynamics in the final research phase.
In this chapter, the re-iteration of the DEKF is described in Section 5.1, using simulations where all strategy
parameters are varying. Especially important for the validation of estimations in real-life applications, in Sec-
tion 5.2, a description can be found of how the DEKF will be implemented for existing time-invariant HMI
experiment data. Then, in Section 5.3, a new experiment is described for single integrator tracking tasks with
time-varying preview. In this same section, it is discussed how the algorithm will be analysed, and what is
expected of the results for time-varying HMI experiment data. To conclude, Section 5.4 discusses what the
contribution of the findings will be to the larger scope of time-varying identification methods for preview
tracking tasks.

5.1. Simulations for Final Analyses
Until this point, only the look-ahead time parameter τ f has been varied in the scheduled simulations. All
other parameters, such as the compensatory response parameters to internal error e∗ and the lumped re-
sponse time delay τv were assumed to be invariant. Now that the DEKF performance for these isolated τ f

variations has been studied, there are insights in its theoretical best performance. Before implementing the
estimation algorithm for HMI experiment data traces, it needs to be studied whether the look-ahead time can
still be accurately retrieved when the DEKF is exposed to variations of all HO strategy parameters. Including
all strategy parameters’ variations is not directly translated into HO output u(t ) realism. Consequently, this
simulation phase will not guarantee adequate performance for HMI experiment data. Still, it is an important
step before testing the algorithm with data from real humans performing the preview tracking task. In this
section, the fundamental updates of the simulations are presented, after which suggestions are given for a
re-tuning process of the DEKF.
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5.1.1. Simulating the HO Parameter Variations

Including All Strategy Parameters – Expected Variation Based on Time-Invariant Experiments

After initial analyses of HO strategy parameter sensitivities to the signal output, the look-ahead time τ f

proved to be most variable and influential. During this first step in the preliminary research, the bench-
mark settings for the HO strategy parameters’ sensitivities were based on the time-invariant experiments of
Van der El [21] (Appendix A). The benchmark scenario entailed that all HO strategy parameters were assigned
the mean value measured for an experiment with 2.0 s of display preview time. This amount of preview is
far beyond the critical preview time value for human operators in single integrator tracking tasks. From this
baseline, every parameter was varied individually over its entire physical range for the single integrator pre-
view time experiments, with τp ranging from 0.0 s to 2.0 s. In real-life, all HO strategy parameters are expected
to vary simultaneously due to display preview time variations. Although not yet studied in time-varying ex-
periments, the range of time-invariant experiments of Van der El show a trend for the parameters moving
from high values of preview time to pursuit tracking tasks. All these strategy parameters have effect on the
HO output, most of them likely to a lesser extent than the look-ahead time. The ambition to estimate τ f with
HMI experiment data motivates to include the knowledge from Van der El [21] in the time-varying simula-
tions. Including more parameter variations is not intended to represent actual human behaviour, since that
has not been studied yet. The analyses are added to prepare the algorithm better for real-life scenarios, where
all parameters will most likely vary when the display is varied.

Since there are 8 parameters that influence behaviour, varying them altogether might create a HO output
signal trace that differs significantly from the preliminary research, where solely τ f was varied. Figure 5.1
schematically shows what this more interdependent variation of parameters looks like. All parameters are
assumed to change linearly with τ f . In further simulations, it is assumed that no non-linearity exists in the
parameter dynamics, and that a specific value for τ f is always combined with specific values for the other
parameters. The upper and lower limits of the parameters are determined by the values presented in Van der
El’s research [21] (Appendix A) for τp = 2.0 s and τp = 0.0 s. Figure 5.1 schematically shows the key differences
in the parameter traces between the preliminary (black, dashed) and the final (blue) simulations.

Figure 5.1: Schematic representation of new parameter variations (blue) compared to preliminary schedules (dashed).

In Figure 5.1, an arbitrary parameter time trace is presented for both a sigmoid step variation (left) and a
sine variation (right). For the interpretation of the figure, it is not relevant what the corresponding step or
sine variation of τ f is. The dotted line shows the parameter value that was measured by Van der El [21] for a
preview time τp = 2.0 s. Except the look-ahead time, all parameters have been assumed to have this constant
value during the simulation. The blue line represents the parameter’s progression as function of τ f variation.
Again, this is not intended to reflect reality, since the actual traces are yet to be determined. The goal of adding
these parameter variations stays to test whether the DEKF can still attribute fairly accurate values to τ f , even
if its direct influence is slightly occluded by other parameters.

Remarks on Final Simulations

The goal of this extended simulation research remains fairly equal to the preliminary phase. It is still inves-
tigated how well the DEKF can identify the look-ahead time parameter τ f while it is varied over the course
of the measurements. However, an important difference is that the future simulations primarily focus on
complementing the time-varying HMI experiment analyses. As defined in Chapter 3, in the final EXP re-
search phase, it is important to discover how the DEKF would behave using time-varying HMI experiment
data. Time-invariant HMI data can be used to assess influence of some DEKF settings (initialisation, vari-
ance sensitivity, fixed parameters). The time-varying behaviour in the experiments is expected to be different
from the time-varying simulations that have been investigated thus far. In order to match the SIM research
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phase to the EXP phase, more parameters are varied, while the scenarios overlap with the experiments per-
formed in HMI-Lab. More scenario settings could be studied to find differences in the theoretically possible
solutions between simulations where only τ f varies, and where all other parameters vary as well. With the
knowledge available, it is not yet possible to analyse the DEKF while it simultaneously estimates all strategy
parameters. It is desired to first analyse look-ahead time estimation from start to end – preliminary simula-
tions to time-varying HMI experiments – and validate the DEKF’s performance for that application. There-
fore, all parameters except τ f are estimated at the same fixed values as in the preliminary research. These
are the values found at τp = 2.0 s in Van der El’s research on preview time sensitivity of the parameters [21]
(Appendix A). Also note that the simulated variations are a based on a simple linear extrapolation between a
parameter’s highest an lowest mean value. The HMI experiments supporting these limits were time-invariant
preview display tracking tasks. Both the general non-linearity of the parameters, and the possible additional
non-linearity introduced by time-varying tasks are occluded. This should be kept in mind while creating ex-
pectations. Furthermore, remember that stochastic features like fatigue, learning and general variability are
excluded from the simulations.

5.1.2. Preparing DEKF for Complex Simulations and HMI Experiments
In the preliminary research, the DEKF was set up such that it would ensure relatively stable and consistent
estimations for τ f . Motivated by the complexity of the time-varying simulation and estimation runs, finding
a perfectly tuned algorithm is not the research goal. However, it is important that the filter can showcase sta-
ble responses in the highly complex cybernetics environment. Furthermore, as much knowledge as possible
should be gained about expected behaviour and points for improvement. Actual human strategy parame-
ter variation can never be known. Still, the filter should be prepared as well as possible to create sensible
results for HMI experiments. The performance insights in the preliminary phase were based on isolated τ f

variations. The more complex simulations inspire for a new tuning process, this time performed slightly
differently. Important experience is gained about the analysis of the algorithm in the first analyses. This is
relevant for the design of the further analyses processes. Three key notions for improvement are included
below, being an increased number of realisations for selected scenarios, the focus on estimation robustness
and the knowledge-based optimisation of the DEKF settings.

Less Scenarios, More Realisations

As can be seen in Chapter 4 and Appendix B, a large number of different scenarios is investigated in the
preliminary research phase. The main reason for this was that little knowledge existed on how dependent
the performance of the DEKF was of certain features in the parameter traces. An important knowledge gap at
that point was whether there existed performance asymmetry between estimation of high and low values of
τ f . Also it was not known yet whether performance asymmetry was present between upward and downward
variations. Lastly, the influence of DEKF paramter estimation initialisation was yet to be determined. To not
be surprised at later stage, the algorithm has been stress-tested with a wide range of scenarios. However,
this does not directly mean that all these scenarios have to be re-investigated in the final phase. Clearly
visible in the preliminary results, the DEKF response is mostly sensitive to the size of the variation. Other
characteristics like the t au f variation’s visited values and the speed with which it varies are far less influential.
Conversely, something that might deserve more attention in this phase, is the verification of the results for
a specific scenario. In the preliminary research, all possible combinations of 3 remnant seeds and 3 FoFu
realisations were studied for one scenario. To draw statistically more sound conclusions, this range of seeds
and realisations should be increased per scenario. Note that if both the remnant seeds and FoFu realisations
are increased, this will increase the number of simulations quadratically. These insights can be used to switch
the focus from the scenarios to the realisations per scenario in upcoming research. While making a selection
of the scenarios, they should be brought in line with the time-varying HMI experiment. This way, the analyses
can complement each other in the formation of conclusions.

Focus on Stability and Accuracy, Rather Than Speed

For the preliminary tuning, emphasis was assigned to the convergence time of the algorithm. This was de-
fined as the point where the DEKF re-simulation’s VAF reached 95% of the open-loop simulation’s VAF. An
order of magnitude of relatively quick convergence and relatively accurate estimation was selected as best
starting point. Within the domain that was determined most promising, the convergence time varied only
by approximately 10%. Additionally, this was convergence time for a highly simplified scenario, and should
not be directly copied for the more complex investigations. Another focus point in the preliminary analysis,
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was the constraint that the entire selected domain and its direct neighbours should be showing stable results.
Abrupt changes in convergence time and estimation bias where labeled unstable and therefore to be avoided.
For the final research, the arbitrary convergence time performance indicator is dropped, to focus more on the
estimation accuracy and the sensitivity towards HO behaviour. A performance indicator that describes the
re-simulation’s similarity with the open-loop simulation is still used. This time, the VAF relative to open-loop
VAF is collected and stored fore every point in time, rather than that the convergence time is abstracted. This
can be used for both sigmoid and sine variations, and the applicability is not decreased due to the noise in the
parameter variations. This performance indicator, in combination with the increased number of realisations,
can facilitate finding a new stable base setting for the filter.

Knowledge-Based Tuning, Rather than Monte Carlo

The DEKF is expected to require re-tuning before performing sufficiently stable and accurate estimations.
In the preliminary research, knowledge is gained on decent algorithm settings for the simplified scenarios.
The investigated settings domain for the final analyses can be scoped to significantly more selective values.
The new optimisation domain for q2, q2

f and r 2 will be limited to [0.1,10]. In the preliminary research, the

studied range for each sensitivity variable was {0.01,0.1,1,10,100}. All combinations were visited, summing
up to a Monte Carlo analysis of 125 unique settings, which were exposed to 6 different scenarios that all
had 9 realisations. As explained in this section, resources are aimed at more validity per scenario, both in
terms of remnant seeds and FoFu realisations. This will quadratically increase computational expense. The
preliminary tuning process using solely Monte Carlo analyses is revised. For the re-tuning, the first step will be
a Monte Carlo analysis of performance in the sensitivity variable range {0.1,1,10}. This sums up to 27 unique
settings. After this order of magnitude study, the most promising octant is selected. Within this octant, the
further optimsation will be performed with linear scale. Every octant can be subdivided in 8 sub-octants by
adding 18 data points (unique settings) which are the mid-way points of all edges. Investigating these unique
settings enables to find a the tuning to become significantly more granular. If required, this downscoping of
the optimum domain can repeated several times, while still being less computationally expensive than the
preliminary Monte Carlo tuning. Should the terminal optimum lie at the outer fringes of the initially selected
domain, a new smaller optimisation has to be performed with this optimum as centre point. However, the
optimal values are not expected at the fringes based on the preliminary research.

5.2. Time-Invariant HMI Experiments
In the final simulation phase, the primary scenarios involve time-varying HO strategy parameters. Logically
following after such simulations, are time-varying HMI experiments where task variables vary in order to in-
duce the variation of strategy parameters. The largest difference in the case of experimental data usage is that
no certainty exists of the parameters at every given point in time. This means that the time-varying identifica-
tion tool cannot yet be validated in time-varying HMI experiments, since no data on adequate performance
exists. It is thus difficult to discover whether the DEKF is a suitable candidate for the combined state and pa-
rameter estimation during time-varying preview tracking tasks. In previous research, a range of experiments
has been performed where the preview model parameters have been estimated and validated already [14].
These experiments were of time-invariant nature, and should thus be concluded with time-invariant values
for the HO strategy parameters. Before letting the DEKF algorithm estimate time-varying values that can-
not be directly validated, these previous experiments can be used to the advantage of the further research.
This section elaborates on which time-invariant HMI experiment data is proposed to be used, and how the
estimation results can be compared with the time-invariant analyses.

Experimental Data

Over the course of last decades, many HMI experiments have been performed with single integrator con-
trolled element dynamics and time-invariant preview in the display. Data has to be selected that best serve
the purpose of the final research: finding out how a DEKF performs in identifying look-ahead time. For this
to be possible, time-invariant experiment data of the same HO with different amounts of look-ahead time
should be available. An analysis referred to regularly in this report (Appendix A [21]) investigates the effects
of display preview time τp on all preview model parameters [empty citation]. The look-ahead time τ f is a
strategy parameter that relates directly to the amount of preview available. As confirmed in the paper, in the
data, different values for τ f from several unique HOs are available. The experiment data entails 8 different
conditions for the amount of available preview time τp , ranged {0.0,0.25,0.5,0.75,1.0,1.33,1.66,2.00} s. The
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8 different conditions require an integer multiple participants for the data validation, since the influence of
condition order can then be mitigated using a Latin square HO scheduling. Per participant, each condition
was collected for 5 different realisations. After the acquisition of data, the differences between the conditions
were studied using linear time-invariant (LTI) identification methods. The results of this LTI identifications
correspond to the time-invariant values of strategy parameters that are presented in the plot in Appendix A.
The experimental data from this research is suited to be implemented in the time-invariant research of the
DEKF. Should more data traces be desired, many other experiments presented in the compilation of Van der
El’s preview model research [14] can be added to the time-invariant DEKF validation.

Expectations for DEKF Time-Invariant Experiment Results

In the preceding research by Vertregt [19], the same experiment data set was used to study the DEKF’s per-
formance for time-invariant scenarios. In Vertregt’s work, the research focus was mostly on the design and
the construction of the DEKF algorithm, and on the proof that it is a promising time-varying identification
tool. In its time-invariant single integrator performance analysis, the strategy parameters K f , τ f and Kp were
simultaneously estimated. For the individual experiment conditions, the filter was initialised with knowledge
from the LTI results as presented in [21]. The suspension time values were dependent on the amount of dis-
play preview time presented in the experiment. This was to keep the anticipation close enough to the actual
look-ahead time in its lower range for accurate application of Padé approximations. For the higher range val-
ues of look-ahead time, the anticipation should be far enough from its estimation to prevent negative delays.
Furthermore, Vertregt initialised all parameters with the values retrieved from the LTI analyses. From the ini-
tialisation onward, all parameters, except the neuromuscularωN M , ζN M and τv , were free for the estimation.
For most investigated preview model parameters from the single integrator experiments, the average of all
DEKF estimations overlapped fairly well with the average of all LTI identifications. This suggested the DEKF
to be a promising candidate as time-varying identification tool. In that research, it was unfortunately more
difficult to draw conclusions with regard to the applicability of the DEKF for estimation of individual param-
eters, such as τ f . This was because some parameter estimations’ average was far off from the LTI analysis,
and because the spread of the individual estimations sometimes spanned the entire possible domain.

In the final analyses proposed in this research, focus will be primarily on estimating τ f , while no scenario-
specific knowledge is used in the initialisation. The intention is to have a robust algorithm, that can give
convergent results for every arbitrarily provided scenario. It could well be that the results are far apart from
the LTI results, but it is never the intention of these analyses to make them perfectly overlap. In the DEKF
definition, all parameters except look-ahead time will be fixed at values that are closest to the truth for any
arbitrary scenario. For example, τv is expected to slightly vary from 0.2 s to 0.3 s when τp is altered from
2.0 s to 0.0 s. In this case, the value is fixed at 0.25 s, completely independent from the scenario. These
means of the limits are based on the figures from Appendix A. Furthermore, the suspension time is fixed at
0.9 s for every scenario and the initial guess of the look-ahead time is always 0.35 s. Before analysing the
estimations for the time-invariant preview tracking tasks, some expectations can already be set for the τ f .
It is not proven that there is a direct analytical relation between HO look-ahead time and display preview
time. However, some theory and experimentally proven features can be used in the further analyses. First,
based on the theory, the look-ahead time can never exceed the preview time, since then signal information
is used that is not visible. Second, Van der El’s experiments show that, over an entire scenario run, HOs
normally use all available preview time until a critical value. It is interesting to study whether the DEKF
estimations support these findings when solely τ f is allowed to vary. Should the look-ahead time estimations
still be highly variable for time-invariant scenarios, it could be investigated what the root cause is. The most
important question to ask is whether it is caused at the operator’s end or at the algorithm’s end. Until now,
the DEKF’s capability of estimating the parameters has been highlighted. Just like in the simulation phase, it
might be interesting to put the parameter estimation in perspective with the HO performance of the actual
tracking task. Here it would be very interesting to know whether there is a relation between HO accuracy and
specific DEKF parameter estimations.
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5.3. HMI Experiments With Time-Varying Display Preview Time
With time-invariant experiment data, using the LTI identification as reference, it can be examined whether
the DEKF finds the correct values for τ f , and what the main origins for estimation errors could be. The time-
varying HMI experiments cannot serve as a direct validation tool, since there exist no valid records yet of the
preview model parameters as functions of these variations. Additionally, the experiments should not serve
as a validation of the results created in the final simulation phase. The parameter scheduling is knowledge-
based, but it is not proven to be representative of actual human behaviour. Still, the time-varying experiment
analysis is a key step in the description of the DEKF performance. It shows what the DEKF makes of the
time-varying behaviour induced by a time-varying display. It provides insights in to what extent the algo-
rithm attributes the changing behaviour to τ f . It can be showcased whether the algorithm’s performance is
systematic for all participants, or rather arbitrary. Furthermore, it will be illuminated how well the estimation
tool can adhere to the physical limitations of τ f , imposed by τp . This section describes for the time-varying
HMI experiments the proposed experimental set-up, the variations in the display and the expectations for
the results.

Experimental Set-Up

The time-varying HMI experiments should be complementary to preview tracking task research performed
in TU Delft’s HMI-Lab. The creation of and fundamental discoveries regarding the preview model have been
published in work by Van der El [14]. The creation of the DEKF for preview tracking task application is docu-
mented by Vertregt [19]. These studies use the HMI-Lab simulator, which is operated in the DUECA environ-
ment that runs with C++ coding. For the experiment, a servo-controlled electro-hydraulic side-stick is used
to generate the HO control inputs, only allowing for roll-axis rotation. An experimental preview display track-
ing task is presented on the screen, and the only task variable that can change is the display preview time. It
collects the measurements with a frequency of 100 Hz. For complete description of hardware, the thesis on
human preview processing by Van der El [14] can be consulted.

Time Variations of Display in HMI Experiment

In the simulation phase, large numbers of scenarios can be generated due to the computational power at
hand. Additionally, many scenarios can be compared since the designer is always in control of the parameter
scheduling. Differences between the simulations can be subtle, since the HO is programmed to behave ex-
actly the same for different realisations in terms of strategy. Conversely, for HMI experiments, resources are
limited, using unique hardware for extensive amounts of time. Also, while conducting these experiments, hu-
mans show vastly different behaviour per individual, and the individuals show intrinsic variability. Optimal
use of resources is essential, and confounding factors are to be mitigated. For this to be true, the time-varying
scenarios have to be selected serving a specific purpose. Furthermore, it is important that every experiment
is correctly presented to a human participant, in order to make the results as reliable as possible.

Some findings from the preliminary results can be used in the scenario design for the time-varying HMI ex-
periments. First, in the sigmoid step analyses, it was found that step size is the key of variation, and that
other factors such as initial and terminal points are less important. This insight can be supported with two
experiments, where the first makes a small step in display preview time, and the other a large step. The
goal is to examine what the DEKF registers as a result of display-induced behaviour changes. It should be re-
searched whether the estimated look-ahead time varies and whether the DEKF finds a new equilibrium state-
parameter combination. Second, combining theoretical τ f sensitivity results with sine variation analyses, the
preliminary research shows that for large amplitude τ f variations, the DEKF is not able to adequately recreate
the original tracking behaviour. To examine these findings, again two experiments are required. Both experi-
ments implement a large amplitude sine variation of display preview, one with a relatively low frequency, the
other with a high frequency. Here, the goal is to find out whether this periodic variation of τp will result in
a periodic estimation of τ f . Should he response be periodic, it is interesting whether a sine signal could be
regressed and how this relates to the originally scheduled display variation. The higher frequency experiment
serves specifically to find whether the parameter estimation shows gain and delay compared to the lower fre-
quency. Also, it might show that the time-varying identification algorithm indeed is not capable of estimation
values that provide a re-simulation comparable to the original human behaviour. Last, an important experi-
ment to perform is implementing a time-invariant display preview time, fixed at the highest τp values found
in the sigmoid and sine experiments. In the preliminary phase, the higher τp values are expected to be in the
range of 0.75 s, and the lower values in the range of 0.25 s. The lower values are deliberately not reduced to
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the vicinity of 0.0 s, because in that range, pursuit tracking is induced. The pursuit tracking strategy proves to
be a difficult one to estimate parameters for, since it shows significant similarity with compensatory tracking.
In the compensatory case, many parameters regarding preview do not exist. The large sigmoid step would
be defined from 0.75 s to 0.25 s τp , and the large amplitude is described by 0.25 s around a mean value of 0.5
s τp . The low-frequency sine variation would span exactly one run of 120 s. In the high-frequency case, the
sine period is in the range of 10 s, which proved to be the highest frequency to which the DEKF could respond
with a sine-like τ f estimation. The time-invariant scenario would show the operator a constant τp of 0.75 s.
The small sigmoid step could be a decrease in display preview time in the range of 0.25 s. The exact values for
the time-invariant, sigmoid step and sine scenarios are still to be tested, and could be altered at later stage.
In Table 5.1, a summary of the five proposed HMI experiments is presented.

Table 5.1: Five proposed HMI experiments with time-varying display preview time

Scenario Display Preview Time τp

SCN1: Time-Invariant τp = 0.75 s
SCN2: Small Sigmoid Step τp,1 = 0.75 s, τp,2 = 0.5 s
SCN3: Large Sigmoid Step τp,1 = 0.75 s, τp,2 = 0.25 s
SCN4: Low Frequency Sine τp,mean = 0.5 s, Aτp = 0.25 s, Tτp = 120 s
SCN5: High Frequency Sine τp,mean = 0.5 s, Aτp = 0.25 s, Tτp = 120/17 s

Data from the five scenarios mentioned in Table 5.1 should be carefully collected with HMI experiments. Per
participant, from briefing to debriefing, such HMI experiment sessions can easily take hours to complete.
When humans participate in the experiment, they are required to perform all scenarios several times to in-
crease the confidence of their response to certain input signals. This many complete runs can induce some
secondary human behaviour that might influence the performance significantly. For example, human par-
ticipants are expected to be sharper and more motivated in the beginning of the experiment compared to
the final scenarios. Conversely, human adaptability and learning might provide that the operator becomes
more skilled at the task over the course of the experiment. Evidently, the order in which the scenarios are
recorded needs to be designed in such a way that these secondary behaviour changes are not systematically
present in the data. Five scenarios requires at least five participants to mitigate this confounding factor in the
research. In Table 5.2 and Table 5.3, two examples are shown in what order the scenarios can be presented to
the individual participants. Such a square matrix describing a unique order of scenarios for every participant
is called a Latin Square. There are often many options for a 5x5 Latin Square. More participants in the experi-
ment increase the confidence in results. Note that if the number of participants is increased, it should always
be at least by an integer multiple of the number of scenarios. A trade-off between increased confidence and
experiment time motivaates to invite 10 participants for the data acquisition.

Table 5.2: Example of Latin Square

Participant Scenario Order

1 1 2 3 4 5
2 2 3 5 1 4
3 3 5 4 2 1
4 4 1 2 5 3
5 5 4 1 3 2

Table 5.3: Similar Latin Square, reversed example

Participant Scenario Order

1 5 4 3 2 1
2 4 3 1 5 2
3 3 1 2 4 5
4 2 5 4 1 3
5 1 2 5 3 4

For a single participant, the complete experiment is expected to progress as follows. A briefing document
is sent in advance, and handed out at the beginning of the session. An oral briefing is given to refresh the
task objectives and what the participant can expect in terms of tracking tasks and breaks. Every scenario is
introduced once to familiarise with the set-up. Then, every scenario should be performed as many times as
required to obtain around 5 usable data traces for the DEKF. It is predicted that this will take around 7 runs per
scenario on average. For every usable trace, a different realisation of the forcing function should be seeded,
to ensure that the signal appears pseudo-random (see Chapter 2. This all accumulates to a total number of
40 tracking runs of 128 seconds per participant. For this, around 90 to 100 minutes of active measuring time
can be expected, meaning that the entire experiment is expected to take slightly more than 2 hours. After the
data collection for the 10 participants, it is possible to use the DEKF algorithm for time-varying parameter
estimation in preview tracking tasks with time-varying display preview time.
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Expectations for DEKF Time-Varying Experiment Results

The most difficult aspect in the estimation analysis for time-varying experiment data, is that no validation
values exist for the look-ahead time parameter τ f . Thus, for every estimation point, it should be noted that
the value of τ f is the best model representation of the measurable signals that the constrained and limited
DEKF can give. Therefore, should the DEKF’s τ f estimations show variation, it cannot be directly concluded
that the look-ahead time indeed varies. As said before, no direct analytical relation is proven between time-
varying values of τp and τ f . Nonetheless, it is theoretically set that τ f can never surpass τp , and based on
experiments, humans tend to use as much preview as possible until a critical point. This means that, in case
of display preview time variations, at some point the look-ahead time will vary along in response. What this
response exactly looks like is yet to be determined. It is interesting to investigate how changes in the display
relate to changes in the DEKF’s τ f estimations.

For the large sigmoid step variations in τp (SCN3), it is expected that the τ f values at the initial and terminal
display settings will be estimated fairly accurately. The preliminary research showed that large steps induce
sufficiently large behaviour variations for the DEKF to attribute this to the look-ahead time parameter. The
theoretical convergence time of the DEKF for large steps in look-ahead time is in the range of 20 seconds. In
practice, this time is expected to be even higher. This means that higher frequency strategy variations due to
the sudden changes in the display (duration of 1 s) cannot be recorded by the algorithm. Should the human
adaptation be significantly slower than the convergence performance of the algorithm, this is expected to be
visible in the τ f estimations. Since many parameters are constrained in the estimation, the DEKF is expected
to adhere fairly well to the physical limits of τ f , imposed by τp . The smaller sigmoid step variations (SCN2)
are expected to be harder to detect for the algorithm. This is due to the expected intrinsic variability of human
strategy, regardless of display variations. When all data traces of the 10 participants are estimated, and the
result is averaged, it is expected that τ f will show a clear small drop as response to the changing display.
However, on individual runs, it might well be that the variability of strategy around τ f = 0.7 s is the size of
the variation in τp . Furthermore, even if the operator’s strategy is relatively constant, due to the sensitivity
to the behaviour, the DEKF is expected to attribute values to τ f with a variability of +/- 0.1 s. This makes it
difficult for the estimation algorithm to keep track of smaller step sizes. In terms of behaviour, this does not
necessarily mean that the filter is flawed, but it could also mean that small steps are not that important to be
directly recorded.

The low frequency sine variations of preview time (SCN4) vary between τp = 0.7 s and τp = 0.2 s and have a
period of 120 s (i.e. base number 1). In the preliminary analyses, when this frequency was implemented for
the τ f variations, it proved to be easily tracked by the DEKF for all sine amplitudes. On behaviour level, the
relative VAF of the DEKF re-simulation stayed on average well above 95% of the open-loop simulation VAF. On
parameter estimation level, the response gain was nearly unity and only a slight phase delay existed between
the scheduling and the estimation. Should τ f be relatively directly related to τp , the τ f estimation traces –
averaged over the 10 participants – is expected to be showing nearly similar variation as the display. Here, it is
interesting to monitor whether unexpected changes in strategy are attributed by the algorithm. Such changes
can find their origin either in the human adaptation or in the DEKF performance. For the higher frequency τp

sine variations (SCN5), the algorithm is expected to perform poorly. Due to the unknown human adaptation,
the intrinsic variability and the filter sensitivity, the filter might not even show a periodic estimation response.
The trace of the averaged τ f estimation is expected to be close to the mean value of τp . The variance of all
individual traces is most likely to span the entire τp domain, and no specific relation is expected to be found
between the preview time scheduling and the look-ahead time estimation. This would be a proof that the
DEKF is not suited yet for higher frequency variations.

5.4. Intended Research Contribution
Combining Van der El’s preview model theory [14] with Popovici’s fundamental DEKF implementation for
compensatory tracking [17], Vertregt has established a time-varying identification algorithm for preview track-
ing tasks [19]. In the preliminary research phase, a sensitivity analysis was performed for all preview model
parameters on the HO behaviour. This proved that τ f is undoubtedly most influential in terms of behaviour,
and simultaneously most variable as function of τp . After that, it was studied how this algorithm can be tested
in a simulation environment where all states and parameters are estimated simultaneously. As next step, un-
derstanding has been created on the initialisation and settings of the DEKF in single integrator dynamics
tasks. This created a robust algorithm, capable of estimating τ f in all expected time-invariant scenarios in
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shortest possible time frame. The last preliminary analyses evaluated the performance of this stable DEKF in
isolated τ f variations, for both sigmoid steps and (multi-)sines. For the isolated τ f variation simulations, the
DEKF proved to show consistent responses.

In real-life, it is not possible to verify the actual definition of human strategy. However, the preview model
parameters serve as a tool to describe certain features of behaviour. The final research phase intends to in-
vestigate whether the DEKF could still identify changes in τ f , based on behaviour of actual human operators.
For these operators, it can be expected that more strategy features than look-ahead time are constantly vary-
ing, which all influence the tracking behaviour. Without exact knowledge of the parameter traces, a more
complex simulation description should generate behaviour, for which all parameters have showed variation
as a response to varying display preview time. These parameter variation schedules are based on the time-
invariant display preview study by Van der El [21]. Constraining all other parameters in the estimation to a
fixed value, it is desirable that the DEKF still finds relatively accurate values for τ f . Also, re-simulations of
HO behaviour with the DEKF’s estimated parameters should coincide fairly well with the open-loop simula-
tions. After re-tuning in more complex simulated environments, the DEKF look-ahead time estimation can
be validated using time-invariant single integrator dynamics HMI experiments. Should the mean of individ-
ual DEKF estimations be close to or closely related to the linear time-invariant identification, the algorithm
proves to be a time-varying alternative to the time-invariant identification techniques. Evidently, the main
advantage of a time-varying identification tool, is that it should be capable of capturing time-varying values of
HO look-ahead time. To collect tracking data where humans are forced to vary their look-ahead strategy, HMI
experiments with time-varying display preview time τp can be conducted. Using a time-invariant τp scenario
as baseline experiment, this can be compared with the time-varying experiments. It would be adding signif-
icant value to cybernetics research, if the DEKF can trace back a systematic response – expressed in τ f –
to specific changes in τp . Besides the focus on controlled element single integrator dynamics, no scenario-
specific knowledge is seeded in the filter. If the DEKF is capable of consistent and fairly accurate estimations
of τ f , this would be the first proof-of-concept for a future DEKF algorithm that can run online with the track-
ing task, regardless of tuning.

Besides the induced behaviour changes due to the display, it should be studied in future research what vari-
ation remains for the DEKF estimation in individual scenarios, and what the root-cause of these variations
is. It could both be caused by strategy variations of humans, and by definitions of the preview model param-
eters and the DEKF algorithm. Should the upcoming single integrator dynamics analyses indeed prove that
the DEKF can make consistent and explainable estimations of τ f , a next step would be to start a similar re-
search for double integrator dynamics. Clearly visible in Appendix A, significantly more parameter variation
is to be expected based on time-invariant analyses. Especially the parameters describing preview processing
(τ f ,K f ,ωb, f ) are more sensitive to variations in τp . These human adaptations to display preview time, com-
bined with the low-pass filtered white noise signal of the remnant, create a less observable control system. For
future double integrator research, fundamental algorithm changes with regard to remnant modeling could be
studied, as well as a sensitivity analysis per parameter under investigation. Another next step, both for single
integrator and double integrator dynamics, is research into the necessity and possibility of constraining less
HO strategy parameters. An ideal algorithm would be designed comparable to Popovici’s DEKF [17], capable
of relatively accurately estimating all parameters of interest. This precision is not expected to be found with
the current DEKF definition, due to the complex environment definition, and the interchangeable features
of the parameters. If consistent parameter estimations are found for different experiment participants, this
would already be a large contribution to cybernetics research. If a certain response can be related to spe-
cific behavioural scenarios, it means that the scenario is identifiable. Another research could be focused on
making the parameter-specific features in the behaviour more pronounced. From a model perspective, the
parameters should be uniquely distinguishable. However, in the current set-up, the look-ahead time τ f (esti-
mated as apparent delay τ∗f ) has comparable effect on the behaviour as the reaction time delay τv . To better

find parameter characteristics in the behaviour, the individual signals in the tracking task could be updated.
It can be investigated what values should be chosen for e.g. the FoFus, the tracking input gains and the display
size, to create clearly distinguishable parameters. With all these future studies and applications in mind, the
proposed final analyses of this DEKF will bring cybernetics research one step closer to finding a competitive
time-varying identification tool in preview tracking tasks.
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A
Time-Invariant HO Parameter Adaptation

to Different Preview Times

Figure A.1: Effect of preview time on HO equalization and physical limitation parameters [21].
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Figure A.2: Effect of preview time on far-viewpoint target processing parameters [21].



B
Results Multi-Sine Analyses

Besides the sine variations described in the preliminary Results section, some preliminary analyses have been
performed on multi-sine variations of τ f and the accompanying DEKF performance. Comparable figures
have been collected for individual runs, and a comparable VAF analysis has been performed to find the track-
ing performance as a function of sine amplitude and frequency. In this appendix, some examples of the
individual runs are presented, as well as the outcome of the VAF study. It is not further placed in the con-
text of the preliminary results, other than that some expectations can be created with respect to estimation
performance.

Figure B.1: Example of τ f estimation for multi-sine variation..
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Figure B.2: Example of DEKF parameter sensitivity plot (multi-sine).

Figure B.3: Example of DEKF state sensitivity plot (multi-sine).
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Figure B.4: Example of VAF plot for all multi-sine variations.

Figure B.5: Heatmap of relative tracking VAF as function of τ f scheduling frequency and amplitude (multi-sine).
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