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1. Het ontwerpen van composieten laminaten door middel van lamination para-
meters is relatief ongecompliceerd. Daarentegen, jezelf en anderen overtuigen
dat het bekomen ontwerp logisch is, is minder eenvoudig.

2. De tijd die besteed wordt aan het out-of-the-box denken kan vaker beter
besteed worden aan het definiëren van de correcte box waarin gedacht kan
worden.

3. Het maximaliseren van de laminaatstijfheid wordt vaak als alternatief ge-
bruikt voor het maximaliseren van de laminaatsterkte. Doorgaans is enkel
het tegengestelde waar.

4. Het is enigszins ironisch dat koolstofversterkte kunststoffen omarmd worden
door de transportsector met het oog op het verminderen van het brandstof-
gebruik.

5. De tijd is aangebroken om naast productieproblemen ook ontwerpproblemen
op te lossen met behulp van automated fiber placement technologie.

6. De sleutel tot het correct maken van beslissingen is niet kennis. Het is begrip.
We hebben een overvloed aan het eerstgenoemde en een wanhopig gebrek aan
het laatstgenoemde.

“Waar is de wijsheid die we in kennis zijn verloren?
Waar is de kennis die we in informatie zijn verloren?” – T.S. Eliot

7. Het ontwikkelen van nauwkeurige en betrouwbare virtuele testmethoden is
noodzakelijk indien variabele-stijfheidsconstructies hun intrede willen maken
in de luchtvaartindustrie.

8. Wetten die niet gehandhaafd kunnen worden, moeten in de eerste plaats niet
gemaakt worden.

9. Eetstokjes zijn een effectieve manier om gewicht te verminderen.

10. “Spreek tegen een man in een taal die hij begrijpt, dat gaat naar zijn hoofd.
Spreek tegen een man in zijn eigen taal, dat gaat naar zijn hart”

– Nelson Mandela

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig

goedgekeurd door de promotor, Prof. dr. Zafer Gürdal



Propositions

accompanying the thesis
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1. Use of lamination parameters for composite laminate design is relatively
straightforward. Convincing yourself and others that the obtained design
actually makes sense is less trivial.

2. The time taken to think out-of-the-box is often far better spent on defining
the right box to think in.

3. Maximizing laminate stiffness is often seen as a suitable surrogate for maxi-
mizing laminate strength. However, generally only the opposite is true.

4. It is somewhat ironic that carbon fiber composites are being embraced by
the transport sector to reduce fuel consumption.

5. The time is ripe for automated fiber placement technology to be used to
solve design problems instead of only manufacturing problems.

6. The key to good decision making is not knowledge. It is understanding. We
are drowning in the former and desperately lacking the latter.

“Where is the wisdom we have lost in knowledge?
Where is the knowledge we have lost in information?” – T.S. Eliot

7. The development of accurate and reliable virtual testing methods is essential
if variable stiffness composite structures are to be adopted by the aerospace
industry.

8. Laws that cannot be enforced should not be made in the first place.

9. Chopsticks are an effective means of reducing weight.

10. “If you speak to a man in a language he understands, that goes to his head.
If you speak to a man in his language, that goes to his heart.”

– Nelson Mandela

These propositions are considered opposable and defendable and as such have been

approved by the supervisor, Prof. dr. Zafer Gürdal
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Summary

Fiber reinforced composite materials have gained widespread acceptance for a multi-
tude of applications in the aerospace, automotive, maritime and wind-energy indus-
tries. Automated fiber placement technologies have developed rapidly over the past
two decades, driven primarily by a need to reduce manufacturing costs and improve
product consistency and quality.

The introduction of new technologies often stimulates novel means of exploiting
them, such as using the built-in fiber steering capabilities to manufactured compos-
ite laminates with continuously varying fiber orientation angles, yielding a so called
variable stiffness laminate. These laminates allow the full potential of composite ma-
terials to be harnessed by enlarging the design space to create substantially more
efficient structural designs, which has been demonstrated both theoretically and ex-
perimentally in the recent past. Despite the apparent potential, the design tools
currently available to engineers do not exploit the steering capabilities of automated
fiber placement machines to obtain more efficient structural solutions.

The design of composite structures is by no means a trivial task. Composite
structures are inherently difficult to optimize due to a combination of discrete and
continuous design variables as well as generally non-convex design problems with mul-
tiple solutions. Variable stiffness laminates are even more complex to design, as the
optimization problem is no longer limited to a single or several laminate designs, but
consists essentially of obtaining an optimal layup at every point in the structure. En-
suring fiber continuity and laminate manufacturability complicates the design problem
even further. The large number of design variables and constraints associated with
variable stiffness design problems make them unusually challenging problems to solve.

The substantial increase in structural efficiency possible when using variable stiff-
ness laminates and the lack of available design tools motivated the development of
computationally tractable design optimization routine for variable stiffness composite
structures. The complexity of the design problem necessitated the development of a
multi-step approach, shown schematically in the figure below. Separating structural
performance related design drivers and manufacturing related design drivers allows
the most suitable optimization algorithms to be used where necessary. In a first step,
the optimal laminate stiffness distribution is obtained for the considered structural
performance metric and constraints. Using lamination parameters to parameterize
the structural stiffness allows the optimization problem to be solved efficiently, as
will be discussed later. Design drivers such as maximum in-plane stiffness, strength,
natural frequency and buckling can be included at this stage of the optimization. The
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ii SUMMARY

obtained optimum solution provides the designer with a conceptual stiffness distribu-
tion best satisfying the desired structural performance requirements. In a second step,
the fiber angle distribution, essentially representing point-wise laminate stacking se-
quence, required to match the obtained optimum stiffness distribution is determined.
Manufacturing constraints, such as minimum curvature, thickness buildup, or perme-
ability, can be incorporated at this stage. In a final step, the obtained fiber angle
distributions are converted to continuous fiber paths for manufacturing.

1 - Conceptual Optimization

Design Drivers:
Structural Requirements

(Strength, Buckling, Weight)

Optimum Stiffness 
(Lamination Parameters)

Output:
Conceptual Optimum
Design Sensitivities

2 - Fiber Angle Retrieval

Design Drivers:
Conceptual Optimum and

Manufacturing Requirements

True Fibre Architecture

Output:
Fiber Angles and Stacking 

Sequence Per Point

3 - Fiber Path Construction

Design Drivers:
Fiber Angle and Thickness 

Distribution 

Fiber Paths

Output:
Path Information for Fiber 

Placement Machine

Figure 1: Schematic overview of the developed multi-step optimization approach

The responses of variable stiffness composite structures, required at the various
steps of the design process, are typically evaluated using a finite element method by
assigning different stiffness properties to each element in the model. In structural
optimization, approximations of the structural response are often developed to mini-
mize the number of computationally expensive finite element analyses needed during
the design process. In order to develop a computationally tractable design framework
it was essential to develop an effective approach to approximate the response of vari-
able stiffness structures. The development of a generic conservative convex separable
approximation specifically for composite structures and its implementation within a
design framework using lamination parameters is presented in this thesis.

The developed convex conservative separable approximation, following Svanberg
(2002), has two parts, the first part is to ensure that the function value and the
gradient of the approximation meet those of the original function, while the second
term is used to control the overall approximation conservativeness and convexity by
appropriately scaling this term after each successive design iteration. The approxi-
mation is expressed directly in terms of the laminate stiffness matrices, known from
classical lamination theory, and is therefore independent of the chosen laminate pa-
rameterization scheme. A function approximation is generated by expanding the
function linearly and/or reciprocally with respect to the laminate stiffness matrices,
similar to the traditionally used conservative approximation. Instead of using deriva-
tive information to determine which terms are expanded linearly and which terms are
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expanded reciprocally, physical insight into the response being approximated is used
to guarantee convexity by expanding the non-convex terms linearly. Using lamination
parameters to parametrize the laminate stiffness matrices allows the convex nature
of the approximation to be retained. Additionally, lamination parameters allow the
laminate stiffness matrices to be expressed using a minimum number of continuous
design variables, allowing efficient gradient based optimization algorithms to be used.

An efficient design optimization framework, based on the aforementioned con-
servative convex separable approximations, is developed and enables the solution of
variable stiffness design optimization problems with several thousand design variables.
The optimizer consists of three loops, one, a convergence control loop, two, a global
optimization loop, and three, a local optimization loop, where the latter two loops
correspond to the optimization problems that result when using the dual method. The
convergence control loop is used to dynamically control the degree of conservativeness
of the considered approximations and to decide if the optimal solution of the approxi-
mate subproblem is accepted for the following iteration. The global optimization loop
consists of solving for the Lagrange multipliers associated with the constraints. The
local loop is used to solve the local separable approximations iteratively in terms of
lamination parameters to obtain the optimum stiffness distribution. The separable
nature of the response approximations allows the local optimization problems to be
solved in parallel, further reducing computation time on multi-processor computer
systems. Typically, less than thirty finite element analyses are required to converge
to the optimal solution of a problem with several thousand design variables and sev-
eral hundred constraints, while roughly 80-90% of the performance gains are typically
achieved within the first 3-5 design iterations.

One of the limitations, and perhaps objections to using lamination parameters
for composite design, has been the difficulty of incorporating strength constraints
into the optimization process. In order to facilitate the acceptance of the approach,
a method of including the Tsai-Wu strength criteria in the most general setting is
developed. Analytical expressions for conservative failure envelopes in terms of two
strain invariants are derived that are no longer an explicit function of the laminate
stacking sequence. The derived envelope is shown to accurately represent the factor of
safety for practical laminates under in-plane loading, however, for bending dominated
problems it may be too conservative. A failure index is subsequently defined and used
to formulate an optimization problem to design laminates for maximum strength
under combined axial and shear loads. The designs are subsequently compared to the
equivalent maximum stiffness designs. Strength-optimal and stiffness-optimal designs
for various materials and load conditions are obtained and are found to be similar
for a large range of problems. However, differences were also found, particularly
for compression-shear loaded panels. Laminate strength is found to be significantly
more sensitive to the final laminate design than laminate stiffness, which implies that
design for maximum strength will result in near-optimal laminate stiffness, however,
the opposite is not necessarily true.

Approximations for several specific design optimization problems related to buck-
ling are developed. Initial work is focused on developing convex separable approxi-
mations of the buckling load of plates. It is shown, using the eigenvalue problem used
to solve for linear buckling, that a homogenous convex approximation for the inverse
buckling load factor is obtained when expanding the geometric stiffness matrix lin-
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early in terms of the laminate in-plane stiffness while expanding the material stiffness
matrix reciprocally in terms of laminate bending stiffness. A convex approximation to
maximize laminate stiffness is also developed. A trade-off study between maximum
laminate stiffness and maximum laminate buckling load of a plate under uniaxial
compression is conducted. Numerical results demonstrate that significant improve-
ments in structural performance are possible and that a variable stiffness laminate
with overall stiffness equivalent to a quasi-isotropic laminate can be designed to have
twice the buckling load. In-plane load redistribution is found to be the primary mech-
anism resulting in improved buckling load and post-buckling analysis demonstrated
that variable stiffness laminate designs have similar or superior post-buckling stiffness
when compared to the equivalent constant stiffness solutions. A simplified method
of including thermals stresses during the buckling design optimization process is also
developed, since the pre-buckling stress state significantly influences a panels buck-
ling behavior. For the plate buckling problem under consideration, residual thermal
stresses are shown to beneficially influence the compressive load carrying capacity of
a plate if the temperature difference between curing temperature and operating tem-
perature are not excessive. The range of operating temperatures over which a panel
exhibits good buckling behavior increases significantly when including thermal effects
in the design process. Later, the approximation of the inverse buckling load factor is
extended to include laminate thickness as a design variable, which requires additional
linearization of the terms linear in the laminate stiffness matrices. Compared to the
optimal variable stiffness design with constant thickness further improvements in the
buckling load, 30-100% depending on the minimum bound thickness, are obtained.

When thickness variation is included in the variable stiffness design routine for
maximum laminate buckling load, both load redistribution and increased laminate
bending stiffness are found to play a role in the improved structural performance.
Using the insight gained from studying variable stiffness plates, a convex approxima-
tion of the inverse buckling load for general structures is derived. Convexity of the
approximation is guaranteed by expanding the terms associated with the geometric
stiffness matrix linearly with respect to the laminate stiffness matrices and expanding
the terms associated with the material stiffness matrix reciprocally. An example prob-
lem, a curved panel subject to a uniform pressure load, is presented to demonstrated
the applicability of the derived approximation.

Two practical design applications are studied with several industrial partners to
demonstrate the effectiveness of the developed design approach. A first problem
considers the design of a simplified window belt section for maximum tensile strength.
Numerical results highlight that variable stiffness laminates, including manufacturing
constraints, can be found that have a 50% higher failure load compared to the best
constant stiffness design. A second design problem focuses on the design of an aircraft
wing rib to meet a range of imposed design requirements with buckling as a primary
design driver. Other than demonstrating the benefit of using stiffness variation for
more practical structures, the analysis for this design problem is conducted entirely
using an external commercial finite element solver. Also for this more practical design
problem the optimizer was found to perform satisfactorily.



Samenvatting

Vezelversterkte kunststoffen, ook wel composieten genoemd, worden tegenwoordig op
grote schaal gebruikt voor verscheidene toepassingen in de luchtvaart-, ruimtevaart-,
automobiel-, maritieme-, en windenergie-industrie. De focus op het reduceren van
hun productiekosten en het garanderen van een hoge productkwaliteit heeft ertoe ge-
leid dat geautomatiseerde productietechnologieën voor composieten, zoals automated
fiber placement (AFP), de afgelopen twee decennia een snelle ontwikkeling hebben
ondergaan.

Nieuwe technologieën kunnen vaak op innovatieve manieren benut worden. Een
voorbeeld hiervan zijn de automated fiber placement machines die door hun moge-
lijkheid om de vezeloriëntatie nauwkeurig te controleren, vezels gestuurd op een mal
kunnen plaatsen. Het is dus mogelijk om de vezeloriëntatie, en bijgevolg de stijfheid,
continue te laten variëren in een constructie. Een laminaat waarin de vezeloriëntatie
continue veranderd wordt, wordt tevens een variabele-stijfheidslaminaat (VS) of varia-
ble stiffness laminate genoemd. Door de laminaatstijfheid continue te laten variëren is
het mogelijk om optimaal gebruik te maken van de materiaaleigenschappen en daar-
door grote verbeteringen in structurele efficiëntie te behalen. Deze mogelijke verbete-
ringen zijn in het verleden zowel theoretisch als experimenteel aangetoond. Ondanks
dit potentieel zijn er tot op heden nog geen ontwerptools beschikbaar waardoor inge-
nieurs gemakkelijk gebruik kunnen maken van de verbreding in ontwerpmogelijkheden
die automated fiber placement machines bieden.

Het ontwerpen van constructies die vervaardigd worden uit vezelversterkte kunst-
stoffen is geen onomwonden proces. De complexiteit omtrent het optimaliseren van
deze constructies wordt enerzijds veroorzaakt doordat de ontwerpvariabelen zowel een
discreet als continu karakter kunnen hebben en anderzijds doordat de ontwerpproble-
men vaak niet-convex zijn. Het ontwerpen van laminaten waarbij de stijfheid in het
laminaat kan variëren van locatie tot locatie brengt nog een grotere uitdaging met
zich mee omdat in dit geval de optimalisatieopdracht niet beperkt wordt tot een enkel
of meerdere laminaatontwerpen, maar in wezen een optimale laminaatsamenstelling
bewerkstelligd moet worden voor elk punt in de constructie. Dit moet tevens ge-
beuren zonder dat de continüıteit van de vezelpaden en de produceerbaarheid van de
laminaten in het gedrang worden gebracht.

Ondanks de bijkomende complexiteit die variabele-stijfheidslaminaten veroorza-
ken, zijn deze laminaten uiterst interessant omdat ze een substantiële toename in
structurele efficien̈tie met zich kunnen meebrengen. Deze potentiële efficiëntieverbetering
en het feit dat tot op heden geen toepasbare ontwerptools beschikbaar zijn, heeft de
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ontwikkeling van een efficiënte optimalisatieroutine voor het ontwerp van variabele-
stijfheidslaminaten gedreven. De complexiteit van het ontwerpprobleem, zoals hier-
boven reeds besproken is, heeft geleid tot het ontwikkelen van een stapsgewijze op-
timalisatieroutine. Dit wordt tevens toegelicht in Figuur 1. Allereerst wordt er een
onderscheid gemaakt tussen ontwerpcriteria die van belang zijn voor de structurele
prestaties van het laminaat en diegene die van belang zijn voor zijn produceerbaar-
heid zodat de meest toepasselijke optimalisatiealgoritmes gebruikt kunnen worden in
elke situatie. In een eerste stap wordt er getracht de laminaatstijfheidsverdeling te
bekomen die de optimale structurele prestatie weergeeft. Met het oog op het efficiënt
oplossen van de optimalisatie-probleem wordt er gekozen voor lamination parameters
om de stijfheidsverdeling te parameteriseren, zoals later nader toegelicht zal worden.
Prestatieparameters die van belang zijn voor het ontwerp, zoals de stijfheid, sterkte,
natuurlijke frequentie en knik, kunnen in de eerste stap van de optimalisatieroutine
worden opgenomen. Wanneer alle gewenste structurele prestatieparameters in acht
worden genomen, kan de optimale conceptuele stijfheidsverdeling voor het ontwerp-
probleem gevonden worden. In de tweede stap wordt de vezelhoekverdeling bepaald
die deze optimale stijfheidsverdeling kan garanderen. In deze fase kunnen evenzeer
productiecriteria beschouwd worden, zoals de minimale kromming van het vezelpad,
de toename in laminaatdikte of de permeabiliteit. Het doel van de laatste stap is om
de bekomen vezelhoekverdelingen om te zetten in continue vezelpaden die gebruikt
kunnen worden voor productie.

Vaak wordt er gebruik gemaakt van een eindige-elementenmethode om de respons
van de variabele-stijfheid composieten constructies, die vereist zijn bij de verschil-
lende fases in het ontwerpproces, te evalueren. Hiervoor worden in het eindige-
elementenmodel verschillende stijfheidseigenschappen toegekend aan elke element.
Met het oog op het minimaliseren van het aantal eindige-elementenberekeningen dat
uitgevoerd moet worden tijdens het ontwerpproces, wordt er dikwijls beroep gedaan
op benaderingen van de structurele respons. Om een ontwerpkader te creëren waarin
rekening wordt gehouden met de vereiste rekenkracht, was het van essentieel belang
dat er een effectieve procedure werd ontwikkeld om de respons van de variabele-
stijfheidsconstructies te benaderen. In deze thesis wordt er nader ingegaan op een
generieke conservatief convex scheidbare benadering (Conservative convex separable
approximation, verkort tot CCSA) die speciaal ontwikkeld werd voor het optimalise-
ren van composieten constructies en hoe dit binnen het ontwerpkader gebruikt wordt.

Deze benadering, die gebaseerd is op Svanberg (2002), is opgebouwd uit 2 termen.
De eerste term garandeert dat de functiewaarde en de gradiënt van de benadering
overeenkomen met deze van de originele functie. De tweede term controleert de alge-
mene conservativiteit en convexiteit van de benadering door deze term naar behoren
te schalen na elke opeenvolgende ontwerpiteratie. De benadering zelf wordt uitgedrukt
in termen van de laminaatstijfheidsmatrices, bekend van de klassieke laminatentheorie
(CLT), en is daarom volledig onafhankelijk van het gekozen laminaat parameterse-
ringsschema. Een benadering van de functie wordt bewerkstelligd door de functie
lineair en/of invers met betrekking tot de laminaatstijfheidsmatrices te ontwikkelen.
In plaats van gebruik te maken van de functieafgeleide om te bepalen welke termen
lineair en welke termen invers worden ontwikkeld, wordt beroep gedaan op het fysi-
sche inzicht in de respons dat wordt benaderd. Convexiteit kan vervolgens worden
gegarandeerd door de niet-convexe termen lineair te ontwikkelen. Door lamination
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parameters te gebruiken om de laminaatstijfheidsmatrices te parameteriseren kan het
convexe karakter van de benadering worden behouden. Bovendien bieden laminati-
on parameters de mogelijkheid om de laminaatstijfheidsmatrices uit te drukken met
behulp van een minimaal aantal continue ontwerpvariabelen. Dit leidt ertoe dat ef-
ficiënte gradiënt-gebaseerde optimalisatiealgoritmen gebruikt kunnen worden om het
ontwerpprobleem op te lossen.

Een efficien̈t ontwerp-optimalisatiekader dat gebaseerd is op de eerder genoemde
conservatief convex scheidbare benaderingen, is ontwikkeld en maakt het mogelijk
om variabele-stijfheidsontwerp optimalisatieproblemen op te lossen met enkele dui-
zenden ontwerpvariabelen. De optimalisatieroutine bestaat uit drie lussen: één, een
convergentie controlelus; twee, een globale optimalisatielus; en drie, een lokale opti-
malisatielus, waarbij de laatste twee lussen overeenkomen met de optimalisatiepro-
blemen die bekomen worden wanneer de dual-method (Fleury and Schmit Jr., 1980)
wordt gebruikt. De convergentie controlelus wordt gebruikt om de conservativiteits-
graad van de beschouwde benaderingen dynamisch te controleren en om te beslissen
of de optimale oplossing van het benaderde sub-probleem aanvaardbaar is voor de
volgende iteratie. De globale optimalisatielus zoekt een oplossing voor de Lagrange-
multiplicatoren die betrekking hebben op de randvoorwaarden. De lokale optimalisa-
tielus zoekt iteratief naar een oplossing voor de lokaal scheidbare benaderingen, met
behulp van lamination parameters, zodat de optimale stijfheidsverdeling bekomen kan
worden. Het scheidbare karakter van de responsbenaderingen stelt de lokale optima-
lisatieproblemen in staat om parallel opgelost te worden. Dit vermindert tevens de
rekentijd op multi-processor computersystemen. Normaalgezien worden minder dan
dertig eindige-elementenanalyses vereist om naar een optimale oplossing te conver-
geren, terwijl ongeveer 80-90% van de prestatietoenames in het algemeen bekomen
worden tijdens de eerste 3-5 ontwerp iteraties.

Een van de beperkingen, en misschien bezwaren tegen het gebruik van lamination
parameters voor het ontwerp van composieten, is de moeilijkheid om randvoorwaarden
omtrent sterkte in het optimalisatieproces op te nemen. Om de methode aanvaardbaar
te maken is een methode ontwikkeld waarbij het Tsai-Wu sterktecriterium in de meest
algemene vorm in acht wordt genomen. Analytische uitdrukkingen voor een conserva-
tief sterktecriterium zijn ontwikkeld in termen van twee rekinvarianten en is daarom
niet langer een expliciete functie van de vezeloriëntatie. Het bekomen sterktecriteri-
um geeft nauwkeurig de veiligheidsfactor weer voor praktische laminaten die worden
onderheven aan belasting in het vlak. Daarentegen, voor problemen die vooral uit
het vlak zijn belast kan dit sterktecriterium te conservatief zijn. Een sterkteverhou-
ding wordt gedefinieerd en wordt vervolgens gebruikt om een optimalisatieprobleem
te formuleren om laminaten die belast worden door een combinatie van axiale en af-
schuifkrachten voor maximale sterkte te ontwerpen. De ontwerpen worden vervolgens
vergeleken met de equivalente maximale stijheidsontwerpen. De optimale-sterkte en
optimale-stijfheidsontwerpen voor verscheidene materialen en krachtcondities worden
bekomen en blijken gelijk te zijn voor een breed scala aan problemen. Verschillen wor-
den echter ook opgemerkt, in het bijzonder voor druk-afschuiving belaste panelen. De
laminaatsterkte blijkt opmerkelijk gevoeliger te zijn aan het uiteindelijke laminaat-
ontwerp dan aan de laminaatstijfheid. Dit betekent dat het ontwerp voor maximale
sterkte resulteert in een bijna optimale laminaatstijfheid, terwijl het tegengestelde
niet altijd geldt.
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Benaderingen voor verschillende specifieke ontwerp-optimalisatieproblemen die ge-
relateerd zijn aan knik zijn ontwikkeld. Tijdens het initiële onderzoek is vooral aan-
dacht besteed aan het ontwikkelen van convex scheidbare benaderingen voor de knik-
belasting van platen. Het is aangetoond, op basis van het eigenwaardeprobleem dat
gebruikt wordt om de lineaire kniklast te bepalen, dat een homogeen convexe benade-
ring voor de inverse kniksbelastingsfactor bekomen kan worden wanneer de geometri-
sche stijfheidsmatrix lineair ontwikkeld wordt in termen van de laminaatrekstijfheid,
terwijl de materiaalstijfheidsmatrix invers ontwikkeld wordt in termen van laminaat-
buigstijfheid. Een convexe benadering om de laminaatstijfheid te maximaliseren is
eveneens ontwikkeld. Een studie is uitgevoerd waarbij de afweging gemaakt wordt tus-
sen maximale laminaatstijfheid en maximale laminaatknikbelasting van een plaat on-
der uniaxiale druk. Numerieke resultaten tonen aan dat opmerkelijke verbeteringen in
structurele prestatie mogelijk zijn en dat een variabele-stijfheidslaminaat met een alge-
mene stijfheid die equivalent is aan die van een quasi-isotropische laminaat ontworpen
kan worden zodat deze twee keer de drukkracht kan weerstaan. Het is aangetoond dat
de verbeterde weerstand tegen drukbelasting vooral veroorzaakt word door een her-
verdelen van de belasting in het vlak. Een post-knikbelastingsanalyse heeft laten zien
dat ontwerpen van variabele-stijfheidslaminaten een gelijkaardige of superieure post-
knikstijfheid hebben in vergelijking met equivalente constante-stijfheidslaminaten.

Gezien de pre-knikspanning het knikgedrag van een paneel opmerkelijk bëınvloed
is er eveneens een vereenvoudigd model ontwikkeld waarbij thermische spanningen
in het knik-ontwerpoptimalisatieproces meegerekend kunnen worden. De thermische
spanningen blijken een gunstig effect te hebben op de kniklast van een plaat wanneer
het temperatuurverschil tussen de uithardingstemperatuur en de operationele tempe-
ratuur niet overdreven groot is. Het bereik van operationele temperaturen waarbij
een paneel een goed knikgedrag vertoont, wordt opmerkelijk groter wanneer de ther-
mische effecten opgenomen worden in het ontwerpproces. Naderhand is de benadering
van de inverse kniksbelastingsfactor uitgebreid zodat de laminaatdikte als een ont-
werpvariabele meegerekend kan worden. Hierdoor kunnen verdere verbeteringen van
30-100% in knikbelasting bekomen worden, afhankelijk van de minimale dikte, in ver-
gelijking met het optimale variabele-stijfheidsontwerp met een constante dikte. Het
kan opgemerkt worden dat zowel belastingsherverdeling als een vergrootte laminaat-
buigstijfheid een rol spelen in het verbeteren van de structurele prestatie wanneer
diktevariatie meegenomen wordt in de variabele-stijfheidontwerproutine voor maxi-
male laminaatknikbelasting. Door gebruik te maken van het inzicht dat verworven is
tijdens het bestuderen van variabele-stijfheidsplaten kan een convexe benadering voor
de inverse kniksbelastingfactor voor algemene schaalconstructies afgeleid worden. De
convexiteit van de benadering kan gegarandeerd worden door de termen die betrek-
king hebben tot de geometrische stijfheidsmatrix lineair te ontwikkelen in termen van
de laminaatstijfheidsmatrices en door de termen die betrekking hebben tot de mate-
riaalstijfheidsmatrix invers te ontwikkelen. Aan de hand van een voorbeeldprobleem
wordt de toepasbaarheid van de afgeleide benadering aangetoond.

Twee praktische ontwerpapplicaties zijn nader bestudeerd in samenwerking met
verschillende industriële partners om de effectiviteit van het ontwikkelde ontwerpop-
timalisatiekader en de geassocieërde benaderingen aan te tonen. Een eerste probleem
gaat dieper in op het ontwerp van een vereenvoudigde raamsectie voor maximale
trekkracht. Numerieke resultaten duiden aan dat variabele stijfheidslaminaten, pro-
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ductiebeperkingen in rekening nemend, gevonden kunnen worden die een 50% hogere
breeklast hebben in vergelijking tot het beste constante-stijfheidontwerp. Een twee-
de ontwerpprobleem focust zich op het ontwerp van een vliegtuigvleugelrib dat aan
een scala van opgelegde ontwerpcriteria moet voldoen, met knik als het belangrijk-
ste ontwerpcriterium. Naast het aantonen van het voordeel dat het gebruik van
stijfheidvariatie voor meer algemene constructies met zich meebrengt, wordt de hele
analyse voor het ontwerpprobleem uitgevoerd op basis van een externe commerciële
eindige-elementenoplosser. Het optimalisatiekader blijkt tevens voor dit meer prakti-
sche ontwerpprobleem voldoende te functioneren.
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curvature constraint a constraint placed on the maximum fiber path curvature to
ensure that no local tow buckling or wrinkling occurs during manufacturing.
See also minimum turning radius.

curvilinear fiber paths a term often used to refer to variable stiffness laminates,
highlighting that the fiber paths are no longer straight.

damping used to refer to an additional term appended to a response approximation
used to control the convergence of successive optimization iterations by altering
the convexity and conservativeness of the approximation , see page 58.

deposition rate refers to the rate at which fibers are placed on the mold, usually
expressed in terms of kilogram per hour.

design region a term used to identify a region with which the considered design
variables are associated. When designing variable stiffness laminates, design
variables are often associated with the elements or nodes of the underlying
finite element model.

direct stiffness modeling when the laminate stiffness matrices in each element or
design region are defined directly or via a continuous parametrization, such as
lamination parameters.

fiber bridging when tows detach from the mold surface after placement due to
excessive convex curvature of the mold.

fiber angle deviation the difference between the designed fiber orientation angle
and the actual fiber orientation on the manufactured component.

fiber angle distribution used to refer generically to the spatially varying fiber an-
gle orientation of a given ply or laminate within a variable stiffness composite
structure.

fiber areal weight weight of fiber per unit area of tape or fabric.

fiber path denotes the trajectory followed by a given fiber over the surface of a com-
posite part. When using automated fiber placement the fiber path is generally
used to denote the trajectory of (the center line of) an entire band or course
and not an individual fiber.

gap a void or space between adjacent tows or courses within a ply which may occur
during manufacturing.

lamina see ply.

laminate two or more lamina stacked together to form a single material.

lamination parameters are a set of twelve continuous parameters, based on classi-
cal lamination theory, which fully describe the stiffness properties of a laminate,
see page 41.

linear variation term used to define a class of variable stiffness laminates which
consist of a linear variation of the fiber orientation angle between two predefined
points along a given direction, see page 18.
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minimum cut length minimum length of a tow that can be placed by a fiber place-
ment machine, which is governed primarily by the internal tow-control mecha-
nisms of the machine. Machine software is typically programmed to ignore any
tows that are too short.

minimum turning radius the minimum fiber path radius that can be placed by a
fiber placement machine to avoid local buckling or wrinkling of tows, see also
curvature constraint.

optimization (or mathematical programming) refers to a process in which the best
element or solution is selected from some set of available alternatives. Several
methods have been developed to solve optimization problems, the most suitable
method is highly dependent on the nature of the problem being solved.

overlap partial collocation of adjacent tows or courses within a ply which may occur
during manufacturing, resulting in local thickness buildup.

parallel path a path replication strategy in which successive courses within a single
play are placed adjacent to each other without any gaps of overlaps occurring
at the course boundaries, see page 11.

Pareto front refers to the set of optimal solutions found for a multi-objective op-
timization problem. Pareto optimal solutions represent solutions for which no
improvement in a single objective function can be made without a deterioration
in one or more of the remaining objective functions.

ply a single layer of fiber reinforced material within a laminate manufactured by
placing several repeated courses using a selected course replication strategy.

reciprocal interpolation used to convert the stiffness matrices defined at the nodes
of a finite element model to the stiffness matrices of the associated element.
Instead of interpolating the stiffness matrices directly, they are computed by
interpolated the corresponding compliance matrices, see page 46.

shifted path a path replication strategy in which successive courses are generated
by translating and/or rotating a reference path such that the fiber orientation
angle remains the same along a predefined direction, see page 11.

staggering a process in which subsequently placed plies are offset with respect to
each other to avoid the collocation of overlaps and or gaps within the laminate,
see page 12.

stiffness distribution used to refer generically to the spatially varying stiffness
within a variable stiffness composite structure.

stiffness used to refer to the overall structural stiffness, in other words how well a
given structure is able to resist deformation due to an applied force or moment.

stiffness matrix is used to relate the stress resultants and moment resultants to
the in-plane strains and out-of-plane curvatures of a laminate, see also classical
lamination theory.

stress resultant represents the integration of the stresses through-the-thickness of
a laminate, see page 41.
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tow a bundle of fibers with specific width and fiber areal weight used in auto-
mated fiber placement machines. Tows are often manufactured by splitting
pre-impregnated tape.

tow drop a term used to refer to the process in which individual tows are terminated
during the placement of a course or band with a fiber placement machine.

variable angle tow laminate an alternate term used to refer to variable stiffness
laminates.

variable stiffness laminate a laminate within which the fiber orientation angle,
and therefore the stiffness properties, vary continuously with spacial location.



CHAPTER 1

Introduction

“Nothing is less productive than to make more efficient what should not
be done at all.”

Peter Drucker

Structures, and the materials which compose them, are at the core of human
wellbeing and development, from providing a safe living environment to transporting
us to the moon! In the aerospace industry in particular, where structural reliability,
weight and cost are crucial, the search for improved structural solutions is unrelenting.
Composite materials are one of the means which the aerospace industry is continuing
to explore to meet ever increasing structural demands. Over the past several decades,
composite materials have been successfully applied in aerospace for both secondary
and primary structural applications. With the first flight of the Boeing 787 becoming
a reality and the Airbus A350-XWB on its way, there is no doubt that composites in
the aircraft industry have gone mainstream.

The ever increasing commercial interest in composites has driven developments
in material systems, manufacturing processes and structural design. For composite
structures, more so than for metallic structures, the interdependence of these three
fields is of crucial importance. To exploit the benefits of composite material systems
fully, appropriate and economically sustainable manufacturing technologies and de-
sign methods must be explored. Automated fiber placement (AFP) is one of the
manufacturing technologies which has been developed over the past three decades to
meet industrial demands, as will be elaborated on in section 1.2. The introduction
of new technologies often stimulates novel means of exploiting it. The built-in fiber
steering capabilities of AFP machines allows composite laminates to be manufactured
with continuously varying fiber orientation angles, yielding a variable stiffness lami-
nate. These laminates allow the full potential of composite materials to be harnessed
by enlarging the design space to create substantially more efficient structural designs.

The aim of this chapter is to place the goal of this thesis, to develop an efficient
variable stiffness laminate design framework, into context. A short introduction of
composite materials is presented in 1.1 followed by a discussion on automated fiber

1



2 INTRODUCTION 1.1

placement machines and its advantages and limitations in section 1.2.1. Variable
stiffness laminates are introduced in more detail and the available design approaches
are reviewed in section 1.3. Finally the objectives of this thesis will be highlighted,
followed by a short description of the thesis layout, in section 1.4.

1.1 A Short Introduction to Composites

A composite material, as the name suggests, is a material system which consists of
two or more phases on a macroscopic scale. The constituents will generally have
significantly different physical or chemical properties and are combined to create a
material with properties superior to those of its constituents. Composite materials
typically consist of a discontinuous, stiffer and stronger fibrous phase, called the
reinforcement, and a continuous, less stiff phase which is called the matrix. Due to
the different chemical compositions of the the separate phases an inter-phase may exist
between the reinforcement and the matrix. The properties of a composite material
therefore depend on the physical and chemical properties of its constituents, their
geometry and distribution. The different phases in a typical composite material are
shown schematically in Figure 1.1.

Continuous phase

(matrix)

Interphase

Dispersed phase

(reinforcement)

Figure 1.1: Phases of a composite material

Fibrous material can be introduced in several different forms, ranging from ran-
dom chopped strands to woven fabrics to unidirectional tapes or tows. Unidirectional
materials with long continuous fibers are predominantly used in aerospace applica-
tions. The matrix material, or resin, fixes the fibrous material in the desired geometry
after curing. Matrix materials can generally be classified into one of two categories;
those which cure irreversibly, known as thermoset resins, and those which soften when
heated and set once cooled in a reversible process, known as thermoplastic resins.

Fibers are typically arranged in a sequence of layers, each of which is called a lam-
ina, to form a laminate, as shown in Figure 1.2. The order in which laminae are stacked
is referred to as the laminate stacking sequence. Stiffness and strength properties of
a single fiber reinforced layer may differ significantly in two mutually perpendicular
directions, referred to as principle material directions or principle material axis. In
contrast to homogenous metallic materials which exhibit directionally independent
elastic properties (isotropic), unidirectional lamina are called orthotropic and exhibit
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directionally dependent elastic properties in the plane of the layer (anisotropic). Stiff-
ness properties in the fiber direction (E1), are usually an order of magnitude larger
than in the transverse direction (E2). Strength properties of unidirectional lamina
depend both on fiber orientation and on load direction. Lamina strength is typically
characterized in terms of five quantities; longitudinal tensile strength (Xt), longitudi-
nal compressive strength (Xc), transverse tensile strength (Yt) transfers compressive
strength (Yc), and shear strength (S). Stiffness and strength values for several com-
mon composite materials are provided in Appendix A.

Lamina Laminate Composite Part

Figure 1.2: Multiple laminae are stacked to form a laminate, which in turn is integrated
into a composite part

Manufacturing plays an important role in the realization of composite structures.
A variety of fabrication methods are available to produce composite parts and typi-
cally consist of three steps,

1. Placing fibrous material
2. Impregnating fibers with resin
3. Curing

In a first step fibers are placed with the desired fiber orientation at the appropriate
location within the mold. This can be achieved manually, known as hand-layup, or via
automated technologies such as filament winding, automated tape laying or automated
fiber placement. In a second step the fibers are impregnated with a selected resin.
Nowadays manual resin application is uncommon and infusion or injection methods
are used, such as resin transfer molding (RTM) and injection molding. In a final step
the matrix material is allowed to harden, known as curing. For aerospace applications
curing is typically conducted in an autoclave at elevated temperature and pressure to
improve the final material properties.

In order to shorten manufacturing times and lower costs, industry continuously
aims to reduce the number of manufacturing steps and increase processing speeds.
For example, the impregnation step can be eliminated by pre-impregnating fibers
before placing them. Similarly in-situ curing techniques are being developed to do
away with expensive autoclave curing cycles. The latest generation of thermoplastic
composite materials allow all three steps to be combined into one, hence facilitating
mass production of composite parts.

Mechanical properties of high performance composite materials are governed pri-
marily by the final placement and orientation of fibers. Traditional manufacturing
processes, both open and closed mold, are dependent on skilled labour to precisely
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place the fibrous material. This is both expensive and prone to errors in fiber align-
ment and stacking. Hence the composite industry has dedicated a significant amount
of research to developing automated manufacturing technologies, such as pick-and-
place, tape laying and fiber placement machines. New manufacturing technologies
may subsequently lead to novel structural concepts, as will be shown for automated
fiber placement.

1.2 Fiber Placement Technology and its Applications

The use of composite materials in commercial aircraft has risen considerably over the
past two decades, as can be seen from Figure 1.3. More than 50% of the structural
weight of the Boeing 787 and the Airbus A350 consists of composite material. Ac-
cording to recent market research by Lucintel, the value of composite use in the global
aerospace market is estimated to reach a total of $5.1 billion towards the end of the
decade. With such large amounts of composite material being used, the aerospace
industry has invested heavily in developing technologies to reduce costs and improve
efficiency. Automated fiber placement technology aims to meet these goals by,

• increasing automation / reducing manual labour
• increasing production volume
• improving product quality and reproducibility
• reducing the number of rejected parts
• reducing material waste, by only placing the required material
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Figure 1.3: Trends in the use of composite materials in Airbus aircraft, similar trends are
seen for the equivalent range of Boeing aircraft
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1.2.1 Overview of Fiber Placement Technology

The development of Automated Fiber Placement (AFP) machines started in the late
1980s; AFP is a unique composite manufacturing technology which combines individ-
ual tow control found in filament winding machines with compaction and cut-restart
capabilities of automated tape laying. Modern fiber placement systems consist of
seven axes, a 6-axis robotic arm or gantry assembly and a rotational axis of the man-
drel, an example can be seen in Figure 1.4. Current AFP machines allow up to 32
individually controlled tows, collectively known as a course or band, to be placed on
an arbitrary surface. Tows can be added or dropped at any point along the path of
the machine head, to increase or decrease the total course width as required. Tows
typically vary in width from an eighth of an inch (3.2 mm) to an inch (25.4 mm).
AFP machines can be adapted to accommodate the wide range of fibrous materials
in use in the aerospace industry, such as carbon, aramid and glass. The majority
of AFP machines currently in service process thermoset pre-impregnated materials.
Thermo-plastic fiber placement and dry-fiber placement systems are showing great
promise for future applications.

Figure 1.4: Example of an advanced fiber placement machine (Automated Dynamics)

Tows are placed on a mandrel surface via a tow placement head, shown schemati-
cally in Figure 1.5. The tows are typically guided from a climatically controlled creel
chamber, where pre-impregnated material is stored on bobbins, to the mold surface
via a network of individual tow guidance rollers and tensioning mechanisms. Cur-
rent fiber placement machines use passive tow-feeding, where friction between tow,
compaction roller and tool surface provides the required force. Tows can be cut and
restarted individually via a cutting mechanism and restart rollers. A heating unit is
placed prior to material deposition to activate material tackiness which improves ad-
hesion to the mandrel surface and finally a compaction roller places the fibers securely
on the mold’s surface.
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Fiber Placement
Don O. Evans, Cincinnati Machine

Redirect
roller

Individual tow payout
with controlled tension

Compaction roller

Clamp

Restart rollers

Cutters
Controlled heat

Fig. 1 Fiber placement head

Fiber placement 
head, mounted to a 
roll-bend-roll wrist

Refrigerated creel
containing bidirectional
tensioners

Fig. 2 Fiber placement system

FIBER PLACEMENT is a unique process
combining the differential tow payout capability
of filament winding and the compaction and
cut-restart capabilities of automated tape laying.
During the fiber placement process, individual
prepreg fibers, called tows, are pulled off spools
and fed through a fiber delivery system into a
fiber placement head (Fig. 1). In the placement
head they are collimated into a single fiber band
and laminated onto a work surface, which can
be mounted between a headstock and tailstock.

When starting a fiber band or course, the in-
dividual tows are fed through the head and com-
pacted onto a surface. As the course is being laid
down, the processing head can cut or restart any
of the individual tows. This permits the width of
the fiber band to be increased or decreased in
increments equal to one tow width. Adjusting the
width of the fiber band eliminates excessive gaps
or overlaps between adjacent courses. At the end
of the course, the remaining tows are cut to
match the shape of the ply boundary. The head
is then positioned to the beginning of the next
course.

During the placement of a course, each tow is
dispensed at its own speed, allowing each tow to
independently conform to the surface of the part.
Because of this, the fibers are not restricted to
geodesic paths. They can be steered to meet
specified design goals.

A rolling compaction device, combined with
heat for tack enhancement, laminates the tows

onto the lay-up surface. This action of pressing
tows onto the work surface (or a previously laid
ply) adheres the tows to the lay-up surface and
removes trapped air, minimizing the need for
vacuum debulking. It also allows the fiber to be
laid onto concave surfaces.

Figure 2 is a diagram of a fiber placement sys-
tem. This system has seven axes of motion and
is computer numeric controlled. The machine
consists of three position axes (carriage, tilt,
crossfeed), three orientation axes (yaw, pitch,
roll), and an axis to rotate the work mandrel. All
of these axes are necessary to make sure the pro-
cessing head is normal to the surface as the ma-
chine is laminating tows. The machine also has
up to 32 programmable bidirectional electronic
tensioners, which are mounted in an air-condi-
tioned creel. These tensioners provide individual
tow payout and maintain a precise tension. The
fiber placement head is mounted on the end of

the wrist. The head precisely dispenses, cuts,
clamps, and restarts individual prepreg tows.

Applications

Fiber placement was developed during the
mid-to-late 1980s. In 1990 the first production
fiber placement machine was delivered to an
aerospace company. The first company to imple-
ment fiber placement on a production aircraft
was Boeing Helicopters. A U.S. government-
funded program was conducted by Boeing and
Hercules to develop the design and process for
fiber placing the aft fuselage for the Bell/Boeing
V-22 Osprey. This part was designed to take ad-
vantage of the unique capabilities of fiber place-
ment. The first four prototype V-22 aft fuselages
were made from nine hand-laid sections. Switch-
ing to single-fiber-placed monolithic structure

Figure 1.5: Schematization of a fiber deposition head used for automated fiber placement
(Reproduced from Evans Evans (2001))

1.2.2 Manufacturing Characteristics and Limitations

As with any manufacturing technology, there are always process specific aspects which
should be taken into account when designing. Several issues may arise with automated
fiber placement related either to part geometry, the required fiber path or to machine
specifications. These issues and the parameters influencing them are summarized in
Table 1.1 and are treated in more detail in this section.

Table 1.1: Overview of manufacturing issues related to automated fiber placement and the
parameters which influence them

Issue Influenced by:

Tow
Width

Course
Width

Fiber
Path

Material Machine Geometry

Jagged Boundary X X X
Min. Cut Length X X
Collision X X
Fiber Bridging X X X X
Min. Turning Radius X X
Gaps or Overlaps X X X X
Fiber Angle Deviation X X X
Deposition Rate X X X X X X
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Part, Ply or Course Boundaries

In order to place a course its initial and end point must be defined. In fiber placement
software this is generally achieved using boundaries, which can be natural such as
part edges or user defined such as ply boundaries. A boundary may also be defined
between intersecting courses. Most modern fiber placement machines allow tows to
be terminated individually. Since tows can only be cut normal to their placement
direction, jagged or saw-tooth edges will occur at boundaries which are not normal
or parallel to the placement direction, as can be seen in Figure 1.6. The jagged
edge will result in either small gaps, overlaps or a combination of the two. The gap
or overlap size is controlled by a coverage parameter. If tows are not permitted to
overlap a boundary, Figure 1.6(a), it is referred to as 0% coverage; 50% coverage,
Figure 1.6(b), is used when half of the tow overlaps the boundary and 100% coverage
refers to the case where no gaps are present at the boundary, as shown in Figure
1.6(c).

Boundary curve

Tow

(a) 0% Coverage

Boundary curve

(b) 50% Coverage

Boundary curve

 

(c) 100% Coverage

Figure 1.6: Jagged edge formed at a boundary for different coverage parameter values
(Reproduced from Tatting and Gürdal (2003))

The boundary quality is influenced by tow width if individual tow cutting is avail-
able or by band width if all tows must be cut simultaneously. The angle between the
boundary and the placement direction also influences the size of the gaps and over-
laps. If tows approach the boundary perpendicularly no gaps or overlaps are formed,
however, if the tows are almost parallel to the boundary, large, slender, triangular
gaps or overlaps will be present.

Minimum Cut Length

When placing a tow it is fed by pinching rollers from the cutting mechanism to
the compaction roller at the mold surface, as can be seen from Figure 1.5. It is
therefore not feasible to place a tow in a controlled manner that is shorter than the
distance between the cutting mechanism and the compaction roller. A constraint on a
minimum cut length is imposed to ensure that each tow can be correctly placed. The
constraint is often implemented directly in the fiber placement machine management
software, which simply does not allow the machine to place tows shorter than this
predefined length. A designer should keep this in mind as it may lead to unwanted
voids in the laminate or at ply boundaries, as can be seen in Figure 1.7. The unwanted
voids can be accounted for by increasing the length of tows which are too short,
however, this may lead to undesired overlaps.
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(a) Tows must be extended to exceed the mini-
mum cut length if they are to be placed

Tows which cannot be placed

(b) Internal tows are not placed if they violate
the minimum cut length constraint

Figure 1.7: Possible issues which may arise due to the minimum cut length constraint
(Reproduced from Blom (2010))

Machine-Mold Collision

In automated manufacturing processes a machine’s working envelope dictates possi-
ble part dimensions. The machine envelope is typically defined in terms of maximum
travel along, and maximum rotation about the x, y and z axes. In order to man-
ufacture large parts a track is often incorporated such that a robot arm or gantry
translate over a larger distance along a single axis. Modern fiber placement software
allow production runs to be simulated in advance to ensure that all fiber paths are
manufacturable without running into machine limitations. Collision avoidance sen-
sors may also be included on the machine head directly as a security measure. When
placing fibers on parts with concave surfaces it is important to limit the minimum
part radii such that the machine head does not impact the mold surface, as shown in
Figure 1.8.

Fiber Bridging

Another aspect which must be considered when defining the minimum allowable con-
cave part radius is a phenomenon called fiber bridging, shown schematically in Figure
1.8. Tows are always subject to tensile forces in the feeding mechanism and may
therefore separate from the mold surface when placing on concave sections. Fiber
bridging and therefore the minimum concave radius are influenced by material prop-
erties, fiber path and machine parameters. Materials with more tack are less likely to
release from the mold after placement and hence can follow tighter curvatures. Ma-
chine parameters such as compaction pressure, placement speed, heating temperature
and tow pretensioning forces may also influence the minimum allowable mold radius.
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Figure 1.8: Concave part geometry may lead to machine-mold collisions or fiber bridging

Minimum Turning Radius

Fiber steering may be introduced either to follow geometric contours of a part or as
a design feature to improve structural efficiency. In order to follow a steered path,
individual tows are forced to deform in-plane. The inner radius of a steered tow is
smaller than the outer radius, hence resulting in compressive forces along inner edge
and tensile forces along the outer edge. If the compressive forces exceed a specific
threshold, local fiber buckling will occur. The resulting out-of-plane undulations
are undesirable since they adversely affect laminate properties. A minimum turning
radius, or maximum allowable curvature, can therefore be defined such that no fiber
buckling occurs. The curvature constraint can be applied at tow or course level. The
minimum turning radius is influenced by tow width, material stiffness and tackiness
and by machine parameters such as compaction pressure and placement speed.

Rmin

Tension
C
om
pression

Figure 1.9: A minimum turning radius should be defined to mitigate local fiber buckling
along the tow inner radius due to excessive compressive forces

Gaps and Overlaps

In order to manufacture a ply that covers the entire mandrel surface, several adjacent
courses must be placed. For parts which are not simply multiples of the course width,
it is important to consider the course repetition pattern as it influences the final
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laminate configuration significantly. Gaps, overlaps or fiber angle deviations may
occur depending on how adjacent courses are placed. To illustrate this consider the
conical structure, represented by the developed two dimensional surface, shown in
Figure 1.10. It has to be fully covered by a 0◦ ply, which is defined by projecting
the axis of revolution onto the cone’s surface. The geometric nature of the example
requires more material to be placed on the right side of the cone than on the the left
side.

Two course replications strategies are typically used, which are known as the par-
allel path method and shifted path method. Parallel paths are created by placing
each course adjacent to the previously placed course, without allowing any gaps or
overlaps to occur at the course boundaries, as shown in Figure 1.10(a). The parallel
path method is by far the most common path replication strategy and is used by
default by most automated fiber placement machines. The consequence of this place-
ment strategy is that each path, other than the original path, may be misaligned with
respect to the true 0◦ direction on the mandrel surface. The degree of misalignment
increases as more parallel paths are placed. A possible remedy is to split the ply into
several segments within which the courses remain parallel, as shown in Figure 1.10(b).
A consequence of segmenting the ply is that gaps and/or overlaps will occur at the
segment boundaries.

Local 0  direction
o

Misalignment between 

course and 0  direction
o

(a) Parallel path

Segment 1

Segment 3

Segment 2

Overlaps

Gaps

(b) Parallel path with segments

Overlaps

Gaps

Local 0  direction
o

(c) Shifted path

Tow drops

Local 0  direction
o

(d) Shifted path with tow drops

Figure 1.10: Illustrative example of different path replication strategies to create a laminate
from multiple courses on the surface of a cone. The local 0◦ direction is defined by projecting
the axis of revolution onto the surface.
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The shifted path method consists of translating and/or rotating a reference path
such that the fiber angle orientation remains the same along a predefined direction.
In Figure 1.10(c) path shifting is illustrated for two cases; in the lower half paths are
shifted such that no gaps occur, resulting in significant course overlaps at the cone’s
apex. In the upper part of the cone, paths are shifted such that no overlaps occur,
resulting in large gaps at the cone’s base. The shift distance can also be selected
to be in between the aforementioned limits, resulting in a combination of gaps and
overlaps. If the machine allows individual tows to be cut and restarted, they can
be added or dropped along the path to avoid gaps and overlaps, as shown in Figure
1.10(d). Individual tows can also be dropped for the segmented parallel path method,
reducing gap or overlap sizes.

When fiber steering is introduced, similar phenomena appear for the different path
repetition strategies, as can bee seen in Figure 1.11. If a steered path is defined by its
center line, subsequent parallel paths will require the fiber path to change in order to
remain adjacent to the previous path. The designer should keep this in mind as it may
result in fiber angles that do not match the intended fiber angles corresponding to
the designed fiber path. Parallel paths also require a change in fiber path curvature,
which may subsequently trigger the constraint on minimum turning radius. Gaps or
overlaps will occur when paths are defined by shifting the original path along a fixed
axis, as can be seen in Figure 1.11(b). Overlaps can be avoided by dropping tows
along the fiber path, as shown in Figure 1.11(c).

Decreasing radius

of curvature

(a) Parallel path

Gap

Overlap

(b) Shifted path

Tows are dropped

individually

(c) Shifted path with tow drops

Figure 1.11: Schematic overview of three different path steering strategies

No matter which path repetition method is used, small gaps and overlaps will
undoubtedly occur. To retain structural integrity it is important that the designer
ensure these small defects are not concentrated in a single region of the structure.
Gürdal et al. (2005) introduced the concept of ply shifting or staggering as a means
of avoiding the collocation of imperfections within a laminate. The same method,
illustrated in Figure 1.12, can be used to reduce the amount of thickness buildup that
occurs for laminates manufactured using the shifted path method while allowing tow
overlaps.

Fiber angle deviations

Each course placed within a ply consists of several adjacent tows which are parallel
to one another. Therefore, similar to the aforementioned parallel path strategy, fiber
angle deviations may occur between each tow in the band when paths are steered, as
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(a) Steered plies without staggering (b) Steered plies with staggering

Figure 1.12: Local imperfections can be evenly distributed throughout the laminate by
staggering plies (Reproduced from Lopes (2009))

illustrated in Figure 1.13. When the desired fiber angle at the center of the course, θc,
is defined along a specific axis, x, the fiber angles at other locations along the same
axis in the course are not necessarily the same. The designer should therefore keep
in mind that defining fiber angles based on the fiber angle at the course centerline
may lead to discrepancies between the model and the manufactured part. The largest
deviations occur at the course boundaries, hence this effect is more pronounced for
wider courses. The fiber path and part geometry also influence the amount of the
fiber angle deviation that occurs. For example, straight paths on a flat surface will
not result in any fiber angle deviation. In the case of the aforementioned conical
structure, small deviations with respect to the local 0◦ direction will occur within
each course even if the course centerline is aligned correctly.

xθrθl θc

Outer course boundary

Course centerline

Inner course boundary

Tows

Figure 1.13: When steering fiber angles at the course boundary may deviate from that
defined at the center (θl > θc > θr)

Another source of fiber angle deviation may arise directly from choices made to
simplify manufacturing. It is common to manufacture the 90◦ ply in a single, contin-
uous winding path for structures of revolution, such as cylindrical and conical shells,
however, this implies that the fiber path should be rotated slightly, usually a few
degrees depending on the structural radius and course width, with respect to the true
90◦ direction.
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Deposition Rates

A crucial aspect of manufacturing fiber placed parts is the rate at which they can be
produced. Deposition rate is the most common performance metric for fiber place-
ment, in other words, how much material can be placed in a fixed amount of time
[kg/hr]. It is therefore no surprise that AFP machine manufactures are continuously
improving the speeds at which their machines can operate and increasing the num-
ber of tows which can be placed simultaneously. Other than machine specifications,
almost every aspect relating to fiber placement influences the deposition rate. For
example, placing wider tows allows more material to be placed per pass, however, as a
consequence steering performance will diminish and will result in a process resembling
automated tape laying. Another ramification of using wider tows is that gaps and
overlaps in the structure will become larger and may therefore significantly impact
laminate properties. Material properties such as tackiness and required activation
energy also influence process speeds. Similarly, the chosen stacking sequence, desired
amount of steering and part geometry will affect the achievable deposition rates.

1.2.3 Fields of Application

Fiber placement technology has improved drastically over the past three decades and
is being used by an increasing number of aerospace manufacturers (Evans, 2001).
Boeing Helicopters was the first company to apply fiber placement in a production
environment in the early 1990’s. Boeing and Hercules were funded to develop a process
to fiber place the aft fuselage section for the Bell/Boeing V22 Osprey. Initially the aft
fuselage section was built up of nine individual panels built using hand layup, with
redesigning for fiber placement a single monolithic structure could be manufactured
allowing the required amount of fasteners to be reduced by 34%. The trim and
assembly labour was reduced by 53% and the amount of material scrap produced was
reduced by 90%. Fiber placement was later applied for the production of fuselage
skins of the F/A-18 Super Hornet, allowing Northrop Grumman to reduce labour
costs by 38% with respect to hand layup.

Fiber placement is also being used in commercial applications. Raytheon Aircraft,
uses AFP to manufacture fuselage sections for its Premier I and Hawker Horizon
business jets. The sandwich structure used for the fuselage is manufactured from
a honeycomb core and graphite facesheets. The design allows for a fuselage shell
without frames or stringers, eliminating the need for riveting and resulting in more
useable space for passengers or cargo. The improved design has allowed Raytheon to
realize weight savings, material savings, a reduced part count, a reduced tool count,
reduced shop flow time and increased part quality.

Now, well into the 21st century, fiber placement had become mature enough to
be applied on a large scale in the commercial aviation environment. The Boeing 787
Dreamliner was the first commercial airliner to be manufactured primarily from com-
posite materials. Several manufactures are working together with Boeing to fabricate
wing and fuselage sections at multiple locations around the world. The cured parts
are subsequently transported to the Boeing Everette plant for final assembly. For
example, Alenia Aeronautica manufactures section 44 and 46 in their new compos-
ite facility in Grottagie. Each section is in the region of 10m long, has a diameter
of approximately 6m and contains roughly 2000kg of carbon fiber. The sections are
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manufactured using the latest generation fiber placement machines made by Inger-
soll Machine Tools. Similarly for the next generation wide-body aircraft from Airbus
Industries, the A350 – XWB, large portions of the fuselage barrel and wings are and
will be manufactured using fiber placement technology.

(a) Fuselage section (b) Nose cone

Figure 1.14: Automated fiber placement is used to manufacture large sections of the Boeing
787 Dreamliner (Source Boeing Media)

Fiber placement technology has made it possible to produce large yet intricate
structures while helping to reduce labour costs, the amount of scrap material pro-
duced, and it has increased product quality. However, AFP remains an expensive
technology and therefore is only applied when it can be economically justified. Air-
craft often have service lives in excess of 60 000 flight hours and millions of nautical
miles. Large operating cost savings can be achieved by reducing structural weight
and increasing maintenance intervals. The aerospace sector, where relatively large,
expensive parts are produced in small series, has been an ideal industry to introduce
and apply fiber placement technology, however, as machine costs start to decrease and
production rates increase fiber placement technology becomes attractive for other end
users, such as the automotive, maritime and wind-energy industries, which will or are
starting to integrate fiber placement into their production environment.

1.3 Variable Stiffness Laminates and their Design

Laminates traditionally consist of several plies, stacked in a predefined order, with
uniform fiber angle orientation throughout each ply. The stiffness properties of these
laminates are therefore independent of spatial location and these laminates are there-
fore referred to as constant stiffness laminates. Variable stiffness laminates are lam-
inates within which stiffness properties are a function of spatial location, in other
words stiffness properties change from point to point. This stiffness variation may
be discrete, by defining several different patches within a laminate, or continuous,
by varying the fiber angle orientation continuously within a ply’s domain. Schematic
examples of both discrete and continuous variable stiffness laminates are shown in
Figure 1.15.
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(a) Multi-patch laminate (b) Continuous fiber angle variation

Figure 1.15: Schematic representation of two variable stiffness laminates. The first is
achieved by defining several different constant stiffness patches within a single laminate and
the second consisting of one or more plies with continuously varying fiber angle orientation

Continuous stiffness variation is essentially a generalization of discrete stiffness
variation, which still stems from the more traditional method of defining laminates
using a fixed stacking sequence. The built-in fiber steering capability of automated
fiber placement machines makes it possible to steer tows in practically any direction
on the mandrel surface. This provides a unique opportunity to harness the anisotropic
properties of composite materials by steering fibers such that the desired stiffness is
achieved at the desired location within a laminate. Therefore, in the context of this
thesis, the term variable stiffness laminates refers to the most general form of stiffness
variation, namely laminates within which the fiber angle in a ply is allowed to vary
continuously with spacial location. In the literature these laminates may also be
referred to as laminates with curvilinear fiber paths or variable angle tow laminates.

The primary focus of the research conducted for this thesis was to develop an
efficient design framework for variable stiffness laminates, such that the advantages
offered by automated fiber placement and composite materials are fully exploited.
It is therefore important that the reader clearly understands what variable stiffness
laminates are, how they are modeled, analyzed and ultimately designed. In this sec-
tion the aforementioned topics will be clarified in the form of a succinct review of the
literature. The aim is to provide a broad overview of methods currently available to
model, analyze and design variable stiffness laminates. For a more in-depth evalua-
tion of parameterization schemes and the optimization algorithms used for variable
stiffness design the interested reader is referred to an extensive review provided by
Ghiasi et al. (2010). Literature relating specifically to the topic of each subsequent
thesis chapter is referred to and discussed where applicable.

1.3.1 Modeling Variable Stiffness Laminates

In order to study variable stiffness laminates and structures, a systematic approach to
defining stiffness variation within a laminate needs to be defined. Several approaches
have been developed in the past, which can be roughly classified into three categories:
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one, discrete stiffness representation, where the fiber orientation angles and stacking
sequence for each individual design region are defined independently. Two, direct
stiffness modeling, where the terms in the stiffness matrices describing the laminate
stiffness properties for a given design region are defined directly as variables or indi-
rectly via a set of intermediate variables. Three, the efforts made to ensure continuity
of the fiber path definition using a functional representation of the fiber paths and
varying a predefined set of parameters to change the path trajectory.

Discrete Stiffness Representation

Discrete fiber angle representation is the most commonly used method for defining
stiffness variation within a structure. It is essentially an intuitive extension of a multi-
patch laminate, as shown in Figure 1.15(a), to a level where a laminate is defined
locally at each point in the structure. Practically this results in a fiber angle and
stacking sequence being defined at specific points within a discretized structure, as
shown in Figure 1.16. The variable stiffness laminate discretization is typically based
on the underlying discretization required for structural analysis, such as when using
the finite element method.

Figure 1.16: Example of discrete fiber angle distribution (Source Setoodeh et al. (2006b))

Hyer and Charette (1991) were among the first to study variable stiffness laminates
and the influence of stiffness tailoring on the buckling load of a panel with a hole.
They present a finite element model of a quarter plate, which is discretized into 18
elements. Subsequently, a single fiber angle orientation is used as a design variable
within an element. Hence each element consists of a unique laminate of the form
(±45/θ6)s, where θ is considered to be a local design variable and constant within that
element. Even with only a single design variable per element, the tailored design shows
significant improvements with respect to a baseline for both buckling and strength. A
similar method is presented in Katz et al. (1989), in which the fiber angle orientations
for a panel with a hole are designed for maximum compressive strength.

In order to expand the design space, the next logical step is to define a design
variable for the orientation of each ply within a local laminate, as has been done
in Hammer (1999). Associating design variables with the fiber orientation angles
defined for each element has the advantage of providing the largest possible design
space for a given mesh density. The drawback of this approach is that fiber continuity
is difficult to impose and ensuring convergence for discrete stacking sequences remains
challenging.

Stegmann and Lund (2005) introduced a method termed, discrete material opti-
mization (DMO), in which the stiffness properties of each finite element are defined



1.3 VARIABLE STIFFNESS LAMINATES AND THEIR DESIGN 17

by selecting the most suitable stiffness properties from a predefined set of materials.
The method stems from topology optimization where the objective is to determine if
a specific element should or should not contain material. At element level, the con-
stitutive matrix is setup as a weight sum of candidate material constitutive matrices,
however, for meaningful results, the weights of all but one material must be forced
to zero, as is commonly done in topology optimization. The same method has been
extended to multi-layer structures. A drawback of this method is the need for defining
candidate materials and, as with the previous method, ensuring fiber angle continuity
between adjacent elements is difficult.

Direct Stiffness Modeling

Instead of using local stacking sequence information to indirectly model local laminate
stiffness properties, it is also possible to consider the terms in the stiffness matrices
used for analysis directly. In terms of classical lamination theory, see subsection 2.3.1,
this implies that the entries of the ABD matrices are considered as design variables.
The advantage of this approach is that the number of design variables are independent
of the number of plies in the laminate. The design variable set is restricted to the 18
entries of the symmetric ABD matrix. Difficulties with this method can arise since
the design variables are not free to be chosen arbitrarily. This may be remedied by
defining the stiffness matrix entries via intermediate variables.

Lamination parameters, first introduced by Tsai and Pagano (1968), are the most
commonly used direct stiffness parameterization. Lamination parameters uniquely
define a laminates stiffness properties and allow an arbitrary stiffness distribution to
be modeled with the minimum number of design variables regardless of the number
of discrete layers. In the most general case a total of 12 lamination parameters
together with total laminate thickness are required to define the ABD matrix fully.
Lamination parameters allow the local stiffness properties to be defined using a finite
set of convex, continuous design variables, and are therefore well suited to optimization
using efficient gradient based algorithms. Post-processing is required to determine the
actual fiber angle distribution from the lamination parameter distribution.

The polar-method, originally presented by Verchery (1979), is a minimal invariant
representation of in-plane elasticity. Laminate stiffness properties can be expressed
based on 18 parameters in the most general case. Vannucci (2006) has shown that
several laminate design problems can be expressed based on physical interpretation
of the polar invariants and can be conveniently solved from a mathematical perspec-
tive. Even though laminate stiffness can be expressed in terms of continuous design
variables, the design space has been shown to be non-convex. As is the case with lam-
ination parameters, the stiffness properties must be converted to a laminate stacking
sequence in a post-processing step.

Functional Fiber Path Representation

Olmedo and Gürdal (1993) were the first to introduce a fiber path parameterization
scheme to study buckling of variable stiffness plates. They define the fiber angles as
varying linearly along either the x or y axis and the authors demonstrate buckling
load improvements of up to 80% with respect to the best straight fiber designs. Later,
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Tatting and Gürdal (2002) generalize the path definition formulation to vary linearly
along an arbitrarily defined axis, x′, such that the fiber angle, θ(x′) is defined as,

θ(x′) = φ+ (T1 − T0)
|x′|
d

+ T0 (1.1)

where T0 and T1 are the fiber angles at the beginning and the end of the characteristic
length d. The orientation of x′ with respect to the global x-axis is defined by the angle
φ. The terms in equation (1.1) are represented graphically in Figure 1.17. Olmedo and
Gürdal (1993) also introduce a compact notation such that plies with linear variation
can be denoted as φ < T0, T1 >.

x

A

B

y

dT0
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x'

y'

Figure 1.17: Schematic representation of a fiber path defined using linear variation, which
can be compactly denoted as φ < T0, T1 > and where d represents a predefined length over
which the variation occurs (Reproduced from Gürdal et al. (2008))

Blom et al. (2008) extend the formulation of linear variation to include multiple
segments such that the fiber angle becomes a function of predefined angles at fixed
stages, as < T0, T1, . . . Tn >. An example of multi-segment linear variation on a
conical surface is presented in Figure 1.18. Including multiple segments provides
additional design freedom when more intricate stiffness variation needs to be achieved.
In further work, Blom et al. (2009c) report on the manufacturing and testing of a
variable stiffness shell designed for bending using piece-wise linear variation of the
fiber orientation angle along the circumferential coordinate. The advantage of linear
variation is that only a few design variables are necessary to define stiffness variation
and fiber continuity is guaranteed, however, the design space is always limited to the
set of design variables used for the parameterization.

Blom et al. (2009a) also investigate the use of geodesic, constant angle and constant
curvature paths to prescribe fiber angle variation over conical shells as shown in Figure
1.19. Geodesic paths have no in-plane curvature and are well known from filament
winding. A constant angle path is defined such that the fiber angle orientation along
the entire path remains the same. Similarly, constant curvature ensures that the
fiber path curvature is uniform along the path. In all three of the aforementioned
definitions the fiber path is fully described by a single angle and the part geometry,
hence significantly limiting the design freedom. Since the critical curvature for each of
the path definitions is readily available, curvature constraints can be applied without
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(a) Cone with three stage linear variation (b) Cone developed to a 2D surface

Figure 1.18: Example of multi-stage linear fiber angle variation on a developable surface,
with T0 = 0◦, T1 = 80◦, T2 = −30◦, T3 = −60◦ (Reproduced from Blom et al. (2008))

difficulty. Other methods of using functions to define fiber angle variation along a
single axis have been proposed. Parnas et al. (2003) present a method which uses
cubic polynomials to define fiber paths, whereas Honda et al. (2008) define fiber
paths as continuous parabolic functions. These methods all have the advantage of
ensuring fiber path continuity, however, the scope of the number of design variables,
and therefore the scope of the solution, is often limiting.

Constant curvature

Constant angle

Geodesic

Figure 1.19: Example of a geodesic, constant angle and constant curvature path on a cone
(Reproduced from Blom et al. (2009a))



20 INTRODUCTION 1.3

In order to increase the number of design variables and hence expand the avail-
able design space, fiber paths can be expressed in terms of more complex functions
such as Lobatto polynomials, as has been done by Alhajahmad et al. (2008). In the
formulation presented by Alhajahmad et al. (2008), the definition of non-linear fiber
angle variation along both spatial surface coordinates is possible. The fiber angle
orientation at normalized coordinate locations (ξ, η) is defined as,

θ(ξ, η) =
m−1∑
i=0

n−1∑
j=0

TijLi(ξ)Lj(η) (1.2)

where m and n are the the number of basis functions, Li and Lj are the Lobatto poly-
nomials and Tij are the unknown coefficients used as design variables. The number of
design variable can therefore be increased by increasing the number of included basis
functions m and n. An example of fiber paths defined using Lobatto polynomials is
presented in Figure 1.20.

compared with the straight-fiber design. It can also be observed that
by increasing the number of design variables, the fiber paths curve
more, resulting in large curvatures that are unfavorable from the
manufacturability point of view. These large curvatures can
traditionally be avoided by imposing constraints on the radius of
curvature of thefiber paths in the optimization process. However, it is
obvious that by simply considering a smaller number of design
variables, as is the case form! 4 and n! 7, the fiber paths may be
maintained smooth, as shown in Fig. 16.

VII. Conclusions
In this paper, design tailoring for the pressure-pillowing problem

of a fuselage skin panel using tow-placed steered fibers was
demonstrated. The problemwasmodeled as a two-dimensional plate
using von Kármán plate equations, and the nonlinear analysis was
performed using the Rayleigh–Ritz method. Optimal fiber paths
defined parametrically over the structure were determined for
maximum failure load. Optimal designs for both straight fibers and
steered fibers were obtained for different loading cases and different
aspect ratios. It was shown that by placing the fibers in their optimal
spatial orientations, the pressure-pillowing problem can be alleviated
and the load-carrying capacity of the structure can be improved,
compared with traditional designs with straight fibers. The increase
in the load-carrying capacity over the constant-stiffness design
obtained for the variable-stiffness designwasmainly due to the stress
redistribution throughout the panel, achieved by the steered fibers. It
was also shown that as the aspect ratio of the panel increases, more
improvement in the load-carrying capacity can be achieved. Linear
and nonlinear functions were used to describe the variation of the
fiber-orientation angles. Nonlinear variations offered more
flexibility for the laminate tailoring, thus showing better performance
and proving the limitation of using linear variation of fiber
orientations. Fiber paths corresponding to the optimal designs
appeared to be smooth curves with small curvatures, suggesting the
feasibility of fabrication of the designs using advanced tow-
placement machines.

In this study, one ply was designed using the steered fibers (i.e.,
"#!$ns). However, in general, each ply of the laminate can be
designed to have its own fiber-orientation distribution, for instance, a

Fig. 15 Case-II optimal fiber paths for maximum failure load; m! 4,
n! 9, and a=b! 1.

Table 5 Case-II load-carrying-capacity improvement (steered fiber vs straight fiber); !! !"x; y#and a=b! 2.

Design type No. of design variables, m % n Failure load "f
2

Load-carrying capacity improvement, %

Constant stiffness "#60 deg$4s —— 1.930 ——
Variable stiffness 4 % 7 2.252 14.3
Variable stiffness 4 % 9 2.630 26.6

Fig. 16 Case-II optimal distribution of the fiber-orientation angles for
maximum failure load and the corresponding fiber paths;m! 4, n! 7,
and a=b! 2.

Fig. 17 Case-II optimal distribution of the fiber-orientation angles for
maximum failure load and the corresponding fiber paths;m! 4, n! 9,
and a=b! 2.

638 ALHAJAHMAD, ABDALLA, AND GÜRDAL

Figure 1.20: Example of fiber paths defined using Lobatto polynomials on a rectangular
domain (Reproduced from Alhajahmad et al. (2008))

Klees et al. (2009) use hierarchical shape functions, based on Lobatto polynomials,
to express fiber angle distributions over the plate. Similarly to the formulation pre-
sented by Alhajahmad et al. (2008), the number of design variables can be increased
by increasing the polynomial order. An additional advantage of the formulation pre-
sented by Klees et al. (2009) is that curvature estimates, which are required to apply
manufacturing constraints, can be efficiently computed.

Nagendra et al. (1995) use non-uniform rational b-splines, also known as NURBS,
to generate a set of manufacturable basis paths. The global fiber paths are subse-
quently defined as a linear combination of the pre-defined basis paths. These scaler
multiples are therefore used as design variables. NURBS are well suited to defining
paths on complex surfaces and are often used directly by fiber placement machines to
define path trajectories, however, determining a suitable set of basis paths which are
used for design is no trivial task and therefore limits the applicability of this approach.

Schueler et al. (2004) present two methods of approximating the location of fiber
placed tows on a NURBS surface based on a pre-defined initial curve. The methods
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focus on how to propagate arbitrarily defined paths to cover the entire part surface.
The first method consists of approximating offset curves on a free form surface using
the geometric constraints of the fiber placement process. The second method is used
to approximate a curve on a free form surface that can be used to generate a laminate
family ply. Both methods require the definition of an initial path, and since this
approach models every tow, it allows the designer to consider the actual manufactured
laminate instead of a functional representation thereof.

Defining paths using streamlines based on functional requirements is another pos-
sibility. Tosh and Kelly (2000) present two methods for defining fiber trajectories in
a laminate. The first makes use of principle stress vectors, which always result in two
patters: tensile principal stress trajectories and compressive principal stress trajec-
tories. Depending on the loading, one of these two patterns will be dominant and
therefore the suggestion is made to add more plies following the dominant pattern.
An example of tensile principle stress trajectories for a pin-loaded hole is presented
in Figure 1.21. The second method makes use of load paths, which are essentially the
streamlines for a given load level. In other words they are defined as the regions in
which the load in a selected direction remains constant from the point of application
in a structure through to the point of reaction out of the structure. Both methods
assume that the intrinsic information available from stresses or load levels is sufficient
to define a fiber path, however, this may not necessarily be the case. Additionally it
is difficult to ensure manufacturability of the defined paths.

When considering the fibre patterns for anisotropic
composite laminates, an iterative procedure is required,
similar to that described previously. An iterative procedure
including fibre patterns for an orthogonal composite fabric
material containing an orthogonal set of tows following both
principal stress trajectories do not differ appreciably from
the patterns shown by combining Figs. 12 and 13. However,
when only the tensile direction is considered by using prop-
erties equivalent to unidirectional tape material, the fibre
patterns for the tensile principal stress trajectories are mark-
edly different. The resulting pattern shows a bunching of
fibres and a substantial increase in thickness adjacent to
the bearing surface of the hole, as indicated in Fig. 14.
It is interesting to determine the trajectories that would be

associated if a dominant direction based on magnitude of
principal stress is chosen. A trajectory is traced along the
tensile principal trajectories from the uniformly loaded
tensile end where the magnitude of the tensile principal
stress is greater than the magnitude of the compressive prin-
cipal stress. The trajectory is traced towards the pin-loaded
hole until the magnitude of the compressive principal stress
is greater than the magnitude of the tensile principal stress.
From this point, the trajectory now follows the compressive
principal trajectory to the hole boundary. The contours for
the dominant principal stress trajectories, shown in Fig. 15,
provide a useful comparison with the concept of load paths,
which is discussed in the following section.

4.2. Load path trajectories

Fig. 16 shows the dominant or X-direction load paths for
an isotropic structure with a pin-loaded hole. If such a
pattern were to be applied to composites, then we note

that just one ply is needed to favourably place fibres to resist
the net tension failure and bearing failures. In addition, no
fibres are terminated at the traction free boundaries which
assists in the goal of placing fibres only where they are
required to carry load. It is interesting to note that the domi-
nant load paths in Fig. 16 favourably align with the domi-
nant principal stress trajectories in Fig. 15.
The additional failure modes of cleavage and shear-out

failure may become a problem for a design where the edge
distance (e/D) is low. However, just as there are comple-
mentary principal stress trajectories ! 11 and ! 22, there is a
set of complementary load paths determined by taking equi-
librium in the Y-direction. These paths are shown in Fig. 17.
Load paths taken in this complementary or Y-direction may
be included as a second ply to provide resistance
against possible cleavage and shear out failures. The fibre
spacing is determined by an integration procedure,
taken along the centreline of the laminate from the hole at
point A to the edge at point B, as shown in Fig. 17, such that
the load between the contours along the centreline is the
same.
Consideration of anisotropic trajectories for a speci-

men containing a pin-loaded hole results in the trajec-
tories shown in Fig. 18. We note that the iterative
procedure results in the placement of fibres which are
elongated past the hole to favourably support the bear-
ing loads. Further, the fibres tend to congregate about
the centreline of the laminate at the bearing zone, which
would be desirable should a clearance fit be employed.
In-plane shear forces exist along the load paths, parti-
cularly where the load path trajectories are aligned at
90! to the loading direction, and a larger elongated area
is available to transmit these shear forces. This

M.W. Tosh, D.W. Kelly / Composites: Part A 31 (2000) 1047–10601054

Fig. 12. Tensile principal stress trajectories for an isotropic material.

Fig. 13. Spacing for compressive principal stress trajectories.

Fig. 14. Tensile principal stress trajectories in an anisotropic material.Figure 1.21: Example of tensile principle stress trajectories for a pin-loaded
hole(Reproduced from Tosh and Kelly (2000))

1.3.2 Analyzing Variable Stiffness Laminates

Once the structural stiffness distribution has been defined, the desired response infor-
mation must be computed, which is typically done using analytical, semi-analytical
or numerical methods. Analytical methods typically require numerous simplifying as-
sumptions to be made before being able to solve the governing equations. Hence their
use in modeling variable stiffness responses is limited, however, several semi-analytical
methods have been used in the past.
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Semi Analytical or Specialized Codes

The Ritz method, which is a direct method for finding approximate solution to bound-
ary value problems, has been applied extensively in the past to compute vibration
and buckling modes. However, to compute buckling modes of variable stiffness lami-
nates, the complex pre-buckling plane stress state must first be modeled. Martin and
Leissa (1989) are among the first to develop a procedure based on the Ritz method
to determine both stresses and displacements for sheets with arbitrary fiber spacing.
Gürdal and Olmedo (1993) present closed form solutions for the in-plane structural
response of variable stiffness laminates for three distinct boundary conditions. Later,
Olmedo and Gürdal (1993) use the in-plane closed form solutions in combination with
the Ritz method to compute the critical buckling load of a variable stiffness panels.

Kassapoglou (2008) presents a Rayleigh-Ritz solution to compute buckling loads
of panels with an arbitrary number of patches. The energy of a panel is formulated
in terms of the out-of-plane displacements. Minimizing the energy with respect to
the unknown coefficients in the expression for displacement results in an eigenvalue
problem the solution of which yields the buckling load.

Several specialized computational routines have been developed over the last three
decades to design minimum weight stiffened panels. These codes include PASCO
(Stroud and Anderson, 1981) and VICONOPT (Williams et al., 1991), that both make
use of the finite-strip based analysis code VIPASA. The code PANDA2 developed by
Bushnell (1987), also makes use of the finite strip method to analyze and design
composite panels. The aforementioned codes are computationally efficient, however,
are not well suited to variable stiffness design since the stiffness is generally considered
constant over a single strip. A modification has been applied by researchers at the
University of Bath to VICONOPT to study panels with linear stiffness variation.

Semi-analytical and specialized design codes are numerically efficient which makes
them well suited when a large number of structural analyses are required, however,
due to their specialized nature, the type of problems which can be studied is limited.

Finite Element Methods

The finite element method is a numerical technique for finding approximate solutions
to partial differential equations. The method originates from the need to solve com-
plex elasticity and structural analysis problems in the aerospace and civil engineering
industries. Modern day finite element analysis remains the method of choice for solv-
ing complex structural analysis problems over a broad range of industries. Numerous
commercial codes are available and applicable to a wide variety of structural, and non-
structural, analysis problems. In this approach, a problem is discretized and modeled
using a suitable set of elements that are interconnected at points called nodes. Each
element contains information about its physical property, such as thickness, density,
modulus, coefficient of thermal expansion etc. The response is subsequently computed
by solving a system of equations resulting from the assembly of the individual element
properties. Since individual properties can be defined per element, this approach is
well suited to studying variable stiffness structures. Hyer and Charette (1991) are the
first to use the finite element method to design variable stiffness structures. Due to
its general applicability, this approach is used extensively for variable stiffness design.
Finite difference discretization has also been implemented to solve several structural
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problems, see for example Grenestedt (1991) and Khani et al. (2009). For both
methods the number of design variables available to describe an arbitrary stiffness
distribution is limited by the number of elements used to discretize the system.

Cellular Automata

Setoodeh (2005) and Abdalla (2004), have implemented a cellular automata based
analysis method to model and design variable stiffness structures. Instead of solving
for the structural response using the complete system of equations, as is done for
finite element analysis, cellular automata solves for the structural response using
field variables, such as displacement, using local update rules. The field variables
are updated using predefined update rules in an iterative scheme until a converged
solution is found. This approach is inherently parallel, and allows extensive use of
this computing paradigm to improve computation efficiency.

1.3.3 Designing Variable Stiffness Laminates

Once a design is defined and its structural response can be evaluated, the parameters
defining the design must be selected such that predefined design criteria are met. This
is achieved by defining an objective function, which is used to evaluate the optimality
of the design and the constraints that guarantee design feasibility. An automated
process, called design optimization, is subsequently used to obtain the optimal set of
design parameters.

Design optimization of composite structures is a complex task, partly due to the
mixed integer and continuous design variables required to describe them and partly
due to the complexity of the design space. Several different optimization strategies are
available and can roughly be classified into one of two categories: one, direct search
methods and two, gradient based methods. Hybrid methods have also been developed
in an effort to capitalize on the advantages of a specific algorithm while mitigating
its disadvantages by iteratively switching with another algorithm not suffering from
the same disadvantages.

Direct Search Methods

The complex nature of composite design often makes it difficult to evaluate meaningful
gradient information. Direct search methods do not required derivative information
and can therefore provide a useful outcome. Direct search methods can be subdi-
vided into deterministic and stochastic methods. Enumeration, a rudimentary direct
search method, consists simply of computing the design response for each possible
design variable value and then selecting the set resulting in the optimal response.
This approach results in an excessive number of function evaluations, which is not
feasible for practical design applications. Pattern search methods, such as Hooke and
Jeeves or Nelder-Mead, reduce the number of function evaluations required to find an
optimum by intelligently selecting iteration points based on previous design points.
The aforementioned methods typically cannot be used to guarantee that the global
optimum has been found. To mitigate this issue, algorithms have been developed
to combine global and local search tactics. By intelligently sampling and subdivid-
ing the search domain, regions that are more likely to contain the global optimum
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are targeted thereby reducing the number of unnecessary function evaluations. The
DIRECT algorithm by Jones et al. (1993) is an example of a globally optimum deter-
ministic search method. Due to the relatively large number of function evaluations
required, deterministic methods are generally not efficient at solving problems with
large number of design variables, which is typically the case with composite structures.

Stochastic methods have been used extensively for composite design due to their
relative robustness, ability to handle discrete variables and global search nature. Ge-
netic algorithms are by far the most popular stochastic method used for conventional
composite design (Gürdal et al., 2010). Tatting and Gürdal (2002) use a purpose
built genetic algorithm to design variable stiffness panels based on linear variation by
obtaining the parameter set defining optimal fiber paths. Alhajahmad (2010) uses
simulated annealing to design variable stiffness panels based on Lobatto polynomi-
als. The primary disadvantage of stochastic methods is the large number of function
evaluations that are required. These can easily run into several hundred thousand
depending on the number of design variables, and therefore, are often only suitable if
stiffness variation can be described using a small set of design variables.

Gradient Based Methods

Gradient-based methods make use of derivatives with respect to all design variables
of the objective function and constraints to determine a descent direction. The num-
ber of design variables and constraints therefore significantly influence computation
time. Even though additional computational effort is required to compute derivatives,
this is usually outweighed by significantly faster convergence rates. Gradient based
optimizers can be subdivided into two groups, those based on optimality criteria and
those based on mathematical programming.

Optimality criteria require the derivation of a suitable criteria based on the Karush-
Kuhn-Tucker (KKT) conditions (Karush, 1939; Kuhn and Tucker, 1951). Subse-
quently, an iterative procedure is typically developed to obtain the optimum design.
Pedersen (1989) derive a criteria for minimum and maximum elastic strain energy
density to design the the optimal material orientation of an orthotropic material.
Later Pedersen (1991) design the thickness and orientation of a uniformly loaded can-
tilever, by aligning the material axis with the principle strains while thickness was
optimized using strain energy. Setoodeh et al. (2005) have shown that the optimality
criteria for minimum compliance variable stiffness design reduce to the minimization
of the complementary strain energy at every point in the domain.

Mathematical programming methods, often referred to as optimization, have been
studied extensively and have been successfully implement for a large range of struc-
tural optimization problems. Numerous algorithms exist ranging from first order
steepest-decent methods to more complex methods using Hessian information to im-
prove convergence rates. Setoodeh et al. (2006b) use a combination of sequential
quadratic programming and method of feasible directions to design variable stiffness
panels for maximum stiffness.

Gradient-based optimization methods are typically well suited to studying large
structural optimization problems due to the relatively low number of function eval-
uations required, however, they can only guarantee convergence to local optima and
therefore the obtained solution will depend on the nature of the design space and the
initialization point.
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1.4 Objectives and Layout of this Thesis

Automated fiber placement machines make it possible to manufacture an entirely new
class of tailored composite structures, allowing the full potential of composite mate-
rials to be exploited. As has been shown in numerous theoretical and experimental
studies in the past and discussed briefly in earlier sections, tailoring local stiffness
properties allows for significant design improvements. Despite this, the design tools
currently available to engineers do not exploit the steering capabilities of automated
fiber placement machines.

Design optimization of steered fiber paths to meet specific design requirements
is difficult and computationally expensive. The design and computational challenges
relate both to the cost of evaluating the function values and the non-convex nature
of the design problem. For example, to evaluate manufacturing constraints, detailed
course-level and tow-level information is required, which is typically expensive to eval-
uate. Additionally, the generally non-convex nature of the variable stiffness laminate
design problem complicates the search for a global optimum.

The primary goal of the presented research was to develop a computationally
tractable optimization approach to design variable stiffness structures and address its
implementation for several design problems. An overview of the developed optimiza-
tion framework is presented in chapter 2. A short background of variable stiffness
laminate design is provided and the proposed multi-step design approach is outline.
The optimization framework consisted essentially of three steps, one, the optimal
conceptual stiffness distribution was designed to meet the imposed structural require-
ments, two, the local fiber angle distribution was retrieved such that manufacturing
requirements were met while attempting to retain the performance improvements
realized in the first step, and three, the fiber angle distribution was converted to
continuous fiber paths which can be used for manufacturing purposes.

The research presented in this thesis focused primarily on the development of a
conservative convex structural approximation methodology, presented in chapter 3,
which was subsequently used to approximate several structural response types. The
approximation was formulated directly in terms of the laminate stiffness matrices and
is therefore independent of the chosen laminate parameterization scheme, however,
when parametrizing laminate stiffness in terms of lamination parameters, the convex
properties of the approximation are retained. One of the limitations, and perhaps
objections to using lamination parameters for composite design, has been the diffi-
culty of incorporating strength constraints into the optimization process. In order to
facilitate the acceptance of the approach, a method of including strength is presented
in chapter 4.

In the past buckling, a multi-modal structural response, has proven to be a chal-
lenging variable stiffness design problem to solve (Setoodeh et al., 2009). Hence, a
large portion of the research carried out and presented in this thesis was dedicated to
implementing buckling approximations within the proposed conceptual design frame-
work. Buckling of variable stiffness plates is studied in chapter 5. Past experimental
results demonstrated that curing induced residual thermal stresses present in variable
stiffness structures could significantly influence their buckling response. Therefore,
a simplified method of including thermal loads into the buckling optimization rou-
tine was developed and is presented chapter 6. Modern fiber placement machines
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are also equipped with on-the-fly cut and restart capabilities, making it possible to
vary laminate thickness quasi-continuously over the structure. In order to investigate
the effects this may have on buckling performance, the optimization approach was
extended to include thickness as a design variable, which is reported in chapter 7.
Finally, based on insight gained from previously developed buckling approximations,
an approximation of the buckling load of a general shell structure was derived and is
presented in chapter 8.

Several realistic design problems were studied together with industrial partners to
demonstrate the capabilities of the developed optimization approach. The first design
problem, see chapter 9, considered the design of a business jet window-belt section for
maximum strength. In a second design study, presented in chapter 10, the wing-rib
of a similar business jet was designed to meet an imposed set of design requirements.

General conclusions and recommendations regarding the present work are pre-
sented chapter 11. The conducted research work is only a beginning, therefore some
thoughts on future challenges that should be tackled are also discussed. However,
returning to the quote with which this chapter opened,

“Nothing is less productive than to make more efficient what should not
be done at all.”

the goal of the research done for this thesis was then:

to demonstrate that developing an efficiently design tool for variable stiffness
composite structures is both productive and worthwhile.



CHAPTER 2

Design Optimization Framework

“I have had my results for a long time: but I do not yet know how I am
to arrive at them.”

Carl Friedrich Gauss

The design of composite structures is by no means a trivial task. Composite
structures are inherently difficult to optimize due to a combination of discrete and
continuous design variables as well as generally non-convex design problems with mul-
tiple solutions. Variable stiffness laminates are even more complex to design, as the
optimization problem is no longer limited to a single or several laminate designs, but
consists essentially of obtaining an optimal layup at every point in the structure. En-
suring fiber continuity and laminate manufacturability complicates the design problem
even further.

An overview of the developed variable stiffness design framework is presented in
this chapter. To develop an efficient design optimization strategy it is important to
consider the nature of the responses, constraints and design variables which are to be
used. Carefully considering how a design problem is parameterized can significantly
simplify the optimization problem to be solved. Parameters influencing variable stiff-
ness composite structures and aspects that may drive their design are discussed in
section 2.1. A description of the multi-step optimization framework developed to opti-
mize variable stiffness composite structures is presented in section 2.2. A cornerstone
of the developed design framework is the use of lamination parameters to model a
laminate’s spatially varying stiffness properties. Lamination parameters and how they
relate to a laminate’s stiffness properties is presented section 2.3. The advantages and
limitations of the developed design framework are discussed in section 2.4.

2.1 Identifying and Selecting Design Drivers

Fiber placed composite structures consist of several million individually placed tows,
each a few millimeters wide, to build up laminates with possibly several hundred plies
with part sizes in the order of several meters or more. The design of such structures

27
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can essentially be approached from two directions: bottom-up, where each individual
tow or course path is defined, which yields the laminate and part stiffness to best
meet design requirements or top-down, where part stiffness is designed to best meet
design requirements and fiber paths are subsequently determined to yield the required
laminate stiffness.

Choosing the right level of abstraction has significant consequences for the com-
plexity of the design problem to be solved and implicitly defines the scope of possible
solutions. Additionally, design and manufacturing constraints can only be imposed if
sufficient detail is available. The different levels of abstraction are shown schemati-
cally in Figure 2.1, along with examples of manufacturing and design constraints that
can be imposed at that specific level.

Part Region Laminate Ply Course Tow

- Continuity between
   regions

- Stress 
  concentrations

- Ply stagering

- Outer layers ± 45 
- 10% rule

- Gaps / overlaps 
  between tows

- Constant or variable
  stiffness

- Straight or steered
- min. steering radius

- min. cut/start length- Head collision

D
es

ig
n

Pr
od

uc
tio

n
co

ns
tr

ai
nt

s

Design requirements (strength, buckling etc.)

Increasing level of abstraction

Figure 2.1: The considered level of abstraction determines what information is available to
the designer

At Part level, production constraints, such as avoiding head-collision, or restric-
tions on minimum and maximum part curvature, to avoid fiber bridging, can be
imposed. Part geometry is typically fixed before starting laminate design, therefore,
it is reasonable to assume that these constraints will have been taken into account
by the design engineer. Structural response requirements such as maximum displace-
ment, minimum buckling load etcetera can also be defined at part level. At Region
level, the designer may want to ensure ply or laminate continuity between different
regions. Ply staggering, a technique to avoid path overlaps or gaps from consistently
occurring at the same location, can be applied at Laminate level to avoid excessive
thickness buildup or resin filled regions. Ply composition constraints such as the 10%
rule, which enforces a minimum number of plies along several predefined directions,
may also be imposed at Laminate level. At Ply level, details about course-replication
are available, and therefore it must be determined if gaps or overlaps, or a combi-
nation of the two, occur between adjacent courses. The designer at this point can
choose between using straight or steered fiber paths. At Course level, the constraints
on minimum steering radius can be imposed and finally at Tow level minimum cut-
restart limits can be defined. The required level of abstraction is therefore partially
imposed by the information needed to evaluate the considered design drivers.

The design drivers listed in Figure 2.1 pertain primarily to structural performance
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metrics, manufacturing criteria and typically applied design rules. It may also be
necessary to consider other design requirements, such as design for minimum cost,
as will be discussed further below. To facilitate further discussion it is important to
clarify the scope of a considered design problem.

A structural component is often part of a larger design and manufacturing system
in which design choices are made on multiple levels, for example, design for man-
ufacturing may include ensuring manufacturability using an already selected manu-
facturing technology and entail selecting the most suitable manufacturing method.
Selecting the most suitable manufacturing method is often a complex trade-off be-
tween methods available, global costs or even company strategy, and goes beyond the
scope of the current discussion. The design drivers discussed in the following sections
are focused primarily on factors directly influenced when designing variable stiffness
composite structures using fiber placement technology and on determining the level
of abstraction required to evaluate the design driver.

2.1.1 Design for Structural Performance

A structural performance metric, such as the buckling load or the structural weight,
is unsurprisingly most commonly used as a design driver for structural optimization.
The reason is twofold; one, it is relatively straightforward to define and interpret
performance metrics in terms of meaningful design variables and hence the approach
tends to yield tangible results for structural engineers. Two, in aerospace, structural
weight is often associated with direct operating costs (Curran et al., 2004), hence it
is generally assumed that designing for optimal structural performance will result in
structures with lower weights and costs. Additionally the growing scarcities of raw
materials and fossil fuels support this premiss.

Considering variable stiffness laminates, it is interesting to note that typical design
requirements such as stiffness, buckling load or strength can be defined on part-level,
laminate-level or ply-level, as can be seen in Figure 2.1. A structural response can
usually be computed based on an equivalent stiffness material model, such as Classical
Lamination Theory (CLT). Therefore, in terms of structural design and optimization,
it is neither necessary nor realistic to model each tow, as an equivalent stiffness
distribution is usually sufficient. This observation is at the basis of the developed
design approach described in section 2.2.

2.1.2 Design for Manufacturability

Earlier variable stiffness design studies, such as those presented in Haftka and Starnes
(1988) and Hyer and Charette (1991), focused primarily on demonstrating how stiff-
ness tailoring could result in significant structural improvements. However, the dis-
crete nature of the obtained solutions were not suitable for continuous manufacturing
processes. Ensuring fiber path continuity, necessary for manufacturing, was achieved
primarily by using continuous functions to parameterize fiber paths as discussed in
section 1.3.1. Tatting and Gürdal (2002) have developed expressions to determine the
maximum radius of curvature for steered paths defined using linear variation. Over-
lapping, which occurs due to steering, was also taken into account. Similarly, Blom
(2010) uses continuous fiber path parameterization together with detailed informa-
tion about path overlaps and tow cut and restart locations to design variable stiffness
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cylindrical shells. Several other manufacturing related criteria such as machine-mold
collisions or laminate permeability may also be considered as design criteria to be
incorporated into the design process.

Detailed information about the laminate construction is necessary to impose man-
ufacturing constraints such as minimum steering radius or cut and restart locations.
Evaluating these design drivers thus often requires high fidelity models. The computa-
tional costs coupled with such models becomes restrictive in an optimization routine,
and therefore, it is often not feasible to include such detail at design level. The de-
velopment of accurate fiber path approximations, which capture sufficient course and
towpath details, will enable a more general implementation of manufacturing related
design drivers.

2.1.3 Design for Cost

Cost is an important design driver in almost any context, however it is typically
difficult to incorporate into a design optimization scheme due to the intricate na-
ture of cost functions, which are influence by material, manufacturing and operating
costs. Material costs and direct operating costs are often minimized implicitly through
structural weight minimization as outlined by Curran et al. (2004). Therefore, the
discussion below is primarily focused on manufacturing related costs. The majority
of cost models available in the literature are often based on manual manufacturing
processes. Kassapoglou (1997) includes an elaborate cost function related to several
aspects influencing a manufacture process based on hand layup while optimizing stiff-
ened composite panels. Manne and Tsai (1998) present a method for predicting the
manufacturing cost of multi-patch laminates based on laminate complexity, which is
related to the number of ply drop-offs within the structure.

The drive to automate manufacturing processes, such as by using automated fiber
placement, is commonly due to cost considerations such as reducing labour costs, min-
imizing amounts of wasted material and number of scraped parts due to production
errors. As with manual manufacturing methods, manufacturing costs in automated
process are often strongly dependent on manufacturing time. Hence production costs
can be lowered by increasing machine deposition rates using intelligent path planning
and by reducing overall laminate complexity, be it by minimizing the number of cut
and restart actions within a ply or by reducing the amount of steering. Imposing
design requirements related specifically to manufacturing costs therefore requires de-
tailed information about the laminate stacking sequence and fiber paths. As is the
case for manufacturing related design drivers, it is often not feasible to include such
detail at design level. It is interesting to note that the similarity between manufac-
turing and cost related design drivers may enable costs to be included implicitly in
an optimization routine when considering manufacturing design drivers.

2.2 A Multi-Step Optimization Framework

The primary aim of the conducted research presented in this thesis was to develop an
optimization framework for variable stiffness structures that was sufficiently general
to be applicable to a large range of design problems but remained computationally
tractable. Hence suitable modeling, analysis and optimization methods had to be
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selected and combined to form a robust framework capable of handling a general set
of design drivers for variable stiffness composite shell structures.

Variable stiffness design can be approached from two directions, either bottom-
up or top-down, as discussed in section 2.1. The former requires detailed tow and
course information to be parametrized and is therefore inherently more focused on
manufacturing related criteria, as can been seen from Figure 2.1. The latter tends
to neglect detailed tow-level information and is therefore inherently more focused on
global structural performance. However, if a general approach is to be developed,
both structural performance and manufacturing considerations must be accounted
for. Ideally, more complex design drivers such as designing for cost, should also be
incorporable into the design framework.

In order to develop a design framework it is necessary to be able to model the
stiffness variation, analyze the structural response associated with the stiffness varia-
tion and optimize the design to meet the imposed requirements. A discussion on the
different methods available to model, analyze and design variable stiffness composite
laminates was presented in section 1.3. The different methods and their advantages
and disadvantages are recapitulated in Table 2.1 to facilitate further discussion.

Selecting appropriate modeling and optimization methods is not a trivial task, as
they are often interdependent, therefore, we started by selecting a suitable analysis
method. Using specialized or semi-analytical methods is typically computationally
efficient, however, this comes at the expense of being restricted to a fixed set of prob-
lems that can be solved. Cellular automata has been shown to be an effective analysis
and design method (Abdalla, 2004; Setoodeh, 2005). The method is highly parallel,
due to the inherent local problem formulation, which may be used to improve compu-
tational efficiency substantially. As an analysis tool, however, it is still at the research
level and its inherent local nature complicates solving global structural responses. A
number of finite element methods have been developed over the past half century that
are applicable to a large range of structural analysis problems. They have proven to
be robust analysis tools and are the method of choice for industrial applications when
modeling complex structural components. To mitigate the disadvantages associated
with commercial codes, an elementary in-house finite element code was programmed
to facilitate research, details can be found in appendix B. Depending on model com-
plexity, it can take anywhere from seconds to days to compute a single response using
finite element methods. Considering the number of design variables required to define
variable stiffness structures, it is essential that the number of individual finite element
analyses required to obtain an optimum solution be reduced to a minimum.

In order to manufacture a composite part with automated fiber placement tech-
nology, each individual course path and tow drop must be considered. This level of
detail is also required to impose constraints such as minimum curvature, cut-restart
locations and tow gaps and overlaps. Parametrizing fiber paths directly restricts
the available design space and typically results in non-convex problem formulations,
necessitating the use of algorithms that are able to find a global optimum. Such algo-
rithms often require large number of function evaluations, resulting in problems that
cannot be solved in a feasible timespan. Direct stiffness modeling, be it fiber angles
directly or via intermediate parameters, allows for the most general description of
stiffness variation and hence captures the full design space. Making use of lamination
parameters, which are introduced in section 2.3, removes difficulties associated with
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discrete design variables and provides a convex design space, both desirable features
when optimizing with efficient gradient based algorithms. The primary disadvantage
of using such variables is a lack of ply, course and tow-level information required to
evaluate manufacturing related design drivers.

The complexity of the variable stiffness structural design problem necessitated a
multi-step approach, which exploits the advantages of several of the aforementioned
design methods while attempting to mitigate their primary drawbacks. The devel-
oped framework was based on a multi-step approach presented by IJsselmuiden et al.
(2009) to design fully blended multi-panel structures. In an initial step the authors
use approximations in terms of laminate stiffness properties, parametrized using lam-
ination parameters, and efficient gradient based optimization algorithms to determine
optimal laminate stiffnesses. In a second step individual laminate stacking sequences
are obtained while ensuring ply continuity between panels using so called guide-based
blending (Adams et al., 2004). An inexpensive local approximation of the bucking
load, based on the initially found optimum laminate stiffnesses, is used as an objec-
tive function for a genetic algorithm to obtain the stacking sequence. Intermediate
updates of the local approximation are conducted to improve solution accuracy.

The multi-step framework by IJsselmuiden et al. (2009) has three important fea-
tures, one, structural performance is optimized using efficient gradient based algo-
rithms to solve successive approximations. These approximations are parametrized
using lamination parameters that are continuous design variables and have a convex
design space. This allows the largest possible design space to be captured while si-
multaneously limiting the number of required finite element analyses to obtain the
optimum solution. Two, instead of using a more common least-squared distance
approach to convert lamination parameters to retrieve a laminate stack, see for ex-
ample Autio (2000), the same physically meaningful approximation of the structural
response developed in the initial step is used. Hence, the obtained laminate stacks
match structural performance targets more accurately. The advantage of using more
accurate methods of converting lamination parameters into a laminate stack has also
been noted in previous research, for example by Herencia et al. (2008). Three, manu-
facturing related constraints, i.e. ply continuity between panels, are only incorporated
in the second step, once detailed ply information is available.

Separating structural performance related design drivers and manufacturing re-
lated design drivers allows the most suitable optimization algorithms to be used where
necessary. A multi-step design optimization framework was therefore developed for
variable stiffness structures, outlined in Figure 2.2. In a first step, the laminate stiff-
ness distribution optimizing the considered structural performance is obtained. De-
sign drivers such as in-plane stiffness, strength, natural frequency and buckling can
be included at this stage of the optimization. The obtained optimum solution pro-
vides the designer with a conceptual stiffness distribution best satisfying the desired
structural performance requirements. In a second step, the fiber angle distribution,
essentially representing point-wise laminate stacking sequence, required to match the
obtained optimum stiffness distribution is determined. Manufacturing constraints,
such as minimum curvature, thickness buildup, or permeability, can be incorporated
at this stage. In a final step, the fiber angle distributions are converted to continuous
fiber paths which can be used for manufacturing. Each of the three aforementioned
steps are discussed in more detail in sections 2.2.1, 2.2.2 and 2.2.3 respectively.
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1 - Conceptual Optimization

Design Drivers:
Structural Requirements

(Strength, Buckling, Weight)

Optimum Stiffness 
(Lamination Parameters)

Output:
Conceptual Optimum
Design Sensitivities

2 - Fiber Angle Retrieval

Design Drivers:
Conceptual Optimum and

Manufacturing Requirements

True Fibre Architecture

Output:
Fiber Angles and Stacking 

Sequence Per Point

3 - Fiber Path Construction

Design Drivers:
Fiber Angle and Thickness 

Distribution 

Fiber Paths

Output:
Path Information for Fiber 

Placement Machine

Figure 2.2: Schematic overview of the developed multi-step optimization approach

2.2.1 Conceptual Stiffness Optimization

The first step of the variable stiffness optimization framework requires the stiffness
distribution to be determined by optimizing predefined structural performance met-
rics. A successive approximation scheme of performance related design drivers was
implemented to obtain a tractable optimization problem, by minimizing the number
of finite element analysis required to converge to an optimum. The primary focus of
the work presented in this thesis is the development of conservative convex separable
approximations, presented generically in chapter 3, for several structural response
types. The developed approximations are derived as a function of the laminate stiff-
ness matrices directly, and are therefore not dependent on the chosen laminate stiffness
parametrization scheme.

In order to optimize the structural performance a suitable parameterization of
the structural stiffness properties must be selected. Lamination parameters were se-
lected to model laminate stiffness properties for the conceptual optimization step
and are described in detail in section 2.3. Lamination parameters allow the stiffness
properties of an arbitrary laminate to be expressed in terms of twelve continuous
design variables, irrespective of the number of plies present in the laminate. If the
laminate is balanced and symmetric, which is often desired from a design perspec-
tive, the number of parameters required to define the laminate stiffness properties
reduces to four. The lamination parameter design space is also convex and it has
been shown that several laminate design problems are convex when posed in terms
of lamination parameters (Hammer et al., 1997). Laminate design problems posed
in terms of lamination parameters are therefore well suited to being solved using ef-
ficient gradient-based optimization algorithms allowing, together with the developed
structural approximations, the optimum stiffness distribution to be obtained with a
minimum number of finite element computations.

The conceptual stiffness distribution gives the designer insight into the mechanisms
resulting in improved performance and provides a benchmark of the best performance
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for a given design problem. The majority of the work presented in this thesis is related
to the approximation development and the use of lamination parameters to obtain
a conceptual optimum stiffness distribution. The relevant topics will be discussed in
more detail in subsequent chapters. The approximations developed in this thesis are
also well suited to solving the inverse problem as will be discussed in the next section.

2.2.2 Fiber Angle Retrieval

Once an optimal laminate stiffness distribution has been obtained, in this case in
terms of lamination parameters, a stacking sequence retaining the performance gains
of the optimal conceptual stiffness distribution must be found. Several methods have
been developed in the past to obtain a laminate stacking sequence from lamination
parameters. Heuristic algorithms, see for example Autio (2000), have been used most
successfully to solve this complex non-convex inverse problem. At this stage it is
important to include constraints that guarantee manufacturable solutions are found.
As discussed in subsection 1.2.2, several manufacturing details related specifically to
fiber placement must be considered, such as the minimum steering radius to avoid
tow wrinkling, location of gaps and overlaps due to fiber path steering and minimum
tow length. Previously developed fiber angle retrieval methods have been limited
to primarily straight fiber laminates or multi-panel laminates and do not consider
fiber path curvature or continuity. Therefore, when extending this methodology to
variable stiffness laminates, without the appropriate constraints, the obtained fiber
angle distributions are often not continuous and hence not manufacturable, see for
example Setoodeh et al. (2006b) and Honda and Narita (2008). To construct a feasi-
ble variable stiffness laminate the obtained fiber angle distribution must account for
manufacturing limitations, such as minimum steering radius. Constraints on the fiber
path radius is included either as an average curvature constraint per ply or as a local
point-wise curvature constraint, as discussed in the two following subsections.

Average Curvature Constraints

Fiber path curvature can be interpreted as a measure of the rate of change in fiber
angle. The curvature, κ, can therefore be expressed as the norm of the divergence of
the fiber angle, θ:

κ = ‖∇θ‖ (2.1)

Analogous to the finite element method, linear shape functions can be used to con-
struct a pseudo-stiffness matrix, representing a measure for the change in fiber angle
orientation, as presented by Pilaka (2010). The author formulated the approximate
fiber path curvature of an element, κe, as:

κ2
e =

1
2
θTe ·Ke · θe (2.2)

where θe is a vector of fiber angles at the element nodes and Ke is a curvature operator
expressing the change in fiber angle orientation. Constraining fiber path curvature at
every point within a laminate would result in a large number of local constraints. To
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avoid issues arising when solving an optimization problem with an excessive number
of constraints, an average curvature constraint was formulated per ply as:

1
2
θT ·K · θ ≤ κmax (2.3)

where θ and K are now the vector of fiber angles and curvature operator assembled
for an entire ply.

Quadratic approximations of the average curvature constraints and the structural
response were subsequently formulated by Pilaka (2010), and were based on the con-
servative convex separable approximation at the conceptual optimum found in the
first step. A gradient based optimizer is subsequently used to solve the quadratic
problem, which is highly non-convex due to the parametrization in terms of fiber
orientation angles. Gradient based optimization routines can only guarantee conver-
gence to a local optimum, therefore, a suitable initial design point must be obtained
to ensure solutions are found which capture the performance gains of the conceptual
optimization step. Due to the non-convex nature of the inverse problem this is best
achieved using heuristic search algorithms. A multi-objective asexual genetic algo-
rithm using hierarchical shape functions to parameterize fiber paths is presented in
Klees et al. (2009). The objective functions include both the conservative convex
separable approximation of the structural performance and the maximum average
curvature of all the plies present in the laminate. The Pareto front that is obtained
provides the designer with a trade-off between structural performance and the amount
of fiber steering present in the design. Points along the Pareto front can subsequently
be used to initiate the gradient based optimization process described above.

Local Curvature Constraints

The aforementioned design method makes use of a global average curvature constraint
per ply which results in smooth fiber angle distributions being obtained, however, to
guarantee laminate manufacturability curvature constraints should be satisfied at ev-
ery point within the laminate. A fiber angle retrieval scheme making use of point-wise
curvature constraints based on the curvature definition presented in equation (2.2) has
been developed by van Campen (2011). In an initialization step, a genetic algorithm
is used to obtain the fiber angle distribution best matching the optimum conceptual
laminate stiffness distribution. Curvature constraints are neglected at this stage and
the stacking sequence at each design point within the laminate is obtained based
either on least-squared fit with the optimum lamination parameter distribution or
using the conservative convex separable approximation at the conceptual optimum.
The optimum fiber angle distributions including manufacturing constraints are subse-
quently obtained using a cellular automata framework coupled with a gradient based
optimizer. The curvature is approximated locally based on the fiber angle distribu-
tions of neighboring elements. The constraints are included in the overall objective
function evaluated at each point within the cellular automata framework via a local
penalty term. The inherent local nature of the cellular automata framework mit-
igates the issues which arise when using a large number of constraints in a global
optimization problem, as is done by Pilaka (2010). An additional advantage of using
local penalization of the objective function is that including other point-wise con-
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straints such as local through-the-thickness permeability or local thickness buildup is
relatively straightforward.

Accuracy of Response Approximations

The aforementioned fiber angle retrieval methods make use of the developed conser-
vative convex separable approximations to include the structural response as either
an objective function or as a constraint. These approximations are based on gradient
information of the various responses obtained at the conceptual optimum found in
the first step of the multi-step design framework. As with most approximations, the
accuracy with which a function value is predicted deteriorates away from the vicinity
of the approximation point. Studying several practical example problems has shown
that the laminate stiffness distribution of manufacturable design may indeed differ
significantly with respect to the initially found conceptual optimum laminate stiffness
distribution. Hence, the accuracy of the approximations used to predict the structural
response may become inadequate. Two solutions may be considered to improve the
accuracy of the structural approximations.

One, the derivatives used to generate the approximations can be updated during
the fiber angle retrieval step, similar to the method proposed by IJsselmuiden et al.
(2009) when solving a multi-panel blending problem. Once an initial manufacturable
design is found, the sensitivities required to approximate the structural responses are
updated and the fiber angle retrieval algorithm is rerun. The update process is re-
peated until a converged solution is found. This approach has been demonstrated
successfully by van Campen (2011) and allows manufacturable fiber angle distribu-
tions to be obtained that have a superior structural performance to those solutions
found using traditional least-square fit algorithms in lamination parameter space.

Two, an approximation of the considered response can be developed which is accu-
rate over a larger portion of the design space. Response surface methods are frequently
used to generate global response approximations, however, as the number of design
variables increases the computational cost of generating a response surface becomes
restrictive. Irisarri et al. (2011) present an innovative multi-point approximation
method based on an improved Shepard’s method (Shepard, 1968). First the conser-
vative convex separable approximation used for the conceptual stiffness optimization
is constructed at multiple points in the design space. These approximations are sub-
sequently combined using a distance measure in stiffness space based on Shepard’s
method to obtain a global approximation. The number of points used to generate
the global approximation are updated iteratively based on sensitivity data computed
at the optimum found after any given iteration. The global approximation, when
parameterized in terms of fiber angles, is no longer convex and is therefore solved
using a genetic algorithm. The method is shown to be efficient for both straight fiber
laminate and multi-patch laminate design and is currently being extended to variable
stiffness laminates.

2.2.3 Fiber Path Construction

In the final step of the multi-step optimization framework, the fiber angle distributions
obtained in the previous step must be converted to continuous fiber paths that can
be used as input for most fiber placement software. Fiber angle distributions can be
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used to generate continuous fiber paths using a streamline methodology, as introduced
by Blom et al. (2009b) for planar structures. The approach has been extended to
arbitrary surfaces by Nagy et al. (2009).

Streamlines, analogous to those used to visualize aerodynamic flows, can be used
to represent the centerline of a course and are defined by all the points in a domain
that have the same constant function value:

ψ(ξ, η) = C (2.4)

where ψ is the stream function and ξ, η represent the parametric surface coordinates
and the constant represents the ply thickness. As is shown by Nagy et al. (2009), given
a fiber angle distribution, θ(ξ, η), the stream function can be obtained by solving the
following partial differential equation:

∇ψ · p = 0 (2.5)

where p represents a unit vector on the parts surface corresponding to the local fiber
angle orientation. The solution is fully defined by the conditions imposed at the inflow
boundary, as is the case for aerodynamic flows.

The streamlines represent the path of the course centerline, therefore, unless
streamlines are parallel, successively placed courses with a fixed finite width will in-
evitably result in thickness variation within the ply. The amount of overlap depends
on the distance between adjacent streamlines, the closer the streamlines are together
the more thickness buildup occurs. Given a target fiber angle distribution the choice
of inflow boundary conditions therefore influences the final thickness distribution, as
can be seen schematically from the example presented in Figure 2.3. For the exam-
ple shown in Figure 2.3(a), uniform thickness was assumed at the inflow boundary,
i.e. all courses are adjacent to one another, however, in this case the resulting fiber
paths, aiming to match the required fiber angle distribution, do not cover the entire
ply surface. In the second example, Figure 2.3(b), the inflow boundary conditions
were optimized to ensure total ply coverage while minimizing the number of overlaps
within the ply. Several methods to optimize the inflow boundary conditions are pre-
sented by both Blom et al. (2009b) and Nagy et al. (2009), each of which are aimed at
minimizing the collocation of overlaps and gaps or minimizing the number of overlaps
or a combination of the two.

2.3 Laminate Stiffness Modeling using Lamination Parameters

In order to model and design composite structures, the relationship between mate-
rial properties, ply orientations, stacking sequence and the structural response must
be defined and understood. The constitutive equations, which relate laminate stress
resultants and laminate strains, are derived in the following subsection. The rela-
tion between laminate stiffness properties and lamination parameters, which are used
as design variables for laminate optimization, are presented in subsections 2.3.2 and
2.3.3, followed by the definition of their feasible regions in subsection 2.3.4. A brief
discussion on the physical interpretation of lamination parameters is provided in sub-
section 2.3.5. Finally, the formulation used to model variable stiffness laminates is
presented in subsection 2.3.6.
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(a) Uniform inflow boundary conditions
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(b) Boundary conditions optimized for minimum
maximum thickness

Figure 2.3: Example of thickness variation that occurs within a steered fiber ply with con-
stant course width due to different inflow boundary conditions(Source Blom et al. (2009b))

2.3.1 Mechanics of Composite Laminates

Classical Lamination Theory (CLT) forms the basis of laminate stiffness formulation,
and assumes that N orthotropic and/or isotropic layers are perfectly bonded by an
infinitely thin, non-shear-deformable bond-line. Bending of the laminate follows the
classical Kirchhoff-Love pure bending assumptions; that a straight line perpendicular
to the mid-plane before deformation remains straight and perpendicular to the same
plane. The length of that line also remains unchanged. Hence, through-the-thickness
deformations in the laminate are zero, and the strains in the out-of-plane direction z
are neglected. The layer(s) are also thin compared to the in-plane dimensions of the
layer(s), and the stress components in the z direction are assumed to be negligible so
that an approximate state of plane stress prevails.

The stresses in a single lamina loaded along its principle axes can be related to
lamina strains via the following constitutive relation for orthotropic materials: σ1

σ1

τ12

 =

 Q11 Q12 0
Q12 Q22 0

0 0 Q66

 ε1

ε1

γ12

 (2.6)

where the Qij ’s are the reduced laminate stiffness components, defined in terms of
the material’s longitudinal modulus (E1), transverse modulus (E2), shear modulus
(G12) and poisson ratio (ν12) as:

Q11 =
E1

1− ν12ν21
, Q12 =

ν12E1

1− ν12ν21
, Q22 =

E2

1− ν12ν21
, Q66 = G12 (2.7)

A laminate is subsequently constructed by stacking multiple plies with a given
thickness, tk, and orientation angle with respect to the laminate axis, θk, as can be
seen in Figure 2.4.

Using the set of CLT assumptions, in-plane stresses of the kth layer positioned at
a through-the-thickness location zk−1 < z < zk are given by: σx

σy
τxy


k

=

 Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66


k


ε◦x + zκx
ε◦y + zκy
γ◦xy + zκxy

 (2.8)
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Laminate

mid-plane

Figure 2.4: Schematic view of a composite laminate consisting of N laminae with orienta-
tion θk, thickness tk and located at distance zk from the mid-plane

where Qij ’s are the lamina stiffness components in the laminate coordinate system of
the kth layer and are given by:

Q11 = U1 + U2 cos 2θk + U3 cos 4θk
Q12 = U4 − U3 cos 4θk
Q22 = U1 − U2 cos 2θk + U3 cos 4θk
Q66 = U5 − U3 cos 4θk (2.9)
Q16 = (U2 sin 2θk + 2U3 sin 4θk)/2
Q26 = (U2 sin 2θk − 2U3 sin 4θk)/2

where the Ui’s are completely described by the material properties of the kth layer,
are invariant with respect to the orientation angle of that particular layer and are
defined as:

U1 = (3Q11 + 3Q22 + 2Q12 + 4Q66)/8
U2 = (Q11 −Q22)/2
U3 = (Q11 +Q22 − 2Q12 − 4Q66)/8 (2.10)
U4 = (Q11 +Q22 + 6Q12 − 4Q66)/8
U5 = (Q11 +Q22 − 2Q12 + 4Q66)/8

From equation (2.8) it is clear that the through-the-thickness distributions of in-
plane stresses are either constant, when laminate curvatures κi are zero, or linear
in each layer. However, even if all the layers are made of the same basic material,
because of discontinuity of the orientation angle from one layer to another, stresses
jump at the layer boundaries, as can be seen in Figure 2.5. Hence it is difficult to
write stress-strain relations for the entire laminate. That is, even though there exists
a spatial distribution of strains (ε0i and κi) resulting from deformation of the laminate
as a whole, there is no stress like quantity corresponding to these strains. A remedy to
this situation is to define a set of stress like quantities that are obtained by integrating
the layer stresses throughout the laminate thickness, h, as shown in the first part of
equation (2.11). The N ’s in the equation are often referred to as the stress resultants.
Similarly, using through-the-thickness integration of the moments of the stresses, we
can define the moment resultants, M ’s.
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Figure 2.5: Illustration of linear strain variation and discontinuous stress variation in a
laminate (Reproduced from Daniel and Ishai (1994))

Nx =
∫ h

2

−h
2
σxdz Ny =

∫ h
2

−h
2
σydz Nxy =

∫ h
2

−h
2
τxydz

Mx =
∫ h

2

−h
2
σxzdz My =

∫ h
2

−h
2
σyzdz Mxy =

∫ h
2

−h
2
τxyzdz

(2.11)

Substituting layer stresses from equation (2.8) into the above definitions, one obtains
the constitutive relations for the laminate, given by: Nx

Ny
Nxy

 =

 A11 A12 A16

A12 A22 A26

A16 A26 A66


ε0
x

ε0
y

γ0
xy

+

 B11 B12 B16

B12 B22 B26

B16 B26 B66

 κx
κy
κxy


(2.12)

 Mx

My

Mxy

 =

 B11 B12 B16

B12 B22 B26

B16 B26 B66


ε0
x

ε0
y

γ0
xy

+

 D11 D12 D16

D12 D22 D26

D16 D26 D66

 κx
κy
κxy


(2.13)

where:
Aij =

∑N
k=1 (Qij)k (zk − zk−1)

Bij = 1
2

∑N
k=1 (Qij)k

(
z2
k − z2

k−1

)
Dij = 1

3

∑N
k=1 (Qij)k

(
z3
k − z3

k−1

) (2.14)

The A and D matrices are the extensional and flexural, i.e. bending, stiffness matri-
ces, respectively. The A matrix relates the in-plane stress resultants to the mid-plane
strains, and the D matrix relates the moment resultants to the curvatures. The B ma-
trix relates the in-plane stress resultants to the curvatures and the moment resultants
to the mid-plain strains and is called the bending-extension coupling matrix.

This coupling can be very useful for certain structural applications, however, the
coupling is typically considered to be undesirable, and the B matrix can be avoided
by a symmetric placement of the layers with respect to the mid-plane of the laminate.
Besides using symmetry, there are other ways to avoid coupling, as demonstrated in
Caprino and Visconti (1982).

2.3.2 Lamination Parameters

The constitutive relations presented in the previous section include the design vari-
ables in the Qij terms, which include the layer orientation angles via equation (2.9),
and thicknesses of layers as difference of layer boundary locations, zk−zk−1. In many
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engineering problems elements of the A,B, and D matrices appear directly in either
the objective function(s) or in the constraints. Hence, what is typically designed is the
individual elements of these matrices. A more convenient form of representing these
matrices is based on the use of lamination parameters (LP) introduced by Tsai and
Hahn (1980), which are defined as non-dimensional through-the-thickness integration
of the layer orientation angles as:

(V1A, V2A, V3A, V4A) =
∫ 1

2

− 1
2

(cos 2θ, sin 2θ, cos 4θ, sin 4θ) dz

(V1B, V2B, V3B, V4B) = 4
∫ 1

2

− 1
2

z (cos 2θ, sin 2θ, cos 4θ, sin 4θ) dz (2.15)

(V1D, V2D, V3D, V4D) = 12
∫ 1

2

− 1
2

z2 (cos 2θ, sin 2θ, cos 4θ, sin 4θ) dz

where VA, VB and VD are referred to as the in-plane, coupling and bending lamination
parameters respectively and z is the normalized through the thickness dimension.

It should be noted that in laminates the layer orientation angles typically do not
vary continuously but are piece-wise linear, i.e. constant in each layer. Hence, the
integral in equations (2.15) can be replaced by summations. Regardless of how the
lamination parameters are computed, they allow laminate stiffness matrices to be
expressed simply as linear functions of the material invariants as:

A = h (Γ0 + Γ1V1A + Γ2V2A + Γ3V3A + Γ4V4A)

B =
h2

4
(Γ1V1B + Γ2V2B + Γ3V3B + Γ4V4B) (2.16)

D =
h3

12
(Γ0 + Γ1V1D + Γ2V2D + Γ3V3D + Γ4V4D)

where the Γi’s are fully defined by the material invariants (2.10) as:

Γ0 =

U1 U4 0
U4 U1 0
0 0 U5

 ,Γ1 =

U2 0 0
0 −U2 0
0 0 0

Γ2 =

 0 0 U2/2
0 0 U2/2

U2/2 U2/2 0

 ,
Γ3 =

 U3 −U3 0
−U3 U3 0

0 0 −U3

 ,Γ4 =

 0 0 U3

0 0 −U3

U3 −U3 0

 (2.17)

Since typically the laminate response can be fully described using only the stiff-
ness matrices, lamination parameters may be used as design variables instead of ply
orientation angles and stacking sequence. The representation shown above then leads
to linear dependence of the ABD matrices on these variables that may be beneficial
for design optimization.

2.3.3 Modeling Thermal Stresses with Lamination Parameters

Lamina thermal properties exhibit similar directional behavior as lamina stiffness
properties, hence classical lamination theory can also be applied to incorporate ther-
mal effects. Thermal stress and strains may result from either residual stresses present
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due to curing or to external thermal loading. Assuming that the thermal load varia-
tion is constant through the thickness of the laminate, constitutive relations, similar
to equation (2.12) and (2.13), relating stress and moment resultants to the mid-plane
thermal strains and curvatures can be derived (Gürdal et al., 1999) and expressed as:

N + NTh = Aε0 + Bκ (2.18)
M + MTh = Bε0 + Dκ

where Nth and MTh are the thermal load and moment vectors defined as:

NTh =
∫ h

2

−h
2

Q̄ · εThdz and MTh =
∫ h

2

−h
2

Q̄ · εThzdz (2.19)

where Q̄ is the transformed reduced stiffness matrix of the kth layer, as defined in
equation (2.9). The thermal strains, εTh, are induced by an applied temperature dif-
ference, ∆T , and are a function of the lamina longitudinal and transverse coefficients
of thermal expansion (CTE), α1 and α2 respectively. Factoring out the terms depen-
dent on ply orientation, it can be shown that the thermal load vector and moment
can also be expressed in terms of lamination parameters as:

NTh = h(Λ0 + V1AΛ1 + V2AΛ2)∆T (2.20)

MTh =
h2

4
(V1BΛ1 + V2BΛ2)∆T

where ViA and ViB are the normalized in-plane and coupling lamination parameters
respectively, h is the laminate thickness and Λi are vectors defined as:

Λ0 = (α1Q11 + (α1 + α2)Q12 + α2Q22) · {1 1 0}T
Λ1 = (α1Q11 + (α1 − α2)Q12 − α2Q22) · {1 − 1 0}T (2.21)
Λ2 = (α1Q11 + (α1 − α2)Q12 − α2Q22) · {0 0 1}T

where α1 and α2 are the coefficients of thermal expansion along the primary material
directions, and Qij are the reduced lamina stiffness components, as defined in equation
(2.7), and are only dependent on material properties.

2.3.4 Feasible Region of Lamination Parameters

It has been shown that the laminate stiffness matrices can be expressed as a lin-
ear function of lamination parameters. However, lamination parameters cannot be
selected arbitrarily since the trigonometric functions used in equation (2.15) are re-
lated. Therefore, it is necessary to prescribe a range of lamination parameters values,
know as a feasible region, which result in physically meaningful laminate stiffness
matrices. The feasible domain for the in-plane lamination parameters is defined as
(Hammer et al., 1997):

2V 2
1A(1− V3A) + 2V 2

2A(1 + V2A) + V 2
3A + V 2

4A − 4V1AV2AV4A ≤ 1
V 2

1A + V 2
2A ≤ 1

−1 ≤ ViA ≤ 1 (i = 1, . . . , 4) (2.22)
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Grenestedt (1991) proved that the feasible region for an arbitrary set of lamination
parameters is convex, hence equation (2.22) prescribes a closed, convex surface in R4.
Considering the special case of balanced symmetric laminates, where V2A = V4A = 0,
as will be discussed in subsection 2.3.5, the feasible region simplifies to:

V3A ≥ 2V 2
1A − 1

−1 ≤ ViA ≤ 1 (i = 1, 3) (2.23)

An identical set of expressions can be obtained for the out-of-plane lamination
parameters, ViD. The feasible region prescribed by equation (2.22) is applicable
when solving design problems that are dependent on either in-plane or out-of-plane
lamination parameters.

Practical design problems often require both extensional and flexural laminate
properties to be designed simultaneously, thus requiring a combined feasible region of
in-plane and out-of-plane lamination parameters to be defined. Currently no analyti-
cal expression for the combined feasible domain is known. Diaconu and Sekine (2002)
present an approximation scheme based on a variational approach to obtain the fea-
sible domain for any set of lamination parameters implicitly. Bloomfield et al. (2009)
present a method for deriving analytical expressions approximating the combined
feasible region by predefining a set of ply angles. Setoodeh et al. (2006a) present
a method for approximating the feasible region for an arbitrary set of lamination
parameters. Using the convex nature of the feasible region, the authors develop a
numerical approach based on successive convex hull approximations allowing an ap-
proximate feasible region to be expressed as a set of linear constraints (hyperplanes).
These linear constraints are readily included as constraints into any standard struc-
tural optimization problem. The linear approximations presented by Setoodeh et al.
(2006a) were used to define the feasible region in the majority of the work presented
in this thesis.

2.3.5 Physical Interpretation of Lamination Parameters

Laminae are typically an order of magnitude stiffer in the fiber direction than in the
transverse direction. Composite engineers can therefore often intuitively interpret
laminate behavior based on fiber angles and stacking sequence. The use of lamination
parameters provides a more abstract method for defining laminate stiffness, however,
their meaning can be interpreted physically to some extent.

Consider the in-plane stiffness matrix, A, which is defined in equation (2.16) as
a linear combination of material dependent matrices, Γi, defined in equation (2.17),
multiplied the laminate thickness, h. It is therefore necessary to understand the
individual contribution of each Γi in order to understand the influence of lamination
parameters on laminate stiffness. These matrices are repeated below for convenience:

Γ0 =

U1 U4 0
U4 U1 0
0 0 U5

 ,Γ1 =

U2 0 0
0 −U2 0
0 0 0

Γ2 =

 0 0 U2/2
0 0 U2/2

U2/2 U2/2 0

 ,
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Γ3 =

 U3 −U3 0
−U3 U3 0

0 0 −U3

 ,Γ4 =

 0 0 U3

0 0 −U3

U3 −U3 0


The first matrix, Γ0, is identical to the in-plane stiffness matrix of a quasi-isotropic

laminate divided by its thickness. Therefore, if all in-plane lamination parameters
are zero, ViA = 0, only Γ0 contributes to the laminate in-plane stiffness, see equation
(2.16), and hence the in-plane stiffness matrix corresponds to that of a quasi-isotropic
laminate. Lamination parameters can therefore be thought of as terms that alter the
stiffness matrix of a quasi-isotropic laminate in order to introduce orthotropy.

The second matrix, Γ1, alters components A11 and A22 in the stiffness matrix,
and hence influences the direction of axial stiffness. In other words, as V1A → 1, A11

increases and A22 decreases, meaning that more fibers are aligned with the laminate
material axis, corresponding roughly to a laminate with a larger percentage of 0◦

plies. Similarly, as V1A → −1, A11 decreases and A22 increases, corresponding to a
laminate with a larger percentage of 90◦ plies.

The third and fifth matrix, Γ2 and Γ4, alter components A16 and A26 in the
stiffness matrix, and hence influence the amount of extension-shear coupling present
in the laminate. If V2A = V4A = 0 the laminate is balanced and no extension-shear
coupling occurs.

The influence of Γ3 on the in-plane stiffness matrix is slightly more intricate, as
it influences A11, A12, A22 and A66. As V3A → 1, both the value of A11 and A22

will increase while simultaneously decreasing A12 and A66. This implies an increase
in both axial and transverse stiffness while decreasing the shear stiffness with respect
to the quasi-isotropic laminate defined by Γ0. Physically this can be interpreted as
increasing the percentage of 0◦ and 90◦ plies while reducing the percentage of 45◦

plies. Conversely, as V3A → −1, both A12 and A66 increase while A11 and A22

decrease.
Further physical insight may be gained by investigating the lamination parameters’

feasible region for a balanced symmetric laminate, where V2A = V4A = ViA = 0. The
feasible region, known as the Miki’s diagram (Miki, 1982), is presented in Figure 2.6,
and corresponds to the region prescribed by equation (2.23). Point A, corresponding
to V1A = V3A = 0, represents a quasi-isotropic laminate. Point B, where V1A =
V3A = 1, corresponds to a laminate consisting of only 0◦ plies, similarly, point F is a
laminate consisting of only 90◦ plies. Tracing along the parabolic boundary from point
A, through points B, C, D and E to point F represent cross-ply laminates ranging
from 0◦s through ±30◦s, ±45◦s, ±60◦s to 90◦s.

All points on the boundary of the lamination parameters’ feasible region can there-
fore be directly converted to an equivalent laminate of only one orientation angle. A
straight line through any lamination parameter combination, (V1A, V3A), will intersect
the feasible region boundary at two points. The distance between these intersection
points and (V1A, V3A) can be used to compute the ratio of plies corresponding to
the intersection points required to obtain matching laminate stiffness. Consider point
G for example, which lies mid-way between point A and point F, and hence can be
translated into a laminate with equal amounts of 0◦s and 90◦s plies. Similarly point A,
lies twice as far point B as from point E and hence can be converted to a laminate with
twice as many 60◦ plies as 0◦ plies, i.e. [±60, 0]s. The same point (A) is also midway
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Figure 2.6: Miki’s diagram, representing the feasible region of the in-plane lamination
parameters for balanced laminates, given by equation (2.23)

between point D and point G, and it can therefore also be thought of as a laminate
with an equivalent contribution of ±45◦ and [0, 90], in other words [0,±45, 90]s, the
standard quasi-isotropic laminate layup. Theoretically, an infinite number of alterna-
tive laminates can be constructed for this combination of lamination parameters, all
yielding an identical in-plane stiffness matrix.

It should also be noted that no two combinations of lamination parameters can
be used to represent the same stiffness matrix, which is not the case when defining
laminates in terms of fiber angles. The one-to-one relationship between lamination
parameters and stiffness matrix is one of the advantages of designing in terms of
lamination parameters since the structural response is often a function of the stiffness
matrix and not of the laminate.

The lamination parameter diagram for the out-of-plane lamination parameters,
V1D and V3D), is identical to that presented in Figure 2.6. Therefore, the bending
stiffness properties of a balanced symmetric laminate can be related to the out-of-
plane lamination parameters in a similar logical manner. For example, laminates
that are described by lamination parameters near point B will have high bending
stiffness along the material axis and low bending stiffness in the transverse direction.
The opposite is true for laminates described by points close to point F, while laminates
described by points close to point D will have resistance against a twisting moment.

2.3.6 Modeling Variable Stiffness Laminates

Several methods are available to prescribe spatial laminate stiffness variation, as dis-
cussed in section 1.3.1. Intuitively, design variables have generally been associated
directly with elements when using finite element analysis to model structural response.
This approach provides the largest set of design variables for a fixed mesh density,
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When independent design variables are assigned per element, there is no guaran-
tee that the obtained stiffness distribution is going to be continuous. This issue is
well-known and is particularly prevalent in topology optimization where it results in
checkerboard patterns.

Therefore, an important aspect of designing variable stiffness structures is to en-
sure continuous spatial stiffness variation. To ensure smoothness of the solution,
design variables can be associated with the nodes rather than elements, however,
stiffness properties per element are required to construct the element stiffness matri-
ces necessary for analysis. One possibility is to use a finite element formulation that
allows for the variation of stiffness properties of the element. For example, Huang and
Haftka (2005) use bilinear interpolation to determine the orientation at the center of
a quadrilateral element based on the fiber angles defined at the four nodes. A simpler
approach is to compute an average stiffness value for each element based on its nodal
stiffness, and therefore, considerably simplifying the construction of element stiffness
matrices as well as the calculation of sensitivities with respect to nodal variables.

Instead of computing element stiffness properties as a weighed average of nodal
stiffness properties, the element compliance is computed as the average of the nodal
compliance. This approach, called reciprocal interpolation, is introduced by Abdalla
et al. (2007) and is effective for producing smooth lamination parameter distributions.
The average element compliance is therefor given by:

Ā−1
e =

∑
i∈Ie

we,iA−1
i (2.24)

where i denotes the node numbers and Ie is the set of nodes connected to element
e. The sum is weighed by integration weighing coefficients we such that for a smooth
function, f : ∫

Ωe

fdΩ ≈
∫
Ωe

dΩ
∑
i∈Ie

we,i fi (2.25)

The element stiffness matrix can subsequently be defined by inverting the element
compliance defined by equation (2.24). Similar expressions are used for interpolating
the inverse of the bending stiffness matrix. It also important to note that the definition
of stiffness properties at nodes necessitates the use of consistent material coordinate
axis definitions for all elements.

2.4 Advantages and Limitations of the Design Approach

As a summary, the design approach presented in this chapter was motivated by the
insight outlined in section 2.2, where it was highlighted that an equivalent laminate
stiffness formulation is typically sufficient to model most structural response types,
whereas tow level information is often necessary to impose detailed manufacturing
constraints. A multi-step design optimization framework for variable stiffness struc-
tures was outlined. In the first step the conceptual stiffness distribution maximizing
the structural performance is obtained. In a second step, feasible fiber angle distribu-
tions are obtained to match the optimum conceptual stiffness distribution. In a final
step, the fiber angle distribution is converted into a continuous set of fiber paths that
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can be used to manufacture the variable stiffness laminates using automated fiber
placement machines.

The developed multi-step framework has several advantages, which relate primar-
ily to the efficiency with which certain design objectives and constraints can be con-
sidered. Using a continuous laminate stiffness formulation with conservative convex
separable approximations in an initial step allows efficient gradient based optimizers
to be used to obtain the stiffness distribution to maximize structural performance. As
will be demonstrated in subsequent chapters, fewer than thirty finite element analy-
sis runs are typically necessary to obtain the optimum laminate stiffness distribution
for problems with thousands of design variables. The separable nature of the de-
veloped structural approximations allows each design point to be solved in parallel,
reducing the time required to obtain the optimum solution when multiple proces-
sors are available. The inherently discrete and detailed nature of the information
required to evaluate design requirements associated with laminate stacking sequence
and manufacturing, necessitates the use of heuristic algorithms. Solving the opti-
mization problems directly for large structures with several design variables would
quickly become restrictive. Knowledge of the optimum conceptual stiffness distribu-
tion allows the same structural response approximations to be used by the heuristic
search algorithms, and hence improves the overall design framework efficiency. The
multi-step nature of the developed design framework also facilitates the integration
of additional design drivers, not developed here, at the appropriate level during the
design. For example, layup rates can be maximized for the given design by including
path planning algorithms when generating the fiber paths in the third step.

The disadvantages of the developed framework relate primarily to the difficulty
surrounding the derivation of physically meaningful structural response approxima-
tion, especially when integrating the design approach into a commercial finite element
analysis environment. The developed conservative convex separable approximations
are presented in detail next in chapter 3, where the requirements imposed on the
approximations are highlighted. The challenges of integrating the design framework
with a commercial finite element code are demonstrated using a practical example in
chapter 10.

One of the limitations of using lamination parameters for composite design has
been the difficulty of incorporating strength constraints into the optimization process.
A formulation for predicting laminate strength in lamination parameter space, based
on Tsai-Wu, is presented chapter 4 and is subsequently used to maximize the failure
strength of an example problem in chapter 9.

The developed design approach is inherently focused on structural performance, as
the initial design step accounts mainly for structural performance metrics. Therefore,
for problems which are driven primarily by manufacturing requirements, the design
framework may become inefficient due to the possibility of an excessive number of de-
sign updates being required in the second and third step. Finally, the current design
framework assumes that the part geometry has already been defined, however, includ-
ing shape and/or topology optimization in the design process may yield significant
improvements in structural performance in addition to the improvements obtained
based on stiffness optimization alone.



CHAPTER 3

Optimization Methodology for Variable Stiffness Structures

“Anyone who has never made a mistake has never tried anything new”

Albert Einstein

An overview of the developed variable stiffness design optimization framework was
presented in chapter 2, in which both the first and second optimization steps make use
of structural response approximations. The derivation of suitable structural response
approximations was therefore key to obtaining a tractable optimization problem. A
generic form of the developed structural approximation method and its inclusion in
an iterative design optimization framework is presented in this chapter.

An introduction to approximation methods based on a generic optimization prob-
lem is presented in section 3.1. An approximation scheme was derived specifically for
composite laminate optimization problems, based on the globally convergent conser-
vative convex approximation method (CCSA) of Svanberg (2002), and is presented
in section 3.2. Two methods to ensure conservativeness and strict convexity of the
derived approximation were implemented and these are discussed in section 3.3. In
order to optimize the laminate stiffness distribution, corresponding to the first step
of the developed design framework presented in chapter 2, the approximations were
implemented within an iterative optimization loop, and the successive approximation
scheme that was used is described in section 3.4, which differs slightly with respect
to the CCSA method.

3.1 Introduction

A generic optimization problem is presented in subsection 3.1.1 to provide the context
within which the structural approximation methods can be discussed. A brief intro-
duction to structural approximation methods and several examples of approximations
developed in the past are presented subsection 3.1.2.

49
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3.1.1 Overview of the Design Problem

In structural optimization the design problem, given in equation (3.1), typically con-
sists of minimizing a selected objective function, f0(x), subject to a given set of
constraints, fj(x):

min f0(x) (3.1)
fj(x) 6 0 j = 1 . . .m

xLi 6 xi 6 xUi i = 1 . . . n

where f0(x) and fj(x) generally represent m+ 1 structural responses, such as struc-
tural stiffness, strength, buckling or total weight. The design variables, xi or col-
lectively x, may be terms describing structural geometry, thicknesses or fiber angle
orientations in composite laminates and are bound by xLi and xUi . It may also be
desirable to consider non-structural related functions such as production time, man-
ufacturability or cost, as discussed in section 2.1. In these cases, the design variables
may no longer relate only to the structure, but also include parameters to define
available materials or production methods.

A review of how ever-increasing computational power is used to solve structural
optimization problems is presented in Venkataraman and Haftka (2004). The authors
identified three areas for which computational resources have been used; namely mod-
eling, analysis and optimization. The ease, or difficulty, with which problem (3.1) can
be solved and the range of algorithms that can be used to solve it, therefore depend
primarily on analysis complexity, model complexity and optimization complexity.

Clearly, the more complicated it is to evaluate each response present during opti-
mization, the more computationally expensive, and possibly more complex, the design
problem becomes. Minimum weight design of a wing, with fully coupled structural and
aerodynamic models, is significantly more complex than considering the same prob-
lem with a static tip load. Similarly, analyzing non-linear post-buckling response of
a structure is more complex than determining the linear bifurcation point. Increased
analysis complexity does not automatically result in a more complex optimization
problem, however, a change in the nature of the considered response may.

Model complexity is related to model fidelity and usually only effects required
computation time and the accuracy of the obtained response, while the optimiza-
tion problem remains essentially unchanged. For example, by generating a simplified
model of the wing, the computational burden is reduced while the problem complex-
ity remains the same. However, for variable stiffness laminates, design variables may
be associated with individual elements of a finite element model, hence increasing
model fidelity will result in a more complex optimization problem due to an increased
number of design variables.

Optimization complexity is influenced by the number of considered responses,
number of design variables and their nature. Increasing the number of either the
responses or the design variables, inevitably increases design problem complexity and
often effects the type of solution algorithms that can best be employed. The type of
design variables and how they relate to the structural responses also greatly influences
optimization problem complexity. Discrete design variables, such as the number of
plies in a laminate or number of stiffeners on a panel, are notoriously difficult to handle
using standard gradient based optimization techniques. Design variables which are
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interdependent also tend to render an optimization problem more complex. The
nature of the response, in other words, how response and design variables relate,
in particular a linear versus nonlinear relationship, also significantly influences the
optimization problem complexity.

The computational cost associated with evaluating structural responses and sen-
sitivities with respect to all design variables for every iteration usually precludes
the direct solution of the optimization problem given in equation (3.1). Structural
responses are typically implicit functions of design variables and hence must be eval-
uated numerically using finite element analysis, leading to excessive runtime to solve
even modest problems. The restrictive computational burden imposed by the original
problem can be alleviated by replacing it with an approximation, which is readily
evaluated, as is discussed briefly below.

3.1.2 Structural Approximation Methods

Two types of approximations can be differentiated; one, problem approximations, in
which a simpler equivalent problem is sought to replace the original problem, and two,
function approximations, in which the structural responses required to evaluate the
design problem are approximated explicitly in terms of design variables. Problem and
function approximations can be created such that they are valid either only locally or
globally.

Local problem approximations typically involve reducing the number of design
variables or response functions to be used during optimization. Global problem ap-
proximations typically involve model simplifications by either using a coarser mesh
or by replacing the original model with a simplified model. Hence neither local nor
global problem approximations are attractive when developing a generic variable stiff-
ness laminate design framework.

Global function approximations, such as response surface methods, are generally
valid for the entire design space or a large portion of it. Multiple function evaluations
are often necessary to obtain function approximations which are globally valid, and
hence the computational expense can become restrictive when considering a large
number of design variables. Therefore, local function approximation methods are
considered here, and the original problem, equation (3.1), is replaced by a problem
based on explicit approximations of the objective function, f̃0, and constraints, f̃j ,
such that:

min f̃0(x) (3.2)
f̃j(x) 6 0 j = 1 . . .m

xLi 6 xi 6 xUi i = 1 . . . n

Solving problem (3.2) yields the optimum solution for the approximate problem.
The obtained optimum is typically used to update the original design problem, which
is subsequently used to generate a new approximate problem, continuing iteratively
until a converged solution is found. Methods in which an approximate problem is
solved iteratively are known as successive approximation methods, and are popular
in structural optimization as they increase computational efficiency by reducing the
number of structural analyses required to find an optimum.
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Local function approximations are usually based on a Taylor series expansion of
the original function, f , about a local design point, x0. Approximations are typically
restricted to first order expansions due to the high computational cost associated
with evaluating higher order derivatives. A linear approximation is the simplest, and
is a first order Taylor series expansion of a function directly in terms of the design
variables, xi, as:

fL = f(x0) +
n∑
i=1

(
∂f

∂xi

∣∣∣∣
0

(xi − x0i)
)

(3.3)

Linear approximations tend to be inaccurate, even near the approximation point,
as they generally do not capture the underlying nature of the physical response well.
Hence more suitable approximations have been developed, often based on intermediate
variables, which ensure more linear behavior of the approximation. The reciprocal
approximation, where a function is expanded in terms of the reciprocal of the design
variable, 1

xi
, is popular for structural applications and is given by:

fI = f(x0) +
n∑
i=1

(
∂f

∂x−1
i

∣∣∣∣
0

(x−1
i − x−1

0i )
)

(3.4)

The reciprocal approximation’s popularity stems primarily from earlier structural
optimization of truss structures, where the cross-sectional areas of the truss elements
were considered as design variables. For statically determinate structures, stresses and
displacements are linear functions of the reciprocal of these design variables, however,
the reciprocal approximation has also proven to be well suited when solving statically
indeterminate problems.

The conservative approximation, introduced by Starnes and Haftka (1979), is a
hybrid approximation based on both the linear and reciprocal approximations and is
given by:

fC = f(x0) +
n∑
i=1

δi

(
∂f

∂xi

∣∣∣∣
0

(xi − x0i)
)

+ (1− δi)
(

∂f

∂x−1
i

∣∣∣∣
0

(x−1
i − x−1

0i )
)

(3.5)

where the first term in the summation stems from the linear approximation and the
second term from the reciprocal approximation. Conservativeness is guaranteed by
selecting the most conservative of the two contributing terms in equation (3.5) through
parameter δi, defined as:

δi =
{

1 for ∂f
∂xi

x0i > 0
0 otherwise

(3.6)

It should be noted that the conservative approximation does not guarantee ab-
solute conservativeness, i.e. it does not guarantee that the approximation is more
conservative than the actual function value. It is only guaranteed to be more conser-
vative than either the linear or reciprocal approximation.

All of the above approximations have the advantage of being separable, in addi-
tion the reciprocal approximation is also strictly convex. Approximating objective
functions and constraints using the conservative approximation therefore results in a
convex optimization problem, which is guaranteed to have a unique optimum and can
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be solved readily with dual methods. Several other separable, conservative, convex
approximations have been developed in the past. A detailed review of different ap-
proximation methods available for structural optimization is presented in Barthelemy
and Haftka (1993). An approximation scheme was developed specifically for the design
of laminated composite structures and is presented in the following section.

3.2 Conservative Convex Separable Approximations

A large number of design variables are typically required to describe the stiffness
properties of variable stiffness composite structures. In the optimization framework
presented in chapter 2, the number of design variables is, in the most general case,
proportional to the number of elements or nodes used to discretize the structure. Opti-
mization problems containing several hundred thousand design variables are therefore
not unrealistic and the adoption of an efficient optimization framework is therefore
essential.

Conservative convex separable approximation methods (CCSA), introduced by
Svanberg (2002), are well suited to solving inequality-constrained non-linear program-
ming problems with a large number of design variables. Their efficiency is primarily
due to the separability of the approximations. Separability also allows each problem to
be solved in parallel, allowing the optimization algorithm to take advantage of the mul-
ticore processors prevalent in computers today. The conservative and convex nature of
the approximations ensure that a single feasible solution is found for each subproblem
of a successive approximation scheme. Additionally, Svanberg (2002) has proved that
approximations falling into the class of conservative convex separable approximations
are globally convergent, guaranteeing that an optimal solution will be found. The
aforementioned advantages motivated the development of a generic approach to ap-
proximating an arbitrary response of a variable stiffness laminate and casting it into
an optimization framework similar to that presented by Svanberg (2002). Therefore,
a new approximation was derived with the following form:

fS(x) = fP (x) + ρfD(x) (3.7)

where the first term on the right hand side, fP , is an approximation that ensures
that both the function value and the gradient of the approximation match those of
the original function. The second term, fD, is an additional convexifying term that
is scaled by a constant factor, ρ. This term is used to ensure the conservativeness
and convexity of the approximation as a whole. The first term, fP , is derived in
this section while the second term and the corresponding scaling factor are treated in
section 3.3.

For an approximation to be applicable within the framework given by Svanberg
(2002) it must meet several requirements, which can be summarized as;

1. both fP and fD must be continuous, have continuous first and second order
derivatives with respect to the design variables, x, and must be separable

2. function value and gradients of the original function, f , must equal those of the
approximating function, fP , at the approximation point

3. the Hessian matrix of fP must be positive semidefinite
4. the Hessian matrix of fS must be positive definite
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3.2.1 Approximations in Terms of Laminate Stiffness

The goal was to derive a generic expression of a separable, convex approximation
that could be readily solved using commercially available optimization algorithms.
The approximation is essentially a modified form of the conservative approximation,
equation (3.5), of a structural response as discussed in subsection 3.1.2. Instead of
imposing conservativeness via condition (3.6), which is related directly to the design
variables, a physical interpretation of the structural response is used to discern be-
tween terms contributing to the linear and reciprocal terms. The approximation of a
response function, f , about a local design point, x0, is expressed generically as:

fP = f(x0) +
n∑
i=1

(
∂f̂

∂xi

∣∣∣∣
0

(xi − x0i) +
∂f̌

∂x−1
i

∣∣∣∣
0

(x−1
i − x−1

0i )
)

(3.8)

where f̂ and f̌ are the parts of the response which are expanded linearly and recip-
rocally in terms of the design variables, respectively. The contribution of f̂ and f̌ to
the approximation depends on the physical nature of the considered response. The
requirements imposed on the different terms are presented and discussed in section
3.2.2. A discussion of the direct application of the approximation formulation is left
to chapters 5 to 8, in which the individual response approximations are discussed.

Classical lamination theory allows any given structural response to be character-
ized directly in terms of the laminate stiffness matrices, as presented in section 2.3.
The design variables, xi, in equation (3.8) can therefore be thought of as representing
the n different stiffness terms used for the design. It is therefore convenient to rewrite
equation (3.8) in the following form:

fP =
N∑
i=1

(
Ψm
i

∣∣
0

: Ai + Ψb
i

∣∣
0

: Di + Φm
i

∣∣
0

: A−1
i + Φb

i

∣∣
0

: D−1
i

)
+ C0 (3.9)

where i = 1 . . . N are the N regions within the structure for which the stiffness
is designed, Ai and Di are the in-plane and flexural stiffness matrices of region i
respectively, A−1

i and D−1
i are the inverse in-plane and flexural stiffness matrices of

region i and:

Ψm
i =

∂f̂

∂Ai
, Ψb

i =
∂f̂

∂Di
, Φm

i =
∂f̌

∂A−1
i

, Φb
i =

∂f̌

∂D−1
i

(3.10)

are the derivatives of the considered response with respect to the in-plane, or mem-
brane, and flexural, or bending, stiffness matrices1, denoted by superscripts m and
b respectively, or their inverses, evaluated at the approximation point. The : opera-
tor represents a matrix inner product, which is the generalization of the dot-product
to the matrix space, and hence essentially represents the sum of stiffness terms cor-
responding to region i. All remaining constant terms are considered collectively in
C0.

1Note: the notation used deviates from mathematical convention, the objective is to highlight
that part of the function is considered in terms of the stiffness matrices associated with a given design
region while the remainder of the function is considered in terms of the inverse stiffness matrices or
compliance matrices.
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The approximation presented in equation (3.9) is expressed in terms of laminate
stiffness matrices, A and D, instead of directly in terms of design variables. Doing so
preserves the generality of the approximation since laminate stiffness matrices can be
defined either directly, through intermediate variables such as lamination parameters,
or by defining individual ply orientation angles and stacking sequences, as is done
traditionally. Note that the approximation is therefore suitable at each step within
the multi-step optimization framework presented in subsection 2.2, however, convexity
in terms of design variables can only be guaranteed under certain conditions.

3.2.2 Approximation Requirements

The function approximation, fP , must satisfy several requirements to be incorporated
into a CCSA framework, as listed on page 53. It is easily verified that equation (3.9)
is separable, continuous and twice differentiable with respect to an arbitrary stiffness
related design variable, x. In this sense the approximation does not differ significantly
with respect to the traditional conservative approximation by Starnes and Haftka
(1979) given in equation (3.5).

It is important to investigate the conditions which result in convexity of the ap-
proximation, which is achieved by ensuring that the Hessian matrix is positive semidef-
inite. As was mentioned previously, the reason to expand a response both linearly
and reciprocally, is to enforce approximation convexity. If all terms are expanded
reciprocally, convexity of the approximation cannot be guaranteed, however, if non-
convex terms are expanded linearly these terms do not affect overall approximation
convexity. This is best understood by looking at the first and second variation of
the approximate function, fP , given in equation (3.9). The first and second variation
with respect to the in-plane stiffness of the ith design point are given by:

δf = Ψm
i : δAi −Φm

i : A−1
i · δAi ·A−1

i (3.11)

δ2f

2
= tr

[(
A−

1
2

i · δAi ·A−
1
2

i

)
·
(
A−

1
2

i ·Φm
i ·A−

1
2

i

)
·
(
A−

1
2

i · δAi ·A−
1
2

i

)]
(3.12)

where tr represents the matrix trace.
To ensure approximation convexity the second derivative must be greater than

or equal to zero, in other words the function must have non-negative curvature. On
inspection of equation (3.12), and noting that the in-plane stiffness matrix is positive
definite by definition, it can can be seen that non-negativity is guaranteed if Φm is
positive semidefinite. A similar expression can be derived for the second variation
of the approximation function with respect to the flexural stiffness to show that Φb

must also be positive semidefinite to ensure approximation convexity.
Convexity of the developed approximation is dependent on the derivatives of the

response with respect to the compliance matrices and can be guaranteed if these are
positive semidefinite. This may be achieved by mathematically separating Φm and Φb

into a positive semidefinite and negative definite part and subsequently expanding the
negative definite part linearly. Alternatively, the derivatives of an approximated re-
sponse with respect to stiffness can be based on physical insight gained from studying
the nature of the considered response equations. In the research reported in this thesis



56 OPTIMIZATION METHODOLOGY FOR VARIABLE STIFFNESS STRUCTURES 3.2

the second approach, based on physical insight, was used to develop approximations
for several different structural responses, as shown in chapters 5 to 8.

3.2.3 Lamination Parameters as Design Variables

An approximation meeting the requirements in section 3.2.2 and of the form given
in equation (3.9) is separable and convex in terms of the elements of the laminate
stiffness matrices, A, D and their reciprocals. It is not practical to design in terms
of the individual elements of the laminate stiffness matrices, A11, A12, . . ., primarily
because the matrix elements are interdependent and cannot be selected arbitrar-
ily. Parametrizing the approximation in terms of ply orientation angles results in a
non-convex approximation, see for example Setoodeh et al. (2009). This problem is
mitigated when parametrizing the approximation in terms of lamination parameters,
since the stiffness matrices are linear functions of the lamination parameters, as can
be seen from equation (2.16) on page 42. The approximation therefore retains all the
required properties when using lamination parameters as design variables.

An additional advantage of the linear dependence of the extensional and flexural
stiffness matrices on lamination parameters, is that the first and second order deriva-
tives of the approximation with respect to the design variables are readily available.
For example, the derivative of the approximate function of region i with respect to
the first in-plane lamination parameter, Vi1A is given by:

∂fP
∂Vi1A

= Ψm
i : Γ1 −Φm

i : (A−1
i · Γ1 ·A−1

i ) (3.13)

where Γ1 is a constant matrix fully defined by the material invariants as shown in
equation (2.17). The derivatives with respect to the remaining lamination parameters
can be computed similarly.

3.2.4 Laminate Thickness as a Design Variable

The on-the-fly cut and restart capabilities of modern fiber placement machines allows
laminate thickness to be varied quasi-continuously over a structure. Alternatively,
thickness variation may arise within a laminate due to the gaps and overlaps that occur
due fiber steering, as highlighted in section 1.2.2. It was therefore also interesting to
investigate how laminate thickness at each design point, hi, can be included into the
optimization process. A laminate’s in-plane and bending stiffness are characterized by
lamination parameters and laminate thickness, as can be seen from equation (2.16),
see page 42. Since the approximation formulation presented in equation (3.9) is not
given in terms of design variables directly, but in terms of stiffness matrices, thickness
can be readily included as a design variable.

In order to include thickness generically as a design variable two modifications of
the approximation were made; one, the approximation formulation, equation (3.9),
was generalized to include terms dependent only on laminate thickness, and two, to
retain the properties of the approximation the terms that were linear in stiffness had to
be made linear in terms of the design variables. Additionally, to obtained meaningful
results it was important that the total weight of the structure was bounded.



3.2 CONSERVATIVE CONVEX SEPARABLE APPROXIMATIONS 57

Approximation Generalization for Thickness

In the separable convex approximation, presented in section 3.2, the assumption is
made that a structural response, f , can be approximated by expanding the response
in terms of material stiffness matrices. This assumption remains valid if the response
does not include terms that depend explicitly on laminate thickness, however, this
is not always the case. For example, laminate weight is only a function of laminate
thickness and therefore cannot be approximated using equation (3.9). The approxi-
mation can be extended to include an additional term, linear in laminate thickness,
such that:

fP =
N∑
i=1

(
Ψm
i

∣∣
0

: Âi + Ψb
i

∣∣
0

: D̂i + Φm
i

∣∣
0

: A−1
i + Φb

i

∣∣
0

: D−1
i +αi

∣∣
0
hi

)
+ C0 (3.14)

where Â and D̂ are the material dependent terms of the in-plane and bending stiffness
matrices, respectively, as explained in the following subsection, and αi is the derivative
with respect to local laminate thickness, hi, of the terms, f̄ , which depend explicitly
on thickness and is given by:

αi =
∂f̄

∂hi
(3.15)

Linearization of Stiffness Terms

The convexity of the approximation presented in section 3.2 was guaranteed by ex-
panding part of the response linearly in terms of laminate stiffness. Since laminate
stiffness is a linear functions of lamination parameters, the approximation was also
linear in terms of the design variables. However, when thickness is included as a
design variable this is no longer the case. The terms linear in laminate stiffness can
readily be linearized in terms of design variables. Consider for example the in-plane
stiffness given by:

A(V, h) = Â(V)h (3.16)

where Â is the material dependent part of the stiffness matrix and is only a func-
tion of lamination parameters and h is the laminate thickness. The first term in
approximation (3.9) can therefore be linearized as:

Ψm
i

∣∣
0

: Ai ≈ Ψm
i

∣∣
0

:
(
Â0ihi + Âih0i

)
+ C (3.17)

where Â0i and h0i are the material dependent stiffness terms and thickness term at
the approximation point, Âi and hi are the design variables related to the material
dependent stiffness terms and thickness term for the ith design point and C contains
the remaining constant terms. The bending stiffness matrix can be linearized in an
similar manner.

Bounding Structural Weight

Including thickness as a design variable typically results in an unbound optimization
problem. Therefore, it is necessary to constrain the maximum structural weight or
volume if meaningful results are to be obtained. Bounding the total structural volume
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is identical to bounding its weight if material density is uniform and this is achieved
by including the following constraint in the optimization problem:

V − V0 6 0 (3.18)

where V0 is the upper bound on the total volume, V, which can be expressed as:

V =
N∑
i=1

Aihi (3.19)

where Ai is the area of the ith region. The total volume can be treated as a structural
response and can be cast into the approximation form presented in equation (3.14),
and will only contribute to the linear thickness term αihi.

3.3 Ensuring Approximation Conservativeness and Convexity

A convex separable approximation scheme for arbitrary structural responses was de-
veloped and presented in section 3.2. Expressing a structural response in the form
of the developed approximation scheme yields a convex approximation, however, this
approximation may lack strict convexity or conservativeness. Convergence problems
may be encountered when solving an optimization problem based on approximations
lacking strict convexity while the presence of multi-modal responses, such as buckling,
may further compound convergence difficulties.

Two different methods were adopted to ensure approximation conservativeness
and strict convexity. Initially the proximal point algorithm was used to ensure con-
vexity in terms of design variables directly, as presented in subsection 3.3.1. In later
work a more general approach was developed by adding curvature to the convex sep-
arable approximations based on laminate stiffness properties, presented in section
3.2, as highlighted in subsection 3.3.2. An adaptive damping scheme, which dynam-
ically scales the conservative convex term, was also developed to ensure monotonous
convergence, this is presented in subsection 3.3.3.

3.3.1 Conservativeness and Convexity in Lamination Parameter Space

In early stages of this research work, the proximal point algorithm, following Rock-
afellar (1976), was implemented. Using the proximal point algorithm is an effective
method to ensure design convergence using an iterative solution scheme while re-
taining approximation separability. A strictly convex approximation is obtained by
appending a strictly convex function in terms of the design variables, such that:

fS = fP (x) +
η

2
‖x− x0‖2 (3.20)

where η > 0 and is a scaling factor that can be freely defined while x0 represents the
design state at the approximation point. Note that the additional term does not affect
either function value nor gradients at the approximation point and its contribution
tends to zero as the solution converges. The proximal term is also twice continu-
ously differentiable and has positive curvature, therefore it meets all the requirements
imposed by Svanberg (2002) on the conservative convex term.
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The response approximation presented in equation (3.9) is separable per design
region, i, hence the proximal term can be included such that:

fS =
N∑
i=1

(
Ψm
i : Ai + Ψb

i : Di + Φm
i : A−1

i + Φb
i : D−1

i +
η

2
· Ci
)

+ C0 (3.21)

were the scalar convex term, Ci, is defined as:

Ci = (Vi −V0i)T · (Vi −V0i) (3.22)

where Vi is the vector of design variables, which are the lamination parameters and
eventually thickness, associated with the ith design region, and V0i is the vector of
design variables at the approximation point.

Note that the value chosen for η is constant and essentially represents a move limit
for the design variables, hence it influences the speed of convergence. Smaller values
of η result in quicker convergence, however, as η tends to zero the local approximation
may no longer be strictly convex.

The choice of η can be made somewhat less arbitrary by considering the approxi-
mate gradient of a function, f(x), that is optimized:

∇f = ∇f0 + η · ‖xi − x0i‖+ (H + ηI)∆x = 0 (3.23)

where xi are the design variables, H is the Hessian matrix and I is the identity matrix.
The Hessian matrix becomes negligible for large values of η and the gradient at the
initial point, x = x0, is therefore found to be:

∇f = ∇f0 + η · I∆x (3.24)

Therefore, if the change in design variables is limited to a maximum predefined value,
η can be expressed as the maximum gradient over all elements at the initial point
divided by the chosen move limit ‖∆x‖:

η · ‖∆x‖ = min
i
∇fi(x0) (3.25)

The design variables for equation (3.21) are lamination parameters, i.e. x ∈ [−1, 1],
and hence a reasonable value for the move limit, ‖∆x‖, of 0.2 to 0.4 can be assumed.

In all the design studies presented in this thesis and conducted using the proximal
point algorithm in lamination parameter space, a single value of η was computed for
all the responses and it remained constant during the entire optimization process. In
a more general setting it is not efficient to assume that the amount of conservativeness
and convexity appended to each response remains the same during the optimization
process. In later studies a more general and adaptable approach was developed, as
discussed in the next subsection.

3.3.2 Conservativeness and Convexity in Stiffness Space

The proximal point algorithm discussed in the previous subsection was used success-
fully to solve several different design optimization problems, however, a more general
formulation, expressed in terms of laminate stiffness instead of lamination parameters,
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would be more desirable. The aim was to derive a convexifying term, fD, in the same
form as the response approximation, fP given in equation (3.9). Additionally the
scaling of conservativeness and convexity, ρ, was allowed to vary dynamically during
the optimization process as discussed below in subsection 3.3.3. The general form of
the conservative convex separable approximation was given by:

fS(x) = fP (x) + ρfD(x) (3.7)

using the response approximation, fP , derived in section 3.2 and given in equation
(3.9). A convex term in stiffness space was subsequently defined as:

fD =
N∑
i=1

wi

(
A−1

0i : Ai + D−1
0i : Di + A0i : A−1

i + D0i : D−1
i − 4 I : I

)
(3.26)

where each term in the summation is locally scaled through a positive weighing factor
wi, and A0i and A−1

0i represent the extensional stiffness and compliance matrices
at the approximation point, x0, respectively. Similarly, D0i and D−1

0i respectively
represent the flexural stiffness and compliance matrices at the approximation point.
The last term ensures that the function value of the convex term is zero at the
approximation point, where I is the identity matrix of size 3.

The local weighing factor, wi, ensures that each separable term within a response
approximation can be scaled proportionally. In this case scaling was chosen to be
proportional to individual design region areas, Ai, such that:

wi =
Ai∑N
i=1Ai

(3.27)

It is easily verified that fD meets all the requirements imposed by Svanberg (2002)
on the conservative convex term for the CCSA framework. The function, fD, is
continuous and twice differentiable and does not affect function value nor gradient at
the approximation point. The Hessian is positive definite as both the stiffness and
compliance matrices are per definition positive definite.

Note that the convexifying term follows the form of the original approximation,
equation (3.9), hence it is readily integrated into the optimization routine by modi-
fying the original local response sensitivities such that:

Ψ̆
m

i

∣∣
0

= Ψm
i

∣∣
0

+ ρwiA−1
0i (3.28)

where Ψm
i is the sensitivity matrix of the original response with respect to the in-

plane stiffness matrix elements of the ith design region as described in equation (3.10).
The remaining sensitivity matrices can be modified similarly.

The only remaining difficulty is to determine a suitable value for the damping
factor, ρ, which is discussed below.

3.3.3 Adaptive Damping Scheme

The damping parameter, ρ, ensures the convexity and conservativeness of the devel-
oped separable convex approximation. If large damping values are chosen the function
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approximations will be over conservative, which will lead to an excessive number of
iterations being required to converge to the optimum solution. Using smaller damp-
ing values will increase the effective design freedom, however, if they are too small an
excessive number of designs will be rejected, and this will also result in an excessive
number of iterations. Therefore, the efficiency of the optimizer is greatly influenced
by how the damping parameters are initialized and evolve.

A meaningful approach for obtaining initial damping values, and a discussion of a
method that can be used to adapt the damping values during an iterative optimization
process are presented in this section. The discussion is based on the iterative design
optimization formulation presented in section 3.4, hence readers unfamiliar with this
topic are recommended to first read section 3.4.

Damping Initialization

An expression for an initial damping factor was derived as an average damping value
for all considered structural responses. The approach used is similar to that presented
in section 3.3.1, however, in this case a damping term is computed that results in a
reasonable move limit in stiffness and compliance space. Consider the Lagrangian of
a constrained optimization problem, which is given by:

L =
m∑
j=0

µjfSj =
m∑
j=0

µj
(
fPj + ρjfDj

)
(3.29)

where fSj is the conservative approximation of the response, fPj , augmented by a
scaled convex term, fDj , as given in equation (3.7), and µj is the Lagrange multiplier
or dual variable associated with the jth response of m responses. Since the Lagrange
multipliers are not known a priori an average damping term can be computed by
assuming that all the Lagrange multipliers are identical and scaled to unity such that
equation (3.29) becomes:

L =
m∑
j=0

fPj + ρsfD (3.30)

where ρs is an average damping parameter scaling for all responses, which is related
to the individual damping terms (j + 1)ρj = ρs.

The objective is therefore to find a value of ρs that results in a reasonable move
limit in stiffness space. In order to make the selection of the scaling factor less
arbitrary, consider the change in design variables, ∆x, which results from a step
change in the Newton Method:

∆x = −H−1(x0)∇f(x0) (3.31)

where H and∇f are the Hessian matrix and gradient vector of the considered function
and x0 is the initial set of design variables related to the laminate stiffness. The
gradient is only a function of the function approximation, fPj , for the developed
approximation, and if the damping term is assumed to be dominant the Hessian
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matrix reduces to the identity matrix, such that:

∆x = −ρs
m∑
j=0

∇fPj(x0) (3.32)

Solving for the distance between two subsequent design iterations in design variable
space, ‖∆x‖, which is equivalent to ‖∆Ai‖ and ‖∆Di‖ when considering the stiffness
matrices as the design variables, it can be shown that the scaling factor, ρs, can be
defined as:

ρ2
s =

m∑
j=0

N∑
i=1

wi
2

(
(‖Ψm

i,jAi −Φm
i,jA

−1
i ‖)2 + (‖Ψb

i,jDi −Φb
i,jD

−1
i ‖)2

)
(3.33)

the above equation (3.33) does not guarantee non-zero values of the damping terms,
therefore the triangular inequality, defined as:

‖A−B‖ ≤ ‖A‖+ ‖B‖ (3.34)

was used to ensure non-zero values of the norm. The damping factor was therefore
defined as:

ρ2
s =

m∑
j=0

N∑
i=1

wi
2

(
(‖Ψm

i,jAi‖+ ‖Φm
i,jA

−1
i ‖)2 + (‖Ψb

i,jDi‖+ ‖Φb
i,jD

−1
i ‖)2

)
(3.35)

Defining a damping scaling based on equation (3.35) results in a damping term,
fD, which is of the same order of magnitude as the response term fP in equation
(3.7). This may initially result in unnecessarily large damping, hence this term is
typically scaled to be equal to 1-10% of the value computed using equation (3.35).

Damping Strategy

An average damping factor is computed initially for all considered structural re-
sponses, however, it is beneficial to control the damping factor per response indi-
vidually. This allows the amount of curvature added to already conservative approxi-
mations to be relaxed while increasing curvature for those which are not conservative,
with the aim to improve convergence rates. The damping parameters are updated
in every iteration, as explained in section 3.4. To ensure that conservativeness of a
response is not retained unnecessarily, it is important to ensure that the damping
parameter values can both increase and decrease after each iteration.

The damping factor of the jth response for the following iteration, k∗, was updated
using the following relationship:

ρ
(k∗)
j = γ∗ρ(k)

j (3.36)
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where γ∗ is a strictly positive number given by:

γ∗ =


γ−min if γ 6 γ−min

γ if γ−min < γ < 1
γ+
min if 1 6 γ 6 γ+

min

γ if γ+
min < γ < γ+

max

γ+
max if γ > γ+

max

(3.37)

where γ−min is a lower bound on γ∗, hence limiting the amount of damping that can
be removed per iteration if the response is conservative, while γ+

min and γ+
max are

numbers larger than unity, defining respectively the minimum and maximum amount
of damping to be added per iteration if the approximate response is not conservative.
The term γ is defined as the following exponential function:

γ = exp

(
f

(k∗)
j − f (k∗)

Pj

f
(k∗)
Dj

)
(3.38)

where in f
(k∗)
j , f (k∗)

Pj and f
(k∗)
Dj are the actual function value, approximate function

value and additional convex term respectively, at the optimum found for the kth it-
eration. An exponential function was selected to scale the damping term between
iterations as this allowed damping to be added rapidly if the approximation was not
conservative while only allowing gradual removal if the approximation was conserva-
tive. The main argument for the selection of an exponential function therefore lies in
the assumption that a feasible step, even if it is conservative, is more valuable than a
rejected design point.

The selection of lower and upper bounds for γ∗ is somewhat arbitrary. The follow-
ing values were used for the range of problems considered in this thesis, these yielded
good convergence results, and are provided as a guideline:

γ−min = 0.95, γ+
min = 1.05, γ+

max = 2.00 (3.39)

It is also worth noting that since damping parameters are scaled individually for
each approximate response, it is important to ensure that the appropriate damping
factor is used for the corresponding approximate response. This is particularly rel-
evant for problems where eigenvalues are sorted numerically and not based on their
eigenmode, which characterize the structural response. Therefore, it is useful to em-
ploy mode-tracking algorithms, see Eldred et al. (1995), to ensure damping factors
are correlated with their corresponding approximate response.

3.4 Overview of the Successive Approximation Scheme

The complexity surrounding the solution structural optimization problems typically
requires an iterative solution strategy to be used. Several approximation methods have
been implemented successfully for numerous structural optimization problems, see
section 3.1. A generic optimization problem, given by (3.1), is solved by successively
generating and solving an approximate subproblem, given by (3.2). The components
required to generate a conservative convex separable approximation of an arbitrary
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response were developed and discussed in sections 3.2 and 3.3. Below an approximate
separable subproblem is solved using dual methods as discussed in subsection 3.4.1
followed by a short discussion of including multi-modal responses, such as buckling, as
an objective function in subsection 3.4.2. Finally, an overview of the iterative design
optimization scheme, based on the CCSA framework by Svanberg (2002), is presented
in subsection 3.4.3.

3.4.1 Solving the Approximate Subproblem

The approximate subproblem, given by equation (3.2), with objective function, f̃0, m
individual constraints, f̃j , and n design variables, xi, with lower and upper bounds,
xLi and xUi , respectively is repeated below for convenience:

min f̃0(x)
f̃j(x) 6 0 j = 1 . . .m

xLi 6 xi 6 xUi i = 1 . . . n

The function approximations, f̃j for j = 1 . . .m, now represent the conservative
convex separable approximations developed previously, fSj given in equation (3.7).
The subscript S associated with this approximation is omitted in the following dis-
cussion for clarity.

Dual Formulation

The constrained optimization problem given equation (3.2) is often referred to as the
primal problem. When the approximating functions are separable and convex the
primal problem can be solved efficiently using the dual method presented in Fleury
and Schmit Jr. (1980). Using the Karush-Kuhn-Tucker conditions (Karush, 1939;
Kuhn and Tucker, 1951) a function, L, known as the Lagrangian, can be written as:

L(µ,x) =
m∑
j=0

µjfj(x) (3.40)

where µj is a non-negative scaler, known as a Lagrange multiplier, associated with
the jth response and x is a vector of all design variables. The Lagrange multiplier
of the objective function, µ0, is per definition equal to unity. The dual problem is
subsequently given by:

max
µ
LC(µ) s.t. µj ≥ 0 (3.41)

where LC is known as Falk’s dual or the complementary Lagrangian and is defined
as the minimum of the Lagrangian, equation (3.40), over all design variables as:

LC = min
x
L(x(µ)) (3.42)

where the Lagrange multipliers, µ, are fixed while solving for the optimal primal
variables, x. For convex problems, the optimal solution of the dual problem and
primal problem are identical given that the Karush-Kuhn-Tucker conditions are met.

The dual formulation allows the search for optimal primal and dual variables to
be separated. Additionally, the separability of the developed approximations allows
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the search for each optimal primal variable to be conducted independently, hence,
the search for primal variables is called the local optimization problem. Since the
dual variables affect the optimal solution of all primal variables being considered, the
search for optimal dual variables is called the global optimization problem.

Local Optimization Problem

Recalling the approximation form given in equation (3.7), the conservative convex
separable approximation of an arbitrary structural response, fj , can be given by:

fj =
N∑
i=1

(
Ψ̆
m

i,j : Ai + Ψ̆
b

i,j : Di + Φ̆
m

i,j : A−1
i + Φ̆

b

i,j : D−1
i + ᾰi,jhi

)
+ C0 (3.43)

where Ψ̆
m

i,j is the sensitivity matrix containing the derivatives of the jth response
with respect to the elements of in-plane stiffness matrix, Ai, for the ith design region
including the convexifying terms as explained in equation (3.28). Similarly, Ψ̆

b

i,j is the
sensitivity matrix of the jth response with respect to the elements of flexural stiffness
matrix, Di, etcetera and ᾰi,j are the derivatives of the terms dependent explicitly on
laminate thickness, hi.

The separability of equation (3.43) allows the search for optimal primal variables
to be conducted as N independent local optimization problems as:

min
xi

(
Ψ̆
m

i : Ai + Ψ̆
b

i : Di + Φ̆
m

i : A−1
i + Φ̆

b

i : D−1
i + ᾰihi

)
(3.44)

where xi is the vector of design variables associated with the ith design region. The
local optimization problem (3.44) is only subject to the constraints imposed on the
design variables. Since the dual variables, µj , are constant during the local opti-
mization problem, the sensitivities can be summed over all responses. For example,
the combined sensitivity matrix with respect to the in-plane stiffness matrix can be
expressed as:

Ψ̆
m

i =
m∑
j=0

µjΨ̆
m

i,j (3.45)

Lamination parameters were used as design variables to solve the local optimiza-
tion problem given in (3.44). Thus, the problem is only constrained by the lamination
parameters’ feasible domain as explained in section 2.3.4. An additional advantage of
expressing the design problem in terms of lamination parameters is that the first and
second derivatives can be computed analytically, as shown in section 3.2.3. There-
fore, the local optimization problem is readily solved using an efficient gradient based
optimization method such as sequential quadratic programming (SQP).

Global Optimization Problem

The global optimization problem requires that the optimal set of dual variables is
determined. This is achieved by solving the dual problem, equation (3.41), for which
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the gradients can be easily shown to be equal to the negative value of the respective
Lagrange multiplier:

∂LC
∂µj

= −µj (3.46)

The global optimization can be efficiently solved using a standard Sequential
Quadratic Programming (SQP) algorithm when few responses are present. How-
ever, in the implementation discussed here an interior-point method was used, which
provided more consistent convergence rates when large number of constraint functions
are present.

3.4.2 Solving Multi-Modal or Min-Max Problems

The majority of the optimization problems discussed in the remainder of this thesis
are related to buckling, which is a multi-modal response. Considering only the critical
mode in optimization problems based on a multi-modal responses will typically result
in erratic solution convergence, as discussed by Seyranian et al. (1994) and Bruyneel
et al. (2008). Multi-modal responses are characterized by the nature of the critical
failure mechanism, which changes as the design changes. Buckling and vibrations are
typical multi-modal structural responses, since the critical mode shape is a function
of the structural design. For example, consider a structure for which mode one is a
global buckling mode while mode two is a local buckling mode. While optimizing the
design for mode one, mode two may become critical and this will require a completely
different structural solution from that of mode one. If the optimizer is unable to
identify the multi-modal nature of a response the design will iterate continuously
between the different critical modes present in the structural response.

Multiple modes are readily integrated into the design scheme presented in section
3.4.1 using a method similar to the bound formulation presented by Olhoff (1989).
Introducing an independent parameter, β, the optimization problem can be posed as:

minβ s.t. β ≥ fj (3.47)

where fj , for j = 1, 2, . . .M , are the first M eigenvalues and the largest value fj
is critical. This may seem counter intuitive, since for both buckling and vibration
problems the smallest eigenvalue is critical, however, it will be shown in chapter 5
that it is useful to consider the inverse eigenvalues instead of the eigenvalues directly.

Similar to section 3.4.1 Lagrangian can be formulated as:

L(µ,x) =
(

1−
M∑
j=1

µj

)
β +

M∑
j=1

µjfj(x) (3.48)

resulting in the following dual problem:

max
µ
LC(µ) s.t. µj ≥ 0 (3.49)

where solving for the complimentary Lagrangian, LC , now results in two conditions:

LC = min
x

∑
µjfj and

∑
µj = 1 (3.50)
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Note that the intermediate variable, β, is no longer present in the dual-formulation
and that the form of the problem is essentially identical to that presented previously
in section 3.4.1. The only difference is the additional constraint ensuring that all
Lagrange multipliers associated with the multi-modal response sum to unity, which
is readily included when solving the dual problem (3.41).

In multi-modal design problems it may be desirable to avoid modal interaction,
which may result in unstable post-buckling behavior, by imposing mode spacing con-
straints. This can be achieved by including a spacing parameter, ξj , in the constraint
of the bound formulation in equation (3.47), such that β ≥ fj/ξj as was done by
Setoodeh et al. (2009).

In this subsection the bound formulation has been shown to be an effective method
for including multi-modal structural responses, such as buckling, in the design opti-
mization problem. It is however equally suited to solving min-max problems, for
example when minimizing the maximum failure index within a laminate.

3.4.3 Iteration Scheme

A generic conservative convex separable approximation in terms of laminate thickness
and stiffness properties was derived in section 3.2. An additional term, to ensure
conservativeness and strict convexity of the approximation, was appended to the
function approximation and scaled dynamically via a constant factor ρ, as discussed in
section 3.3. The dual method was subsequently implemented in section 3.4.1 and used
to solve a generic constrained optimization problem by separating the optimization
problem into a local and global problem.

All of the aforementioned components will now be assembled in this section and
used to present a holistic overview of the laminate stiffness optimization process,
which is shown schematically in Figure 3.1. After problem initialization (0), the op-
timization consists of a convergence control loop (1) containing a global (2) and local
(3) optimization loop that corresponds to the optimization problems that result from
the dual method. The convergence control loop is used to dynamically control the
degree of conservativeness of the considered responses and to decide if the optimal
solution of the approximate subproblem is accepted for the following iteration. The
global optimization loop consists of solving for the Lagrange multipliers associated
with the constraints. The local loop is used to solve the local separable approxima-
tions iteratively in terms of lamination parameters to obtain the optimum stiffness
distribution.

A starting set of design variables, x0, is defined in the initialization step (0).
Typically, all lamination parameters are set to zero, corresponding to a quasi-isotropic
laminate, and a constant initial thickness distribution is assumed. The initial set of
design variables is then used to compute the structural stiffness properties and a finite
element analysis is run to compute the function values and sensitivities required to
construct the approximate subproblem and to compute the initial damping scaling
factors, ρj .

In the convergence control loop (1), the current damping factors are used to make
the response approximations more conservative and convex by augmenting the sen-
sitivity matrices to include damping information, as shown in equation (3.28). The
modified sensitivities are subsequently passed to the optimization loops, which are
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0. Problem Initialization
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fj(x0),Ψm,b
i,j (x0),Φm,b

i,j (x0),αj(x0)

1. Convergence Control

            Define x0

Initialize Damping
ρj(x0)

Augment Sensitivities (damping)

2. Global Optimization - Dual Variables

Finite Element Analysis (function values, sensitivities)
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Go To Start and Collect ! 20 000
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Figure 3.1: Overview of optimization steps required to obtain the optimal conceptual stiff-
ness distribution
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described in the next paragraph. The optimum design point, x∗, obtained after the
completion of the global and local optimization loops is then used to update the finite
element model and compute the current response and sensitivity data, which is sub-
sequently used to update the damping factors ρj(x∗). Note that the damping factor
update occurs even if the current design point is not accepted. The current function
values, fj(x∗), are compared to those of the the previous accepted iteration and the
constraints are checked for violation to ensure that a feasible descent step has been
made. If this is not the case, new damping factors, ρj(x∗), are used to rerun the
optimization from the previously accepted design point, xk. If the design point is
accepted, xk+1 = x∗, the updated sensitivity information is then used to run the next
optimization loop until the defined convergence or termination criteria is met.

The dual method is used to solve each of the successive approximate subproblems.
It consists of two optimization loops, a global loop (2) that maximizes the complimen-
tary Lagrangian in terms of the Lagrange multipliers, µj , and an local loop (3) that
minimizes an approximate response in terms of the primary design variables, x. In
the current implementation an interior-point method is used to solve for the Lagrange
multipliers while a sequential quadratic program is used to solve for the primary vari-
ables. In the inner loop the Lagrange multipliers remain constant and hence the
optimization problem can be posed as n separate local optimization problems which
can be solved in parallel. The objective function, fi, for the ith local problem is con-
structed using a linear combination of all the sensitivities associated with point i, as
defined in equation (3.45), multiplied by the respective laminate stiffness terms.

Differences with Respect to CCSA

In the CCSA framework presented in Svanberg (2002), the author differentiates be-
tween inner and outer iterations. Each successful outer iteration results in a new
design point, while inner iterations are used to determine appropriate damping fac-
tors, ρj , such that the approximation is conservative. A design is only accepted if
all constraints are satisfied and conservative, and if the objective function decreases
and is conservative. In the inner iterations, each of the damping factors is increased
based on the difference between actual and approximate function value. If the ap-
proximation is not conservative, while the damping factors remain unchanged if the
approximation is already conservative. In each outer iteration, the damping factors
are reset to 10% of their final value from the inner iteration, hence allowing conser-
vativeness to be removed.

The developed approach differs from that originally presented by Svanberg (2002)
in several ways; one, the initial values of the damping parameters, ρ, are computed
based on the initial approximate subproblem instead of assuming an initial value of
unity. This was done with the aim of reducing the number of rejected designs, as is
explained in section 3.3.3. Two, a design point is accepted if it results in an improved
design even if the approximate function and constraint values are not conservative, fol-
lowing the feasible decent step approach presented by Groenwold et al. (2009), which
still guarantees global convergence. Three, the damping parameters are updated in
each iteration, irrespective of design update acceptance. These differences are pri-
marily motivated by the premise that it is inefficient to reject information obtained
from design points which result in an improved design, even if the the approximations
are not conservative.



70 OPTIMIZATION METHODOLOGY FOR VARIABLE STIFFNESS STRUCTURES 3.4



CHAPTER 4

Strength Evaluation in Lamination Parameter Space

“Strength does not come from physical capacity. It comes from an
indomitable will”

Mohandas Gandhi

Lamination parameters are particularly suitable for solving laminate optimization
problems efficiently, as was introduced in chapter 1 and highlighted in chapter 2. A
limitation of using lamination parameters is the difficulty with which constraints on
laminate strength can be incorporated into the design process. Strength constraints
are often based on failure criteria, such as the Tsai-Wu criterion (Daniel and Ishai,
1994), which depend on material properties and explicitly on ply angles, precluding
the use of lamination parameters. Therefore, strength constraints have only been
incorporated with lamination parameters in optimization problems for the special
case when ply angles are restricted to a pre-determined discrete set, as shown in
Gürdal et al. (1999). Kogiso et al. (2003) also use the Tsai-Wu failure criterion
for a fixed set of ply angles when maximizing laminate reliability using lamination
parameters. Laminate failure is determined by relating ply strength to the maximum
allowable strain for that ply via a strength ratio. Groenwold and Haftka (2006) have
also investigated laminate optimization for strength, limiting the design to a single
orientation angle.

An investigation of incorporating the Tsai-Wu failure criterion into lamination
parameter design in its most general setting is presented in this chapter. The Tsai-
Wu failure criterion is mapped onto strain space, a useful approach first demonstrated
by Nakayasu and Maekawa (1997). When the failure criterion is written in terms of

This chapter is based on the paper, Implementation of strength based failure criteria in the

lamination parameter design space by S.T. IJsselmuiden, M.M. Abdalla, and Z.Gürdal, which

appeared in the AIAA Journal, 46(9):1826-1834, July 2008. Note: symbols may have been

changed to maintain consistency throughout this thesis.

71



72 STRENGTH EVALUATION IN LAMINATION PARAMETER SPACE 4.1

strain components in global coordinates, rather than material coordinates, the ply
angle appears explicitly. Subsequently, a conservative failure envelope is constructed
by finding a region in strain space that is safe regardless of the ply angle. In other
words, the failure envelope is valid for any ply orientation angle. An analytical solution
is obtained for this conservative failure envelope. It is shown in the following that
two different envelope equations may apply depending on material stiffness properties
and failure stresses. It is also shown that the envelope equation is a function of only
two strain invariants.

Laminate optimization for maximum stiffness is relatively straightforward to im-
plement and hence is often used as a substitute maximum strength design. Therefore,
it is also interesting to compare the optimal solutions obtained when maximizing stiff-
ness and maximizing strength for a given load. The objective of the strength-based
optimization is to minimize a failure index, which is equivalent to maximizing the
factor of safety, as proposed by Groenwold and Haftka (2006). The objective of the
stiffness-based optimization is to minimize compliance. The optimization is carried
out for several different materials, for a range of stiffness ratios (E1/E2), and for a
combination of axial and shear loading. Results of these optimizations show that the
correlation between stiffness and strength driven designs is generally favorable, but
that the degree of correlation depends both on material properties and loading.

Analytical expressions for conservative failure envelopes, based on the Tsai-Wu
failure criterion, are derived in section 4.1. The obtained envelopes are used to derive
an expression for laminate strength in section 4.2. The optimization problems for both
maximum stiffness and maximum strength are formulated in section 4.3, followed by
several numerical design studies in section 4.4 and conclusions in section 4.5.

4.1 Developing a Failure Envelope

Ply orientation angles are typically unavailable when using lamination parameters to
parameterize a laminate’s stiffness. Therefore, conservative failure envelopes, which
are valid for any ply orientation angle, were derived and are presented in this section.
The goal was to determine a region in strain space that guaranteed no failure would
occur within a laminate, irrespective of the ply orientation angles present. The Tsai-
Wu failure criterion was used as the underlying failure criterion for the derivations
presented below. However, other failure criteria, such as the maximum-strain criterion
or Hashin’s criterion, may also be considered.

The Tsai-Wu failure criterion is a well known first-ply failure criterion and can be
defined as (Daniel and Ishai, 1994):

F11σ
2
1 + F22σ

2
2 + F66τ

2
12 + F1σ1 + F2σ2 + 2F12σ1σ2 = 1 (4.1)

where Fi and Fij are second and fourth order strength tensors, with i, j = 1, 2 . . . , 6,
and are given by:

F11 = 1
XtXc

F22 = 1
YtYc

F12 = −1
2
√
XtXcYtYc

F1 = 1
Xt
− 1

Xc
F2 = 1

Yt
− 1

Yc
F66 = 1

S2

(4.2)

where Xt, Xc, Yt and Yc are the tensile and compressive failure stresses of the longi-
tudinal and transverse direction, respectively and S is the shear failure stress.
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Material stresses and material strains are related via the reduced stiffness matrix
Q, see section 2.3.1. Hence, the Tsai-Wu failure criterion can be expressed in terms
of material strain tensor components as:

G11ε
2
1 +G22ε

2
2 +G66ε

2
12 +G1ε1 +G2ε2 + 2G12ε1ε2 = 1 (4.3)

where the strain coefficients, Gij , are found to be:

G11 = Q2
11F11 +Q2

12F22 + 2F12Q11Q12

G22 = Q2
12F11 +Q2

22F22 + 2F12Q12Q22

G1 = Q11F1 +Q12F2 (4.4)
G2 = Q12F1 +Q22F2

G12 = Q11Q12F11 +Q12Q22F22 + F12Q
2
12 + F12Q11Q22

G66 = 4Q2
66F66

Material strains (ε1, ε2, ε12) can subsequently be related to laminate strains (εx, εy, εxy)
using the following transformation matrix:

1
2 (1 + c) 1

2 (1− c) s

1
2 (1− c) 1

2 (1 + c) −s
− 1

2s
1
2s c

 (4.5)

where s = sin(2θ) and c = cos(2θ). Substituting the transformed strains of equation
(4.5) into the failure envelope equation (4.3), a failure envelope equation in terms of
laminate strains and ply angle is obtained:

F (εx, εy, εxy, s, c) = 0 (4.6)

The objective is to construct a design envelope within which no failure occurs
regardless of ply orientation. To this end, a geometric “envelope” was constructed,
which is defined as the surface tangent to the family of failure surfaces, equation (4.6),
parameterized using ply angle θ. The envelope equation is given by:

dF

dθ
= 0 (4.7)

which can be expanded using the chain rule as:

dF

dθ
= c

∂F

∂s
− s∂F

∂c
= 0 (4.8)

where both F and Fθ are polynomial functions of s and c. Since both s and c are
dependent upon the ply angle θ, they cannot be considered independently, but have
to satisfy the following trigonometric relation:

s2 + c2 − 1 = 0 (4.9)

The equation for the failure envelope is obtained by eliminating s and c between
equations (4.6), (4.8), and (4.9). The elimination is achieved using Dixon’s resultant
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(Dixon, 1909) for the elimination of polynomial equations. The algebraic application
details of Dixon’s resultant are omitted for the sake of brevity, however commercially
available mathematics software, such as MathematicaTM, where Nakos and Williams
(1997) provide packages which can be used to solve for Dixon’s resultant. The result
yields the following two equations, (4.10) and (4.11), each representing a surface
traced out by the Tsai-Wu failure criterion in strain space for all ply orientations.

4u2
6I

2
2 − 4u6u1I

2
2 + 4(1− u2I1 − u3I

2
1 )(u1 − u6) + (u4 + u5I1)2 = 0 (4.10)

u2
1I

4
2 − I2

2 (u4 + u5I1)2 − 2u1I
2
2 (1− u2I1 − u3I

2
1 ) + (1− u2I1 − u3I

2
1 )2 = 0 (4.11)

where I1 is the volumetric strain invariant and I2 is the maximum shear strain (Gere,
2002), given by:

I1 = εx + εy and I2 =

√(
εx − εy

2

)2

+ ε2xy (4.12)

The terms ui, i = (1 . . . 6) are defined in terms of the strain coefficients of equation
(4.3) and are given by:

u1 = G11 +G22 − 2G12

u2 = (G1 +G2)/2
u3 = (G11 +G22 + 2G12)/4 (4.13)
u4 = G1 −G2

u5 = G11 −G22

u6 = G66

It should be clear that the feasible design space described by equations (4.10)
and (4.11) are material dependent, since ui is a function of the strain coefficients,
Gij , which are a function of the reduced stiffness matrix Q and material strength
coefficients Fi, Fij . It should also be noted that the failure envelopes prescribed by
equations (4.10) and (4.11) represent a conservative approximation of the Tsai-Wu
failure criterion in terms of strain invariants, and should not be confused with a strain
invariant failure criterion such as that presented by Gosse and Christensen (2001) and
hence should not be considered to be a new failure criterion.

On inspection, the first envelope (4.10) is a second order equation with respect to
strain, and the second envelope (4.11) is a fourth order equation. These two envelope
equations do not intersect one another, but may become tangent as shown in Figure
4.1. The safe region is the region common to the Tsai-Wu failure envelope for all
ply orientation angles. As such, the envelope equation describing the inner envelope
should always be used to evaluate laminate strength. Whether the inner envelope is
represented by the second or fourth order equation depends on the properties of the
material under consideration. When the fourth order equation is used to describe the
inner envelope it is usually factorable into the product of two equations leading to a
self intersecting non-smooth envelope.

The feasible design envelopes were plotted for three different materials to better
understand their physical interpretation. As an example, consider three materials
listed in Appendix A, Carbon-PEEK (AS4), Carbon-Epoxy (IM6) and Boron-Epoxy
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(B5.6), having stiffness ratios, E1/E2, ranging from approximately 9 to 17. The
actual strain envelope for various material orientation angles together with the two
curves prescribed by the derived equations were plotted in Figure 4.1. In this case
εxy has been set to zero, however, similar results can be generated for a range of
εxy values. It is clear from the figure that in each case, one of the two equations
accurately prescribes the inner strain envelope, which is in fact independent of the
fiber orientation. A method of selecting the critical envelope equation is treated in
the next section.
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Figure 4.1: Strain envelopes for various fiber orientation angles, including the 2nd and 4th

order solutions derived in equations (4.10) and (4.11), respectively, εx vs. εy, with εxy = 0
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As can be seen from Figure 4.1, the conservative design envelopes prescribed by
equations (4.10) and (4.11) are convex in the strain space, as they are the intersection
of the infinite number of convex sets defined by the Tsai-Wu failure criterion. The
Tsai-Wu failure criterion is only convex if the failure coefficients meet specific require-
ments, as presented by Bower and Koedam (1997). An expression for the laminate
safety factor, based on the derived failure envelopes, is presented in the following
section.

4.2 Formulation of a Strength Constraint

Equations (4.10) and (4.11) represent the laminate failure envelopes in strain space.
In order to apply the envelopes as a constraint, or alternatively as an objective func-
tion for optimization, a simplified expression for laminate failure is proposed. The
equations of the design envelopes can be reformulated in terms of a safety factor, λs,
which can be defined as:

λs =
b

a
(4.14)

where a is the distance between the origin and an arbitrary point P in the feasible
design space, and b the length of a vector from the origin, through point P , to a point
on the envelope boundary, P ∗, as illustrated in Figure 4.2.
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Figure 4.2: Definition of λs with respect to an arbitrary point, P , within the design envelope
and the corresponding point, P ∗, on the boundary

In essence, λs is a scaling factor, which when multiplying the values of applied
strains, ε, at a generic point P , gives the values of ε∗ at the corresponding point on
the boundary, P ∗. Therefore, the strain invariants, I1 and I2, can be related to those
at the boundary of the the failure envelopes by substituting I∗1 = λsI1 and I∗2 = λsI2
into the failure envelope equations, (4.10) and (4.11), yielding two polynomials in
terms of λs:

f1(λs) = a12λ
2
s + a11λs + a10

f2(λs) = a24λ
4
s + a23λ

3
s + a22λ

2
s + a21λs + a20 (4.15)
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where the coefficients aij are functions of the strain invariants I1 and I2 and are found
to be:

a10 = u2
4 + 4u1 − 4u6

a11 = −4u2I1(u1 − u6) + 2u4u5I1

a12 = 4u2
6I

2
2 − 4u3I

2
1 (u1 − u6)− 4u6u1I

2
2 + u2

5I
2
1

a20 = 1 (4.16)
a21 = −2u2I1

a22 = −2u3I
2
1 + u2

2I
2
1 − I2

2 (u2
4 + 2u1)

a23 = 2u2I
3
1u3 − I2

2 (2u4u5I1 − 2u1u2I1)
a24 = u2

1I
4
2 − I2

2 (u2
5I

2
1 − 2u1u3I

2
1 ) + u2

3I
4
1

Solving for λs yields up to six roots, with the equation with the smallest positive
real root representing the active envelope since the smallest safety factor is critical.
The active envelope is not independent of the laminate strains. It is also noted
that the fourth order envelope self-intersects and can therefore be thought of as two
smooth curves, as can be seen in Figure 4.1(c). Corresponding to each of these two
smooth curves is a positive root λs which is a continuous function of strains, as was
demonstrated in later work (Khani et al., 2011).

Groenwold and Haftka (2006) first suggested using a factor of safety for strength
optimization by directly maximizing λs. However, λs is not differentiable near the
origin and hence may lead to numerical problems. To remedy this, the failure in-
dex, rs(ε), is defined as the inverse of the factor of safety squared, which guarantees
differentiability at all points within the failure envelope:

rs(ε) =
1
λ2
s

(4.17)

where λs is the smallest positive real root obtained from (4.15). If the implemented
failure criterion is quadratic, such as Tsai-Hill, the failure index, rs, is identical to the
failure criterion. Otherwise, the failure index is representative of the safety factor and
is a function that has a value of 0 at the origin, when no strain is present, and a value
1 at the envelope boundary, which indicates laminate failure. Hence the strength
constraint can be formulated as:

rs(ε)− 1 ≤ 0 (4.18)

which is valid at any point within the laminate, and is only a function of the local
strain. Based on Classical Lamination Theory the strain at any point in a laminate,
(x, y, z), can be related to mid-plane strains, ε0, and curvatures κ, as follows:

ε = ε0(x, y) + zκ(x, y) (4.19)

where z ∈ [−h2 , h2 ], is the thickness co-ordinate, and x and y are panel coordinates.
For convenience of use in optimization for strength of thin plates and shells, it is ad-
vantageous to eliminate the dependency on thickness coordinate z in the formulation
of the strength constraint. This can be achieved by stipulating that the worst case
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value is still safe. Thus, the strength constraint at any point (x, y) in the laminate
becomes:

max
z

(rs)− 1 ≤ 0 (4.20)

as the largest values of rs on interval z ∈ [−h2 , h2 ] will be critical.
The function rs is a convex function of laminate strains, ε, which is a linear

function in z. Since all ply orientations are assumed to be present at any through-the-
thickness point, it follows from the properties of convex functions that rs is a unimodal
function of z with a unique minimum. Hence the maximum will have to occur at one
of the extreme fibers, i.e. z = −h2 or z = h

2 . This result may seem paradoxical
at first since it is well-known that the most critical point through the thickness of
a composite laminate need not be one of the extreme fibers. This counter-intuitive
finding can be explained by noting that, in the derivation of the failure envelope, it
is assumed that any ply orientation is possible at any given point. The conservative
strain constraint, equation (4.18), does not take the actual order of layers in the
laminate into account. Therefore, this approach may be excessively conservative
for bending dominated problems, a fact that is confirmed by the numerical results
presented in section 4.4.

For pure in-plane strains, e.g. in-plane loading of a symmetric laminate, the strains
are constant through the thickness and the strength constraint, equation (4.18), can
be directly applied. However, when bending curvatures are present the strength
constraint may be replaced by two constraints:

r+
s − 1 ≤ 0 and r−s − 1 ≤ 0 (4.21)

where r±s = r(x, y,±h/2).

4.3 Optimization Formulation

The optimization problems for maximum stiffness and maximum strength of a panel
under constant in-plane loads are formulated in this section. The availability of both
formulations makes it straightforward to compare the results of strength-optimized
and stiffness-optimized panels and provides a useful test for the intuitive notion that
stiffness, which is far easier in mathematical treatment, is a good surrogate objec-
tive function for strength. Approximations for both laminate strength and laminate
stiffness as objective functions are derived to improve optimization efficiency.

4.3.1 Strength Optimization

To maximize laminate strength, Groenwold and Haftka (2006) propose maximizing
the factor of safety λs, which is equivalent to minimizing the failure index r. An
expression for the failure index as a function of laminate strains, ε, was developed
in section 4.2. The optimization design variables for the in-plane problem are the
in-plane lamination parameters, VA. Laminate strains can be expressed as functions
of the design variables using classical lamination theory:

ε = A−1(VA) ·N (4.22)
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where A−1 is the compliance matrix, defined in terms of lamination parameters, ViA,
as defined in equation (2.15). Note that, to maintain consistency with the stiffness
optimization formulation derived in the next section, ε refers to the engineering strain
vector. Thus, the strength optimization problem can be formulated as:

min
ViA

rs
(
ε(ViA)

)
(4.23)

subject to the constraints imposed by the lamination parameter design space, as
defined in section 2.3.4.

To solve equation (4.23) efficiently, an approach is proposed in which the failure
index, rs, is approximated as a function of the lamination parameters, as this pre-
vents excessive evaluations of the failure index. In most practical design optimization
problems evaluation of the failure index require a computationally expensive finite el-
ement analysis. For this reason, it is customary to use an approximation in structural
optimization (Haftka and Gürdal, 1992) to keep the number of function evaluations
required to find the optimum to a minimum.

It can be shown that the failure index, rs, is a homogeneous second order func-
tion with respect to the strains (Groenwold and Haftka, 2006). Therefore, it can be
approximated using a second order Taylor series expansion in terms of strains:

rs(ε) ≈ r(k) + g(k)T · (ε− ε(k)
)

+
1
2!
(
ε− ε(k)

)T ·H(k) · (ε− ε(k)
)

(4.24)

with

g(k) =
∂rs
∂ε

∣∣∣
ε=εk

and H(k) =
∂2rs
∂ε∂ε

∣∣∣
ε=εk

(4.25)

Using Euler’s theorem (Kreyszig, 1999) of homogeneous functions, it can be shown
that g(T ) · ε = 2rs and H · ε = g, hence the approximation simplifies to:

rs(ε) ≈ 1
2
εT ·H(k) · ε =

1
2

(S ·N)T ·H(k) · (S ·N) (4.26)

where H can be derived analytically in terms of the strain invariants using the chain
rule:
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=
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∂2rs
∂λ2

s
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∂Ip
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∂Iq

+
∂rs
∂λs
· ∂2λs
∂Ip∂Iq

)
∂Iq
∂εk

]
∂Ip
∂εl

+
∂rs
∂λs
· ∂λs
∂Ip
· ∂

2Ip
∂εk∂εl

] (4.27)

where k, l = 1 . . . 3.
Derivatives of the strain invariants with respect to the strains can be readily found

by differentiation of equation (4.12). The derivative of λs with respect to the strain
invariants is found by making use of the equations derived for the failure envelope
(4.15), which can be rewritten as:

fi(λs) =
N∑
n=0

anλ
n
s = 0 (4.28)
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where N = 2 or 4 and is related to the applicable failure envelope for i = 1 or 2 for
which the corresponding coefficients an are defined in equation (4.16). To determine
the derivative of λs, the equations listed above can be differentiated with respect to
Ip which results in:

N∑
n=0

(
∂an
∂Ip

λns + an
∂λns
∂Ip

)
= 0

Therefore:
∂λs
∂Ip

= −
∑N
n=1

∂an

∂Ip
λns∑N

n=1 nanλ
n−1
s

(4.29)

The second order derivatives of λs can be found in a similar fashion by taking the
derivative of equation (4.29) with respect to the strain invariant Iq.

The lamination parameters corresponding to the minimum value for the approx-
imation of rs can be found using any standard optimization algorithm. Solving the
approximate problem successively, while updating the approximation after each new
design step, will yield the optimum set of lamination parameters at convergence.

4.3.2 Stiffness Optimization

Maximum stiffness designs can also be formulated in terms of lamination parameters
by minimizing the compliance (Setoodeh et al., 2006b). The minimization problem
can therefore be formulated as:

min
ViA

1
2
NT ·A−1(ViA) ·N (4.30)

subject to the constraints imposed by the lamination parameter design space as de-
scribed in section 2.3.2. Compliance is the measure of the complementary work done
by the external loads on the laminate and has been shown to be convex (Setoodeh
et al., 2006b).

4.4 Numerical Results

The optimization formulations developed for strength and stiffness in the previous
section were applied to several design problems. The purpose of the numerical tests
is to, one, assess the behavior of the proposed strength formulation for different ma-
terials and two, to help us to discuss the relationship between strength-optimized
and stiffness-optimized designs. Three different materials, AS6, IM6 and B5.6, were
considered, as listed in Appendix A. All examples use the following combined axial
and shear loading:  Nx

Ny
Nxy

 =

 1− ω
0
ω

 ·N (4.31)

with w ∈ [0, 1], where ω = 0 represents pure axial tension or compression, depending
on the sign of N , and ω = 1 represents pure shear loading. N was given a numerical
value of ±150 · 106 N/m. This is an arbitrary choice, but it provides a good range for
rs for the various materials when considering a laminate panel of unit dimensions.
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The conservativeness of the strength formulation is quantified in the following
subsection. The proposed optimization formulation is verified for the three materials
under consideration in subsection 4.4.2. The optimization procedure is executed for
balanced and unbalanced laminates for a range of tensile, compressive and shear loads
in subsection 4.4.3.

4.4.1 Conservativeness of the Strength Envelope

The proposed failure index, rs, assumes that all ply orientations are present in a
laminate. In a real laminate layup this may not be the case. Hence, if the ply
orientations that define the critical boundary of the failure envelope are not present,
the formulation may lead to conservative designs. The origin of this conservativeness
is readily understood when considering the maximum-strain criterion. This criterion
is represented by a rectangular cuboid in strain space, where its faces are defined
by the limit tensile, compressive and shear strains along the principle material axes.
When assuming all ply angles to be present, the rectangular cuboid is limited by the
smallest value of the limit tensile, compressive and shear strain of all possible plies.
Therefore, assuming that all ply angles are present may yield overly conservative
results, and was thus investigated further.

Two particular cases are likely to exhibit this conservative behavior; one, when all
fibers are aligned in a single direction, such as under uniaxial loading; and two, when
there is a strong variation of strain through the laminate thickness, such as when
bending is dominant. The first case corresponds to pure tension, ω = 0 in equation
(4.31), Nx = N , and the second case to axial bending, Mx, which are most likely to
be the worst case scenarios.

To assess the conservativeness of the failure envelope, the safety factor λs, defined
using the envelope, is compared to the safety factor predicted by the Tsai-Wu fail-
ure criterion, λTW . The ratio of the safety factors, λTW /λs, for several laminates
are presented in Table 4.1. The safety factor is significantly underestimated when
considering the intuitively optimal 0◦ design for pure tension for all three materi-
als investigated. When considering other laminates with different ply orientations
present, the difference between the two safety factors is reduced. The safety factors
only differ between 0 and 12% for the axially loaded laminate, [±45, 04, 902]s.

If the same laminate, [±45, 04, 902]s, is considered under bending loads, the dif-
ference between the lamination parameter based failure envelope predictions and the
Tsai-Wu failure criterion can be as large as 33%. This is due to the fact that the rel-
ative through-the-thickness position of plies with different orientations influences the
safety factor for the derived envelope and the Tsai-Wu failure criterion. For example,
the plies can be rearranged to obtain a laminate with the same in-plane lamination
parameters, but having different surface plies, [04,±45, 902]s, yielding different values
for the conservativeness of the design. Hence, the failure envelope conservativeness is
clearly influenced by the chosen stacking sequence. Since the envelope cannot explic-
itly take the order of the plies into account, the found designs for bending dominated
problems are more conservative.

Keeping in mind that general engineering design practice often requires laminates
to consist of several fiber orientations, and the need to account for multiple load cases,
it can be concluded that for the purpose of practical design problems, the predicted
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Table 4.1: Ratio of the safety factor predicted by the design envelope and that obtained from
the Tsai-Wu failure criterion (λTW /λs) for Carbon-PEEK (AS4), Carbon-Epoxy (IM6) and
Boron-Epoxy (B5.6)

Material Axial Tension (Nx) Bending (Mx)
[08]s [908]s [±454]s [±45, 04, 902]s [±45, 04, 902]s [04,±45, 902]s

AS4 2.99 1.00 1.12 1.00 1.07 1.17
IM6 3.92 1.19 1.33 1.12 1.20 1.05
B5.6 2.62 1.00 2.26 1.00 1.33 1.17

factor of safety will only be slightly conservative with respect to the Tsai-Wu failure
criterion. Hence, the proposed design envelope is well suited to in-plane strength
optimization problems.

It can also be remarked that sandwich structures with composite face sheets are
often used when bending loads are dominant. In such a case the face sheets are
primarily loaded in their plane. Thus, the design of the face sheets would reduce to
an in-plane design problem, for which the proposed failure envelope is well suited.

4.4.2 Verification of the Strength Formulation

The laminate strength was maximized for the three different materials for a combi-
nation of shear, ω = 0.50, with either tensile or compressive loads in order to verify
the proposed formulation. The results for an example set are plotted in Figure 4.3 in
lamination parameter space, along with the contours of the function, rs, which was
minimized and the optimization path. The optimal values of the lamination parame-
ters for each case are presented in Table 4.2. In each case the optimization is started
from V1A = V3A = 0, which corresponds to a quasi-isotropic laminate.
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Figure 4.3: Sample optimization paths for the three investigated materials including func-
tion value contours, with N = ±N · [0.5 0.0 0.5]T

The non-smooth failure index value contours in Figure 4.3(c) are caused by the
non-smooth nature of the fourth order failure envelope, given by equation (4.11).
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The bound formulation (Olhoff, 1989) may be implemented to deal with the lack of
smoothness. The optimization procedure converged in a small number of iterations,
typically less than 10, for a convergence tolerance of 1 ·10−6 for the value of rs. Often
good convergence to near optimal solutions can be achieved in one iteration, as can
be observed from Figure 4.3.

Table 4.2: Optimum lamination parameters and
√
rs values for ω = 0.5 for various mate-

rials and loading

Material Tension/Shear Compression/Shear
V1A V3A

√
rs V1A V3A

√
rs

Carbon-PEEK (AS4) 0.444 -0.353 0.394 0.155 -0.357 0.353
Carbon-Epoxy (IM6) 0.558 -0.293 0.339 0.023 -0.322 0.279
Boron-Epoxy (B5.6) 0.601 -0.248 0.510 -0.067 -0.266 0.412

The optimal lamination parameters for a range of ω values for the case of ten-
sion/shear loading are shown in Table 4.3. It is interesting to note that for Carbon-
Epoxy (IM6) the optimal pure-tension design (ω = 0) is an angle-ply laminate with
fiber orientations of approximately ±5◦. Brandmaier (1970) also found that, as a
function of the material properties, maximum strength under unidirectional loading
may not be achieved by aligning fibers in the primary stress direction.

Table 4.3: Optimum lamination parameters and
√
rs values for a range of tension/shear

load cases (ω = 0.1 . . . 1.0)

ω Carbon-PEEK (AS4) Carbon-Epoxy (IM6) Boron-Epoxy (B5.6)
V1A V3A

√
rs V1A V3A

√
rs V1A V3A

√
rs

0.0 1.000 1.000 0.196 0.985 0.940 0.205 1.000 1.000 0.2847
0.2 0.692 0.305 0.307 0.796 0.324 0.272 0.794 0.261 0.4117
0.4 0.512 -0.163 0.372 0.626 -0.114 0.322 0.670 -0.092 0.4846
0.6 0.381 -0.531 0.411 0.494 -0.463 0.351 0.535 -0.397 0.5291
0.8 0.241 -0.884 0.426 0.307 -0.811 0.364 0.383 -0.707 0.5462
1.0 0.000 -1.000 0.455 0.000 -1.000 0.382 0.000 -1.000 0.5435

The optimization results presented in the following section are limited to in-plane
loading of a laminate. The developed failure envelope, and subsequent optimization
formulation, is applicable to design problems under in-plane and bending loads and
combinations thereof. Pure bending loading does not differ in any essential way from
the in-plane case. However, combined in-plane and bending loading requires in-plane
and out-of-plane lamination parameters to be used as design variables simultaneously,
which requires their combined design space to be defined. The feasible region in this
case is available as an approximation, as discussed in section 2.3.4, and as such the
basic approach is still applicable albeit with few changes in details. Therefore, all
the following optimization results are restricted to in-plane loading of a laminate
which, the author believes, is representative enough of the practical applications of
the proposed approach.
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4.4.3 Parametric Study of Strength versus Stiffness

Since a general optimization formulation for strength and stiffness was developed, it
was interesting to investigate the difference between optimal solutions found for each
of the optimization problems for a range of load cases. The results of the inverse of
the safety factor, 1/λs =

√
rs, are plotted in Figure 4.4 for the three material systems

as a function of the axial load to shear load ratio for different laminate constructions.
The designs in Figures 4.4(a) and 4.4(b) are symmetric balanced composites and thus
require only two lamination parameters. The remaining two figures are for unbalanced
laminates, hence four in-plane lamination parameters were used during optimization.
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Figure 4.4: Comparison of stiffness and strength driven optimal laminates for various
materials under combined tension/shear or compression/shear loading

One of the first noticeable trends was the closeness of the strength and stiffness
optimized designs for pure tension/compression or shear loads (i.e. ω = 0 or ω = 1),
they are extremely close, if not identical for balanced laminates. Only in the case of
unbalanced laminates, particularly for Boron-Epoxy (B5.6), was there a significant
difference between strength and stiffness optimized results observed.

As one might expect, the strength optimized designs will always have a factor of
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safety higher (lower
√
rs) than or equal to the stiffness driven designs. The perfor-

mance of combined tension and shear loaded laminates, Figures 4.4(a) and 4.4(c), was
similar for both strength and stiffness based designs over the entire range of loading,
with Boron-Epoxy (B5.6) deviating from this trend the most. The difference be-
tween stiffness and strength driven designs could be as much as 48% for the combined
compression and shear loaded cases, Figures 4.4(b) and 4.4(d). Comparing balanced
laminate, Figures 4.4(a) and 4.4(b)), with unbalanced laminate designs, Figures 4.4(c)
and 4.4(d), for the same load cases, it can be seen that the unbalanced designs yield
a higher factor of safety for ω > 0, i.e. when shear loading is present.

Since the formulation for maximum stiffness is insensitive to the sign of the loading,
one would expect the stiffness optimization to produce the same design for both
tension and compression. This cannot be discerned from the figures (4.4), since the
same set of lamination parameters will yield a different safety factor for tension and
compression, however, the stiffness optimized designs were found to be identical, and
they yielded the same lamination parameters for both load cases.

The difference between strength-optimal and stiffness-optimal laminate designs
can be further highlighted by considering the Pareto front traced by both design
objectives. The Pareto front for balanced Carbon-PEEK (AS4) and Boron-Epoxy
(B5.6) laminates are presented in Figure 4.5, for a selected set of compressive-shear
loading. Load cases were selected such that the largest difference between strength-
optimal and stiffness-optimal designs were obtained and as such represent the “worst
case” scenario. The Pareto fronts were traced by maximizing laminate strength, on
the horizontal axis, while simultaneously imposing a lower bound on laminate stiffness,
vertical axis. Laminate strength and stiffness values were normalized by the laminate
strength and stiffness of the strength-optimal laminate design for each case.

The first noticeable trend was a much flatter Pareto front for Boron-Epoxy (B5.6)
than for Carbon-PEEK (AS4). In the worst load case, ω = 0.2, a 10% increase in
stiffness resulted in almost a 50% reduction in laminate strength for Boron-Epoxy
(B5.6). The same was true for Carbon-PEEK (AS4) to a lesser extent, where a 16%
increase in laminate stiffness resulted in a 23% reduction in laminate strength. The
differences between laminate stiffness and strength were found to be less severe for
other ratios of compression-shear loads. However, it was clear that laminate strength
is more sensitive to a change in layup than laminate stiffness.

Considering the balanced laminate designs, Figures 4.4(a) and 4.4(b), it was also
interesting to investigate the path of optimum design variables in the lamination
parameter design space for the load cases considered, as was done for Carbon-PEEK
(AS4) and Boron-Epoxy (B5.6) in Figure 4.6. The designs in the top right-hand
corner of the lamination parameter design space correspond to the pure tension or
compression load cases (ω = 0), following the lines to the bottom of the parabola
where ω = 1, corresponding to a pure shear. It should be kept in mind that V1A =
1, V3A = 1 corresponds to a laminate with only 0◦ fibers while V1A = 0, V3A = −1
to one with a ±45◦ layup. It is also clear from these figures that the designs for
maximum compressive strength deviate more from the stiffness driven optima than
those for maximum tensile strength.

Looking at a Carbon-PEEK (AS4) laminate, Figure 4.6(a), pure tension and pure
shear result in identical laminate layups, 0◦ and ±45◦ respectively, for stiffness and
strength driven optimization. However, in the case of pure compression, the strength
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Figure 4.5: Pareto curves for maximum stiffness versus maximum strength for several
compression-shear loaded panels (Stiffness and strength values are normalized with respect
to the the corresponding values for the corresponding strength-optimal design)

based design includes a small percentage (< 5%) of 90◦ fibers. This improved the
tensile strength in the direction perpendicular to the loading, reducing the laminates
Poisson ratio and hence increased the laminates strength slightly.

The results for a Boron-Epoxy (B5.6) laminate shown in Figure 4.6(b) also indicate
that a ±45◦ laminate layup yields the best design in the case of pure shear loading.
It can also be seen that for the tension/shear designs optimal layups are all angle-ply
laminates. The large difference between stiffness driven and strength driven optima
for the compression/shear load case is also clearly visible.

The exact behavior of the optimal fiber orientation for maximum strength of a
laminate is a complex function of material properties and failure allowables (Brand-
maier, 1970). The clear dependency on the individual material properties was to be
expected due to the strong material dependence of the Tsai-Wu failure criterion as is
indicated by Groenwold and Haftka (2006). Identifying which material properties or
ratios thereof and their influence on the degree of correlation between stiffness and
strength optimized designs may be an interesting subject of future research.
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Figure 4.6: Optimization paths for strength and stiffness driven optima for balanced sym-
metric laminates

4.5 Concluding Remarks

The implementation of the Tsai-Wu failure criterion in the lamination parameter
design space was presented. Analytical expressions were found representing the con-
servative failure envelope in strain space. The equations for the envelope are functions
of only two strain invariants and do not depend explicitly on the stacking sequence.
The active envelope equation was used to formulate a failure index related to the
factor of safety. The failure index was used to formulate an optimization problem
to design panels for maximum strength for pure in-plane loading and combined in-
plane and bending loads. The derived envelope was shown to accurately represent the
factor of safety of practical laminates under in-plane loading, however, for bending
dominated problems it was shown that it may be too conservative.

Panels under combined axial and shear loads were designed for maximum laminate
strength and laminate stiffness. Results of strength-optimal and stiffness-optimal
designs for various materials and load conditions were presented. Strength-optimal
and stiffness-optimal designs were found to be similar for a large range of material
properties and load cases. However, disparities between these two designs were also
found, particularly for compression-shear load cases. It was found laminate strength
was more sensitive to the layup than laminate stiffness for the considered materials,
which implies that design for maximum strength will result in near-optimal laminate
stiffness, however, the opposite is not necessarily true. It is thus concluded that
while stiffness maximization might reasonably serve as an easier to evaluate surrogate
for the preliminary design of composite structures, the derived conservative failure
index offers a more attractive and easy to implement alternative. It should also
be kept in mind that when moving to variable stiffness laminates, with significantly
more complex stress states, properly capturing structural strength may result in large
improvements with respect to equivalent maximum stiffness designs.
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Two open problems remain to be investigated. The first is to investigate and
understand how the shape of the conservative failure envelope depends on material
stiffness properties and failure stresses. Such an analysis would also be quite useful for
extending the present formulation to more complex failure criteria that differentiate
between different failure modes such as Hashin’s criterion. The second open problem
is the convexity of the failure index function in lamination parameter space. Convexity
would mean that strength-optimal designs are unique and that this unique optimum
can be converged starting from arbitrary initial designs. Numerical experience seems
to indicate that the failure index is indeed convex or nearly so. While the convexity
of the failure index in strain space is straightforward to demonstrate based on the
convexity of the underlying Tsai-Wu failure criterion, whether or not convexity carries
over to the lamination parameter space is more challenging to assess.



CHAPTER 5

Design of Variable Stiffness Plates for Buckling

“If you do not change direction, you may end up where you are heading”

Lao Tzu

Design of laminated composite plates for improved buckling load has been well
studied in the past. Rothwell (1969) study the influence of fiber angles on the com-
pression and shear buckling loads of long rectangular plates with balanced, symmetric
laminates. Schmit and Farshi (1976) present one of the first design routines incor-
porating buckling as a constraint. Designs are obtained from a fixed set of ply ori-
entation angles while using ply thicknesses as continuous design variables, however,
the applicability of the approach is limited since stacking sequence information is not
considered. Grenestedt (1991) use lamination parameters to design simply-supported
rectangular plates with a symmetric layup. The optimal solutions for balanced lam-
inates are found to lie on the boundary of the lamination parameter feasible region
and hence are easily converted to angle-ply laminates. The optimal unbalanced op-
timum is shown to be closely approximated with a single fiber orientation angle. In
later work by Fukunaga et al. (1995) a similar approach is adopted to study the in-
fluence of bending-twisting coupling on buckling load. Optimal solutions are once
again found to lie on the feasible region’s boundary, facilitating the conversion to a
laminate stack.

Biggers and Srinivasan (1993) conduct a parametric study of simply supported
rectangular plates under uniaxial compression. In their study, laminate stiffness prop-
erties normal to the load direction are tailored by moving 0◦ plies from the center of
the plate to the plate’s edge. Buckling loads are shown to increase by up to 200%

This chapter is based on the paper, Optimization of variable stiffness panels for maximum

buckling load using lamination parameters by S.T. IJsselmuiden, M.M. Abdalla, and Z.Gürdal,

which appeared in the AIAA Journal, 48(1), pages 134 – 143, 2010. Note: symbols may have

been changed to maintain consistency throughout this thesis.
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compared to their baseline design. Kassapoglou (2008) present a Rayleigh-Ritz based
analysis of plates under compression with two concentric layups. Several examples
are treated which corroborate the advantage of multiple-patch designs in terms of
improved buckling resistance. Both studies indicate that buckling loads can improve
significantly when allowing designs with non-uniform panel stiffness in the transverse
direction.

In all of the aforementioned studies, the designs are based on “traditional” lami-
nates, meaning that the panel is defined by a single laminate or a small set of lami-
nates. Hyer and Lee (1991) present one of the earliest works for which different fiber
angles are defined within each element of the finite element model. A square plate
with a hole consisting of 18 elements is designed for maximum buckling load using
both a sensitivity analysis approach and a gradient-based search algorithm. A sym-
metric laminate, [±45/θ6]s with θ as design variable, is designed independently for
each element and the buckling load is shown to improve by up to 200% with respect
to the baseline laminate, [±45/06]s. Banichuk et al. (1995) also demonstrate that sig-
nificant improvements in buckling loads can be achieved by designing the local axis
of orthotropy within each element. In later research, Setoodeh et al. (2009) optimize
a rectangular plate using nodal based fiber angles as design variables and demon-
strate similar performance improvements. However, the use of discrete orientations
as design variables has several disadvantages as was discussed in section 1.3.1.

Gürdal and Olmedo (1993) present linear fiber angle variation as the first param-
eterization scheme for continuous fiber paths. The Ritz method is used to compute
buckling loads of rectangular plates. Two example problems are treated, the first
allows stiffness to vary along the load direction and the second allows it to vary per-
pendicular to the load. In the latter example, buckling loads are improved by 80%
with respect to the constant stiffness optimum. The authors also highlight how, for
a given buckling load, a wide range of average in-plane stiffnesses can be achieved.
In later work by Tatting and Gürdal (2002) and Jegley et al. (2005), linear fiber an-
gle variation is used to design, manufacture, and test several variable stiffness panels.
Experimental results confirm the advantage of tailoring stiffness properties within the
laminate. Alhajahmad (2008) presents a non-linear parameterization scheme for fiber
paths based on Lobatto polynomials.

Past research clearly confirms the advantage of introducing stiffness tailoring to
improve the compressive load carrying capacity of composite laminates with buckling
constraints. Lamination parameters have been used successfully for variable stiffness
designs in the past (see section 1.3.3). Until recently lamination parameters could
not be implemented to maximize buckling loads of variable stiffness panels because
the feasible region for combined in-plane and bending stiffness was unavailable. A
conservative approximation scheme for the design of variable stiffness composite pan-
els for maximum buckling load was derived such that it could be cast into the design
approach presented in chapter 2. In the approximation the buckling load was ex-
pressed as a linear combination of the in-plane and bending stiffness tensors and the
corresponding inverses. The presented research was built on work by Setoodeh et al.
(2009), where a variable stiffness panel is designed using fiber angles to improve buck-
ling performance. The approximation scheme by Setoodeh et al. (2009) was improved
to guarantee homogeneity in stiffness space and convexity in lamination parameters
space and is presented in this chapter. The developed approximation scheme retained



5.1 BUCKLING ANALYSIS 91

the desirable properties of the earlier version including that of being separable. The
adjoint method was used to compute the sensitivity of all the design variables, requir-
ing only one back substitution using the already factored in-plane stiffness matrix.

A finite element formulation used for buckling analysis is presented in the next
section. A new conservative approximation scheme for the laminate buckling load
was developed and is presented in section 5.2. Since improved buckling performance
typically leads to reduced laminate in-plane stiffness, it was also interesting to study
the trade-off between laminates designed for maximum buckling load and laminates
designed for maximum in-plane stiffness. Laminate in-plane stiffness was maximized
by minimizing the overall compliance, for which an approximation is also presented.
The design trade-off study was conducted using a combined objective function as
presented in section 5.3. Several example problems were outlined and compared to
results available from the literature in section 5.4, which is followed by conclusions in
section 5.5.

5.1 Buckling Analysis

Analysis of variable stiffness laminates can be performed using constitutive relations
that are based on classical lamination theory for thin laminates. The theory is valid
for small strains and assumes that perfect bonding between layers exists. The clas-
sical Kirchhoff assumptions for a plate also apply. The only essential difference with
traditional analysis is that stiffness properties now vary as a function of spacial loca-
tion, and therefore each element will have a different stiffness matrix associated with
it. The buckling load is determined using a finite element discretization of the buck-
ling analysis through the following eigenvalue problem, see for example Cook (2002,
chapter 18): (

Kb − λKg

) · a = 0 (5.1)

where Kb is the global bending stiffness matrix, Kg is the global geometric stiffness
matrix, a is the mode shape comprising deformation degrees of freedom, and λ is the
load multiplier (or buckling factor). The mode shapes are normalized such that:

aT ·Kb · a = 1 (5.2)

The geometric stiffness matrix is constructed through an assembly of element
geometric matrices. The stiffness matrix of each element takes the form:

Kge
= −nxKx − nyKy − nxyKxy (5.3)

where ne = (nx, ny, nxy)T is the vector of in-plane stress resultants averaged over
the element based on nodal displacements as described next, and Kx, Ky and Kxy

are constant matrices that depend only on element geometry.
The averaged in-plane stress resultants can be expressed as:

ne = Ae · ee (5.4)

where A is the in-plane stiffness matrix and e is the average strain vector given by:

ee = Be · ue (5.5)
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where u is the vector of in-plane displacements, ue is the vector of the degrees of
freedom associated with nodes connected to the eth element, and B is the average
element strain displacement matrix, see Appendix B.1. The in-plane displacements
can be found from the solution of the in-plane equilibrium equations:

Km · u = f (5.6)

where Km is the membrane stiffness matrix and f is the vector of in-plane loads.

5.2 Conservative Approximation Formulation

A separable approximation for the buckling load multiplier of a plate is derived in
the following section. A similar approximation is presented for structural compliance,
which allows stiffness-optimal laminate designs to be found. A linear combination of
the two aforementioned approximations is subsequently defined such that stiffness-
optimal and buckling-optimal variable stiffness laminate designs can be compared.

5.2.1 Approximating Buckling

The buckling load factor is a function of both in-plane stiffness and bending stiffness,
i.e. λ(A,D). In past research, a generalized reciprocal approximation, in which the
response is approximated based on the inverse of the stiffness tensors, is used suc-
cessfully for variable stiffness design (Abdalla et al., 2007; Setoodeh et al., 2006b). A
similar approximation is treated by Setoodeh et al. (2009) in the context of buckling
load minimization using fiber angles as design variables. Applying this approach to
optimize variable stiffness panels for buckling has been difficult, since the approxima-
tion is found to be non-homogeneous and non-convex.

A convex approximation for the buckling load factor was formulated for the pre-
sented research with insight from the homogeneity properties of the buckling factor as
a function of the in-plane and bending stiffness tensors. The generic convex, conser-
vative approximation expression, equation (3.9), requires the nature of the response
to be understood such that the parts contributing to the linear and reciprocal ap-
proximation terms can be identified.

When considering plates, the effect of in-plane and out-of-plane stiffness on buck-
ling load can be treated as two individual parts. This is best clarified by inspecting
the sensitivity of the a single eigenvalue with respect to an arbitrary design variable.
The variable b is assumed to affect only the local stiffness properties of a single ele-
ment, e. The expression of the sensitivity is obtained by differentiating equation (5.1)
and can be written as:

∂λ

∂b
= λaT ·

(
∂Kb

∂b
− λ∂Kg

∂b

)
· a (5.7)

an equation that is composed of two terms. The first term is dependent on the
derivative of bending stiffness and is local, which implies information from a single
element is sufficient to evaluate its influence on the critical buckling factor. The second
term, which is the derivative of the geometric stiffness, is not local. That is, the in-
plane loads of all elements are influenced by changing the stiffness of a single element
and therefore the geometric stiffness matrices of all elements will change. The second
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term essentially represents the effect of load redistribution within the plate. Note
also that equation (5.7) assumes that the eigenvalue is unimodal. Difficulties may
arise when evaluating derivatives if multiple eigenvalues are present, as is discussed
in Seyranian et al. (1994).

Further insight into buckling factor dependency on in-plane and bending stiffness
can be gained by inspecting equations (5.1) to (5.6). The buckling factor is a homo-
geneous function of order zero with respect to in-plane stiffness, as can be verified by
noting the effect of scaling stiffness terms in equation (5.6) by a constant factor. If
the applied load remains unchanged the resulting displacements (and strains) will be
multiplied by the inverse of that factor and the in-plane stresses, equation (5.4), will
remain unchanged. The physical meaning is that the buckling load factor depends on
load redistribution which occurs due to a relative change in the in-plane stiffnesses
over the domain. Additionally, the buckling load factor is homogeneous of order one
with respect to the bending stiffness.

Instead of approximating the buckling load factor directly, we chose to express the
approximation in terms of the inverse buckling factor rb = 1/λ, which is a measure
of structural compliance. The same homogeneity properties can be shown to hold for
the inverse buckling factor, which is therefore homogenous of order zero with respect
to the in-plane stiffness and of order one with respect to inverse bending stiffness.
A homogenous approximation is obtained by expanding the inverse buckling factor
linearly in terms of in-plane stiffnesses and the inverse bending stiffnesses, resulting
in the following expression:

rb ≈ rb0 +
N∑
i=1

(
∂rb
∂Ai

∣∣∣∣
0

: (Ai −A0i) +
∂rb

∂D−1
i

∣∣∣∣
0

:
(
D−1
i −D−1

0i

))
(5.8)

where the 0 represents the design point about which the inverse buckling factor is
expanded and i = 1 . . . N are the nodes, elements or design regions for which the
design variables are defined. The : operator represents matrix inner product, which
is simply the generalization of the dot-product to the matrix space.

Euler’s theorem for homogeneous functions implies that, at any approximation
point, the sum over all points for in-plane stiffness is always zero, i.e.:

N∑
i=1

(
∂rb
∂Ai

: Ai

)
= 0 (5.9)

while the corresponding sum of bending terms gives the inverse buckling factor:

N∑
i=1

(
∂rb

∂D−1
i

: D−1
i

)
= rb (5.10)

Therefore, the final form of the approximation reduces to:

rb ≈
N∑
i=1

(
Ψm
i : Ai + Φb

i : D−1
i

)
(5.11)

where Ψm and Φb are the sensitivity tensors with respect to in-plane stiffness and
the inverse bending stiffness, respectively, as defined in Appendix C.2. The inverse
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buckling factor approximation has therefore been cast into the generic form presented
in section 3.2. Note that the approximation is characterized by linear terms that
are dependent only on laminate in-plane stiffness, while the reciprocal terms are
dependent only on laminate bending stiffness. Note also that the in-plane sensitivity
tensors, Ψm, satisfy equation (5.9):

N∑
i=1

Ψm
i : Ai = 0 (5.12)

Since the in-plane stiffness tensor is always positive definite, equation (5.12) im-
plies that the sensitivity tensors Ψm are not necessarily definite. This lack of definite-
ness is not problematic since the Ψm appear only in linear terms, however, as shown
in Appendix C.2, the sensitivity tensors Φb are always positive definite and therefore
the approximation as a whole is guaranteed to be convex. A detailed derivation of
the sensitivity matrices is provided in Appendix C.2.

In work previously published by the author and Setoodeh et al. (2009) the vari-
able stiffness buckling optimization problem is parametrized in terms of fiber angles,
resulting in a non-convex design problem. As was suggested earlier, introducing lam-
ination parameters as design variables results in a convex design space, however, two
important observations have been made with respect to formulating an approximation
scheme. In the aforementioned work the buckling factor is approximated directly using
a reciprocal approximation. Firstly, the resulting approximation is non-homogenous.
Secondly, the convexity of the terms dependent on in-plane stiffness cannot be guaran-
teed if the reciprocal is used as the sensitivities will not necessarily be positive definite.
The approximation scheme presented here reproduces the homogeneity properties of
the buckling factor and is convex. Thus, the proposed approximation is a suitable
starting point for a successive approximation optimization methodology. Note also,
that even though the presented approximation is guaranteed to be convex, the un-
derlying design problem is not necessarily convex.

5.2.2 Approximating Compliance

When considering straight fiber composite designs, improving buckling performance
often results in a deterioration of the overall in-plane stiffness. Olmedo and Gürdal
(1993) also demonstrate that a range of critical buckling loads can be achieved for
a fixed value of average in-plane stiffness and vice versa. It is therefore interesting
to study the trade-off between in-plane stiffness design optimization and buckling
performance optimization of variable stiffness laminates. The structural stiffness can
be maximized by minimizing the compliance (Hammer et al., 1997; Setoodeh et al.,
2006a). Using a similar approach as for buckling, an approximation for compliance,
rc, can be formulated as:

rc ≈
N∑
i=1

Φm
i : A−1

i (5.13)

where, in this case Φm, is the sensitivity of the in-plane stiffness with respect to the
change in compliance of the point i. A derivation of the sensitivity matrix is provided
in Appendix C.1.
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5.3 Optimization formulation

Approximations for both the inverse buckling factor and compliance were presented in
the previous section. Both approximations are cast such that they are readily solved
using the developed optimization framework, presented in chapter 2. It was also
interesting to explore solutions for laminate stiffness distributions that consider both
in-plane stiffness and buckling. Two possibilities exist to explore the Pareto front
covering these two designs. One option is to optimize for buckling while imposing
a minimum bound on compliance, or vice versa. The second option is to create a
combined objective function which includes the contribution of both responses. The
latter, a combined buckling-stiffness optimization problem, was formulated as:

min
V

(
α · rb

r̂b
+ (1− α) · rc

r̂c

)
(5.14)

where V is the vector of all design variables, r̂b and r̂c are arbitrary reference values
used to normalize the critical buckling load, rb, and the compliance, rc. The relative
importance of either the buckling load or stiffness is controlled via a predefined coef-
ficient α which has a value between zero and one, and allows the trade-off between
stiffness and buckling performance to be studied.

The approximations in equations (5.11) and (5.13) are separable, and thus can
be solved locally at each node. The local optimization problem can therefore be
formulated to fit the formulation presented in chapter 2 as:

min
Vi

(
α

r̂b
· (Ψm

i : Ai + Φb
i : D−1

i

)
+

(1− α)
r̂c

·Φm
i : A−1

i

)
(5.15)

where Vi is the vector of design variables associated with the ith design region.
Three issues are worth mentioning at this point; one, it is worth noting that the

Pareto front representing the trade-off between buckling and stiffness is not necessarily
convex. Thus, in practice, points on the Pareto front are obtained by iteratively
updating the design according to (5.15). While the iteration converges to a local
minimum of the approximation, it is guaranteed only to be a stationary point of the
objective function (5.14). This means that the iteration scheme can converge even
for the non-convex portions of the Pareto front. Two, for α approaching unity, the
buckling approximation (5.11) is not strictly convex which may lead to convergence
problems. Convexity can be ensured using the methods explained in section 3.3.
In the examples considered here, convexity is guaranteed using a proximal term in
lamination parameter space. Three, buckling mode interaction can cause convergence
problems if only a single buckling mode is taken into account during the optimization.
This is remedied using the multi-modal design approach outlined in section 3.4.2.

5.4 Numerical Results

The purpose of this section is to illustrate the benefit of using variable stiffness de-
sign with lamination parameters and to study the mechanisms resulting in improved
buckling loads. In the following section, two example problems, previously studied by
Olmedo and Gürdal (1993), are investigated. In section 5.4.2 the trade-off between
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buckling and in-plane stiffness is studied and finally the post-buckling performance
of several of the obtained laminates is evaluated.

5.4.1 Uniaxial Compression

Two example problems presented by Olmedo and Gürdal (1993) are outlined in Fig-
ure 5.1. Both consist of a simply supported rectangular panel subject to an axial
compressive load per unit length, Nx. For case I, Figure 5.1(a), the edges of the
panel straight and the panel is prevented from expanding in the lateral direction.
The constraint on lateral expansion is removed for case II, Figure 5.1(b). A square
configuration (a/b = 1) with side lengths of 15 inch (381 mm) and a total lami-
nate thickness 0.06 inch (1.524 mm) was investigated. The material properties for
unidirectional carbon-epoxy T300/5208 are listed in Appendix A.

N x N x b 

a 

x 

y 

(a) Case I: Simply supported, enforced
straight edges, no lateral expansion

x 

y 

N x N x 

a 

b 

(b) Case II: Simply supported, enforced
straight edges

Figure 5.1: Geometry, loading and boundary conditions for the considered panels

Mesh Convergence

The panel was discretized into a selected number of equally sized elements and an-
alyzed using a finite element routine programmed in MatlabTM. A rectangular flat
shell element, consisting of an eight degree of freedom bi-linear membrane element and
a twelve degree of freedom Kirchhoff flexural element was implemented as described
in Appendix B. To select an appropriate mesh density and verify the finite element
routine, a mesh convergence study was conducted. The number of elements versus
buckling load for the optimal constant stiffness and optimal variable stiffness designs
by Olmedo and Gürdal (1993) are plotted in figure 5.2 for both example problems.
The buckling load was normalized with respect to the results reported in Olmedo and
Gürdal (1993). Two clear observations can be made, one, variable stiffness designs
require a significantly larger number of elements to converge. This is attributed to
the additional elements required to describe the stiffness distribution over the panel
accurately. Two, in all cases the buckling load converges to a smaller value than that
found by the aforementioned authors. Olmedo and Gürdal (1993) apply the Ritz
method to solve the buckling problem which, for a finite set of coefficients, results in
a slight overestimate of the actual buckling load.
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Figure 5.2: Mesh convergence of the critical buckling load, normalized with respect to the
reference results presented in Olmedo and Gürdal (1993)

Comparison of Optimal Solutions

Design variables are defined at nodes, therefore, mesh density influences the accu-
racy of the solution and its resolution. For this reason the example problems were
solved using two different mesh densities, 100 and 400 elements, respectively, to assess
the influence of the increased number of elements on the represented optimal solu-
tion. With four design variables associated with each node, this resulted in a total of
484 and 1764 design variables, respectively, for the two aforementioned mesh densi-
ties. Due to the relatively high computational cost required to solve the optimization
problems, higher mesh densities have currently not been considered, however, solution
convergence was demonstrated and is presented towards the end of this section.

Buckling results were benchmarked against a quasi-isotropic panel, the optimum
constant stiffness laminate design, [±θn]s, and the optimum linear variation results
found by Olmedo and Gürdal (1993). Two different ’levels’ of stiffness variation were
implemented to evaluate the influence of variable stiffness design on the buckling
performance of a panel. The first level only allowed stiffness to vary along one axis
of the panel, in other words, the stiffness along the x-axis, the loading direction,
remained constant while it varied along the y-axis or vice versa. The optimization
was carried out using the formulation developed in section 5.2. The only required
modification was that the sensitivities along the constant stiffness axis were summed,
hence eliminating laminate stiffness variation along that axis. The second level allowed
laminate stiffness to vary freely over the entire domain, and hence represented the
’absolute’ variable stiffness optimum. In all cases the laminates were considered to be
locally balanced and symmetric, hence only four lamination parameters were required
to fully characterize the local laminate stiffness properties.

Normalized buckling loads and the associated improvements with respect to the
quasi-isotropic design for the first and second cases are presented in Tables 5.1 and
5.2, respectively. Two general trends are clearly noticeable; one, the largest design
improvements are achieved when stiffness is allowed to vary normal to the applied
load, i.e. VS(y) and VS(x,y). This indicates that in-plane load redistribution has
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an important contribution to make to the improved buckling load, thus affirming the
discussion in Olmedo and Gürdal (1993). Two, case II is more sensitive to mesh
refinement, as the difference between the coarse and fine mesh are larger than for
case I. Figure 5.2 also indicates that a finer mesh, of more than 1600 elements, is
necessary to capture all the details for case II.

For case I, Table 5.1, performance improvements of up to 148% with respect to the
quasi-isotropic panel and over 100% with respect to the optimum constant stiffness
design were obtained. Increasing the number of elements yielded improved results
due to the increased number of design variables and improved representation of the
stiffness variations. Varying stiffness only along the y-axis yielded results within a
few percent of full variable stiffness designs.

Table 5.1: Optimal dimensionless buckling modes for several laminate configurations for
case I. Improvement percentages are taken with respect to the equivalent quasi-isotropic de-
sign. (Ñcr = Ncra

2/E1h
3, QI: Quasi-isotropic [±45, 0, 90]s, CS: Constant Stiffness [±32]s,

LV: Linear Variation < 0, 50 >s, VS: Variable Stiffness)

Ñcr - 100 Elements Ñcr - 400 Elements
Mode 1 Mode 2 Mode 3 % Mode 1 Mode 2 Mode 3 %

QI 1.0597 1.9865 3.6694 — 1.0681 2.0106 3.7151 —
CS 1.1885 2.6374 2.7023 12 1.1965 2.6669 2.7362 12
LV(x) 1.3568 2.4831 3.2501 28 1.4159 2.6835 3.3966 33
VS(x) 1.4890 2.1815 3.9966 41 1.5218 2.2016 4.0966 42
VS(y) 2.3802 2.3803 3.2894 125 2.5634 2.5642 3.4575 140
VS(x,y) 2.4692 2.4705 3.8688 133 2.6492 2.6493 4.0831 148

Results for case II, presented in Table 5.2, show that improvements of nearly 190%
are possible. The difference between VS(y) and VS(x,y) was more pronounced for case
II as lateral load redistribution played a more important role, as will be seen later.
Note also that for most variable stiffness designs the first and second buckling mode
coincide, reinforcing the necessity to include multiple modes in the design routine.

Table 5.2: Optimal dimensionless buckling modes for several laminate configurations for
case II. Improvement percentages are taken with respect to the equivalent quasi-isotropic
design. (Ñcr = Ncra

2/E1h
3, QI: Quasi-isotropic [±45, 0, 90]s, CS: Constant Stiffness [±45]s,

LV: Linear Variation < 90, 15 >s, VS: Variable Stiffness)

Ñcr - 100 Elements Ñcr - 400 Elements
Mode 1 Mode 2 Mode 3 % Mode 1 Mode 2 Mode 3 %

QI 1.3734 2.1334 3.7899 — 1.3842 2.1594 3.8373 —
CS 1.7316 2.2900 3.5099 26 1.7424 2.3161 3.5586 26
LV(y) 2.4250 2.4639 3.3500 77 2.9282 2.9499 4.0092 112
VS(x) 2.4278 2.4284 4.1722 77 2.5271 2.5271 4.2514 83
VS(y) 3.3121 3.6135 5.0002 141 3.5355 3.8054 5.1586 155
VS(x,y) 3.4773 3.4775 4.7799 153 3.9989 4.0473 5.2261 189
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To gain more insight into the effects of stiffness variation on in-plane load redistri-
bution, the pre-buckling stress resultants along several panel cross-sections are plotted
in Figures 5.3 and 5.4 for cases I and II, respectively. The stresses are normalized
by dividing by the magnitude of the pre-buckling stress value for a constant stiffness
panel. Several different sections along the panel are considered; A-A’ and B-B’ are
vertical sections normal to the loading direction, along the edge and center of the
panel, whereas C-C’ and D-D’ are horizontal sections along the top and center of the
panel. The stress resultant along the x-axis, n̂x, is plotted for the vertical sections
and the stress resultant along the y-axis, n̂y, is plotted for the horizontal sections.
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Figure 5.3: Normalized in-plane stress resultants, n̂x and n̂y, plotted along several sections
of the plate for case I

Similar trends for n̂x are visible for both cases along the vertical sections. Stiffness
variation along the x-axis, VS(x), results in constant stress along the panel width
as the stiffness is uniform. The stress distributions are similar for both the case of
variable stiffness along the y-axis, VS(y), and full variable stiffness, VS(x,y), for which
highest gains in the buckling loads were achieved. The majority of the compressive
stress is concentrated at the edge of the panel, whereas the center of the panel is
barely loaded. This clearly demonstrates that the mechanism of load redistribution
is primarily responsible for improved buckling load.

The distribution of n̂y along the horizontal sections differs slightly between the
two cases. The stress distribution for VS(y) is constant and has a small negative
value for case I due to restricted expansion. When stiffness is allowed to vary along
the x-axis, VS(x), a similar trend is visible for both cases; the center of the panel is
subject to tensile stresses whereas the edges of the panel are compressed. The effect
is more pronounced in case II as a straight edge condition is enforced while allowing
lateral expansion. Even though lateral load redistribution is a secondary effect, it still
has a large influence on the buckling load.
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Figure 5.4: Normalized in-plane stress resultants, n̂x and n̂y, plotted along several sections
of the plate for case II

To reinforce the argument that buckling load improvements are primarily due
to load redistribution the developed optimization routine can be run such that only
out-of-plane lamination parameters are considered as design variables. The in-plane
lamination parameters are fixed to zero, representing quasi-isotropic in-plane stiffness.
For case II the optimum normalized buckling load is found to be only 20% higher than
that of a quasi-isotropic laminate, which is equivalent to the buckling performance of
the equivalent optimal constant stiffness design. However, the full variable stiffness
optimum shows an improvement of almost 190%, thus the largest contribution is
deemed to be associated with in-plane stiffness tailoring.

It is also interesting to discuss the lamination parameter distribution found for
the maximum buckling load, as is shown in Figure 5.5. The Miki diagram (Gürdal
et al., 1999) , shown in Figure 5.6, should be kept in mind to interpret the results
in Figure 5.5. The in-plane stiffness contours, Ex, have been included in the Miki
diagram for convenience. For both cases, the regions at the top and bottom edges of
the panel for V1A and V3A ≈ 1 refer to values found in the upper-right corner of the
Miki diagram, indicating that the panel is axially stiff in these regions. For case I,
the center of the panel corresponds to values of in the upper-left corner of the Miki
diagram, which are axially compliant, but stiff in the transverse direction, leading
to the slight transverse tensile stresses at the center of the panel as seen in Figure
5.3. For case II, the regions at the center of the panel are values found towards the
left boundary of the Miki diagram referring to regions with lower axial stiffness. The
values for the out-of-plane lamination parameters are more difficult to associate with
physical laminate properties, but are included for completeness.
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Figure 5.5: Optimal lamination parameter distribution for both load cases, for 400 elements
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Solution Convergence

Computational expense limited the number of elements which could be conveniently
considered while conducting the presented design studies, however, it is important to
demonstrate that the solution procedure converges as the mesh density, and therefore
number of design variables, increases. The percentage difference between the optimal
solution and the optimal solution found for a 100 element mesh, which corresponds
to 484 design variables, for case II is presented in Figure 5.7. As can be seen in the
figure there is only a 3% difference between the optimal buckling load found when
using more than 26000 design variables compared to the 1764 design variables used
for the 400 element mesh.
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Figure 5.7: Solution convergence of optimal buckling load for case II, shown as percent
difference w.r.t the solution found for the 100 element mesh

5.4.2 Stiffness versus Buckling Optimal Designs

An equation to study the trade-off between stiffness and buckling was presented in
section 5.3, allowing the Pareto front to be computed by varying α over (0, 1). The
Pareto front for both constant stiffness and variable stiffness laminates are plotted
in Figure 5.8. It is interesting to note that the Pareto front for variables stiffness
laminates is not convex, hence uniqueness of the optimal solution is not guaranteed.

When considering designs with high axial stiffness, α ∈ (0, 0.3), the performance
difference between variable and constant stiffness laminates is not large. These designs
are dominated by fibers placed parallel to the applied load, leaving little room for
stiffness tailoring. As was found in Table 5.2, the optimum buckling load (α = 1) of a
variable stiffness panel is twice that of the constant stiffness design and in excess of 2.5
times that of a quasi-isotropic laminate. Additionally, a variable stiffness panel with
the same in-plane stiffness as a quasi-isotropic panel, i.e. rc/r̂c = 1, can be designed
to have a buckling load which is almost 150% higher than the quasi-isotropic panel,
whereas for a constant stiffness panel the improvement is only around 22%.



5.4 NUMERICAL RESULTS 103

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

Variable Stiffness

Constant Stiffness

Quasi-Isotropic

Normalized Buckling Load (           )

N
o
rm

al
iz

ed
 I

n
-P

la
n
e 

S
ti

ff
n
es

s 
( 

  
  
  
  
  
 )

Figure 5.8: Pareto front for stiffness (α = 0) versus buckling (α = 1) optimal designs
for both variable and constant stiffness laminates. Values are generated using a 100 element
finite element model and are normalized with respect to the stiffness and buckling load of a
quasi-isotropic laminate

5.4.3 Post-Buckling Behavior

In the previous subsection, the presented numerical results demonstrated that lami-
nate stiffness tailoring can yield significant improvements in linear buckling loads. In
aerospace applications, panel type structures are often permitted to enter the post-
buckling regime during service. It is therefore interesting to study the post-buckling
behavior of previously obtained designs to determine if linear buckling improvement
are obtained at the expense of post-buckling performance. The last statement is
largely motivated by the fact that the in-plane stress resultant distributions of the
variable stiffness laminates resembles the stress resultant distribution of a buckled
laminate.

Rahman et al. (2011) present a finite-element based perturbation method to study
post-buckling behavior of variable stiffness panels. The primary goal was to develop
an approach to allow for fast prediction of post-buckling behavior near the panel’s
bifurcation point, making it possible to include post-buckling as a response in future
variable stiffness laminate optimization routines. Together with Rahman et al. (2011)
the author also studied the post-buckling and failure behavior of several variable
stiffness panels, the results of which are discussed briefly in this section.

To evaluate post-buckling behavior, the pre-buckling and post-buckling stiffness,
denoted by Kpr and Kpo, respectively, for several designs obtained for case II are
compared in Table 5.3. The buckling loads were normalized with the critical buckling
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load of the quasi-isotropic design. Several designs along the previously obtained
Pareto front are also included, where α = 0.0 is a design with maximum axial stiffness,
while α = 1.0 represents a design with maximum buckling load. The design for
α = 0.5 was chosen as both stiffness and buckling are weighed equally for this design,
while α = 0.85 was selected as it has roughly the same pre-buckling stiffness as
the quasi-isotropic design. Post-buckling stiffness should be computed for all critical
buckling modes when the designs exhibited mode-clustering to determine the critical
post-buckling stiffness. In several of the previously found designs, two closely spaced
buckling modes were found, hence two post-buckling stiffness values were computed
for these designs.

Table 5.3: Buckling loads, pre-buckling and post-buckling stiffness for case II. Results are
all normalized with respect to the quasi-isotropic design (QI: Quasi-isotropic, CS: Constant
Stiffness, VS: Variable Stiffness)

Ncr Kpr Kpo Kpo/Kpr

QI, [±45, 0, 90]s 1.0000 1.0000 0.5025 0.5025
VS(x,y), α = 0.0 0.7391 2.5975 0.8833 0.3401
VS(x,y), α = 0.5 1.6441 1.5102 0.7516 0.4977
VS(x,y), α = 0.85 2.4173 1.0120 0.7180

0.4240
0.7094
0.4190

VS(x,y), α = 1.0 2.5319 0.7344 0.6372
0.4025

0.8677
0.5481

All designs exhibit stable post-bucking behavior, typical of panels. In the post-
buckling regime the stiffness of the quasi-isotropic panel is halved with respect to its
pre-buckling stiffness. The design with α = 0.0 has the highest pre-buckling and post-
buckling stiffness, however, it exhibits the largest decrease in stiffness after buckling,
reducing to 34% of the original stiffness. When α = 0.5 the buckling load is 64%
larger than the quasi-isotropic panel while both the pre-buckling and post-buckling
stiffness are 50% higher than the quasi-isotropic design. For α = 0.85 the pre-buckling
stiffness is roughly the same as the quasi-isotropic panel, however, the buckling load is
140 % higher. In this case, two post-buckling stiffnesses were computed corresponding
to the two critical buckling modes found at the optimum. The lower post-buckling
stiffness will typically be critical if mode-spacing is small, and is approximately 15%
lower than the quasi-isotropic panel for this design. When considering the optimum
variable stiffness laminate design for buckling, α = 1.0, both the pre-buckling and
post-buckling stiffness are lower than the quasi-isotropic design, while the buckling
load is 150% higher.

It is interesting to note that it is therefore possible to design a variable stiff-
ness laminate such that the buckling load, pre-buckling stiffness and post-buckling
stiffness are superior to those of a constant stiffness design. Additionally, if suffi-
cient mode spacing is guaranteed, the optimal variable stiffness designs exhibit better
post-buckling stiffness than the quasi-isotropic design. Thus, there seems to be a rela-
tionship between improving linear-buckling and post-buckling stiffness. Mode spacing
can be achieved by introducing additional scaler multipliers in the bound-formulation
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as mentioned in section 3.4.2, but will result in a lower achievable maximum buckling
load. It should also be kept in mind that loading into the post-buckling regime is
typically permitted in aerospace applications, because the material failure limits are
far from being reached, however, if the buckling load is doubled this may no longer
be the case.

5.5 Concluding Remarks

An efficient design approach based on homogenous convex separable approximations
for buckling of variable stiffness laminates subject to compressive loads was pre-
sented. The design problem was expressed using a separable conservative approx-
imation scheme and the proximal point algorithm was used to ensure convergence of
the in-plane parameters. Lamination parameters were used as design variables allow-
ing stiffness and stress distributions to be determined without a priori knowledge of
the laminate stacking sequence. Two example problems were studied, yielding buck-
ling load improvements of up to 189 % with respect to the baseline quasi-isotropic
laminates. Buckling load improvements of over 100% and 130% with respect to the
optimal constant stiffness design were found for the two considered design problems,
respectively. The stress distribution along several panel sections were presented, con-
firming that load redistribution is the primary mechanism responsible for improved
buckling performance. A trade off between axial stiffness and buckling load was also
presented. It was shown that a variable stiffness laminate with in-plane stiffness prop-
erties equivalent to a quasi-isotropic panel can be designed to withstand more than
twice the compressive load before buckling.

The post-buckling behavior of several of the obtained optimal variable stiffness
laminate designs was also evaluated and all designs were found to exhibit stable
post-buckling behavior. The pre-buckling and post-buckling stiffnesses of each of
the designs were also compared. The post-buckling stiffness of the optimal variable
stiffness design for maximum buckling load was found to be 34% of its pre-buckling
stiffness, while the post-buckling stiffness of a quasi-isotropic panel was found to
decrease by only 50% when entering the post-buckling regime. However, several
variable stiffness designs that were designed for a combination of maximum in-plane
stiffness and maximum buckling were found to have superior pre-buckling and post-
buckling stiffness when compared to the baseline quasi-isotropic design. Additionally,
if mode-spacing were to be enforced during variable stiffness design optimization for
maximum buckling, it is postulated that the initial post-buckling stiffness of the panel
should improve significantly, however, it would come at the expense of a slightly lower
maximum buckling load.



106 DESIGN OF VARIABLE STIFFNESS PLATES FOR BUCKLING 5.5



CHAPTER 6

Thermo-Mechanical Design of Variable Stiffness Plates

“If we all worked on the assumption that what is accepted as true is
really true, there would be little hope of advance.”

Orville Wright

During production, fiber-reinforced laminates are generally subject to elevated
temperatures to ensure that resin curing can occur, after which they are allowed to
cool to room temperature. Curing temperatures depend on the type of resin system
being used and typically vary from 120◦C to 180◦C for thermoset resins to as high as
400◦C for thermoplastic resins (Dave and Loos, 2000, Chapter 7). The longitudinal
coefficient of thermal expansion (CTE) along the fiber direction, α1, is often several
orders of magnitude smaller than that of the transverse CTE, α2. In multi-layered
composites with layers oriented in different directions, this thermal mismatch may
result in residual thermal stresses due to the nonuniform shrinkage of fiber and matrix
materials during laminate cooling after the polymer cross-linking process.

Thermal stresses may significantly impact the buckling performance of laminated
structures and has therefore been the subject of several studies in the past. Whitney
and Ashton (1971) develop laminate plate equations, including the effect of expan-
sional strains to account for hygrothermal effects. These equations are later gener-
alized further by Flaggs and Vinson (1978). Thermal buckling and post-buckling of
symmetrical laminates using a variational approach in conjunction with the Rayleigh-
Ritz formulation is studied by Meyers and Hyer (1991). The authors study two differ-
ent boundary conditions and the effect of altering principle material axis alignment
with respect to plate boundaries. Finite element analysis including transverse shear

This chapter is based on the paper, Thermomechanical Design Optimization of Variable Stiff-

ness Composite Panels for Buckling by S.T. IJsselmuiden, M.M. Abdalla, and Z.Gürdal, which

appeared in the Journal of Thermal Stresses, 33(10), pages 1-16, 2010. Note: symbols may have

been changed to maintain consistency throughout this thesis.
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is used by Sai Ram and Sinha (1992) to investigate the effect of moisture and tem-
perature on static instability of composite plates.

All of the aforementioned reference works focus primarily on modeling thermal
effects on a single laminate. Subsequent parametric studies have been conducted for
a fixed set of laminates to determine the effect of thermal loads, material properties
and boundary conditions on elastic stability, however, in multi-segment and variable
stiffness laminates the effect of in-plane residual stresses on buckling response are
particularly relevant. An optimization strategy based on fiber angles in a multi-patch
laminate to maximize buckling performance including thermal effects is presented by
de Faria and Hansen (1999). Optimal designs are shown to have buckling loads twice
that of designs for which residual stresses are neglected. The importance of including
thermal loads when designing multi-segment composite plates and cylinders for buck-
ling is demonstrated by Foldager et al. (2001). The authors design thermally tailored
structures in a two-stage optimization process, in which the laminate is initially de-
signed neglecting thermal effects and subsequently optimized including the residual
stresses. Autio (2001) demonstrates how lamination parameters can be incorporated
to design thermo-mechanically loaded plates with holes for buckling, fundamental
frequency and in-plane stiffness.

Compressive load carrying capacity can be increased significantly when stiffness
is allowed to vary spatially, as was shown in chapter 5, however, the importance
of including thermal effects when designing variable stiffness structures should not
be underestimated. Olmedo and Gürdal (1993) demonstrate that the buckling load
can be increased by over 80% using linear fiber angle variation. Later Tatting and
Gürdal (2002), Wu and Gürdal (2001) and Wu et al. (2002) use linear variation to
design, manufacture and test variable stiffness panels. The test results yield buckling
loads well in excess of those predicted by simple models and theory. Upon further
investigation some of the discrepancy in predicted and experimental load carrying
capacity is shown to be attributable to residual stresses present due to curing.

A simplified thermo-mechanical framework is presented by Abdalla et al. (2009b)
to predict residual stress state of variable stiffness laminates. In this chapter a thermo-
mechanical optimization formulation based on the aforementioned analysis framework
is presented. The objective was to investigate the influence of the variation of thermal
properties over the structural domain on the optimal designs and to determine how
the thermal properties could be tailored to improve the buckling performance even
further. The used thermo-mechanical buckling analysis formulation is presented in
the following section. A conservative approximation of the buckling load, to fit the
framework developed in chapter 2, was derived and is presented in section 6.2, followed
by numerical results for an example problem and concluding remarks.

6.1 Thermo-Mechanical Buckling Analysis

In order to perform design optimization, a buckling analysis framework including
thermal effects must be developed. This was achieved by extending the mechanical
buckling analysis presented in section 5.1. The mechanical and thermal effects were
assumed to be separable and thermal load variation was assumed to be constant
along the panel thickness. The buckling load was determined using a finite element
discretization of the linear buckling analysis through the following eigenvalue problem:
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(
Kb −∆TKTh

g − λKM
g

) · a = 0 (6.1)

where Kb is the global bending stiffness matrix, KTh
g and KM

g are the global geometric
stiffness matrices due to an applied unit thermal and mechanical load respectively,
a is the mode shape comprising deformation degrees of freedom, and λ is the load
multiplier or buckling factor.

Assuming that the cross-linking of the polymeric matrix takes place at cure tem-
perature, Tc, there will be spatially distributed residual stresses in the laminate at
room temperature. In addition, application of a thermal load at operating tempera-
ture, To, will induce thermal stresses that will reduce the effect of the cure induced
stresses. Hence the total temperature change, ∆T , in equation (6.1) can be expressed
as the difference between operating temperature and curing temperature:

∆T = To − Tc (6.2)

The mode shapes are normalized such that:

aT · (Kb −∆TKTh
g

) · a = 1 (6.3)

The geometric stiffness matrix is constructed through an assembly of element geo-
metric matrices. The geometric stiffness matrix of each element takes the form:

Kge = −nxKx − nyKy − nxyKxy (6.4)

where ne = (nx, ny, nxy)T is the vector of in-plane stress resultants averaged over
the element due to either thermal or mechanical loads, and Kx, Ky and Kxy are
constant matrices that depend only on element geometry.

The averaged in-plane stress resultants are no longer only a function of in-plane
strains as in equation (5.4) in chapter 5, but also a function of the thermal load vector,
NTh, and are expressed as:

ne = Ae · ee −NTh
e (6.5)

where A is the in-plane stiffness matrix and e is the average strain vector of element
e as given in equation (5.5) and is a function of the in-plane nodal displacements,
which can be found from the solution of the in-plane equilibrium equations:

Km · u = f + fTh (6.6)

where Km is the membrane stiffness matrix, f is the vector of in-plane loads, fTh the
total thermal load vector and u is the vector of in-plane displacements.

6.2 Conservative Approximation Formulation

A separable approximation of the thermo-mechanical buckling load, similar to that
of the buckling load presented in chapter 5, is presented below. It was shown that,
to ensure convexity of the approximation, the inverse buckling load factor, rb = 1/λ,
must be expanded linearly in terms of laminate in-plane stiffness and reciprocally
with respect to laminate bending stiffness. This is because the terms in the buckling
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eigenvalue problem related to the geometric stiffness matrix, which depend on in-plane
stiffness terms in the case of a plate, and cannot be guaranteed to be convex if they are
expanded reciprocally. The reciprocal terms, related to the material stiffness matrix,
are convex and expanding the geometric terms linearly guarantees the approximation
as a whole to be convex.

Applying the same methodology to the buckling expression developed in section
6.1, the inverse buckling load factor can be expressed as:

rThb ≈
N∑
i=1

(
Ψm
i : Ai + Φb

i : D−1
i + Ωi ·NTh

i

)
(6.7)

where Ψm and Φb are the sensitivity tensors with respect to the in-plane laminate
stiffness, Ai, and the inverse laminate bending stiffness, D−1

i , respectively, and Ωi

is the sensitivity with respect to the thermal stress resultants, NTh, which are a
function of the in-plane lamination parameters as shown in subsection 2.3.3. The
approximation above differs with respect to the approximation developed for plate
buckling, equation (5.11), in two respects; one, the in-plane sensitivity matrix, Ψm,
contains an additional contribution from the geometric stiffness associated with the
thermal stresses. Two, an additional linear term, Ω ·NTh, is required to account for
the total thermal load vector present in equation (6.6). A detailed derivation of the
sensitivities is included in Appendix C.3.

Equation (6.7) is also separable and hence the global optimization problem can
again be posed as N individual minimization problems:

min
Vi

(
Ψm
i : Ai + Φb

i : D−1
i + Ωi ·NTh

i

)
(6.8)

where Vi is a vector of lamination parameters associated with the ith design region
subject to the the feasible region constraints for the lamination parameters, and where
i = 1 . . . N , are the number of regions in which the structure is discretized. For the
most general case, different stiffness properties are assigned to each node.

The multi-modal nature of the buckling problem necessitates the use of a dual
method with bound formulation, as presented in section 3.4.2. Additionally, the
proximal point algorithm, following Rockafellar (1976), was implemented to ensure
convergence while retaining a separable approximation, as presented in section 3.3.1.

6.3 Numerical Results

In order to demonstrate the influence of pre-buckling stresses due to thermal loads
on the buckling performance and on the stiffness distribution of an optimum variable
stiffness laminate, a previously treated example problem was revisited, see section
5.4.1. The design objective was to obtain the maximum buckling load for a simply
supported panel under uniaxial compression, shown in Figure 6.1. Straight edge
conditions in the plane of the plate were imposed both when applying thermal and
mechanical loads. No restraining forces were applied when computing the thermal
stresses, i.e. the edges were free to expand or contract while maintaining straight
edge condition. A square configuration (a/b = 1) was investigated with side lengths
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Figure 6.1: Geometry and loading of a simply supported plate, with enforced straight edges

of 15 inch (381 mm) and a 0.06 inch (1.524 mm) thick laminate based on a carbon-
epoxy T300/5208, as listed in Appendix A.

A finite element model was created using four noded rectangular plate elements
with bilinear in-plane displacements and Kirchhoff bending elements. The plate was
discretized using a mesh of 20 by 20 equally spaced elements for which the individual
element stiffness properties were computed from the four nodal values of the in-plane
and out-of-plane lamination parameters, resulting in a total of 1764 design variables.

In order to investigate the influence of a temperature difference on the optimum
stiffness distribution and buckling performance, the approximation developed in sec-
tion 6.2 was incorporated into the optimization framework outlined in chapter 2. This
was subsequently used to compute the optimal stiffness distributions for three cases
of a plate with the following design temperature differences, ∆Td:

• Case I: ∆Td = Td − Tc = 0◦C

• Case II: ∆Td = Td − Tc = −100◦C

• Case III: ∆Td = Td − Tc = −200◦C

where ∆Td represents a chosen design value of ∆T in equation (6.2) and Td is the
nominal design operating temperature. Case I can be interpreted as an optimal design
for which stresses due to thermal loads are neglected during optimization or as an
optimal design for a laminate with identical operating and curing temperatures. Cases
II and III can be thought of as optimal designs that account for thermal stresses due to
a temperature difference of 100◦C and 200◦C, respectively, or as the optimal designs
for laminates with nominal operating temperatures that are 100◦C and 200◦C below
the curing temperature, respectively. The obtained results were also compared to a
baseline quasi-isotropic plate, the optimum constant stiffness plate, [±45n]s, and the
optimum solution found using linear variation given in Olmedo and Gürdal (1993),
all of which did not account for thermal stresses during design optimization.

In the following subsection the buckling performance of the three previously ob-
tained optimal designs are compared for a range of operating temperatures, which
differ from their nominal design operating temperature. Subsequently the mechanical
and thermal stress distributions of the optimal laminate designs are studied followed
by a discussion of the several buckling mode shapes.
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6.3.1 Buckling Loads

The developed design optimization framework was used to determine the optimal stiff-
ness distributions for each of the three presented design cases. To assess the influence
of including thermal stresses in the design optimization process on panel buckling
performance, the mechanical buckling load, λ, of the obtained optimal designs were
compared for a range of applied thermal loads, ∆Ts. Assuming that the curing tem-
perature, Tc, for all laminates is identical, it is possible to compare the buckling
performance of the optimal designs relative to their nominal design temperature, i.e.
comparing λ(∆Td + ∆Ts) for each design. Similarly, it interesting to compare the
buckling performance of the different designs relative to a thermal stress-free state,
i.e. comparing λ(∆Ts) for each design.

For explanation purposes it is useful to present the results using both aforemen-
tioned temperature scales. The first, λ(∆Td + ∆Ts), represents the buckling load of
the laminate if it were to be perturbed by a temperature difference, ∆Ts, relative
to its design operating temperature. The corresponding results are presented in Fig-
ure 6.2(a), and highlight the improvement in buckling load due to both an improved
laminate stiffness distribution and the residual thermal stresses present due to the
difference between curing and operating temperature. The second temperature scale,
∆Ts, allows the influence of the design temperature difference, ∆Td, on the optimal
stiffness distribution, V∗, to be isolated as the thermal stresses present due to the de-
sign temperature difference, which are different for the three cases, are neglected. The
corresponding results are presented in Figure 6.2(b), and highlight the improvement
in buckling loads solely due to a change in laminate stiffness distribution. Essen-
tially the two figures differ only by a temperature shift corresponding to the design
temperature difference ∆Td of a given case.

Several interesting trends are immediately clear from Figure 6.2(a). One, lami-
nates for which the value of the design temperature difference, ∆Td, was more neg-
ative have higher maximum buckling loads. Two, the temperature range over which
a design exhibits good buckling behavior increases when the design temperature dif-
ference value decreases. For example, the range of temperatures for which case III
has a normalized buckling load above 4 is ∆Td + ∆Ts ∈ [−380, 180]◦C. This is con-
siderably larger than the equivalent temperature ranges for case II and case I, which
are [−270, 100]◦C and [−180, 0]◦C respectively. Three, the maximum buckling load
for a given design occurs at a temperature below the predefined design temperature,
hence residual stresses introduced by the temperature difference still have a beneficial
effect for a certain range below the design temperature. This effect is also present in
the experimental results presented by Tatting and Gürdal (2002) for the design using
linear fiber angle variation (LV), where buckling loads are found to be higher than
those determined numerically, as is later confirmed by Abdalla et al. (2009b). This
can also be deduced from Figure 6.2(a), during design the presence of thermal stresses
were neglected, hence, the design temperature for linear variation was ∆Td = 0◦C or
Td = Tc, resulting in a normalized buckling load of 2.93 being predicted. Testing was
subsequently conducted at room temperature, which is approximately 100◦C below
curing temperature, corresponding to ∆Ts = −100◦C, resulting in a buckling load of
4.39. It is also interesting to note that the overall buckling performance of the linear
variation design and case I, both of which neglected thermal stresses during design,
are similar.
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Figure 6.2: Comparison of normalized buckling load versus temperature difference for
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angle variation
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To quantify the improvement in buckling performance solely due to a change in
laminate stiffness distribution, it is useful to consider Figure 6.2(b), where designs
are compared relative to a thermal stress-free configuration. At ∆Ts = 0, case I has
the highest buckling load, since this corresponds to its design temperature, ∆Ts =
∆Td. The same is true for case II at ∆Ts = −100 and for case III at ∆Ts = −200.
The corresponding values of the buckling load are listed in Table 6.1. Results for
cases I, II and III were compared to a quasi-isotropic laminate, the constant stiffness
optimum, [±45]s, and the best solution found by Olmedo and Gürdal (1993) using
linear variation, < 90, 15 >1. The constant stiffness designs remained unaffected by
the temperature change for this problem, as the edges remained free to expand and
contract. At ∆Ts = 0, case I had a buckling load 20% higher than case II and 35%
higher than case III, however, at ∆Ts = −200, case III had a buckling load three
times higher than case I and in excess of six and a half times higher than that of the
quasi-isotropic plate.

Table 6.1: Comparison of normalized buckling load versus temperature difference relative to
a thermal stress-free state for several design cases and correspond to Figure 6.2(b), buckling
loads were normalized such that λ̃cr = λcra

2/E1h
3

Design Temperature Change† ∆Ts
0◦C −100◦C −200◦C

Quasi-Isotropic, V = 0 1.3842 1.3842 1.3842
[±45n]s 1.7424 1.7424 1.7424
Linear Variation, < 90, 15 > 2.9282 4.3855 1.4518
Case I, ∆Td = 0◦C 4.0157 6.0802 2.9758
Case II, ∆Td = −100◦C 3.2468 7.2615 8.0472
Case III, ∆Td = −200◦C 2.5481 6.2637 9.0829
† Relative to a thermal stress-free configuration

6.3.2 In-Plane Stress Distribution

To understand the mechanism(s) behind improved buckling loads it is useful to study
the stress distributions present in the different designs due to mechanical or thermal
loads. The axial stress resultant, nx, due to a unit negative temperature change and a
unit compressive load, respectively, is plotted in Figure 6.3(a) and 6.3(b) along section
A-A’ in Figure 6.1. Section A-A’ divides the plate along its center perpendicular to
the load direction. Inspecting Figure 6.3(a), it can be seen that a negative thermal
load results in compressive stresses at the edge and tensile stresses at the center of
the plate even though no mechanical loads are applied. Additionally Figure 6.3(b)
shows that, for all the designs, the edges are responsible for carrying the majority of
the compressive loads. Load redistribution was shown to be the primary mechanism
behind improved buckling performance of variable stiffness laminates in chapter 5.
The onset of global buckling for all designs is therefore delayed due to the loads being

1This notation follows the convention presented by Olmedo and Gürdal (1993), and corresponds
to a laminate with fiber angles varying linearly from 90◦ at the center to 15◦ at the edges
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directed to the panel’s edges and due to the favorable stress distribution caused by
thermal loading even if thermal effects were not considered during optimization. For
cases II and III, where thermal effects were considered during design, the central
section is stiffer and carries more compressive load. This seems to contradict the
aforementioned notion of distributing the compressive loads to the edges, however,
due to the compressive stresses present at the edges, global panel buckling is no longer
the only buckling mode to be considered, as local edge buckling can also start to occur,
as will be seen by inspecting the mode shapes in the following section. Hence, for
cases II and III the compressive loads at the edges are relieved slightly, which must
be compensated for by the central section. Therefore, a more intricate axial stress
distribution profile is present when thermal stresses are taken into account.
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Figure 6.3: In-plane stress resultant in the x-direction, nx, for an applied unit thermal or
compressive load, plotted along section A-A’, see Figure 6.1 for section definition

6.3.3 Buckling Modes

It is also interesting to investigate the influence of thermal stresses on the critical
buckling mode shapes. The mode shapes at four points along the curve presented
in Figure 6.2(a) are plotted for case II in Figure 6.4. All the designs in Figure 6.2
have two points at which the normalized buckling load becomes zero, for case II
these are points A and D and correspond to the temperature differences at which
thermal buckling occurs, in other words, the panel buckles without the application of
mechanical load. The buckling mode shapes are also plotted at the design operating
temperature, point B, and at the maximum buckling load, point C, for case II.

Point A is the thermal buckling mode due a positive temperature differential with
respect to the design operating temperature, ∆Td+∆Ts = 158◦C. The mode shape, a
single half-wave, can be understood by referring to Figure 6.3(a). If a negative thermal
load is applied, tensile stresses occur at the center and compressive stresses occur at
the edge of the panel. The opposite occurs when a positive thermal load is applied,
causing compressive stresses at the panel center resulting in the presented mode shape.
Point D, shown in Figure 6.4(d), represents the thermal buckling load due to a negative
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temperature difference with respect to the design operating temperature, ∆Td+∆Ts =
−381◦C. The compressive loads which occur at the edges due to the negative thermal
load result in edge buckling, with two half-waves along top and bottom panel edges.
The mode shape shown in Figure 6.4(b) corresponds to design temperature for case
II, ∆Td + ∆Ts = 0◦C and consists of two half-waves spanning the entire length
of the panel. The maximum buckling load for this panel is found at point C. The
corresponding mode shape is presented in Figure 6.4(c) and seems to be a combination
of two global half-waves and two half-waves along the edge, which is a combination
of the mode shapes found for point B and D.

(a) Point A, ∆Td + ∆Ts = 158◦C (b) Point B, ∆Td + ∆Ts = 0◦C

(c) Point C, ∆Td + ∆Ts = −60◦C (d) Point D, ∆Td + ∆Ts = −381◦C

Figure 6.4: Critical buckling mode shapes plotted for several different applied temperature
differences for case II, corresponding to points presented in Figure 6.2(a)

Both the numerical results presented here, and experimental results presented by
Tatting and Gürdal (2002), have shown that residual stresses due to curing beneficially
influence the buckling performance of variable stiffness plates. The general mechanism
believed to be responsible for this trend can best be deduced from Figure 6.3. From
a mechanical point of view, buckling performance improves primarily due to load
redistribution. This results in stiffer sections which carry the compressive loads and
compliant sections that carry a small fraction of the load. In general, composite
materials have small or negative coefficients of thermal expansion in the axial direction
and large coefficients of thermal expansion in the transverse direction. Therefore,
when laminates are cured above their operating temperature, i.e. ∆T < 0, will
result in compliant regions shrinking more than the stiffer regions. Hence, the net
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residual stresses in compliant regions will be tensile while stiffer regions will contain
compressive stresses, resulting in improved buckling performance.

It is clear from the aforementioned discussions that correctly tailoring laminate
stiffness and thermal properties in the laminate allows for significant improvements
in buckling performance, however, it is also clear that designing for the correct tem-
perature regime is crucial for variable stiffness laminates.

6.4 Concluding Remarks

A method of including thermal loads into an optimization framework for variable
stiffness panels was presented. Expressing designs in terms of lamination parameters
made it possible to find the most generalized solution without a priori knowledge of
laminate stacking sequences. The numerical results confirmed the importance of in-
cluding thermal effects in the design of variable stiffness panels for buckling, since the
pre-buckling stress state significantly influenced a panel’s buckling behavior. Improve-
ments in ultimate panel buckling loads in the order of four to six times that of the
corresponding quasi-isotropic panel were demonstrated. Three different temperature
differences, ∆Td = 0◦C, −100◦C and −200◦C, respectively, were studied. The tem-
perature difference essentially represents the difference between curing temperature
and operating temperature of the laminate. The buckling load of the optimal variable
stiffness laminate including residual thermal stresses for ∆Td = −200◦C was found
to be 550 % higher than a quasi-isotropic laminate, 420% higher than the optimum
constant stiffness laminate and 205% higher than the optimum variable stiffness lam-
inate neglecting residual thermal stresses. The range of operating temperatures over
which a panel exhibited good buckling behavior was shown to increase significantly
when including thermal effects in the design process.

It is important to remember that thermal effects are strongly dependent on lami-
nate thickness, hence the results presented in this chapter hold for panels with similar
thickness to side-length ratios. Both the behavior and the sensitivity of variable stiff-
ness designs may change significantly for different laminate configurations. In the
future a more exhaustive study of thermal effects for various structural configurations
should be conducted. It would also be interesting to study the influence of material
thermal and stiffness properties, and their interdependence, on the optimum solution.
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CHAPTER 7

Design of Variable Stiffness Plates with Thickness
Variation

“There is no top. There are always further heights to reach.”

Jascha Heifetz

Advanced fiber placement machines allow courses to be steered while individual
tows are cut and restart on-the-fly, hence both the local fiber angle orientation and
laminate thickness can be controlled and considered to vary continuously within a
laminate. The buckling load of a plate is a function of both the laminate in-plane
stiffness distribution and the bending stiffness distribution, which are linear and cubic
functions of the local laminate thickness respectively. It is therefore interesting to
investigate the influence of laminate thickness distribution, in addition to stiffness
distribution, on the buckling load and to identify the structural mechanisms resulting
in improved load carrying capacity.

In a parametric study, Biggers and Srinivasan (1993) demonstrate that the buck-
ling load of a uniaxially loaded quasi-isotropic composite panel can be increased by
removing stiff 0◦, fibers from the center of the plate and placing them near the plate
boundaries. In another publication Biggers and Pageau (1993) demonstrate how a
similar approach can be used to improve shear-buckling of a panel by distributing
the ±45◦ to form multiple reinforcing laminate sections. In a later work, Joshi and
Biggers (1996) use the method of feasible directions to determine optimal continuous
thickness distributions for isotropic and anisotropic plates to maximize panel buck-
ling loads. Kassapoglou (2008) develop a Rayleigh-Ritz based analysis approach to
compute the buckling load of laminated panels with two concentric layups. Presented

This chapter is based on the paper, Thickness tailoring of variable stiffness panels for maximum

buckling load by S.T. IJsselmuiden, M.M. Abdalla, and Z.Gürdal, which was presented at the

17th International Conference on Composite Materials, 2009. Note: symbols may have been

changed to maintain consistency throughout this thesis.

119



120 DESIGN OF VARIABLE STIFFNESS PLATES WITH THICKNESS VARIATION 7.1

results show that panel buckling loads can be improved by including a central patch,
locally improving the bending stiffness. Buckling load improvements in the aforemen-
tioned publications result from two fundamentally different mechanisms influencing
panel buckling. Improvements demonstrated by Biggers and Srinivasan (1993) and
Joshi and Biggers (1996) are attributed primarily to in-plane load redistribution while
improvements presented by Kassapoglou (2008) are attributed to local improvements
in panel bending stiffness, effectively suppressing the dominant buckling mode.

An approximation to design variable stiffness panels for maximum buckling load
was presented in chapter 5. Significant improvements in panel buckling loads were
demonstrated, which were shown to result primarily from in-plane load distribution.
To study the influence of continuously varying laminate thickness on the buckling
load, the previously derived approximation scheme was extended to include laminate
thickness as a design variable, as shown in section 7.1. The approximation is subse-
quently used to optimize a previously studied example problem in section 7.2, both
to demonstrate the method and to identify the mechanisms resulting in improved
buckling load. Several concluding remarks are presented in section 7.3.

7.1 Conservative Approximation Formulation

A conservative separable approximation of the inverse buckling factor was derived
in chapter 5. A generic method of including thickness as a design variable in the
developed design optimization framework was presented in section 3.2.4. In this
section a similar approximation and optimization formulation is presented, developed
specifically for variable stiffness laminate buckling with thickness variation. Laminate
buckling analysis was conducted as in section 5.1, by solving the eigenvalue problem:(

Kb − λKg

) · a = 0

where Kb is the global bending stiffness matrix and is a function of the element
bending stiffness matrices, De, the global geometric stiffness matrix, Kg, is an im-
plicit function of the in-plane stiffness matrices, Ae, a is the mode shape comprising
deformation degrees of freedom, and λ is the buckling factor.

The goal is to design the thickness and lamination parameter distribution such
that the buckling load is maximized, which can be achieved by minimizing the inverse
buckling factor, rb = 1/λ, as was done in chapter 5. The optimization problem
becomes unbounded when laminate thickness is included as a design variable if the
total laminate weight is not constrained. The total laminate weight can be constrained
by placing an upper bound on the total volume, V0. The optimization problem can
therefore be formulated as:

min
V

rb s.t V ≤ V0 (7.1)

where V is a vector of all design variables including both extensional and flexural
lamination parameters and laminate thickness. The lamination parameters are also
bound by their feasible region, see section 2.3.4, and thickness is typically constrained
with a suitable lower bound, also known as the minimum gauge thickness, hL:

hL ≤ h (7.2)
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In the problem formulation in equation (7.1) it is assumed that only one eigenvalue
is present during optimization, however, for multimodal problems all critical buckling
modes must be incorporated during design. To address problems with multiple eigen-
values the bound formulation presented by Olhoff (1989) can be used as discussed in
section 3.4.2. An independent parameter, β, is introduced such that the minimization
problem becomes:

minβ s.t. β ≥ rbj (7.3)
V ≤ V0

where rbj , for j = 1, 2, . . .M , are the inverse buckling factors corresponding to the
first M critical buckling modes. The problem subsequently can be solved using the
dual-method, see section 3.4.2, resulting in the following nested optimization problem:

max
µ,ν

min
V

M∑
j=1

µjrbj + ν

( V
V0
− 1
) (7.4)

where µ and ν are the Lagrange multipliers for the multiple eigenvalues and volume
constraint, respectively, and are by definition positive. Additionally, the bound for-
mulation forces the Lagrange multipliers associated with the inverse buckling factor
to sum to unity.

To solve equation (7.4) using the framework developed in chapter 2 a suitable
expression for both the inverse buckling factor and volume must be derived. The
total volume, V, is simply the sum of the product of thickness, h, and area, A, of each
design region, i:

V =
N∑
i=1

Aihi

The design regions can be defined at node level, element level, or span over multi-
ple elements. In the present work, design variables were defined at nodes and element
properties were computed via reciprocal interpolation, as defined in section 2.3.6.
Laminate volume is therefore already a separable linear function in terms of thick-
ness and hence requires no further approximation to be incorporated into the design
framework.

It was shown in section 5.2 that, to ensure convexity of the approximation, the
inverse buckling load factor, rb = 1/λ, had to be expanded linearly in terms of
laminate in-plane stiffness and reciprocally with respect to laminate bending stiffness.
This is because the terms in the buckling eigenvalue problem related to the geometric
stiffness matrix, which depend on in-plane stiffness terms in the case of a plate,
cannot be guaranteed to be convex if they are expanded reciprocally. The reciprocal
terms, related to the global bending stiffness matrix, are convex and expanding the
geometric terms linearly guarantees the approximation as a whole is convex. The
inverse buckling factor was therefore approximated in section 5.2 as:

rb ≈ rb0 +
N∑
i=1

(
∂rb
∂Ai

∣∣∣∣
0

: (Ai −A0i) +
∂rb

∂D−1
i

∣∣∣∣
0

:
(
D−1
i −D−1

0i

))
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The equation above is linear in terms of in-plane stiffness, however, the optimiza-
tion problem given in equation (7.4) is expressed in terms of lamination parameters
and laminate thickness of each design point. The in-plane stiffness matrix is a linear
function of in-plane lamination parameters and therefore, the above approximation
can be used directly when laminate thickness is constant, as was done in chapter 5.
If laminate thickness is introduced as a design variable, the linear in-plane stiffness
terms lose their linearity in terms of the design variables and were therefore linearized
as follows:

∂rb
∂Ai

∣∣∣∣
0

: Ai ≈ ∂rb
∂Ai

∣∣∣∣
0

:
(
Â0ihi + Âih0i

)
(7.5)

where Â is the material dependent part of the stiffness matrix and is only a function
of lamination parameters and hi is the laminate thickness, as can be seen by referring
to equation (2.16).

The buckling factor is homogenous of order one in terms of the bending stiffness
and homogenous of order zero in terms of in-plane stiffness, as discussed in section
5.2. Therefore, the approximation can be expressed in the standard form as:

rb =
N∑
i=1

(
Ψm
i

∣∣
0

: Âi + Φb
i

∣∣
0

: D−1
i + αi

∣∣
0
hi

)
+ C0 (7.6)

where the linear thickness terms are collected in αi:

αi = Ψm
i

∣∣
0

: Â0i (7.7)

The objective function and volume constraint have now been approximated in
a form consistent with the framework developed in chapter 2, and can therefore be
solved as before.

7.2 Numerical Results

To demonstrate the design process developed and the benefit of including laminate
thickness tailoring in the design process the example problem, previously treated in
chapter 5, was reevaluated for both uniaxial and biaxial compression. The two load
cases are outlined in Figure 7.1 and both consist of a simply supported rectangular
panel subject to a compressive edge load per unit length, Nx and/or Ny. The edges are
constrained to deform uniformly and hence remain straight. A square configuration,
a/b = 1, with edge length of 15 inch (381 mm) and a uniform initial thickness, h0, of
0.06 inch (1.524 mm) was studied. The initial volume of the plate was used as an upper
bound for the volume constraint. The used material properties for unidirectional
carbon-epoxy T300/5208 are listed in Appendix A.

The plate was discretized into a selected number of equally sized four-noded rect-
angular elements with bilinear in-plane displacements and Kirchhoff bending elements,
as discussed in Appendix B. A finite element routine programmed in MatlabTM was
used to compute the required panel buckling loads and sensitivities. The presented
results were generated using a mesh consisting of 21 uniformly distributed nodes along
each edge, resulting in a total of 2205 design variables, 5 for each node.



7.2 NUMERICAL RESULTS 123

x 

y 

N x N x b 

a 

B

B’

A

A’

(a) Uniaxial compressive loading

x 

y 

N x N x 

N y 

N y 

(b) Biaxial compressive loading

Figure 7.1: Geometry, loading and boundary conditions for the considered panels

The developed optimization routine was used to compute the optimal thickness
and stiffness distributions using the damping strategy formulated in stiffness space,
presented in section 3.3.2, to control solution convergence. The optimization problem
for both load cases was solved for a range of different lower bounds on laminate
thickness, ĥL = 1.0, 0.9, . . . 0.4, to assess the influence of minimum gauge thickness
on the optimal solution and to avoid excessive differences between maximum and
minimum laminate thickness.

7.2.1 Uniaxial Compression

The first four buckling loads, minimum laminate thickness and maximum laminate
thickness for the obtained optimal designs are presented Table 7.1. Buckling loads
were all normalized with the critical buckling load of an equivalent quasi-isotropic
laminate with uniform thickness. The buckling loads for the optimal constant stiffness
laminate with uniform thickness, [±45n]s, is also presented for comparison.

The optimal variable stiffness design with uniform thickness, ĥL = 1.0, is identical
to the solution found in chapter 5, and resulted in a buckling load improvement in
the order of 190% with respect to the quasi-isotropic design. The remaining results
demonstrate that tailoring both stiffness and thickness dramatically improves the
buckling performance of a plate. Improvements in the order of 270 to 500% were
achieved when tailoring both laminate stiffness and thickness, compared to 190%
when only laminate stiffness properties were tailored.

Several interesting trends can be identified from the tabulated results. The mode
spacing tends to decrease as the bound on minimum thickness decreases, λ4 is ap-
proximately twice as large as λ1 for the optimal variable stiffness design with uniform
laminate thickness whereas these two modes differ by only 13% when the lower bound
on thickness is 0.4. Therefore, higher buckling loads are achievable by increasing the
design freedom, however, as a consequence more modes tend to become active during
the optimization process. The remaining trends are best identified when visualized.
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Table 7.1: Normalized buckling loads for a range of laminate designs for the uniaxial load
case, with λ̂ = λ/λQI

cr , ĥ = h/h0 and hL the lower bound on thickness

Design ĥmin ĥmax λ̂1 λ̂2 λ̂3 λ̂4

Quasi Isotropic 1.000 1.000 1.000 1.560 2.772 3.969
Constant Stiffness [±45n]s 1.000 1.000 1.259 1.673 2.571 3.855
Variable Stiffness, ĥL = 1.0 1.000 1.000 2.888 2.891 3.778 5.293
Variable Stiffness, ĥL = 0.9 0.900 1.826 3.711 3.723 4.641 6.348
Variable Stiffness, ĥL = 0.8 0.800 2.063 4.184 4.196 4.990 6.550
Variable Stiffness, ĥL = 0.7 0.700 2.197 4.559 4.572 5.305 6.632
Variable Stiffness, ĥL = 0.6 0.600 2.303 5.231 5.377 5.873 6.801
Variable Stiffness, ĥL = 0.5 0.500 2.356 5.655 5.668 6.160 6.859
Variable Stiffness, ĥL = 0.4 0.400 2.411 6.060 6.063 6.301 6.860

The critical buckling load multiplier, λ̂1, and the minimum and maximum thickness
ratios, ĥmin and ĥmax, respectively, are plotted against the applied lower bound on
thickness, ĥL, for both the uniaxial and biaxial load cases in Figure 7.2. As the lower
bound on thickness decreases for the uniaxial load case the critical buckling load in-
creases almost linearly for the considered range, as can be seen in Figure 7.2(a). For
the uniaxial load case the minimum thickness always reaches the set lower bound
whereas the maximum thickness ratio tends towards an asymptote, see Figure 7.2(b).
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Figure 7.2: Comparison of the trends in critical buckling load, minimum and maximum
thickness for different bounds on minimum thickness for the uniaxial and biaxial load cases

The optimal lamination parameter and thickness distribution for designs with
ĥL = 0.9 and ĥL = 0.4 are presented in Figure 7.4 and Figure 7.5, respectively.
The general trends in lamination parameter distributions for both designs are similar
and also correspond to the optimal lamination parameter distribution of the uniform
thickness laminate found in chapter 5, see Figure 5.5, page 101. As discussed in
chapter 5, the optimal stiffness distribution results in the compressive loads being
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transferred primarily to the edge of the panel, while the complaint region in the center
only carries a small portion of the compressive load. The thickness distribution, see
Figure 7.4(e) and 7.5(e), also results in the majority of the compressive loads being
transferred to the panel’s edge, since the thickness reduces primarily in the central
section of the panel and builds-up towards the edges. This trend also supports the
effectiveness of the design strategy demonstrated by Biggers and Srinivasan (1993),
where the axially stiff 0◦ layers are distributed to the panels edge, effectively increasing
both the panels edge stiffness and thickness, while reducing the central panel stiffness
and thickness. Investigating the laminate thickness distribution in more detail, the
largest thickness buildup is found towards the corners and the central edge sections.
The thickness distribution for the design with ĥL = 0.9 is less intricate than when
ĥL = 0.4. The minimum thickness for both panels is found at the center of the panel,
however, for the former the thickness buildup only occurs at the edges whereas for the
later there are also sections of slight thickness buildup at 1

4 and 3
4 length of the panel,

locally increasing bending stiffness aiding to suppress the two half-waves present in
mode 1, as will be discussed later with reference to Figure 7.7(d).

To highlight the effect of the obtained laminate thickness distribution on the in-
plane loads within the panel, the in-plane stress resultants in the x-direction, nx,
along section A-A’ and B-B’ are plotted in Figure 7.3. The stress resultants for the
variable stiffness designs with uniform thickness, ĥL = 1.0, and variable thickness
designs with ĥL = 0.9 and ĥL = 0.4 are presented in the figure. The values were
normalized such that the average compressive load per unit length was equal to unity,
hence regions for which n̂x > −1 carry less load than an equivalent constant stiffness
panel while regions for which n̂x < −1 carry more compressive load than an equivalent
constant stiffness panel. The in-plane stiffness variation results in the majority of the
compressive load being carried by the panel edges while the central section remains
relatively unloaded, as was discussed in chapter 5. The introduction of thickness
variation further strengthens the load redistribution effect, resulting in a fourfold
increase in the compressive loads present along the edges while the central section
transmits less than 20% of the nominal compressive load.
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Figure 7.3: Normalized in-plane stress resultant in the x-direction, n̂x, plotted along the
panel width for the uniaxial load case, see Figure 7.1 for section definition
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It was also interesting to investigate the effect of thickness and stiffness tailoring
on the panel buckling modes. The first four buckling modes for the optimal designs
with ĥL = 0.9 and ĥL = 0.4 are presented in Figures 7.6 and 7.7, respectively.
The first noticeable difference is that the half-waves present in Figure 7.6 span the
entire panel width whereas the buckling waves tend to be more central in Figure 7.7,
hence, the optimal thickness distribution tends to force modes to localize towards
the center of the panel. The first two mode shapes for both designs are asymmetric
while modes three and four are both symmetric. The first and second modes for the
design with ĥL = 0.9 consist of two asymmetric half-waves and a single asymmetric
half-wave, respectively, as can be seen in Figures 7.6(a) and 7.6(a). The first and
second modes for the design with ĥL = 0.4 consist of two asymmetric half-waves
and a three asymmetric half-waves respectively, as can be seen in Figure 7.7(a) and
7.7(a). Modes three and four are similar for both designs and consist of two and four
symmetric half-waves, respectively.

(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4

Figure 7.6: First four buckling modes for ĥL = 0.9

(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4

Figure 7.7: First four buckling modes for ĥL = 0.4

7.2.2 Biaxial Compression

A similar set of optimal designs was generated for a biaxially loaded panel, with Nx =
Ny, allowing both laminate thickness and stiffness variation. Once again the buckling
loads were normalized with the critical buckling load of an equivalent quasi-isotropic
laminate with uniform thickness and are presented in Table 7.2. The optimal constant
stiffness laminate with uniform thickness, [±45n]s, is also presented for comparison.

The buckling load of the optimal variable stiffness laminate with uniform thickness
is 90% higher than the quasi-isotropic base line. The buckling load improves to 260%
of the quasi-isotropic value when thickness tailoring is also included, which once again
is a significant improvement with respect to only allowing laminate stiffness tailoring.
Similar trends to those of the uniaxial example are seen with respect to decreasing
mode spacing as the minimum gauge thickness is decreased. The fourth mode, λ4, is
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Table 7.2: Normalized buckling loads for a range of laminate designs for the biaxial load
case, with λ̂ = λ/λQI

cr , ĥ = h/h0 and hL the lower bound on thickness

Design ĥmin ĥmax λ̂1 λ̂2 λ̂3 λ̂4

Quasi Isotropic 1.000 1.000 1.000 2.496 2.496 3.969
Constant Stiffness [±45n]s 1.000 1.000 1.259 2.677 2.677 4.628
Variable Stiffness, ĥ=1.0 1.000 1.000 1.919 2.962 2.962 3.874
Variable Stiffness, ĥ=0.9 0.900 1.682 2.899 3.316 3.316 4.283
Variable Stiffness, ĥ=0.8 0.800 1.763 3.317 3.524 3.524 4.233
Variable Stiffness, ĥ=0.7 0.700 1.827 3.537 3.564 3.595 4.166
Variable Stiffness, ĥ=0.6 0.600 1.839 3.594 3.619 3.625 4.145
Variable Stiffness, ĥ=0.5 0.597 1.840 3.595 3.618 3.621 4.134
Variable Stiffness, ĥ=0.4 0.596 1.836 3.599 3.616 3.618 4.132

twice as large as λ1 for the uniform thickness design whereas these two modes differ
by only 15% when the lower bound on thickness is 0.4. Due to symmetry of the
biaxial loading problem λ2 and λ3 are practically identical in all cases.

The trends relating both to laminate thickness and maximum buckling load were
found to differ with respect to the uniaxial load case, as can be seen in Figure 7.2
presented earlier on page 124. The maximum buckling load reaches an asymptote,
and only improves marginally as the lower bound on thickness is decreased below
0.7. As opposed to the uniaxial load case, the normalized minimum thickness, ĥmin,
does not reduce far beyond 0.6, even when the lower bound on thickness is decreased
further while the maximum thickness, ĥmax, also reaches an asymptote.

The optimal lamination parameter and thickness distributions for designs with
ĥL = 0.9 and ĥL = 0.4 are presented in Figures 7.8 and 7.9, respectively. The lami-
nation parameter distributions for both designs are essentially identical other than a
slight difference between the V3D distributions. The effect of stiffness and thickness
tailoring were almost independent for this load case. The lamination parameter dis-
tribution is quarter-symmetric corresponding to the problem symmetry, however, it
remains quite intricate and difficult to interpret. The in-plane lamination parameters
in Figure 7.8(a) and 7.8(b) indicate that the fibers tend to be perpendicular to the
load towards the middle of each edge, i.e. 90◦ at the left and right edges while they
tend to 0◦ at the top and bottom edges. In all of the corners the fiber angles tend
towards ±45◦. The mechanical effect of the obtained stiffness distribution is best
interpreted by inspecting the in-plane stress resultants, as will be discussed later.

The thickness distribution for both designs with ĥL = 0.9 and ĥL = 0.4 is pre-
sented in Figures 7.8(e) and 7.9(e), respectively. The maximum thickness buildup
was found to occur in the corners for both cases while the thickness in the central
sections tended towards the lower bound. Unlike the uniaxial load case, the thick-
ness buildup in the corners for the biaxial case are attributed primarily to improved
bending stiffness, which is aimed at suppressing the buckling modes as will be seen
later, and not to load redistribution as found for the uniaxial case. Similarly, the
slight thickness buildup found around the central section of the panel in Figure 7.9(e)
results in locally improved bending stiffness, suppressing the relevant buckling modes.
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ĥ

F
ig

u
re

7
.8

:
O

p
ti

m
a

l
la

m
in

a
ti

o
n

pa
ra

m
et

er
a

n
d

th
ic

kn
es

s
d

is
tr

ib
u

ti
o

n
fo

r
th

e
bi

a
xi

a
ll

y
lo

a
d

ed
va

ri
a

bl
e

st
iff

n
es

s
la

m
in

a
te

w
it

h
ĥ
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Once again, the in-plane stress resultants were plotted, see Figure 7.10, in order to
interpret the effect of the optimal laminate stiffness and thickness distribution on the
in-plane loads within the panel, and were normalized as for the unidirectional load
case. The stress resultants of the uniform thickness design and two cases including
thickness variation, ĥL = 0.9 and ĥL = 0.4, are presented. The stress resultants of the
uniform thickness uniaxially loaded panel are also presented for comparison purposes.
Once again the compressive load is carried primarily by the panel edges for all the
presented designs while the central sections carry little load. At section A-A’, Figure
7.10(a), the load distribution for both the uniaxial and biaxial load cases are similar,
with approximately a quarter of the panel, − b

2 to − 3b
8 and 3b

8 to b
2 , carrying the

majority of the compressive loads. Towards the panel center, section B-B’ in Figure
7.10(b), the effect is less pronounced for the biaxial load case where approximately
half of the panel, − b

2 to − b
4 and b

4 to b
2 , carries the majority of the compressive loads.
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(b) n̂x along section B-B’

Figure 7.10: Normalized in-plane stress resultant in the x-direction, n̂x, plotted along the
panel width for the biaxial load case see Figure 7.1 for section definition

The first four buckling modes for the laminate designs with ĥL = 0.9 and ĥL = 0.4
are presented in Figures 7.11 and 7.12, respectively. The mode shapes are similar for
both cases with mode one consisting of a single half-wave. Modes two and three for the
first design, see Figures 7.11(b) and 7.11(c), consist of two half-waves along a single
axis and are identical other than being rotated by 90◦ with respect to each other,
which is related to the problem symmetry. Mode four, Figure 7.11(d), consists of two
half-waves along both loaded axes. For the second design, ĥL = 0.4, modes two, three
and four are similar to the first design, ĥL = 0.9, however, the waves are oriented along
the plate diagonals instead of the main loading axes. Once again, including laminate
thickness tailoring in the design process tends to localizes the buckling modes towards
the center of the plate, in this case by increased bending stiffness in the corners. For
the second design, additional thickness buildup was found near the central areas along
each edge, see Figure 7.9(e), hence, the half-waves align along the diagonals due to
the locally increased bending stiffness.
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(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4

Figure 7.11: First four buckling modes for ĥL = 0.9 with biaxial loading

(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4

Figure 7.12: First four buckling modes for ĥL = 0.4 with biaxial loading

7.3 Concluding Remarks

A separable, conservative approximation scheme to maximize buckling loads of vari-
able thickness and variable stiffness laminates was developed based on the approxima-
tion scheme presented in chapter 5. It was shown that to retain overall approximation
convexity the in-plane stiffness terms had to be expanded linearly in terms of both
lamination parameters and thickness. To ensure that the problem remained bounded,
a constraint on maximum laminate volume was imposed.

Laminate buckling loads are a function of both laminate in-plane stiffness and
bending stiffness distribution, which are linear and cubic functions of laminate thick-
ness respectively. For uniform thickness laminates, see chapter 5, in-plane load redis-
tribution was found to be the primary mechanism responsible for improved laminate
buckling load. In order to investigate the primary buckling load improvement mech-
anisms for variable thickness laminates, the developed approximations were used to
solve the previously studied example problem for both uniaxial and biaxial compres-
sive loads.

Significant improvements in maximum buckling load were obtained for both load
cases when allowing laminate thickness to vary spatially. Uniaxial buckling loads were
shown to improve up to 500% with respect to a baseline quasi-isotropic laminate when
tailoring both laminate stiffness and thickness, while improvements were limited to
190% when laminate thickness was constant. Buckling load improvements of 130-
380% were found with respect to the optimal constant stiffness design. Compared
to the optimal variable stiffness design with constant thickness, improvements in the
order of 30-100% were obtained depending on the minimum allowable thickness. The
optimal thickness distributions for the uniaxial load case were shown to reinforce
the load redistribution effect, resulting in a majority of the compressive loads being
transferred to the stiff panel edges. The thickness distribution also tended to force
buckling modes to localize towards the central section of the laminate. As more
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thickness variation was permitted, thickness buildup also occurred in central sections
of the panel, locally increasing the laminate bending stiffness.

The distinction between load redistribution and improved bending stiffness as a
primary mechanism for increased buckling load was less pronounced for the biaxial
load case. The optimal laminate stiffness distribution was found to be practically
independent of the optimal thickness distribution. The in-plane stiffness distribution,
as for the uniaxial load case, results primarily in load redistribution to the edges while
the central section of the panel remains relatively unloaded, however, the thickness
distribution tended to reinforce bending stiffness at specific sections within the panel.

The studied example problems demonstrated that when thickness variation is in-
cluded in the variable stiffness design routine for maximum laminate buckling load,
both load redistribution and improved laminate bending stiffness play a role. In-plane
stiffness tailoring was found to distribute compressive loads effectively to sections of
the laminate that were well suited to transmitting these loads. The thickness distri-
bution was found to support the load redistribution mechanism partially, while also
locally improving bending stiffness to either suppress buckling modes or by localizing
the modes such that they had a shorter wave-length.



CHAPTER 8

Design of Variable Stiffness Shells for Buckling

“There is little doubt that the considerable benefits offered by composites
have yet to be fully exploited . . . ”

Adam Quilter

An approximation to maximize the buckling load of a plate was developed in Chap-
ter 5. A homogenous convex approximation of the buckling equation was obtained
by expanding the geometric stiffness terms linearly with respect to the in-plane stiff-
ness matrix terms, Ai, while expanding the material stiffness matrix reciprocally in
terms of the flexural stiffness matrix terms, Di. Using the approximation within the
developed design optimization framework demonstrated the significant performance
improvements possible when tailoring laminate stiffness properties of panels loaded
under compression.

A generalization of the buckling load approximation of a plate was developed for
arbitrary shell structures and is presented in this chapter. In order to extend this
approach to general shell structures the finite element analysis equations are revisited
in section 8.1, to highlight the influence of the material stiffness matrices, Ai and Di,
on the buckling load. An approximation of the buckling load, which is consistent with
the previously developed approximation form, was derived and is discussed in section
8.2. Subsequently, the approximation was used to solve an example problem high-
lighting the coupling between in-plane and out-of-plane laminate stiffness properties
in section 8.3.

This chapter is based on the paper, Maximizing buckling loads of variable stiffness shells using

lamination parameters by S.T. IJsselmuiden, M.M. Abdalla, and Z.Gürdal, which was presented

at the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials

Conference, 2009. Note: symbols may have been changed to maintain consistency throughout

this thesis.
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8.1 Buckling Analysis for Shells

The linear buckling load for generic shell structures can be obtained in a similar
manner to that presented for flat plates in chapter 5 by solving the following eigenvalue
problem:

(
Km − λKg

) · a = 0 (8.1)

where Km is the global material stiffness matrix, Kg is the global geometric stiffness
matrix, a is the mode shape comprising of deformation degrees of freedom, and λ is
load multiplier or buckling factor. The mode shapes are normalized such that:

aT ·Km · a = 1 (8.2)

The geometric stiffness matrix is constructed through an assembly of element
geometric matrices. The stiffness matrix of each element takes the form:

Kg
e = −nxKx − nyKy − nxyKxy (8.3)

where ne = (nx, ny, nxy)T is the vector of in-plane stress resultants averaged over
the element, and Kx, Ky and Kxy are constant matrices that depend only on element
geometry.

The averaged in-plane stress resultants can be expressed as:

ne = Ae · ee (8.4)

where A is the in-plane stiffness matrix and e is the average strain vector given by:

ee = Be · ue (8.5)

where u is the vector of displacements, B is the average element strain displacement
matrix, and ue is the vector of the degrees of freedom associated with nodes con-
nected to the eth element. The displacements can be found from the solution of the
equilibrium equations:

Km · u = f (8.6)

where f is the vector of applied loads.
The primary difference between the analysis for arbitrary shell structures and flat

plates is that the material stiffness matrix, Km, and the global geometric stiffness
matrix, Kg, are now a function of both the laminate in-plane and bending stiffness
matrices. The material stiffness matrix is simply an assembly of all the element
material stiffness matrices, which are a explicit functions of the element in-plane
and bending stiffness matrices, Ae and De, respectively. The geometric stiffness
matrix, Kg, is an explicit function of the element in-plane stress resultants, ne, which
are an implicit function of the in-plane and bending stiffness matrices through the
displacements calculated from the equilibrium equation (8.6).
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8.2 Conservative Approximation Formulation

A homogenous conservative approximation was developed for the inverse buckling
load factor of a flat plate in chapter 5. The approximation was developed based on
insight that highlighted the difference in contribution of the material stiffness and
geometric stiffness matrix to the approximate function. The approximation was read-
ily implemented since the material stiffness matrix is only a function of the laminate
bending stiffness matrix, while the geometric stiffness matrix is only a function of
laminate in-plane stiffness. However, for shell structures this is no longer the case
as the material and geometric stiffness matrices are a function of both in-plane and
bending stiffness, i.e. Km(A,D) and Kg(A,D).

A similar homogenous, conservative approximation can be derived for the inverse
buckling factor, rb = 1/λ, of a shell. The chosen form for the approximation can
best be understood by investigating the Rayleigh quotient (Canfield, 1993) for the
eigenvalue problem (8.1), which is given by,

rb ≈ aT ·Kg · a
aT ·Km · a (8.7)

where the material stiffness matrix, Km, is linear in terms of stiffness, whereas the
geometric stiffness matrix, Kg, is linear in terms of internal forces, and therefore,
non-linear in terms of stiffness.

To create an approximation that is consistent with the Rayleigh quotient the terms
in the numerator, the geometric stiffness terms, are expanded with respect to stiffness,
whereas the terms in the denominator, the material stiffness terms, are expanded with
respect to the inverse stiffness (compliance). Therefore, the Taylor series expansion
of the inverse buckling factor can be written as:

rb ≈ rb0 +
N∑
i=1

(
∂r̂b
∂Ai

∣∣∣∣
0

: (Ai −A0i) +
∂r̂b
∂Di

∣∣∣∣
0

: (Di −D0i)︸ ︷︷ ︸
geometric stiffness terms

+
∂řb

∂A−1
i

∣∣∣∣
0

:
(
A−1
i −A−1

0i

)
+

∂řb

∂D−1
i

∣∣∣∣
0

:
(
D−1
i −D−1

0i

)
︸ ︷︷ ︸

material stiffness terms

) (8.8)

where the 0 represents the design point about which the inverse buckling factor is
expanded and i = 1 . . . N are the nodes, elements or regions for which the design
variables are defined. The in-plane and bending stiffness matrices are Ai and Di,
respectively, and the : operator represents matrix inner product. The portion of the
inverse buckling factor related explicitly to the material stiffness terms is denoted by
řb while r̂b represents the portion related to the geometric stiffness terms. Note that
the sum over the geometric stiffness terms is always zero for a dead load, as these
terms account for stress redistribution within the structure, in other words:

N∑
i=1

(
∂r̂b
∂Ai

: Ai +
∂r̂b
∂Di

: Di

)
= 0 (8.9)
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Since the stiffness matrix is always positive definite, equation (8.9) implies that the
sensitivity matrix is not necessarily positive definite. For this reason, the geometric
stiffness terms are expanded linearly as convexity cannot be guaranteed in the case
where the reciprocal is used, however, for a linear expansion the approximation is
guaranteed to be convex. The material stiffness terms expanded with respect to com-
pliance are always convex, and therefore the approximation as a whole is guaranteed
to be convex.

The buckling factor is homogenous of order zero with respect to the geometric
stiffness and of order one with respect to the material stiffness, as was also demon-
strated for planar structures in chapter 5. The approximation of the inverse buckling
factor can therefore be simplified to:

rb ≈
N∑
i=1

(
Ψm
i : Ai + Ψb

i : Di + Φm
i : A−1

i + Φb
i : D−1

i

)
(8.10)

where Ψm
i ,Ψ

b
i ,Φ

m
i , and Φb

i are the sensitivity matrices associated with each design
point in the structure. A detailed derivation of the sensitivities can be found in Ap-
pendix C. The approximation form presented in equation (8.10) is readily integrated
into the optimization framework presented in chapter 3. In the following section an
example problem is used to demonstrate the effectiveness of the developed approxi-
mation when determining the optimal laminate stiffness distribution.

8.3 Numerical Results

An example problem was selected to demonstrate the design process of a variable
stiffness shell. The aim was to ensure that the material stiffness and geometric stiffness
terms in the buckling equation (8.1) were functions of both the in-plane and bending
design variables. A curved panel, shown in Figure 8.1, was subject to a uniform
external pressure load. The curved edges were clamped while the straight edges were
hinged, hence only allowing a rotation about the z-axis. The chosen configuration
ensured that the geometric stiffness term in equation (8.1) is also a function of the
bending stiffness, thus, ensuring that all terms in equation (8.10) were present during
optimization.

P

x

y

W

R

L

x

y

z

Figure 8.1: Example problem geometry with uniform external pressure. Curved edges are
clamped and straight edges are hinged, only rotation about z-axis is permitted
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A finite element routine based on element templates prescribed in Felippa (2000)
and Felippa (2003) was implemented in MatlabTM. The plate was discretized into
960 triangular elements with 521 nodes, resulting in 2084 design variables, 4 design
variables per node, for designs with constant laminate thickness, and 2605 design
variables, 5 design variables per node, when allowing local laminate thickness to vary.
The length, L, and width, W , of the panel were both 2 m and the radius, R, was set to
2.924 m. The material properties for carbon-epoxy IM6/SC1081, listed in Appendix
A, were used to evaluate material stiffness matrices.

The approximation developed in section 8.2 was implemented in the optimization
framework presented in chapter 3 to maximize the buckling load of the presented
example problem. The design problem was first solved for stiffness variation while
maintaining constant laminate thickness. Extensional stiffness is a linear function
of laminate thickness whereas the bending stiffness is a cubic function of thickness.
Therefore, three different total laminate thicknesses, 4.57 mm, 9.91 mm, and 19.8 mm,
respectively, were prescribed to study the effect of laminate thickness on the optimal
stiffness distribution and the possible improvements. The studied laminate thicknesses
resulted in the side length to thickness ratio, W/h, varying from approximately 400
to 100. For a second design problem, both the stiffness and thickness were allowed
to vary throughout the structure, allowing the effect of in-plane load redistribution
and increased bending stiffness on the buckling load to be highlighted. The nominal
laminate thickness, h0, in this case was taken to be 9.91 mm.

8.3.1 Variable Stiffness Design with Constant Laminate Thickness

The optimal stiffness distribution was obtained for each of the three different laminate
thicknesses. The optimal constant stiffness design, obtained by defining a single set of
design variables for the entire panel, were also computed for comparison purposes. The
first four eigenvalues, which are normalized with respect to the critical buckling load
factor of a quasi-isotropic laminate with the same thickness, are presented in Table
8.1. All three designs show an improvement in the order of 70-80% with respect to
a quasi-isotropic laminate while improving between 15-20% with respect to the best
constant stiffness design. The importance of including multiple critical modes during
the design optimization routine is clear from the close modes spacing at the optimum,
particularly for the first two designs with a laminate thickness of 4.57 mm and 9.91
mm, respectively.

Table 8.1: Normalized buckling loads for a range of laminate designs, where h0 is the
nominal laminate thickness, W the panel width, CS a constant stiffness laminate, VS a
variable stiffness laminate and λ̂ = λ/λQI

cr

Design # h0[mm] W/h0 λ̂1 λ̂2 λ̂3 λ̂4

1 (CS) 4.95 404 1.471 1.724 2.277 2.499
2 (VS) 4.95 101 1.711 1.723 2.110 2.396
3 (CS) 9.91 202 1.582 1.583 2.252 2.413
4 (VS) 9.91 202 1.813 1.817 2.297 2.500
5 (CS) 19.8 101 1.497 2.068 2.206 2.505
6 (VS) 19.8 404 1.737 1.784 2.233 2.444
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It was useful to study the pre-buckling deformation and buckling modes of the
obtained designs to understand the influence of the optimal stiffness distribution on
the structural response in general. The pre-buckling deformations due to the applied
uniform pressure of both the quasi-isotropic design and optimal design found for
laminate thicknesses of h0 = 4.57 mm and h0 = 19.1 mm are presented in Figure
8.2. For the first design, the largest deformation of the quasi-isotropic laminate,
Figure 8.2(a), occurred along the hinged vertical edges due to their rotational freedom.
Significantly smaller rotations about the hinges were present in the variable stiffness
panel, Figure 8.2(b), suggesting a local increase in bending stiffness. Additionally,
the largest deformations no longer occurred along the hinged edges, but were located
close to the clamped edges, indicating a reinforcement of the central section. For
the third design, h0 = 19.1 mm, the additional thickness resulted in significantly
improved bending stiffness and hence the deformation of the quasi-isotropic laminate
was more uniform. The largest deformations were found towards the center of the
curved panel, as can be seen in Figure 8.2(c). Similar deformation trends can be seen
in Figure 8.2(d) for the optimal variable stiffness solution as seen for the first optimal
design, where the largest deformations tended towards the clamped edges indicating
reinforcement of the central section.

x
z

y

(a) QI, h0 = 4.57 mm (b) VS, h0 = 4.57 mm (c) QI, h0 = 19.1 mm (d) VS, h0 = 19.1 mm

Figure 8.2: Pre-buckling deformation due to the applied pressure load of a baseline quasi-
isotropic (QI) laminate and the optimal variable stiffness design (VS) for laminates with a
nominal thickness of h0 = 4.57 mm and h0 = 19.1 mm, respectively

The first two buckling modes of the previously discussed optimal designs are pre-
sented in Figure 8.3. The first buckling mode of the first design, Figure 8.3(a), is
asymmetric and consists of four half-waves along the width and a single half-wave
along the length of the curved panel. The second mode, Figure 8.3(b), is symmet-
ric and consists of three half-waves along the width. The first buckling mode of the
thicker laminate, Figure 8.3(c), is symmetric with a single half-wave along the length
and three half-waves along the width. The waves are wider and slightly shorter when
compared to those found for the thinner laminate in Figure 8.3(b). The second buck-
ling mode, Figure 8.3(d), is asymmetric and consists of two half-waves along the width
and a single half-wave along the height and are concentrated towards the center of
the panel.
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x
z

y

(a) λ1, h0 = 4.57 mm (b) λ2, h0 = 4.57 mm (c) λ1, h0 = 19.1 mm (d) λ2, h0 = 19.1 mm

Figure 8.3: First two buckling modes of the optimal variable stiffness design (VS) for
laminates with a nominal thickness of h0 = 4.57 mm and h0 = 19.1 mm, respectively

The optimal lamination parameter distribution for the design with h0 = 4.57
mm and h0 = 19.1 mm are presented in Figures 8.4 and 8.5, respectively, where the
horizontal edges are clamped while the vertical edges are hinged. The distributions
are relatively intricate, particularly for the in-plane lamination parameters, however,
they can be interpreted globally by making use of the Miki-diagram, see Figure 5.6 on
page 101. The central section in all of the lamination parameter distribution figures
consists roughly of a horizontal red band stretching from one hinged edge to the
opposite edge. This region corresponds to a laminate with a large percentage of the
fibers aligned with the x-axis as V1,3A, V1,3D → 1, and hence will have high axial and
bending stiffness along this direction. This region therefore acts as a stiffener between
the two hinged edges, suppressing the out-of-plane deformation in this region due to
the applied pressure, as can be seen in Figures 8.2(b) and 8.2(d).

Studying the flexural lamination parameters in more detail, Figures 8.4(c), 8.4(d),
8.5(c), and 8.5(d), the location and number of red “cells” coincide with the location
and number of half-waves found for the critical buckling modes of the optimal designs,
given in Figures 8.3(a) and 8.3(c), respectively. Along the horizontal clamped edges
there are several regions for both designs where V1D → −1 and V3D → 1. These
regions correspond to laminates with a large percentage of plies aligned along the
z-axis and hence the laminate locally has a larger bending stiffness along this axis.
These regions also coincide with the location of the buckling half-waves, and therefore,
act to suppress these buckling modes.
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The obtained results seemed to indicate that the design problem was predomi-
nantly governed by the laminate’s bending performance, which was not unexpected
considering the geometry and loading. The relatively uniform nature of the flexural
lamination parameter distributions, particularly in the central section of the panel,
supported the relatively small difference in critical buckling load found between the
optimal constant stiffness and variable stiffness designs.

8.3.2 Variable Stiffness Design with Variable Laminate Thickness

The buckling load approximation presented in section 8.2 is readily extended to in-
clude thickness as a design variable, as explained in section 3.2.4. Hence, the de-
veloped optimization routine was also used to compute the optimal thickness and
stiffness distributions simultaneously. Including thickness as a design variable re-
quired the total structural volume to be bound. The initial structural volume, V0,
was based on the initial thickness, h0 = 9.81 mm. The optimization problem there-
fore consisted of maximizing the buckling load, subject the aforementioned volume
constraint, and was solved for a range of different lower bounds on laminate thick-
ness, ĥL = h/h0 = 1.0, 0.9, . . . 0.4. This was to assess the influence of minimum gauge
thickness on the optimal solution.

The first four eigenvalues of the obtained optimal designs are presented in Ta-
ble 8.2. All values are normalized with respect to the critical buckling load of a
quasi-isotropic laminate with uniform thickness, h0. The optimum constant stiffness
solution obtained previously is also provided for comparison purposes. Two trends
were noticed from the tabulated data, one, the minimum and maximum laminate
thickness both converged to an asymptote, after which they did not change, even if
the lower bound, ĥL, was further reduced. Two, as the lower bound on thickness was
decreased, the spacing between the first four critical eigenvalues also decreased. As
was the case for the planar structures studied and presented in chapter 7, significant
improvements in the critical buckling load are achieved when allowing thickness to
vary over the structure. The maximum buckling load, found when ĥL < 0.6, was
150% higher than the quasi-isotropic laminate and approximately 60% higher than
the best constant stiffness solution.

Table 8.2: Normalized buckling loads for a range of laminate designs, with λ̂ = λ/λQI
cr ,

ĥ = h/h0 and hL the lower bound on thickness

Design ĥmin ĥmax λ̂1 λ̂2 λ̂3 λ̂4

Quasi Isotropic 1.000 1.000 1.000 1.163 1.503 1.789
Constant Stiffness 1.000 1.000 1.582 1.583 2.252 2.413
Variable Stiffness, ĥL = 1.0 1.000 1.000 1.813 1.817 2.297 2.500
Variable Stiffness, ĥL = 0.9 0.900 1.313 2.182 2.183 2.336 2.456
Variable Stiffness, ĥL = 0.8 0.800 1.397 2.358 2.360 2.439 2.499
Variable Stiffness, ĥL = 0.7 0.700 1.470 2.453 2.456 2.520 2.540
Variable Stiffness, ĥL = 0.6 0.600 1.481 2.460 2.488 2.497 2.592
Variable Stiffness, ĥL = 0.5 0.580 1.496 2.499 2.502 2.541 2.570
Variable Stiffness, ĥL = 0.4 0.575 1.494 2.499 2.507 2.559 2.560
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The optimal lamination parameter and thickness distributions for the designs with
ĥL = 0.9 and ĥL = 0.4 are presented in Figures 8.6 and 8.7, respectively. The in-plane
and flexural lamination parameter distributions, V1,3A and V1,3D, respectively, were
found to have similar features to those found previously for the constant thickness
designs, which were discussed in subsection 8.3.1. The extensional and bending stiff-
nesses of the panel’s central region, connecting the two hinged edges, were found to be
largest along the x-axis. Only small differences in lamination parameter distributions
were found between the design for ĥL = 0.9 and ĥL = 0.4, where the most noticeable
was the slightly larger central red region seen in 8.7(b) when compared to Figure
8.6(b).

Thickness buildup for both designs was found to occur primarily in the central
regions of the panel with a bias along the x-axis, as can be seen Figures 8.6(e) and
8.7(e). The local thickness increase resulted in improved bending stiffness and hence
higher buckling loads. Additional thickness buildup was found towards the clamped
edges for the design with ĥL = 0.4, see Figure 8.7(e), which also suggested locally
improved bending stiffness. The pre-buckling deformations and buckling modes were
found not to differ significantly compared to those presented for the previous design
problem in subsection 8.3.1 and were therefore not reproduced.

8.4 Concluding Remarks

A conservative convex separable approximation, matching the approximation form
discussed in chapter 3, for the buckling load of shell structures was presented. To
retain convexity of the approximation it was necessary to expand the geometric stiff-
ness terms linearly with respect to the element stiffness matrices while the material
stiffness matrix was expanded reciprocally. Similarly, it was necessary to linearize the
geometric stiffness terms in terms of thickness when laminate thickness was included
as a design variable. The optimization framework developed in chapter 3 was sub-
sequently used to solve an example problem for several different nominal laminate
thicknesses. Improvements of 15-20% with respect to the best constant stiffness de-
sign were obtained for panels with a range of side-length to thickness ratios. Including
thickness as a design variable resulted in laminate designs improving over 60% with
respect to the best constant stiffness design, and 150% with respect to a baseline
quasi-isotropic laminate.

The obtained lamination parameter and thickness distributions indicated that in-
creased buckling loads were obtained primarily due to improved laminate bending
stiffness. This is in contrast to the results obtained for flat panels in chapters 5 and
6 , where the primary mechanisms were found to be related to in-plane load redistri-
bution. The importance of both the laminate’s extensional and bending stiffness in
improving the buckling performance of a structure was also seen in chapter 7. As the
structures, and the laminates of which they comprise, become more complex it will
inevitably become difficult to identify the primary mechanisms resulting in improved
buckling performance. The developed convex conservative separable approximation
of the buckling load implemented within the developed design optimization frame-
work has, thus far, proven to be an effective tool in for optimizing variable stiffness
composite structures.
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CHAPTER 9

Design Application: Fuselage Window Belt Section

“As far as the laws of mathematics refer to reality, they are not certain,
and as far as they are certain, they do not refer to reality”

Albert Einstein

A substantial portion of the presented research was conducted within the scope of
the AUTOW-Project, part of the European Union sixth framework program, which
focused on using fiber placement technology to design and manufacture structures
using dry tow placement technology. Thus far, the presented research has focused
primarily on the development of an efficient variable stiffness design routine in terms
of lamination parameters and the derivation of structural response approximations
that were cast into the form required by the developed design framework.

To demonstrate the capabilities of the variable stiffness design approach for more
realistic problems, two design studies were conducted within the AUTOW-Project,
the first of which is presented in this chapter. The chosen design problem replicated
a portion of a window-belt section of a light business jet. The design study objective
was twofold, one, to demonstrate the improvements possible in terms of strength using
the variable stiffness concept, and two, to deliver a set of fiber paths manufacturable
with the available fiber placement machine for experimental validation.

The majority of modern aircraft are built using the stressed-skin concept, where
fuselage and wing skins are required to carry a substantial portion of the structural
loads. Often holes must be introduced in these skins, be it for practical purposes or
passenger comfort, resulting in undesired stress concentrations. Cabin pressurization
leads to the presence of large tensile forces in the fuselage skin. Stress concentrations,

The work presented in this chapter was conducted as part of the AUTOW-Project, see

http://www.autowproject.eu for more details. Several results and figures published in project

deliverable D30 have been used and are not original work done by the author. The author would

like to thank Dassault Aviation (DAv) for their contribution to the research presented here.
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which occur due to the presence of windows, must be accounted for by reinforcing
these regions, something which is even more prevalent in small business jets due to
the relatively small window pitch compared to commercial airliners.

Figure 9.1: Example of a window belt section of an average size business jet (Source DAv)

An example of a window belt section of a small business jet is presented in Figure
9.1. Working together with Dassault Aviation this was used to define an example
problem to study how stiffness tailoring might be introduced to reduce the presence
of stress concentrations and increase the ultimate failure load. A simplified problem
description is presented in section 9.1. Subsequently, three different laminate design
studies were conducted. The initial design studies were conducted to obtain straight
fiber designs to serve as a baseline, and are presented in section 9.2. In a second design
study, section 9.3, the developed variable stiffness optimization routine was used to
maximize laminate strength and retrieve possible fiber paths. Due to limitations both
in time and manufacturing capabilities, a third set of designs was obtained using
linear variation such that they could be manufactured and tested using the available
resources, these are discussed in section 9.4. An overview and comparison of the
different designs is presented in section 9.5. Unfortunately experimental results were
unavailable at the time of writing of this thesis and could therefore not be included
in this chapter.

9.1 Problem Description

The goal of the developed example problem was to capture essential aspects of the
window-belt design, while simplifying it enough such that it could be designed, man-
ufactured and tested within the limited time and resource budgets available. The
maximum panel dimensions were limited by the working-envelope of the fiber place-
ment machine and the dimensions of the one mega-newton tensile test-bench, however,
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the chosen design dimensions were realistic. To simplify experimental testing further,
the panel was considered to be loaded only under tension and to be flat, and therefore
panel curvature and pressure loads were not considered. Two cut-outs were integrated
on each side of the panel to replicate the stress state typically found around a window.
A description of the test specimen geometry and loading is provided below followed by
the used design criteria and finite element model specifications. Material properties
for carbon-epoxy IM7/8552 used during the design studies are listed in Appendix A.

9.1.1 Geometry and Loading

Several design configurations were studied to capture the essential failure mechanisms
of the window-belt section along the central hole in a simplified test-specimen. The
final geometry and loading, as defined by Dassault Aviation, are presented in Figure
9.2. The test specimen consisted of a 1m by 1.4m panel with a large central hole
having a diameter of 310mm. The edges included a waist-section with a radius of
approximately 1.24m to simulate the stress field caused by adjacent windows. Two
load introduction points were included, which were aligned with the bands along the
window as indicated in Figure 9.2(b). The specimen was padded up to a thickness of
approximately 10mm towards the fixtures to ensure proper load introduction. Initial
load and laminate thickness were selected such that failure of an isotropic laminate
would occur at a reasonable load level, ensuring sufficient safety margin such that all
test specimens could be tested to failure using the available test-bench. Therefore, a
sixteen-ply quasi-isotropic laminate was set as a baseline, having a predicted failure
load of P = 633 kN.
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Figure 9.2: Simplified window belt geometry, dimensions and loading with padded up section
for load introduction
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9.1.2 Design Criteria

The design study objective was to investigate configurations for a 16-ply balanced
symmetric laminate to improve its ultimate load carrying capacity. Laminate failure
is notoriously difficult to predict, which is reflected by the large number of laminate
failure criteria available both in the literature and within the different aerospace cor-
porations, see for example Hinton et al. (2004). Two different laminate failure criteria
were implemented to optimize and compare the different designs in this chapter. The
first criteria was defined by Dassault Aviation, referred to as the “Hole Edge Strain
Criteria”, and the second was based on the conservative Tsai-Wu failure envelope
derived earlier in chapter 4.

Hole Edge Strain Criteria

Dassault makes use of hole edge strains to define laminate failure when designing
components with large holes, such as a window-belt section. Hole edge strain is
defined as the strain in the direction tangent to the hole’s edge. In a finite element
model strains along a hole’s edge are typically computed by inserting rod-elements
with weak axial stiffness between all nodes located along the hole’s edge. A mesh
edge length of 5mm is specified along the hole’s edge and the principal strains along
this edge are not permitted to exceed a predefined critical value. Laminate failure
can therefore be expressed as the point at which the normalized critical strain, εcr,
exceeds unity:

εcr = max
(
εmax
εt

,
εmin
εc

)
> 1 (9.1)

where εmax and εmin are the maximum and minimum principle strains found along the
circumference of the hole, normalized by the tensile and compressive failure strains,
εt and εc, respectively. An optimization problem to maximize laminate strength can
subsequently be formulated as:

min εcr (9.2)

where different sets of design variables were used to solve for the above equation,
which will be discussed when the individual design studies are presented in section
9.2, 9.3 and 9.4.

Failure Index: Tsai-Wu

In addition to the failure criterion given in equation (9.1), the Tsai-Wu based fail-
ure criterion originally developed in chapter 4 was used. This failure criteria was
integrated into the developed variable stiffness laminate design framework together
with Khani et al. (2011). For this case laminate strength is maximized through the
following optimization problem:

min (max ri) (9.3)

where max ri is the critical failure index value within the structure. The failure index
values were calibrated such that ultimate failure of the baseline quasi-isotropic design
occurred at the same load as that predicted by equation (9.1).
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For practical applications additional design rules are often implemented to ensure
laminate robustness, such as the ten percent rule, which specifies that at least ten
percent of the plies should be in the 0◦, 90◦, 45◦ and −45◦ direction. Doing so ensures
robustness of the stack to secondary loading which is difficult to account for when
modeling. An equivalent laminate robustness constraint, presented by Abdalla et al.
(2009a), was implemented in the lamination parameter design space by restricting
the ratio of minimum to maximum in-plane laminate stiffness. Therefore, to ensure
laminate robustness an equivalent five percent rule was implemented as a constraint
for several of the conducted design studies. A five percent rule was implemented
instead of the traditional ten percent rule to allow for more design freedom.

9.1.3 Finite Element Model Description

The test specimen was quarter-symmetric and therefore only a quarter of the structure
was modeled to reduce the computational burden during the design studies. Two
different mesh densities were considered, initial design studies were conducted with
mesh (1), with an hole-edge length of 10mm, while later the designs selected for
manufacturing were validated with a finer model having the 5mm hole-edge length
specified by Dassault aviation. Mesh (1) has a total of 455 nodes 822 elements while
mesh (2) consists of 1843 nodes and 3514 elements.

y
x

(a) Mesh (1), 10mm hole-edge length

y
x

(b) Mesh (2), 5mm hole-edge length

Figure 9.3: Two different mesh densities were used for the design studies and validation of
the manufactured designs respectively

The following boundary conditions were applied, where U and R represent the
displacement and rotation, respectively, about axis 1 (x), 2 (y) or 3 (z):
• U1 = U3 = R1 = R2 = R3 = 0, along the top edge (clamped)
• U2 = R1 = R3 = 0, along the bottom edge (symmetry)
• U1 = R2 = R3 = 0, along the right edge (symmetry)
• U2 equal for all nodes along the top edge (straight edge)
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Modeling was conducted using an finite element code implemented in MatlabTM

based on templates defined by Felippa (2003), presented in Appendix B, and vali-
dated with AbaqusTM version 6.8. Hole edge strains were computed in Abaqus using
rod-elements connected to adjacent nodes along the holes edge with weak axial stiff-
ness, essentially representing a virtual strain-gauge. Hole edge strains were computed
directly from nodal displacements when using the in-house finite element code. Verifi-
cation of the in-house code was conducted for several different laminate configurations
and critical failure strains along the hole’s edge were not found to deviate more that
4% with respect to the results obtained with Abaqus. Additionally, critical failure
strains predicted by mesh (1) were within 0.8% of those predicted by mesh (2), indi-
cating that mesh (1) was suitable enough for the design studies.

9.2 Constant Stiffness Laminate Design Study

Constant stiffness laminates refer to laminates that consist of a single stacking se-
quence over the entire structure. Four alternate design problems are presented in this
section using the two failure criteria defined in section 9.1. All results were compared
to the baseline sixteen-ply quasi-isotropic laminate, [02, 902,±452]s. The following
design problems were solved:

CSD1: Parametric study of designs based on 0, ±45, 90 degree plies
CSD2: minθ (εcr) with θ ∈ [0, 5, 10 . . . 90]
CSD3: minV (max ri)
CSD4: minV (max ri) with equivalent 5% rule

where all laminates were restricted to be balanced and symmetric, thus a maximum
of four plies were designed for a total laminate thickness of 16-plies.

The first design study, CSD1, was simply a parametric study of the critical failure
strains for different percentages of the constituent plies. The second study, CSD2, the
critical strain was minimized using a generic genetic algorithm with 5◦ ply-encoding,
where all angles are measured from the horizontal x-axis of the panel, see for example
Gürdal et al. (1999). The designs for CSD3 and CSD4 were obtained in lamination
parameters space using the design framework presented in chapter 3, by defining a
single set of lamination parameters for the entire structure. The obtained lamina-
tion parameters were subsequently converted to a stacking sequences using either a
heuristic search method or solving analytically for [±θ1,±θ2]2s when possible (Gürdal
et al., 1999). Since the presented problem was governed only by laminate in-plane
stiffness, the conversion from lamination parameters to stacking sequences was rela-
tively straight forward. The obtained results are summarized in Table 9.1.

The quasi-isotropic laminate, design #1, was used as a baseline. As expected,
results from the parametric design study, CSD1, demonstrated that aligning fibers
with the primary load direction, the y-axis, was beneficial. For practical purposes it
was necessary to include a minimum of plies in all directions, however, aligning a ma-
jority of plies in the load-direction, design #2, caused ultimate load carrying capacity
of the laminate to be increased by 28%. Using a genetic algorithm to determine the
laminate with the lowest critical strain, CSD2, yielded several results with similar
critical strain values. The best design, #3, had an ultimate load approximately 64%
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Table 9.1: Overview of designs obtained for the different constant stiffness design problems.
All designs are manufacturable and designs satisfying the equivalent five percent rule are
marked (εcr: critical hole edge strain, ri: failure index)

# Method Laminate Info εcr max ri 5% Man

1 – [02, 902,±452]s, baseline 0.9919 0.9953 X X
2 CSD1 [02, 904,±45]s 0.7809 0.8609 X X
3 CSD2 [±802,±75, 902]s 0.6099 0.6307 X
4 CSD3 [±67.5]4s 0.7206 0.4751 X
5 CSD4 [±49,±86]2s 0.7169 0.5175 X X

higher than the baseline quasi-isotropic laminate. The equivalent five percent rule
was not applied as a constraint for this design case and therefore it did not satisfy
the laminate robustness requirements.

The gradient-based optimization problems, CSD3 and CSD4, yielded a single de-
sign point in lamination parameter space, which could subsequently be converted
to multiple equivalent laminates. The results presented here were obtained using a
direct-solution method (Gürdal et al., 1999), which only allows for a maximum of two
different ply orientation angles to be found. If a larger set of laminates is required,
to obtain a more robust laminate, a genetic algorithm can be used to retrieve suit-
able laminates. Design #5 satisfied the equivalent five percent rule and had a failure
index that was approximately 60% higher than the quasi-isotropic case and was 45%
improvement in terms of critical strains.

9.3 Variable Stiffness Laminate Design Study

A method of approximating the strength of variable stiffness laminates, based on the
conservative formulation of the Tsai-Wu failure criterion presented in chapter 4, is
presented by Khani et al. (2011). This approximation, which follows the approxima-
tion form presented in chapter 3, was used with the developed optimization framework
to maximize the strength of the considered window-belt section, the results of which
are presented in this section. The following design problems were considered:

VSD1: minVi (max ri)
VSD2: minVi (max ri) with equivalent 5% rule
VSD3: Direct solution for [±θ1i,±θ2i]2s
VSD4: Solution for [±θ1i,±θ2i]2s with curvature constraints

Note that subscript i indicates that the lamination parameters, V, failure indices,
r, and fiber angles, [±θ1,±θ2], are defined independently for each of the i nodes within
the structure.

In the first design problem, VSD1, the lamination parameter distribution max-
imizing laminate strength was obtained. In the second problem, VSD2, laminate
strength was maximized while the stiffness was constrained to satisfy the equivalent
five percent rule. This allowed the penalty of ensuring laminate robustness on maxi-
mum laminate strength to be evaluated. Two different methods were used to obtain
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the fiber angle distribution corresponding to the optimum found for VSD1. The first,
VSD3, the local stacking sequence was solved analytically (Gürdal et al., 1999), while
in the second case, VSD4, a fiber angle retrieval strategy developed by van Campen
(2011) was used including constraints on in-plane curvature for which the retrieval
algorithm was seeded with the results obtained from VSD3. The in-plane curvature
constraints were based on the minimum achievable turning radius of two materials
considered during the AUTOW-Project. The minimum turning radius, Rmin, for
these materials was 80mm and 200mm.

The critical strain and failure index of each optimal design are presented in Table
9.2, where unity indicates failure. It is immediately clear that substantial gains in
strength are possible with proper stiffness tailoring. The designs indicate that strength
improvements in the order of 100-350% are possible, both in terms of critical strain
and in terms of failure index. The obtained lamination parameter distribution for
designs #6 represented the theoretical optimum stiffness distribution for maximum
strength in terms of the failure index. The critical hole edge strain of the optimum
variable stiffness design, #6, was also substantially improved with respect to the
baseline laminate. Enforcing laminate robustness through the equivalent five percent
rule, resulted in the maximum failure index increasing with respect to design #6.
Additional performance reduction occurred when converting stiffness distributions to
fiber angle distributions, even if design constraints were neglected as in design #8.
Incorporating constraints on minimum turning radius lead to a further decrease in
maximum achievable strength, as can be seen for designs #9 and #10.

Table 9.2: Summary of designs obtained for the different variable stiffness optimization
problems. Manufacturable designs satisfying the equivalent five percent rule are marked (εcr:
critical hole edge strain, ri: failure index)

# Method Laminate Info εcr max ri 5% Man

6 VSD1 Lamination Parameters 0.2859 0.2157
7 VSD2 Lamination Parameters, 5% Rule 0.3316 0.2692 X
8 VSD3 [±θ1i,±θ2i]2s for #6 0.3037 0.2884
9 VSD4 Rmin = 80mm for #6 0.4279 0.3424 X∗

10 VSD4 Rmin = 200mm for #6 0.5828 0.3966 X∗

∗ Designs would require individual tow control for manufacturing, not available on the current machine

The optimal lamination parameter distribution corresponding to design #6 is
presented in Figure 9.4. The lamination parameter distribution is difficult to interpret
in detail, however, what is clear from the presented results is that a stiff band exists
along the vertical axis alongside the hole, corresponding to the blue and red region
in the V1A and V3A plots, respectively. The complex stress state around the hole
however, makes it difficult to interpret the results here visually. Similar lamination
parameter distributions were found for VSD2, where the five percent rule was enforced
for laminate robustness, with the variation in lamination parameter distribution being
slightly less pronounced due to the smaller available design space.

To interpret the optimal solution obtained in the lamination parameter space
better, it was useful to solve for the corresponding fiber angle distribution, VSD3.



9.4 MANUFACTURABLE DESIGNS USING LINEAR VARIATION 153

(a) V1A

 

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) V3A

Figure 9.4: Optimal lamination parameter distribution for maximum laminate strength

Laminate strength for this design problem was only a function of laminate in-plane
stiffness, therefore, a direct analytical solution method was used (Gürdal et al., 1999),
which assumed that two design plies, [±θ1,±θ2]s, of equal thickness were present. The
method cannot always guarantee a real solution, nor can manufacturing constraints
be taken into account, however, it does provide insight into possible fiber orientations.
The obtained fiber angle distribution of one of the plies is presented in Figure 9.5(a),
which highlights the following general trends; one, there is a stiffer vertical band
containing 90◦ fibers alongside the hole spanning the entire length of the panel and
two, there is a more compliant region with 0◦ fibers directly above the hole and the
laminate becomes gradually stiffer, 20◦ to 50◦ fibers, towards the top edge of the
panel. Including realistic manufacturing constraints resulted in less severe fiber angle
variation and a less pronounced vertical band adjacent to the hole, as can be seen in
Figure 9.5(b).

To understand how the stiffness distribution improves the strength of the panel, it
was interesting to investigate the failure index distribution, plotted in Figure 9.6, for
both the baseline laminate, design #1, and the optimal laminate stiffness distribution,
design #6. The stress concentration, which is the red region found at the holes edge,
causes initial failure, as can be seen in Figure 9.6(a). The effect of the stress concen-
tration around the hole was reduced significantly by tailoring the stiffness distribution
and the design tends to a “fully-stressed” design, as seen from Figure 9.6(b).

9.4 Manufacturable Designs using Linear Variation

In the previous section the developed strength optimization framework was used to
demonstrate the potential improvements in strength that can be achieved using fiber
steering. The results also provided insight into the effect of curvature constraints,
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(a) +θ2 ply for design #8, without man-
ufacturing constraints

(b) +θ2 ply for design #10, with a min-
imum steering radius of 200mm

Figure 9.5: Fiber angle distributions of a single ply obtained for a [±θ1,±θ2]s laminate
corresponding to the optimum lamination parameter distribution of design #6
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Figure 9.6: Failure index distribution for the baseline quasi-isotropic laminate, design #1,
and the optimal variable stiffness laminate, design #6
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which are necessary to ensure manufacturability, on fiber path variations. Due to the
limitations of the available fiber placement software and machine, additional man-
ufacturing constraints had to be considered. Therefore, it was necessary to explore
solutions that capture as much of the theoretical improvements as possible, however,
these needed to be solutions that consisted of fiber paths that were readily manufac-
turable with the available hardware and software.

Linear variation, a fiber path parameterization scheme briefly discussed in section
1.3.1, was used to conduct two separate design studies. The parameters describing
linear variation are schematized in Figure 9.7, where the fiber angle varies linearly
from angle T0 to angle T1 over the characteristic distance d. The axis of variation,
x′, is rotated by angle φ with respect to the global x-axis. With this convention a
layer can be represented in a compact notation by φ < T0, T1 >. Linear fiber angle
variation was used as it allowed manufacturable paths to be generated for the given
hardware and software within the available time.

x

A

B

y

dT0

T1

x'

y'

Figure 9.7: Schematic representation of a fiber path defined using linear variation, which
can be compactly denoted as φ < T0, T1 > and where d represents a predefined length over
which the variation occurs (Reproduced from Gürdal et al. (2008))

To convert a single fiber path into a ply, the fiber path should be repeated sev-
eral times to cover the entire structure’s surface. Two different fiber-path replication
strategies were used, the parallel path method and the shifted path method, as shown
in Figure 1.11. Designs obtained with the two aforementioned path replication strate-
gies are presented in the following subsections.

9.4.1 Parallel Path Designs

Parallel paths are generated by placing each subsequent course adjacent to the pre-
viously placed course. The parallel path method has several advantages; one, no
thickness variation occurs due to overlaps or gaps within a single ply, which simpli-
fies manufacturing and comparison of steered and traditional laminate configurations.
Two, the parallel path method exists as a standard replication strategy within existing
fiber-placement software and therefore, entire plies can be generated automatically
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from a single course path. The primary disadvantage associated with parallel path
designs is that the maximum curvature increases with each successively placed path,
which may result in local fiber buckling or kinking. In practice this results in a de-
creased set of manufacturable fiber paths that can be considered. Additionally, the
stiffness variation dictated by the parallel paths may not be suitable for the considered
problem.

Since it was difficult to find intuitive parallel paths that suitably matched the
trends in stiffness distribution found in section 9.3 a genetic algorithm was used to
search for fiber paths. Critical hole edge strain was used as an objective function,
equation (9.2). Due to the quarter-symmetry of the problem, the origin of the refer-
ence path coordinate frame (x,y) was centered at the center of the central hole (0,0).
The characteristic distance, d, was set to 262.5 mm or 350 mm for variation along the
x-direction or y-direction, respectively. This allowed the fiber angle, θ, to vary from
T0 to T1 and back to T0 along half of the plates length or width, which was believed
best to capture the desired stiffness variation. The course width was taken to be 50
mm, equivalent to the width of eight, quarter-inch tows.

A genetic algorithm was used to search the design space for optimal solutions.
Initial solutions were found to consist of four identical design plies, therefore, to make
the designs more robust, such that they satisfied the equivalent five percent rule, the
outer plies were replaced with a ±40◦ ply. This in turn facilitates manufacturing as
the steered plies can be placed on an already placed straight fiber ply. Two of the
designs found using a genetic algorithm are presented Table 9.3. Both designs contain
only mild-steering and tend to represent plies with fibers aligned primarily along the
vertical axis. Both designs result in an increased load carrying capacity with respect
to the baseline of between 50-55% in terms of critical strains or between 75-88% in
terms of failure index.

Table 9.3: Overview of two obtained parallel path designs, both designs are manufacturable
and satisfy the equivalent five percent rule (εcr: critical hole edge strain, ri: failure index)

# Method Laminate Info εcr max ri 5% Man

11 LVD1 [±40, 90 < ±10, 0 >3]s 0.6454 0.5705 X X
12 LVD1 [±40, 90 < ±15, 0 >3]s 0.6643 0.5339 X X

A sample ply and its balanced counterpart corresponding to the steered ply in
design #12 are presented in Figure 9.8. As can been seen, the solution relies predom-
inantly on aligning fibers along the load direction, however, it is not able to capture
the desired softening above the hole, as was seen in the variable stiffness designs
presented in section 9.3.

9.4.2 Shifted Path Designs

Using a parallel path strategy did not yield results with significantly large differences
with respect to constant stiffness alternatives. Therefore, it was decided to explore
the shifted-path replication strategy in order to find a steered solution that captures
the desired stiffness distribution more accurately. Using shifted paths has the advan-
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(a) Design #12: 90 < 15, 0 > (b) Design #12: 90 < −15, 0 > (bal-
anced ply)

Figure 9.8: Plot of course centerlines of the parallel path design #12 and the corresponding
balanced ply

tage that the maximum curvature is identical for each path, while it can be easily
implement in fiber-placement software by programming multiple fixed offsets of ref-
erence path. The primary disadvantage is that thickness variation will occur within
the laminate due to gaps and overlaps, however, the location of the gaps or overlaps
may be designed such that structural performance benefits from those features. As
was the case for the parallel path method, stiffness variation is defined by a single
path, which may not be suitable for the considered problem.

A parametric study, using the same reference path parameters as used in the
parallel path study, was conducted to search for suitable fiber paths. The parametric
study was conducted intuitively by defining paths resulting in stiffer vertical bands
beside the central hole while softening towards the center of the panel. Using the
shifted path strategy will inevitably result in a non-uniform thickness distribution
within the laminate due to gaps or overlaps. In all of the considered designs the
reference-path was shifted such that no gaps occurred, hence, only overlaps were
present in all designs. This mitigated any issues associated with resin-rich areas,
however, since the laminate thickness was not uniform, designs had to be selected
such that they were comparable to those obtained in previous sections. Two options
for comparison were available; one, the design could be chosen such that the failure
load was identical to a reference design and subsequently compare panel weights, or
two, the shifted path panels could be designed such that they had the same weight
as the baseline. Predicting failure loads precisely using numerical methods is difficult
and may vary with respect to those determined experimentally. Therefore, it was more
suitable to select the second option as it was relatively straightforward to ensure equal
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weight designs. Thereafter, each design could be tested to failure and performance
subsequently compared directly.

Table 9.4: Overview of two obtained shifted path designs, both designs are manufacturable
and satisfy the equivalent five percent rule (εcr: critical hole edge strain, ri: failure index)

# Method Laminate Info εcr max ri 5% Man

13 LVD2 [0 < ±68,±80 >2,±35]s 0.5445 0.5049 X X
14 LVD2 [0 < ±40,±80 >,±40± 902]s 0.5260 0.4111 X X

Two of the best designs found during the parametric study are presented in Table
9.4. Note: due to the thickness buildup only 12 plies are required for both designs to
have the same weight as the 16-ply baseline laminate. Both designs were found largely
to satisfy the five percent rule, with design #14 having a small region within the
laminate that slightly violated this constraint. The nature of the stiffness variation for
both designs was similar with only the degree of stiffness variation changing. Design
#14 was superior both in terms of critical strain and failure index, even though only
4 of the 12 plies were steered. Design #14 also had the largest degree of fiber angle
variation and therefore the largest thickness buildup. Design #13 had slightly higher
critical strain values, however, performance was worse in terms of failure index.

(a) Design #13 < 68, 80 > (b) Design #14 < 40, 80 >

Figure 9.9: : Plot of course centerlines of the shifted path designs #13 and #14, where
closer course spacing corresponds to larger percentage of overlaps

In order to visualize the obtained designs, the course centerline for designs #13
and #14 are presented in Figure 9.9. Both plies contain a comparatively soft section
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above the hole and become stiffer in the band alongside the hole. The designs result
in overlaps occurring in the stiffer band, further reinforcing the load-redistribution
to this band. The closer centerlines are to each other, the more thickness buildup
occurs locally. The more severe fiber angle variation of design #14 resulted in larger
thickness buildups.

The normalized thickness distribution of both laminates is presented in Figure
9.10. The thickness distribution was computed using the finer mesh, Mesh (2), to
capture the overlaps that occur due to path shifting better. The maximum thickness
for both laminates was similar, however, design #14 had a well defined thicker vertical
band adjacent to the hole, essentially acting as a built-in stiffener transferring the
majority of the loads around the hole.
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(b) Design #14 < 40, 80 >

Figure 9.10: : Plot of the thickness distribution of shifted path designs #13 and #14, where
the colorbar indicates the total number of plies in the laminate at any given location. Due
to steering, thicker vertical bands occur beside the hole that are almost twice as thick as the
nominal laminate thickness of 16 plies.

9.5 Design Comparison

The performance of the designs obtained using the different design methods are sum-
marized in Table 9.5 and were computed using Mesh (1). Percent difference in critical
hole edge strain and failure index with respect to design #1 are tabulated for each de-
sign. Note that the critical failure index was calibrated such that both failure criteria
predict failure of the quasi-isotropic laminate for the same applied load, see section
9.1. Designs that were manufacturable using the available fiber placement machine
and those satisfying the equivalent five percent rule are marked.
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Table 9.5: Overview of designs obtained for the different design problems. Manufacturable
designs satisfying the equivalent five percent rule are marked (%εcr and %ri = percent im-
provement in terms of critical hole edge strain and failure index, respectively, compared to
the baseline)

# Method Laminate Info %εcr %ri 5% Man

1 – [02, 902,±452]s, baseline 0 0 X X
2 CSD1 [02, 904,±45]s 27 16 X X
3 CSD2 [±802,±75, 902]s 63 58 X
4 CSD3 [±67.5]4s 38 109 X
5 CSD4 [±49,±86]2s 38 92 X X
6 VSD1 Lamination Parameters 247 361
7 VSD2 Lamination Parameters, 5% Rule 199 270 X
8 VSD3 [±θ1i,±θ2i]2s for #6 227 245
9 VSD4 Rmin = 80mm for #6 132 191 X∗

10 VSD4 Rmin = 200mm for #6 70 151 X∗

11 LVD1 [±40, 90 < ±10, 0 >3]s 54 74 X X
12 LVD1 [±40, 90 < ±15, 0 >3]s 49 86 X X
13 LVD2 [0 < ±68,±80 >2,±35]s 82 97 X X
14 LVD2 [0 < ±40,±80 >,±40± 902]s 89 142 X X
∗ Designs would require individual tow control for manufacturing, not available on the current machine

The best constant stiffness design satisfying the five percent rule was design #5
and this was 38% stronger than the baseline design in terms of critical hole edge
strain. Design #5 was optimized in terms of the failure index, which was improved
by 92% with respect to the baseline laminate.

The theoretically optimal solution, design #6, was found in terms of lamination
parameters and by far supersedes all other designs both in terms of critical strain and
failure index. Even when constraining laminate robustness, design #7, theoretical
stiffness distributions resulted in strength improvements of 199% and 270% in terms
of critical strain and failure index, respectively. Converting design #6 into a stacking
sequence while enforcing realistic turning radii, designs #9 and #10, resulted in
improvements in the failure index in the order of 150-190%.

The two designs found using parallel path fiber path shifting, which had uniform
thickness, showed improvements of roughly 50% with respect to the baseline design
in terms of strains and 75-85% in terms of failure index. Both designs were readily
manufacturable and contained only mild-steering. The designs did not fully capitalize
on the benefits that could be achieved with steering, as the steered plies only deviate
slightly from a straight fiber configuration containing 90◦ plies. In fact, the straight
fiber design #4 is comparable in terms of strength. The shifted path designs #13 and
#14 showed strength improvements between 80-90% in terms of strain and more than
95% in terms of failure index with respect to the baseline. These designs were be-
lieved best to capture the desired stiffness distribution found in the theoretical studies
conducted with lamination parameters. These designs yielded a particularly elegant
solution in which the optimal fiber angle distribution also resulted in a beneficial
thickness distribution, taking full advantage of the fiber steering capabilities.
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A trade-off meeting took place together with Dassault Aviation to select a design
for manufacturing and testing. The parallel path and shifted path designs were com-
pared in terms of their relative performance, ease of manufacturing and to see if the
capabilities of steering were adequately demonstrated, however, the primary design
selection driver was the total time required to manufacture the selected design due
to the tight project timeline. The fiber placement software available at Dassault only
allowed a single spline to be shifted in parallel and hence, designs #10 and #11 were
most suited from a manufacturing point of view, however, in terms of demonstrating
the benefit of fiber placement the shifted path designs #13 and #14 were most suit-
able. Due to time restrictions it was decided to manufacture the parallel path design
with most steering, hence design #11 was selected to be manufactured.

9.6 Concluding Remarks

Several design studies were conducted to maximize the strength of a simplified window-
belt section of a light business aircraft and the results presented in this chapter. De-
signs were presented for traditional straight fiber laminates and for variable stiffness
laminates. Two strength criteria were used; one, based on hole edge strain values
defined by Dassault Aviation, and two, a failure index based on the Tsai-Wu crite-
rion as presented in chapter 4. An approximation of the failure index, satisfying the
approximation form presented chapter 3, is developed by Khani et al. (2011). The
variable stiffness optimization framework developed in chapter 2 was subsequently
used to maximize laminate strength in terms of lamination parameters successfully.
Constraints on laminate robustness, via an equivalent five percent rule presented by
Abdalla et al. (2009a), and manufacturing, by limiting fiber path curvature, were also
applied. Tailoring laminate stiffness properties yielded a 350% increase in theoreti-
cal laminate strength with respect to a quasi-isotropic baseline laminate. Imposing
constraints on laminate robustness and minimum steering radius to ensure manufac-
turability limited the achievable strength increase to 150% with respect to the baseline
design.

Due to time limitations and constraints imposed by the available fiber placement
software and hardware, alternative designs based on linear fiber angle variation were
also obtained. Designs using parallel path and shifted path replication strategies were
studied. The shifted path strategies were found to match the stiffness distributions
obtained in the theoretical studies best and also yielded the largest improvements in
strength. Due to software limitations it was, however, only possible to manufacture
parallel path designs. The parallel path design selected to be manufactured had an
ultimate load 49% higher than the baseline design in terms of hole edge strain and
86% higher in terms of failure index.

It is interesting to note that the trends in improved laminate strength were not
always consistent in terms of critical edge hole strain and failure index. It would
therefore also be interesting to study the origin of the difference in results obtained
when using the two different failure criteria as objective function.
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CHAPTER 10

Design Application: Aircraft Wing Rib

“Experience is a hard teacher because she gives the test first, the lesson
afterwards”

Vernon Law

The design and manufacture of a full-scale demonstrator using dry-fiber place-
ment was one of the main hardware related deliverables of the AUTOW-Project. A
sine-wave rib, located close to the wing-root of a large business aircraft, was selected
as the most suitable demonstrator component for the developed technologies. Israel
Aerospace Industry (IAI) was responsible for providing the design requirements, finite
element modeling and laminate design for the demonstrator, which was manufactured
and tested during the project. A competitive variable stiffness design was also devel-
oped to demonstrate the capabilities of the design optimization approach presented in
this thesis. Initially the objective was to design the same full-scale test article designed
and manufactured by the industrial partners. Due to the geometric complexity of the
sine-wave rib, it was decided to investigate an alternative design, which was geomet-
rically less complex, yet made use of fiber steering to improve structural performance.
For this example problem the optimization routine was coupled with NASTRANTM

to conduct all analysis and sensitivity computations, thereby also demonstrating how
to integrate the developed framework with a commercial finite element code.

The geometric description, finite element model and design requirements of both
the original sine-wave rib and a geometrically less complex alternative are presented
in section 10.1. In order to couple the developed optimization framework to the

The work presented in this chapter was conducted as part of the AUTOW-Project, see

http://www.autowproject.eu for more details. Several results and figures published in project

deliverables D15, D16, D23 and D25 have been used and are not original work done by the author.

The author would like to thank Israel Aerospace Industries (IAI) and Institut für Flugzeugbau

(IFB) for their contributions to the presented research.
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chosen commercial finite element environment the desired sensitivity data had to be
obtained, several post-processing computations were required and are described in
section 10.2. The obtained numerical results are presented and discussed in section
10.3, followed by conclusions in section 10.4.

10.1 Problem Description

Israel Aerospace Industries provided the design requirements, initial geometry and
loading for the studied full-scale component based on typical load cases used internally
when designing light business jets. The sine-wave rib used is located towards the
central wing-box and therefore, is subject to high-crushing loads due to global wing
bending and local aerodynamic forces. The sine-wave rib is shown schematically in
Figure 10.1 within a test-rig designed to replicate the considered load case. The test-
rig consisted of a front and rear lug to simulate the connection of the rib to the front
and rear spar and the top and bottom wing skins, which were stiffened to prevent
them from buckling during testing. The test-rig load case was derived from aircraft-
level finite element analysis to ensure that loads present in reality were replicated
during the test.

Figure 10.1: Schematic representation of a sine-wave rib within the used test-fixture with
a rough indication of the overall dimensions (Source IAI)

10.1.1 Design Requirements

The design requirements were provided by Israel Aerospace Industries in a technical
report by Aharon et al. (2009). The design objective was to minimize overall struc-
tural weight while meeting the design requirements discussed below.

Load requirements:

• Ultimate load 1.5 times limit load
• No buckling up to ultimate load is allowed
• Strength criteria: maximum strain and stress damage tolerance values
• Considered loads: aerodynamic loads, crushing load, wing fuel tank pressure
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Four individual load cases were defined. Two were based on SBT-envelope dia-
grams (Shear, Bending and Torsion) for a typical business jet wing. Additionally,
wing-crushing load and fuel pressure load cases were defined. These load cases were
subsequently used to define the load distribution on the test-rig used for the exper-
imental program to replicate the loads experience by the rib in reality. A schematic
overview of the applied loads and boundary conditions is presented in Figure 10.2.
The loads, P1 to P7, are distributed forces applied on a predefined area and are all
of different magnitude. The front lug is restricted from translation in all directions
while the rear lug is on a sliding support.

Figure 10.2: Schematic representation test-fixture loads (Source IAI)

Material specifications and environmental conditions:
• A-basis material allowables, at extreme environmental conditions, were used
• Nominal fiber volume of 60% was assumed with cured ply thickness of 0.13 mm
• Service temperatures ranging from −55◦C to +70◦C
• Lightning strike protection - glass ply insulation used at fastener locations
• Prevention of galvanic corrosion of the wing skin
• Fuel resistance - the used resin system was assumed to be fuel resistant
The material properties of the dry-fiber material developed during the AUTOW-

Project were unavailable during the design process. Therefore, material properties
for carbon-epoxy IM7/8552, listed in Appendix A, were used as was done by Israel
Aerospace Industries. The A-basis values were used to account implicitly for the im-
posed environmental conditions, because the ribs are considered as single load path
structural members within the wing-box. Aluminum with an elastic modulus of 73
GPa and a Poisson’s ration of 0.3 was used for the wing skins, stiffeners are front and
rear lug.

Manufacturing specifications:
• Fabrication tool is IML based
• Interfaces and tolerances were specified
• Account for AUTOW fiber placement machine limitations
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The rib was manufactured at the Dutch National Aerospace Laboratory (NLR)
using the available automated fiber placement machine. The following design require-
ments, related specifically to the used manufacturing technology, were considered:

• Tows require approximately 50 mm of preceding length to be laid up
• No individual tow-cutting available, hence results in a ”saw-tooth” pattern
• Minimum steering radius 200mm
• The maximum gap between tows is about 2 mm
• Minimum radius between flange and web is 10 mm

Fastener specifications:
The rib is connected at the top and bottom wing skin by a double row of fasteners

along the flange with a pitch of seven times the fastener diameter of 3/16th of an inch.
The two rows of fasteners are separated by 20 mm while the outer trace is located 12.91
mm from the flange edge. A similar double row of fasteners is applied to connect the
rib to the front and rear lug with a pitch of 4 times the fastener diameter. Fasteners
were modeled using CBUSH elements in NASTRAN or spot-welding connections in
Catia V5TM.

10.1.2 Sine-Wave Rib Geometry

The sine-wave rib geometry is presented schematically in Figure 10.3 and roughly has
a length of 1370 mm and a hight of 350 mm with a flange width of 51mm. The rib
consists of two zones; Zone A, which contains the flange and the outer sections of the
web. Laminate sizing in this region is driven primarily by the bearing stresses due
to the fasteners. The second region, Zone B, consists of the inner web and is thinner
than the outer web and flange regions.

ZONE B

ZONE A

Figure 10.3: Sine-wave rib geometry and design zones (Source IFB)

10.1.3 Flat Rib Geometry

The objective was to replace the geometrically complex sine-wave rib with an equiv-
alent flat rib. The less complex geometry simplifies both the required tooling and
manufacturing process and hence, should also result in reduced part cost. The flat
rib geometry, presented in Figure 10.4, was derived from the sine-wave geometry and
simply follows the centerline of the sine-wave rib, essentially connecting the already
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flat front and rear sections of the sine-wave rib. As for the sine-wave rib, the flat rib
was divided into an outer region, Zone A, containing the flange and outer sections of
the web and an inner region, Zone B, containing a thinner inner web section. The fas-
tener specifications for the flat rib remain as before, however, overall test-rig loading
was modified slightly to ensure that the applied distributed loads were aligned with
the rib centerline.

ZONE B

ZONE A

Figure 10.4: Flat rib geometry and design zones (Source IFB)

10.1.4 Problem Formulation

The primary reason for introducing an out-of-plane sine-wave in the rib geometry is
to help the structure resist the large crushing loads present due to both aerodynamic
and wing bending forces. Compressive loads typically result in structural instability
or buckling. The out-of-plane dimension of the sine wave increases the second moment
of area, which is directly related to the stability characteristics of the part, however,
the increased geometric complexity results in additional manufacturing difficulties
and cost.

The goal of the presented design study was to investigate the possibility of using
a geometrically less complex part, a flat rib, to replace the sine-wave rib meeting the
same design requirements presented in section 10.1.1. Since buckling is the critical
load case for this structure, it was selected as the primary design driver and this
allowed the design optimization approach presented in chapter 8 to be used. Weight
was not minimized directly as it is a discrete function of the number of plies, however, a
fixed laminate thickness was defined such that the final design contained the minimum
number of plies necessary to meet the imposed design requirements. The optimization
problem was therefore formulated simply as obtaining the stiffness distribution, V,
such that the critical buckling load is maximized:

max
V

(λcr) (10.1)

For several practical reasons only the stiffness distribution of the inner web region,
Zone B, was designed. The laminate layup defined in Zone A was defined by Israel
Aerospace Industries and was not modified for the variable stiffness design process.
The layup was driven primarily by the bearing stresses presented due to the fasteners,
which was difficult to include in the variable stiffness design process developed thus
far. Additionally, due to the workaround required to compute buckling sensitivity
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data, the finite element analysis would become unmanageable for models requiring
sensitivities for more than a thousand elements.

10.2 Response and Sensitivity Analysis

In order to apply the developed optimization framework together with a commercial
finite element code it is necessary to ensure that the correct response and sensitivity
data is obtained from the analysis. In this case NASTRAN was used to conduct the
finite element analysis using the SOL-200 solution sequence to compute the required
sensitivities. In NASTRAN design variables are defined using the DESVAR card and
can subsequently be related to material stiffness properties in the MAT2 card via
the DVMREL card. The MAT2 cards allow the thickness independent part of the
ABD stiffness matrices to be defined. The actual laminate thickness is subsequently
included via the PSHELL card. Details are not included here for brevity, however,
they are well documented in NASTRAN’s Design Sensitivity and Optimization user’s
guide by MSC-Software (2005).

The developed approximation form for the inverse buckling factor, presented in
chapter 8, requires terms related to the geometric stiffness matrix to be expanded
linearly in terms of nodal stiffness properties, whereas the terms related to the global
stiffness matrix are expanded reciprocally. Therefore, to obtain sensitivity data from
NASTRAN in the correct form, several issues must be considered:

1. the response and sensitivity values must be inverted
2. sensitivity data with respect to the geometric stiffness and material stiffness

matrices must be separated
3. stiffness and sensitivity data must be interpolated from elements to nodes and

vice-versa

A script was created to extract and post-process the sensitivity and response data
from the NASTRAN output files using the steps described below. Once formatted
correctly, the data could be integrated directly into the previously developed design
optimization framework. The stiffness distribution obtained after a single iteration of
the optimizer was subsequently used to write an updated NASTRAN input deck to
be used for the next design iteration. This process was repeated until the predefined
convergence criteria was met.

Inverting response and sensitivities

As mentioned previously, to maximize the buckling load the inverse of the buckling
load factor is considered as the objective function. Since NASTRAN computes the
buckling load factor, it must be inverted externally:

rb =
1
λ

(10.2)

This also implies that the sensitivities are computed with respect to the buckling
load multiplier and not its inverse. Therefore, the required sensitivities, ∂rb/∂Ae,
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must be computed via the chain rule,

∂rb
∂Ae

= − 1
λ2

∂λ

∂Ae
(10.3)

where ∂λ/∂Ae is the sensitivity of the buckling load multiplier, λ, with respect to the
in-plane stiffness of an arbitrary element. The same relation holds for the bending
stiffness related sensitivities.

The stiffness properties of a single element in NASTRAN are constructed using
four MAT2 cards via a PSHELL card. The design variables are related to the MAT2
card entries, and are per definition independent of laminate thickness. The sensitiv-
ities output by NASTRAN only contain the material dependent terms, and hence
should be post-process to account for the laminate thickness such that:

∂λ

∂Ae
=

1
h

∂λ

∂Âe

(10.4)

where ∂λ/∂Âe is the sensitivity of the buckling load with respect to element stiffness
Âe related only to the material dependent MAT2 terms. The same approach should
be used to account for thickness for the bending stiffness sensitivity terms.

Separating geometric stiffness and material stiffness sensitivities

The developed optimization framework requires the construction of a convex approx-
imation of the objective function to ensure solution convergence. In chapter 8 it was
shown that the sensitivities related to the material stiffness matrix in the buckling
eigenvalue approximation, see section (8.10), are strictly convex. However, this is not
the case for the geometric stiffness matrix terms, therefore, to construct an appropri-
ate approximation, the contribution of these two terms to the buckling sensitivities
must be separated.

In NASTRAN the contribution of the geometric stiffness matrix to the overall
buckling sensitivities is neglected by default, hence, the sensitivities only contain the
derivatives with respect to the material stiffness matrix. The contribution of the
geometric stiffness matrix can be included by setting a parameter, PARAM DSKON
= 1.0, in the bulk data file. Therefore, the individual contribution of the geometric
stiffness matrix to the total sensitivity can be isolated by subtracting the material
stiffness dependent sensitivity from the total sensitivity. In other words, in order to
construct the desired hybrid approximation using NASTRAN, the sensitivity analysis
must be conducted twice, once including the geometric stiffness and once neglecting
it. Additionally, the sensitivities related to the material stiffness matrix are expanded
reciprocally with respect to the in-plane and bending laminate stiffness, therefore,
∂řb/∂A−1

e is required, which can be shown to be:

∂řb

∂A−1
e

= −Ae · ∂řb
∂Ae

·Ae (10.5)

where ∂řb/∂A−1
e is the derivative of the material dependent part of the inverse buck-

ling load with respect to the compliance.
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Interpolating data between nodes and elements

A process of linear interpolation of compliance between nodes and elements was de-
scribed in section 2.3.6 in an effort to ensure smoothness of the obtained stiffness
distribution. The design variables are defined at nodes, however, for finite element
analysis the stiffness matrices are required for each element. Therefore, the stiffness
of each element is defined as:

Ā−1
e =

∑
i∈Ie

we,iA−1
i

where i denotes the node numbers and Ie is the set of nodes connected to element
e. The sum is weighed by integration weighing coefficients we as discussed in section
2.3.6. When using triangular elements, as was the case here, the weighing factors
simplify to 1/3. Therefore, the element compliance matrix is constructed by adding
a third of the compliance matrix of each attached node. Since the sensitivities are
computed at element level in NASTRAN, the inverse interpolation process must be
applied to obtain the sensitivities at nodes. The same process must be applied to the
flexural stiffness terms.

Workaround Buckling Sensitivities

The sample problem studied in chapter 5 was used to verify the correct integration
of the optimization framework and NASTRAN. During initial testing, errors were
identified in the sensitivity data being computed by NASTRAN (version 2010, first
release). A workaround was provided by MSC Software, however, it caused significant
increase in required analysis time. Therefore, design studies were limited to models
with fewer than a thousand elements for which sensitivities were to be computed.
With the workaround implemented, the design optimization results using NASTRAN
for the aforementioned sample problem were found to correlate well with previously
obtained results.

10.3 Numerical Results

The numerical results for both the sine-wave rib and flat rib are presented in this
section. First the initial finite element model, laminate design and numerical results
provided by Israel Aerospace Industries for the manufactured sine-wave rib are pre-
sented as a baseline. Subsequently, the stiffness distribution of the inner web section
of the sine-wave rib was optimized for maximum buckling load. Even thought de-
signing the stiffness distribution of the sine-wave rib was not in the current project
scope, it was optimized for two reasons; one, to demonstrate that the optimization
framework also works for more complex structural geometries, and two, to have an
additional benchmark for result comparison. Finally, the optimal stiffness distribu-
tion and total laminate thickness for the inner web section of the flat rib, meeting the
design requirements imposed in section 10.1, is presented in section 10.3.3.
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10.3.1 Baseline Sine-Wave Rib

The initial sine-wave rib design and finite element model was provided by Israel
Aerospace Industries. The laminate stacking sequences for both the thicker flange
section and thinner inner web section are presented in Table 10.1. The flange, with
a total thickness of 3.77 mm, consists of 29 plies. The 0◦ plies in the flange are not
straight but following the sine-wave geometry. The inner web, with a total thickness
of 1.95 mm, consists of 15 plies that run continuously from the flange into the inner
web section, hence 14 plies are dropped from the flange to the inner web section.
In the manufactured product, plies were dropped off progressively to avoid a sudden
change in laminate thickness, however, these details were not accounted for in the
finite element model.

Table 10.1: Laminate stacking sequence for Zone A, the flange, and Zone B, the web, as
defined by Israel Aerospace Industry for the manufactured sine-wave rib. A total of 14 plies
were dropped from the flange to the web area.

Ply # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zone A 0 90 45 90 -45 0 45 90 -45 0 45 90 0 -45 0
Zone B 0 90 45 90 -45 0 90 0

Ply # 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Zone A -45 0 90 45 0 -45 90 45 0 -45 90 45 90 0
Zone B 90 0 -45 90 45 90 0

Israel Aerospace Industries reported a buckling load factor, λcr, of 2.61 for the
aforementioned sine-wave rib design. The corresponding critical buckling mode is
presented in Figure 10.5 and is characterized by local buckling of the web section
with four diagonal half-waves. The reported maximum and minimum principle strains
were 4700 µs and −5490 µs respectively while the principle shear strain was reported
to be 5760 µs.

10.3.2 Optimized Sine-Wave Rib

The initial finite element model provided by IAI contained in excess of 28000 quadri-
lateral elements. As mentioned in section 10.2, a workaround was required to compute
the required sensitivity data, which limited the amount of elements used for design
to approximately a thousand. The laminate stiffness distribution was optimized for
the inner web section only, hence, the number of elements in this region were limited.
A mesh refinement study was conducted by IFB to determine the minimum num-
ber of elements which could be used in this region while still capturing the correct
buckling modes. A final model was selected, shown in Figure 10.6, and contained ap-
proximately 1300 elements and 761 nodes in the inner web region. The buckling load
predicted by this model was approximately 9% higher than the original model. Trian-
gular elements were used for the inner web to simplify the interpolation of sensitivity
and stiffness values between nodes and element centroids.
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Figure 10.5: Critical buckling mode and original finite element model for the original
design. A critical buckling load factor, λcr, of 2.61 was reported (Source IAI)

Figure 10.6: Final sine-wave rib finite element model with the inner web mesh containing
1373 triangular elements for which the individual laminate stiffness properties were optimized
(Source IFB)
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A total of ten eigenvalues were included during the optimization. The design
problem was solved using four processors for both analysis and optimization and
required a total of 63 hours, or 2.65 days, to complete. A total of nine analysis
iterations were required till convergence, of which five were accepted as a feasible
descent step. Four iterations were rejected and only used to update the optimizer
damping values. The optimum lamination parameter distributions are presented in
Figure 10.7 and were found to be very intricate, which made it difficult to interpret
the results intuitively and are therefore provided for completeness.
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Figure 10.7: Optimum lamination parameter distributions for maximum buckling load of
the sine-wave rib model

The first two critical buckling loads for the obtained designs are presented in Table
10.2. The optimum variable stiffness design based on lamination parameters was
found to have a critical buckling load approximately 30% higher than the baseline
design provided by Israel Aerospace Industries and 20% higher than an equivalent
quasi-isotropic design.

Table 10.2: Summary of buckling loads for the different laminate designs of the sine-wave
rib inner web. The percent difference in weight, ∆w, is computed with respect to the total
weight of the baseline sine-wave rib. The layup in the flange and outer web remained identical
to that of the baseline design provided by Israel Aerospace Industries (IAI)

Layup # of Plies λ1 λ2 %∆w

Baseline Layup by IAI 15 2.8947 3.0752 0.0
Quasi-Isotropic (V = 0) 15 3.0564 3.2508 0.0
VS Optimum - Lamination Parameters 15 3.7192 3.7997 0.0
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The critical buckling modes of the quasi-isotropic and variable stiffness designs
are presented in Figure 10.8. The buckling modes consist primarily of several local
buckles towards the end of the rib, which corresponds to the region of the largest
crushing load. The increased load carrying capacity of the sine-wave rib compared to
the flat rib is due to the geometry, which isolates the buckles to a smaller region.

(a) Quasi-isotropic laminate (b) Optimal variable stiffness laminate

Figure 10.8: Critical buckling modes of the sine-wave rib for the quasi-isotropic and opti-
mum variable stiffness laminates

10.3.3 Optimized Flat Rib

A geometrically less complex flat rib design is presented in this section as an alterna-
tive to the original sine-wave rib design present by Israel Aerospace Industries. The
objective was to obtain the lightest possible design while allowing fiber steering in the
inner web section. The laminate layup of the outer web and flange, Zone A, was left
unchanged. The rib is buckling critical, therefore, the stiffness distribution and final
fiber angle distribution were designed to maximize the buckling load. The laminate
thickness in the central section was selected empirically such that a feasible, balanced
symmetric design could be obtained.

As for the sine-wave rib, a finite element model with a suitable amount of elements
in the inner web section was required to ensure a tractable optimization problem.
After conducting mesh sensitivity studies, a final model, shown in Figure 10.9, was
selected with a total of 748 elements and 431 nodes in the inner web section. The
flat rib was less sensitive to mesh refinement than the sine-wave rib and the buckling
loads for the course model used differed by approximately 2% with respected to further
refined models.

Initially several finite element analysis runs were conducted to determine the initial
performance of the flat rib configuration. Using the same 15-ply laminate configura-
tion as the sine-wave rib resulted in a critical buckling load multiplier, λcr, of 0.477,
whereas a minimum of 1.5 was required to meet the design requirements. Adding an
additional 90◦ ply, which results in the flat rib having the same total weight as the
sine-wave rib, yielded a buckling load multiplier of 0.603, which is still substantially
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Figure 10.9: Flat rib finite element model with the inner web mesh containing 748 triangular
elements for which the individual laminate stiffness properties were optimized (Source IFB)

below the required value. Therefore, it was decided to conduct the optimization using
a 24-ply laminate, with a total thickness of 3.12 mm, in the inner web sections such
that a feasible final solution was found.

A total of 1724 design variables, four per node, and the ten most critical eigenvalues
were included in the optimization process. Four parallel processors where used to
conduct the finite element analysis runs while a single processor was used for the
optimization process. A total time of 89 hours, or 3.7 days, was required, where
the largest computational cost was attributed to the finite element and sensitivity
analysis required to obtain the appropriate information for the optimizer. A total
of 21 iterations, of which 15 were accepted as feasible decent steps, was required to
find the optimum. Six iterations were rejected, however, the rejected solutions were
used to calibrate the damping values in the developed adaptive damping scheme as
explained in section 3.3.3.

The convergence behavior of the buckling solution is presented in Figure 10.10.
The required design value of the inverse buckling factor, 1/λd = 1/1.5 = 0.66, is
also plotted. Several interesting observations can be made from this figure; one,
the approximate function value is initially not conservative, however, the adaptive
damping scheme developed in chapter 2, ensures that it becomes conservative as the
optimization progresses. Two, even though the problem is relatively complex both
in terms of geometry and response, both the actual and approximate function value
exhibit good convergence behavior. Three, we note that at the optimum the inverse
buckling load multiplier satisfies the requirement of being less that 0.66, and therefore
a feasible solution in terms of buckling is found.

The lamination parameter distributions for the optimum solution are presented in
Figure 10.11. However, as was the case in earlier examples, it is difficult to physically
interpret the solution from these distributions. Therefore, the results were included
for completeness.

The optimal lamination parameter distribution was subsequently used to obtain a
suitable fiber angle distribution best matching the optimal laminate stiffness distribu-
tion while satisfying the imposed manufacturing constraints. The obtained variable
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Figure 10.10: Solution convergence of the inverse buckling factor, 1/λcr and approximate
inverse buckling factor, 1/λ̃. The design value, 1/λd, is plotted for reference
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Figure 10.11: Optimum lamination parameter distributions for maximum buckling load of
the flat rib model
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stiffness laminate consisted of 24 steered plies and was constrained to be locally bal-
anced and symmetric. Therefore, six independent fiber angles were defined per design
region resulting in a [±θ1,±θ2, . . .±θ6]s laminate being defined at each node. A mini-
mum turning radius of 200mm was imposed as a manufacturing constraint. A detailed
description the fiber angle retrieval process is provided by van Campen (2011).

The obtained fiber angle distribution is presented in Figure 10.12. The rib was
loaded eccentrically due to the c-shaped cross-section, which resulted in bending mo-
ments in the web section of the rib. In the outer layers, ply 1-3, the fibers were
aligned primarily along the vertical direction and contain little steering. These plies
increased bending stiffness along vertical axis of the rib and therefore, suppressed the
induced bending moments. The inner layers, ply 4-6, contained a significant amount
of steering and contributed primarily to in-plane load redistribution to improve the
buckling load and to transferring shear loads. The 4th ply contained a vertically stiff
region towards the center of the web while the sides tended towards ±45◦ fiber angles.
In the inner two plies fibers tended to be aligned primarily along the horizontal axis.

(a) Ply 1 (b) Ply 2

(c) Ply 3 (d) Ply 4

(e) Ply 5 (f) Ply 6

Figure 10.12: Fiber angle distribution best matching the optimum stiffness distribution
while satisfying the imposed manufacturing constraints. Only the balanced plies are shown
for the total laminate layup of [±θ1,±θ2, . . .± θ6]s (Source van Campen (2011))

The buckling load multipliers of several flat rib designs are presented in Table 10.3,
together with the number of plies and the percent difference in weight with respect
to the original sine-wave rib. Adding an additional ply caused the inner-web section
of the flat rib design to have the same weight as the original sine-wave rib, however,
the buckling load was almost 4.5 times lower. To ensure that a feasible solution was
found, eight additional plies were incorporated in the design of the inner web section,
resulting in a flat-rib that was 15% heavier than the original sine-wave rib. Even
with eight additional plies a quasi-isotropic layup did not satisfy the buckling load
requirement of 1.5 time ultimate load. However, once variable stiffness solutions were
permitted in the inner-web section, the buckling load factor was improved by more
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than 50%, hence, satisfying the buckling requirements. At present only the inner web
of the rib was designed using the variable stiffness approach, however, the stiffness
distribution over the entire rib should be allowed to vary to assess the true potential
of steering.

Table 10.3: Summary of buckling loads for the different laminate designs of the flat rib
inner web. The percent difference in weight, ∆w, is computed with respect to the total weight
of the baseline sine-wave rib. To meet the design requirements λ1 > 1.5. The layup in the
flange and outer web remained identical to that of the baseline design provided by IAI

Layup # of Plies λ1 λ2 %∆w

Baseline Layup by IAI 15 0.4766 0.5654 -3.0
Layup by IFB [905, 03,±454] 15 0.5254 0.6516 -3.0
Modified Layup by IFB + 90 [906, 03,±454] 16 0.6034 0.7074 0.0
Quasi-Isotropic (V = 0) 24 1.0933 1.4838 15.2
VS Optimum - Lamination Parameters 24 1.6460 1.7070 15.2
VS Optimum - Converted to Fiber Angles 24 1.5223 1.7661 15.4

The critical buckling modes of the 24-ply quasi-isotropic and optimum variable
stiffness design are plotted in Figure 10.13. The buckling modes for both designs
were similar and consisted roughly of a single half-wave along the length of the rib.
The first buckling mode of the steered design extended over a larger section of the
web. Comparing the bucking modes of the flat rib and sine-wave rib also clearly
demonstrated the advantage the sine-wave geometry provides. The critical buckling
mode of the sine-wave was found to be local while that of the flat rib was global. The
sine-wave geometry effectively act as stringers, constraining the buckling to occur
locally, hence improving the critical buckling load of the sine-wave rib.

(a) Quasi-isotropic laminate (b) Optimal variable stiffness laminate

Figure 10.13: Critical buckling modes of the flat rib for the quasi-isotropic and optimum
variable stiffness laminates
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The stiffness distribution in the inner web of the flat rib was optimized to maximize
the buckling load, however, several other design requirements were also imposed in
section 10.1, including constraints on maximum principle strains and environmental
conditions and machine limitations during manufacturing. Environmental conditions
were accounted for by using the material properties corrected for these conditions,
while the manufacturing constraints are taken into account during the fiber angle
retrieval step developed by van Campen (2011).

Constraints on maximum principle strains were not imposed during the optimiza-
tion process for primarily two reasons; one, the computational cost in the current
problem setup would become unmanageable and two, in the initial designs the criti-
cal strains were found at the fastener locations in the flange, which was not explicitly
part of the inner web design region. To ensure that a feasible design was obtained, it
was therefore necessary to compute the maximum and minimum principle strains and
maximum shear strain for the optimum flat rib. The principle strains were computed
at laminate level and were found to be well within the imposed design limits, hence,
the optimum flat rib solution satisfied all the design requirements for the applied load
case.

10.4 Concluding Remarks

The conclusions regarding the optimizer and the final sine-wave rib and flat rib designs
are discussed separately below.

Optimizer Performance

A successful integration of the developed design optimization framework and a com-
mercial finite element code was presented in this chapter. The laminate stiffness
distributions of two relatively complex structural parts, a sine-wave and flat rib, were
designed for maximum buckling load. The presented example problems and results
allowed several important aspects of the design routine to be confirmed, one, it was
possible to construct the buckling approximation in the form presented in chapter 8
using sensitivities computed by NASTRAN. Therefore, a convex approximation was
guaranteed and good convergence behavior was demonstrated. Two, even for rela-
tively complex structural problems, approximately twenty finite element analyses were
sufficient to obtain a converged solution of the optimal laminate stiffness distribution.
Three, the stiffness properties of only the inner web sections were designed, hence,
it was demonstrated that the framework is also suitable for designing the stiffness
properties of a selected part of a structure.

Two issues arose while using NASTAN to compute the laminate buckling sensi-
tivities; one, due to a bug in the current NASTRAN version, a workaround had to be
implemented to obtain correct sensitivity data, however, this came at a large compu-
tational cost. The number of element stiffness properties that could be designed in
a tractable optimization problem was therefore limited to approximately a thousand.
Therefore, a coarse mesh was used and only the inner web section of the rib could be
designed. For more realistic results, a finer mesh should be used while considering the
entire rib during optimization. Two, tracking modes between iterations is difficult to
implement when using an external finite element code and negatively effects the opti-
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mization damping scheme. This can be remedied partly by applying a single averaged
damping value for all the buckling modes, however, this may reduce the convergence
efficiency.

Final Wing Rib Designs

The overall objective of the conducted design study was to investigate the possibility
of replacing a geometrically complex sine-wave aircraft wing rib with a simpler flat
rib to reduce part costs, while using fiber steering to compensate for the loss in buck-
ling performance. Initially, the optimal laminate stiffness distribution for maximum
buckling load of the inner web section of the sine-wave was obtained as an additional
benchmark. The variable stiffness sine-wave rib design was shown to have a 30%
higher buckling load than the baseline design provided by Israel Aerospace Industries
and 20% higher than an equivalent quasi-isotropic design.

The buckling load of the flat rib, with a laminate identical to the baseline sine-
wave rib, was found to be roughly six times lower than the baseline sine-wave rib,
clearly demonstrating the efficiency of the sine-wave geometry in improving buckling
performance. It was not possible to compensate for the reduced buckling performance
solely through fiber steering. Therefore, additional plies were included in the inner
web section resulting in 15% weight increase of the flat rib meeting the same design
requirements. Optimizing the laminate stiffness distribution of the flat-rib web section
mitigated larger weight penalties. The variable stiffness flat-rib design was found to
have a 50% higher buckling load than an equivalent quasi-isotropic design.

The optimal sine-wave rib and flat rib designs showed improvements in buck-
ling load of 30% and 50% with respect to their baseline designs, respectively. These
improvements were less than initially expected and are thought to be attributed pri-
marily to two aspects. One, due to computational limitations the laminate stiffness
properties of only the inner web sections were designed. The layup in the flange and
outer web sections remained unchanged, hence the load-paths were largely fixed in the
outer sections and hence limiting the room for improvement. Larger, improvements
in buckling performance and, therefore, a reduced weight penalty are expected when
the stiffness properties of the entire rib are designed. Two, due to the c-shape of the
wing ribs the web was loaded eccentrically, the resulting bending moments were not
redistributed as efficiently as is seen for structures dominated by in-plane loads, as
only the outer plies make a meaningful contribution to the laminate bending stiffness.



CHAPTER 11

Conclusions and Recommendations

“After climbing a great hill, one only finds that there are many more hills
to climb.”

Nelson Mandela

The design flexibility offered by modern automated fiber placement machines en-
ables a new class of composite structures to be manufactured, which allow the direc-
tional properties of composite materials to be fully exploited. Steering fiber paths
such that the fiber angle orientation varies spatially allows significant improvements
in structural performance to be achieved. Despite the apparent potential, the design
tools currently available to engineers do not exploit the steering capabilities of auto-
mated fiber placement machines. The goal of the research conducted and presented
in this thesis was outlined in section 1.4 and ultimately summarized as:

to demonstrate that developing an efficiently design tool for variable stiffness
composite structures is both productive and worthwhile,

a conclusion that remains to be drawn. To this end, an overview of the research
and results presented within this thesis and the conclusions to which they lead are
presented in this chapter. The discussion is separated into two parts, section 11.1,
in which the generic implementation of the novel design optimization framework for
variable stiffness composite structures and the developed approximation scheme is
discussed, and section 11.2, in which the results of the considered design optimization
problems are discussed. Several interesting and perhaps essential topics to consider
in the future of variable stiffness composite design are discussed in section 11.3. For
conclusions related specifically to each of the topics presented within this thesis the
reader should refer to the relevant section provided at the end of each chapter.

181
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11.1 Design Optimization Framework

A multi-step variable stiffness composite design optimization framework, which is
shown schematically in Figure 11.1, was presented to tailor the laminate stiffness
properties of composite structures to maximize their structural performance. The
design procedure consisted of three steps, one, the optimal conceptual laminate stiff-
ness and thickness distribution was designed to maximize a predefined performance
metric. Two, the optimal fiber angle distribution was obtained to satisfy the imposed
manufacturing constraints while retaining the achieved structural performance gains.
Three, the fiber angle distribution was converted to continuous fiber paths to be used
for manufacturing purposes. Postponing the design of detailed ply, course and tow
level detail to the second and third steps allows laminate stiffness properties to be de-
signed to maximize structural performance using efficient gradient based optimization
routines, hence, minimizing the required number of finite element analyses.

1 - Conceptual Optimization

Design Drivers:
Structural Requirements

(Strength, Buckling, Weight)

Optimum Stiffness 
(Lamination Parameters)

Output:
Conceptual Optimum
Design Sensitivities

2 - Fiber Angle Retrieval

Design Drivers:
Conceptual Optimum and

Manufacturing Requirements

True Fibre Architecture

Output:
Fiber Angles and Stacking 

Sequence Per Point

3 - Fiber Path Construction

Design Drivers:
Fiber Angle and Thickness 

Distribution 

Fiber Paths

Output:
Path Information for Fiber 

Placement Machine

Figure 11.1: Schematic overview of the developed multi-step optimization approach

The primary focus of the presented work was the development of a conservative
convex separable approximation of a generic response directly in terms of the lami-
nate stiffness matrices. The approximation was developed specifically for composite
laminate design, and has been used in both the first and second step of the devel-
oped design optimization framework. The developed approximation consisted of two
terms, the first term approximated the considered structural response and its deriva-
tives, while the second was used to guarantee convexity and conservativeness of the
approximation as a whole. The presented generalized approximation methodology was
implemented to maximize structural stiffness and to solve several buckling related de-
sign problems. Approximations to maximize structural strength or natural frequency
using the presented design framework have also been developed and are presented in
Khani et al. (2011) and Nagy (2011), respectively. Even though the aforementioned
structural responses cover a large range of possible design problems, approximations
for a larger set of structural responses, for example the thermal response, should be
developed in the future.
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Using lamination parameters to parametrize the laminate stiffness matrices in
the response approximations allowed the convex nature of the approximation to be
retained. This allowed an efficient design optimization routine, based on successive re-
sponse approximations, to be developed and enabled the solution of variable stiffness
design optimization problems with several thousand design variables. The separable
nature of the response approximations allows the local optimization problems to be
solved in parallel, further reducing computation time on multi-processor computer
systems. An adaptive damping scheme was implemented to control solution conver-
gence and approximation conservativeness while design updates were based on feasible
descent steps, which guarantees global convergence. Typically, less than thirty finite
element analyses were required to converge to the optimal solution, while roughly
80-90% of the performance gains were already achieved within the first 3-5 design
iterations. The effectiveness of the developed design optimization framework was
demonstrated by solving several example problems, reviewed in section 11.2, how-
ever, additional effort may be exerted to study and improve the adaptive damping
scheme further.

The developed response approximations can also be parameterized in terms of
ply angle orientations and stacking sequence, which permits their use in subsequent
steps of the developed design optimization framework. In this case, the response
approximations are no longer convex in terms of the design variables. The local
nature of the response approximation implies that its accuracy tends to deteriorate
away from the approximation point. Therefore, if manufacturing constraints restrict
the attainable laminate stiffness distribution excessively, intermediate updates of the
approximation may be required to retain sufficient accuracy. An example of how fiber
angles are retrieved using the developed response approximation is presented in van
Campen (2011). Alternatively, a globally accurate response approximation may be
generated, as presented in Irisarri et al. (2011), and subsequently used to solve for
the optimal fiber angle distribution.

11.2 Design of Variable Stiffness Laminates

Homogenous convex separable approximations were derived and presented for several
buckling related design optimization problems. Initial design studies were restricted
to flat plates subject to compressive uniaxial and biaxial loading. Numerical results
reiterated the benefits of adopting variable stiffness laminates as a structural design
concept. It was demonstrated that the critical buckling load of a simply supported
plate could be increased almost twofold with respect to the best constant stiffness
design. A trade off between axial stiffness and buckling load was presented in chapter
5. It was shown that a variable stiffness laminate with in-plane stiffness properties
equivalent to a quasi-isotropic panel can be designed to withstand more than twice
the compressive load before buckling. In-plane load redistribution was found to be the
primary mechanism resulting in improved buckling loads when varying the stiffness
properties while laminate thickness remained constant. Post-buckling analysis was
conducted in Rahman et al. (2011), and demonstrated that variable stiffness lam-
inate designs had similar or superior post-buckling stiffness when compared to the
equivalent constant stiffness solutions.
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A method of including thermals stresses during the buckling design optimization
process was presented in chapter 6. Numerical results confirmed the importance of
including thermal effects in the design of variable stiffness panels for buckling, since
the pre-buckling stress state significantly influences a panels buckling behavior. The
residual thermal stresses were also shown to have a beneficial influence on the com-
pressive load carrying capacity of the plate if the temperature difference between
curing temperature and operating temperature was not excessive. The range of op-
erating temperatures over which the panel exhibits good buckling behavior was also
shown to increase significantly when including thermal effects in the design process.

Including laminate thickness as a design variable, presented in chapter 7, allowed
the achievable performance gains to increase even further, with buckling load increas-
ing fivefold with respect to the baseline quasi-isotropic design. Compared to the
optimal variable stiffness design with constant thickness improvements in the order
of 30-100% were obtained depending on the minimum allowable thickness. The op-
timal thickness distributions for the uniaxial load case were shown to reinforce the
load redistribution effect, however, for the biaxial load case the improved buckling
performance was both due to in-plane load redistribution and increased local bend-
ing stiffness. Therefore, when thickness variation is included in the variable stiffness
design routine for maximum laminate buckling load, both load redistribution and
improved laminate bending stiffness played a role.

The buckling approximation was extended to be applicable to general shell struc-
tures in section 8. An example problem, a curved panel subject to a uniform pressure
load, was presented to demonstrated the applicability of the derived approximation.
The buckling load of the optimal variable stiffness laminate design was shown to
improve 15-20% with respect to the best constant stiffness design when enforcing uni-
form thickness. The buckling load increased 60% with respect to the best constant
stiffness solution when allowing thickness to vary spatially. The optimum laminate
stiffness distribution indicated that the improved buckling load was primarily due to
improved laminated bending stiffness.

Two practical design applications were also studied to demonstrate the effective-
ness of the developed design optimization approach. The first problem considered the
design of a simplified window belt section for maximum tensile strength, presented in
chapter 9. Optimal variable stiffness solutions, meeting the imposed in-plane curva-
ture constraints, were shown to be 50% stronger than the best constant stiffness solu-
tion. Due to time limitations and constraints imposed by the available fiber placement
software and hardware, alternative designs based on linear fiber angle variation were
also obtained. Designs using parallel path and shifted path replication strategies were
studied. The shifted path strategies were found to match the stiffness distributions
obtained in the theoretical studies best and also yielded the largest improvements in
strength, roughly 25% higher than the optimal constant stiffness solution.

The second practical design application, presented in chapter 10, was the design
of an aircraft wing rib to meet a range of imposed design requirements, however,
buckling was considered as the primary design driver. Other than demonstrating the
benefit of using stiffness variation for more practical structures, the analysis for this
design problem was conducted entirely using an external commercial finite element
solver. Since a specific approximation form has been developed, it is important that
the external solver can be used to construct the desired approximation. A method of
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obtaining the derivatives required to construct the generalized buckling approximation
of a shell structure was presented in chapter 10. Due to a potential bug in the
current version of the external commercial software used in the present research, a
computationally expensive workaround was implemented and therefore, the size of
the optimization problems that could be considered was limited. Nevertheless, for
this more practical design problem the optimizer was found to perform satisfactorily.

As the loading, boundary conditions, structures and the laminates of which they
comprise become more complex it will inevitably become difficult to identify the
primary mechanisms resulting in improved buckling performance. The developed
convex conservative separable approximation of the buckling load implemented within
the developed design optimization framework has, thus far, proven to be an effective
tool for optimizing variable stiffness composite structures.

The presented research focused primarily on demonstrating the applicability of the
developed variable stiffness design optimization framework, however, to assess the true
benefit of fiber steering it would be beneficial to conduct a range parametric studies
for structures with different dimensions, load cases and materials to qualitatively
evaluate in which situations laminate stiffness variation will provide the most benefit.
The considered design problems were all limited to a single design load case. In the
future, it would therefore be interesting to investigate more complex combinations of
load cases and its effect on the optimal laminate stiffness distribution.

11.3 Future Developments

Design studies conducted thus far, both theoretical and experimental, along with nu-
merical results presented in this thesis reaffirm the benefit of adopting variable stiffness
laminates for aerospace structural applications. The developed optimization frame-
work, including response approximation methodology, has proven to be an efficient
design tool for this new class of composite structures. However, several challenges
remain to be addressed in order to design and apply variable stiffness laminates.

11.3.1 Design Optimization Framework

Several extensions to the developed design framework can be envisaged to further im-
prove the structural performance of variable stiffness laminates. Typically, composite
laminates are restricted to be symmetric and balanced, which eliminates extension-
shear coupling and extension-bending coupling while also minimizing bending-twisting
coupling. The same restrictions were imposed on the variable stiffness laminates in
the design studies presented in this thesis. Removing these design restrictions will
result in further improvements in structural performance, as was seen when design-
ing plates for maximum strength in chapter 4. Additionally the developed design
framework currently assumes that the part geometry is predefined. Further gains in
structural performance may still be achieved through including shape and/or topol-
ogy optimization in the design process. The advantages of simultaneous design of part
geometry and laminate stiffness, using an isogeometric design optimization routine,
is currently under investigation and will be presented in Nagy (2011).

Detailed tow-level information is required to manufacture composite laminates
with automated fiber placement technology. In the current multi-step design approach
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only the course paths are generated and hence, detailed tow-level information remains
to be determined. Additionally, software currently used to control fiber placement ma-
chines often run computationally expensive simulations to ensure that a given design
is manufacturable. In the industrial setting it would therefore be highly beneficial if
the design optimization framework could already guarantee design manufacturability.

11.3.2 Application of Variable Stiffness Laminates

Numerical results have demonstrated that structural performance improves signifi-
cantly when tailoring laminate stiffness properties to meet the imposed design re-
quirements, however, this may come at the expense of design robustness. In a first
step, Abdalla et al. (2009a) presented a method of including robustness constraints,
similar to the traditionally used ten percent rule, when considering in-plane laminate
design problems. However, it is essential that further effort be made to investigate
the performance of variable stiffness laminates when subject to off-design operating
conditions before they are adopted for practical design applications. Additionally,
robustness with respect to manufacturing defects, which still occur occasionally with
the current generation of fiber placement machines, remains to be investigated.

In the aerospace industry the certification process is an important hurdle that must
be overcome before variable stiffness laminates can be adopted. Traditionally, specific
laminate stacks are tested and certified for use in aerospace components, an approach
which would not be feasible when using variable stiffness laminates. Therefore, it is
essential that trustworthy predictive modeling capabilities be developed and incorpo-
rated in the certification process. A finite element procedure, developed to capture
the local stress fields that are present when manufacturing composite structures using
automated fiber placement, is presented in Fagiano (2010). This is an essential step in
developing suitable damage models, however, a significant amount of research remains
to be conducted to develop suitable predictive analysis capabilities. The amount of
experimental data available for variable stiffness composite structures is limited, pri-
marily due to the novel nature of these structural components. Generating, collecting
and disseminating experimental data would be an invaluable contribution to the re-
search community and greatly support further development of design and analysis
capabilities.



APPENDIX A

Material Properties

Several different materials were used to conduct the design studies presented in this
thesis, and are tabulated below.

Table A.1: Tabulated material properties for the materials used to conduct the design studies
presented in this thesis (AS4/APC2: carbon-PEEK, IM6/SC1081: carbon-epoxy, IM7/8552:
carbon-epoxy, B5.6/5505: boron-epoxy, T300/5208: carbon-epoxy)

AS4∗ IM6∗ IM7† B5.6∗ T300‡

Longitudinal Modulus (E1, GPa) 142 177 156 201 181
Transverse Modulus (E2, GPa) 10.3 10.8 10.5 21.7 10.3
Shear Modulus (G12, GPa) 7.2 7.6 6.0 5.4 7.17
Poisson’s Ratio (ν12) 0.27 0.27 0.30 0.17 0.28
Longitudinal Tensile Strength (Xt, MPa) 2280 2860 1380
Longitudinal Compressive Strength (Xc, MPa) 1440 1875 1600
Transverse Tensile Strength (Yt, MPa) 57 49 56.6
Transverse Compressive Strength (Yc, MPa) 228 246 125
Shear Strength (S, MPa) 71 83 62.6
Longitudinal CTE (α1, 10−6/◦C) 0.02
Transverse CTE (α2, 10−6/◦C) 22.5

† source: material data sheets used within the AUTOW project

∗ source: Daniel and Ishai (1994)

‡ source: Tsai (1988)

In addition to the material properties listed in the above table for IM7/8552, the
following failure allowables were used for the design studies conducted within the
AUTOW project. The allowable principle strains used during the rib design, see
chapter 10, were defined as ε11

t = 5200µs, ε11
c = 4500µs and γ12

t = 9000µs. While
designing the simplified window belt section, see chapter 9, critical hole edge strains
were taken to be εt = 22800 µstrain and εc = −13800 µstrain.
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Finite Element Analysis

Two different finite element implementations were used to conduct the studies pre-
sented in this thesis. Initial research was focused on panels for which the extensional
and flexural solutions could be computed separately. A flat rectangular bilinear shell
element was implemented, consisting of an 8 degree of freedom membrane element
and a 12 degree of freedom Kirchhoff-plate element for bending. A few key compo-
nents of the used finite element formulation are outlined in this appendix. In order
to study structures with more intricate geometry, an 18 degree of freedom flat trian-
gular shell element was implemented and used for the studies presented in chapter
8. The element was built up by combining a triangular membrane and bending ele-
ment. The 12 degree of freedom membrane triangular element, with drilling degrees
of freedom, was implement based on a template by Felippa (2003), while a 9 degree of
freedom Kirchhoff-plate Bending Triangular element (KBT) was implemented based
on a template provided in Felippa (2000). Both elements are well documented in the
aforementioned literature and are therefore not repeated here.

B.1 Flat Rectangular Shell Element

In the following sections the membrane and bending stiffness matrices used to evaluate
the buckling loads of the rectangular plates considered in chapter 5 to 7 are presented.

B.1.1 Membrane Element

The in-plane stiffness matrix can be written in the following form:

Kme =
[

k11 k12

sym. k22

]
(B.1)

The above 4× 4 sub-matrices are given in terms of the laminate extensional stiffness,
A, as follows (Reddy, 2004):
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k11 = A11Sxx +A16(Sxy + Syx) +A66Syy

k12 = A12Sxy +A16Sxx +A26Syy +A66Syx

k22 = A66Sxx +A26(Sxy + Syx) +A22Syy (B.2)

where the elements of the Sxx, Sxy, and Syy matrices depend on the in-plane shape
functions ψi and are defined as:

Sξηij =
∫

Ωe

∂ψi
∂ξ

∂ψj
∂η

dxdy (i, j = 1, . . . , 4) (B.3)

Note that in the presented work, only square bilinear elements were used with fixed
side length s. Therefore, matrices Sxx, Sxy, etc. were the same for all elements and
could be computed and stored. Note also that the derivative terms, ∂Kme/∂Aρσ, re-
quired to evaluate the sensitivity matrices in the equation (C.21), are readily obtained
on inspection of equation (B.2).

Finally, to evaluate the geometric stiffness matrix, equation (5.3), the in-plane
stress resultants were required. These can be obtained via the in-plane strains, which
can be related to the in-plane deformations via the average strain displacement matrix,
B. For a square element with side s this matrix is given by:

Be =
1
2s

−1 1 1 −1 0 0 0 0
0 0 0 0 −1 −1 1 1
−1 −1 1 1 −1 1 1 −1

 (B.4)

B.1.2 Bending Element

The bending stiffness matrix according to classical laminate theory is computed as
follows (Reddy, 2004):

Kbe =D11Txxxx +D12(Txxyy + Tyyxx) + 2D16(Txxxy + Txyxx)
+2D26(Txyyy + Tyyxy) + 4D66Txyxy +D22Tyyyy (B.5)

where the elements of Txxxx, Txxyy, etc. depend on the element geometry and
bending shape functions ϕi:

T ξηζµij =
∫

Ωe

∂2 ϕi
∂ξ∂η

∂2 ϕj
∂ζ∂µ

dxdy (i, j = 1, 2, . . . , 16) (B.6)

Notice that the derivative terms in equation (C.20) are easily obtained, for example:

∂Kbe

∂D11
= Txxxx or

∂Kbe

∂D12
= (Txxyy + Tyyxx)/2 (B.7)
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Sensitivity Analysis

Detailed derivations of the sensitivity matrices required for the approximations de-
veloped for the objective functions treated in chapters 5 to 8 are presented in this
appendix. The derivatives of the compliance, used to maximize structural stiffness,
are presented in section C.1. The derivatives required to maximize the buckling load
of plates are presented in section C.2 and are extended to include thermal effects in
section C.3. Lastly, the derivatives required to maximize the buckling load of general
shell structures are presented in section C.4. It should be noted that the sensitiv-
ities presented in the following sections represent the derivatives of the considered
response with respect to the stiffness properties of an arbitrary element. To ensure
that smooth solutions were found using the developed design framework, design vari-
ables were defined at nodes and the laminate stiffness properties were subsequently
interpolated to the element, as explained in section 2.3.6. Similarly, the sensitivity
matrices presented in this section should be interpolated to the nodes before being
incorporated into the developed approximations.

C.1 Compliance

A variable stiffness laminate designed for maximum stiffness was studied in chapter 5.
The optimization problem was posed as the minimization of the structural compliance,
rc, hence, the derivatives of the compliance with respect to the in-plane stiffness
matrices were required. The compliance represents the energy stored within the
structure and when using the finite element method it can be formulated as:

rc =
1
2
uT ·Km · u =

1
2
fT · u (C.1)

where u is the vector of nodal displacements and f the vector of applied forces as given
in equation (5.6). When considering plates under in-plane loading, Km represents the
membrane stiffness matrix and is only a function of the laminate in-plane stiffness
matrix, A. Similarly when considering generalized shell structures, Km represents
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the material stiffness matrix and contains both in-plane and bending stiffness related
terms.

Taking the derivative of equation (5.6) with respect to an arbitrary stiffness related
variable b and assuming that the applied force is a dead load, the derivative of the
in-plane displacements can be expressed as:

∂u
∂b

= −K−1
m ·

∂Km

∂b
· u (C.2)

The derivative of the compliance, rc, with respect to an arbitrary stiffness related
variable b can therefore be given by:

∂rc
∂b

= −1
2
uT · ∂Km

∂b
· u (C.3)

Since b is associated to a specific element, the sensitivity is local and can be de-
termined based on the information of a single element. The components of sensitivity
matrix of element e with respect to the elements in-plane stiffness can therefore be
given by:

Φmαβe = − ∂rc

∂A−1
αβ

= −1
2

∑
σ,ρ

AβσAρα

(
uTe ·

∂Kme

∂Aρσ
· ue
)

(C.4)

Similarly, when general shell structures are studied, the derivatives with respect to
the bending stiffness terms must also be considered, and are given by:

Φbαβe = − ∂rc

∂D−1
αβ

= −1
2

∑
σ,ρ

DβσDρα

(
uTe ·

∂Kme

∂Dρσ
· ue
)

(C.5)

where α, β, σ, ρ = 1 . . . 3 represent the components of the stiffness matrices of associ-
ated with element e.

C.2 Buckling of Plates

The finite element formulation to solve for the linear buckling load of a plate is given
by equation (5.1). The derivative of a single buckling load with respect to an arbitrary
stiffness related design variable b is given by:

∂λ

∂b
= λaT ·

(
∂Kb

∂b
− λ∂Kg

∂b

)
· a (C.6)

and is composed of two terms. The first term is local and can therefore be evaluated
using information from a single element:

Sb1 ≡ aT · ∂Kb

∂b
· a = aTi ·

∂Kbi

∂b
· ai (C.7)

The second term in equation (C.6) is not necessarily local. This is due to the fact
that even when the stiffness of a single element is altered, the distribution of the in-
plane loads is altered for all elements and thus the geometric matrices of all elements
would change. In the following, an efficient way for the evaluation of this term is
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described. Substituting from equation (5.3) into equation (C.6) and rearranging the
terms Sb2 can be defined as:

Sb2 ≡ aT · ∂Kg

∂b
· a = −

∑
e

sTe ·
∂ne
∂b

(C.8)

where the vector se can be calculated locally for element e as:

se =
(
aTe ·Kx · ae, aTe ·Ky · ae, aTe ·Kxy · ae

)T (C.9)

The derivative of the in-plane stress resultants is obtained by differentiating (5.4):

∂ne
∂b

=
∂Ae

∂b
· ee + Ae · ∂ee

∂b
(C.10)

Thus, the sum in equation (C.8) can be decomposed into two terms corresponding
to the two terms in equation (C.10). The first term can be evaluated locally since
only the in-plane stiffness matrix of the ith element depends on b. The second term
involves the derivative of the average strain of an arbitrary element with respect to
the change of stiffness of the ith element and is not local:

Sb2 = −sTi ·
∂Ai

∂b
· ei −

∑
e

sTe ·Ae · ∂ee
∂b

(C.11)

To evaluate the second term in the above equation, which is denoted by Sb22,
equation (5.5) is differentiated with respect to b to obtain:

∂ee

∂b
= Be · ∂ue

∂b
(C.12)

therefore, the strain term Sb22 simplifies to:

Sb22 = −gTe ·
∂ue
∂b

(C.13)

where the vector g is assembled from element contributions:

ge = BT
e ·Ae · se (C.14)

The derivative of the in-plane displacement vector is obtained by differentiation
of equation (5.6) as:

Km · ∂u
∂b

= −∂Km

∂b
· u (C.15)

Defining the adjoint displacement vector v as the solution of the problem:

Km · v = −g (C.16)

hence, the strain term can be simplified to:

Sb22 = −vT · ∂Km

∂b
· ue (C.17)

which can be also evaluated locally.
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Thus, all the calculations required to evaluate the sensitivity of the buckling load
with respect to local change of stiffness of the ith element can be calculated using
information at the element level. The global redistribution of loads is accounted for
totally through the evaluation of the adjoint displacement vector v. Substituting the
above sensitivity equations back into equation (C.6), it can be written as:

∂λ

∂b
= λ

(
aTi ·

∂Kbi

∂b
· ai
)

+ λ2

(
sTi ·

∂Ai

∂b
· ei + vTi ·

∂Km
i

∂b
· ui
)

(C.18)

Keeping in mind that:

∂ λ

∂D−1
e

= −De · ∂ λ
∂De

·De (C.19)

and recalling that for the reciprocal approximation (5.11) the element sensitivities are
decomposed into two separate bending and membrane parts as follows:

Φbαβe ≡
1
λ2

∂ λ

∂ D−1
αβ

=
1
λ

∑
σ,ρ

DβσDρα

(
aTe ·

∂Kbe

∂Dρσ
· ae
)

(C.20)

and:

Ψm
αβe
≡ 1
λ2

∂ λ

∂ Aαβ
=
∑
σ,ρ

(
sTe ·

∂Ae

∂Aρσ
· ee + vTe ·

∂Kme

∂Aρσ
· ue
)

(C.21)

where α, β, σ, ρ = 1 . . . 3 represent the components of the stiffness matrices of associ-
ated with element e.

C.3 Thermo-Mechanical Buckling of Plates

The sensitivity analysis is modified in this section to include the contribution of
thermal loads. A simplified thermo-mechanical finite element analysis formulation
was presented in chapter 6. The eigenvalue problem was presented in equation (6.1).
The derivative of a single buckling mode with respect to an arbitrary stiffness variable
b can therefore be given as:

∂λ

∂b
= λaT ·

(
∂Kb

∂b
−∆T

∂KTh
g

∂b
− λ∂KM

g

∂b

)
· a (C.22)

The sensitivity consists of three terms, the first is local, and is identical to the first
term in equation (C.6). Terms two and three are global, as a change in element in-
plane stiffness results in a new stress distribution (be it due to mechanical or thermal
loading), and hence influence all elements. Term two and three are essentially the
same, however term two is most general, since it also includes the effects of thermal
loads and hence will be treated here. As in equation (C.8), the derivative of the
second term can be written as:

Sb2 ≡ aT · ∂KTh
g

∂b
· a = −

∑
e

sTe ·
∂ne
∂b

(C.23)
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where the vector se can be calculated locally as given in equation (C.9). The derivative
of the in-plane stress resultants can be obtained by differentiation of equation (6.5)
as:

∂ne
∂b

=
∂Ae

∂b
· ee + Ae · ∂ee

∂b
− ∂NTh

∂b
(C.24)

Thus, the sum in equation (C.23) can be decomposed into three terms correspond-
ing to the terms in equation (C.24). The first and third term can be evaluated locally
since only the in-plane stiffness matrix and thermal load vector of the ith element
depend on b. The second term involves the derivative of the average strain of an
arbitrary element with respect to the change of stiffness of the ith element and is not
local. Equation (C.23) can therefore be written as:

Sb2 = −sTi ·
∂Ai

∂b
· ei −

∑
e

sTe ·Ae · ∂ee
∂b

+ si · ∂NTh

∂b
(C.25)

The second term in equation (C.25), which is denoted by Sb22, can be evaluated
using the adjoint method presented in section C.2. In this case, the only difference is
that the applied thermal load is still present when solving the equations of equilibrium
(6.6). Therefore, the strain term can be simplified to:

Sb22 = vT · ∂fTh

∂b
− vT · ∂Km

∂b
· ue (C.26)

where the first term is given by:

∂fTh

∂b
= A ·B · ∂NTh

∂b
(C.27)

and where A is the element area, hence:

Sb22 = Ae ·Be · ve · ∂NTh
e

∂b
− vT · ∂Km

∂b
· ue (C.28)

which can be also evaluated locally. Thus, all the calculations required to evaluate
the sensitivity of the buckling load with respect to local change of stiffness of the
ith element can be calculated using information at the element level. The global
redistribution of loads is accounted for totally through the evaluation of the adjoint
displacement vector v. Substituting the above sensitivity equations back into equation
(C.22), and rearranging yields:

∂λ

∂b
=
(

1 +
∆T
λ

)
Ψm
αβe

+ Φbαβe + Ωe (C.29)

where:
Φbαβe ≡

1
λ2

∂ λ

∂ D−1
αβ

=
1
λ

∑
σ,ρ

DβσDρα

(
aTe ·

∂Kbe

∂Dρσ
· ae
)

Ψm
αβe
≡ 1
λ2

∂ λ

∂ Aαβ
=
∑
σ,ρ

(
sTe ·

∂Ae

∂Aρσ
· ee + vTe ·

∂Kme

∂Aρσ
· ue
)

where α, β, σ, ρ = 1 . . . 3 represent the components of the stiffness matrices of element
e, and the terms dependent explicitly on the thermal load are included in:

Ωe = −Ae ·Be · ve · ∂NTh
e

∂b
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C.4 Buckling of Shells

The components of the sensitivity matrices for shell structures can be derived similarly
to those for plates, as presented in section C.2. The derivative of a single buckling
load multiplier with respect to an arbitrary stiffness related design variable b is given
by:

∂λ

∂b
= λaT ·

(
∂Km

∂b
− λ∂Kg

∂b

)
· a (C.30)

where Km and Kg are now functions of both the laminate in-plane and bending
stiffness matrices. The first term is local, and can therefore be evaluated using the
stiffness terms related to a single element. The second term is not local and can be
solved for efficiently using the adjoint method, as presented in section C.2. Following
the same procedure, it can be shown that the components of sensitivity matrices
required to evaluate the buckling load approximation of a general shell are given by:

Φmαβe ≡
1
λ2

∂ λ

∂ A−1
αβ

=
1
λ

∑
σ,ρ

AβσAρα
(
aTe ·

∂Kme

∂Aρσ
· ae
)

(C.31)

Φbαβe ≡
1
λ2

∂ λ

∂ D−1
αβ

=
1
λ

∑
σ,ρ

DβσDρα

(
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(C.34)

where α, β, σ, ρ = 1 . . . 3 represent the components of the stiffness matrices of element
e. Note that all the sensitivity matrices can be evaluated locally, as the global contri-
bution of the geometric stiffness matrix is accounted for via the adjoint displacement
vector v.
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laminate robustness constraint in lamination parameters space. In 50th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, number AIAA-2009-2478, Palm Springs, California,, May 4-7 2009a.
AIAA.

M. M. Abdalla. Applications of the Cellular Automata Paradigm in Structural Anal-
ysis and Design. PhD thesis, Delft University of Technology, 2004.
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M. M. Abdalla, Z. Gürdal, and G. F. Abdelal. Thermomechanical response of variable
stiffness composite panels. Journal of Thermal Stresses, 32(1):187 – 208, 2009b.
doi: 10.1080/01495730802540916.
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