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Abstract

New Decoding Methods for LDPC Codes

on Error and Error-Erasure Channels

For low-end devices with limited battery or computational power, low complexity decoders
are beneficial. In this research we have searched for low complexity decoder alternatives for
error and error-erasure channels. We have especially focused on low complexity error erasure
decoders, which is a topic that has not been studied by many researchers.

The separation of erasures from errors idea [1] seemed profitable to design a new error erasure
decoder, so we have also worked on this idea. However, the methods that are described in
that paper are not realizable for practical values of code length and number of erasures. Thus,
a new separation method; the rank completer is proposed, which is realizable. In the part of
the research that is related to error decoding, we have proposed a modification to reliability
ratio based bit flipping algorithm [2], which improves the BER performance with very small
additional complexity. In the part that is related to error erasure decoding, we have given a
new guessing algorithm that performs better than some known guessing algorithms, and a new
error erasure decoder that uses the rank completer idea. Both simulation results and analytical
models are used to adjust variables of the described methods. Also simulation results are
utilized to compare the proposed methods with existing methods. The rank completer (and
the separation of erasures from errors) is a promising method that can be further studied
for error erasure decoding. However, we have shown that for already error erasure correcting
methods, application of this method can degrade the BER performance of the original code.
The modification that we propose for error decoders does not improve the BER performance
much, however, it can be applied since it has nearly no additional complexity. The proposed
error erasure decoders can be used for systems that do not require high reliability, but favor
low complexity.
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Chapter 1

Introduction

The basic communication problem, which is given in Figure 1-1, consists of three elements;
the source with information to send to the sink, the sink to receive the information sent by
the source, and the noisy channel which disrupts the information sent. The intended solution
of this problem is transmission of data from source to the sink in an efficient and reliable way.

Figure 1-1: The communication problem [3]

The basic communication problem introduced above has been formalized by Shannon in two
separate parts; the first part deals with the information theoretical aspects of the data to
be sent by the source, and the second part deals with the reliable transmission of this data
through the noisy channel. The structure is given in Figure 1-2. There are four new blocks
that have two different functions as stated before; the source encoder/decoder and the channel
coder/decoder. Source encoder removes the redundancy of the source information, while the
source decoder retrieves the full source information from the encoded data. On the other hand,
channel encoder introduces redundancy for reliable transmission of the data through the noisy
channel (or storage medium), and the channel decoder retrieves -of course depending on the
capabilities of the channel encoding/decoding blocks and the noise- the source coded data from
the received data. Source coding part is not explained any further in this thesis, depending
on Shannon’s source-channel separation theorem, which simply states that an efficient and
reliable transmission is possible by dealing with source coding and channel coding separately.
Therefore, in the channel coding perspective the source and the source coding can be thought
as a single large block. These blocks are shown in Figure 1-2 by the big dashed rectangles.

Using the channel coding perspective described in the previous paragraph, the transmitter
part is reduced to a source that generates arbitrary number information symbols from an

Master of Science Thesis İlke ALTIN



2 Introduction

Figure 1-2: The communication problem revised by Shannon

alphabet, and a channel encoder encodes k of these symbols and produces an output of
length n, where n−k is the redundancy of the channel encoder. In the channel some of these
n encoded symbols are corrupted due to noise which might cause errors and/or erasures. A
symbol is called erroneous if its value is changed through the channel, and erased if no value
or an erasure flag is received for that symbol. In the receiver, the received symbol sequence,
which has length n is decoded to the k symbols that is closest to the received sequence.
The term "closest" might be in the sense of maximum likelihood, Hamming distance, etc.
depending on the type of the decoder.

There are two main types of channel coding techniques. The first type is called Automatic
Repeat Request (ARQ), in which the receiver requests retransmission of unreliable data frames.
A data frame can be declared unreliable if an erasure or an error is detected in that frame. The
second type is forward error correction Forward Error Correction (FEC) where the channel
decoder estimates a codeword from the received codeword. Forward error correction methods
will be the focus of this thesis. An error correction/detection scheme can be evaluated by
three important properties; the reliability of the scheme, the complexity of the scheme, and
the efficiency of the scheme. The reliability of the scheme stands for the reliability of the
decoded words in the receiver, which can be measured by Bit Error Rate (BER) or Frame
Error Rate (FER). The complexity of the scheme is measured by the number of operations
that is required by the system and the complexity of these operations. The efficiency of the
scheme is measured by the ratio of the information sent for error correction/detection and
the information sent from the source. The main trade-off in the error correction/detection
technique is between these three properties.

Now, a channel coding example will be given to clarify the process for the reader. For this
particular example, a (7,3,4) simplex code will be used. A simplex code is one of the basic
linear block codes and can be described by its length n, dimension k and Hamming distance
d and the alphabet size q. The dimension of the code defines the number of possible messages
with the size of the code alphabet; there are qk possible messages for a code that has dimension
k and alphabet size q. The Hamming distance is the minimum number of different symbols
between any two different codewords of the code, which can be used as a measure of error
correction capability. The codewords of binary (7,3,4) simplex code are the rows of the matrix
Cs in (1-1). It should be recognized that the eight possible messages that could be sent by
the source are in the right-hand side of the matrix.

İlke ALTIN Master of Science Thesis
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Cs =




0 0 0 0 0 0 0
1 1 0 1 0 0 1
1 0 1 1 0 1 0
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 1 0 1 0 1
1 1 0 0 1 1 0
0 0 0 1 1 1 1




(1-1)

After introducing the possible codewords, the scenario for a source which wants to transmit
message m = 001 is given below, where a symbol became erroneous and another one is erased
through the channel;

• Source wants to transmit message mt = 001

• Channel encoder encodes mt by using Cs and outputs the codeword ct = 1101001

• Through the channel the transmitted codeword ct is changed into 1001x01 where x
denotes an erasure

• Channel decoder estimates cr = 1001x01 to the closest codeword in Cs; ce = 1101001,
and decodes it.

• Sink receives the decoded message mr = 001

The received message by the sink is the same with the one transmitted by the source, so
we can conclude that channel coding has been successful in the presence of an error and an
erasure in the codeword. It is easy to realize if channel coding has not been used, errors
and erasures can not be corrected. Therefore, for a more reliable transmission through a
noisy channel, channel coding techniques are indispensable. Of course, the aforementioned
advantages of error correcting codes comes with a price; usage of the error correcting codes
requires more symbols to be transmitted, which is costly in terms of bandwidth, power, or
time depending on the communication system. However, the benefits have outweighed the
aforementioned costs and the calculations for the encoding/decoding; and channel coding is
widely used in communications and storage systems.

Main application areas of error detecting/correcting codes can be given as;

• Wireless and Mobile Communications: Error correcting techniques are widely
used in mobile communication systems to cope with the perturbations caused by in-
terference, noise, multi path fading, shadowing, propagation loss, etc. in the wireless
channel. In GSM; Cyclic Redundancy Codes (CRC) are used for error detection, block
and convolutional codes are applied for error correction. In CDMA2000; convolutional
codes and turbo codes are used for error correction. In 3G; both convolutional and turbo
codes are supported for error correction. Low-Density Parity-Check (LDPC) codes are
the standard error correcting codes for many wireless communication protocols such as
WiMAX (802.16e) and WLAN (802.11).

Master of Science Thesis İlke ALTIN



4 Introduction

• Deep Space Communications: Since space and the atmosphere is the channel for
these communication systems, the space radiation is the most effective disturbance to
the signal which can be modeled as Additive White Gaussian Noise Channel (AWGN)(if
an interleaver is used). Although the noise sources are very limited, communication from
outer space would be impossible because of the high propagation loss due to the distance.
Thus, error correction is the only sensible way to communicate with signal powers as
low as in space communication case. First of the codes that is used for deep space
communications is (32,6,16) Reed-Muller in the Mariner spacecraft. After that, mostly
convolutional codes and Reed-Solomon (RS) codes are used for space communications,
with improvements in rate, gain, or time performance.

• Satellite Communications: For digital satellite TV, RS codes had been used for a
long time, however currently replaced by modern codes such as LDPC and Turbo codes.

• Military Communications: In military communications, besides the natural inter-
ference and noise, the communication system also needs to deal with the intentional
enemy interference; therefore, the need for error correcting codes is obvious.

• Data Storage: RS codes is widely used for error correction in storage systems such as
CDs, DVDs and hard discs. Single Error Correcting Double Error Detecting (SECDED)
codes, which correct single errors and detect double errors, are widely used in many
data storage units with RS codes or Hamming codes.

Before moving to the next section we will discuss some important properties of error correcting
codes. Firstly, it should be noted that the error correcting codes are divided into two parts,
block codes and convolutional codes.

For block codes encoding can be described as follows; the information symbols to be sent are
divided into blocks of k symbols, then these k symbols are encoded to n symbols where the
code rate (or the ratio of the number of information symbols to total number of symbols)
is k/n. The decoding process is the reverse of this case, where the received information is
chopped into blocks of n symbols and decoded to k information symbols.

For convolutional codes, the information bits to be sent are not chopped into blocks but
viewed as a stream. Every symbol in this stream effects the encoder output of a number
of symbols after it, depending on the memory of the convolutional code, M . The data is
encoded by taking k input symbols and then computing n equations with these k symbols
and the buffered k ·M symbols. Depending on these values, it is obvious that the code rate
is again k/n.

After introducing the two main types of codes, we shall explain the Hamming distance of
a code in more detail. Hamming distance of a code is the minimum Hamming distance
between two codewords that is the element of the code. Hamming distance between two
codewords, d(c1, c2) is the number of positions that these two codewords differ. Hamming
distance had been the most important parameter of the code’s that represent the error and
erasure correcting ability for a long time, and a code with Hamming distance d is known to
be correct d − 1 erasures or ⌊d−1

2 ⌋ errors. However these limits are only meaningful, while
discussing hard-decision decoding, when no reliability information of received bits is available
or used.

İlke ALTIN Master of Science Thesis



1-1 LDPC codes 5

Another important property of a code is linearity; and a code is linear, if the codewords are
a subspace of the length n vector space of the (finite) field. In other words if all the linear
combinations of the codewords is another codeword, then we can conclude that the block
code is linear. It should be obvious that a word with all zero entries is a valid codeword for
all linear block codes.

Final description related to linear block codes is the parity check matrix, H which can be used
to decode linear block codes. The rows of the Parity Check Matrix (PCM) form the null space
of the generator matrix. Therefore, we can conclude that any valid codeword, c ·HT = 0. If
H is a m × n matrix, then there are m parity check equations for the code which is given
below in (1-2).

PCEi =
n∑

j=1

hi,j .cj for i = 1, 2, ...,m (1-2)

In the next section we introduce LDPC codes, since we have mainly worked on decoders for
LDPC codes in this research.

1-1 LDPC codes

LDPC codes are linear block codes, that are defined by their sparse parity check matrices. By
density, we mean the ratio of the number of ones in the matrix to the number of all elements
in the matrix. If for each row (or column) ratio of the number of ones to the length of that
row (or column) is equal, then the code is called a regular LDPC code. The low-density
condition can be satisfied especially for larger block lengths.

LDPC codes have been proposed by Gallager in [4] in 1960s. However, the long block LDPC
codes were too complex to be implemented at that time, and the codes were largely forgotten.
In 1980s Tanner has given a bipartite graph interpretation of LDPC codes with other types of
codes in [5]. After Turbo codes have emerged and iterative decoding methods for large codes
are designed, two groups independently rediscovered the LDPC codes in [6] and [7].

LDPC codes that has been proposed by Gallager were regular LDPC codes, that has a
constant column and row in their parity check matrices. Shortly after the rediscovery of
LDPC codes, a new type of LDPC codes has been introduced in [8], which are called irregular
LDPC codes. This type of LDPC codes can have different density rows and columns in its
parity check matrices, and they can perform better than regular LDPC codes as shown in [9].

LDPC codes are mostly represented by their parity check matrices or the corresponding
Tanner graphs. Tanner graph is a bipartite graph representation for the parity check matrix
of the code. Say the size of H is a m × n matrix, the m parity check (or check) nodes
and n codeword (or variable) nodes correspond to two disjoint sets in the bipartite graph.
An element ci of "check nodes" set is connected to an element vj of "variable nodes" set if
the corresponding entry in the parity check matrix is one, hij = 1. Previously introduced
(7,3,4) simplex code is used to show the relationship between the parity check matrix and the
Tanner graph. The parity check matrix is given in (1-3) and the corresponding Tanner graph
representation is given in Figure 1-3. An important definition about the Tanner graph is the
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6 Introduction

definition of neighbor nodes, two nodes are neighbors if the are connected by an edge in the
Tanner graph of the corresponding code.

Figure 1-3: Tanner graph of (7,3,4) simplex code

H =




1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1


 (1-3)

To understand why LDPC codes perform so well, Shannon’s important argument about trans-
mission on noisy channels should be taken into account. The argument states that assigning
very large block codes randomly to every message, it is possible to reach the limit for nearly
error-free communication which is called the Shannon limit. Therefore if very large block
codes can be decoded in a feasible time, we can reach the limit set by Shannon in 1940s. The
sparse parity check matrices of LDPC codes combined with iterative decoding techniques, has
opened the way for decoding of large block codes and made it possible to come real close to
Shannon bounds.

1-2 Motivation

In this research we have worked on new decoding alternatives for linear block codes, and
especially for LDPC codes. Considering the trade-off of the error correction schemes, that
is between complexity, efficiency, and reliability, we have worked on decoders that have less
complexity and reasonable BER performance on channels that cause errors and channels that
cause both errors and erasures. In this section, we will motivate the research on decoders
for Error-Erasure Channels (EEC) by giving previous research on error correcting codes on
these sort of channel types, and the research for low complexity decoders for LDPC codes
by introducing two different types of decoders on different ends of the trade-off. The low
complexity methods that we study in this research can be extremely useful for low-end devices
that has little computational power or battery power.
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1-2 Motivation 7

1-2-1 Error Erasure Channels

There are many examples of channels in real world communication problems -either trans-
mission or storage- that cause errors in combination with erasures, while there are not many
decoders that can cope up with EEC. Some of the possible real world cases that are modeled
by EEC are given below.

First case that is considered here is from mobile communications field, the Multimedia Broad-
cast/Multicast Service (MBMS) in GSM EDGE Radio Access Network (GERAN) [10]. The
problem is decoding the Radio Link Control (RLC) layer packets which can have residual bit
errors that should be corrected to prevent propagation of error to upper layers. In [11], this
is handled by using RS codes with declaring erasures for unreliable bits, and then applying
error-erasure decoding.

Second case is from wireless communications, systems that use frequency hopping in Medium
Access Control (MAC) protocols. In [12], Binary Symmetric Error Erasure Channel (BSEEC) is
introduced, which is explained in Chapter 2. Also, it is stated that frequency hopping systems
might perform better by declaring erasures in case of inter-channel interference, and applying
Error Erasure Decoding (EEDG). However, it is shown that for some channel conditions
automatically declaring an erasure is not optimal, even with perfect side information about the
interference. In [13], again the erasure declaring method is used with available side information
with variable rate coding. Another method is declaring erasures by Ratio Threshold Test
(RTT), which uses no side information. In [14], many channel coding techniques are given,
one of them being the error-erasure decoding of RS codes, which is shown to be effective for
slow frequency hopping systems. In [15], erasure declaring methods are used to solve tone
jamming and Rayleigh fading problems.

Now, we move to an example in the magnetic recording channel, where the channel can
be modeled as AWGN plus burst noise. The channel is assumed to be AWGN plus burst
erasures with perfect side information in [16]. After the channel model is changed to AWGN
plus erasures, error-erasure decoding is done by message-passing decoding of LDPC codes.
In [17], AWGN with erasures is again assumed to be a good model for magnetic and optical
recording systems. The authors have given analysis methods for LDPC codes over AWGN
with burst and random erasures. The proposed error-erasure decoding method is again a
message-passing decoder.

The combination of AWGN noise and non-stationary interference in DSL systems, is an
another important real world communication problem that error-erasure channel models are
appropriate. This channel is modeled as an AWGN channel with erasures in [18], by using
square distance to the possible symbol points in the constellation diagram and is decoded
using RS codes. Depending on this result, in [19], and [20] authors have used Additive White
Gaussian Noise Channel with Erasures (AWGN+EC) and BSEEC to model the channel and
used soft decision message passing (belief propagation) and hard-decision message passing
with erasures (Gallager Algorithm E) for decoding, respectively.

Some other examples of EEC are; satellite communications, and digital watermarking. In [21],
AWGN+EC is assumed to be a good model for satellite communications with an interleaver
of proper length. In [22], LDPC codes are used to decode the word that contains errors and
erasures for blind watermarking problem.
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8 Introduction

1-2-2 LDPC code decoders

Here we will explain two widely used LDPC decoders shortly; the Bit Flipping (BF) algorithms
and the Message Passing (MP) algorithms to motivate our choices in this research. Both of
these methods have been introduced in [4] along with the LDPC codes by Gallager, and has
been studied by various researchers. Considering the three aforementioned trade-off properties
of an error correction scheme, the efficiency depend on the code (the code rate to be specific)
and is independent of the decoder selection. However, the complexity and the reliability
depend both on the code and the decoder.

If the complexity of these methods are considered, the BF decoders are known to be less
complex, since MP decoders require messages to be sent between nodes and calculation of
new messages in the receiving nodes in each iteration, where the BF decoders require only the
calculation of a flipping metric for each bit by using the initial reliabilities and the violated
parity check equations. Comparing the reliabilities of these two methods, BF decoders perform
worse than the MP decoders on error channels and erasure channels. In addition to this, no
methods have been described about BF algorithms on EEC (in our best knowledge), where
there have been a significant amount of research related to the decoding of LDPC codes by MP
decoders on EEC. This large gap between the complexity and the reliability has motivated us
to work on better performing BF algorithms on error channels. Also, the incapability of the
BF decoders on EEC has motivated us to work on methods for EEDG with BF algorithms.

1-3 Problem Statement

As stated in the motivation section, the main focus of this research is the complexity-reliability
trade-off of decoders for linear block codes, and especially LDPC codes. These methods can
be used for low-end devices that do not require highly reliable information, but have limited
resources (computational or battery). The two main aims of the research are the improvement
of the reliability of existing low complexity decoders on error channels, and proposals of less
complex decoders for EEC with acceptable reliability. We have selected the LDPC codes to
work on, since LDPC codes are widely used for error correction in many applications, and
the family of LDPC codes is a very hot research topic.

The first aim of this research is the low complexity LDPC decoders that can achieve reasonable
BER performance, which can be realized by working on BF decoders, that are known to be
achieving reasonable BER performance with little complexity. Especially soft decision BF
algorithms are researched by various researchers on the AWGN channel, and shown to be
effective with low complexity. We have worked on existing soft decision BF decoders, and
tried to come up with a more reliable soft decision BF decoder with a very little increase in
complexity.

The second aim of this research is to design simpler decoders for linear block codes, especially
for LDPC codes on EEC. To create such decoders, we have used an idea that is introduced
in [1]; the separation of erasures from errors. This idea uses puncturing and shortening
operations on the code, and lets us combine an error decoder with an erasure decoder to
create an Error Erasure Decoder (EED). However, this idea is not realizable for the reasons
that will be explained in Chapters 2 and 3. Thus, a new method to separate the erasures
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from errors is also needed to be researched before applying this idea. After such a method
can be found, then this idea might be realized, and proposed as an alternative to existing
EEDs. Besides this idea, simpler alternatives for EEDs, such as guessing of erasure positions
are also considered in this research. Thus, we have searched for new guessing decoders that
might perform better than previously existing guessing algorithms.

To conclude, our aims are;

• Studying the existing BF decoders on error channels, and searching for improvements
that narrow the gap in the reliability between the MP decoders and BF decoders.

• Finding a realizable method to separate erasures from errors.

• Creating new EEDs that have low complexity and reasonable reliability (BER perfor-
mance), which might be alternatives to existing high complexity EEDs (such as MP
decoders).

1-4 Contributions and Thesis Outline

The contributions of this thesis are;

• A minor modification to the RRBF algorithm which results in better BER performance
with very little complexity added.

• The rank completer method, which is a new and realizable way to separate errors from
erasures.

• Implementation of new EEDs with less complexity and reasonable BER performance.

The outline of the thesis is;

• Chapter 2 Background Information: Some background information on LDPC de-
coding is given in detail, the channel models that are used in the thesis are introduced,
and finally the idea of "Separating Errors from Erasures" is given.

• Chapter 3 Literature Review: Three main parts is presented in the literature review,
research related to error-erasure decoding, research related to BF and RRBF.

• Chapter 4 Modified Reliability Ratio Based Bit Flipping Algorithm: We present
our modified version of the RRBF algorithm, Modified Reliability Ratio Based Bit
Flipping (MRRBF) and compare its BER performance using different parity check ma-
trices.

• Chapter 5 The Rank Completer: We present the new method of separation of era-
sures from errors, which is realizable and does not require creation of "separating ma-
trices".
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10 Introduction

• Chapter 6 New Error Erasure Decoding Methods: We present two methods for
EEDG that have been originated from existing ideas, and compare BER performances
of these methods on different channels.

• Chapter 7 Conclusion and Future Work: Summary of the results and the possible
future work is given.
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Chapter 2

Background

In this section we first present fundamental techniques for LDPC decoding and then we move
on to the channel models that are used in this research. Finally, the "Separation of Erasures
from Errors" idea is explained, since it is the basis of this work.

2-1 Decoding methods for LDPC codes

In this section, common decoding techniques are introduced for LDPC codes. Firstly, bit-
flipping algorithms, message-passing algorithms, and linear programming decoding algorithms
are discussed, and afterwards exhaustive and iterative erasure decoding algorithms are pre-
sented.

2-1-1 Bit-Flipping Algorithms

In [4], Gallager has introduced a simple BF algorithm to decode LDPC codes, but did not
analyze the performance of that algorithm extensively. Instead, he focused on binary message
passing algorithms for hard-decision decoding and the belief propagation algorithm for soft-
decision decoding, since they perform better in the BER performance perspective. The BF
algorithm has been proposed again in [7] with a guarantee of correct decoding result, if number
of erroneous bits is bounded by a constant depending on the code.

The BF algorithm can be described as follows; the codeword bit with the highest metric is
flipped in every iteration. Calculation of this metric divides the BF algorithms into two classes;
hard-decision BF and soft-decision BF algorithms. For hard-decision BF, the metric depends
only on the number of unsatisfied parity check equations since no reliability information
is available. For soft-decision BF, the metric is calculated by the number of satisfied and
unsatisfied parity check equations and their corresponding weights which is also decided by
the decoding algorithms. Types of soft-decision BF algorithms will be given in Chapter 3 in
a detailed fashion.
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Another property that separates BF algorithms is the number of bits flipped per iteration. If
a single bit is allowed to be flipped in a single iteration, then the algorithm is called single BF
algorithm. If multiple bits are allowed to be flipped in a single iteration, then the algorithm
is called multi BF algorithm. Single BF algorithms need much more iterations to decode a
codeword than multi BF algorithms, but they are more resistant to decoding loops than multi
BF algorithms also.

To finalize the introduction to BF algorithms, we give a simple hard-decision single BF algo-
rithm to help the reader understand the structure of BF algorithms.

1. Compute the parity check equations, if all of them are satisfied, then stop decoding and
output the codeword.

2. Find the number of unsatisfied parity check equations for each variable node.

3. Flip the codeword bit with largest number of unsatisfied parity check equations, select
randomly in case of an equality.

4. Repeat steps 1-3 until maximum number of iterations is reached.

2-1-2 Message-Passing Algorithms

The second type of the decoding algorithm that Gallager has proposed in [4], was message-
passing (MP) algorithm. He realized their superiority to BF algorithms and proposed two
main types of decoders using MP in his paper; hard-decision MP decoding and soft-decision
MP decoding. We will describe these algorithms after presenting some fundamental back-
ground information and a generic message-passing decoder.

To understand MP algorithms in general; one should be familiar with the term extrinsic
information, which means that the data sent to a node depends only on other nodes. In
other words, extrinsic information should not be influenced by the node that it is sent to.
In a good MP algorithm the messages should contain extrinsic information only, therefore
the messages are calculated by excluding the information received from the node that the
message is intended. Messages that contain intrinsic information might result in a situation
where every node is dominated by its current value (previous message is the current value).

A generic message-passing decoder is given below.

1. Initialize the decoder by sending the received values of variable nodes to check nodes.

2. In each check node, a message for each neighbor variable node is calculated and sent.

3. Each variable node calculates a new value for itself depending on the received value and
the extrinsic information from the check nodes. The output is checked by parity check
equations and if all are checked, then decoding is over. Otherwise, a message for each
neighbor check node is calculated and sent.

4. Repeat steps 2-3 until maximum number of iterations is reached.
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2-1 Decoding methods for LDPC codes 13

Now, we can describe the two main types of message-passing algorithms by defining the
method of calculating the messages and the size of message alphabet. The first type is hard-
decision MP algorithm (Gallager Algorithm B), which uses a binary alphabet {-1,1} for the
messages and the node values. The other type is a soft-decision MP algorithm, and is called the
Belief Propagation (BP) algorithm, which uses real numbers for messages and node values [4].
Min-Sum (MS) algorithm should also be introduced here, which is an approximation of the
BP algorithm, with less computational complexity.

These two algorithms use the same idea; where soft-decision MP utilizes the soft information
of the received values to calculate (soft) messages, and hard-decision MP uses only the sign of
the received information to calculate (hard) messages. Thus, when soft information is available
it is obvious that soft-decision MP algorithms outperform the hard-decision MP algorithms.
However, the complexity of the calculations and real valued message transmission should be
considered.

2-1-3 Linear Programming Decoding Algorithms

Linear Programming (LP) decoding corresponds to a general family of algorithms that tries to
find the maximum likelihood codeword via linear programming in feasible time. Since Maxi-
mum Likelihood (ML) decoding is an Non-deterministic Polynomial-time (NP)-hard problem,
LP decoders offer sub-optimal solutions to the estimation of the ML codeword. Two general
methods for LP decoding are introduced in [23] and [24]. Here we shortly explain the method
that has been described in [24], which has been studied by many researchers. This method is
based on linear programming relaxation, which results in a more manageable representation.
Although the details are omitted here, the representation is acquired by defining local codes
for each check node (any set containing even number of ones in the parity check equation) and
a global code that is the intersection of all local codes. This procedure defines a larger code-
word set that contains the set of actual codewords and some non-integer codewords. This set
is called pseudocodewords set, and from this set ML solution can always be found. However,
for some cases ML solution is non-integer, which shows that LP decoding fails. One of the
drawbacks of the LP decoding is the polynomial complexity of the algorithm. LP decoding is
out of the scope of this research due to its complexity, and we present it here for completeness
and to form a basis for one of the algorithms that is discussed in Chapter 3.

2-1-4 Erasure Decoding Algorithms

In this section we present erasure decoding algorithms that can correct erasures. First we
present the exhaustive decoding technique which is not practical and not used. Then we
present the iterative decoding technique which is realizable, but performs a little bit worse
than the exhaustive method.

Exhaustive erasure decoding: Exhaustive decoding can correct every set of bit erasures,
as long as the set of erasures do not contain the support of a non-zero codeword. The support
of a non-zero codeword is the position of non-zero values in the codeword. In this method, a
received word with erasures in flagged positions can be decoded by comparing every possible
codeword to the received word using the bits that are not erased. This simple method is
effective, however becomes infeasible when the number of codewords are large. This can be
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explained by an example clearly. Using the previously introduced (7,3,4) simplex code, the
channel encoder transmits the codeword cs = 0001111, and some of the bits are erased in
the channel. The received codeword is cr = 0x01x1x, where x denotes an erased bit. After
searching a candidate in all of the possible codewords from (1-1),the codeword is decoded
as cd = 0001111. To sum up, it should be noted that the exhaustive decoding can correct
any pattern of erasures, as long as there’s only one codeword that can be decoded from the
received word. If the support of a codeword is erased, it is easy to see that the received word
can be decoded to more than one words, and such an erasure set is called incorrigible set [25].

Iterative erasure decoding: Iterative decoding methods correct erasures one-by-one using
the parity check matrix or the Tanner graph of the code. The algorithm is explained in three
steps below.

1. Store the erasure list.

2. Search for a parity check equation that checks a single erasure position from the erasure
list. If such an equation is not found, then stop decoding with unresolved erasures.

3. Correct the erasure position using the found parity check equation, and update the
erasure list.

4. Unless the erasure list is empty, go to step 2.

The iterative decoding algorithm depends on not only the position of the erasures, but also
the parity check equations to be able to check erasures in a single position. Therefore the
set of erasures that causes unresolved erasures always contains the incorrigible set, but is not
always equal to it. These sets are called stopping sets and are first analyzed in [26]. More
information on stopping sets and incorrigible sets and their effects on iterative decoding can
be found in [27].

2-2 Channel Models

In this section the channel models that are used in the research are presented. We start by
describing the channel models for hard-decision decoding, and then go on with the channel
models for soft-decision decoding.

2-2-1 Binary Erasure Channel

Binary Erasure Channel (BEC) cause only erasures in the transmitted codeword. The model
is described by the bit erasure probability, which we call p1 in this thesis. Each bit of the
codeword is received correctly with probability of 1− p1 and is erased with probability of p1.
The channel model is given in Figure 2-1.
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Figure 2-1: The channel model of BEC

2-2-2 Binary Symmetric Channel

Binary Symmetric Channel (BSC) cause only errors in the transmitted codeword. The model
is described by the bit error probability, which we call p2 in this thesis. Each bit of the
codeword is received correctly with probability of 1 − p2 and is received erroneously with
probability of p2. The channel model is given in Figure 2-2.

Figure 2-2: The channel model of BSC

2-2-3 Binary Symmetric Error-Erasure Channel

BSEEC cause both errors and erasures in the transmitted codeword. The model is described
by the bit erasure probability p1 and bit erasure probability p2. Each bit of the codeword
is received correctly with probability of 1 − p1 − p2, is erased with probability of p1, and is
received erroneously with probability of p2. The channel model is given in Figure 2-3.

Figure 2-3: The channel model of BSEEC

2-2-4 Additive White Gaussian Noise Channel

AWGN channel is an additive noise channel, and it can not be explained in the same manner
with the above channels. Instead of the logical values (0 and 1) which have been used to
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describe the channels above, real values should be considered to explain the AWGN channel.
Assigning {-1,+1} to the binary bit values {1,0}, the channel input is a stream of values
from {-1,+1}. The channel output is modeled as adding white Gaussian noise (Gaussian
distributed variable with zero mean and non-zero variance) to the input values. The effect of
AWGN channel on bits is given in Figure 2-4. The effect of the channel can also be formulated
as in (2-1), where Ñ is a Gaussian random variable, X̃ is the channel input, Ỹ is the output,
and σ2 is the variance of the Gaussian random variable. The AWGN channel is described
by the ratio of the signal power to the noise power, SNR = x2

n

σ2 , with xn as symbol energy.

However to compare different coding schemes with different rates, Eb/N0 = x2
n

2·R·σ2 is used,
where N0 is the noise spectral density, Eb is energy per bit, and R is the code rate [28]. In
this thesis, the SNR value is used for Eb/N0 value, and the change in the code rate is taken
into account while calculating the SNR value.

Ỹ = X̃ + Ñ(0, σ2) (2-1)
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Figure 2-4: The probability distribution of AWGN channel output

2-2-5 Additive White Gaussian Noise Channel with Rayleigh Fading

This channel is simply the AWGN channel with multipath fading effects, therefore fundamen-
tal information on Rayleigh fading should be given to explain it. Rayleigh fading is a model
to describe the small scale fading (multipath fading) in the transmission of electromagnetic
waves in wireless communications [29]. The model has been named after the Rayleigh dis-
tribution, pdf of which is given in (2-2), since in such a channel the amplitude of the signal
fades according to this distribution. We consider uncorrelated and fast fading, and model the
amplitude distortions by multiplying each transmitted bit with a Rayleigh distributed ran-
dom variable ã. The receiver is assumed to be capable of handling distortions due to phase
differences, which is also a model used in [30]. The described channel can be formulated with
a slight modification to (2-1), which is given in (2-3). AWGN with Rayleigh fading channel
is also described by the SNR (which is defined the same with Eb/N0 in this thesis) value,
assuming the fading model does not disturb the mean value of the SNR, but only causes
fluctuations around it. The distortions by the Rayleigh fading result in a significant amount
of degradation in the channel capacity. The effect of this degradation on BER performance is
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shown in Figure 2-5, where compare the uncoded AWGN channel to uncoded AWGN channel
with Rayleigh fading.

f(x) =
x

σ
e−(x)2/2σ2

(2-2)

Ỹ = ã · X̃ + Ñ(0, σ2) (2-3)
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Figure 2-5: The comparison of uncoded AWGN channel to uncoded AWGN with Rayleigh fading
channel

2-2-6 Additive White Gaussian Noise Channel with Erasures

AWGN channel with erasures (AWGN+EC) is described by the erasure probability p1, and
SNR. The channel can be realized as an erasure channel cascaded to an AWGN channel,
which is given in Figure 2-6. The erasure channel in the block diagram differs from the BEC
in the channel inputs and outputs. It accepts real numbers as inputs from the AWGN channel
and outputs either erasures or real values (from AWGN channel). As it is illustrated, first
additive noise is added to x[n] which forms y[n], the output of the AWGN channel. Then
y[n] is fed as an input to the erasure channel, and bits are erased according to the erasure
probability p1. The output of the channel is z[n], which contains erasures and real values.

Figure 2-6: The channel model for AWGN+EC
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The effect of the channel is given below with a sample word that is sent through the channel
for clearer understanding of the reader. First the binary codeword is selected by the channel
encoder, regarding the source message to be sent. Then, this codeword is mapped to real
numbers according to a modulation scheme. The modulation and its effects are out of the
scope of this thesis, therefore we assume Binary Phase Shift Keying (BPSK) modulation
which maps binary one to −1 and binary zero to 1. After the BPSK modulation, AWGN
with variance σ2 is added to the channel input x[n], which gives y[n]. In the final step, bits
are erased according to the erasure probability p1, and the channel output z[n] is created.

c = 1 0 0 0 0 1 0 1 0 0

↓

x[n] = −1 1 1 1 1 −1 1 −1 1 1

↓

y[n] = −0.8 −0.1 0.7 1.5 1.1 −0.5 0.4 0.2 1.7 0.7

↓

z[n] = −0.8 x 0.7 x 1.1 −0.5 0.4 x 1.7 0.7

2-3 Separation of Erasures from Errors

The "Separation of Erasures from Errors" idea is introduced in [1], which works for linear
block codes. If the Hamming distance d of the code satisfies d − 1 ≥ 2 · t# + t?, then a
received codeword with t? erasures and t# errors can be corrected [31]. Using this idea an
error-correcting decoder and an erasure correcting decoder algorithm can be used together to
deal with an error-erasure channel.

An algorithm that uses this idea can be explained as follows;

1. The erasure positions are deleted from the original code, which creates a punctured
code that does not check on erased bits, but checks on the rest of the bits. In other
words, a new parity check matrix for the punctured code should be created from the
original parity check matrix.

2. The error correcting decoder is used to correct errors in the punctured codeword which
does not contain any erasures.

3. After the error correction is finished, erasure correcting decoder is used to correct the
erasures and the decoding is complete.

As stated above, the separation idea uses a different punctured code for each set of erasures.
To clarify the process, we give formal definitions of puncturing and shortening of codes.

Puncturing: When a code is punctured; the dimension k is kept constant and the length
n is decreased for each bit that is shortened, unless the support of a non-zero codeword is
punctured [32]. If the support of a non-zero codeword is punctured, then k is also decreased
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for each linearly independent non-zero codeword support that is punctured. Thus, if we
puncture a bits from a (n, k) code and no non-zero codeword supports are punctured, then
we end up with a (n − a, k) code. If we puncture a bits from a (n, k) code and b linearly
independent non-zero codeword supports are separated, then we end up with a (n− a, k− b)
code. By puncturing, we usually have a more efficient (higher code rate) coding with less error
correction capability than the previous code (d is usually decreased). Puncturing is simply
erasing columns of the generator matrix of the previous code. One-bit punctured version
of the (7,3,4) simplex code is given in (2-4), whose generator matrix is previously given in
Chapter 1, (1-1). As it can be seen from the new generator matrix, the new code has n = 6,
k = 3, and d = 3.

Csp =




0 0 0 0 0 0
1 0 1 0 0 1
0 1 1 0 1 0
1 1 0 0 1 1
1 1 1 1 0 0
0 1 0 1 0 1
1 0 0 1 1 0
0 0 1 1 1 1




(2-4)

Shortening: When a code is shortened; n and k are decreased for each bit that is shortened,
unless the support of a non-zero codeword of the dual code is shortened [32]. If the support
of a non-zero codeword of the dual code is shortened, then k is increased for every linearly
independent non-zero codeword support of the dual code that is shortened (remember k is
decreased by one for each shortened bit). Thus, if we shorten a bits from a (n, k) code and no
non-zero codeword supports of the dual code are shortened, then we end up with a (n−a, k−a)
code. If we shorten a bits from a (n, k) code and b linearly independent non-zero codeword
supports of the dual code are shortened, then we end up with a (n − a, k − a + b) code. It
is easy to observe that via shortening, we usually end up with a lower rate code than the
previous code with the same error correcting capability. Shortening is done by using some
of the information symbols, and forcing the other information symbols to be zero, excluding
any row that has a non-zero entry in the shortened positions. Afterwards, the column with
all zero entries is erased and the shortening operation is done. One bit shortened version of
the (7,3,4) simplex code is given in (2-5). As it can be seen from the new generator matrix,
the new code has n = 6, k = 2, and d = 4.

Css =




0 0 0 0 0 0
1 1 0 1 0 1
1 0 1 1 1 0
0 1 1 0 1 1


 (2-5)

An important connection between these two operations is the fact that they are dual op-
erations, which is given in [33]. Therefore we can claim that if we puncture the codeword,
then we can work on the dual code (parity check matrix of the code) by shortening the parity
check matrix. We will exploit this fact while explaining the separation idea using parity check
matrices.
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The separation idea punctures the received codeword in the case of erasures, and then decodes
the punctured codeword using the parity check matrix of the punctured codeword. By using
the duality of puncturing and shortening operations, we claim that the original parity check
matrix should be shortened using the exact same bits that are punctured (erasure positions).
Mathematically this is equivalent to saying if we puncture a code which is (n, k, d) in l
positions, then we will have a new code that is (n − l, k, d − l). Now a valid parity check
matrix or the dual code should be (n− l, n− k − l, d⊥) where d⊥ is the distance of the dual
code. In other words the new parity check matrix should have a rank of n− k − l, which we
call the rank property. Such a matrix can be generated by shortening, if the original parity
check matrix has enough number of rows with a zero in the shortened positions.

This can be explained clearly with examples, using the extended Hamming code (8,4,4). A
parity check matrix for the code is given in (2-6). The part of the matrix that is above the line
is enough for simple error decoding, however it is shown that for the separation idea having
extra rows is beneficial.

H =




0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0




(2-6)

If the received codeword is 0x011110, then the codeword is punctured in the second position,
and the parity check matrix is shortened in the exact same positions. By the properties
of puncturing operation, we know that the new code should be (n = 7, k = 4, d = 3) and
the parity check matrix should have a rank of 3. If we use the small portion of the parity
check matrix which has size 4 × 8, then the resulting parity check matrix has two linearly
independent rows, therefore the rank is 2. However if the whole parity check matrix is used,
then we have a matrix that has three linearly independent rows out of four rows, which
satisfies the needed rank. The resulting parity check matrices are given in (2-7) and (2-8).

H1 =

(
0 0 0 1 1 1 1
0 1 1 0 0 1 1

)
(2-7)

H2 =




0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 1 0 1 0 1 0
1 0 1 0 1 1 0


 (2-8)

The new parity check matrix is created by shortening operations as above, which concludes
the step one of the algorithm. Now we move to step 2, and apply error decoding with the new
parity check matrix and the shortened parity check matrix. Although we do not show here,
using H1 which lacks the required rank might cause wrong decoding results. Thus, we use
H2 to decode the punctured word, 0011110. The closest codeword (of the punctured code) to
this word is 0011010, which has distance one, and the error decoder outputs this codeword.
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This result can be checked by multiplying all other distance one words with the parity check
matrix.

After error decoding step is done, the algorithm goes to step 3, erasure correction. The erasure
position can be corrected using the original code, if the iterative erasure decoding is applied,
the erasure position can be identified as a one using the third row of the original parity check
matrix. Hence, the final decoding result is 01011010.

Using the separation of erasures from errors, an error decoder and an erasure decoder can be
used for EEDG. The novelty in this approach is the systematical method of puncturing the
codes by shortening the parity check matrices. In [1], the authors have proposed the usage
of separating matrices that have enough rows to satisfy the rank condition (n− k − l) for all
erasure sets of maximum size l. The separating matrices method will be given in Chapter 3.
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Chapter 3

Literature Review

The literature review is divided into three main parts, each part related to one main contri-
bution of this thesis. In the first part, a method to realize the idea of "Separation of Erasures
from Errors" is given, which is called "Separating Matrices". In the second part, various
EEDG methods are explained thoroughly. In the last section, types of Bit-Flipping algorithm
are presented.

3-1 Separating Matrices

The Separating Matrices (SM) idea has been introduced in [1] with the separation idea. In the
simplest manner it can be thought as creating matrices that can separate erasure sets that
have size l or less. The authors define the parity check matrix as a matrix which typically
has redundant rows, and contains the parity check matrices of all codes that are punctured
up to a fixed number of symbols. In this research, this number of fixed symbols is called l,
and it is known to be at most d − 1, since d − 1 is certainly the highest number of erasures
that could be surely corrected by a code that has a Hamming distance d.

The authors defined l-separating matrices, if the matrix can separate any erasure set that has
size l or less. They have used the notation H(S) for a parity check matrix that is shortened
according to set S, and they have stated that a parity check matrix separates a set S iff all
H(S) has the rank of n − k − |S| where |S| is the size of the erasure set in Lemma 2. Also
they have show that if all of the erasure sets of size l can be separated by a parity check
matrix, then all of the smaller erasure sets are also separable and the parity check matrix is
l-separating in Lemma 3.

After presenting these results, they have shown that a parity check matrix that is l-separating
has no stopping sets of size l or less in Theorem 1. Therefore if one uses the separating matrices
idea, stopping sets are not an issue for the iterative decoder.

They have also found two construction methods for separating matrices which are not pre-
sented here. Using these methods separating matrices can be created for any value of l for
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l < d, and for any linear block code. However, the number of rows in these matrices are
also important for decoding purposes, since it is not efficient to store and use very large
parity check matrices. Thus they have defined the term separating redundancy, which is the
minimum number of rows of an l-separating parity check matrix of an arbitrary block code.

The upper bounds on separating redundancy of the two constructions are given below, where
q is the alphabet size of the code.

sl1 ≤

{ (n
l

)
· (n− k − l) if l ≤ n− k − 1( n

l−1

)
if l = n− k

sl2 ≤





l+1∑
i=1

(n−k
i

)
· (q − 1)i−1 if l ≤ n− k − 1

l∑
i=1

(n−k
i

)
· (q − 1)i−1 if l = n− k

The authors have also presented a general, non-constructive, lower bound for separating
redundancy, which is given below, where d⊥ is the distance of the dual code (parity check
matrix).

(nl)(n−k−l)

(n−d
⊥

l )

The constructive upper bounds and the non-constructive lower bound are separated by a large
gap. The constructive methods end up with matrix sizes that are not feasible when values of
n or l are large. Therefore in [34], the authors have shown other constructive methods with
lower separating redundancy. The amount of improvement is significant for very small values
of l and n, however as these values increase, the difference is negligible.

3-2 Error-Erasure Decoders

There are many types of decoding methods for error-erasure channels; here we first present
a general algorithm that is applicable to all types of codes, then we move on to code-specific
algorithms mainly focusing on algorithms for LDPC codes.

3-2-1 Guessing Algorithms

The simplest guessing algorithm that can be used to deal with errors and erasures, is randomly
guessing each erased bit in the codeword. By this method, a codeword that has t? erasures and
t# errors is transformed into a codeword with t# + g̃e, where g̃e is the number of erroneously
guessed bits. It is trivial to show that E[g̃e] = t?

2 , with a binary equiprobable alphabet, and
thus it can be concluded that in the mean value we have e = t?

2 + t# errors in the codeword.
Since only errors are left in the codeword, any simple error decoder can correct the errors
as long as e is small enough (small in the sense of the distance of the code and decoder
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capabilities). However, by using the methods that will be explained in this section, we can
do much better.

In [31], a guessing algorithm with multiple trials that is capable of correcting errors and
erasures together, which we call trial guessing, is introduced. The algorithm uses hard-decision
decoding, and the number of correctable errors and erasures are bounded by d−1 > 2 ·t# +t?,
which has been introduced before. First we give the binary version of the algorithm, which
is simpler, and then generalize it for all symbol alphabets.

The binary algorithm starts by creating two vectors; one with zeros in all t? erasure positions,
and the other with ones in all t? erasure positions. Now either two vectors have t?2 + t#
errors (this is only possible in the case there are equal number of zeros and ones erased in the

transmitted message), or one of the vectors contain less errors
⌊
t?
2

⌋
+ t#. After the erasure

positions are filled, error correction is applied to the two vectors. Since, at least one vector
contains less than or equal to

⌊
t?
2

⌋
+ t# errors, then error correction will certainly work for

one of the vectors. If both of the vectors are corrected to the same result, then this is the final
decoding result. If two results are not the same, then the one that differs at most t#-positions
in the non-erasure positions (there is only one) is the final decoding result.

If the binary algorithm is generalized to be used with larger alphabets of size q, one should
create q vectors to fill in the erasure positions with vectors 00...0, 11...1, ..., (q − 1), (q −
1), ..., (q − 1). However, such a guessing can only guarantee words that contain less than⌊

(q−1)·t?
q

⌋
+ t# errors. It is obvious that the performance of such an algorithm converges to

the performance of the simple guessing algorithm. In [31], another algorithm is defined that
is superior to the simple guessing algorithm. In this algorithm, the decoder tries up to qt?

vectors to find the valid codeword. Due to the exponential nature of the number of trials,
this algorithm is not practical, unless the alphabet size and the number of erasures are small.

3-2-2 Code-specific error-erasure decoders

In the previous sub-section, we have introduced a general method that is applicable to all of
the codes. Here, we will present methods that can be applied to certain code types. First
we will give examples from a large code family that has been used to deal with error and
erasure channels; Bose-Chaudhuri-Hocquenghem (BCH) and RS codes. Then we will move
on to the methods for error-erasure decoding in LDPC coding which is more relevant to our
research, regarding the implementation of "Separating the Errors from Erasures" idea for
LDPC decoding.

The first case is RS codes, which have been introduced in [35] in 1960. Soon after their
discovery, it has been shown that RS codes are a sub-class of Bose-Chaudhuri-Hocquenghem
(BCH) codes. Therefore we present not only the research on RS codes, but also on BCH codes
here, since the work on BCH directly applies to RS codes. RS codes are generally decoded
by the Berlekamp-Massey Algorithm (BMA), which has been introduced in [36]. BMA was
not introduced as an error-erasure decoder, so it could handle errors or erasures separately.
However, Forney has shown that the BCH codes (which also implies to RS codes) are capable
of error-erasure decoding in [37]. Forney’s method starts by computing an errata locator
polynomial which will give the error and erasure locations in the codeword. After all the
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errors are located, they are declared as erasures, and a simple algorithm is used to correct
the erasures.

Many other algorithms for RS codes have been proposed after Forney’s initial error-erasure
decoder. One of the most important proposal is in [38], which is a method to compute the
errata locator polynomial by initializing the BMA with the erasure locator polynomial. An-
other approach which uses the Euclidean algorithm instead of BMA for error-erasure decoding
of RS codes is given in [39]. In [40], the author has shown that the BCH bound for the cor-
rectable number of errors and erasures can be improved to the Hartmann-Tzeng bound [41].
Improvements related to the complexity of the Forney approach has been studied and given
in [42] and [43], where the authors propose simpler methods to calculate the errata locator
vector. There are many other works that offer less complexity, easier implementation, or a
new approach to the error-erasure decoding problem of RS codes, such as [44], [45], and [46].

For LDPC codes, message-passing algorithms (except for the binary message-passing decoder)
can be used for error-erasure decoding. First type of the algorithms that can be used for error
and erasure decoding is the belief propagation algorithm, and its approximation; the min-sum
decoding. If the erasures are fed to the input as bits with zero reliability, then after a few
iterations the erased bits would acquire messages from their non-zero (not erased) neighbors
and the error-erasure decoding can be done without any extra calculations (if the erasure set
is not a stopping set). Methods to design LDPC codes for AWGN+EC are discussed in [17]
using belief propagation algorithm. It is shown that the performance of LDPC codes can be
improved for AWGN channels with erasures by using LDPC codes that are designed using the
methods described. In [21], several standard LDPC codes are compared to the codes designed
by the authors in the AWGN channel with erasures, using the belief propagation algorithm.
In [47], BP algorithm is again used for error-erasure decoding. BP algorithm and its variants
seem to be the generic decoding mechanism nowadays, but they have a high complexity due
to the messages and calculations that include real numbers.

Second type of the message-passing algorithms that can be used for error-erasure decoding
are the quantized belief propagation algorithms. The simplest of these algorithms is called
the Binary Message Passing with Erasures (BMP-E); which has been first described in [48]
and then independently re-invented in [49]. In [49], the performance of BMP-E (which is also
called Gallager E algorithm and other quantized versions of BP algorithm has been given
through probabilistic analysis. These algorithms are much more simpler than the regular BP
algorithm, since the number of possible messages are very limited and the calculations are
simpler. However, these algorithms still require message transmission and are still complex
for low-end devices.

Another error-erasure decoding algorithm for LDPC codes is given in [50], which uses linear
programming decoding which has been introduced before. The method includes a slight
modification in the algorithm with nearly no additive complexity to the plain LP decoder.
The algorithm performs well, but the high complexity of the LP decoding should again be
considered.
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3-3 Bit-Flipping Algorithms

In this section, research related to bit-flipping algorithms is given. The main subjects are
decoding methods that utilize soft information, a pre-processing method called bootstrapping,
and multiple bit-flipping algorithms.

One of the first of the decoding methods which utilizes soft-information is called the Weighted
Bit Flipping (WBF) algorithm [51]. The main difference of this algorithm to the simple BF
algorithm that has been given before is the utilization of the received values (reliabilities)
of the bits. In the previously introduced algorithm, the bit that is connected to the highest
number of unsatisfied parity check equation is flipped. In this one, a more complex metric
that improves the BER performance of the decoder is used. Each parity check equation is
assigned a reliability value, which is the minimum of the absolute value of all of the received
values of the connected variable bits. After the reliability values are assigned, the flipping
metric is calculated for each bit. As it can be seen the major difference between the simple
BF algorithm and the WBF algorithm is weighing the parity check equations. Also in WBF
algorithm satisfied parity check equations play a role in the calculation of the metric, while
in simple BF only the number of unsatisfied parity check equations is relevant.

An improvement to the weighted bit flipping algorithm is given in [52], which also uses the
variable bit reliability while calculating the flipping metric. The flipping metric depends on
both the minimum reliability values in the parity check equation and the reliability of the
bit that the metric is calculated. The current bit reliability is weighed with a multiplicative
constant α that can be determined via Monte Carlo simulations. Modified Weighted Bit
Flipping (MWBF) offers a better BER performance up to 0.5 dB with a value of α that is
close to optimal.

In [53], the calculation method for the flipping metric has been improved using the extrinsic
information idea. The parity check equation reliability is selected from a set that excludes the
variable bit that the metric is being calculated. It is shown that Improved Modified Weighted
Bit Flipping (IMWBF) performs better than MWBF for some LDPC codes in [53], with a little
increase in the amount of complexity.

Another bit flipping algorithm that uses soft information is reliability ratio based bit flipping
(RRBF) algorithm [2]. In the RRBF algorithm, bit flipping decision is based on the ratio of the
reliabilities of the variable bits that are element of a parity check equation. The calculation
methods were a little complex in the original method, therefore in [54] the authors have
suggested a simpler method to realize the algorithm. In this method, every variable bit in a
parity check equation is assigned with a metric that is the ratio of the sum of the reliability
values of the variable bits in that parity check matrix to the reliability value of the variable
bit considered. The RRBF algorithm has been shown to outperform than MWBF for various
codes in AWGN channels with a comparable complexity. However in uncorrelated Rayleigh
fading channels, RRBF might be outperformed by MWBF depending on the code [2].

In [55], an algorithm that is close to WBF family algorithms in complexity is presented. The
algorithm is called Liu-Pados Weighted Bit Flipping (LP-WBF), and is known to perform well
especially for finite geometry LDPC codes. This algorithm uses the least reliable and the
most reliable variable bit in a parity check equation to calculate the metric.

There are many other kinds of bit flipping algorithms that offer different amount of complexity,
preprocessing, and BER for various codes, but we do not present all of these algorithms here.
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The final BF algorithm that is presented is a self reliability based algorithm. The metric
is computed from the number of satisfied and unsatisfied parity check equations, and the
self-reliability values of the variable bits [56]. This algorithm performs as good as MWBF
and indicates the importance of the self reliability in the flipping decision.

After presenting some of the important soft decision bit flipping decoders, now we shall move
on some methods that can be applied to the BF decoders for different purposes, such as;
lowering the number of iterations, and improving the BER performance.

The first method is cycle prevention (loop break) which lowers the number of iterations,
and improves the BER performance of the BF decoder. The infinite loops occur when a
bit flipping selection of size k results in the word in the beginning. Such a pattern will
repeat itself, unless the selection of "the bit to be flipped" is changed to prevent the cycle.
An algorithm that stores a vector of changed bits to detect and prevent loops is introduced
in [55]. A simpler version of this algorithm is given in [57], which does not prevent all the
loops but is shown to be effective. This simple algorithm compares the number of unsatisfied
parity check equations before and after the flipping of every bit. In the case of an increase in
the number of unsatisfied parity check equations; the flipped bit is inverted, and the bit with
the highest flipping metric, excluding the initially flipped bit(s) is inverted.

The second method is multiple (parallel) bit flipping, which lowers the number of iterations of
the BF decoder. The parallel bit flipping can be realized in different ways, the authors in [58]
define a mode for the decoder, which can select multiple bit flipping or single bit flipping. In
the multiple bit flipping mode bits that are smaller (in the sense of the selection metric) than

a pre-defined threshold are flipped. In [59], p =
⌊
w(s(k))/wc

⌋
bits are flipped in each iteration

where w(s(k)) is the weight of the syndrome of iteration k, and wc is the column weight of the
parity check matrix. In [60], a voting algorithm is used, that can be used with any metric of
bit flipping algorithms. Each unsatisfied parity check equation votes for the the least reliable
bit in it (depending on the metric) in each iteration. After voting the bits with more than

pre-determined F (k)
th votes are flipped in parallel, where k is the iteration number again.

The last method that will be explained is a pre-processing method, that lowers the number
of iterations and improves the BER performance of the decoder. The bootstrapping method,
which has been introduced in [61], functions by reassigning new reliability values to unreliable
bits. The algorithm uses a threshold value to select unreliable bits, and receives messages
from reliable parity check equations. A parity check equation is reliable if it contains less than
or equal to one unreliable variable bit. This method uses the exact same formula with the
MS algorithm to calculate the messages to be passed to unreliable bits. The bootstrapping
method is shown to be effective WBF in AWGN channels [61] and AWGN channels with
Rayleigh fading [62]. The method has also been applied to multiple bit flipping methods [63].
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Chapter 4

Modified Reliability Ratio Based Bit

Flipping Algorithm

In [2], the reliability ratio based weighted bit flipping algorithm has been introduced, which
is one of the best soft decision bit flipping decoders amongst MWBF, LP-WBF, and others.
In (4-1), we give the calculation method of the metric, where Ei is the flipping metric (the
bit with the maximum flipping metric is flipped), yi is the received value of the bit for which
the metric is calculated (|yi| is the reliability value of the bit), Tj is the summation of the
reliabilities of the bits that are elements of the parity check equation, sj is the syndrome
corresponding to the parity check equation j, and Si is the set of parity check equations that
the variable bit i is an element of.

Ei =
1
|yi|
·
∑

sj∈Si

(2 · sj − 1) · Tj (4-1)

As it can be seen from the formula, the algorithm utilizes only the reliability ratios of the bits
in parity check equations to calculate the flipping metric. Although the method performs well,
there’s still room for improvement due to some flaws introduced by the use of the ratios only
to calculate the flipping metric. Thus, we propose a modification to the RRBF algorithm,
which uses the reliability of the bit itself, to calculate the flipping metric of the bit. In (4-2),
the metric calculation method of the proposal is given, where β is a constant that can be
determined by simulation which can be used to optimize the BER of the MRRBF decoder.

Ei = −β · |yi|+
1
|yi|
·
∑

sj∈Si

(2 · sj − 1) · Tj (4-2)

4-1 Reasoning of the Modification

The reliability ratio based algorithm utilizes the ratio of the reliabilities of bits that are
elements of the same parity check equation. The algorithm is shown to be better than most
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of the bit flipping algorithms that are available in [2] However, cycles in the Tanner graph
may cause serious degradation in the BER performance of the RRBF decoder, since each bit
is flipped depending only on the reliability ratios. This can be demonstrated by an example,
using the parity check matrix section given in (4-3). If the RRBF decoder is used with a code
which has a parity check matrix in (4-3) (which has a length-6 cycle, consisting of columns
1, 3, and 5), errors in the cycle can not be resolved even if the reliabilities of the erroneous
bits are very low. We will give an example to show that this is the case.

H =




...
...

...
...

...
...

...
...

· · · 0 1 1 0 1 0 · · ·
· · · 1 0 0 0 1 1 · · ·
· · · 1 0 1 1 0 0 · · ·
...

...
...

...
...

...
...

...




(4-3)

Assume that all of the bits that are elements of the cycle (the first bit, the third bit, and
the fifth bit) are erroneous with a low reliability value (assume that the received values are
0.1), and the rest of the bits are correct with high probabilities (assume that the received
values are 1). First we should note that having a reliable erroneous bit is less probable
due to the shape of the Gaussian distribution, and this case is very likely. When the error
decoding process starts, the parity check equations will be regarded as correct, since there
are two erroneous bits in each parity check equation. Thus, using (4-1), all of the bits receive
negative values for their flipping metrics from the given parity check equations. All of the
unreliable and the reliable bits receive the same value for their flipping metric from the three
parity check equations, if the metric calculations are closely studied. The value for a reliable
bit is expressed by Er, and the value for an unreliable bit is expressed by Eu.

Er = (1
1) · −(1 + 0.1 + 0.1) = 1.2

Eu = ( 1
0.1) · 2 · −(1 + 0.1 + 0.1) = 24

As it can be seen from the calculations above, the unreliable bits (which are not correct)
receive a −12 for the metric from both of the parity check equations that they are elements
of. Also, the reliable bits (which are correct) receive a −1.2 for the metric from parity check
equations that they are elements of. Although other parity check equations that contain these
bits effect the flipping metrics, the difference between the reliable bits and the unreliable bits is
high, and the unreliable bits may never be flipped. Thus, in such situations, RRBF algorithm
can not decode the word correctly.

The modification that we propose introduces the self reliability of bits to the flipping metric
calculation, which might solve the kind of problems described above. The self reliability value
is weighed by a pre-determined constant β, to make the self reliability term comparable to the
reliability ratios which can be quite high for low reliability bits. The β value should be high
enough to cure the wrongly flipped bits due to problems described above, and low enough
not to bias the flipping metric totally by the self reliabilities. A β value that is too high
results in the flipping of the least reliable bits, shadowing any effect of the code structure and
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the reliability ratio decoder. Next, we will give simulation results and discussion about the
modified decoder, and all of the simulations are on AWGN channel, unless indicated to be
otherwise.

4-2 The BER Minimizing Beta Value and Results

The value of the β depends on the code properties and the SNR value, as we will show in this
section. For a code, there is not a beta value that minimizes the BER, for all SNR values.
In Figures 4-1 and 4-2 BER performance versus the β value is given for various SNR values
with a (n = 96, k = 48, dc = 3) LDPC code. The β value that minimizes the BER for each
SNR value is indicated in the plots.
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Figure 4-1: The BER performance of the modified reliability ratio algorithm for SNR values 1,
2, and 3 with (n = 96, k = 48, dc = 3) LDPC code
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Figure 4-2: The BER performance of the modified reliability ratio algorithm for SNR values 4,
5, 6, and 7 with (n = 96, k = 48, dc = 3) LDPC code

Since the optimal β value that minimizes the BER is SNR dependent, we define and search
for BER minimizing β values that minimizes the BER of the (n = 96, k = 48, dc = 3) LDPC
code reasonably for all SNR values. In Figure 4-3, the performance of MRRBF with β = 0
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(which is RRBF) is compared to the performance of MRRBF with three β values that offers
reasonable improvement for all SNR values.
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Figure 4-3: The BER performance of the modified reliability ratio algorithm with different β
values using (n = 96, k = 48, dc = 3) LDPC code

The BER minimizing beta values and the amount of improvement in the BER for another
(n = 96, k = 48, dc = 3) are around 30, as the first code. Thus, we take a hint that codes
with similar properties have similar BER minimizing β values and BER minimization. We
focus on the density of codes, while judging the amount of the improvement and the BER
minimizing β values, which the ratio of number of non-zero elements (ones for binary case)
in the parity check matrix to the size of the parity check matrix. The (96, 48, 3) code has a
density of 0.0625.

The BER minimizing β value for a (n = 96, k = 48, dc = 4) LDPC code (which has a density
of 0.0833) is found to be around 50, by Monte Carlo simulations. If the optimal β values of
dc = 3 (which is 30) and dc = 4 (which is 50) which are obtained by simulations are compared,
it can be seen that increasing the column weight also increases the value of the optimal β
value for most SNR values. The difference in the optimal β value is expected, considering
the fact that the modification was proposed to compensate the effects of cycles on the BER
performance of the RRBF algorithm. A sparser matrix generally contains less cycles than
a denser matrix, unless the latter is designed to have very less cycles. Since the amount of
cycles is less in a sparse matrix, the effect of the cycles to RRBF decoding is also less than
a denser matrix. Thus, the value of BER minimizing β values should be lower if the parity
check matrix is sparse. Also, we expect the amount of improvement to be smaller for sparser
matrices by the same reasoning.

The BER performance of the (n = 96, k = 48, dc = 4) with the RRBF algorithm and the
MRRBF algorithm with sub-optimal β values is given in Figure 4-4. The performance of the
MRRBF and RRBF with dc = 4 LDPC code is better than with dc = 3 LDPC code, which
arises from the fact that increasing the row weight improves the BER performance of the
RRBF [2]. The amount of improvement due to the modification for this code with a denser
parity check matrix, is a little bit more than the improvement for the other two (96,48) LDPC
codes, as expected.
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Figure 4-4: The BER performance of RRBF and MRRBF with (n = 96, k = 48, dc = 4) LDPC
code

BER minimizing β values are around 20 for different SNR values for a (n = 204, k = 102, dc =
3) LDPC code (density of 0.0294), which has been found by Monte Carlo simulations. The
optimal β values of n = 96 and n = 204 from simulations indicate that increasing the code
length decreases the value of the BER minimizing β values. This can also be explained
using the sparsity of the parity check matrix. The BER performance of the (n = 204, k =
102, dc = 3) with the RRBF and MRRBF algorithms is given in Figure 4-5. The amount
of improvement is less than the previous cases, which follows from the sparser parity check
matrix.
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Figure 4-5: The BER performance of RRBF and MRRBF with (n = 204, k = 102, dc = 3)
LDPC code

The effect of the density of the parity check matrix on BER minimizing β values is also
shown by the results of two regular (816, 408) LDPC codes, with column weights 3 (density
of 0.0074) and 5 (density of 0.0123). The (816, 408, 5) LDPC code has very good error
correction capabilities for high SNR values, and the expected BER is very low. Due to very
low BER values, reliable results for Monte Carlo simulations are obtained for SNR values 1-3.
Thus, BER minimizing β values of these two codes are compared using the results of these
SNR values only. In Figures 4-6 and 4-7, the BER performance for different beta values are
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compared for SNR values 1-3. As it can be seen the denser matrix has higher BER minimizing
β values.

0 5 10 15 20 25 30 35
10

−2

10
−1

10
0

X: 25
Y: 0.1017

beta value

X: 15
Y: 0.0537

X: 10
Y: 0.0128

 

 

B
E

R

SNR = 1
SNR = 2
SNR = 3

Figure 4-6: The BER performance of the modified reliability ratio algorithm for SNR values 1,
2, and 3 with (816, 408, 3) code
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Figure 4-7: The BER performance of the modified reliability ratio algorithm for SNR values 1,
2, and 3 with (816, 408, 5) LDPC code

The improvement in the BER performance of the RRBF with the sub-optimal β value is
given in Figure 4-8 for (816, 408, 3) LDPC code. The results for (816, 408, 5) are not given
here, since reliable results are available only for SNR values of 1-3 due to low BER and high
number of trials in Monte Carlo simulations.
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Figure 4-8: The BER performance of RRBF and MRRBF with (816, 408, 3) LDPC code for SNR
values 1-6

Finally, we give a result for a large LDPC code which is sparser than the previous codes; an
irregular (2048, 1030) LDPC code with density of 0.0036. As we have stated before, for sparse
codes the BER minimizing β values are smaller and also the amount of improvement is very
limited. For this code, BER minimizing β values are found to be around 8, again by Monte
Carlo simulations. In Figure 4-9 the comparison of MRRBF with a BER minimizing β value
to RRBF is given, which shows that the improvement is small.
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Figure 4-9: The BER performance of RRBF and MRRBF with (2048, 1030) LDPC code

4-3 Conclusion

In this chapter, we have introduced the modified reliability ratio bit flipping algorithm, which
outperforms the the classical reliability ratio bit flipping algorithm for small and medium
length codes with BER minimizing β values. We have compared the MRRBF to the RRBF
for many codes, and also discussed the BER minimizing β values for the algorithm. We have
concluded that the β value is dependent on code length, density of the code, and the SNR
value. The MRRBF, which is an improvement to the RRBF with very small complexity on
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the calculations, can also outperform other decoders such as MWBF and LP-WBF which
RRBF outperforms. For small and medium length codes, MRRBF is a good alternative to
the RRBF algorithm with very small additional complexity.
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Chapter 5

The Rank Completer

The Rank Completer (RC) is a new method to separate errors from erasures for linear block
codes. Instead of constructing separating matrices, which are very large for practical values of
n and l, the rank completer handles the separation by pre-processing the original parity check
matrix to create new parity check matrices. Using the rank completer, any valid parity check
matrix can be used directly for separation of erasures from errors. The method for the binary
case is explained in this chapter. However, the method can be generalized to non-binary cases
by modifying the method, which is shortly explained while the algorithm is described. To
explain the algorithm throughly, we first give the definition of the rank property, and the rank
completeness problem. Then we give the binary RC algorithm, and explain it clearly with an
example. Finally, we prove that RC can guarantee separation of up to n−k−1 erasures, and
solve the study the stopping set problem.

5-1 The Rank Property and The Rank Completer Algorithm

Lemma 1 (The rank property): Any erasure set of size l (l ≤ n−k−1), can be separated
from a (n, k) code, if there are n− k− l linearly independent rows in the parity check matrix
that have zeros in the erasure positions, and the erasure set does not contain the support of
a non-zero codeword.

Proof. The erasure separation from the code is an operation that involves the puncturing of
the codewords and shortening of the parity check matrix of the code. If the erasure set does
not contain the support of a non-zero codeword, then after the puncturing we have a (n− l, k)
code. Thus, a valid parity check matrix must have the rank of n−k− l. Since, the shortening
operation and the puncturing operation are dual, the original parity check matrix should be
shortened in the same l positions. If there are n − k − l linearly independent rows in the
parity check matrix with zeros in the l erasure positions, then after the shortening operation
the parity check matrix has rank of n− k − l, which concludes the proof.
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Using Lemma 1, we define the rank completeness problem; a full rank parity check matrix
can not satisfy the rank property after shortening, if number of rows that is erased, is larger
than the number of the columns to be erased. A rank deficient parity check matrix (a parity
check matrix with extra rows) can be a solution to this problem, even when the number of
rows that is erased is higher than the number of columns that is erased. This fact has been
explained and systematized in [1], and we call it the SM method. However, the constructive
methods for separating matrices end up with very large matrices, which makes the decoding
process unfeasible.

Another way to solve this problem is to create extra rows that contain only zeros in the
columns to be separated via pre-processing of the matrix. These new rows can be found by
viewing these columns as a sub-matrix, or one-by-one for each column. We will first describe
the sub-matrix method, and then move on to the one-by-one method, which we use in this
research. Using the sub-matrix method, if we want to separate columns j1, j2, ..., jl, then
the sub-matrix has only these columns. The algorithm should create extra all-zero rows in
the sub-matrix using linear matrix operations, so that in total there are n − k − l linearly
independent all-zero rows in this sub-matrix. However, creation of linearly independent rows
can not be guaranteed without keeping track of the past calculations, which might be too
complex for large codes. Hence, we have worked on the one-by-one solution; RC, which can
guarantee the linear independence of the rows in the final parity check matrix.

The rank completer method can simply be explained as follows; for any column j to be
separated, make sure that there are at least a − 1 linearly independent rows with a zero in
position j, where a is the number of linear independent rows with a one in the jth column of
the matrix. Below, we give the algorithm for the binary case; where the shortening set is the
collection of columns to be separated in descending order (the column with highest index is
separated first), the modification set is the rows that contain a one in the column that the
algorithm is working on, and exclusion sets are the rows or columns that have been processed
by the algorithm that are stored to be erased later. The algorithm can separate one column
in each loop, and a new parity check matrix is created after each of these loops. These new
parity check matrices are called transitional parity check matrices, since they are used as the
new basis parity check matrix when the algorithm starts separating the new element in the
shortening set. By using the previous transitional matrix in each new column to be separated,
the rank completer method separates an erasure set of size l in l loops. Finally, it uses one
more loop to output the new parity check matrix.

1. Take the shortening set and the parity check matrix as input.

2. Choose the first element (column) in the shortening set, and store all the rows with a
one in this column, in the modification set. If the shortening set is empty, erase all the
columns that is in the column exclusion set, and output this new parity check matrix.

3. If the modification set is not empty, then select the first element as the basis row, and
move it to the row exclusion set.

4. If the modification set is empty, then go to step 6.

5. Choose the first element (row) in the modification set, and sum this row with the basis
row in mod 2. Then, store the result of this summation as an extra row in the parity
check matrix, move this element to the row exclusion set, and go to step 4.
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6. Erase all of the rows that is an element of the row exclusion set from the matrix (which
forms the transitional parity check matrix), empty the row exclusion set, move the
current element (column) from the shortening set to the column exclusion set, and go
to step 2.

To clarify the algorithm, we give an example using the parity check matrix of (8, 4, 4) extended
Hamming code, which is given in (5-1). It is obvious that the parity check matrix has three
extra rows, since its rank is 4. If we assume bits 2 and 7 are received as erasures using
this code, then our shortening set is {2,7}. We have selected a matrix with extra rows in
this example to demonstrate that having a few extra rows can not guarantee separation of
erasures from errors. If we directly shorten this matrix, then the resulting matrix has rank
zero. However, from the rank property; the rank of the shortened matrix should be 2. Next
we show how the rank completer algorithm proceeds, and separates the erasure set. It is
worth to note here that the erasures can also be separated using the full rank parity check
matrix without the extra rows.

H =




0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0




(5-1)

The shortening set {7,2} and the parity check matrix is given to the rank completer as input
in step 1. After step 1, the algorithm enters its first loop. In step 2, the algorithm selects
column 7 to work on, and stores the rows {1,2,6,7}, in the modification set. In step 3, row
1 is selected as the basis row, and it has been moved to the row exclusion set. Since the
modification set is not empty, the algorithm goes to step 5, and sums the first element in the
modification set; row 2 with the basis row. The resulting row is stored in the parity check
matrix, and the algorithm goes to step 4, again. With the loop structure in steps 4 and 5,
all of the rows in the modification set is added to the basis row one-by-one, and then moved
to the row exclusion set. When the modification set is empty, the algorithm moves to step 6.
In step 6, all of the elements in the row exclusion set {1,2,6,7} are removed from the matrix,
the row exclusion set is emptied, and the column that is worked on is moved to the column
exclusion set. After step 6; the column exclusion set is {7}, the shortening set is {2}, and the
transitional parity check matrix of loop 1 is given in (5-2).

H =




0 0 1 1 1 1 0 0
0 1 0 1 0 1 0 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 0 1 0 1
1 0 0 1 1 0 0 1




(5-2)
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Since the first loop of the algorithm is over, and the transitional matrix is created, the
algorithm can start its second loop. In step 2, the algorithm selects column 2 and creates
the modification set; {2,3,4}. In step 3, row 2 is selected as the basis row, and moved to the
row exclusion set. Since the modification set is not empty, we move to step 5 again. In step
5, row 3 is added to the basis row (row 2) in mod 2, and the resulting row is added to the
parity check matrix. Also, row 3 is moved to the row exclusion set, and the algorithm goes
back to step 4. Since the modification set is again not empty, the algorithm goes to step 5,
and adds row 4 to the basis row in mod 2. The resulting row is again added to the parity
check matrix, and row 4 is moved to the row exclusion set. The algorithm goes to step 4
a third time, and since the modification set is empty, it directly goes to step 6. In step 6,
rows {2,3,4} are removed from the matrix, the row exclusion set is emptied, and column 2 is
moved to the column exclusion set. Now the column exclusion set is {7,2}, the shortening set
is empty, and the transitional parity check matrix of loop 2 is given in (5-3).

H =




0 0 1 1 1 1 0 0
1 0 1 0 0 1 0 1
1 0 0 1 1 0 0 1
1 0 1 0 0 1 0 1
1 0 0 1 1 0 0 1




(5-3)

Since the shortening set is empty, it is obvious that this is the final loop of the algorithm.
The algorithm goes to step 2, and since the shortening set is empty, it erases columns 2 and
7 from the previous transitional parity check matrix, and outputs the parity check matrix
in (5-4).

H =




0 1 1 1 1 0
1 1 0 0 1 1
1 0 1 1 0 1
1 1 0 0 1 1
1 0 1 1 0 1




(5-4)

The rank completer can easily be generalized for non-binary codes; the algorithm again selects
a basis row, and create enough number of linearly independent extra rows that have zeros in
the selected column position. For binary codes the creation process is fairly simple; the basis
row is added to the other rows one-by-one in mod 2, which guarantee the creation of a zero
in the desired position. For non-binary codes, the basis row should be divided (in mod q)
by the value in the position to be separated to have a one in this position. Afterwards, the
divided version of the basis row is subtracted from the other rows to get zeros in the column
position to be separated. The non-binary RC algorithm is more complex than the binary RC
algorithm, that needs operations including division, multiplication, and subtraction.

İlke ALTIN Master of Science Thesis



5-2 Separation Guarantee 41

5-2 Separation Guarantee

In this section we study the separation guarantee of the rank completer, and prove upper
bounds for the maximum number of erasures that can be separated.

Lemma 2 (Linear independence in RC): The rank completer method guarantees the
creation of a− 1 linearly independent extra rows from a linearly independent rows (in any of
the loops).

Proof. For the first part of the proof, assume that we have a full rank parity check matrix.
Then any sub-matrix which contains some of the rows of this matrix has linearly independent
rows as elements. Hence, if one selects a sub-matrix with rows which have a one in a certain
position (say with size a), then these a rows are also linearly independent. If one of the rows
of this sub-matrix is selected as the basis row, and added to all of the other rows in mod 2,
it is obvious that the resulting a − 1 rows are also linearly independent of each other. This
arguments are valid for any lth separation, since for each additional column to be separated,
the algorithm uses the parity check matrix of the previous separation, which is again a full
rank parity check matrix.

Now, let’s assume the parity check matrix which is not full rank. If we consider the scenario
above with a rank deficient parity check matrix, then the corresponding sub-matrix has a+ b
rows, where a of them is linearly independent. Now, we will show that if one of these a + b
rows is selected as the basis vector, we again end up with a−1 linearly independent rows plus
some linearly dependent rows for one column separation. There are two possible scenarios
that should be considered to prove the lemma. In the first scenario, the basis row is linearly
independent from any other rows. It is obvious that the sub-matrix with a+ b− 1 rows has
rank a− 1, since an independent row is removed. We can consider this one as a special case
of the full rank parity check matrix condition above, where b linearly dependent vectors are
added to the sub-matrix. Hence, if the basis row is added to all of the rows of the sub-matrix,
then a − 1 of the resulting rows are linearly independent. In the second scenario, the basis
row is linearly dependent to some of the other rows of the sub-matrix. If we rearrange the
order of the rows of the sub-matrix with the basis row as the first row and the first a rows
are linearly independent of each other (the rank of the sub-matrix is a), then again this can
be seen as a special case of the full rank parity check matrix condition. Thus, it is obvious
that if we add the basis row to the rows to the sub-matrix, the first a − 1 rows are linearly
independent.

The following lemma shows that any column that is selected to be separated contains at least
a single one, unless the support of a non-zero codeword is separated.

Lemma 3: While using the RC algorithm, all columns that are an element of the shortening
set have at least a single one in the parity check matrix that is to be shortened (either the
original parity check matrix and the whole shortening set, or the transitional parity check
matrices and the corresponding reduced shortening set), unless the support of a non-zero
codeword is separated.

Proof. Before starting the proof, we shall give an observation about parity check matrices
from [32]. If the column j of a parity check matrix is an all-zero column, then the unit vector
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ej is a valid codeword of this code. Depending on this observation, if we have a distance
one code with a ej as a codeword, then the original parity check matrix can have an all-zero
column. However, if we separate that column, then the support of a non-zero codeword is
separated. For transitional parity check matrices; again if there’s an all-zero column with
index j, then ej is a codeword of the punctured code. The unit vector ej can only be a
codeword of the punctured code, if all bits of a codeword c of the original code is separated
except for the one in position j. If this position j is also in the shortening set, then we are
separating a codeword. This proves that an all-zero column can not be an element of the
shortening set, unless the support of a non-zero codeword is separated.

Theorem 1: The rank completer method can separate any erasure set of size l (l ≤ n−k−1),
that does not contain the support of a non-zero codeword.

Proof. To prove this theorem, we first make use of Lemma 1, which states that any erasure set
of size l (l ≤ n− k− 1) and that does not contain the support of a non-zero codeword can be
separated, if there are n−k−l linearly independent rows in the parity check matrix with zeros
in the erasure positions. Thus, if we can show that the rank completer method can create
n−k− l linearly independent rows with zeros in erasure positions, the theorem is proven. To
show that, we should inspect the behavior of the rank completer. Lemma 3 states, a column
in the shortening set has at least a single one, unless the support of a non-zero codeword is
separated. Thus, a column in any loop of the rank completer, has either multiple ones or a
single one. If it contains a single one, then the column is easily separated by erasing the row
that contains this single one. It is trivial to show that after removing the single row with a
one, the rank of the new transitional matrix is A − 1, if the previous transitional matrix of
rank A. If there are multiple ones in the column, then we use Lemma 2, which states that
the rank completer creates a− 1 linearly independent rows with zeros in the selected column
from a linearly independent rows in any loop. If the final transitional matrix that is formed
by the rank completer using these two operations is considered, it is obvious that it has rank
n − k − l with zeros in the erasure positions. Thus, the rank completer can separate any
erasure set, unless the erasure set contains the support of a non-zero codeword.

Theorem 1 states that the rank completer method can separate any erasure set size l (l ≤
n− k − 1), as long as it does not contain the support of a non-zero codeword. For the cases
l > n − k − 1, the number of linearly independent rows in the parity check matrix (which
is n − k − l) becomes zero, which means a parity check matrix with zero rank. No error
detection/correction is possible with a zero rank parity check matrix, so regarding Theorem
1, n − k − 1 is the upper bound for the number of erasure to be separated. We will extend
Theorem 1 for other cases using Lemma 4 we give next.

Lemma 4: If the erasure set that is separated from a (n, k, d) linear block code contains
the supports of s linearly independent codewords, then the rank of the parity check matrix
should be n− k − l + s, where l is the number of erasures that is separated.

Proof. To prove this lemma, one should keep in mind that separating the erasures from errors
is done by puncturing the code in the erasure positions. If the puncturing operation effects
only the support of a single codeword, we can claim that the length of the code is reduced by l,
and the rank is reduced by one as we have stated in Chapter 2. The new code parameters are
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(n−l, k−1, d∗), and the rank of the parity check matrix should be n−l−(k−1) = n−k−l+1.
If supports of s linearly independent non-zero codewords are separated, then the rank of the
parity check matrix should be n− k− l+ s, since the number of codewords is divided by the
alphabet size (which is 2 for the binary case that we consider) for each linearly independent
codeword support that is separated.

Theorem 2: The rank completer method can separate any erasure set of size l (l ≤ n− k−
1 + s) that contains the support of a number of non-zero codewords, where s is the number
of non-zero linearly independent codewords, whose supports are elements of the erasure set.

Proof. First, we should utilize Lemma 3 and its proof; an all-zero column in the parity check
matrix, can only occur when the support of a codeword is separated, at the last bit of the
support of the codeword. If we try to separate the support of a codeword of weight wc, wc−1 of
the bits can be separated using Theorem 1. However, for the last bit of the codeword support
to be separated, the parity check matrix has an all-zero column in the last bit position to be
separated. Thus, the parity check matrix can be shortened directly at this position, resulting
in a parity check matrix of rank n−k− l+1. For multiple codeword supports that are linearly
independent, the rank of the parity check matrix becomes n−k−l+s, since s all-zero columns
are shortened in the parity check matrix. Also, regarding Lemma 4, we know that a valid
parity check matrix for such a code has the rank n − k − l + s. Since the rank property is
satisfied, we can conclude that the erasure set can be separated by the rank completer.

Theorem 2 is an extension of Theorem 1, and shows that erasure sets containing codeword
supports can also be separated by the rank completer. Based on Theorem 2, we can claim
that any erasure set that has less than n − k + s elements can be separated by the rank
completer. Since s ≥ 0, n − k can be selected as a general bound for the rank completer.
All of the Lemmas and the Theorems if we consider non-zero values instead of ones, and the
aforementioned non-binary RC instead of the binary RC, all of these results are applicable
for the non-binary case. However, we only give the binary versions, since binary results are
directly applied to our implementations and results.

5-3 Stopping Sets

The iterative erasure decoder might get stuck because of the stopping sets, as explained in the
background section. Before analyzing stopping sets, we shall give the definition; a stopping set
is a collection of the columns of the parity check matrix, such that the sub-matrix consisting
of these rows do not contain a weight one row. We can divide the stopping sets into two
groups; stopping sets that can be removed by the parity check matrix construction (type I),
and the stopping sets that is the support of a non-zero codeword and can not be removed by
any means (type II). Stopping sets are a cause of uncorrected erasures, and they play a role
in the BER performance of the decoder, especially in the low error probability region. Thus,
prevention of stopping sets is favorable for the performance of the decoder.

In Theorem 1 of [1], the authors prove that an l-separating parity check matrix, where 0 ≤
l ≤ min{d, n − k} − 1, does not contain any stopping set size l or less. Here we present a
similar theorem for a modified version of the rank completer method with any erasure set that
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can be separated. The proposed modification is adding the extra rows computed by the RC,
to the original parity check matrix; and then using this new matrix in the iterative erasure
decoder.

Theorem 3: There are no stopping sets in the erasure set that is separated by the modified
rank completer, unless the erasure set contains the support of a non-zero codeword. In other
words, the only stopping sets in the modified version of the rank completer is the stopping
sets of type II.

Proof. We have shown in Lemma 3 that the any column that is an element of the shortening
set, contains at least a single one, unless the support of a codeword is separated. Assuming
that no support of a codeword is separated, l bits can be separated from the code, where
l ≤ n− k − 1 by Theorem 1. Then the transitional matrix of (l − 1)th separation contains a
row that has a one in the lth bit position, and zeros in the previously separated bit positions.
If all such extra rows are added to the original parity check matrix, then for any erasure set
l, there is always a weight-one row in the sub-matrix of the erasure set (thus, no stopping
sets exist). If the support of a codeword is separated, there’s an all-zero column in one of
the transitional parity check matrices, which prevents us from guaranteeing that there are no
stopping sets.

The shortcoming of Theorem 3 for stopping sets of type II is very well expected, since if the
support of a codeword is erased, it is not possible to retrieve the bit values in these positions.
Another result that can be deduced from Theorem 3 is the following, if an erasure set contains
the support of a codeword and some other bits, these bits can be corrected by the iterative
erasure decoder, unless they are the support of another non-zero codeword.

5-4 Conclusion

To sum up, the rank completer is a new method for separation of erasures from errors, which
does not require special matrix constructions that might end up with very large number of
rows. Using the rank completer method, any set of erasures (up to size n− k − 1) might be
separated from errors which lets us to decode the errors and erasures separately. We have
also shown that there are no non-empty stopping sets in these separated positions (and the
iterative erasure decoder can decode all the separated positions), unless the support of a
non-zero codeword is not separated.
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Chapter 6

New Error Erasure Decoding Methods

In this chapter, we propose new error erasure decoding methods, which have originated from
the ideas that are given in the background and literature review. First, we give a new
guessing method; reliability guessing (RG) for binary codes, which is superior to simple
guessing algorithm and trial guessing in the BER perspective. Afterwards, we move on to the
error erasure decoder using the previously introduced RC method. The error erasure decoder
that we describe here, uses the "separation idea" from [1] and uses the same principle with
the EED described in that article. The notable difference between these two decoders is the
method that is used to separate the erasures; which is RC in the decoder described here,
and SM for the decoder that is described in [1]. Finally, in the results section, we will give
BER performances of the new methods introduced here, and compare them to the previously
known methods.

6-1 Reliability Guessing Decoder

The reliability guessing method is a type of guessing algorithm, in which we randomly assign
0s and 1s to the erasure positions as in simple guessing algorithm. The method differs from
the simple guessing method due to the fact that we assign very low reliability values to those
assigned bit values. After the erasure positions are filled and reliability values are assigned,
the word can be decoded using any soft decision algorithm. We have selected soft decision
BF algorithms due to their low complexity. The careful reader may remember that the BF
algorithms are the less complex alternatives to MP algorithms, however, they can not used
for EEDG. Here we present a simple method for EEDG with BF decoders.

Example guessings are given below for hard and soft channels using reliability guessing
method, where the erasures are shown as x and the assigned low reliability values are shown
as L. For the hard channel (BSEEC), the channel output {0, 1, x} is mapped to {1,−1, L}
to be fed to the soft decision BF decoder.
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1 1 0 0 x x 0 1 0 x

↓

−1.0 −1.0 1.0 1.0 L L 1.0 −1.0 1.0 L

For the soft channel (AWGN+EC), the channel output can be directly fed to the soft decision
BF decoder, after the erasures are mapped to the low reliability values.

0.8 −0.5 −0.7 1.5 −1.1 x −0.5 x 1.7 0.7

↓

0.8 −0.5 −0.7 1.5 −1.1 L −0.5 L 1.7 0.7

As it can be realized from the decoder inputs, the method always uses soft decision algorithms,
even if the communication channel is a hard decision one. Therefore, we can conclude that
the decoding complexity is increased for the hard channels, since simple BF could have been
used for decoding instead. Next we shall explain the RG algorithm in more detail, to give a
better idea about the implementation, complexity and the main principle of the algorithm.
To do so, first we give the definition of the low reliability flag L with some simulations for
the optimum value, and then argue the selection of the soft decision decoder.

The low reliability flag L, a random variable with two equiprobable values, where a is a
pre-determined constant of the RG algorithm.

L =

{
a p = 1/2
−a p = 1/2

Before RG method for BSEEC and AWGN+EC is explained in detail, we give a block diagram
of a simple decoder using reliability guessing method in Figure 6-1 to make the process clearer
to the reader. As it can be seen from the block diagram, first the erasure positions are filled
with low reliability values (that are real values) and then fed to a soft decision BF algorithm.
Also, the binary mapping for BSEEC should be kept in mind, which is denoted by a star in
the block diagram, to adapt the received word as an input to soft decision BF algorithms.

Figure 6-1: Block diagram of a simple decoder using the reliability guessing method
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6-1 Reliability Guessing Decoder 47

6-1-1 RG in BSEEC

The BSEEC is described by two probabilities; erasure probability p1, and error probability
p2 as explained in Chapter 2. In the simulations for RG in BSEEC, error probability is given
in the x axis, and p1 = 0.1. The maximum number of iterations is 100 for all of the decoders.
This value might seem too big at first glance, but we selected this high value to ensure that
the only limit to error decoding is decoder capabilities (and not number of iterations). This
maximum number of iterations might be lowered by using multiple bit flipping algorithms.

We start explaining RG in BSEEC with the value of variable a. The effect of the value of a
on the decoder performance with (n = 96, k = 48, dc = 3) LDPC code are given in Figure 6-2
where dc is the column weight of the LDPC code. Our first observation is that decreasing the
value of a improves the BER performance up to a point. The second observation is that for
very low values of a, the performance is identical (or very close to each other). Therefore, we
define a boundary value for a, from where decreasing the a value further does not improve
the BER performance. Having such a boundary value for a makes sense, since a defines
how unreliable filled erasure positions are compared to rest of the received word. After this
boundary value, the decoder sees the filled positions are extremely unreliable compared to
the rest of the word, and lowering a does not improve the BER performance. The boundary
is not strictly defined, and therefore we only can talk about a region around some value of a.
For (96, 48, 3) code, this boundary value for a is around 0.1. Any a value that is lower than
the boundary value (except for zero) minimizes the BER value, and we call these values BER
minimizing a values. The value of a can not be equal to zero, since zero reliability does not
stand for any binary bit value and thus BF decoders can not work with zero reliabilities.
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Figure 6-2: The BER performance of RG with different a values for (96,48) and Trial Guessing
code on BSEEC with p1 = 0.1

Using Figure 6-2, we can compare the RG method to trial guessing and simple guessing
methods; the BER performance of the trial guessing method is given in the plot, where the
simple guessing is a special case of the reliability guessing with a = 1. The results show
that reliability guessing performs better than the trial guessing algorithm. This is expected,
since the trial guessing algorithm promises only a small improvement to the simple guessing
algorithm (the guarantee of guessing at least half of the erasures correctly). On the other hand,
the reliability guessing method improves the simple guessing method, by feeding the decoder
with the information that the filled erasure positions are unreliable. This is an important
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48 New Error Erasure Decoding Methods

innovation, since the filled erasure positions can be either zero or one equiprobably, which
mean they are completely unreliable. Other guessing algorithms do not make use of this fact,
and this is the main reason why RG outperforms both trial guessing and simple guessing
algorithms.

The results for (n = 204, k = 102, dc = 3) is given in Figure 6-3, which agree with the previous
results; a value improves the performance up to a boundary, and RG performs better than
trial guessing and simple guessing (a = 1). The BER values for the decoder with a = 0.1 and
a = 0.01 are nearly the same, and only a single line can be observed for the BER performance
of the decoder with these values. This is expected, since both values are BER minimizing.
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Figure 6-3: The BER performance comparison of RG, simple guessing, and trial guessing for
(204,102) code on BSEEC with p1 = 0.1

The final comparison related to the RG method in BSEEC is the use of different soft decision
decoders. We have compared WBF, MWBF, LP-WBF, RRBF, and a modified version of
RRBF with RG method in Figure 6-4, using (96,48,3) LDPC code. As it can be seen,
MRRBF, MWBF, and LP-WBF are the best three decoders. One should realize that the
algorithms which use the self reliability (MRRBF,MWBF,LP-WBF) in the calculation of the
flipping metric, are a big step ahead than the ones that do not use(RRBF,WBF).
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Figure 6-4: The BER performance comparison of RG with different decoders on BSEEC with
erasure probability 0.1
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To compare the three best performing decoders, we will divide the figure into two at the
error probability of 0.001. We see that MRRBF outperforms MWBF and LP-WBF in the
right hand side, and is outperformed by these two algorithms in the left hand side. To
analyze these BER curves, one should realize that there are two types of errors in the guessed
codewords in a BSEEC; the errors that are caused by the channel (and has reliability value
of 1), and the errors that are caused by the guessing (and has reliability of a). Mostly,
channel errors cause the effect in the right hand side since the error probability is higher
than the erasure probability, and guessing errors cause the effect in the left hand side due
to lower error probability (compared to the erasure probability). Thus, we can deduce that
MRRBF performs better when the error probability is relatively higher, and the other two
algorithms are better when the erasure probability is relatively higher. The performance
difference originates from the metric calculation of these decoders, however we will not give
a complete mathematical analysis of these algorithms with the reliability guessing algorithm
on BSEEC. The point of this sub-section is to introduce a promising and a simple method
for EEDG.

6-1-2 RG in AWGN+EC

As we have introduced in Chapter 2, AWGN+EC is described by the SNR value and the
erasure probability p1. In the simulations SNR is given in the x axis and p1 is 0.1. The
maximum number of iterations is 100 for all of the decoders.

In this sub-section we will not compare RG with other algorithms, since the guessing al-
gorithms in the literature have only been defined for hard channels. We will just give the
performance of RG method with different a values and with different decoders.

We use the (96,48,3) code again to show the effects of different a values, which is shown in
Figure 6-5. It can be observed from the plot that the boundary value for a is around 0.05 for
AWGN+EC, which is lower than the boundary value for BSEEC. This is very well expected,
since the bits that are not erased can have smaller reliabilities now, unlike the BSEEC case.
Hence, a smaller value of a is needed to show the decoder that the filled erasure positions are
very unreliable.
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Figure 6-5: The BER performance comparison of RG with different a values on AWGN+EC with
p1 = 0.1
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50 New Error Erasure Decoding Methods

The effect of different decoder selections are given in Figure 6-6 for (96,48,3) LDPC code.
The results show that MRRBF algorithm is the best decoder for RG in AWGN+EC in the
feasible SNR region, however MWBF outperforms all the other algorithms when the SNR
value is very high. Again, we see the two algorithms behaving better than each other in error
and erasure influenced regions, as in BSEEC.
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Figure 6-6: The BER performance comparison of RG with different decoders using (96,48,3) on
AWGN+EC with p1 = 0.1

6-1-3 RG and bootstrapping

The bootstrapping method which has been introduced in Chapter 3, corrects error positions by
updating the low reliability bits using the method given in (6-1), where ybi is the bootstrapped

value of bit i, yi is the received reliability of bit i, S(i)
r v is the set of the reliable parity check

equations that variable bit i is an element of, and S(j)
c is the set of variable nodes that are

element of parity check equation (or neighbors of check bit) j.

ybi = yi +
∑

j∈S
(i)
rv

min
i′∈S

(j)
c \i

|yi′ | ·
∏

i′∈S
(j)
c \i

sign(yi′) (6-1)

Regarding the fact that the reliability guessing method fills the erasure positions with low
reliability values, it is obvious that the bootstrapping method corrects both errors and era-
sures, when used with RG. The block diagram of a decoder using reliability guessing method
with bootstrapping and MWBF is given in Figure 6-7.

Figure 6-7: Block diagram of a bootstrapped decoder using the reliability guessing method
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The improvement in the BER performance of the decoder can be seen from Figure 6-8 for
(504,252) LDPC code on AWGN+EC (p1 = 0.1).
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Figure 6-8: The BER performance of RG with and without bootstrapping using (504,252,3) on
AWGN+EC with p1 = 0.1

Bootstrapping also improves the BER performance of the decoder on BSEEC, by correcting
wrongly guessed, low reliability filled erasure positions (any channel error has the same reli-
ability with a correct bit). In Figure 6-9, the comparison of the reliability guessing method
with and without bootstrapping on BSEEC (p1 = 0.1) is given.
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Figure 6-9: The BER performance of RG with and without bootstrapping using (96,48,3) on
BSEEC with p1 = 0.1

To sum up, RG is a simple method that can be used both for hard and soft error-erasure
channels. For hard channels, it increases the complexity, since without RG hard channels are
decoded by hard decision algorithms. However, for soft channels, no additional calculations
are required. This method is inspired by the error-erasure decoding ability of belief propa-
gation decoders. Belief propagation algorithm can simply handle erasures in the presence of
errors by inserting zero reliability as the reliability value of the erased bit. Since the receiver
does not know anything about the erased bit, it can either be zero or one (in the binary sense)
and the reliability value should be zero. BF algorithms do not possess this ability since every
bit should have a value (zero or one in binary case) in each iteration, and zero reliability
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value does not state such a value. RG method is an approximation to zero reliability inser-
tion, where we assign a random value to every bit with very low reliability value. Thus, RG
method is only meaningful for decoders that can not cope up with erasures in the presence
of errors directly.

The two main properties of the reliability guessing algorithms are the value of a, and the
decoder selection. We have shown that the value of a should be low for good performance,
however lowering this value does not improve the performance after a certain point; which
we call the boundary value. For the decoder selection, we have indicated that self reliability
should be taken into account while the flipping metric is calculated (the erased bit have low
reliabilities). We have observed that MRRBF performs better in the error influenced region,
which makes sense since it’s the best performing error decoder according to our simulations,
which has been introduced in Chapter 4. In the erasure influenced region we have seen LP-
WBF and MWBF are good alternatives, where MWBF outperformed all other alternatives on
AWGN+EC. Their better performance in this region depends on how the utilize the reliability
values, and this can be researched in future work. Also, a hybrid decoder (MWBF+MRRBF)
can as well be designed for RG method, using both the reliability ratios and the minimum
reliabilities in the parity check equation.

6-2 Error Erasure Decoder with RC

The complete error-erasure decoder which uses the rank completer is mainly the same decoder
that is introduced in [1]. The error erasure decoding is done in three main steps with three
main modules. In the first step, erasures are separated from errors, and a new codeword which
does not contain erasures are created. Then, this new codeword is decoded for errors using
the parity check matrix that is created by the rank completer method. Finally, the erasures
are decoded using the complete parity check matrix, and error erasure decoding operation
ends. The block diagram for the complete EED, is given in Figure 6-10.

Figure 6-10: Block diagram for the complete EED with RC

The block diagram can be explained as follows. The rank completer module tailors parity
check matrices for error decoding, using the separation of erasures from errors idea, as intro-
duced in Chapter 5. The puncturing module is a simple module that punctures the received
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word, and outputs a new word that does not contain the erased positions. The error decoder,
applies error decoding using the specially tailored parity check matrix by the rank completer.
In our implementation, we have used the bit flipping algorithms as the error decoder. The
final module is the iterative erasure decoder, which is used to decode the erasures that have
been separated from the codeword.

The decoding process can be explained as follows; the received word, which contains errors
and erasures are fed into the RC module, with the parity check matrix of the code. Then,
the RC module outputs the new parity check matrix, and error decoding is done using this
matrix and the word that is punctured in the erased positions. After the error decoding is
done, the word is fed to the iterative erasure decoder with the original parity check matrix
and the EEDG is finalized.

Next, we discuss the separation bound, which is defined as the maximum number of erasures
that can be separated by the rank completer. Then we will analyze the stopping set problem
of the iterative erasure decoder, and propose a solution.

6-2-1 Separation bound and its analysis

The separation bound is a pre-determined parameter of the decoder; an erasure set is sepa-
rated by the rank completer and decoded by the EED, if the erasure set is smaller than the
separation bound b. A separation bound larger than n− k is not feasible, since the resulting
parity check matrix would be zero (unless a codeword support is separated). The calculations
here are for BSEEC, which includes both erasure probability and error probability. However,
the reasoning can be generalized, since the main focus of this section is erasures, and both
BSEEC and AWGN+EC use the binomial distribution for erasures. Thus, we will extend any
conclusions that are drawn here are also valid for AWGN+EC.

There are three possible outcomes of the error erasure decoder depending on the separation
bound and the received word; the received word can be discarded, the iterative erasure decoder
may fail (due to a stopping set), or the word can be decoded. The probability of a word to be
discarded pd, which directly depends on the separation bound b and the erasure probability
p1, is given in (6-2). This is simply the probability of having b erasures in the received word,
since the rank completer do not separate erasure sets of size b or higher.

pd =
n∑

i=b

(
n

i

)
· pi1 · (1− p1)n−i (6-2)

The probability of the iterative erasure decoder to fail pf , is simply the probability of a
codeword having a stopping set in the erasure positions. This is given in (6-3), where Di is
the number of sets that contain a stopping set of size i [27]. This formula gives the probability
of the encounter of the decoder with a stopping set (in the words that are not discarded).
This can be observed from the lower limit, which is the smallest non-empty stopping set size
s, and the upper limit, which is b−1, the highest number that is below the separation bound.

pf =
b−1∑

i=s

Di · p
i
1 · (1− p1)n−i (6-3)
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Finally, the probability that a word is decoded (which means that the word is not discarded or
there are no codeword supports in the erasure set) ps is 1−pf −pd. Increasing the separation
bound by one, removes i = b term from the summation of pd, and adds the same term to
the summation of pf . Since the pd is larger than pf when i values are equal, increasing
the separation bound increases ps. Thus, if b is increased, the received word is decoded by
the EED more probably. However, decoding in every possible case (which is increasing the
separation bound) might not be beneficial considering the BER performance of the EED.
Thus, before inspecting the BER performance, we should not conclude that increasing ps is
desired, so b should be as high as possible.

Now, let’s study the BER performance of the decoder regarding the decoder output which
might contain errors and erasures (due to word discarding or stopping sets). The BER formula
is given in (6-4), where n1 is the number of erasures in a codeword, n2 is the number of errors
in the codeword, T is the number of codewords that has been received, and L is the length of
a single codeword. It can be observed that only half of the erasures are taken into account,
since with a random guessing half of the erasures can be guessed correctly in the mean value.

BER =

T∑
i=1

(n1(i)/2) + n2(i)

T · L
(6-4)

When a codeword is discarded (p = pd), the number of errors and erasures can be approx-
imated using the channel properties. If the channel is BSEEC with p1 = 0.1 and p2 = 0.1,
then the mean value of the erasures caused by a discarded word is;

d? =

n∑
i=b

(
n

i

)
·i·pi1·(1−p1)n−i

n∑
i=b

(
n

i

)
·pi1·(1−p1)n−i

,

which is the direct calculation of the mean value of a stochastic variable. The mean value of
the number of errors caused by a discarded word is;

d# = (n− d?) · p2,

which is calculated by using the a priori error probability and the calculated mean value of
number of erasures. If d? is the mean value of number of erasures, then the mean value of
number of errors can directly be found by multiplying the error probability to the bits that
are not erased.

The total effect of discarding a word on the BER calculation (in the mean value) is given
in (6-5), using the mean value of erasures and errors in the discarded word, d# and d?. The
formula is the same with (6-4), except for the fact that the calculation of the bit errors
and erasures are not done for each word, but the mean values for these figures are directly
calculated and inserted to the formula.

BERdc =
pd · (d# + d?/2)

n
(6-5)
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In Table 6-1, we give the probability of a word to be discarded pd with (15,6,5) LDPC code
on BSEEC (p1 = 0.1 & p2 = 0.1), BERdc which is the effect of the discarded words on BER
calculated approximately (the approximation is in the calculation of d?) by (6-5) and Monte
Carlo simulations in Matlab. As it can be seen from the table, the approximated results agree
with the simulation results.

Table 6-1: The probability of a word to be discarded and the effects of discarding a word with
(15,6,5) LDPC code on BSEEC

Separation bound 5 6 7 8 9
pd 1.27 · 10−2 2.2 · 10−3 3.1 · 10−4 3.4 · 10−5 2.8 · 10−6

BERdc calculation 3.1 · 10−3 6.2 · 10−4 9.7 · 10−5 1.3 · 10−5 1.0 · 10−7

BERdc simulation 3.2 · 10−3 6.4 · 10−4 9.2 · 10−5 1.3 · 10−5 1.1 · 10−6

As it can be seen the analytical formulas that are given and the simulation results agree,
although the mean value of number of erasures is approximately calculated. However, such
analytical results can not be found for the case, when a word is not discarded, since the BF
decoders are not easy to describe analytically in a probabilistic fashion. Thus, the error rate
in the probability of no decoder fail, which is shown by ps can not be expressed analytically.
Also the error rate in the probability of iterative decoder fail due to stopping sets can only be
analyzed considering the effects of erasures. If the size of the stopping set that is an element
of Di is shown by j, then the mean value of the erasures due to decoder failure is;

f? =

b−1∑
i=s

Di·j·p
i
1·(1−p1)n−i

b−1∑
i=s

Di·pi1·(1−p1)n−i
,

which is again the direct calculation of the mean value of a stochastic variable.

The effect of erasures on BER is given in (6-6), and the effect of errors in the codeword is
directly added to the decoder errors, since the failure only effects the iterative erasure decoder.
As stated before, we can not do a direct comparison using these values, since the effects of
errors are not calculated here.

BERfe =
pf · (f?/2)
n

(6-6)

In Table 6-2, we give the probability of the iterative erasure decoder to fail pf , the effect of
erasures due to discarding words BERde (which can also be calculated by (6-5) using only
the erasure term), and the effect of the erasures due to decoder failures on BER BERfe for
(15,6,5) LDPC code, with p1 = 0.1 & p2 = 0.1 on BSEEC by Matlab simulations. We know
that the code has twelve weight-five codewords and no stopping sets of weight-five except for
the codewords (in our best knowledge), so we can use this value to check the validity of the
formulas given in (6-3) and (6-6). If we select b = 6, then (6-3) gives 4.18 · 10−5 for pf ,
and (6-6) gives 6.96 · 10−6 for BERfe.
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Table 6-2: The probability of a word to be discarded and the effects of erasures to BER for
different values of the separation bound with (15,6,5) LDPC code on BSEEC

Separation bound 5 6 7 8 9
pf 0 4.27 · 10−5 9.41 · 10−5 1.15 · 10−4 1.22 · 10−4

BERfe 0 7.12 · 10−6 1.57 · 10−5 1.94 · 10−5 2.05 · 10−5

BERde 2.1 · 10−3 4.5 · 10−4 7.23 · 10−5 8.96 · 10−6 8.52 · 10−7

In Table 6-1, effects of discarding words have been inspected in detail, both for errors and
erasures in the codeword. However, we do not have an analytical solution for the error decoder,
as we have for the erasure decoder. Thus, we compare only the effects of erasures on the BER
calculation in Table 6-2, and observe that the total effect of the erasure, which is the sum
of BERfe and BERde is smaller for higher separation bounds. This is very well expected
from the formulas of pf and pd, from pf formula we see that only valid codewords cause
uncorrected erasures, and from pd formula we see that all possible bit combinations cause
uncorrected erasures. The error decoding perspective is different, since all of the punctured
codes with different distances and decoding performances get into the picture. A simple
opinion that might be stated is that coding should always be preferred, since our aim error
correction by coding. However, it might be logical to focus on the simulation results to judge
the performance of the complete error erasure decoder regarding the separation bound. In
Figure 6-11 the BER performance of the complete EED on BSEEC (p1 = 0.1) using the
(n = 15, k = 6, d = 5) LDPC code with different separation bounds. The BER values of
separation bound 8 and 9 are nearly the same, thus only a single line can be observed for
these two values.
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Figure 6-11: BER performance of the complete EED with different separation bounds on BSEEC
with p1 = 0.1 using (15,6,5) LDPC code

The BER values in the low error probability region are highly influenced by the erasures that
can not be corrected, which can be seen when the figure is observed in the light of Table 6-2.
Especially for separation bound values 5 and 6, the data cursors show that the BER value
is nearly equal to the effect of the uncorrected erasures given in Table 6-2. However, the
improvement is not limited to the low error probability region, only the effect of corrected
erasures is much more significant in that region.
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In Figure 6-12, the BER performance of the complete EED on BSEEC with p1 = 0.1, using
the (n = 96, k = 48, d = 6) LDPC code is given for separation bound of d = 6 and n−k = 48.
It is obvious that the decoder with the higher separation bound significantly outperforms
the one with the lower separation bound. We can explain this difference by the amount of
words that is discarded. When the separation bound is 6, most of the words are discarded
(92% of the words), which can also be calculated using (6-2). On the other hand, all of
the codewords are decoded when the separation bound is 48 which result in better BER
performance, except for high error probability region. For very high probability region, the
decoder may decode the codewords as wrong (but valid) codewords due to the high amount
of wrong bits, which increases the BER further. We can conclude that especially for large
codes with small distances, selecting the separation bound as the code distance damages the
decoding process severely. Also we have observed that selecting the separation bound as large
as possible (upper bounded by n− k of course) is beneficial and results in improvement.
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Figure 6-12: BER performance of the complete EED with separation bounds 6 and 48, with
(n = 96, k = 48, d = 6) LDPC code on BSEEC with p1 = 0.1

Finally in Figure 6-13, the same comparison above is given for AWGN+EC. Again, the erasure
probability is 0.1, and two different separation bounds; d = 6 and n− k = 48 are compared.
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Figure 6-13: BER performance of the complete EED with separation bounds 6 and 48, with
(n = 96, k = 48, d = 6) LDPC code on AWGN+EC with p1 = 0.1
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As we have stated, most of the formulas that we have given are for BSEEC, however, the
main idea is applicable to AWGN+EC. The large gap is again due to the words that are
discarded as the case above. The number of words that is discarded is the same, since erasure
probabilities are same in these two channels.

6-2-2 The modification for stopping set prevention

In Chapter 5, we have given Theorem 3, which introduces a modification the rank completer
which prevents all of the stopping sets that are not the support of a codeword. The theorem
simply states that if the extra rows that are calculated in the rank completer algorithm are
added to the initial matrix, then this new matrix (big PCM) does not have any stopping sets
(except for codeword supports). The new block diagram for the system is given in Figure 6-14.

Figure 6-14: Block diagram for the complete EED with stopping set prevention

6-2-3 The BF decoder selection

Finally, we give the performance of the rank completer method on AWGN+EC (p1 = 0.1),
with MWBF, LP-WBF, and MRRBF in Figure 6-15 using (96, 48, 3) LDPC code. The best
performing decoder with the rank completer method is MWBF. This is surprising at first
glance, because MRRBF and LP-WBF outperform MWBF with no erasures. The differences
in the performance can be tied to the loss of sparsity and the regularity of the matrices
due to separation of the erased bits. The rank completer method creates irregular matrices
from regular LDPC parity check matrices due to linear matrix operations. Thus, the number
of ones in every row/column is not the same, which disturbs the MRRBF and LP-WBF
decoders. MRRBF decoder uses reliability ratios of the bits; and if the number of ones in a
row (parity check equation) differ row by row, then the ratios might alter between bits that
are an element of different parity check equations. LP-WBF sums the self reliability and the
minimum reliability of the bits for all parity check equations, and if the number of ones in
a column may differ from column to column, then some of the bits might be considered as
reliable, although they are not, and vice versa. On the other hand, MWBF is much more
stable against irregularity, since it does not work with ratios or it does not calculate the metric
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in a way that is dependent to the number of parity check equations the bit is an element of.
The decoders behave the same for larger LDPC codes such as (504,252) and (816,408) LDPC
codes.
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Figure 6-15: The performance of RC with different BF decoders on AWGN+EC with 0.1 erasure
probability, using (96,48,3) LDPC code

To sum up, in this section, we have shown that the rank completer method can be used to
work with the EED that is described in [1]. We have also investigated the separation bound;
which is the minimum number of erasures that the decoder does not separate from the word.
We have shown that selecting the separation bound as d can cause serious degradation in the
decoder performance especially for LDPC codes, and proposed the selection of the highest
separation bound, n − k. By selecting a higher separation bound, we have shown that the
decoder performance can be improved, since more received words are decoded by the EED.

6-3 Results and Comparisons

In this section, the BER results of the decoding methods that are introduced here are com-
pared to previously known decoders on different channels. For each channel the complexity
of methods will be given; however, only rough comparisons will be made, since the scope of
this research is not the implementation of these methods.

6-3-1 The performance on BSEEC

Both of the methods that are introduced in this chapter can be used for error erasure decod-
ing on the hard error erasure channel BSEEC. The BER performance comparison of these
methods with previously known methods such as min-sum decoding and the binary message
passing with erasures are given in this sub-section. MS decoding is a widely used approx-
imation of the belief propagation algorithm which has been introduced in Chapter 2. The
BMP-E is a quantized version of the belief propagation, with an alphabet of {1,−1, 0} for
the messages. The BMP-E is also known as Gallager algorithm E, which we have introduced
in Chapter 3.
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In Figure 6-16; we compare the rank completer method using the standard single bit flip-
ping algorithm, the bootstrapped reliability guessing method using the modified weighted bit
flipping method, the min-sum decoding, and the binary message passing with erasures with
(96,48) LDPC code.
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Figure 6-16: The performance of RC, RG, MS, and BMP-E on BSEEC with p1 = 0.1 with
(96,48) LDPC code

The min-sum algorithm which is known to be one of the best decoding options for the LDPC
codes performs better than the rest, which is very well expected. The min-sum algorithm deals
with erasures by inserting zero reliabilities for the erasure positions, which has no additional
complexity than error decoding. The rank completer performs worse than the binary message
passing decoder, however its performance gets closer to the binary message passing decoder as
the error probability gets lower. This is very well expected, since the rank completer method
uses the iterative erasure decoder for erasure decoding, which can be seen a form of message
passing decoder for erasures only. If the erasure probability is relatively higher than the
error probability, then we can claim that the rank completer behaves like the binary message
passing decoder. The reliability guessing algorithm, which we have shown previously to be
the best of the guessing algorithms on BSEEC performs worse than all other alternatives for
low and mid error probability region. However, it still has a reasonable BER performance
regarding its simplicity.

In Figure 6-17, the same comparison is given for the (204,102) LDPC code. As it can be seen
the performance of the decoders are close to the previous comparison. The gap between the
message passing decoders and our methods has increased since the message passing decoders
are better than bit flipping algorithms with larger codes.
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Figure 6-17: The performance of RC, RG, MS, and BMP-E on BSEEC with p1 = 0.1 with
(204,102) LDPC code

In Figure 6-18, we compare the rank completer with the bootstrapped reliability guessing
algorithm for larger codes; (816,408) and (504,252). The behavior of the two algorithms re-
semble the previous comparisons, which shows us that the results can be generalized. The
results for BMP-E and MS are not given due to large complexity of the decoders with increas-
ing code length. However, both variants of the belief propagation algorithm perform better
than the two methods we have introduced in this chapter, which is expected.
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Figure 6-18: The performance of RC and RG on BSEEC with p1 = 0.1 with (504,252) and
(816,408) LDPC codes

Finally, the performance of the rank completer method with the min-sum algorithm is com-
pared to the classical min-sum algorithm on BSEEC. In Figure 6-19, the performance of
the RC+MS, RC+BF, and MS is given on BSEEC with (96,48) LDPC code. As it can be
observed, rank completer with min-sum (RC+MS) algorithm is inferior to min-sum (MS)
algorithm and performs close to the RC+BF. This inferiority is due to the puncturing op-
eration, which reduces the error correction capabilities of the code. Assuming erasures and
errors in the initial word, the RC+MS separates all erasure positions by puncturing the code.
Now the error correction is done using the punctured code, which has a smaller Tanner graph.
Since some variable nodes are removed, some routes in the original code are also removed and
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the error decoding capability is reduced. Then, the erasure decoding is done using the large
graph, and some errors might propagate from the error decoding step. On the other hand, MS
algorithm directly uses the original graph to correct errors and erasures by message passing,
and for low error probability most of the erasure positions are correctly resolved after a few
message passing rounds. Then after these few rounds, the erroneous bits and the wrongly
decoded erasure positions, are decoded using the original code which is more competent than
the punctured code. This result can be generalized for all channels, although we only present
the results for BSEEC in this thesis. Thus, using the rank completer with message passing
algorithms (or any type of algorithm that can cope up with both errors and erasures) is not
favorable, considering the BER performance.
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Figure 6-19: The performance of RC+BF, RC+MS, MS on BSEEC with p1 = 0.1 with (96,48)
LDPC code

To sum up, the rank completer method performs better than the reliability guessing method
on BSEEC, and both of them are outperformed by message passing decoders. However,
our methods are less complex than message passing algorithms, since the reliability guessing
method does not need any messages to be passed, and the rank completer only uses binary
messages for erasure decoding (iterative erasure decoder is a message passing algorithm for
the erased bits). The reliability guessing method is the simplest of these methods, although it
uses a kind of weighted bit flipping algorithm for error erasure decoder, which is more complex
than the plain bit flipping algorithm used by the rank completer. However, the reliability
guessing algorithm can be simplified further by designing a weighted bit flipping algorithm
that works with values; {1,−1, L,−L}.

6-3-2 The performance on AWGN+EC

In Figure 6-20; we compare RC and Rank Completer with Bootstrapping (RCB) using the
modified weighted bit flipping algorithm, the Reliability Guessing with Bootstrapping (RGB)
using the modified weighted bit flipping method, the MS decoding, and the BMP-E with
(96,48) LDPC code. The binary message passing with erasures performs the worst since
it does not use the soft information in the decoding process. It can be observed that the
min-sum decoding outperforms the methods that we have introduced also on AWGN+EC.
Bootstrapped rank completer performs better, since bootstrapping improves the performance
of the modified weighted bit flipping decoder.
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Figure 6-20: The performance of RC, RCB, RGB, MS, and BMP-E on AWGN+EC with p1 = 0.1
with (96,48) LDPC code

In Figure 6-21, the same comparison is given for the (204,102) LDPC code. As it can be seen
the performance of the decoders are close to the previous comparison. The gap between the
MS and the RC & RG methods is larger in this graph, since the message passing algorithms
perform better with increasing code length. Also the gap between BMP-E and the RC & RG
methods are smaller, which can be justified by the same reasoning. Regarding this behavior,
there might be a code length, where the BMP-E (a hard decision decoder) can beat RG and
even RC (soft decision decoders). However, due to time consuming simulations we have not
searched for such a code length.

1 2 3 4 5 6
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

B
E

R

 

 
RC
RCB
RGB
BMP−E
MS

Figure 6-21: The performance of RC, RCB, RGB, MS, and BMP-E on AWGN+EC with p1 = 0.1
with (204,102) LDPC code

In Figure 6-22, the comparison of the bootstrapped rank completer with the bootstrapped
reliability guessing method is given for the (816,408) LDPC code. We label them directly
as RC and RG, because we only compare the bootstrapped versions. The message passing
algorithms are not presented here, since reliable Monte Carlo simulations take too long for
large code lengths.
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Figure 6-22: The performance of bootstrapped RC and bootstrapped RG on AWGN+EC with
p1 = 0.1 with (816,408) LDPC code

The performance of the AWGN+EC can be summarized as follows; the BMP-E performs
the worst (for the small and medium length codes), and the RC & RG are outperformed by
the MS algorithm. The complexity of the RG method is lower than the RC method, since
both methods use the modified weighted bit flipping decoder, where RC method also uses the
separation of erasure positions and the iterative erasure decoder. The complexity of the RC
and BMP-E is hard to compare, since RC uses the soft information (which requires floating
point calculations) and BMP-E uses message passing (which requires routing of messages
and connections between nodes). The selection between these two methods depend on the
constraints of the implementation and the end-user needs.

6-3-3 The performance on AWGN channel with Rayleigh fading

Finally, we discuss the benefits of erasure declaration while using bit-flipping algorithms in
the AWGN channel with Rayleigh fading. In Chapter 1, we have given many examples of
communication systems which uses Erasure Declaration (ED) schemes are used to cope up
with channel effects such as jamming, fading, and interference. ED has been used for RS
codes and convolutional codes, but it has not been proposed for LDPC codes (in our best
knowledge). The bit-flipping algorithms can not decode errors and erasures together, thus,
using ED with BF algorithms is not possible directly. Since the belief propagation algorithm
uses soft information to create messages, ED throws away some of the available information.
However, with the rank completer method that we propose, it is possible to use the ED
methods with BF algorithms, and then decode errors and erasures altogether.

There are two main types of ED schemes, schemes of the first type use side information
about the channel (i.e. information about the fading process for each symbol or bit), and
schemes of the second type only uses the reliability value of the received bit. We use a simple
ED scheme that does not use any side information about the channel, which is very close
to the method that has been described in detail [64]. In this method, the bits are flagged
as reliable and unreliable depending on the magnitude of the received value for that bit
(the reliability value of the bit) and a pre-determined threshold T . The bits with reliability
values less than the threshold are flagged as unreliable and erased from the word, and error
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erasure decoding is performed with the word that contains bits that are flagged as reliable
and erasures. However, this method has a flaw that has also been expressed in [64], it is not
always guaranteed that flagging will erase the bits that are effected by the fading process,
since we use no side information. However, as the results will show, this simple ED method
is also quite useful especially for high SNR values.

The ED scheme that we describe above can be applied to the LDPC codes using soft decision
bit flipping algorithms using the rank completer algorithm. We have selected the MWBF
algorithm as the bit flipping algorithm, since in the previous section we have shown that the
RC method performs best with MWBF. The ED scheme is modified to make it compatible
with the rank completer method; if the number of bits that are flagged as unreliable is larger
than the separation bound of the rank completer (n−k−1), erasures are inserted in the least
reliable n− k − 1 bits.

In Figure 6-23, the BER performance of MRRBF, LP-WBF, MWBF, and MWBF+RC (ED)
with threshold reliability T = 0.5 is given for (n = 96, k = 48, dc = 3) LDPC code. As it
can be seen ED improves the BER performance significantly for high SNR values. The low
SNR performance is affected badly, because some bits that have low reliability values due to
AWGN channel effects are also erased. This problem can be solved (at least partially) with
the use of side information about the channel (and the fading). The high SNR performance
is not affected, since the noise very small compared to the signal in the mean, and an erased
symbol is most probably has low reliability due to fading.
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Figure 6-23: The performance of MRRBF, LP-WBF, MWBF, and MWBF+RC (ED) on AWGN
channel with Rayleigh fading using (n = 96, k = 48, dc = 3) LDPC code

In Figure 6-24, the BER performance of MRRBF, LP-WBF, MWBF, and MWBF+RC (ED)
is given for (n = 204, k = 102, dc = 3) LDPC code with T = 0.5. The behavior is close to the
previous case, which shows that the improvement by ED is not code dependent.
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Figure 6-24: The performance of MRRBF, LP-WBF, MWBF, and MWBF+RC (ED) on AWGN
channel with Rayleigh fading using (n = 204, k = 102, dc = 3) LDPC code

If the threshold value is selected to be too low, then the number of bits that are erased and
the error erasure decoding provides less improvement. Also if the threshold value is selected
to be too high, then useful information might be thrown away due to ED and the error erasure
decoding results in worse BER performance than classical error decoding in AWGN channel
with Rayleigh fading. This situation is given in Figure 6-25, with threshold values 0.25, 0.5,
and 0.75.
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Figure 6-25: The performance of MWBF+RC (ED) on AWGN channel with Rayleigh fading
using (n = 96, k = 48, dc = 3) LDPC code with different T values

The ED method improves the performance of the soft decision bit flipping algorithms, even
without side information. However, one should keep in mind that the complexity is increased,
due to the declaration of erasures, separation of variables, and iterative erasure decoding (the
most complex one). Thus, the RC method can be used to improve the performance of soft
decision bit flipping algorithms with an increase in the complexity.

İlke ALTIN Master of Science Thesis



6-4 Complexity Issues and Conclusion 67

6-4 Complexity Issues and Conclusion

The reliability guessing method is a very simple method, and has nearly the same complexity
with any soft decision bit flipping decoder, if the erasure filling part is omitted. On the other
hand for the EED with RC; erasures need to be separated from errors, an error decoder is used
for error decoding, and an erasure decoder is used for erasure decoding. The most complex of
the operations for EED with RC is the iterative erasure decoder, since it is based on message
passing. Hence, for an EED with RC with a comparable complexity to the RG method, a
simpler erasure decoder should be used. Next, we will compare the complexity of the rank
completer method to the separating matrices method.

The only difference in the complexity of the separating matrices and the rank completer is in
the initiation period, and the pre-processing part of the rank completer. The complexity of
the pre-processing part is dependent on the number of ones in the parity check matrix, and
the mean value of the number of additions for a word to be decoded is (wc− 1) · p1 · n, where
wc is the (mean) column weight, p1 is the erasure probability, and n is the word length. If
one considers the bit flipping algorithms and the LDPC codes, the amount of operations is
very low compared to some known soft decision bit flipping decoders such as MWBF and
MRRBF. For example MRRBF requires (wc − 1) · n additions, and other kinds of operations
(division, multiplication, modifying the most significant bit) in each iteration. Thus, at least
for LDPC codes, we can claim that the pre-processing does not increase the complexity of
the system significantly. When we compare the two decoders in the erasure decoding part,
the rank completer is way simpler since the known separating matrices are too large.

To conclude, in this chapter we have introduced two new methods for error erasure decoding
for linear binary block codes. Although the methods can be generalized for non-binary cases,
we have only given the implementations for the linear binary block codes. The reliability
guessing method is a new guessing algorithm that assigns reliabilities to guessed bits and can
be used for simple systems that has does not need very good BER performance. We have
shown it to be more effective than other guessing algorithms that are known. We have studied
the EED with RC and taken the "separation idea" further by introducing the separation
bound. Also limits of the separation idea are obtained by the simulation results, considering
the BER performance. For example, the separation of erasures from errors should not be
used with message-passing algorithms (and most probably with any soft decision decoder
that is directly capable of error erasure decoding) since the puncturing operation reduces
the error correction ability of the code. However, the idea can be used to combine error
decoders that are not capable of error erasure decoding (such as BF algorithms) with erasure
decoders. We have presented the results of the reliability guessing method and the rank
completer method with various decoders on different channels. These results show that our
methods are alternatives to message passing decoders for error erasure decoding with worse
BER performance, but also with less complexity.
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Chapter 7

Conclusions

This research has the objective of creating reliable decoders with low complexity for error
channels and error-erasure channels. We have presented the modified reliability ratio bit
flipping algorithm, which is a simple modification to the reliability ratio bit flipping algorithm,
that is effective for small and medium length LDPC codes. We have also worked on existing
ideas for simple EEDG, and chosen to work on guessing algorithms and the separation of
erasures from errors idea. Since the separation idea was not realizable, we have searched for
a simple and effective method to separate erasures from errors. We have found and presented
such a method for separation of erasures from errors in Chapter 5, and shown that it can
separate up to n − k − 1 erasures from a (n, k, d) linear block code. We have worked on
LDPC codes and implemented an EED that utilizes the rank completer to separate erasures
from errors. We have also discovered and presented a simple guessing algorithm that assigns
low reliability values to guessed bits positions, which we have shown to be better than other
guessing algorithms for LDPC codes.

The soft decision bit flipping decoders are quite useful for low end devices that can not
handle the complexity of message passing decoders, and has been studied deeply by many
researchers. The reliability ratio bit flipping algorithm is known to be one of the best soft
decision bit flipping algorithms. We have proposed a modified version of the reliability ratio
bit flipping algorithm, which improves the BER performance of the reliability ratio bit flipping
algorithm, at the expense of very little additional complexity. The modified algorithm uses
the self reliability of each bit weighed by a pre-determined constant β to calculate the flipping
metric. The β value that minimizes the BER can be found via Monte Carlo simulations. We
have shown that for small and medium length LDPC codes, the proposed algorithm with
BER minimizing β values can outperform the classical RRBF algorithm. We have studied
the relation between BER minimizing β values and the density of the codes. For very sparse
codes, the modification causes a minor improvement in the BER performance, which makes
the modification irrelevant. The MRRBF can outperform many good soft decision decoders
in small and medium length codes, such as RRBF, MWBF, and LP-WBF.

Separation of erasures from errors is an idea to realize error erasure decoding, with the aid
of separating matrices. However, the given construction methods for separating matrices can
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guarantee separation for practical values of n and l only for very large matrices. This fact
makes the separation idea hard to realize, and to implement. We have proposed the rank
completer method to implement the separation idea, which can be applied to any parity check
matrix to separate the given erasure set. The rank completer is a pre-processing method that
is applied to the parity check matrix of the code, to create the parity check matrix of the
punctured code. The pre-processing is done by addition operations for binary codes, and is
pretty straightforward to implement. For LDPC codes, the number of operations is very low
compared to the number of operations in BF error decoders. For other types of codes, the
pre-processing might become more complex, as the number of ones in a column increases.
Also for non-binary codes, multiplication and division operations might be used to create the
new parity check matrix. We have also introduced the separation bound, which limits the
maximum number of erasures that can be separated from a word. An erasure set can only
be separated if the size of it is smaller than the separation bound b. We have found it to
be n − k, unless the support of a codeword is separated (which increases this value). Also
we have shown that we can ensure the separated words contain no stopping sets, unless the
support of a codeword is separated.

As stated before, decoders are mostly designed for error correction or erasure correction. We
have presented two error erasure decoders for linear block codes, which can be considered as
simple alternatives to some known decoders. The error erasure decoders that we have pre-
sented, originate from well known decoders in the literature. The reliability guessing method
is the improved version of the simple guessing algorithm, which guesses the erasure positions
and inserts very low reliability values to those positions. After the guessing operation, error
decoding is applied, which concludes the error erasure decoding operation. The error erasure
decoder that uses the rank completer is the same decoder that is proposed in [1], except for
the separation method that is applied. This error erasure decoder separates the erasure posi-
tions, and error decoding is applied to the punctured word with the matrix that is found by
the rank completer method. After error decoding, the decoding process is ended by applying
iterative erasure decoding to recover the erasure positions in the word. These new methods
are implemented for LDPC codes and BER performances of these methods are compared to
the message passing algorithms in the BSEEC and AWGN+EC. The results show that these
new methods are alternatives to message passing decoders with worse performance but less
complexity for error erasure decoding. Also the rank completer method can be applied to
the bit flipping algorithms on AWGN channels with Rayleigh fading, to implement ED tech-
niques which improves the BER performance of the code. Our results also indicate that this
is the case and ED can be used with bit flipping algorithms to improve the BER performance
significantly at high SNR values.

Possible future work is summarized below.

• The complexity of RC can be studied for other codes which have larger column weights
or which are non-binary.

• Searching for a new erasure decoder for EED with RC, since iterative erasure decoder
is too complex (it is based on MP).

• The modified reliability ratio algorithm can be studied further with different codes,
more extensive study about BER minimizing β values can be conducted, and other
modification methods can be considered.
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Appendix A

Matlab Codes

A-1 Appendix Section

A-1-1 MATLAB source code for the Modified Reliability Ratio Based Decoder

1 function [ word ]=modified_reliability_ratio_hard_decoder (H , b , beta )
2 word=b<0;%map the real valued word to binary values

3 cons=abs ( b ) ; %store the bit reliabilities

4 summer=abs ( repmat ( abs ( b ) , size (H , 1 ) , 1 ) .∗ H ) ;
5 div=sum ( summer , 2 ) ;
6 clear summer ;
7 miner=abs ( repmat ( 1 . / abs ( b ) , size (H , 1 ) , 1 ) .∗ H ) ;
8 HH=repmat ( ( div ) ,1 , size (H , 2 ) ) .∗ miner ; %create a matrix with reliability

ratios in each position that is a one in H

9 clear miner ;
10 for k =1:1:150
11 if mod ( word∗H ’ , 2 )==0%check if decoding is done

12 break ;
13 else

14 check_errors_1=mod ( word∗H ’ , 2 ) ; %find the violated equations

15 check_errors_2=(2∗check_errors_1−1)∗HH−beta∗cons ; %the MRRBF equation

16 sortce=sort ( check_errors_2 , ’descend’ ) ; %order the bits according to

the metric

17 a=find ( check_errors_2==sortce (1 ) ) ; %select the bit with highest metric

18 a1=a ( ceil ( size ( a ) ∗rand ) ) ; %if more than one bit has the highest ,

select randomly

19 word ( a1 )=mod ( word ( a1 ) +1 ,2) ; %flip that bit

20 end

21 end
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A-1-2 MATLAB source code for the Rank Completer method

1 function [ Hp , H2 ]=parity_check_creator_alt (H , erased_bits )
2 sortie=erased_bits ; %get list of erased bits

3 Hp=H ; %store the original parity check matrix to modify

4 H2=H ; %store the original matrix to add extra rows for stopping set

prevention

5 for i =1:1: length ( erased_bits ) %for all erased bits

6 a=find ( Hp ( : , sortie ( i ) ) ) ; %select the rows with a one in the column

to be separated

7 for j =1:1: sum ( Hp ( : , sortie ( i ) ) )−1%for all such rows do the

addition

8 ca=size ( Hp , 1 ) ; %and create extra rows

9 Hp ( ca +1 , :)=mod ( Hp ( a (1 ) , : )+Hp ( a ( j+1) , : ) , 2 ) ; %add extra rows to

matrix

10 cb=size ( H2 , 1 ) ;
11 H2 ( cb +1 , :)=Hp ( ca +1 , :) ; %add extra rows to matrix for stopping

set prevention

12 end

13 Hp (a , : ) = [ ] ; %remove rows with a one in the separated column

14 end

15 Hp ( : , sortie ) = [ ] ; %remove separated columns

A-1-3 MATLAB source code for the Reliability Guessing method

1 function word_guess_out=soft_erasure_guess ( word_channel_out , erased_bits , L

)
2 word_guess_out=word_channel_out ;
3 for i =1:1: length ( erased_bits ) %fill erasure positions with reliability L

4 if rand <0.5
5 word_guess_out=[word_guess_out ( 1 : erased_bits ( i )−1) L word_guess_out (

erased_bits ( i ) : end ) ] ;
6 else

7 word_guess_out=[word_guess_out ( 1 : erased_bits ( i )−1) −L word_guess_out (
erased_bits ( i ) : end ) ] ;

8 end

9 end
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Glossary

List of Acronyms

ARQ Automatic Repeat Request

AWGN Additive White Gaussian Noise Channel

AWGN+EC Additive White Gaussian Noise Channel with Erasures

BCH Bose-Chaudhuri-Hocquenghem

BEC Binary Erasure Channel

BER Bit Error Rate

BF Bit Flipping

BMA Berlekamp-Massey Algorithm

BMP-E Binary Message Passing with Erasures

BP Belief Propagation

BPSK Binary Phase Shift Keying

BSC Binary Symmetric Channel

BSEEC Binary Symmetric Error Erasure Channel

CRC Cyclic Redundancy Codes

ED Erasure Declaration

EEC Error-Erasure Channels

EED Error Erasure Decoder

EEDG Error Erasure Decoding

FEC Forward Error Correction
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80 Glossary

FER Frame Error Rate

GERAN GSM EDGE Radio Access Network

IMWBF Improved Modified Weighted Bit Flipping

LDPC Low-Density Parity-Check

LP Linear Programming

LP-WBF Liu-Pados Weighted Bit Flipping

MAC Medium Access Control

MBMS Multimedia Broadcast/Multicast Service

ML Maximum Likelihood

MP Message Passing

MRRBF Modified Reliability Ratio Based Bit Flipping

MS Min-Sum

MWBF Modified Weighted Bit Flipping

NP Non-deterministic Polynomial-time

PCM Parity Check Matrix

RC Rank Completer

RCB Rank Completer with Bootstrapping

RGB Reliability Guessing with Bootstrapping

RLC Radio Link Control

RS Reed-Solomon

RTT Ratio Threshold Test

SECDED Single Error Correcting Double Error Detecting

SM Separating Matrices

WBF Weighted Bit Flipping
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