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Abbreviations
CC Constant Current.

CV Constant Voltage.

EOL end of life.

EV Electric Vehicle.

eVTOL Electric Vertical Take-off and Landing.

GPR gaussian process regression.

IR Internal Resistance.

MAE Mean Absolute Error.

MAPE Mean Absolute Percentage Error.

ML machine learning.

MLP Multi-layer Perceptron.

MP mission profile.

NN Neural Network.

RF random forest.

RMSE Root Mean Squared Error.

RUL remaining useful lifetime.

SOC State of Charge.

SOH state of health.

SVM support vector machine.

SVR support vector regression.

Nomenclature
∆CC,m,c Duration of CC charging phase of capacity test c of mission profile m s

∆CV,m,c Duration of CV charging phase of capacity test c of mission profile m s

∆phase,m,c Duration of flight phase of capacity test c of mission profile m s

∆rest,m,c Duration of CV charging phase of capacity test c of mission profile m s

ˆRUL
m,c

Predicted Remaining Useful Lifetime of capacity test c of mission profile m #missions

ˆSOH
m,c

Predicted State of Health of capacity test c of mission profile m %

Cm The total number of capacity tests in mission profile m -

Im,c
i Current at timestep i of capacity test c of mission profile m A

MAEm
RUL Mean Absolute Error of RUL of mission profile m #missions

MAEm
SOH Mean Absolute Error of SOH of mission profile m %

MAERUL Average Mean Absolute Error of RUL #missions

MAESOH Average Mean Absolute Error of SOH %
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MAPEm
RUL Mean Absolute Percentage Error of RUL of mission profile m −

MAPEm
SOH Mean Absolute Percentage Error of SOH of mission profile m −

MAPERUL Average Mean Absolute Percentage Error of RUL −

MAPESOH Average Mean Absolute Percentage Error of SOH −

Qnom Nominal capacity Ah

Qchargephase,m,c
i Charge capacity of flight phase at timestep i of capacity test c of mission profile m mAh

Qdisphase,m,c
i Discharge capacity of flight phase at timestep i of capacity test c of mission profile m mAh

Qdisphase,m,c
max Maximum discharge capacity of flight phase of capacity test c of mission profile m Ah

Qdisphase,m,c
mean Mean discharge capacity of flight phase of capacity test c of mission profile m Ah

Qdisphase,m,c
min Minimum discharge capacity of flight phase of capacity test c of mission profile m Ah

Qdisphase,m,c
var Variance discharge capacity of flight phase of capacity test c of mission profile m Ah

RMSEm
RUL Root Mean Squared Error of RUL of mission profile m #missions

RMSEm
SOH Root Mean Squared Error of SOH of mission profile m %

RMSERUL Average Root Mean Squared Error of RUL #missions

RMSESOH Average Root Mean Squared Error of SOH %

RULm,c True Remaining Useful Lifetime of capacity test c of mission profile m #missions

SOHm,c True State of Health of capacity test c of mission profile m %

Tm,c
cc Current mission number of capacity test c of mission profile m #missions

tcharge,m,c
end Time step when charging phase of capacity test c of mission profile m ends s

tphase,m,c
end Time step when phase of capacity test c of mission profile m ends s

Tm
EOL Mission number when capacity is below EOL of mission profile m #missions

T phase,m,c
i Temperature of flight phase at timestep i of capacity test c of mission profile m ◦C

T phase,m,c
max Maximum temperature of flight phase of capacity test c of mission profile m Ah

tcharge,m,c
s Time step when charging phase of capacity test c of mission profile m starts s

tphase,m,c
s Time step when phase of capacity test c of mission profile m starts s

V phase,m,c
i Voltage of flight phase at timestep i of capacity test c of mission profile m V

V phase,m,c
max Maximum voltage of flight phase of capacity test c of mission profile m V

V phase,m,c
mean Mean voltage of flight phase of capacity test c of mission profile m V

V phase,m,c
min Minimum voltage of flight phase of capacity test c of mission profile m V

V phase,m,c
var Variance voltage of flight phase of capacity test c of mission profile m V
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Abstract

The health management of batteries is a key enabler for adopting Electric Vertical Take-off and Landing
vehicles (eVTOLs). Currently, only a few studies consider the health management of eVTOL batteries. One
characteristic of eVTOL batteries is that the battery discharge rates are significantly larger during take-off
and landing. In turn, such discharge protocols are expected to impact the long-run health of batteries. This
paper proposes a data-driven machine learning (ML) framework to estimate the state of health (SOH) and
the remaining useful lifetime (RUL) of eVTOL batteries. This framework is illustrated using an open-source
dataset of battery measurements taken during realistic eVTOL flights. Three main features are proposed for
assessing the battery’s health: charge, discharge and temperature. The paper quantifies the importance of
these features for SOH and RUL prediction. Taking into account the type of battery charging before flight,
it is also proposed a selection of eVTOL missions to be used for SOH and RUL prediction. The results
demonstrate that indeed, discharge-related features have the highest importance when predicting battery
SOH and RUL. Using five different ML algorithms, it is shown that the battery SOH and RUL are well
estimated using random forest regression and XGBoost, respectively. To the best of our knowledge, this is
the first study that proposes a framework dedicated to SOH and RUL prediction for eVTOL batteries.

1 Introduction

Electric Vertical Take-off and Landing vehicles (eV-
TOLs) are seen as a solution to growing traffic conges-
tion in large cities, traffic-related pollution and inter-
city connectivity needs. Several companies such as
Airbus, Bell, Embraer, Joby Aviation, Kitty Hawk,
Pipistrel, Volocopter, and Aurora Flight Sciences have
been designing, building, and testing eVTOLs in the
last years [27].

One of the challenges the eVTOL industry faces
is the management of the batteries, and in particu-
lar, the estimation of the state of health (SOH) and
of the remaining useful lifetime (RUL) of batteries.
The most frequently considered battery chemistry for
e-mobility is lithium-ion due to its high energy-density,
low self-discharge rates, very good low-temperature
performance, and acceptable costs [13]. Several studies
have focused on the health management of lithium-ion
batteries for electric (ground) vehicles [37], on their
SOH estimation [24] and RUL estimation [13; 46]. The
batteries considered in these studies have been subject
to constant current (CC) and constant voltage (CV)
cycling with a constant discharge C-rates. For eV-
TOLs, however, the take-off and landing require larger
discharge rates than the cruise phase. In the long-run,
this is expected to have a direct impact on the health
of the batteries. Since batteries are safety and cost-

efficient critical for eVTOLs, the health management
of batteries is a priority for eVTOLs.

Studies on battery SOH and RUL estimation pro-
pose either physics-informed approaches, model-based
approaches or data-driven approaches. With the in-
creasing availability of datasets on battery condition
monitoring, several data-driven machine-learning ap-
proaches for battery SOH and RUL prediction have
been proposed in the last years [15; 20].

In [13; 33; 41; 44; 46], several machine-learning algo-
rithms are proposed to estimate the lifetime of batter-
ies. In [33] and [44] an elastic net and a gradient boost-
ing regression tree, respectively, are used to estimate
the battery lifetime. The features considered in [44]
regard the voltage, capacity, and temperature of the
battery. A hydrid model (a random forest, an artificial
bee colony and a general regression neural network),
together with features generated based on the current
(capacity, voltage, Internal Resistance (IR), and cur-
rent) is proposed in [46]. In [13], an Elastic net, gaus-
sian process regression (GPR), support vector machine
(SVM), random forest (RF), a Gradient Boosting re-
gression tree, and a Neural Network (NN) are used
to predict the battery lifetime. The features used in
this study are based on the charge, discharge, capacity,
temperature, and IR recorded in the first 100-cycles of
the battery. In contrast to [13], we estimate the battery
SOH and RUL multiple time throughout the lifetime
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of the eVTOL batteries. In fact, the SOH and RUL
estimates are updated as more measurements become
available.

For SOH prediction, a random forest with features
based on the charge current, voltage and temperature
during charging and discharging is proposed in [24].
In [22] and [38], the authors propose a support vector
regression algorithm for SOH estimation. Here, [22] ar-
gues that the SOH could be estimated using only the
charge and discharge-related measurements. Also in
this paper, we show that charge and discharge-related
features have a high importance when estimating SOH
and RUL of batteries. Nevertheless, we demonstrate
that the temperature at which the batteries are ex-
posed is an important feature for predicting SOH. In
[21], a RF regression is proposed, together with fea-
tures related to the charging voltage and the capacity
of the battery.

Some of the most frequently used datasets for bat-
tery SOH and RUL predictions are [3], [7], [32], and
[11],[24]. These batteries, however, are subject to con-
stant CC and CV cycling. For dataset [32], lithium-ion
batteries are charged and discharged at different tem-
peratures, but still at constant CC and CV cycling.
The measured parameters are the capacity, internal re-
sistance, voltage, current, and temperature [12]. For
dataset [3], LFP/Graphite cells are cycled. Here, the
cells are always discharged at a 4C-rate. For dataset
[24], data was recorded during real-life EVs usage over
seven years of intensive usage.

To the best of our knowledge, dataset [Bills et al.]
released by Carnegie Mellon University is the first bat-
tery dataset generated specifically for eVTOLs. In
contrast with the previously discussed datasets, these
batteries are subject to different C-rates during the
discharge phase of a flight. Specifically, the take-off
and landing of eVTOLs are performed at a larger C-
rate than the cruise phase. Also, this eVTOL dataset
cycles all battery sells until they reach end of life
(EOL) [Bills et al.], instead of containing only early-
cycle measurements, as is the case for [3]. Having
run-to-EOL measurements, we are able to estimate the
SOH and RUL of the batteries multiple times through-
out the life of the batteries. Another novel aspect for
this eVTOL dataset is that several parameters such as
the temperature, power during discharge, and cruise
length [Bills et al.] are varied across multiple eVTOL
missions. Using this database specific for eVTOLs, this
paper proposes for the first time a framework for bat-
tery SOH and RUL prediction for eVTOLs performing
realistic flights [Bills et al.].

Using the eVTOL dataset [Bills et al.], we identi-
fied the missions relevant for SOH and RUL predic-
tion. These are the missions where the battery is first
charged to 100% State of Charge (SOC) before per-
forming a flight. This is relevant because the max-
imum available capacity test can determine the bat-
tery’s static capacity, which is critical when estimat-
ing the SOH. In practical applications, real-time dy-
namic capacity is more important to determine than
the static capacity, because real-time dynamic capacity

can better reflect the battery’s SOH levels. However,
estimating dynamic capacity accurately in real time is
a challenge [40]. As a result, regular static capacity
calibration becomes an option and will be used in this
paper.

This paper proposed a framework for battery SOH
and RUL estimation dedicated to eVTOLs. Using the
dedicated eVTOLs database [Bills et al.], we first gen-
erate features based on measured variables and original
voltage-capacity/time curves. These features are gen-
erated based on the battery charging/discharging pro-
tocols, and on the temperature at which the batteries
are exposed. We quantify the importance of these fea-
tures for SOH and RUL prediction. The results show
that the (variation in the) voltage during take-off is
of most importance for both SOH and RUL predic-
tion. This makes the take-off not only safety-critical
from a flight perspective, but also of high importance
for SOH and RUL prognostics. The results also show
that the length of the cruise has a lower importance for
SOH and RUL prediction. Several machine learning al-
gorithm are considered for SOH and RUL prediction:
support vector regression (SVR), RF regression, GPR,
XGBoost, and Multi-layer Perceptron (MLP). The re-
sults show that for the prediction of the SOH, the RF
regression model has the best performance, with an
Mean Absolute Error (MAE) of 1.33% and Root Mean
Squared Error (RMSE) of 1.80%. For RUL prediction,
the XGBoost leads to the best performance with an
MAE of 54.53 missions and an RMSE of 67.92 mis-
sions. We also discuss the impact of the characteristics
of the eVTOL mission on the battery SOH and RUL
predictions. To the best of our knowledge, this is the
first framework for battery SOH and RUL prediction
for realistic eVTOL flights.

The remainder of this paper is structured as fol-
lows. In Section 2, the [Bills et al.] dataset on eVTOL
batteries is analyzed. In Section 3, features are gen-
erated based on charge-related, discharge-related, and
temperature-related. The determination of SOH and
RUL is discussed in Section 4. In Section 5, an end-to-
end machine learning framework is proposed for bat-
tery SOH and RUL prediction. In Sections 6 and 7 the
SOH and RUL prediction results are presented. Be-
sides, in Sections 6 and 7 the importance of features is
quantified for SOH and RUL prediction, respectively.
In section 8 we discuss the impact of the characteristics
of the eVTOL missions on SOH and RUL prediction.
Final conclusions are provided in Section 9.

2 Data description

We consider the health-monitoring dataset for Sony-
Murata 18650 VTC-6 cell lithium-ion batteries avail-
able at [Bills et al.]. These batteries are used to per-
form short-range missions with the Vahana eVTOL.

Vahana is an eVTOL designed by Acubed (Airbus)
for urban air mobility. It is an all-electric, single-seat,
tilt-wing vehicle with a range of 50 km [2]. During
cruise Vahana achieves an average speed of 190 km/h,
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with a maximum of 220 km/h. The longest flight per-
formed by Vahana had a total duration of 19 minutes
and 56 seconds [1].

Figure 1: Vahana [2].

Figure 2 shows a generic mission profile for Vahana:
vertical take-off, transition to forward flight, cruise for
a specified distance, a transition back to a hover, and
a vertical landing. (see Figure 1).

Figure 2: Generic mission profile eVTOL.

To discuss the dataset of [Bills et al.], we define a
mission profile (MP) for Vahana as a set of mission
tasks whose specifications are unchanged across a se-
quence of missions. From the beginning to the end of
a mission, these tasks are Constant Current (CC) bat-
tery Charging phase, Constant Voltage (CV) battery
Charging phase, Rest period, eVTOL Take-off, eVTOL
Cruise, eVTOL Landing, and Rest period.

The dataset[Bills et al.] contains 22 mission profiles
(MP1-MP22), see Table 1. Under each 22 mission pro-
file, one Sony-Murata 18650 VTC-6 cell lithium-ion
battery is used to perform a sequence of missions with
Vahana (see Table 1 for the number of missions per-
formed under each mission profile).

Baseline mission profiles
Mission profiles VAH01, VAH17, and VAH27 are base-
line mission profiles (see Table 1). We refer to them
as baseline mission profiles because the other mission
profiles are obtained by changing the specification of
mission tasks of one of these baseline mission profile.

Under a baseline mission profile, the battery is
charged with 1 C-rate (CC charging phase). The CC
charging phase ends as soon as the battery’s voltage
reaches 4.2 V . Hereafter, the CV charging phase starts

with a constant voltage of 4.2 V until the current is be-
low C/30. After charging, the battery cell rests until
the cell temperature reaches 35 ◦C. After this Rest pe-
riod, the eVTOL performs a flight. The take-off phase
has a duration of 75 seconds, with a discharge power
of 54W , a C-rate of 5C, and 1.12Wh discharge energy.
Afterwards, the cruise phase takes 800 seconds, at a
discharge power of 16 W , a C-rate of 1.48C, and 3.55
Wh discharge energy. Hereafter, the landing phase
takes place with a duration of 105 seconds, a discharge
power of 54 W , a C-rate of 5C, and 1.57 Wh discharge
energy. Finally, the battery rests until its temperature
decreases to 27 ◦C.

Table 1 shows how the 22 mission profiles are ob-
tained by changing the following mission tasks of base-
line mission profiles: the duration of the cruise phase,
the power used during flight (i.e., take-off, cruise, and
landing), the CC current, the CV voltage, and the
(chamber) temperature.

Measurements

During every mission, the following measurements are
recorded every time step: time (sec), cell voltage (V ),
cell current (mA), energy supplied to the cell during
charge (Wh), charge supplied to the cell during charge
(mAh), energy extracted from the cell during discharge
(Wh), charge extracted the from the battery cell dur-
ing discharge (mAh), cell surface temperature (◦C),
cycle number (−) and cycle segment (−).

Figure 3: The charging and discharging phases of the
first capacity test, mission profile VAH01. The battery
is first discharged to 0% SOC. Then, the battery is
charged to 100% SOC. With a battery with 100% SOC,
the 1st flight is performed. During take-off, cruise and
landing, the battery is discharged.

Capacity tests

Given a mission profile, after every 50th mission, the
residual battery charge is reduced to 0% SOC at a dis-
charge rate of C/5 until the voltage drops below 2.5V.
Then, the battery is charged to 100% SOC at a charg-
ing rate of 1 C-rate and a constant voltage of 4.2V. Af-
ter the battery is fully charged, the eVTOL performs
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a flight (take-off, cruise, and landing). This "special"
mission when the battery is charged to 100% and only
afterwards the eVTOL takes off, is referred to as a ca-
pacity test. Table 1 shows the total number of capacity
tests under each of the 22 mission profiles.

Figure 3 shows the charging and discharging proto-
col of the first capacity test of VAH01. The CC charg-
ing phase in Figure 3 has a duration of 50 minutes, and
the battery is charged with 3.0 A. Afterwards, the CV
charging phase takes place with 4.2 V for 33 minutes.
The Rest period following charging has a duration of
14 minutes. The discharge phase starts with the take-
off of the eVTOL. The duration of the take-off is 75
seconds. During take-off, the voltage drops from 3.92
V to 3.62 V . The cruise phase has a duration of 800
seconds. Hereafter, the landing phase has a duration
of 105 seconds. During landing, the voltage drops from
3.57 V to 3.1 V . Finally, the mission ends with a Rest
period of 605 seconds. At the end of the Rest period,
the battery reaches a temperature of 27.3 ◦C.

To estimate the SOH and RUL of the batteries,
we consider the battery capacity during capacity tests
only, i.e., when the battery is charged to 100% SOC
before flight. We only focus on the capacity tests be-
cause dynamic capacity estimation would require an
extensive analysis and hyperparameter tuning, which
may be prone to estimation errors [40]. In contrast,
regular static capacity calibration is more reliable for
testing purposes. The battery cell capacity during a
cycle is given by the maximum amount of charge (in
Ah) supplied to the cell during the charging phase of
this cycle. In Figure 3, the red dotted line shows the
end of this charging phase of the 1st capacity test of
VAH01.

Figure 4 shows the mission immediately following
the 1st capacity test of VAH01. It can be seen that the
battery follows the same mission profile as in Figure 3.
However, the battery is now charged only from 3.8 V
to 4.2 V . As a result, the duration of the CC and CV
charging period is shorter (83 min in the 1st capacity
test vs. 55 min in this mission immediately following
this 1st capacity test). In contrast, during the capacity
test, the battery is charged from 3.2 V to 4.2V , and
the CC and CV charging duration is more extensive
(28 min).

Figure 4: Charging and discharging phase of the 2nd

mission, mission profile VAH01.

Selection of mission profiles for SOH and
RUL prediction
For our analysis, we consider only 19 mission profiles
of the total 22 profiles (see Table 1). Mission pro-
files VAH06, VAH07, and VAH09 are not considered
due to the inconsistencies in the battery characteris-
tics recorded over time.

For VAH06, the degradation of the battery capac-
ity follows an unexpected trend. During mission 766
(15th capacity test), the capacity of the battery is 2.51
Ah. However, during the following capacity tests, from
mission 903 until mission 8942, the battery’s capacity
varies between 1.8 - 1.9 Ah. Afterwards, VAH06 con-
sists of four standard capacity tests where the battery’s
capacity degrades from 2.51 Ah to 2.44 Ah (see also
Figure 5). This is unexpected as the battery’s capacity
should degrade over time, and not decrease and then
increase again.

Figure 5: Capacity tests - VAH06.

Figure 6 shows the capacity tests during mission
profile VAH07. For VAH07, the battery’s capacity in-
creases over time as more capacity tests are performed.
However, this pattern is unexpected since the battery’s
capacity is expected to decrease over time.
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Cruise duration Power Take-off Power Cruise Power Landing CC CV Temperature VAHXX #Missions #Capacity tests

MP1 800 s 54 W 16 W 54 W 1 C 4.2 V 25 ◦C VAH01 847 17

MP2 125% of 800 s 54 W 16 W 54 W 1 C 4.2 V 25 ◦C VAH02 625 13

MP3 800 s 90% of 54 W 90% of 16 W 90% of 54 W 1 C 4.2 V 25 ◦C VAH05 1615 31

MP4 800 s 54 W 16 W 54 W 50% of 1 C 4.2 V 25 ◦C VAH06 9290 28

MP5 800 s 54 W 16 W 54 W 1 C 95.24% of 4.2 V 25 ◦C VAH07 339 44

MP6 800 s 54 W 16 W 54 W 1 C 4.2 V 80% of 25 ◦C VAH09 8527 46

MP7 800 s 54 W 16 W 54 W 1 C 4.2 V 120% of 25 ◦C VAH10 1431 28

MP8 800 s 80% of 54 W 80% of 16 W 80% of 54 W 1 C 4.2 V 25 ◦C VAH11 2249 44

MP9 50% of 800 s 54 W 16 W 54 W 1 C 4.2 V 25 ◦C VAH12 2349 46

MP10 75% 800 s 54 W 16 W 54 W 1 C 4.2 V 25 ◦C VAH13 1042 20

MP11 125% of 800 s 54 W 16 W 54 W 1 C 4.2 V 25 ◦C VAH15 554 11

MP12 800 s 54 W 16 W 54 W 150% of 1 C 4.2 V 25 ◦C VAH16 559 11

MP13 800 s 54 W 16 W 54 W 1 C 4.2 V 25 ◦C VAH17 1002 20

MP14 800 s 54 W 16 W 54 W 150% of 1 C 4.2 V 25 ◦C VAH20 611 12

MP15 125% of 800 s 54 W 16 W 54 W 1 C 4.2 V 25 ◦C VAH22 579 12

MP16 800 s 54 W 16 W 54 W 1 C 97.62% of 4.2 V 25 ◦C VAH23 697 13

MP17 800 s 54 W 16 W 54 W 50% of 1 C 4.2 V 25 ◦C VAH24 801 16

MP18 800 s 54 W 16 W 54 W 1 C 4.2 V 80% of 25 ◦C VAH25 554 11

MP19 75% of 800 s 54 W 16 W 54 W 1 C 4.2 V 25 ◦C VAH26 1164 22

MP20 800 s 54 W 16 W 54 W 1 C 4.2 V 25 ◦C VAH27 587 12

MP21 800 s 90% of 54 W 90% of 16 W 90% of 54 W 1 C 4.2 V 25 ◦C VAH28 1182 23

MP22 800 s 54 W 16 W 54 W 1 C 4.2 V 140% of 25 ◦C VAH30 919 18

Table 1: Mission profile characteristics, based on [Bills et al.].

Figure 6: Capacity tests - VAH07.

Figure 7 shows the capacity tests for VAH09. For
capacity tests corresponding to mission 728 until mis-
sion 6074, the battery capacity varies between 1.8-1.9
Ah. This pattern can be seen in Figure 7. Afterwards,
from mission 6277 until mission 6306, the battery’s ca-
pacity increases to 2.46 Ah. Then, from mission 6480
until mission 8352, the capacity varies again between
1.8-1.9 Ah. Finally, during the last two capacity tests,
the battery’s capacity degraded from 2.43 to 2.41 Ah.
This pattern is unexpected as we expect the capacity
to decrease over time, and not decrease, increase, and
then decrease again.

Figure 7: Capacity tests - VAH09.

Discussion of selected mission profiles
Figure 20 (Appendix A) shows the current during the
capacity tests of the 19 selected mission profiles. Fig-
ures 20(a), 20(j), and 20(q) show the capacity tests
of the baseline mission profile VAH01, VAH17, and
VAH27, respectively.

Figures 20(d), 20(o), and 20(s) show the capacity
tests for mission profiles VAH10, VAH25, and VAH30,
which are obtained by varying the temperature in the
baseline mission profiles. As expected, a lower tem-
perature leads to fewer missions (and thus fewer ca-
pacity tests) than a 20% increase of thermal chamber
temperature. Figure 20(o) shows that the one last ca-
pacity test is different than the others. The reason
for this abnormal pattern is that during this mission,
two capacity tests are being performed one after the
other and reported as one capacity test in the dataset
[Bills et al.].
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Figures 20(c), 20(e), and 20(r) show the capacity
tests of VAH05, VAH11, and VAH28, where the power
during the flight (i.e., during take-off, cruise, and land-
ing) has been reduced. For these mission profiles, it
can be seen that the current values are lower during the
discharge phase. This is expected because the power is
obtained by multiplying the current with the voltage.
Therefore, a reduction in power leads to lower current
values. In Figure 20(r), it can be seen that there is a
different capacity test present at 750 minutes because
two capacity tests are being performed one after the
other and reported as one capacity test in the dataset
[Bills et al.].

Figures 20(b), 20(f), 20(g), 20(h), 20(l), and 20(p)
show the capacity tests of VAH02, VAH12, VAH13,
VAH15, VAH22, and VAH26, where the cruise length
is varied. We note that the mission profiles with the
longest cruise duration also have the least total number
of flights performed.

Figures 20(i) and 20(k) show the capacity tests for
VAH16 and VAH20, where the CC charge current is
increased to 1.5 C. As a result, the duration of the CC
charging period decreases. Figure 20(n) shows the ca-
pacity tests during mission profile VAH24, where the
CC charge current is reduced to C/2. As a result, the
duration of the CC charging phase increases.

Figure 20(m) shows the capacity tests during mis-
sion profile VAH23, where the CV charge voltage is
reduced to 4.1 V. As expected, in this case, the CV
charging phase has a longer duration than in the base-
line mission profile.

Figure 8 shows the capacity degradation for each of
the 19 selected mission profile. The capacity is given
at every capacity test of each mission profile.

Figure 8: Capacity degradation for all 19 selected mis-
sion profiles.

Figure 9 shows boxplots of the duration of the CC
charging phase during capacity tests of the 19 selected
mission profiles. Most mission profiles consider a CC
charging phase duration of 2000-3000 seconds. For mis-
sion profile VAH24, the duration of the charging phase
is longer since the CC charge current is reduced to
C/2. Moreover, there are outliers present in mission

profiles VAH05, VAH22, VAH25, and VAH28. These
outliers are present due to one abnormal capacity test
in VAH05, VAH22, VAH25, and VAH28. These ab-
normal capacity tests can be seen in Figure 20(c), Fig-
ure 20(l), Figure 20(o), and Figure 20(r) accordingly.

3 Feature generation

To discuss the generation of features, we first intro-
duce the following notations. Let Cm denote the to-
tal number of capacity tests of a mission profile m,
1 ≤ m ≤ M .

Let tphase,m,c
s , 1 ≤ m ≤ M , 1 ≤ c ≤ Cm, denote

the time step when phase ∈ {take-off, cruise, land-
ing} of capacity test c of mission profile m starts. Let
tphase,m,c
e , 1 ≤ m ≤ M , 1 ≤ c ≤ Cm, denote the time

step when phase ∈ {take-off, cruise, landing} of capac-
ity test c of mission profile m ends.

Let tcharge,m,c
s , 1 ≤ m ≤ M , 1 ≤ c ≤ Cm, denote

the time step when the charging phase of capacity test c
of mission profile m starts. Let tcharge,m,c

e , 1 ≤ m ≤ M ,
1 ≤ c ≤ Cm, denote the time step when the charging
phase of capacity test c of mission profile m ends.

Let T phase,m,c
i denote the temperature recorded at

time step i during a flight phase of a capacity test c
of mission profile m, with phase ∈ {take-off, cruise,
landing}, tphase,m,c

s ≤ i ≤ tphase,m,c
e , 1 ≤ c ≤ Cm,

1 ≤ m ≤ M .
Let V phase,m,c

i denote the voltage recorded during
a flight phase at time step i of capacity test c of mis-
sion profile m, with phase ∈ {take-off, cruise, land-
ing}, tphase,m,c

s ≤ i ≤ tphase,m,c
e , 1 ≤ c ≤ Cm, m,

1 ≤ m ≤ M .
Let Qdisphase,m,c

i denote the discharge capacity
during a flight phase at time step i of capacity test
c of mission profile m, with phase ∈ {take-off, cruise,
landing}, tphase,m,c

s ≤ i ≤ tphase,m,c
e , 1 ≤ c ≤ Cm,

1 ≤ m ≤ M .
Let Qchargem,c

i denote the charge capacity at time
step i during capacity test c of mission profile m, with
tcharge,m,c
s ≤ i ≤ tcharge,m,c

e , 1 ≤ c ≤ Cm, 1 ≤ m ≤ M .
We consider a total of 33 features (see Table 2).

These features are related to the charging, discharging
and temperature of the battery, as follows.

3.1 Battery charge-related features

Figure 10(a) shows the charging time vs. the charging
voltage for the capacity tests of the baseline mission
profile VAH01. Mission profile VAH01 has 847 mis-
sions, out of which every 50th mission is a capacity
test. Figure 10(a) shows that as the number of mis-
sions increases, the duration of the CC charging phase
decreases. The first capacity test has a CC charging
duration of 50 minutes, whereas the last capacity test
has a CC charging duration of 37 minutes. Hence, there
is a 26% decrease in the CC charging duration. When
the duration of the CC charging phase is reduced, the
cut-off voltage of 4.2 V is reached earlier. Due to the
reduction of the duration of the CC charging phase, the
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Figure 9: Duration CC charging phase.

CV charging phase begins earlier and has a longer du-
ration. During the first capacity test the CV charging
phase takes 33 minutes. In contrast the CV charg-
ing phase has a duration of 64 minutes during the last
capacity. Thus, for VAH01, the duration of the CV
charging phase increases with 92%. The observed de-
crease in the CC charging duration and the increase of
the CV charging duration over the number of missions
is due to the battery polarization phenomenon [45].

Analyzing the charging of the battery, we consider
as features: 1) ∆CC,m,c, the duration of the CC charg-
ing phase of capacity test c of mission profile m; 2)
∆CV,m,c, the duration of the CV phase of capacity test
c of mission profile m, and 3) ∆rest,m,c, the duration of
the Rest period after charging. The Rest period starts
when the current is below C/30. The Rest period ends
as soon as the battery’s temperature reaches 35◦C. Ta-
ble 2 gives an overview of the features considered.

3.2 Battery discharge-related features

Regarding discharge-related features, we consider fea-
tures related to the discharge voltage of the battery, the
discharge capacity, and the duration of each discharge
phase (see Table 2).

Discharge voltage: Figure 10(b) shows the dis-
charge capacity vs. the discharge voltage during ca-
pacity tests of the baseline mission profile VAH01. For
landing and take-off, a higher C-rate is considered than
for the cruise phase. During the take-off and land-
ing the C-rate is 5C, whereas during cruise the C-rate
is 1.48C. Figure 10(b) shows that as the number of
missions increases, the minimum discharge voltage de-
creases during each phase. Besides, it can be seen
that during the take-off and landing phases, the dis-
charge voltage drop is higher then during the cruise
phase. This is expected, because the take-off and land-
ing phases occur at a higher C-rate.

Since the discharge voltage varies for every flight
phase and across missions, we aim to capture the im-
pact of these variations by considering voltage-related
features. Therefore, we consider the following battery-
discharge related features: 1) V phase,m,c

max , the maxi-
mum voltage during phase ∈ {take-off, landing, cruise}
of capacity test c of mission profile m, 2) V phase,m,c

min ,
the minimum voltage during phase ∈ {take-off, land-
ing, cruise} of capacity test c of mission profile m, 3)

V phase,m,c
mean , the mean voltage during phase ∈ {take-off,

landing, cruise} of capacity test c of mission profile m,
and 4) V phase,m,c

var , the variance voltage during phase ∈
{take-off, landing, cruise} of capacity test c of mission
profile m.

These voltage related featured are considered since
they reflect the open circuit voltage and internal resis-
tance, which are closely related to the remaining ca-
pacity and the aging of the battery [28; 40].

Discharge capacity : Figure 10(b) shows that the
discharge capacity increases from take-off to cruise
to landing. The discharge capacity also increases
as the number of missions increases. To capture
these patterns, we consider the following features re-
lated to the discharge capacity of the battery (see
also Table 2): 1) Qdisphase,m,c

max , the maximum dis-
charge capacity recorded during phase ∈ {take-off,
landing, cruise} of capacity test c of each mission
profile m, 2) Qdisphase,m,c

min , the minimum discharge
capacity recorded during phase ∈ {take-off, landing,
cruise} of capacity test c of each mission profile m, 3)
Qdisphase,m,c

mean , the mean discharge capacity recorded
during phase ∈ {take-off, landing, cruise} of capacity
test c of each mission profile m, and 4) Qdisphase,m,c

var ,
the variance of the discharge capacity recorded during
phase ∈ {take-off, landing, cruise} of capacity test c of
each mission profile m.

The discharge capacity and its variation reflect the
load characteristics of the battery, which directly im-
pacts the aging of the battery. As such, we consider as
features the maximum, minimum, mean and variance
of the discharge capacity.

Duration of the discharge phase: We consider
∆phase,m,c, the duration of each discharge phase ∈
{take-off, landing, cruise} of capacity test c of mission
profile m (see also Table 2). Since the cruise dura-
tion varies across mission profiles, we also consider the
duration of the cruise phase as a feature.

3.3 Temperature-related features

Figure 10(c) shows the maximum, minimum, and aver-
age battery temperature recorded during all missions
of mission profile VAH01. During every capacity test,
the maximum and average battery temperature drop.
This is because the battery cell is allowed to rest at
the end of a capacity test until the battery tempera-
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ture reduces to 27 ◦C. Figure 10(c) also shows that,
as the battery is used for a longer time, its maximum
temperature increases.

During a capacity test, Figure 10(d) shows that the
highest battery temperature is reached during land-
ing. Figure 10(d) also shows that the temperature
reaches a peak during take-off and decreases during
cruise. In Figure 10(d), the tasks of the first capacity
test are highlighted in orange, while the last capacity
test is highlighted in blue. When considering both the
take-off, landing, and cruise phases, the temperature
increases as the number of capacity tests increases.

To capture the change in battery temperature as
more missions are performed, we consider as feature
T phase,m,c
max , the maximum battery temperature (in ◦C)

recorded during the discharge phase ∈ {take-off, land-
ing, cruise} of capacity test c of each mission profile m,
see also Table 2.

4 Estimating the SOH and RUL
of the batteries

In general, the state of health (SOH) of a battery is
defined as the ratio between the measured charging ca-
pacity during a capacity test, and the nominal capacity
of the battery. Formally, [35; 39]:

SOHm,c =

∫ te
ts

Im,c
i (t) dt

Qnom
· 100%, (1)

where Im,c
i is the cell current at time step i, during ca-

pacity test c of mission profile m. The integral is taken
over the full charging phase. In Figure 3, the end of the
charging phase is indicated with a red dotted line. The
dataset [Bills et al.] also contains Qchargem,c

i (mAh),
the amount of charge supplied to the cell during charge.
Using this, SOH could be determined as:

SOHm,c =
maxi(Qchargem,c

i )

Qnom
· 100%, (2)

where tCCstart,m,c
s ≤ i ≤ tCV end,m,c

e , 1 ≤ m ≤ M ,
1 ≤ c ≤ Cm.

Although in [5] a nominal battery capacity of 3.0
Ah is indicated in the dataset [Bills et al.], all mission
profiles, except VAH23, have during the first capacity
test a battery capacity of more than 3.0 Ah. For ex-
ample, for mission profile VAH01 the first capacity test
has a battery capacity of 3.03 Ah. For mission profile
VAH23 the battery’s capacity during the first capacity
test is 2.71 Ah. Thus, a capacity of 3.0 Ah does not
seem to be the nominal capacity for all battery cells
considered in [5].

Therefore, we choose to determine the SOH of a
battery, following [31], as:

SOHm,c =
maxi(Qchargem,c

i )

maxi(Qchargem,0
i )

· 100%, (3)

with Qchargem,c
i the maximum measured capacity

during a capacity test c of mission profile m, and

chargem,0
i the maximum battery capacity measured

during the first capacity test (c = 0) of mission pro-
file m.

The remaining useful lifetime (RUL) of a battery is
defined as the remaining number of missions/cycles for
this battery until end of life (EOL), given that the bat-
tery has already been used for c >= 0 missions/cycles.
Formally, the RUL of a battery, estimated after c mis-
sions/cycles under mission profile m, is defined as:

RULm,c = Tm
EOL − Tm,c

cc , (4)

where Tm,c
cc is the current mission/cycle number under

mission profile m, and Tm
EOL is the mission/cycle num-

ber when the battery capacity drops for the first time
below an EOL-threshold for mission profile m.

Existing studies based on experimental battery
datasets set the EOL-threshold to 80% of the nomi-
nal battery capacity [13; 33; 44; 47]. To the best of our
knowledge, EOL-thresholds for eVTOL batteries have
not yet been formally established. For eVTOL batter-
ies, it is expected that conservative safety margins will
be considered. In [17], a conservative EOL-threshold of
85% of a nominal battery capacity of an eVTOL is con-
sidered. This eVTOL is designed for a total capacity of
5 persons with a range of 400 km [17]. Following [17],
for our analysis, we also consider an EOL-threshold of
85% of the initially measured battery capacity.

The choice of the EOL-threshold has also an ef-
fect on the selection of the mission profiles. Using an
EOL-threshold of 80%, not all mission profiles in the
dataset [Bills et al.] will have their batteries reaching
EOL. Specifically, for mission profiles VAH01, VAH02,
VAH15, VAH16, VAH20, VAH23, VAH24, VAH25,
VAH27, and VAH28 the series of measurements stop
before the battery capacity reaches 80% of the initially
measured battery capacity (see also Table 20). In other
words, using an EOL-threshold of 80% of the initial
battery capacity, these mission profiles will not have
run-to-EOL series of measurements.

Considering an EOL-threshold of 85% of the ini-
tially measured battery capacity, all mission profiles in
the dataset [Bills et al.] have batteries that reach their
EOL. Table 3 shows the number of missions until each
battery reaches its EOL, as well as the number of ca-
pacity tests until this battery reaches its EOL.

However, one capacity test has been removed from
the dataset for two mission profiles. In Figure 11, the
capacity degradation for VAH26 and VAH27 and their
EOL value can be seen, with the EOL-threshold set at
85%.
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Figure 10: Capacity tests - mission profile VAH01.

(a) Charging curves during all capacity tests - VAH01. (b) Discharge capacity during all capacity tests - VAH01.

(c) Average, max and min temperature during all missions -
VAH01.

(d) Temperature during all capacity tests - VAH01.

Figure 11: Capacity degradation for VAH26 and
VAH27 with EOL-threshold set to 85% of the initial
capacity.

Figure 11 shows that both mission profiles exhibit
a battery capacity drop at mission/cycle 257. After-
wards, the capacity of the battery decreases steadily,

as expected, without large capacity drops. Given these
unexpected large capacity drop, we consider this mis-
sion as an outlier. Therefore, we do not consider mis-
sion 257 in the analysis of both mission profiles. As a
result, the EOL mission of VAH26 is adjusted to mis-
sion 614, and for mission profile VAH27 to mission 512.
The number of missions until the battery has reached
its EOL is then adjusted for VAH26 from 6 to 12 mis-
sions. For VAH27 the number of missions until the
battery has reached its EOL is then adjusted from 6 to
11 missions.
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Feature Unit Description Formula

∆CC,m,c [s] Duration of CC charging phase of capacity test c of mission m

∆CV,m,c [s] Duration of CV charging phase of capacity test c of mission m

∆rest,m,c [s] Duration of rest phase after charging of capacity test c of mission m

∆phase,m,c [s] Duration of flight phase of capacity test c of mission m

V phase,m,c
max [V ] Maximum voltage during flight phase of capacity test c of mission m

V phase,m,c
min [V ] Minimum voltage during flight phase of capacity test c of mission m

V phase,m,c
mean [V ] Mean voltage during flight phase of capacity test c of mission m

1

te − ts + 1

te∑
ts

V phase,m,c
i ,

1 ≤ m ≤ M,1 ≤ c ≤ Cm

V phase,m,c
var [V ] Variance voltage during flight phase of capacity test c of mission m

Qdisphase,m,c
max [Ah] Maximum discharge capacity during flight phase of capacity test c of mission m

Qdisphase,m,c
min [Ah] Minimum discharge capacity during flight phase of capacity test c of mission m

Qdisphase,m,c
mean [Ah] Mean discharge capacity during flight phase of capacity test c of mission m

1

te − ts + 1

te∑
ts

Qdisphase,m,c
i ,

1 ≤ m ≤ M,1 ≤ c ≤ Cm

Qdisphase,m,c
var [Ah] Variance discharge capacity during flight phase of capacity test c of mission m

T phase,m,c
max [◦C] Maximum temperature during flight phase of capacity test c of mission m

Table 2: Charge-related, discharge-related and temperature-related features considered.

Missions until EOL Capacity tests until EOL

VAH01 613 13

VAH02 511 11

VAH05 766 16

VAH10 614 13

VAH11 817 17

VAH12 766 16

VAH13 562 12

VAH15 460 10

VAH16 460 10

VAH17 562 12

VAH20 460 10

VAH22 460 10

VAH23 562 12

VAH24 562 12

VAH25 513 11

VAH26 614 12

VAH27 512 11

VAH28 722 15

VAH30 511 11

Table 3: Mission profiles and their number of mis-
sions and capacity tests until EOL is reached,
EOL-threshold of 85% of the initial measured
battery capacity.

For completeness, Appendix I shows the RUL esti-
mation when an EOL-threshold of 80% of the initially
measured battery capacity is considered.

5 Machine learning framework
for SOH and RUL prediction

Figure 12 shows the framework considered for es-
timating the SOH and RUL for eVTOL batteries.
We first generate features (see Section 3) based on
charge-related, discharge-related, and temperature-
related battery measurements. We next select those
features with the highest importance for SOH and
RUL prediction. With the selected features, we es-
timate SOH and RUL using the following machine
learning (ML) algorithms: support vector regression
(SVR), random forest (RF) regression, XGBoost, gaus-
sian process regression (GPR), and multi-layer Percep-
tron (MLP). The hyperparameters of these algorithms
are also tuned using a Bayesian hyperparameter tuning
algorithm. The SOH and RUL of the batteries are ob-
tained using a 5-fold cross validation. Below is a short
description of the ML algorithms considered.

Support vector regression (SVR)

SVR is a supervised machine learning algorithm based
on kernels [36]. The SVR is related to SVM, but SVR
is capable to solve regression problems instead of clas-
sification problems [25]. SVR is ideal for SOH/RUL
estimation because it excels at characterizing nonlin-
ear relationships between inputs and outputs [22]. Be-
sides, the benefit of SVR is that no computationally
costly mathematical procedures are required in the for-
mulation [25]. SVR solves nonlinear prediction tasks
by converting a low-dimensional problem into a linear
problem in a high-dimensional feature space using a
nonlinear mapping [13].
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Figure 12: ML framework for battery SOH and RUL prediction.

Random forest (RF) regression

The RF regression is a supervised ensemble machine
learning model that combines heterogeneous decision
trees [8]. Only a randomly selected portion of the train-
ing set is used to construct each forest tree. Besides,
it uses averaging to improve the prediction accuracy
and control over-fitting [21]. Each tree consists of de-
cision nodes and leaf nodes. The decision nodes asses
each fed-in sample with a test function and pass it to
different branches based on the features of the sample
[21]. After all of the forest trees have been generated,
each sample in the test set is classified by combining
the predictions of each tree using majority voting.

XGBoost

XGBoost is a gradient-boosted tree used for classifica-
tion and regression problems. It is based on gradient
boosting, however gradient-boosted trees are built con-
tinuously which results in slow learning from the data
to improve its prediction in succeeding iteration [29].
In contrast, XGBoost builds trees in parallel in a fast
way compared to a RF [9]. Hence, the XGBoost model
is based on optimized distributed gradient boosting.
The XGBoost is designed to improve performance and
speed. Besides, the XGBoost controls the model com-
plexity and reduces overfitting with the built-in regu-
larization [29].

Gaussian process regression

GPR is a probabilistic non-parametric kernel model.
The Gaussian distribution computes the probability of
an input vector with mean and variance as its features
[30; 34]. For each time step, the probability of an input

time series vector is computed. As a result, rather than
having scalar mean and variance, the GPR model pro-
duces a mean and covariance vector [34]. GPR is based
on a kernel that predicts the output by incorporating
prior knowledge and obtaining a hypothesis of poste-
rior probability via a Bayesian framework. As GPR
is constructed on a Bayesian framework, its predicted
output can be interpreted in a probability-based fash-
ion, demonstrating the result’s reliability [10]. Besides,
GPR has the advantages of hyper-parameter adaptive
acquisition, reasonably simple implementation, and use
without loss of performance when compared to neural
networks and SVM [43].

Multi-layer Perceptron (MLP) regressor

MLP is a feed-forward neural network with multiple
layers and adaptive weights [14]. All hidden layers in-
clude batch normalization to improve the neural net-
work’s stability. Figure 13 shows a general represen-
tation of a MLP regressor with three hidden layers.
In Figure 13, it can be seen that the input layer con-
sists of a set of neurons, which represent the number
of features in the dataset. Each neuron in the hidden
layer transforms the values of the previous layer with
a weighted linear summation and is followed by an ac-
tivation function. Finally, the output layer collects the
value of the last output layer and transforms it into
output values.
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Figure 13: MLP regressor with three hidden layers.

Data normalisation

For SVR, GPR, and MLP, the values of the features
considered in Section 3 are normalized as follows:

y =
x− µ

σ
, (5)

with µ the mean of the feature, and σ the standard
deviation of the feature.

6 Predicting battery SOH

6.1 Feature selection and importance
quantification

In Section 3, a total of 33 features have been consid-
ered. From these 33 features, we select for SOH pre-
diction only the features with high importance. The
importance of the features is obtained using a random
forest regression model.

Figure 14 shows the the importance of the 33 fea-
tures considered. We select the top 65% of these 33
features with the highest importance, i.e., we select
the following 21 features:

Figure 14: Feature importance - SOH estimation.

Selected charge-related features: duration of CC
charging phase (∆CC,m,c), duration of CV charg-
ing phase (∆CV,m,c), duration of the Rest period
(∆rest,m,c);

Selected discharge-related features: variance of the
voltage during take-off and landing (V phase,m,c

var ), mean
voltage during take-off (V phase,m,c

mean ); minimum voltage
during take-off, cruise, and landing (V phase,m,c

min ); max-
imum voltage during take-off, and cruise (V phase,m,c

max );
minimum discharge capacity during take-off, and cruise
(Qdisphase,m,c

min ); maximum discharge capacity during
take-off (Qdisphase,m,c

max ), variance discharge capacity
during take-off, and landing (Qdisphase,m,c

var ); mean dis-
charge capacity during take-off (Qdisphase,m,c

mean ), dura-
tion of take-off (∆phase,m,c);

Selected temperature-related features: maximum
temperature during take-off, cruise and landing
(T phase,m,c

max ).
Figure 14 shows that the variance of the voltage

during take-off has the highest importance, followed
by the minimum voltage during take-off, and the dura-
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tion of the CC charging phase. The results show that
the features related to take-off have a high importance,
This can be explained by the fact that the battery
experiences a high discharge voltage during take-off.
During high discharge voltages, the internal resistance
increases, which impacts the SOH [16]. Also, the dura-
tion of the CC charging phase has a high importance
for the prediction of the SOH. As the battery performs
more missions, the SOH decreases while the duration
of the CC charging phase increases (see Figure 10(a)).

6.2 5-fold cross-validation
We estimate the battery SOH using 5-fold cross val-
idation. The folds are generated using group K-fold
[26] such that each fold contains a unique set of mis-
sion profiles used for testing. In each fold, the number
of mission profiles selected for testing is approximately
the same (3-4 mission profiles per fold). Also, the num-
ber of capacity tests of these selected 3-4 mission pro-
files is approximately the same (75 capacity tests used
for testing). In other words, having a total of 19 mis-
sion profiles (see Section 2) with a total of 380 capacity
tests, we aim to allocate mission profiles to folds such
that each of the 5 folds contains approximately 380/5
capacity tests used for testing. Each mission profile is
allocated only once to a fold. Hence, we obtained the
following 5 folds:

• Fold 1: the test dataset consists of mission pro-
files VAH12, VAH22, and VAH24 (with a total
of 74 capacity tests). The remaining 16 mission
profiles (with a total of 306 capacity tests) are
the training dataset.

• Fold 2: the test dataset consists of mission pro-
files VAH11, VAH27, and VAH30 (with a total
of 74 capacity tests). The remaining 16 mission
profiles (with a total of 306 capacity tests) are
the training dataset.

• Fold 3: the test dataset consists of mission pro-
files VAH02, VAH05, VAH13 and VAH15 (with a
total of 75 capacity tests). The remaining 15 mis-
sion profiles (with a total of 305 capacity tests)
are the training dataset.

• Fold 4: the test dataset consists of mission pro-
files VAH10, VAH17, VAH20 and VAH23 (with a
total of 84 capacity tests). The remaining 15 mis-
sion profiles (with a total of 296 capacity tests)
are the training dataset.

• Fold 5: the test dataset consists of mission pro-
files VAH01, VAH16, VAH26 and VAH28 (with a
total of 73 capacity tests). The remaining 15 mis-
sion profiles (with a total of 307 capacity tests)
are the training dataset.

6.3 Hyperparameter tuning
Table 4 shows the optimal hyperparameters obtained
for each of the five ML algorithms considered. We per-

formed hyperparameter tuning based on Bayesian op-
timisation algorithm [13] using the Hyperopt library of
Python [4]. For hyperparameter tuning, we used Fold
5 (see Section 6.2).

Hyperparameters

SVR Kernel = Linear
Tolerance = 0.186

RF Regression

Trees = 797
MaxDepth = 30
MinSampleLeaf = 2
MinSampleSplit = 4

XGBoost

Trees = 3100
MaxDepth = 19
LearningRate = 0.25
Subsample = 0.80

GPR Alpha = 0.069
Kernel = Dotproduct+Whitekernel

MLP

BatchSize = 96
Neurons1stLayer = 90
Neurons2ndLayer = 90
Neurons3rdLayer = 40

Table 4: Optimized hyperparameters - SOH.

6.4 Performance metrics

For every mission profile used for testing, we predict
the SOH at each capacity test. The performance of our
SOH predictions is evaluated using the Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), and
the Mean Absolute Percentage Error (MAPE). These
performance metrics are defined, for the estimated
SOH of a battery under mission profile m, 1 ≤ m ≤ M ,
as follows:

MAEm
SOH =

1

Cm

Cm∑
i=1

∣∣∣∣SOHm,i − ˆSOH
m,i

∣∣∣∣ ,
RMSEm

SOH =

√√√√ 1

Cm

Cm∑
i=1

(
ˆSOH

m,i
− SOHm,i

)2

MAPEm
SOH =

1

Cm

Cm∑
i=1

∣∣∣∣SOHm,i − ˆSOH
m,i

∣∣∣∣
SOHm,i

· 100%,

where SOHm,i is the true battery SOH at capacity test
i of mission profile m, ˆSOH

m,i
is the predicted SOH

at capacity test i of mission profile m, 1 ≤ m ≤ M .
The overall performance of our SOH predictions

across all M mission profiles is evaluated using:

MAESOH =
1

M

M∑
j=1

MAEj
SOH

RMSESOH =
1

M

M∑
j=1

RMSEj
SOH

MAPESOH =
1

M

M∑
j=1

MAPEj
SOH
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6.5 Results - SOH prediction
Table 5 shows the MAE, RMSE, and MAPE obtained
across all mission profiles for SOH estimation. The re-
sults show that the lowest SOH estimation errors are
obtained using RF regression, this was also concluded
by [11].

MAE RMSE MAPE

SVR 1.48 2.20 0.02

RF Regression 1.33 1.80 0.02

XGBoost 1.39 1.91 0.02

GPR 1.48 2.27 0.79

MLP 2.75 7.49 0.03

Table 5: Results - predicting the SOH [%].

Table 6 shows the MAE, RMSE, and MAPE ob-
tained for SOH prediction for each mission profile. The
last row of Table 6 gives the average of these met-
rics. The results show that the lowest estimation er-
rors are obtained when using RF regression. Moreover,
the SOH estimation errors obtained for the baseline
mission profiles are below the average MAE, RMSE
and MAPE. The lowest prediction errors are obtained
for mission profiles VAH02, VAH10, VAH12, VAH13,
VAH15, VAH16, VAH26 and VAH28, when considering
RF regression.

Figure 15: Second last capacity test - VAH05.

The highest prediction errors are obtained for
VAH05, regardless of the ML algorithms (see Table
6). For the second last capacity test of VAH05, the RF
regression predicts a SOH of 88.98%, whereas the true
SOH is 76.29%. For the last capacity test of VAH05,
the RF regression predicts the SOH to be 72.63%, while
the true SOH is 56.21%. The high SOH prediction er-
rors for VAH05 for the second last capacity can be
explained by analyzing the current and voltage dur-
ing that specific second last capacity test (see Figure
20(c)). Figure 15 shows the second second last capacity
test of VAH05. In Figure 15 it can be seen that the cur-
rent oscillates during the CC phase. Also, the current

during the discharge phases does not follow the pat-
tern of standard capacity tests (see Figure 3). In fact,
during discharge the voltage exhibits 4 peaks. Besides,
the current is often close to zero.

Figure 16: Second last capacity test - VAH22.

The second-highest value of the RMSE, when using
RF regression, is achieved for mission profile VAH22
(see Table 6). Figure 20(l) shows that during the sec-
ond last capacity test of VAH22, the current does not
follow the pattern of a standard capacity test. During
the second last capacity test of VAH22, the SOH is es-
timated to be 89.79%, while the true SOH is 82.64%.
The SOH for the last capacity test is estimated to be
80.21% , while the true SOH is 69.53%. This could be
explained by the fact that the current and voltage os-
cillate during the charging, take-off, cruise and landing
of the second capacity test of VAH22 (see Figure 16).

7 Predicting battery RUL

7.1 Feature selection and feature im-
portance quantification

In Section 3, 33 features have been generated. In this
section we quantify the importance of the features us-
ing a RF regression model.

Figure 17 shows the importance of all the 33 fea-
tures considered. For RUL prediction, of these 33 fea-
tures we select the top 65% (21 features) with the high-
est importance. The following 21 features are selected:

Selected charge-related features: duration of CC
charging phase (∆CC,m,c), duration of CV charg-
ing phase (∆CV,m,c), duration of the Rest period
(∆rest,m,c)

Selected discharge-related features: variance voltage
during take-off and landing (V phase,m,c

var ); mean voltage
during take-off, cruise and landing (V phase,m,c

mean ); min-
imum voltage during take-off (V phase,m,c

min ); maximum
discharge capacity during take-off, cruise and landing
(Qdisphase,m,c

max ); mean discharge capacity during take-
off (Qdisphase,m,c

mean ); variance discharge capacity during
cruise and landing (Qdisphase,m,c

var ); minimum discharge
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SVR RF Regression XGBoost GPR MLP
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

VAH01 1.09 1.47 0.01 1.29 1.51 0.01 1.2 1.53 0.01 1.18 1.57 0.01 2.14 2.3 0.02
VAH02 0.89 1.07 0.01 0.85 1.01 0.01 2.13 2.64 0.02 0.61 0.85 0.01 1.91 2.2 0.02
VAH05 2.82 7.62 0.04 1.82 3.88 0.03 2.02 3.85 0.03 3.04 9.74 0.04 18.36 94.69 0.24
VAH10 0.55 0.71 0.01 0.87 1.01 0.01 0.86 1.04 0.01 0.65 0.87 0.01 2.08 2.44 0.03
VAH11 1.79 1.91 0.02 1.51 1.7 0.02 1.92 2.41 0.02 1.33 1.49 0.02 1.47 1.69 0.02
VAH12 2.78 2.99 0.04 0.65 0.84 0.01 0.91 1.16 0.01 3.52 3.73 0.04 1.71 1.9 0.02
VAH13 0.87 1.13 0.01 0.58 0.71 0.01 0.84 1.07 0.01 0.89 1.09 0.01 1.12 1.55 0.01
VAH15 1.0 1.2 0.01 0.31 0.46 0.0 0.72 1.03 0.01 0.79 0.98 0.01 1.75 2.03 0.02
VAH16 0.66 1.13 0.01 1.26 1.45 0.01 0.82 0.97 0.01 0.65 1.05 0.01 0.7 1.03 0.01
VAH17 1.24 1.4 0.01 0.46 0.63 0.01 1.08 1.4 0.01 0.89 1.07 0.01 0.56 0.86 0.01
VAH20 1.13 1.44 0.01 1.85 2.34 0.02 1.17 1.53 0.01 0.92 1.25 0.01 0.78 1.19 0.01
VAH22 2.54 5.52 0.03 1.79 3.74 0.02 1.95 4.19 0.03 2.02 4.72 0.02 5.21 12.92 0.07
VAH23 2.11 2.72 0.02 2.95 3.74 0.03 2.45 3.19 0.03 2.31 2.69 0.03 7.27 7.62 0.08
VAH24 3.9 4.0 0.04 1.55 2.08 0.02 2.55 2.71 0.03 4.28 4.39 0.05 1.19 1.48 0.01
VAH25 0.94 1.62 0.01 2.0 2.71 0.02 1.85 2.46 0.02 0.86 1.44 0.01 2.06 2.76 0.02
VAH26 1.32 2.14 0.02 1.17 1.64 0.01 0.8 1.31 0.01 1.5 2.35 0.02 1.34 2.11 0.02
VAH27 1.33 1.84 0.01 1.03 1.32 0.01 1.05 1.39 0.01 1.46 1.9 0.02 1.21 1.64 0.01
VAH28 0.63 1.07 0.01 0.89 1.1 0.01 0.69 0.86 0.01 0.61 1.14 0.01 0.57 0.86 0.01
VAH30 0.56 0.8 0.01 2.36 2.43 0.03 1.36 1.58 0.02 0.63 0.82 0.01 0.89 1.04 0.01
Average 1.48 2.20 0.02 1.33 1.80 0.02 1.39 1.91 0.02 1.48 2.27 0.02 2.75 7.49 0.03

Table 6: Error metrics SOH [%]

capacity during take-off and cruise (Qdisphase,m,c
min ); du-

ration of take-off (∆phase,m,c).

Selected temperature-related features: maximum
temperature during take-off, cruise and landing
(T phase,m,c

max ).

Figure 17 shows that the mean and the variance
of the voltage during take-off are the most important
features. This is expected since the take-off is per-
formed at a high C-rate, which leads to a high internal
impedance during take-off. In turn, a higher internal
impedance is expected to affect the battery lifetime.

Figure 17: Feature importance - RUL estimation.

15



7.2 5-fold cross-validation

We estimate the battery RUL using 5-fold cross vali-
dation. Compared with the estimation of SOH, where
we consider a total of 380 capacity tests, for RUL esti-
mation, we consider only a total of 215 capacity tests.
This is because we set an EOL of 85% of the initially
measured battery capacity. Also, two outliers (capac-
ity tests) have been removed for mission profiles VAH26
and VAH27, as discussed in Section 4.

The 5 folds are generated using group K-fold [26]
such that each fold contains a unique set of mission
profiles used for testing. In each fold, the number of
mission profiles selected for testing is approximately
the same (4 mission profiles per fold). Also, the num-
ber of capacity tests of these selected 4 mission profiles
is approximately the same (45 capacity tests used for
testing). In other words, having a total of 19 mission
profiles (see Section 2) with a total of 215 capacity
tests, we aim to allocate mission profiles to folds such
that each of the 5 folds contains approximately 215/5
capacity tests used for testing. Each mission profile is
allocated only once to a fold. Hence, we obtained the
following 5 folds:

• Fold 1: the test data consists of the mission pro-
files VAH11, VAH16, VAH20, and VAH24 (with a
total of 45 capacity tests). The remaining 15 mis-
sion profiles (with a total of 170 capacity tests)
are the training dataset.

• Fold 2: the test data consists of mission profiles
VAH05, VAH15, VAH17, and VAH26 (with a to-
tal of 45 capacity tests). The remaining 15 mis-
sion profiles (with a total of 170 capacity tests)
are the training dataset.

• Fold 3: the test data consists of mission profiles
VAH02, VAH12, VAH23, and VAH27 (with a to-
tal of 45 capacity tests). The remaining 15 mis-
sion profiles (with a total of 170 capacity tests)
are the training dataset.

• Fold 4: the test data consists of mission profiles
VAH10, VAH28, and VAH30 (with a total of 36
capacity tests). The remaining 16 mission pro-
files (with a total of 179 capacity tests) are the
training dataset.

• Fold 5: the test data consists of mission profiles
VAH01, VAH13, VAH22, and VAH25 (with a to-
tal of 44 capacity tests). The remaining 15 mis-
sion profiles (with a total of 171 capacity tests)
are the training dataset.

7.3 Hyperparameter tuning

Table 7 shows the optimal hyperparameters obtained
for each ML model. The hyperparameter tuning is
based on the Hyperopt Bayesian algorithm [4]. For the
hyperparameter tuning Fold 5 is used (see section 7.2).

Hyperparameters

SVR Kernel = linear
Tolerance = 88.75

RF Regression

Trees = 1951
MaxDepth = 104
MinSampleLeaf = 3
MinSampleSplit = 2

XGBoost

Trees = 5100
MaxDepth = 29
LearningRate = 0.25
Subsample = 0.91

GPR Alpha = 1.0
Kernel = RationalQuadratic

MLP

BatchSize = 64
Neurons1stLayer = 40
Neurons2ndLayer = 10
Neurons3rdLayer = 30

Table 7: Optimized hyperparameters - RUL.

7.4 Performance metrics
For every mission profile used for testing, we predict
the RUL at each capacity test. The performance of the
RUL predictions is evaluated using the Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), and
the Mean Absolute Percentage Error (MAPE). These
performance metrics are defined, for the estimated
RUL of a battery under mission profile m, 1 ≤ m ≤ M ,
as follows:

MAEm
RUL =

1

Cm

Cm∑
i=1

∣∣∣∣RULm,i − ˆRUL
m,i

∣∣∣∣ ,
RMSEm

RUL =

√√√√ 1

Cm

Cm∑
i=1

(
ˆRUL

m,i
−RULm,i

)2

MAPEm
RUL =

1

Cm

Cm∑
i=1

∣∣∣∣RULm,i − ˆRUL
m,i

∣∣∣∣
RULm,i

· 100%,

where RULm,i is the true battery RUL at capacity test
i of mission profile m, ˆRUL

m,i
is the predicted RUL

at capacity test c of mission profile m, 1 ≤ m ≤ M .
The overall performance of our RUL predictions

across all M mission profiles is evaluated using:

MAERUL =
1

M

M∑
j=1

MAEj
RUL

RMSERUL =
1

M

M∑
j=1

RMSEj
RUL

MAPERUL =
1

M

M∑
j=1

MAPEj
RUL

7.5 Results - RUL prediction
Table 8 shows the MAE, RMSE, and MAPE obtained
when considering all 19 mission profiles. From all
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five considered machine learning algorithms, XGBoost
leads to the lowest RUL estimation errors.

MAE RMSE MAPE

SVR 66.48 79.03 0.38

RF Regression 63.25 75.81 0.39

XGBoost 54.53 67.92 0.39

GPR 59.37 72.86 0.27

MLP 75.45 87.97 0.44

Table 8: Results - RUL prediction [#missions].

Table 9 shows the MAE, RMSE, and MAPE ob-
tained for RUL estimation when considering all 19 mis-
sion profiles. In the last row, each model’s average
MAE, RMSE, and MAPE is given.

The results show that the lowest RUL estimation
errors (MAE, RMSE) are obtained when considering
XGBoost, and mission profiles with an increase in
cruise duration (VAH02, VAH15, VAH22) and 50% in-
crease of CC charging current (VAH16 and VAH20).

Table 9 also shows that the highest RUL predictions
errors are obtained for mission profile VAH11. Mission
profile VAH11 has the largest power reduction (20%)
during take-off, cruise, and landing.

XGBoost leads to the lowest RUL estimation errors.
Compared with the results obtained for SOH estima-
tion, RUL prediction errors are significantly lower for
mission profiles VAH05 and VAH22. This is because
the EOL (85% of initially measured capacity) of the
batteries used for VAH05 and VAH22 is reached before
the non-standard capacity tests of VAH05 and VAH22
(see Figures 20(c) and 20(l)).

For mission profile VAH25, XGBoost leads to RUL
estimation errors above average. This can be explained
by the non-standard capacity test in VAH25. In 20(o),
it can be seen that during the second last capacity test
there is a non-standard capacity test. In Figure 18, the
second last capacity test of VAH25 is plotted with the
voltage.

Figure 18: Second last capacity test - VAH25.

From Figure 18, it can be seen that the capacity test
follows a different pattern than the standard capacity
test (see Figure 3). The CC charging current is lower,
and the discharge phases are not clearly distinguish-
able. This is known by [Bills et al.] because during the
second to last capacity test two capacity tests are be-
ing performed one after the other and reported as one
capacity test in the dataset. For this second last ca-
pacity test, the RUL is estimated to be 434 missions,
while the true RUL is 52 missions. This large error
for this capacity test increases significantly the overall
error for this mission profile.

XGBoost also leads to large RUL estimation errors
for mission profile VAH28. VAH28 has a 10% power re-
duction during take-off, cruise, and landing, compared
with the baseline mission profiles. These results can
be explained by the fact that the 6th capacity test of
this mission profile exhibits abnormal trends (see Fig-
ure 20(r)). In Figure 19, the current and voltage during
the 6th capacity test can be seen.

Figure 19: Second last capacity test - VAH28.

In Figure 19, it can be seen that the CC charging
current is lower compared to the standard capacity test
(see Figure 3). Besides, the current and voltage during
the discharge phases do not follow the pattern of the
standard capacity test (see Figure 3). During the dis-
charge phase the take-off, cruise, and landing cannot be
clearly distinguished. For this 6th capacity test, RUL
is estimated as 148 missions, while the true RUL is 466
missions. Also here, these large errors obtained for an
early capacity test increase the overall RUL estimation
errors for this mission.

8 Impact of eVTOL mission char-
acteristics on the estimation of
SOH and RUL

One of the mission characteristics that is varied across
mission profiles is the duration of the cruise phase.
Mission profiles VAH02, VAH15, and VAH22 have a
cruise phase extended by 25% compared to the base-
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SVR RF Regression XGBoost GPR MLP
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

VAH01 99.21 104.42 0.53 105.72 117.74 0.34 62.64 75.85 0.28 70.28 80.3 0.32 69.91 85.41 0.42
VAH02 37.21 48.7 0.32 53.49 67.41 0.24 52.72 57.54 0.22 23.26 30.66 0.1 80.52 87.69 0.33
VAH05 75.78 91.53 0.32 34.48 45.09 0.15 35.99 47.14 0.12 24.38 34.42 0.14 121.01 129.48 0.63
VAH10 29.19 34.14 0.2 30.16 34.62 0.22 36.43 43.5 0.15 82.54 96.59 0.27 47.57 52.29 0.2
VAH11 139.37 173.13 0.96 163.78 187.94 0.98 199.58 224.73 1.1 145.87 173.34 0.71 367.18 383.3 1.93
VAH12 114.59 138.36 0.29 102.78 114.45 0.31 97.43 109.16 0.28 133.43 155.36 0.32 38.82 44.07 0.14
VAH13 52.43 61.41 0.19 20.87 25.01 0.1 24.91 28.7 0.11 16.94 18.96 0.07 27.3 32.41 0.14
VAH15 12.17 15.9 0.1 22.02 25.92 0.18 18.15 23.79 0.14 14.13 18.55 0.12 13.87 19.83 0.14
VAH16 67.75 70.88 0.41 50.78 55.66 0.32 30.77 34.77 0.21 73.73 75.08 0.43 74.94 89.47 0.34
VAH17 40.64 49.44 0.25 36.31 40.37 0.18 26.18 31.57 0.19 22.81 31.52 0.21 43.31 48.81 0.31
VAH20 59.21 61.67 0.41 41.84 46.07 0.31 19.63 27.21 0.18 63.19 63.93 0.39 66.32 78.78 0.25
VAH22 10.37 12.5 0.06 28.92 32.25 0.17 8.76 14.41 0.07 12.54 15.86 0.11 7.12 9.28 0.07
VAH23 133.27 169.15 0.38 126.67 149.08 0.94 115.34 131.3 0.67 124.96 154.4 0.41 129.93 145.97 0.85
VAH24 40.19 43.46 0.23 62.81 79.2 0.54 45.09 56.82 0.37 72.57 94.38 0.29 87.77 106.45 0.74
VAH25 69.66 112.77 0.82 73.85 161.69 1.09 65.27 126.31 0.88 29.14 44.76 0.33 72.94 114.6 0.74
VAH26 58.81 70.97 0.4 28.62 31.21 0.18 31.7 35.01 0.17 36.94 41.49 0.23 60.3 65.11 0.27
VAH27 55.31 59.54 0.38 13.3 17.67 0.09 14.91 19.19 0.06 36.07 41.73 0.14 30.45 34.06 0.13
VAH28 66.99 80.77 0.34 53.92 57.31 0.2 49.74 91.25 0.17 75.56 128.24 0.25 68.73 111.97 0.47
VAH30 100.98 102.77 0.66 151.42 151.74 0.9 100.76 112.24 0.75 69.77 84.71 0.32 25.63 32.51 0.19
Average 66.48 79.03 0.38 63.25 75.81 0.39 54.53 67.92 0.32 59.37 72.86 0.27 75.45 87.97 0.44

Table 9: Error metrics RUL [#missions], with EOL-threshold 85%

line mission profiles. Mission profiles VAH12, VAH13,
and VAH26 have a decreased cruise duration with 50%,
25% and 25% respectively, compared with the baseline
mission profiles.

When estimating SOH using RF regression, the es-
timation errors (MAE, RMSE, MAPE) for these mis-
sion profiles are bellow the average estimation errors
(see Table 6). The exception is mission profile VAH22,
where the second to last capacity test exhibits unex-
pected patterns in the voltage and the current of the
charging and discharging phases (see also Figure 16).
In this case study, thus, after increasing or decreasing
the duration of the cruise phase, the SOH is still well
estimated.

The importance of the duration of the cruise phase
for SOH estimation was ranked as low in Section 6.1.
This does not mean that the characteristics of the
cruise phase are of no importance for SOH estima-
tion. In fact, the following features related to the cruise
phase have been ranked as of high importance (in de-
creasing order of importance): maximum temperature
during cruise, minimum voltage during cruise, max-
imum voltage during cruise, and minimum discharge
capacity during cruise. The results show that the max-
imum temperature during cruise is of high importance
for SOH estimation. This is also in accordance to ex-
isting literature [19; 23] where the battery temperature
is shown to be highly correlated with the SOH of the
battery.

Similarly, when considering the RUL estimation
using XGBoost, the RUL estimation errors for mis-
sion profiles VAH02, VAH15, VAH22 are below the
average errors. Also in this case, the feature Dura-
tion of the cruise phase, ∆cruise, is shown to have a
low importance for RUL estimation (see Section 7.1).
Nonetheless, several features related to cruise phase
have been shown to have a high importance for RUL
prediction. In decreasing order of importance, the fol-
lowing features have been selected for RUL estimation:
mean voltage during cruise, maximum discharge capac-

ity during cruise, variance discharge capacity during
cruise, minimum discharge capacity during cruise, and
maximum temperature during cruise.

Another mission characteristic that has been varied
across several mission profiles is the CC charging cur-
rent. Mission profiles VAH16 and VAH20 have a 50%
increase of the CC charging current, while VAH24 has a
50% reduction of the CC charging current when com-
pared to baseline mission profiles. For both VAH16,
VAH20 and VAH24, the RUL estimation errors are be-
low the average estimation errors. The change in the
CC charging current is directly reflected in the change
in the duration of the CC charging phase, i.e., an in-
crease in the CC charging current leads to a decrease of
the duration of the CC charging phase and vice versa.
The importance of the CC charging current for RUL
estimation is reflected by the fact that the Duration of
the CC charging phase ∆CC is shown to have a high
importance for RUL estimation (see Section 7.1). This
is also in accordance to existing literature [18] where
the CC charging duration is related to the battery’s
degradation. As the battery’s capacity decreases grad-
ually, it takes less time to fully charge the battery [42].

Battery discharge power is another mission charac-
teristic that is varied across mission profiles. Mission
profiles VAH05 and VAH28 have a 10% power reduc-
tion during the discharge phase, i.e., during take-off,
cruise and landing. Mission profile VAH11 has a 20%
power reduction during discharge.

Using XGBoost, the RUL estimation errors ob-
tained for VAH05 and VAH28 are below the average
estimation errors (MAE). However, when reducing the
discharge power to 20%, the RUL estimation errors for
VAH11 are the highest. The importance of the dis-
charge power for RUL estimation is reflected in the
fact that multiple voltage-related features of shown to
be of high importance for RUL estimation: mean, vari-
ance and minimum voltage during take-off. Indeed, the
take-off is a critical phase of a flight when the battery
voltage exhibits a peak.
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9 Conclusions

In this paper a data-driven machine learning frame-
work is proposed to predict the state of health and
remaining useful lifetime of eVTOL batteries. We con-
sider a dataset of eVTOL battery that are used to
perform realistic eVTOL flights. The flights are per-
formed under varying conditions: temperature, cruise
duration, discharge power, CC charging current and
CV charging voltage, The take-off and landing are per-
formed at high C-rates (5 C-rate) compared to the
cruise phase (1.48 C-rate).

A total of 33 features have been generated based
on charge-related, discharge-related, and temperature-
related parameters. The importance of these features
for SOH and RUL estimation has been quantified. The
results show that the features with the highest impor-
tance for SOH are the voltage recorded during take-off
and the duration of the CC-CV charging phase. For
RUL estimation, the voltage during take-off, landing
and cruise are of highest importance.

We consider five machine learning algorithms for
SOH and RUL prognostics: SVR, RF regression, XG-
Boost, GPR, and MLP. The lowest SOH estimation er-
rors are obtained using a RF regression (MAE= 1.33%,
RMSE= 1.80%). XGBoost leads to the lowest RUL es-
timation errors (MAE= 54.33 missions, RMSE= 54.53
missions). The results also show that when varying the
cruise duration with up to a 25% increase, the SOH
and RUL are well estimated by RF regression and XG-
Boost, respectively.

As future work we plan to extend this framework
by extending the range of features considered. We are
also interested in further analyzing the features with
the highest importance for SOH and RUL and their
impact on the degradation of the eVTOL battery ca-
pacities.
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A Appendix 1

(a) Capacity tests in VAH01 (b) Capacity tests in VAH02

(c) Capacity tests in VAH05 (d) Capacity tests in VAH10

(e) Capacity tests in VAH11 (f) Capacity tests in VAH12
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(g) Capacity tests in VAH13 (h) Capacity tests in VAH15

(i) Capacity tests in VAH16 (j) Capacity tests in VAH17

(k) Capacity tests in VAH20 (l) Capacity tests in VAH22
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(m) Capacity tests in VAH23 (n) Capacity tests in VAH24

(o) Capacity tests in VAH25 (p) Capacity tests in VAH26

(q) Capacity tests in VAH27 (r) Capacity tests in VAH28
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(s) Capacity tests in VAH30

Figure 20: The current during all capacity tests in all MPs, except the excluded MPs (i.e., VAH06, VAH07, and
VAH09)
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B Appendix 2

(a) Predicted and true SOH, with SVR, in VAH01 (b) Predicted and true SOH, with SVR, in VAH02

(c) Predicted and true SOH, with SVR, in VAH05 (d) Predicted and true SOH, with SVR, in VAH10

(e) Predicted and true SOH, with SVR, in VAH11 (f) Predicted and true SOH, with SVR, in VAH12

26



(g) Predicted and true SOH, with SVR, in VAH13 (h) Predicted and true SOH, with SVR, in VAH15

(i) Predicted and true SOH, with SVR, in VAH16 (j) Predicted and true SOH, with SVR, in VAH17

(k) Predicted and true SOH, with SVR, in VAH20 (l) Predicted and true SOH, with SVR, in VAH22
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(m) Predicted and true SOH, with SVR, in VAH23 (n) Predicted and true SOH, with SVR, in VAH24

(o) Predicted and true SOH, with SVR, in VAH25 (p) Predicted and true SOH, with SVR, in VAH26

(q) Predicted and true SOH, with SVR, in VAH27 (r) Predicted and true SOH, with SVR, in VAH28
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(s) Predicted and true SOH, with SVR, in VAH30

Figure 21: The results of SVR for SOH
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C Appendix 3

(a) Predicted and true SOH, with RF, in VAH01 (b) Predicted and true SOH, with RF, in VAH02

(c) Predicted and true SOH, with RF, in VAH05 (d) Predicted and true SOH, with RF, in VAH10

(e) Predicted and true SOH, with RF, in VAH11 (f) Predicted and true SOH, with RF, in VAH12
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(g) Predicted and true SOH, with RF, in VAH13 (h) Predicted and true SOH, with RF, in VAH15

(i) Predicted and true SOH, with RF, in VAH16 (j) Predicted and true SOH, with RF, in VAH17

(k) Predicted and true SOH, with RF, in VAH20 (l) Predicted and true SOH, with RF, in VAH22
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(m) Predicted and true SOH, with RF, in VAH23 (n) Predicted and true SOH, with RF, in VAH24

(o) Predicted and true SOH, with RF, in VAH25 (p) Predicted and true SOH, with RF, in VAH26

(q) Predicted and true SOH, with RF, in VAH27 (r) Predicted and true SOH, with RF, in VAH28
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(s) Predicted and true SOH, with RF, in VAH30

Figure 22: The results of RF for SOH
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D Appendix 4

(a) Predicted and true SOH, with XGBoost, in VAH01 (b) Predicted and true SOH, with XGBoost, in VAH02

(c) Predicted and true SOH, with XGBoost, in VAH05 (d) Predicted and true SOH, with XGBoost, in VAH10

(e) Predicted and true SOH, with XGBoost, in VAH11 (f) Predicted and true SOH, with XGBoost, in VAH12
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(g) Predicted and true SOH, with XGBoost, in VAH13 (h) Predicted and true SOH, with XGBoost, in VAH15

(i) Predicted and true SOH, with XGBoost, in VAH16 (j) Predicted and true SOH, with XGBoost, in VAH17

(k) Predicted and true SOH, with XGBoost, in VAH20 (l) Predicted and true SOH, with XGBoost, in VAH22
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(m) Predicted and true SOH, with XGBoost, in VAH23 (n) Predicted and true SOH, with XGBoost, in VAH24

(o) Predicted and true SOH, with XGBoost, in VAH25 (p) Predicted and true SOH, with XGBoost, in VAH26

(q) Predicted and true SOH, with XGBoost, in VAH27 (r) Predicted and true SOH, with XGBoost, in VAH28
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(s) Predicted and true SOH, with XGBoost, in VAH30

Figure 23: The results of XGBoost for SOH
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E Appendix 5

(a) Predicted and true SOH, with RF, in VAH01 (b) Predicted and true SOH, with GPR, in VAH02

(c) Predicted and true SOH, with GPR, in VAH05 (d) Predicted and true SOH, with GPR, in VAH10

(e) Predicted and true SOH, with GPR, in VAH11 (f) Predicted and true SOH, with GPR, in VAH12

38



(g) Predicted and true SOH, with GPR, in VAH13 (h) Predicted and true SOH, with GPR, in VAH15

(i) Predicted and true SOH, with GPR, in VAH16 (j) Predicted and true SOH, with GPR, in VAH17

(k) Predicted and true SOH, with GPR, in VAH20 (l) Predicted and true SOH, with GPR, in VAH22
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(m) Predicted and true SOH, with GPR, in VAH23 (n) Predicted and true SOH, with GPR, in VAH24

(o) Predicted and true SOH, with GPR, in VAH25 (p) Predicted and true SOH, with GPR, in VAH26

(q) Predicted and true SOH, with GPR, in VAH27 (r) Predicted and true SOH, with GPR, in VAH28
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(s) Predicted and true SOH, with GPR, in VAH30

Figure 24: The results of GPR for SOH
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F Appendix 6

(a) Predicted and true SOH, with MLP, in VAH01 (b) Predicted and true SOH, with MLP, in VAH02

(c) Predicted and true SOH, with MLP, in VAH05 (d) Predicted and true SOH, with MLP, in VAH10

(e) Predicted and true SOH, with MLP, in VAH11 (f) Predicted and true SOH, with MLP, in VAH12
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(g) Predicted and true SOH, with MLP, in VAH13 (h) Predicted and true SOH, with MLP, in VAH15

(i) Predicted and true SOH, with MLP, in VAH16 (j) Predicted and true SOH, with MLP, in VAH17

(k) Predicted and true SOH, with MLP, in VAH20 (l) Predicted and true SOH, with MLP, in VAH22
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(m) Predicted and true SOH, with MLP, in VAH23 (n) Predicted and true SOH, with MLP, in VAH24

(o) Predicted and true SOH, with MLP, in VAH25 (p) Predicted and true SOH, with MLP, in VAH26

(q) Predicted and true SOH, with MLP, in VAH27 (r) Predicted and true SOH, with MLP, in VAH28
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(s) Predicted and true SOH, with MLP, in VAH30

Figure 25: The results of MLP for SOH
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G Appendix 7
In Table 10, the predicted and true SOH can be seen within a specific mission profile using SVR. The SOH
is determined at every capacity test, and the results are given for every 5th capacity test. It can be seen that
the predicted SOH for the first capacity is never 100%. It can be seen in Table 10 that VAH24 has an initial
predicted SOH above 100%. Besides, it can be seen in Table 10 that the predicted SOH at the 30th capacity
test is above 100% for VAH05. The visualisation of the predicted and true SOH for each mission profile is given
in Appendix B. Figure 21(c) shows that the SOH is predicted in the opposite direction, then the true SOH.

Capacity Test
1st [%] 5th [%] 10th [%] 15th [%] 20th [%] 25th [%] 30th [%] 35th [%] 40th [%] 45th [%] Last [%]

VAH01 Predicted SOH 96.50% 91.40% 86.68% 81.00% N.A. N.A. N.A. N.A. N.A. N.A. 77.97% [17thtest]
True SOH 100.00% 91.85% 86.83% 82.66% N.A. N.A. N.A. N.A. N.A. N.A. 80.98% [17thtest]

VAH02 Predicted SOH 97.40% 91.87% 86.13% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 81.42% [13thtest]
True SOH 100% 91.14% 85.52% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 82.34% [13thtest]

VAH05 Predicted SOH 97.17% 93.63% 88.55% 83.80% 81.34% 77.16% 115.31% N.A. N.A. N.A. 71.08% [31thtest]
True SOH 100% 92.84% 88.22% 85.14% 82.53% 79.33% 76.29% N.A. N.A. N.A. 56.21% [31thtest]

VAH10 Predicted SOH 97.36% 92.48% 86.74% 82.91% 80.25% 75.79% N.A. N.A. N.A. N.A. 74.38% [28thtest]
True SOH 100% 91.87% 86.72% 83.16% 79.63% 76.49% N.A. N.A. N.A. N.A. 74.87% [28thtest]

VAH11 Predicted SOH 98.51% 95.40% 91.80% 88.86% 84.15% 82.08% 79.22% 77.08% 73.87% N.A. 70.43% [44thtest]
True SOH 100% 93.25% 89.26% 86.48% 82.20% 80.05% 77.70% 75.62% 73.01% N.A. 70.69% [44thtest]

VAH12 Predicted SOH 98.67% 93.78% 90.83% 87.71% 84.03% 81.77% 80.96% 79.12% 77.50% 75.20% 74.42% [46thtest]
True SOH 100% 92.89% 88.53% 85.34% 81.28% 78.31% 75.89% 75.03% 73.69% 71.61% 71.89% [46thtest]

VAH13 Predicted SOH 97.64% 93.34% 88.21% 82.61% N.A. N.A. N.A. N.A. N.A. N.A. 74.26% [20thtest]
True SOH 100% 92.52% 87.64% 84.20% N.A. N.A. N.A. N.A. N.A. N.A. 75.76% [20thtest]

VAH15 Predicted SOH 97.21% 91.68% 85.97% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 84.85% [11thtest]
True SOH 100% 90.87% 84.76% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 83.59% [11thtest]

VAH16 Predicted SOH 96.60% 91.97% 85.07% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 83.73% [11thtest]
True SOH 100% 91.24% 84.92% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 84.02% [11thtest]

VAH17 Predicted SOH 96.74% 92.39% 87.55% 83.68% N.A. N.A. N.A. N.A. N.A. N.A. 79.71% [20thtest]
True SOH 100% 91.74% 86.31% 82.34% N.A. N.A. N.A. N.A. N.A. N.A. 77.93% [20thtest]

VAH20 Predicted SOH 96.51% 91.61% 85.76% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 82.34% [12thtest]
True SOH 100% 90.89% 84.08% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 82.15% [12thtest]

VAH22 Predicted SOH 97.23% 91.04% 85.15% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 73.61% [12thtest]
True SOH 100% 90.82% 84.59% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 69.53% [12thtest]

VAH23 Predicted SOH 93.12% 91.14% 88.54% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 86.78% [13thtest]
True SOH 100% 91.25% 85.95% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 83.91% [13thtest]

VAH24 Predicted SOH 101.79% 96.92% 90.96% 85.02% N.A. N.A. N.A. N.A. N.A. N.A. 84.25% [16thtest]
True SOH 100% 91.95% 86.72% 82.18% N.A. N.A. N.A. N.A. N.A. N.A. 80.33% [16thtest]

VAH25 Predicted SOH 97.07% 92.21% 91.19% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 83.40% [11thtest]
True SOH 100% 91.94% 86.85% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 83.60% [11thtest]

VAH26 Predicted SOH 96.40% 93.11% 88.44% 82.62% 77.72% N.A. N.A. N.A. N.A. N.A. 73.75% [22thtest]
True SOH 100% 92.34% 87.38% 82.55% 78.82% N.A. N.A. N.A. N.A. N.A. 77.66% [22thtest]

VAH27 Predicted SOH 96.70% 91.97% 84.66% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 80.92% [12thtest]
True SOH 100% 91.10% 85.51% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 82.76% [12thtest]

VAH28 Predicted SOH 96.16% 93.12% 88.60% 84.26% 82.10% N.A. N.A. N.A. N.A. N.A. 81.05% [23thtest]
True SOH 100% 92.68% 87.92% 84.36% 81.78% N.A. N.A. N.A. N.A. N.A. 80.56% [23thtest]

VAH30 Predicted SOH 97.42% 92.37% 85.63% 81.82% N.A. N.A. N.A. N.A. N.A. N.A. 79.41% [18thtest]
True SOH 100% 91.40% 85.77% 81.52% N.A. N.A. N.A. N.A. N.A. N.A. 79.63% [18thtest]

Table 10: Results SOH [%] with SVR

In Table 11, the true and predicted SOH for each mission profile can be seen using RF regression. The
results are given for every 5th capacity test. Additionally, Table 11 shows a column with the SOH for the last
capacity test present in the mission profile. In Table 11 it can be seen that the predicted SOH for the first
capacity test is never above 100%, which happened with SVR for VAH24. In Appendix C, the plots of the
predicted and true SOH for each mission profile are shown.

46



Capacity Test
1st [%] 5th [%] 10th [%] 15th [%] 20th [%] 25th [%] 30th [%] 35th [%] 40th [%] 45th [%] Last [%]

VAH01 Predicted SOH 96.90% 91.31% 85.93% 80.89% N.A. N.A. N.A. N.A. N.A. N.A. 78.32% [17thtest]
True SOH 100.00% 91.85% 86.83% 82.66% N.A. N.A. N.A. N.A. N.A. N.A. 80.98% [17thtest]

VAH02 Predicted SOH 98.36% 91.88% 85.15% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 80.68% [13thtest]
True SOH 100% 91.14% 85.52% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 82.34% [13thtest]

VAH05 Predicted SOH 98.42% 94.37% 88.52% 84.31% 82.25% 77.85% 88.98% N.A. N.A. N.A. 72.50% [31thtest]
True SOH 100% 92.84% 88.22% 85.14% 82.53% 79.33% 76.29% N.A. N.A. N.A. 56.21% [31thtest]

VAH10 Predicted SOH 97.82% 92.99% 87.24% 83.71% 80.68% 77.32% N.A. N.A. N.A. N.A. 76.04% [28thtest]
True SOH 100% 91.87% 86.72% 83.16% 79.63% 76.49% N.A. N.A. N.A. N.A. 74.87% [28thtest]

VAH11 Predicted SOH 98.69% 93.94% 91.62% 88.09% 84.74% 81.42% 78.86% 76.32% 71.81% N.A. 70.56% [44thtest]
True SOH 100% 93.25% 89.26% 86.48% 82.20% 80.05% 77.70% 75.62% 73.01% N.A. 70.69% [44thtest]

VAH12 Predicted SOH 99.19% 92.01% 88.26% 84.96% 80.78% 79.33% 77.96% 75.19% 73.54% 70.68% 71.11% [46thtest]
True SOH 100% 92.89% 88.53% 85.34% 81.28% 78.31% 75.89% 75.03% 73.69% 71.61% 71.89% [46thtest]

VAH13 Predicted SOH 99.12% 92.96% 88.04% 82.87% N.A. N.A. N.A. N.A. N.A. N.A. 74.66% [20thtest]
True SOH 100% 92.52% 87.64% 84.20% N.A. N.A. N.A. N.A. N.A. N.A. 75.76% [20thtest]

VAH15 Predicted SOH 98.72% 90.69% 84.93% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 83.39% [11thtest]
True SOH 100% 90.87% 84.76% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 83.59% [11thtest]

VAH16 Predicted SOH 96.81% 91.97% 83.91% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 82.00% [11thtest]
True SOH 100% 91.24% 84.92% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 84.02% [11thtest]

VAH17 Predicted SOH 98.84% 91.75% 86.78% 83.10% N.A. N.A. N.A. N.A. N.A. N.A. 78.18% [20thtest]
True SOH 100% 91.74% 86.31% 82.34% N.A. N.A. N.A. N.A. N.A. N.A. 77.93% [20thtest]

VAH20 Predicted SOH 95.91% 89.48% 81.49% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 77.26% [12thtest]
True SOH 100% 90.89% 84.08% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 82.15% [12thtest]

VAH22 Predicted SOH 98.96% 90.38% 84.48% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 80.21% [12thtest]
True SOH 100% 90.82% 84.59% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 69.53% [12thtest]

VAH23 Predicted SOH 90.84% 89.19% 88.49% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 87.18% [13thtest]
True SOH 100% 91.25% 85.95% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 83.91% [13thtest]

VAH24 Predicted SOH 98.82% 95.81% 87.32% 81.45% N.A. N.A. N.A. N.A. N.A. N.A. 81.43% [16thtest]
True SOH 100% 91.95% 86.72% 82.18% N.A. N.A. N.A. N.A. N.A. N.A. 80.33% [16thtest]

VAH25 Predicted SOH 96.18% 90.17% 94.01% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 83.00% [11thtest]
True SOH 100% 91.94% 86.85% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 83.60% [11thtest]

VAH26 Predicted SOH 97.41% 92.42% 87.52% 81.47% 77.27% N.A. N.A. N.A. N.A. N.A. 75.23% [22thtest]
True SOH 100% 92.34% 87.38% 82.55% 78.82% N.A. N.A. N.A. N.A. N.A. 77.66% [22thtest]

VAH27 Predicted SOH 99.12% 91.82% 84.73% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 81.37% [12thtest]
True SOH 100% 91.10% 85.51% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 82.76% [12thtest]

VAH28 Predicted SOH 96.80% 91.82% 87.76% 83.71% 81.44% N.A. N.A. N.A. N.A. N.A. 80.40% [23thtest]
True SOH 100% 92.68% 87.92% 84.36% 81.78% N.A. N.A. N.A. N.A. N.A. 80.56% [23thtest]

VAH30 Predicted SOH 98.20% 93.99% 87.79% 83.87% N.A. N.A. N.A. N.A. N.A. N.A. 81.22% [18thtest]
True SOH 100% 91.40% 85.77% 81.52% N.A. N.A. N.A. N.A. N.A. N.A. 79.63% [18thtest]

Table 11: Results SOH [%] with RF Regression

In Table 12, the true and predicted SOH for each mission profile can be seen using XGBoost. The results
are given for every 5th capacity test. Additionally, Table 12 shows a column with the SOH for the last capacity
test present in the mission profile. In Table 12 it can be seen that the initial predicted SOH is often closer to
100%, compared to SVR. However, the initial predicted SOH is above 100% for four mission profiles, namely
VAH12, VAH13, VAH15, and VAH17.

47



Capacity Test
1st [%] 5th [%] 10th [%] 15th [%] 20th [%] 25th [%] 30th [%] 35th [%] 40th [%] 45th [%] Last [%]

VAH01 Predicted SOH 98.49% 91.91% 86.38% 82.00% N.A. N.A. N.A. N.A. N.A. N.A. 77.46% [17thtest]
True SOH 100.00% 91.85% 86.83% 82.66% N.A. N.A. N.A. N.A. N.A. N.A. 80.98% [17thtest]

VAH02 Predicted SOH 99.71% 93.37% 85.03% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 76.64% [13thtest]
True SOH 100% 91.14% 85.52% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 82.34% [13thtest]

VAH05 Predicted SOH 99.71% 95.07% 88.16% 84.23% 81.23% 76.89% 88.84% N.A. N.A. N.A. 71.75% [31thtest]
True SOH 100% 92.84% 88.22% 85.14% 82.53% 79.33% 76.29% N.A. N.A. N.A. 56.21% [31thtest]

VAH10 Predicted SOH 97.66% 92.18% 84.64% 83.85% 79.05% 77.59% N.A. N.A. N.A. N.A. 75.45% [28thtest]
True SOH 100% 91.87% 86.72% 83.16% 79.63% 76.49% N.A. N.A. N.A. N.A. 74.87% [28thtest]

VAH11 Predicted SOH 99.54% 93.78% 91.55% 89.04% 84.30% 79.53% 79.06% 76.56% 71.70% N.A. 62.54% [44thtest]
True SOH 100% 93.25% 89.26% 86.48% 82.20% 80.05% 77.70% 75.62% 73.01% N.A. 70.69% [44thtest]

VAH12 Predicted SOH 100.22% 90.52% 88.95% 85.32% 81.62% 79.70% 76.22% 75.50% 74.72% 74.09% 73.48% [46thtest]
True SOH 100% 92.89% 88.53% 85.34% 81.28% 78.31% 75.89% 75.03% 73.69% 71.61% 71.89% [46thtest]

VAH13 Predicted SOH 100.72% 93.33% 88.17% 83.48% N.A. N.A. N.A. N.A. N.A. N.A. 73.56% [20thtest]
True SOH 100% 92.52% 87.64% 84.20% N.A. N.A. N.A. N.A. N.A. N.A. 75.76% [20thtest]

VAH15 Predicted SOH 100.19% 92.47% 83.78% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 81.29% [11thtest]
True SOH 100% 90.87% 84.76% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 83.59% [11thtest]

VAH16 Predicted SOH 98.14% 92.73% 85.02% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 85.43% [11thtest]
True SOH 100% 91.24% 84.92% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 84.02% [11thtest]

VAH17 Predicted SOH 100.68% 91.56% 87.27% 84.57% N.A. N.A. N.A. N.A. N.A. N.A. 81.53% [20thtest]
True SOH 100% 91.74% 86.31% 82.34% N.A. N.A. N.A. N.A. N.A. N.A. 77.93% [20thtest]

VAH20 Predicted SOH 99.48% 89.21% 82.51% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 78.11% [12thtest]
True SOH 100% 90.89% 84.08% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 82.15% [12thtest]

VAH22 Predicted SOH 99.17% 89.52% 84.08% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 83.22% [12thtest]
True SOH 100% 90.82% 84.59% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 69.53% [12thtest]

VAH23 Predicted SOH 91.44% 90.59% 88.36% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 86.27% [13thtest]
True SOH 100% 91.25% 85.95% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 83.91% [13thtest]

VAH24 Predicted SOH 99.15% 95.21% 90.33% 83.66% N.A. N.A. N.A. N.A. N.A. N.A. 82.64% [16thtest]
True SOH 100% 91.95% 86.72% 82.18% N.A. N.A. N.A. N.A. N.A. N.A. 80.33% [16thtest]

VAH25 Predicted SOH 96.19% 90.05% 92.86% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 82.38% [11thtest]
True SOH 100% 91.94% 86.85% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 83.60% [11thtest]

VAH26 Predicted SOH 98.39% 93.06% 87.81% 81.86% 78.73% N.A. N.A. N.A. N.A. N.A. 76.40% [22thtest]
True SOH 100% 92.34% 87.38% 82.55% 78.82% N.A. N.A. N.A. N.A. N.A. 77.66% [22thtest]

VAH27 Predicted SOH 99.86% 93.03% 85.70% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 80.88% [12thtest]
True SOH 100% 91.10% 85.51% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 82.76% [12thtest]

VAH28 Predicted SOH 98.71% 92.93% 87.47% 85.40% 82.13% N.A. N.A. N.A. N.A. N.A. 82.42% [23thtest]
True SOH 100% 92.68% 87.92% 84.36% 81.78% N.A. N.A. N.A. N.A. N.A. 80.56% [23thtest]

VAH30 Predicted SOH 98.90% 92.30% 86.63% 81.25% N.A. N.A. N.A. N.A. N.A. N.A. 79.37% [18thtest]
True SOH 100% 91.40% 85.77% 81.52% N.A. N.A. N.A. N.A. N.A. N.A. 79.63% [18thtest]

Table 12: Results SOH [%] with XGBoost

In Table 13, the true and predicted SOH for every 5th capacity test can be seen using GPR. Moreover, there
is one column that presents the predicted and true SOH for the last capacity test. From Table 13, it can be
seen that the initial predicted SOH are close to 100%. Table 13 presents that the predicted SOH at the 30th

capacity test in VAH05 is above 100%, which also happened with the SVR.
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Capacity Test
1st [%] 5th [%] 10th [%] 15th [%] 20th [%] 25th [%] 30th [%] 35th [%] 40th [%] 45th [%] Last [%]

VAH01 Predicted SOH 96.99% 91.37% 86.68% 80.74% N.A. N.A. N.A. N.A. N.A. N.A. 77.45% [17thtest]
True SOH 100.00% 91.85% 86.83% 82.66% N.A. N.A. N.A. N.A. N.A. N.A. 80.98% [17thtest]

VAH02 Predicted SOH 97.71% 91.27% 85.97% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 81.12% [13thtest]
True SOH 100% 91.14% 85.52% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 82.34% [13thtest]

VAH05 Predicted SOH 97.54% 93.82% 88.61% 83.72% 81.58% 77.67% 127.96% N.A. N.A. N.A. 71.55% [31thtest]
True SOH 100% 92.84% 88.22% 85.14% 82.53% 79.33% 76.29% N.A. N.A. N.A. 56.21% [31thtest]

VAH10 Predicted SOH 97.54% 92.38% 86.39% 82.41% 79.73% 75.08% N.A. N.A. N.A. N.A. 73.63% [28thtest]
True SOH 100% 91.87% 86.72% 83.16% 79.63% 76.49% N.A. N.A. N.A. N.A. 74.87% [28thtest]

VAH11 Predicted SOH 98.26% 94.98% 91.34% 88.38% 83.67% 81.58% 78.67% 76.47% 73.03% N.A. 69.10% [44thtest]
True SOH 100% 93.25% 89.26% 86.48% 82.20% 80.05% 77.70% 75.62% 73.01% N.A. 70.69% [44thtest]

VAH12 Predicted SOH 99.46% 94.33% 91.55% 88.57% 85.04% 82.29% 81.58% 80.02% 78.31% 75.87% 74.99% [46thtest]
True SOH 100% 92.89% 88.53% 85.34% 81.28% 78.31% 75.89% 75.03% 73.69% 71.61% 71.89% [46thtest]

VAH13 Predicted SOH 98.18% 93.54% 88.05% 82.47% N.A. N.A. N.A. N.A. N.A. N.A. 73.98% [20thtest]
True SOH 100% 92.52% 87.64% 84.20% N.A. N.A. N.A. N.A. N.A. N.A. 75.76% [20thtest]

VAH15 Predicted SOH 97.63% 91.51% 85.66% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 84.61% [11thtest]
True SOH 100% 90.87% 84.76% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 83.59% [11thtest]

VAH16 Predicted SOH 96.90% 91.79% 84.67% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 83.35% [11thtest]
True SOH 100% 91.24% 84.92% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 84.02% [11thtest]

VAH17 Predicted SOH 97.08% 92.35% 87.28% 83.20% N.A. N.A. N.A. N.A. N.A. N.A. 78.83% [20thtest]
True SOH 100% 91.74% 86.31% 82.34% N.A. N.A. N.A. N.A. N.A. N.A. 77.93% [20thtest]

VAH20 Predicted SOH 96.64% 91.39% 85.26% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 81.55% [12thtest]
True SOH 100% 90.89% 84.08% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 82.15% [12thtest]

VAH22 Predicted SOH 97.85% 91.14% 84.86% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 67.81% [12thtest]
True SOH 100% 90.82% 84.59% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 69.53% [12thtest]

VAH23 Predicted SOH 94.48% 92.15% 89.24% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 87.30% [13thtest]
True SOH 100% 91.25% 85.95% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 83.91% [13thtest]

VAH24 Predicted SOH 102.83% 97.56% 91.34% 84.94% N.A. N.A. N.A. N.A. N.A. N.A. 83.61% [16thtest]
True SOH 100% 91.95% 86.72% 82.18% N.A. N.A. N.A. N.A. N.A. N.A. 80.33% [16thtest]

VAH25 Predicted SOH 97.50% 92.23% 90.71% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 82.86% [11thtest]
True SOH 100% 91.94% 86.85% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 83.60% [11thtest]

VAH26 Predicted SOH 96.64% 93.08% 88.21% 82.25% 77.11% N.A. N.A. N.A. N.A. N.A. 72.51% [22thtest]
True SOH 100% 92.34% 87.38% 82.55% 78.82% N.A. N.A. N.A. N.A. N.A. 77.66% [22thtest]

VAH27 Predicted SOH 97.10% 91.97% 84.22% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 80.07% [12thtest]
True SOH 100% 91.10% 85.51% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 82.76% [12thtest]

VAH28 Predicted SOH 96.38% 93.08% 88.47% 84.13% 81.89% N.A. N.A. N.A. N.A. N.A. 80.80% [23thtest]
True SOH 100% 92.68% 87.92% 84.36% 81.78% N.A. N.A. N.A. N.A. N.A. 80.56% [23thtest]

VAH30 Predicted SOH 97.74% 92.59% 85.61% 81.86% N.A. N.A. N.A. N.A. N.A. N.A. 79.39% [18thtest]
True SOH 100% 91.40% 85.77% 81.52% N.A. N.A. N.A. N.A. N.A. N.A. 79.63% [18thtest]

Table 13: Results SOH [%] with GPR

In Table 14, the true and predicted SOH for every 5th capacity test can be seen using MLP. Additionally,
there is one column that gives the true and predicted SOH for the last capacity test. Table 14 shows that at
the 30th capacity test of VAH05 the SOH is predicted at −450.67%.
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Capacity Test
1st [%] 5th [%] 10th [%] 15th [%] 20th [%] 25th [%] 30th [%] 35th [%] 40th [%] 45th [%] Last [%]

VAH01 Predicted SOH 96.50% 90.33% 85.63% 80.04% N.A. N.A. N.A. N.A. N.A. N.A. 77.41% [17thtest]
True SOH 100.00% 91.85% 86.83% 82.66% N.A. N.A. N.A. N.A. N.A. N.A. 80.98% [17thtest]

VAH02 Predicted SOH 95.77% 91.97% 87.68% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 83.38% [13thtest]
True SOH 100% 91.14% 85.52% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 82.34% [13thtest]

VAH05 Predicted SOH 96.46% 93.14% 88.10% 83.24% 81.77% 77.88% -450.67% N.A. N.A. N.A. 71.94% [31thtest]
True SOH 100% 92.84% 88.22% 85.14% 82.53% 79.33% 76.29% N.A. N.A. N.A. 56.21% [31thtest]

VAH10 Predicted SOH 97.91% 92.68% 85.64% 80.76% 77.48% 72.05% N.A. N.A. N.A. N.A. 70.33% [28thtest]
True SOH 100% 91.87% 86.72% 83.16% 79.63% 76.49% N.A. N.A. N.A. N.A. 74.87% [28thtest]

VAH11 Predicted SOH 96.51% 92.74% 88.69% 85.52% 80.72% 78.72% 75.76% 73.79% 70.70% N.A. 67.58% [44thtest]
True SOH 100% 93.25% 89.26% 86.48% 82.20% 80.05% 77.70% 75.62% 73.01% N.A. 70.69% [44thtest]

VAH12 Predicted SOH 99.49% 93.36% 89.77% 86.71% 82.96% 79.31% 78.74% 77.95% 76.28% 74.50% 73.16% [46thtest]
True SOH 100% 92.89% 88.53% 85.34% 81.28% 78.31% 75.89% 75.03% 73.69% 71.61% 71.89% [46thtest]

VAH13 Predicted SOH 95.44% 91.99% 88.37% 83.10% N.A. N.A. N.A. N.A. N.A. N.A. 77.27% [20thtest]
True SOH 100% 92.52% 87.64% 84.20% N.A. N.A. N.A. N.A. N.A. N.A. 75.76% [20thtest]

VAH15 Predicted SOH 96.98% 92.08% 87.65% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 86.83% [11thtest]
True SOH 100% 90.87% 84.76% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 83.59% [11thtest]

VAH16 Predicted SOH 97.16% 91.36% 83.84% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 83.13% [11thtest]
True SOH 100% 91.24% 84.92% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 84.02% [11thtest]

VAH17 Predicted SOH 97.45% 92.26% 86.53% 82.11% N.A. N.A. N.A. N.A. N.A. N.A. 76.69% [20thtest]
True SOH 100% 91.74% 86.31% 82.34% N.A. N.A. N.A. N.A. N.A. N.A. 77.93% [20thtest]

VAH20 Predicted SOH 96.70% 90.97% 83.07% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 80.57% [12thtest]
True SOH 100% 90.89% 84.08% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 82.15% [12thtest]

VAH22 Predicted SOH 98.70% 90.73% 84.61% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 51.02% [12thtest]
True SOH 100% 90.82% 84.59% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 69.53% [12thtest]

VAH23 Predicted SOH 89.06% 84.47% 80.80% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 79.86% [13thtest]
True SOH 100% 91.25% 85.95% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 83.91% [13thtest]

VAH24 Predicted SOH 100.32% 94.43% 88.17% 82.25% N.A. N.A. N.A. N.A. N.A. N.A. 80.45% [16thtest]
True SOH 100% 91.95% 86.72% 82.18% N.A. N.A. N.A. N.A. N.A. N.A. 80.33% [16thtest]

VAH25 Predicted SOH 98.82% 93.77% 94.57% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 85.12% [11thtest]
True SOH 100% 91.94% 86.85% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 83.60% [11thtest]

VAH26 Predicted SOH 97.33% 93.69% 88.77% 82.94% 78.95% N.A. N.A. N.A. N.A. N.A. 74.96% [22thtest]
True SOH 100% 92.34% 87.38% 82.55% 78.82% N.A. N.A. N.A. N.A. N.A. 77.66% [22thtest]

VAH27 Predicted SOH 98.16% 91.75% 83.97% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 80.47% [12thtest]
True SOH 100% 91.10% 85.51% N.A. N.A. N.A. N.A. N.A. N.A. N.A. 82.76% [12thtest]

VAH28 Predicted SOH 96.85% 93.57% 88.46% 84.01% 82.33% N.A. N.A. N.A. N.A. N.A. 81.60% [23thtest]
True SOH 100% 92.68% 87.92% 84.36% 81.78% N.A. N.A. N.A. N.A. N.A. 80.56% [23thtest]

VAH30 Predicted SOH 99.15% 93.04% 84.87% 80.59% N.A. N.A. N.A. N.A. N.A. N.A. 78.18% [18thtest]
True SOH 100% 91.40% 85.77% 81.52% N.A. N.A. N.A. N.A. N.A. N.A. 79.63% [18thtest]

Table 14: Results SOH [%] with MLP
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H Appendix 8
In Table 15 the predicted and true RUL can be seen within a specific mission profile using SVR. The RUL is
determined at every capacity test, but the results in the table are given for every 3rd capacity test to reduce
space. In Table 15 it can be seen that the difference between the predicted RUL and true RUL for the last
capacity test is significantly high. Moreover, it can be seen that for VAH01, VAH02, and VAH27 the predicted
RUL is negative at the end.

Capacity Test
1st [#missions] 3rd [#missions] 5th [#missions] 7th [#missions] 9th [#missions] 11th [#missions] 13th [#missions] 15th [#missions] Last [#missions]

VAH01 Predicted RUL 465 423 335 270 56 -1 N.A. N.A. -65 [12thtest]
True RUL 612 510 408 306 204 102 N.A. N.A. 51 [12thtest]

VAH02 Predicted RUL 460 407 315 241 52 N.A. N.A. N.A. -35 [10thtest]
True RUL 510 408 306 204 102 N.A. N.A. N.A. 51 [10thtest]

VAH05 Predicted RUL 576 532 475 410 343 280 216 N.A. 144 [15thtest]
True RUL 765 663 561 459 357 255 153 N.A. 51 [15thtest]

VAH10 Predicted RUL 556 486 393 318 229 143 N.A. N.A. 117 [12thtest]
True RUL 613 511 409 306 204 102 N.A. N.A. 51 [12thtest]

VAH11 Predicted RUL 736 710 643 588 541 482 435 400 390 [16thtest]
True RUL 816 714 612 510 408 306 204 102 51 [16thtest]

VAH12 Predicted RUL 505 467 382 317 265 244 142 N.A. 100 [15thtest]
True RUL 765 663 561 459 357 255 153 N.A. 51 [15thtest]

VAH13 Predicted RUL 531 479 403 316 272 171 N.A. N.A. 88 [13thtest]
True RUL 663 561 459 357 255 153 N.A. N.A. 51 [13thtest]

VAH15 Predicted RUL 426 352 264 156 N.A. N.A. N.A. N.A. 76 [9thtest]
True RUL 459 357 255 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH16 Predicted RUL 479 431 355 241 N.A. N.A. N.A. N.A. 110 [9thtest]
True RUL 459 357 255 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH17 Predicted RUL 458 419 339 255 192 N.A. N.A. N.A. 118 [11thtest]
True RUL 561 459 357 255 153 N.A. N.A. N.A. 51 [11thtest]

VAH20 Predicted RUL 473 416 315 217 N.A. N.A. N.A. N.A. 128 [9thtest]
True RUL 459 357 255 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH22 Predicted RUL 440 349 241 131 N.A. N.A. N.A. N.A. 43 [9thtest]
True RUL 459 357 255 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH23 Predicted RUL 210 246 202 164 156 N.A. N.A. N.A. 76 [11thtest]
True RUL 561 459 357 255 153 N.A. N.A. N.A. 51 [11thtest]

VAH24 Predicted RUL 547 505 399 288 197 N.A. N.A. N.A. 82 [11thtest]
True RUL 561 459 357 255 153 N.A. N.A. N.A. 51 [11thtest]

VAH25 Predicted RUL 438 393 286 158 21 N.A. N.A. N.A. 379 [10thtest]
True RUL 512 410 307 205 103 N.A. N.A. N.A. 52 [10thtest]

VAH26 Predicted RUL 494 470 406 302 254 N.A. N.A. N.A. 169 [10thtest]
True RUL 613 511 409 255 153 N.A. N.A. N.A. 51 [10thtest]

VAH27 Predicted RUL 425 375 290 86 N.A. N.A. N.A. N.A. -18 [9thtest]
True RUL 511 409 307 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH28 Predicted RUL 566 547 480 394 318 241 198 N.A. 161 [14thtest]
True RUL 721 619 517 414 312 210 108 N.A. 51 [14thtest]

VAH30 Predicted RUL 574 501 406 306 234 N.A. N.A. N.A. 185 [10thtest]
True RUL 510 408 306 204 102 N.A. N.A. N.A. 51 [10thtest]

Table 15: Results RUL [#missions] with SVR

In Table 16 the predicted and true RUL for each mission profile are shown using RF regression. The results
are given for every 3rd capacity. Moreover, in Table 16 there is a column for the last capacity test. In Table 16,
it can be seen that the final predicted RUL are not negative. It can be seen that the prediction of the RUL is
too optimistic for VAH11.
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Capacity Test
1st [#missions] 3rd [#missions] 5th [#missions] 7th [#missions] 9th [#missions] 11th [#missions] 13th [#missions] 15th [#missions] Last [#missions]

VAH01 Predicted RUL 398 367 325 223 86 57 N.A. N.A. 55 [12thtest]
True RUL 612 510 408 306 204 102 N.A. N.A. 51 [12thtest]

VAH02 Predicted RUL 517 460 380 345 134 N.A. N.A. N.A. 65 [10thtest]
True RUL 510 408 306 204 102 N.A. N.A. N.A. 51 [10thtest]

VAH05 Predicted RUL 645 615 570 435 323 259 163 N.A. 96 [15thtest]
True RUL 765 663 561 459 357 255 153 N.A. 51 [15thtest]

VAH10 Predicted RUL 610 537 430 355 238 143 N.A. N.A. 115 [12thtest]
True RUL 613 511 409 306 204 102 N.A. N.A. 51 [12thtest]

VAH11 Predicted RUL 716 714 689 664 568 502 465 365 366 [16thtest]
True RUL 816 714 612 510 408 306 204 102 51 [16thtest]

VAH12 Predicted RUL 626 572 449 271 166 150 85 N.A. 78 [15thtest]
True RUL 765 663 561 459 357 255 153 N.A. 51 [15thtest]

VAH13 Predicted RUL 661 574 417 330 263 100 N.A. N.A. 70 [13thtest]
True RUL 663 561 459 357 255 153 N.A. N.A. 51 [13thtest]

VAH15 Predicted RUL 457 396 272 159 N.A. N.A. N.A. N.A. 92 [9thtest]
True RUL 459 357 255 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH16 Predicted RUL 448 412 342 224 N.A. N.A. N.A. N.A. 102 [9thtest]
True RUL 459 357 255 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH17 Predicted RUL 489 424 325 245 181 N.A. N.A. N.A. 81 [11thtest]
True RUL 561 459 357 255 153 N.A. N.A. N.A. 51 [11thtest]

VAH20 Predicted RUL 427 394 284 216 N.A. N.A. N.A. N.A. 121 [9thtest]
True RUL 459 357 255 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH22 Predicted RUL 458 383 289 173 N.A. N.A. N.A. N.A. 78 [9thtest]
True RUL 459 357 255 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH23 Predicted RUL 353 346 341 308 320 N.A. N.A. N.A. 311 [11thtest]
True RUL 561 459 357 255 153 N.A. N.A. N.A. 51 [11thtest]

VAH24 Predicted RUL 467 408 339 274 242 N.A. N.A. N.A. 214 [11thtest]
True RUL 561 459 357 255 153 N.A. N.A. N.A. 51 [11thtest]

VAH25 Predicted RUL 477 436 310 163 63 N.A. N.A. N.A. 554 [10thtest]
True RUL 512 410 307 205 103 N.A. N.A. N.A. 52 [10thtest]

VAH26 Predicted RUL 593 542 430 277 196 N.A. N.A. N.A. 104 [10thtest]
True RUL 613 511 409 255 153 N.A. N.A. N.A. 51 [10thtest]

VAH27 Predicted RUL 505 415 323 155 N.A. N.A. N.A. N.A. 62 [9thtest]
True RUL 511 409 307 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH28 Predicted RUL 633 572 476 366 250 120 88 N.A. 81 [14thtest]
True RUL 721 619 517 414 312 210 108 N.A. 51 [14thtest]

VAH30 Predicted RUL 644 554 461 349 271 N.A. N.A. N.A. 213 [10thtest]
True RUL 510 408 306 204 102 N.A. N.A. N.A. 51 [10thtest]

Table 16: Results RUL [#missions] with RF regression tree

In Table 17 the predicted and true RUL for each mission profile are shown using XGBoost. The results are
given for every 3rd capacity. It can be seen in Table 17, that the prediction of the RUL is too optimistic for
VAH11, which is the same as RF Regression.
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Capacity Test
1st [#missions] 3rd [#missions] 5th [#missions] 7th [#missions] 9th [#missions] 11th [#missions] 13th [#missions] 15th [#missions] Last [#missions]

VAH01 Predicted RUL 484 458 401 279 67 46 N.A. N.A. 32 [12thtest]
True RUL 612 510 408 306 204 102 N.A. N.A. 51 [12thtest]

VAH02 Predicted RUL 568 451 375 273 78 N.A. N.A. N.A. 65 [10thtest]
True RUL 510 408 306 204 102 N.A. N.A. N.A. 51 [10thtest]

VAH05 Predicted RUL 656 617 573 460 417 314 198 N.A. 55 [15thtest]
True RUL 765 663 561 459 357 255 153 N.A. 51 [15thtest]

VAH10 Predicted RUL 597 449 392 279 246 110 N.A. N.A. 81 [12thtest]
True RUL 613 511 409 306 204 102 N.A. N.A. 51 [12thtest]

VAH11 Predicted RUL 757 764 737 695 621 575 520 369 371 [16thtest]
True RUL 816 714 612 510 408 306 204 102 51 [16thtest]

VAH12 Predicted RUL 643 532 382 305 200 228 87 N.A. 77 [15thtest]
True RUL 765 663 561 459 357 255 153 N.A. 51 [15thtest]

VAH13 Predicted RUL 681 596 405 324 262 122 N.A. N.A. 29 [13thtest]
True RUL 663 561 459 357 255 153 N.A. N.A. 51 [13thtest]

VAH15 Predicted RUL 460 365 238 141 N.A. N.A. N.A. N.A. 78 [9thtest]
True RUL 459 357 255 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH16 Predicted RUL 479 415 277 208 N.A. N.A. N.A. N.A. 93 [9thtest]
True RUL 459 357 255 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH17 Predicted RUL 516 443 345 255 177 N.A. N.A. N.A. 100 [11thtest]
True RUL 561 459 357 255 153 N.A. N.A. N.A. 51 [11thtest]

VAH20 Predicted RUL 450 349 250 199 N.A. N.A. N.A. N.A. 103 [9thtest]
True RUL 459 357 255 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH22 Predicted RUL 460 356 249 147 N.A. N.A. N.A. N.A. 56 [9thtest]
True RUL 459 357 255 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH23 Predicted RUL 303 343 290 210 252 N.A. N.A. N.A. 212 [11thtest]
True RUL 561 459 357 255 153 N.A. N.A. N.A. 51 [11thtest]

VAH24 Predicted RUL 499 417 324 266 219 N.A. N.A. N.A. 150 [11thtest]
True RUL 561 459 357 255 153 N.A. N.A. N.A. 51 [11thtest]

VAH25 Predicted RUL 454 413 299 161 36 N.A. N.A. N.A. 434 [10thtest]
True RUL 512 410 307 205 103 N.A. N.A. N.A. 52 [10thtest]

VAH26 Predicted RUL 665 554 446 265 178 N.A. N.A. N.A. 102 [10thtest]
True RUL 613 511 409 255 153 N.A. N.A. N.A. 51 [10thtest]

VAH27 Predicted RUL 548 408 330 135 N.A. N.A. N.A. N.A. 55 [9thtest]
True RUL 511 409 307 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH28 Predicted RUL 691 603 512 347 297 166 100 N.A. 73 [14thtest]
True RUL 721 619 517 414 312 210 108 N.A. 51 [14thtest]

VAH30 Predicted RUL 654 423 384 317 262 N.A. N.A. N.A. 231 [10thtest]
True RUL 510 408 306 204 102 N.A. N.A. N.A. 51 [10thtest]

Table 17: Results RUL [#missions] with XGBoost

In Table 18 the predicted and true RUL for each mission profile are shown using GPR. The results are given
for every 3rd capacity. The prediction of the RUL is very optimistic for VAH11, and VAH12.

53



Capacity Test
1st [#missions] 3rd [#missions] 5th [#missions] 7th [#missions] 9th [#missions] 11th [#missions] 13th [#missions] 15th [#missions] Last [#missions]

VAH01 Predicted RUL 491 453 364 294 73 35 N.A. N.A. 19 [12thtest]
True RUL 612 510 408 306 204 102 N.A. N.A. 51 [12thtest]

VAH02 Predicted RUL 445 391 307 240 105 N.A. N.A. N.A. 62 [10thtest]
True RUL 510 408 306 204 102 N.A. N.A. N.A. 51 [10thtest]

VAH05 Predicted RUL 678 640 579 474 354 256 176 N.A. 100 [15thtest]
True RUL 765 663 561 459 357 255 153 N.A. 51 [15thtest]

VAH10 Predicted RUL 436 386 307 237 162 108 N.A. N.A. 92 [12thtest]
True RUL 613 511 409 306 204 102 N.A. N.A. 51 [12thtest]

VAH11 Predicted RUL 477 487 483 468 446 381 337 304 296 [16thtest]
True RUL 816 714 612 510 408 306 204 102 51 [16thtest]

VAH12 Predicted RUL 480 455 369 293 236 211 110 N.A. 78 [15thtest]
True RUL 765 663 561 459 357 255 153 N.A. 51 [15thtest]

VAH13 Predicted RUL 631 580 482 330 269 136 N.A. N.A. 63 [13thtest]
True RUL 663 561 459 357 255 153 N.A. N.A. 51 [13thtest]

VAH15 Predicted RUL 425 347 257 147 N.A. N.A. N.A. N.A. 88 [9thtest]
True RUL 459 357 255 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH16 Predicted RUL 510 447 350 228 N.A. N.A. N.A. N.A. 119 [9thtest]
True RUL 459 357 255 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH17 Predicted RUL 522 453 360 256 186 N.A. N.A. N.A. 122 [11thtest]
True RUL 561 459 357 255 153 N.A. N.A. N.A. 51 [11thtest]

VAH20 Predicted RUL 506 431 312 204 N.A. N.A. N.A. N.A. 121 [9thtest]
True RUL 459 357 255 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH22 Predicted RUL 432 350 249 146 N.A. N.A. N.A. N.A. 80 [9thtest]
True RUL 459 357 255 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH23 Predicted RUL 241 267 216 177 146 N.A. N.A. N.A. 106 [11thtest]
True RUL 561 459 357 255 153 N.A. N.A. N.A. 51 [11thtest]

VAH24 Predicted RUL 351 340 305 229 167 N.A. N.A. N.A. 102 [11thtest]
True RUL 561 459 357 255 153 N.A. N.A. N.A. 51 [11thtest]

VAH25 Predicted RUL 484 420 313 173 64 N.A. N.A. N.A. 175 [10thtest]
True RUL 512 410 307 205 103 N.A. N.A. N.A. 52 [10thtest]

VAH26 Predicted RUL 604 556 452 278 207 N.A. N.A. N.A. 114 [10thtest]
True RUL 613 511 409 255 153 N.A. N.A. N.A. 51 [10thtest]

VAH27 Predicted RUL 545 475 354 136 N.A. N.A. N.A. N.A. 65 [9thtest]
True RUL 511 409 307 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH28 Predicted RUL 615 577 490 361 256 168 133 N.A. 105 [14thtest]
True RUL 721 619 517 414 312 210 108 N.A. 51 [14thtest]

VAH30 Predicted RUL 343 308 251 185 141 N.A. N.A. N.A. 116 [10thtest]
True RUL 510 408 306 204 102 N.A. N.A. N.A. 51 [10thtest]

Table 18: Results RUL [#missions] with GPR

In Table 19 the predicted and true RUL for each mission profile are shown using MLP. The results are given
for every 3rd capacity. It can be seen in Table 19, that the RUL prediction for VAH11 is again optimistic.
Moreover, the RUL is predicted negative at VAH01 and VAH05.
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Capacity Test
1st [#missions] 3rd [#missions] 5th [#missions] 7th [#missions] 9th [#missions] 11th [#missions] 13th [#missions] 15th [#missions] Last [#missions]

VAH01 Predicted RUL 681 525 391 262 57 -2 N.A. N.A. -18 [12thtest]
True RUL 612 510 408 306 204 102 N.A. N.A. 51 [12thtest]

VAH02 Predicted RUL 619 513 388 318 72 N.A. N.A. N.A. 22 [10thtest]
True RUL 510 408 306 204 102 N.A. N.A. N.A. 51 [10thtest]

VAH05 Predicted RUL 706 598 451 357 244 92 -51 N.A. -92 [15thtest]
True RUL 765 663 561 459 357 255 153 N.A. 51 [15thtest]

VAH10 Predicted RUL 590 483 339 250 140 70 N.A. N.A. 68 [12thtest]
True RUL 613 511 409 306 204 102 N.A. N.A. 51 [12thtest]

VAH11 Predicted RUL 1013 966 882 821 775 725 671 632 630 [16thtest]
True RUL 816 714 612 510 408 306 204 102 51 [16thtest]

VAH12 Predicted RUL 687 623 493 406 334 265 136 N.A. 92 [15thtest]
True RUL 765 663 561 459 357 255 153 N.A. 51 [15thtest]

VAH13 Predicted RUL 642 519 421 361 259 99 N.A. N.A. 18 [13thtest]
True RUL 663 561 459 357 255 153 N.A. N.A. 51 [13thtest]

VAH15 Predicted RUL 466 354 258 167 N.A. N.A. N.A. N.A. 88 [9thtest]
True RUL 459 357 255 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH16 Predicted RUL 594 496 317 140 N.A. N.A. N.A. N.A. 2 [9thtest]
True RUL 459 357 255 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH17 Predicted RUL 515 408 326 251 203 N.A. N.A. N.A. 141 [11thtest]
True RUL 561 459 357 255 153 N.A. N.A. N.A. 51 [11thtest]

VAH20 Predicted RUL 578 472 293 111 N.A. N.A. N.A. N.A. 50 [9thtest]
True RUL 459 357 255 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH22 Predicted RUL 467 349 257 147 N.A. N.A. N.A. N.A. 69 [9thtest]
True RUL 459 357 255 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH23 Predicted RUL 416 286 301 314 266 N.A. N.A. N.A. 281 [11thtest]
True RUL 561 459 357 255 153 N.A. N.A. N.A. 51 [11thtest]

VAH24 Predicted RUL 632 521 382 302 296 N.A. N.A. N.A. 269 [11thtest]
True RUL 561 459 357 255 153 N.A. N.A. N.A. 51 [11thtest]

VAH25 Predicted RUL 606 510 329 207 77 N.A. N.A. N.A. 368 [10thtest]
True RUL 512 410 307 205 103 N.A. N.A. N.A. 52 [10thtest]

VAH26 Predicted RUL 672 599 494 300 198 N.A. N.A. N.A. 114 [10thtest]
True RUL 613 511 409 255 153 N.A. N.A. N.A. 51 [10thtest]

VAH27 Predicted RUL 551 456 329 148 N.A. N.A. N.A. N.A. 43 [9thtest]
True RUL 511 409 307 153 N.A. N.A. N.A. N.A. 51 [9thtest]

VAH28 Predicted RUL 691 634 537 413 331 283 243 N.A. 211 [14thtest]
True RUL 721 619 517 414 312 210 108 N.A. 51 [14thtest]

VAH30 Predicted RUL 551 443 317 202 144 N.A. N.A. N.A. 105 [10thtest]
True RUL 510 408 306 204 102 N.A. N.A. N.A. 51 [10thtest]

Table 19: Results RUL [#missions] with MLP
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I Appendix 9
If the EOL-threshold is set to 80%, only 9 mission profiles reach the EOL. In Table 20 it can be seen that
the following mission profiles reach the EOL, when the threshold is set to 80% of its initial measured capacity:
VAH05, VAH10, VAH11, VAH12, VAH13, VAH17, VAH22, VAH26 and VAH30. The mission number is given
when the battery reaches its EOL (#Missions until EOL). Besides, there is a column that highlights how many
capacity tests are present until the battery reaches its EOL.

VAHXX #Missions until EOL # Capacity tests until EOL

MP1 VAH01 N.A. N.A.

MP2 VAH02 N.A. N.A.

MP3 VAH05 1256 25

MP7 VAH10 990 20

MP8 VAH11 1276 25

MP9 VAH12 1176 24

MP10 VAH13 867 17

MP11 VAH15 N.A. N.A.

MP12 VAH16 N.A. N.A.

MP13 VAH17 919 19

MP14 VAH20 N.A. N.A.

MP15 VAH22 578 12

MP16 VAH23 N.A. N.A.

MP17 VAH24 N.A. N.A.

MP18 VAH25 N.A. N.A.

MP19 VAH26 976 19

MP20 VAH27 N.A. N.A.

MP21 VAH28 N.A. N.A.

MP22 VAH30 817 17

Table 20: All mission profiles (MP1-MP22, excluding MP4, MP5, and MP6) with EOL-threshold set to 80% of
the initial measured capacity

If the EOL-threshold is set to 80%, 9 mission profiles can be used. The number of train observations is 170.
Therefore, it is chosen to generate 3 folds. The division of folds have the following characteristics:

• Fold 1: number of train observations is 116. The number of test observations is 54, based on the files
VAH11, VAH17, VAH22

• Fold 2: number of train observations is 112. The number of test observations is 58, based on the files
VAH05, VAH26, VAH30

• Fold 3: number of train observations is 112. The number of test observations is 58, based on the files
VAH10, VAH12, VAH13

In Figure 26 the relative importance of the features can be seen. It is chosen to follow the same procedure as
for the EOL-threshold of 85%. Hence, 65% of the features are selected.
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Figure 26: Feature importance RUL with EOL-threshold 80%

The selected features are:

• Charge-related features: CC time (∆CC,m,c), CV time (∆CV,m,c), rest time (∆rest,m,c)

• Discharge-related features: minimum voltage during take-off, cruise, and landing (V phase,m,c
min ); maxi-

mum voltage during take-off and cruise (V phase,m,c
max ); mean voltage during take-off, cruise, and landing

(V phase,m,c
mean ); variance voltage during take-off, and landing (V phase,m,c

var ); variance discharge capacity dur-
ing take-off, cruise, and landing (Qdisphase,m,c

var ); minimum discharge capacity during take-off, and cruise
(Qdisphase,m,c

min ); duration of take-off (∆phase,m,c)

• Temperature-related features: maximum temperature during take-off, and landing (T phase,m,c
max )

MAE RMSE MAPE

SVR 109.32 129.51 0.47

RF Regression 161.53 182.22 0.54

XGBoost 153.43 166.88 0.54

GPR 110.06 120.69 0.36

MLP 238.19 418.76 1.73

Table 21: Results - RUL prediction [#missions], EOL-threshold 80%.

I.1 Results SVR RUL 80%

Model Hyperparameters

Support Vector Regression

Kernel = linear
Tolerance = 98.12
C = 0.87
ϵ = 109.12

Table 22: Optimized hyperparameters for RUL with EOL 80% using SVR
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Capacity Test
1st [#missions] 4th [#missions] 7th [#missions] 10th [#missions] 13th [#missions] 16th [#missions] 19th [#missions] 22nd [#missions] Last [#missions]

VAH05 Predicted RUL 919 810 706 580 472 371 280 172 75 [24thtest]
True RUL 1255 1102 949 796 643 490 337 153 51 [24thtest]

VAH10 Predicted RUL 952 796 651 525 409 278 N.A. N.A. 191 [19thtest]
True RUL 989 836 682 529 376 204 N.A. N.A. 51 [19thtest]

VAH11 Predicted RUL 1155 1095 984 915 825 783 625 552 496 [25thtest]
True RUL 1275 1122 969 816 663 510 357 204 51 [25thtest]

VAH12 Predicted RUL 954 881 742 673 570 507 381 323 306 [23thtest]
True RUL 1175 1022 869 716 563 410 255 102 51 [23thtest]

VAH13 Predicted RUL 921 822 676 595 469 N.A. N.A. N.A. 368 [16thtest]
True RUL 866 713 560 407 254 N.A. N.A. N.A. 101 [16thtest]

VAH17 Predicted RUL 816 687 527 411 287 227 N.A. N.A. 42 [18thtest]
True RUL 918 765 612 459 306 153 N.A. N.A. 51 [18thtest]

VAH22 Predicted RUL 658 459 272 100 N.A. N.A. N.A. N.A. 430 [11thtest]
True RUL 577 424 271 118 N.A. N.A. N.A. N.A. 67 [11thtest]

VAH26 Predicted RUL 892 787 611 521 315 183 N.A. N.A. 106 [18thtest]
True RUL 975 822 668 515 311 158 N.A. N.A. 51 [18thtest]

VAH30 Predicted RUL 967 802 639 501 374 N.A. N.A. N.A. 247 [16thtest]
True RUL 816 663 510 357 204 N.A. N.A. N.A. 51 [16thtest]

Table 23: Results RUL [#missions], EOL-threshold 80%, with SVR

MAE RMSE MAPE

VAH05 169.84 196.36 0.27

VAH10 47.67 59.73 0.31

VAH11 185.53 228.07 0.94

VAH12 121.16 138.85 0.54

VAH13 156.65 167.92 0.59

VAH17 54.44 62.37 0.13

VAH22 63.38 116.26 0.0.58

VAH26 34.11 43.4 0.14

VAH30 151.1 152.66 0.7

Average 109.32 129.51 0.47

Table 24: Results RUL,using SVR, with EOL-threshold 80%

I.2 Results RF Regression RUL 80%

Model Hyperparameters

Random Forest Regression Tree

#Trees = 3
MaxDepth = 20
MinSampleLeaf = 2
MinSampleSplit = 7
Criterion = SquaredError

Table 25: Optimized hyperparameters for RUL with EOL 80% using RF regression tree
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Capacity Test
1st [#missions] 4th [#missions] 7th [#missions] 10th [#missions] 13th [#missions] 16th [#missions] 19th [#missions] 22nd [#missions] Last [#missions]

VAH05 Predicted RUL 921 831 771 509 382 310 198 136 109 [24thtest]
True RUL 1255 1102 949 796 643 490 337 153 51 [24thtest]

VAH10 Predicted RUL 1201 906 695 550 479 373 N.A. N.A. 178 [19thtest]
True RUL 989 836 682 529 376 204 N.A. N.A. 51 [19thtest]

VAH11 Predicted RUL 1159 1159 1119 1022 1022 1022 606 422 318 [25thtest]
True RUL 1275 1122 969 816 663 510 357 204 51 [25thtest]

VAH12 Predicted RUL 986 928 851 629 398 336 99 99 99 [23thtest]
True RUL 1175 1022 869 716 563 410 255 102 51 [23thtest]

VAH13 Predicted RUL 1032 860 679 478 391 N.A. N.A. N.A. 164 [16thtest]
True RUL 866 713 560 407 254 N.A. N.A. N.A. 101 [16thtest]

VAH17 Predicted RUL 878 558 538 228 166 206 N.A. N.A. 87 [18thtest]
True RUL 918 765 612 459 306 153 N.A. N.A. 51 [18thtest]

VAH22 Predicted RUL 891 737 537 327 N.A. N.A. N.A. N.A. 610 [11thtest]
True RUL 577 424 271 118 N.A. N.A. N.A. N.A. 67 [11thtest]

VAH26 Predicted RUL 829 744 571 510 189 179 N.A. N.A. 115 [18thtest]
True RUL 975 822 668 515 311 158 N.A. N.A. 51 [18thtest]

VAH30 Predicted RUL 1201 1013 695 550 438 N.A. N.A. N.A. 166 [16thtest]
True RUL 816 663 510 357 204 N.A. N.A. N.A. 51 [16thtest]

Table 26: Results RUL [#missions], EOL-threshold 80%, with XGBoost

MAE RMSE MAPE

VAH05 194.58 214.11 0.35

VAH10 92.21 125.51 0.33

VAH11 247.53 285.26 0.82

VAH12 96.3 115.34 0.22

VAH13 119.37 127.48 0.29

VAH17 94.27 115.28 0.25

VAH22 284.12 301.19 1.54

VAH26 66.92 78.65 0.22

VAH30 258.5 277.19 0.86

Average 161.53 182.22 0.54

Table 27: Results RUL,using RF Regression, with EOL-threshold 80%

I.3 Results XGBoost RUL 80%

Model Hyperparameters

XGBoost

#Estimators = 29
MaxDepth = 16
Gamma = 0.85
MinChildWeight = 13
Colsamplebytree = 0.75
Learningrate = 0.275
subsample = 0.88

Table 28: Optimized hyperparameters for RUL with EOL 80% using XGBoost
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Capacity Test
1st [#missions] 4th [#missions] 7th [#missions] 10th [#missions] 13th [#missions] 16th [#missions] 19th [#missions] 22nd [#missions] Last [#missions]

VAH05 Predicted RUL 1028 799 654 637 427 346 185 126 115 [24thtest]
True RUL 1255 1102 949 796 643 490 337 153 51 [24thtest]

VAH10 Predicted RUL 1011 929 725 596 489 262 N.A. N.A. 137 [19thtest]
True RUL 989 836 682 529 376 204 N.A. N.A. 51 [19thtest]

VAH11 Predicted RUL 1162 1148 1139 1075 1033 997 641 506 383 [25thtest]
True RUL 1275 1122 969 816 663 510 357 204 51 [25thtest]

VAH12 Predicted RUL 1024 932 805 635 475 389 193 92 93 [23thtest]
True RUL 1175 1022 869 716 563 410 255 102 51 [23thtest]

VAH13 Predicted RUL 1031 876 665 562 397 N.A. N.A. N.A. 216 [16thtest]
True RUL 866 713 560 407 254 N.A. N.A. N.A. 101 [16thtest]

VAH17 Predicted RUL 847 743 528 416 189 129 N.A. N.A. 66 [18thtest]
True RUL 918 765 612 459 306 153 N.A. N.A. 51 [18thtest]

VAH22 Predicted RUL 792 669 449 248 N.A. N.A. N.A. N.A. 643 [11thtest]
True RUL 577 424 271 118 N.A. N.A. N.A. N.A. 67 [11thtest]

VAH26 Predicted RUL 856 694 538 409 118 113 N.A. N.A. 109 [18thtest]
True RUL 975 822 668 515 311 158 N.A. N.A. 51 [18thtest]

VAH30 Predicted RUL 1006 996 809 600 410 N.A. N.A. N.A. 228 [16thtest]
True RUL 816 663 510 357 204 N.A. N.A. N.A. 51 [16thtest]

Table 29: Results RUL [#missions], EOL-threshold 80%, with XGBoost

MAE RMSE MAPE

VAH05 178.43 195.64 0.32

VAH10 70.38 77.52 0.29

VAH11 263.9 294.05 0.94

VAH12 82.83 89.59 0.19

VAH13 139.88 145.91 0.37

VAH17 63.61 74.69 0.18

VAH22 247.92 273.63 1.44

VAH26 96.92 109.16 0.27

VAH30 236.99 241.75 0.86

Average 153.43 166.88 0.54

Table 30: Results RUL,using XGBoost, with EOL-threshold 80%

I.4 Results GPR RUL 80%

Model Hyperparameters

GPR Alpha = 1.0
Kernel = RBF (length_scale = 467.05)

Table 31: Optimized hyperparameters for RUL with EOL 80% using GPR
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Capacity Test
1st [#missions] 4th [#missions] 7th [#missions] 10th [#missions] 13th [#missions] 16th [#missions] 19th [#missions] 22nd [#missions] Last [#missions]

VAH05 Predicted RUL 1038 957 832 637 465 316 208 102 33 [24thtest]
True RUL 1255 1102 949 796 643 490 337 153 51 [24thtest]

VAH10 Predicted RUL 858 780 650 521 387 240 N.A. N.A. 158 [19thtest]
True RUL 989 836 682 529 376 204 N.A. N.A. 51 [19thtest]

VAH11 Predicted RUL 866 899 904 876 800 753 546 436 355 [25thtest]
True RUL 1275 1122 969 816 663 510 357 204 51 [25thtest]

VAH12 Predicted RUL 857 841 691 591 436 345 177 115 100 [23thtest]
True RUL 1175 1022 869 716 563 410 255 102 51 [23thtest]

VAH13 Predicted RUL 948 901 713 594 403 N.A. N.A. N.A. 261 [16thtest]
True RUL 866 713 560 407 254 N.A. N.A. N.A. 101 [16thtest]

VAH17 Predicted RUL 793 651 468 332 197 132 N.A. N.A. 28 [18thtest]
True RUL 918 765 612 459 306 153 N.A. N.A. 51 [18thtest]

VAH22 Predicted RUL 667 498 319 173 N.A. N.A. N.A. N.A. 0 [11thtest]
True RUL 577 424 271 118 N.A. N.A. N.A. N.A. 67 [11thtest]

VAH26 Predicted RUL 941 835 598 476 223 85 N.A. N.A. 28 [18thtest]
True RUL 975 822 668 515 311 158 N.A. N.A. 51 [18thtest]

VAH30 Predicted RUL 790 738 618 484 347 N.A. N.A. N.A. 221 [16thtest]
True RUL 816 663 510 357 204 N.A. N.A. N.A. 51 [16thtest]

Table 32: Results RUL [#missions], EOL-threshold 80%, with GPR

MAE RMSE MAPE

VAH05 136.92 146.34 0.25

VAH10 46.58 58.44 0.23

VAH11 191.73 215.59 0.71

VAH12 124.38 145.3 0.23

VAH13 155.83 158.28 0.46

VAH17 104.05 110.56 0.27

VAH22 70.15 71.28 0.31

VAH26 53.53 64.71 0.19

VAH30 107.37 115.68 0.57

Average 110.06 120.69 0.36

Table 33: Results RUL,using GPR, with EOL-threshold 80%

I.5 Results MLP RUL 80%

Model Hyperparameters

MLP

Activation = identity
Batchsize = 64
Firstlayerneurons = 10
Secondlayerneurons = 100
Thirdlayerneurons = 90

Table 34: Optimized hyperparameters for RUL with EOL 80% using MLP
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Capacity Test
1st [#missions] 4th [#missions] 7th [#missions] 10th [#missions] 13th [#missions] 16th [#missions] 19th [#missions] 22nd [#missions] Last [#missions]

VAH05 Predicted RUL 971 881 741 568 420 297 160 8 -131 [24thtest]
True RUL 1255 1102 949 796 643 490 337 153 51 [24thtest]

VAH10 Predicted RUL 1057 883 732 575 447 302 N.A. N.A. 221 [19thtest]
True RUL 989 836 682 529 376 204 N.A. N.A. 51 [19thtest]

VAH11 Predicted RUL 1453 1408 1262 1148 1023 980 724 609 532 [25thtest]
True RUL 1275 1122 969 816 663 510 357 204 51 [25thtest]

VAH12 Predicted RUL 1017 946 683 554 368 253 12 -90 -119 [23thtest]
True RUL 1175 1022 869 716 563 410 255 102 51 [23thtest]

VAH13 Predicted RUL 1087 956 703 568 333 N.A. N.A. N.A. 182 [16thtest]
True RUL 866 713 560 407 254 N.A. N.A. N.A. 101 [16thtest]

VAH17 Predicted RUL 832 712 552 436 313 254 N.A. N.A. 73 [18thtest]
True RUL 918 765 612 459 306 153 N.A. N.A. 51 [18thtest]

VAH22 Predicted RUL 661 535 367 211 N.A. N.A. N.A. N.A. -7799 [11thtest]
True RUL 577 424 271 118 N.A. N.A. N.A. N.A. 67 [11thtest]

VAH26 Predicted RUL 1029 914 687 566 283 110 N.A. N.A. 50 [18thtest]
True RUL 975 822 668 515 311 158 N.A. N.A. 51 [18thtest]

VAH30 Predicted RUL 1133 954 783 621 500 N.A. N.A. N.A. 365 [16thtest]
True RUL 816 663 510 357 204 N.A. N.A. N.A. 51 [16thtest]

Table 35: Results RUL [#missions], EOL-threshold 80%, with MLP

MAE RMSE MAPE

VAH05 200.48 204.74 0.51

VAH10 76.13 85.24 0.42

VAH11 354.4 362.24 1.24

VAH12 160.38 169.04 0.57

VAH13 159.2 174.49 0.36

VAH17 41.02 48.2 0.13

VAH22 814.2 2374.13 11.03

VAH26 46.67 59.03 0.1

VAH30 291.19 291.76 1.24

Average 238.19 418.76 1.73

Table 36: Results RUL,using MLP, with EOL-threshold 80%
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J Appendix 10

Figure 27: Correlation matrix of the selected features for the SOH prediction

Figure 28: Correlation matrix of the selected features for the RUL prediction
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K Appendix 11

Figure 29: Difference of the voltage within the first capacity test for VAH01
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