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Abstract

Financial crime represents a growing issue which
contemporary society is facing, especially in the
form of money laundering, which aims to conceal
the origin of illicit funds through a network of in-
termediate transactions. State of the art solutions
for detection of money laundering in graph repre-
sentations of financial data include supervised tech-
niques such as Graph Neural Networks. Although
provably efficient, their main limitation stands in
the fact that they require a dataset of correctly
and completely labeled transactions, which is of-
ten unfeasible to obtain. This work aims to explore
money flow statistics as an unsupervised approach
to money laundering detection, through comput-
ing statistics of accounts based on the amount of
money received and sent in a certain time frame
or network flow analysis using maximum flow al-
gorithms. Therefore, this paper aims to answer
two questions, namely What are the existing solu-
tions using money flow statistics? and How would
these money flow statistics methods perform on a
realistic dataset of transactions?. The analysis
benchmarks the identified algorithms on a realistic
dataset of financial transactions in order to observe
their limitations and suggest further research into
how these limitations can be overcome in order to
make money flow statistics methods a feasible so-
lution to money laundering detection.

1 Introduction

Financial crime refers to all illicit activities that take place in
the financial sector and involve multiple accounts which are
tied through money transfers, having the purpose of illegally
acquiring or hiding the origin of money. Financial crime can
take multiple forms, such as payments fraud, financial scams,
account frauds and money laundering. The global financial
crime volume has been estimated around $1.4-$3.5 trillion
per year according to the latest industry reports [15], which
places the identification and mitigation of financial crime as
a top priority of contemporary society. This paper will be
focusing mainly on money laundering, which has the aim of
concealing the origin of funds generated by criminal activity,
to make it appear as the funds have originated from legitimate
sources [10].

Existing literature proposes two data representations for fi-
nancial information, which can be used for analysis and iden-
tification of financial crime. One representation is the tabular
format, where rows represent transactions and columns rep-
resent features. Although this format is structured, it does
not provide much insight into patterns that might be formed
through repeated transactions between accounts. This is why
a graph representation is often preferred, as it enables analysts
to uncover insights through subgraph patterns [4].

Documented algorithms for money laundering detection
in graph-based settings are split into two categories: super-
vised, which require labeled data in order to accurately detect

money laundering activities and unsupervised which do not
require labels and compute their result based on the structure
of the financial graph.

Unsupervised methods include dense-subgraph algorithms
which aim to detect fraudulent patterns in financial graphs.
These algorithms often focus on the analysis of dense sub-
graph components, which are networks of accounts that are
strongly connected between each other, but loosely connected
to the rest of the graph. The existence of these patterns is
a valid indicator for money laundering, as it indicates that
money might be circulating through a series of accounts and
returning to the same initial account, meaning that the pro-
cess is trying to hide the real provenience of the cash in-
flow. However, fraudsters have adapted to this technique and
have exploited a vulnerability caused by the fact that dense
subgraphs represent single-step transfers. Therefore, by per-
forming a multi-step transfer through a series of intermedi-
ary accounts, also known as camouflage, they can avoid de-
tection by such algorithms. [10] [12]. One other unsuper-
vised approach is graph mining, which analyzes sub-graph
patterns and detects money laundering based on known laun-
dering patterns, exemplified in Figure 4. Similarly to dense-
subgraph approaches, these methods can be overcome by
fraudsters through adaptation, creating complex and dynamic
patterns [10].

Supervised methods include graph neural networks which
aim to capture complex relational patterns and dynamics
within financial networks [7]. Although superior to unsu-
pervised techniques in terms of adaptability to complex and
evolving patterns, the main limitation of supervised tech-
niques is that they require accurately labeled data with a large
number of both positive and negative labels, which is often
unfeasible to acquire [9].

One solution that is proposed by current literature which
allows for unsupervised detection of money laundering in
multi-step transfers, without relying on pre-defined subgraph
patterns is flow statistic analysis. This technique analyzes the
flow of money in and out of accounts rather than the den-
sity of subgraphs, therefore being able to detect large flows
of money between accounts even when camouflaged with in-
termediate vertices. By analyzing the flow of money in and
out of an account, a custom anomalousness metric can be de-
fined for each individual account, which can then be used in
an anomaly detection task in order to retrieve the subgraphs
with the highest probability of facilitating money laundering.
[12].

The aim of this work is to investigate existing solutions uti-
lizing money flow statistics for detecting money laundering in
graph-based financial crime detection and to benchmark these
solutions on a dataset of realistic synthetic financial transac-
tions with complex laundering patterns in order to determine
whether the analysis of money flow statistics is a suitable so-
lution to the limitations of both supervised and unsupervised
techniques and identify potential limitations of existing flow-
based solutions.

The paper is structured as follows: Section 2 will explore
key concepts for understanding money flow statistics meth-
ods, while Section 3 will detail the existing solutions that use
money flow statistics. Section 4 will detail the conditions in



which the experiments have been performed and Section 5
will look at the results obtained, while Section 6 will consider
the ethical implications of the experiment. Finally, Section 7
will discuss the findings and Section 8 will draw conclusions
and suggest further research based on the discussion.

2 Preliminaries

2.1 Directed multigraphs

A directed multigraph is a directed graph which allows mul-
tiple edges between the same two nodes and loops within the
graph. This data structure is often used in the context of finan-
cial data, as, through its directed nature, it can highlight both
the source and the destination of a transaction. Additionally,
allowing loops in the graphs encapsulates real-world behavior
such as money retrieved from deposit accounts (self-edges) or
money circulating and returning to the sender (cycles). By al-
lowing multiple edges between accounts, the multigraph can
represent multiple transactions which can be sent at different
timestamps or with different amounts, often represented as

weights to the edges, as seen in Figure 1.
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Figure 1: Directed financial multigraph [2].

2.2 Multipartite graphs

A graph is named k-partite when its vertex set can be parti-
tioned into k subsets such that no edge has both ends in one
single subset [5]. Multipartite graphs can be used in financial
crime detection to outline layers of camouflage for money
laundering. By formatting the transaction graph as a k-partite
graph, where the first layer represents suspected sources of
money laundering and the last layer as suspected destinations
of the laundered money, analysis could reveal the intermedi-
ate accounts used to camouflage money laundering activities.
One example of such graph is exemplified in Figure 2.

Figure 2: Tripartite financial graph [12].

2.3 Tensors

Tensors are N-dimensional arrays which are able to express
multiple relations of any order as a higher-dimensional ten-
sor [14]. Their application in financial crime detection comes
as a solution to the limitation of traditional graphs, which are
only able to encode edges in a two-dimensional format, con-
sidering their source and destination. Tensors are capable of
encoding edges based on other multi-dimensional attributes

such as time, which allows visualizing patterns in transac-
tions not only based on source and destination, but also based
on the timestamp at which the transaction occurred. Figure 3
shows a pair of coupled tensors, which represents two tensors
connected by common values in one of the dimensions.
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Figure 3: Pair of coupled tensors [18].

2.4 Money Flow Statistics

In the context of money laundering detection, money flow
statistics refers to the information obtained from the analysis
of the flow of funds in and out of accounts in a transaction
graph. The inflow into i is defined as total amount of money
received by account i, noted as in flow(i) and, conversely,
the outflow of node i is the total amount of money sent by
account i, noted as out flow(i). Flow statistics are used in
financial graphs in order to identify suspicious accounts based
on patterns observed in the inflow and outflow of funds. Sun
et al. propose in [18] three main characteristics of money
laundering when analyzed through flow statistics:

¢ Density: Due to the limited amount of middle accounts
available, fraudsters choose to launder large amounts of
money through a relatively low number of middle ac-
counts, resulting in a very dense flow of money in and
out of middle accounts.

* Zero-Out: Middle accounts used in money laundering
usually transfer out most of the inflow of money they re-
ceive, as residual money left in the account usually rep-
resents a loss for the launderers.

 Fast-In/Fast-Out: Transfers through middle accounts
usually happen quickly in order to reduce the time of
being intercepted, meaning that the inflow and outflow
of a middle account happen within a short time frame.

2.5 Network Flow

A network flow model represents the transfer of some
commodity—such as money, material, or information—across a
network from sources to destinations, obeying capacity con-
straints on the edges and conservation of flow at intermediate
nodes. In a flow network, nodes are split into sources (s),
which are nodes with zero inflow, sinks (¢), which have zero
outflow and intermediate nodes, which are the rest. There-
fore, if f is a feasible flow in a network G, the value f(G)
of the flow is the outflow from the source, which must reach
the destination. A feasible flow in a capacitated network such
that the value of the flow is as large as possible is called a
maximum flow in the network. The problem of finding a fea-
sible flow in a network such that its flow value is maximum is
known as the maximum flow problem [3]. Thus, for a capac-
itated network G = (N, A) with a nonnegative capacity u;;
and weight z;; associated with each ark (i,j) € A and flow



value v, the maximum flow problem from s to ¢ can be for-
malized as maximizing v in the equation presented in Figure
6 [1].

3 Background

3.1 FlowScope

Li et al. describe in [12] FlowScope, a flow statistics-
based solution to the limitations of dense subgraph money
laundering detection. The algorithm is designed to operate
on a k-partite graph, where k is an arbitrary length given
as a parameter, identifying the most suspicious subgraphs
based on a metric defined in the paper. FlowScope defines
the anomalousness of an account ¢ in subset S based on
the difference between the minimum flow going through <,
fi(S) = min{inflow(i), out flow()}, and the maximum
flow, ¢;(S) = mazx{inflow(i),outflow(i)}, scaled by a
factor A, as seen in the following formula, where A is a hy-
perparameter resembling a residual factor, indicating the im-
portance of residual money for the launderers, d;(S) is the
degree of node 7 in subset .S, AU C are the first and last layer
of the K-partite graph and M are intermediate nodes, as seen
in Figure 2:
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Therefore, an intermediate node is considered highly sus-
picious when the difference between the minimum flow pass-
ing through it, f;(.S), and the retention of money inside the
account (computed as the difference between the maximum
flow, ¢;(5), and minimum flow, f;(.S) through the account) is
high. The high difference shows that the retention is minimal
when compared to the flow, satisfying the Zero-Out property
of money laundering. When computing the suspiciousness,
the residual is multiplied by a residual factor A which resem-
bles the importance of the leftover money for the launderers.

After the suspiciousness feature is computed for each
account, FlowScope uses an anomaly detection algorithm
which greedily removes the nodes with the lowest weight
from one of the sets (A, M; or C), until one of the sets is
empty. Then, it returns the subgraph with the highest anoma-
lousness computed as an average over the suspiciousness val-
ues of all nodes, as seen in the following formula, where
g*(S) represents the anomalousness score of subset S, in a
k-partite graph:

=
9'(8) = g1 2 2 FilS) — Mai(S) ~ £i(S))
=1 v,eM;

FlowScope has been tested on two dataset, namely Czech
Financial Dataset (CFD), a dataset of anonymous transac-
tions from the Czech Bank and CBank, a dataset of real trans-
actions from an anonymous bank, with a labeled group of
money laundering. For evaluating the performance of FlowS-
cope, laundering was injected randomly to nodes within the
dataset, with camouflage edges being created based on a dis-
tribution, aiming to keep retention in middle accounts at low
levels.

3.2 CubeFlow

In [18], Sun et al. propose CubeFlow, a flow statistics-based
approach to money laundering detection which aims to iden-
tify laundering blocks in pairs of coupled tensors, such as
the ones in Figure 3. The paper identifies a limitation of
FlowScope, which is its inability to consider transaction time
while computing anomalous blocks, therefore completely ig-
noring the Fast-In/Fast-Out property of money laundering. To
overcome this limitation, CubeFlow operates on an input of
coupled tensors, which hold an additional dimension, time.
CubeFlow uses a similar metric to FlowScope, considering
the suspiciousness metric of a node as the difference between
the flow going through the account and the residual value,
however, the algorithm unfolds the tensor based on the mid-
dle accounts, such that it can compute anomalousness values
for each middle account, at each time bin. This means that
the flow is not considered using all transactions in the graph,
which happens in the case of FlowScope, but just transactions
in the same time bin, therefore fulfilling the Fast-In/Fast-Out
property. Similarly to FlowScope, CubeFlow greedily re-
moves nodes with the lowest score until one of the sets (A,
M;, C) is empty and returns the dense block with the highest
overall score, computed as an average over the suspiciousness
score of all nodes in the block.

The evaluation methodology is similar to FlowScope,
money laundering accounts and edges are randomly selected
and the amounts of money laundered are chosen such that the
residual amount is almost zero.

3.3 WeirdFlows

WeirdFlows is defined in [6] as a top-down search pipeline
rather than an anomaly detection algorithm, as it aims to pro-
vide an interface that allows investigators to analyze all possi-
ble flows of money between entities in a financial graph, that
can be built at different levels of time and spatial aggregation
by using flow statistics.

The application of WeirdFlows involves two steps:

¢ Structural adaptation: A transaction network is cre-
ated using financial transaction data.

* Path identification on temporal network: Multiple di-
rected temporal networks are created within a specific
time aggregation. The algorithm then computes all paths
from a specific node, within each time bin.

A transaction through n intermediaries in a transaction net-
work forms a path of length n + 1. The WeirdFlows pipeline
aims to identify the transaction flow from a given input node
x and verify the maximum possible amount of money sent
from x to other nodes within a maximum distance n. The
maximum amount of money from node x to node y is defined
as the sum of the minimum weights of each path from x to y.

Therefore, the algorithm computes, for a selected time ag-
gregation, each n-length path from every node in the network,
along with its maximum flow of money, which it stores in a
table, and creates a search pipeline which allows filtering the
information based on source, destination node and time bin.
An analyst could uncover money laundering behavior by an-
alyzing the time series of the weight of a flow and identifying



spike values, which denote a larger than usual flow of money
on a specific route in the network.

3.4 DenseFlow

In [13], Lin et al. identify two main challenges of money
laundering detection in blockchain networks, specifically fo-
cusing on Ethereum transactions:

* Massive and dense gangs of money laundering ac-
counts: In blockchain networks, criminals can generate
numerous disposable accounts, as the cost of creating an
account is close to free. This helps them evade being
frozen by centralized cryptocurrency service providers.
(CDH

¢ Complex multi-layered money laundering pathways:
To disperse and transfer illegal funds as quickly as pos-
sible, hackers create multi-layered money laundering
pathways across numerous accounts. (C2)

To address these two challenges, the paper proposes
DenseFlow, an algorithm designed for money laundering
detection on directed multigraphs resembling an Ethereum
transaction network. In order to tackle challenge Cl1,
DenseFlow identifies accounts engaged in extensive, high-
frequency asset transfer by detecting dense subgraphs and
considering characteristics of money laundering transactions.
To tackle challenge C2, the algorithm traces the flow of
funds from money laundering sources to accounts of fraud-
sters along the money laundering pathway using an algorithm
that solves the maximum flow problem.

The paper proposes a joint suspiciousness metric, com-
posed on three metrics:

* Topological: An account becomes more suspicious
when it primarily establishes transactions with suspi-
cious accounts and has fewer connections to others,
computed based on the following formula, where, given
a suspicious subset .S, the edge set of the graph, £ and
the node set of the graph, N, «;(S) represents the topo-
logical suspiciousness of node ¢ in subset S and e, rep-
resents the amount of money transferred in transaction
e, from account x to account y:

) = Z(j,i)eE/\jES €ji
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* Temporal: The node’s participation level in transaction
surges within the subset .S, compared to the entire node
set V. The temporal suspiciousness of node ¢ in subset S
is defined as (3;(.5) in the following formula, where V" is
the node set of the graph, T;(S) denotes the transaction
timestamp set of node i connecting within nodes of the
subset S. @ represents the participation level of node 4
within subset S

D[Ti(5)]

Bi(S) = STV

2

* Monetary: The suspicious rating of a transaction is
computed as the ratio of total transaction amount within
a timeframe to the total amount over the entire duration.

The suspicious rating between nodes ¢ and j at times-
tamp ¢ with transaction amount a is defined in Equation
5a, where A(7(t)) represents the sum of the amounts for
all transactions within the timestamp set 7, at time slot
t. The monetary suspiciousness of the node ¢ in subset
S, 7i(S), is computed in Equation 5d, as the Kullback-
Leibler divergence of the suspicious rating of node 7 in
subset S, compared to the rest of the node set V', multi-
plied by a balancing factor, defined in Equation 5c.

Finally, the suspiciousness f;(S) of node 7 in subset S is
computed as the fusion of the three suspiciousness metrics,
as described in the following equation, where b is a hyperpa-
rameter:

)=

(7, 3)EENjES

eji - b5+ 8,(S) +7(S) =3 (3)

The goal of the algorithm is to find a subset S* that maxi-
mizes the suspiciousness, with the suspiciousness of a subset
computed as the average metric of its nodes.

After identifying a dense subgraph S*, DenseFlow con-
structs a flow network over the transaction graph, where edge
weights correspond to transaction amounts and act as capaci-
ties. It then introduces a synthetic sink node ¢, connected with
infinite-capacity edges to all nodes in S* and, using the maxi-
mum flow algorithm proposed in [8], computes the maximum
flow of money from laundering source s to destination ¢. The
nodes and edges with positive flow represent the most plausi-
ble laundering pathways and are added to the suspicious set
F'. Finally, the algorithm outputs the union of the dense sub-
graph and the accounts through which the maximum flow is
carried, S* U F..

Analysis on the algorithm has been performed on four dif-
ferent money laundering datasets involving Ethereum laun-
dering with clear paths from the source of the launderings to
the dense blocks of fraudulent accounts.

3.5 SMoTeF

Shadrooh et al. propose in [16] Smurf Money Launder-
ing Detection Using Temporal Order and Flow Analysis
(SMoTeF), an algorithm which aims to detect smurfing laun-
dering patterns which are temporally feasible. In the context
of money laundering detection, the term smurfing refers to the
laundering technique of breaking down the amount of money
to launder into smaller amounts spread throughout various fi-
nancial entities known as smurfs [17].

The paper aims to combine maximum money flow with
temporal order such that it can avoid false positives in the
form of temporally infeasible flows. This could be a flow
A — B — C with transaction B — C happening before
transaction A — B. Although the flow might fit the con-
ditions of suspiciousness, it is a false positive, as the money
reaching account C' could not have originated from account
A.

The initial step of the algorithm processes the input as a
temporal directed multigraph and applies a smurf pattern de-
tection algorithm. The paper uses existing solutions for smurf
pattern detection, such as AutoAudit [11], which retrieve a set
of subgraphs containing smurf money laundering patterns.



The next step uses a temporal constraint checking algo-
rithm in order to discard patterns which do not satisfy natural
time precedence conditions of transactions. For each journey
7 starting from the source of the smurf pattern v, passing
through middle accounts v,, and reaching the destination v,
the algorithm constructs the fan-in set from v, to v,,, {* and
the fan-out set from v,, to vg, [~. It uses the sets to verify that
each fan-out edge in [~ is reachable in time by some fan-in
edgein [™. It uses the temporal pairs extracted from {* and [~
to construct two cut-sets, C'rsq containing fan-in edges with a
temporally corresponding fan-out edge and C7._; containing
fan-out edges with a corresponding fan-in. Finally, from the
set of patterns extracted in the first step, the algorithm dis-
cards all patterns where the number of valid journeys from vy
to vy is smaller than T, which is a predefined threshold for
the minimum number of valid smurfs in the pattern.

Finally, SMoTeF performs a network flow analysis on each
of the remaining patterns in the set in order to compute how
much money is transferred from source v, to destination vg
through middle nodes v,,,. This is done to eliminate patterns
that are temporally valid, but involve non-suspicious amounts
of money, by checking that the maximum flow exceeds a pre-
defined threshold Ty. The analysis is also used to identify
suspicious time periods for audit and investigation.

For each valid journey j of the form vy — v, — v,
in the subgraphs extracted, SMoTeF creates a time-ordered
list of edge occurrences, tol(j). It maintains a residual ca-
pacity counter [T for all fan-in edges and, for each edge in
tol(j), accumulates the incoming flow if the edge is a fan-
in, or computes the maximum temporal flow as Mt f(s,d) =
min(capacity(I™), w,), subtracting this flow from the fan-
in capacity. If the total flow across all journeys in a pattern
Mtf(G) < Ty, the pattern is discarded.

In order to evaluate the algorithm on a financial dataset,
the Czech Financial Dataset (CFD) was chosen. Synthetic
smurfing patterns were injected in the dataset by randomly
selecting three sets of nodes corresponding to vs, v,,, and v,
with a varying number of middle nodes between 5 and 50 for
each pattern. Half of the journeys in all patterns have been
injected in order to satisfy all temporal conditions and thus
have proper minimum temporal cuts. For the remaining half,
it was imposed that they do not adhere to the time precedence
constraints.

3.6 Limitations of Analysis

Analyzing the evaluation process of each algorithm described
in this section, it can be observed that the analysis for most
of these algorithms has been performed through injecting
synthetic laundering transactions in real transaction datasets,
which perfectly fit the evaluation criteria of the algorithm,
such as low retention in middle accounts or high flow density.
Although suitable for a theoretical analysis of the correctness
of the algorithms, these transactions are highly unrealistic
and do not reflect the actual performance that the algorithms
would yield in a realistic setting with complex laundering pat-
terns. Therefore, the purpose of the experiment performed in
the following sections is to observe how these flow statistics
solutions to money laundering detection perform in realistic
settings and identify and understand their weaknesses such

that improvements can be suggested.

4 Methodology
4.1 Approach

The following sections aim to benchmark four flow-based
money laundering detection algorithms, namely FlowScope,
CubeFlow, DenseFlow and SMoTeF (WeirdFlows is excluded
from this analysis as it does not perform an identification of
laundering patterns by itself) on the realistic synthetic finan-
cial dataset proposed by Altman et al. in [2]. The accuracy of
these algorithms will be measured using a minority-class F1
score. If the algorithms achieve a high accuracy, they will be
tested on larger versions of the dataset and on versions with
different illicit densities in order to determine their strengths
and weaknesses depending on the dataset. Otherwise, the
analysis will dive deeper into the reason for the low accuracy
to identify and understand the limitations of the algorithms,
such that improvements can be suggested.

4.2 Dataset

To address the limitation in analysis, the dataset proposed for
this experiment is AMLWorld, a realistic synthetic dataset
proposed by Altman et al. in [2]. The dataset proposes a
record of synthetic transactions spanning over multiple banks
and currencies. The data is obtained using a generator that
creates a multi-agent virtual world in which some of the
agents are criminals with illicit money to launder. Agents
can resemble banks, individuals and companies, with realis-
tic transaction modeling such as individuals and companies
buying items and making bank transfers to get supplies or
pay salaries and pensions. The criminals launder their money
through both the patterns presented in Figure 4 and other nat-
ural contexts such as paying salaries and buying supplies.
The strong realism of the dataset comes from its complexity
in terms of inter-agent relations, such as individuals which
are able to be employed and purchase supplies from compa-
nies, but also own shares and receive interest payments. This
unique degree of resemblance to real-world transactions has
motivated the use of the AMLWorld dataset for determining
the performance of flow statistic based money laundering de-
tection in a realistic setting.

The dataset offers six variations, with varying illicit trans-
action ratio and number of transactions. The variation chosen
for this experiment is the HI-Small, with a high illicit ration (1
in 807 transactions) and small size (~5M total transactions).

4.3 Data pre-processing

FlowScope

When using the AMLWorld dataset to benchmark FlowS-
cope, the main challenge comes from the discrepancy be-
tween the graph formats of AMLWorld and the FlowScope
input. While AMLWorld provides a directed multigraph of
transactions, FlowScope expects a multipartite graph input
format. Therefore, in order to create a multipartite graph pre-
serving the connections between the AMLWorld entities, a
series of pre-processing transformations have been performed
on the raw dataset:



* Transaction normalization: AMLWorld transactions
span across fifteen different currencies. Because FlowS-
cope relies on the difference between minimum and
maximum flow through nodes in order to determine
residual amounts, all transaction amounts must be ex-
pressed in the same currency. Therefore, all amounts
have been converted to EUR, using the publicly avail-
able exchange rates.

 Parallel edge aggregation: The multipartite format re-
quired by FlowScope does not support parallel edges.
Therefore, in order to preserve the inflow(i) and
out flow(i) of any node i, parallel edges have been ag-
gregated by summing up their transaction amounts.

* Conversion to multipartite format: FlowScope oper-
ates on k-partite graphs represented through k-1 files,
with file; containing edges from one layer i to layer
1 4+ 1, along with the transaction amount. Nodes in the
files are represented with contiguous integers starting
from 0.

In order to represent the AMLWorld data in the required k-
partite format, a unique string Node_Id was constructed for
each node by concatenating their Bank_id and Account_id.
Parallel transactions were aggregated based on their source
and destination Node_id by summing up their amounts, re-
sulting in a dataframe containing the source and destination
ids and the amount of each transaction.

Using a Depth-First Search, all paths of length £ — 1
have been extracted from the resulting graph and separated
in transactions. As a result path A — B — C was split into
A — Band B — C. The Node_ids of each transaction
have been encoded to contiguous integers, identical nodes re-
ceiving the same encoding in the same layer, but different
encodings in different layers. This condition ensures that:

* There are no edges between nodes of the same layer, as
vertices of a self edge of the form A — A would be
encoded differently in the first and second layer.

 There are no backwards edges, as in cycles such as A —
B — A, the A in the third layer would receive a different
encoding that the one in the first layer.

To achieve this, the nodes in each layer S have been
encoded as integers in the interval [of fset,of fset +
unique(S)] where unique(S) represents the number of
unique ids in layer S and of fset represents the num-

ber of unique ids in the previous layers. Therefore, in
amount

each file file; an edge A —— B is encoded as
Encode;(A), Encode;y1(B), amount where Encode;(X)
represents the encoding corresponding to layer ¢ of Node_id
X.

To compute the evaluation metrics on the data returned by
FlowScope, the same encodings are used in reverse in order
to obtain the original Node_ids.

CubeFlow

In order to adapt the AMLWorld data to the coupled tensor
format required by CubeFlow, two encodings were consid-
ered during the experiments. It is worth noting that both

methods differ from that of FlowScope by the initial tempo-
ral aggregation performed. Based on the timestamp of each
transaction, time bins have been created for windows of dif-
ferent lengths (30min, 1h, 6h, 12h, 14h, 48h, 72h) and thus
the parallel edge aggregation was performed not only consid-
ering source and destination N ode_ids, but also the time bin
of the transaction.

* The first encoding considered is similar to that of FlowS-
cope, assuming the format of the two coupled tensors
as a tripartite graph with an additional dimension repre-
senting the time bin of the transaction. Since CubeFlow
is limited to two coupled tensors, the FlowScope pre-
processing is modified to only consider tripartite graphs
(k=3). Files are also modified to store, aside from
source, destination and amount, the time bins of the
transactions.

* The second encoding strategy was inspired by the exper-
imental setting described in the paper, which involves
splitting the node set of the graph into sources, where
money transferring out is much larger than money trans-
ferring in and destinations, where money flowing in is
much larger than money flowing out. The rest of the
nodes are considered middle nodes.

The second encoding strategy was implemented by iter-
ating over the nodes of the account and splitting nodes into
source set X, where out flow(x) > t * inflow(z) and des-
tination set Z where inflow(z) > t * out flow(z), with ¢
being a hyperparameter for which multiple values have been
tried (5, 10, 15, 20). The rest of the nodes were attributed
to the middle set Y. Y was filtered to contain only middle
nodes that connect nodes from X to nodes from Z in order
to result in a pair of correctly coupled tensors, with edges be-
tween X and Y representing tensor P and edges between Y’
and Z representing tensor Q, as observable in Figure 3.

DenseFlow

DenseFlow operates on temporal directed multigraphs, which
aligns with the format provided in the AMLWorld dataset.
The algorithm requires two files, one containing the transac-
tions of the multigraph and the other containing the source
accounts of laundering patterns, which it uses for tracing the
flow towards the laundering groups.

The transaction file was obtained by creating Node_ids
for each transaction as before and time binning within a 24h
interval. The temporal component of DenseFlow was con-
figured to consider temporal anomalies with regard to the
previous and next time bin. Edges have not been aggre-
gated as done for FlowScope and CubeFlow, as the multi-
graph required by DenseFlow allows parallel edges between
nodes. Therefore, the transaction file contains the Node_ids
of the source and destination of each account, the transaction
amount and the time bin.

The source accounts of laundering patterns are extracted
from the file containing the laundering patterns, offered by
the dataset. The source is determined, for each pattern, as
the node s with inflow(s) = 0 or the source of the first
transaction, in the case of cycle patterns. The Node_ids of
these accounts are stored in the source account file.



SMoTeF

SMoTef takes as input a directed multigraph of financial
data with nodes encoded as contiguous integers starting from
zero, along with the transaction amount and the time bin.
In order to bring the AMLWorld dataset to this format, ac-
counts were identified with a Node_id composed of the bank
and account id, similarly to previous algorithms, with each
unique Node_id receiving an integer encoding in the interval
[0, unique(S)], where unique(S) represents the number of
unique Node_ids. Parallel edges have not been aggregated, as
the directed multigraph format allows for these edges. Time
binning has been performed at the lowest level (1 minute), as
SMoTeF uses it to determine temporal precedence of transac-
tions, rather than time between transfers.

4.4 Evaluation Metric

The evaluation metric chosen for the experiment is the minor-
ity class F1 score. Considering that the purpose of the experi-
ment is the binary classification between fraudulent and non-
fraudulent transaction, with a minority in fraudulent transac-
tions, the minority class F1 provides an estimate of the accu-
racy by providing the harmonic mean (Equation 6a) between
how many of the flagged transactions are actually launder-
ing (Precision) (Equation 6b) and how many of the entire set
of laundering transactions have been correctly identified (Re-
call) (Equation 6c).

5 Results

5.1 Hypothesis

Comparing the large level of complexity that the AML.World
dataset brings with the relative simplicity of the injected syn-
thetic patterns that the flow statistics-based algorithm have
been tested on, it is highly likely that these algorithms will
not achieve a high accuracy due to their lack of flexibility to
complex patterns. Additionally, the dataset was designed for
Graph Neural Networks which, through being trained on la-
beled data, are more flexible to the complex patterns in the
dataset.

Thus, the purpose of the experiment is not to prove that the
flow statistics-based algorithms are a feasible solution in re-
alistic settings, but to observe their behavior and understand
their limitations. By drawing these conclusions, further re-
search can be suggested in order to overcome their limitations
and incorporate them in more flexible solutions.

5.2 Experimental results

FlowScope

When running FlowScope, the parameters which have to be
pre-defined are the number of partitions of the multipartite
graph, k, the number of suspicious subgraphs that should be
extracted, n and the residual factor \. Because the number of
partitions has to be specified, it is deduced that, in one run,
FlowScope can only determine laundering patterns of length
k — 1. By experimenting with multiple values of k, it was de-
termined that for any k£ > 6, the resulting graph becomes too
sparse for FlowScope to identify suspicious subgraphs and
thus discards all middle nodes as they yield negative suspi-
ciousness because of low connectivity. Therefore, in order to

compute the accuracy for a wider number of pattern lengths,
the F1 score was computed over a number of five runs, with
k € [2,6]. Parameter n was selected as 3 and the residual
factor A = 4 was selected according to the recommendations
of the paper.

The F1 score achieved after the five runs is F; ~ 19.88%,
which is significantly lower than the Graph Neural Network
solutions presented in [2], which achieve up to 63% accuracy.
Diving deeper into the subgraphs extracted, it is observable
that FlowScope manages to identify some laundering edges
with high density and relatively low amounts of money left in
middle accounts. However, most real laundering transactions
are overshadowed by very large transfers (such as those in
BTC), which are not always laundering.

One additional experiment that was performed was remov-
ing percentages of the non-laundering edges and observing
the evolution of the accuracy, which is visible in Table 1.
Therefore, it is visible that as the number of non-fraudulent
transactions of the original dataset (~ 5M transactions, out of
which 3209 fraudulent) is decreased, the F1 score rises.

Non-Fraudulent Data (%) F1 Score
100% 19.88%
50% 23.30%
25% 34.34%
10% 45.60%

Table 1: F1 scores achieved by FlowScope for varying amounts of
non-fraudulent data with k € [2, 6]

CubeFlow

During the experiment, CubeFlow was benchmarked us-
ing both pre-processing techniques described in Section 4.3,
along with multiple time aggregations mentioned in the same
section. In all settings, the algorithm has achieved an F1 score
F1 = 0.00%. This result comes in close relation with Cube-
Flow’s main limitation when compared to FlowScope, which
is its inability to analyze chains of coupled tensors larger than
two. This means that the algorithm is, by design, unable to
detect laundering patterns with more than one middle layer,
which is very common in the laundering patterns of AML-
World. The low F1 score also comes related to the Fast-
In/Fast-Out check performed by CubeFlow. Analyzing the
laundering patterns provided, it is revealed that some patterns
can span throughout up to six days out of the 18 defined in
the dataset.

Additionally, similarly to FlowScope, by analyzing the
dense blocks identified by CubeFlow, it is clear that the real
laundering patterns have been overshadowed by very large
volume transactions. When filtering out the top 10% of trans-
action values, the algorithm fails to detect any suspicious
middle nodes, meaning that the graph becomes too sparse.

DenseFlow

The F1 score achieved by the algorithm is F} ~ 0.73%. An-
alyzing the number of accounts extracted from each set in the
final result, it is observable that, for most laundering patterns,
there are no nodes coming from the maximum flow subset.



This comes into connection with the fact that 36% of the laun-
dering sources have less than 15 other nodes reachable, which
greatly affects the probability of a laundering patterns having
a connecting path to the dense subgraph identified, therefore
making the maximum flow computation impossible.

The dense subset misses most of the suspicious nodes of
AMLWorld, which is connected to laundering nodes not ad-
hering to the three components of the DenseFlow suspicious-
ness metric. This could mean low topological suspiciousness
for sparse structures such as Fan-In, Fan-Out or Stack or a
low number of temporal laundering spikes, as observable in
Figure 5. The reasons for this inaccuracy will be discussed
more in-depth in Section 7.

SMoTeF

SMoTeF achieves an accuracy of F1 =~ 19.056%, with
Precision = 1 and Recall = 0.105. Diving deeper into
the patterns identified by the algorithm, it was observed that
all suspicious transactions identified construct Scatter-Gather
patterns in the AMLWorld graph, according to Figure 4.
Moreover, the F1 score was also measured with regard to just
the subset of Scatter-Gather patterns, instead of the entirety of
the laundering transaction dataset, achieving a F'1 ~ 68.40%.

6 Responsible Research

Reproducibility

The implementation of all algorithms which were used in this
work is described in a reproducible manner in their corre-
sponding papers, which are referenced accordingly. More-
over, the implementations used in the experiment performed
by this paper are extracted from the public GitHub pages ref-
erenced in the related papers, without any alterations other
than those discussed in the Methodology section. Thus, the
use of the algorithms is reproducible by accessing the same
implementations that are provided by the authors.

The dataset used, presented in [2], is publicly available at
the Kaggle page referenced by the authors of the paper, along
with a file containing the laundering patterns existent in the
dataset. The modifications made to the original dataset in or-
der to transform it into a suitable format for each of the algo-
rithms presented in this paper is described in the Section 4.3.
Therefore, by following the same pre-processing steps on the
available dataset, the same data should be obtained. By run-
ning the publicly available implementation of each algorithm
on the data obtained, the same results should be achieved.

Additionally, the code used to benchmark these algorithms,
along with all pre and post-processing logic is submitted
alongside this paper !, to ensure full transparency of the im-
plementation used. This project also includes all intermedi-
ate data files, such as transactions with normalized payment
amounts and extraction of specific laundering patterns.

Integrity and Ethical Considerations

All sources, for datasets, algorithms and concepts used in this
paper have been cited in the Bibliography. The results are
the genuine evaluations of the algorithms, which have not
been manipulated in the benchmarking process. Evaluation

"https://github.com/Luca-Ionescu/cse3000-money-flow-statistics

metrics were chosen to reflect the real-world challenges of
financial crime detection, particularly class imbalance. The
minority-class F1 score was used as the primary metric to
avoid misleading results caused by high accuracy on the ma-
jority (non-laundering) class.

One ethical consideration of this work is the possible pri-
vacy breach caused by the use of financial data in the experi-
ment. However, the dataset chosen provides a fully synthetic
set of data, with transactions and entities created by a gener-
ator described in [2]. Therefore, with no use of real financial
or personal data, the experiment does not raise any privacy
concerns.

One other ethical consideration of this work is the possibil-
ity of exposure of the money laundering detection techniques
to launderers. Knowing the limitations of laundering detec-
tion algorithms would allow the launderers to exploit them.
However, this paper does not highlight any confidential al-
gorithm or any technique used in practice by banks to de-
tect money laundering activity. This means that the limita-
tions presented in this paper are derived from public informa-
tion and do not endanger any laundering detection mechanism
currently in place.

Finally, the societal relevance of the discoveries made in
this paper stands in the improvement in the performance of
money laundering detection algorithms that can be brought by
integrating money flow statistics-based methods into already
existing solutions. By understanding and addressing the limi-
tations presented in this paper in further research, money flow
statistics can be used to enhance existing techniques or aid the
development of new ones.

7 Discussion

While looking at the results obtained by FlowScope, two
main limitations of the algorithm can be derived. Firstly, the
algorithm is designed to detect linear laundering chains with
low retention. However, this is not the case in many of the
patterns identified in Figure 4, as they are low-volume and
dispersed, rather than high-volume and linear. The two laun-
dering patterns that fit the description of FlowScope are the
Random and the simple cycle. However, these patterns do no
hold the densest flow in the transaction graph, meaning that
they are overshadowed by very large transaction chains. Ac-
cording to FlowScope’s suspiciousness formula, flows with
very large amounts where the residual is small compared to
the flow seem more suitable.

Secondly, the algorithm is clearly affected by the large
amount of noise caused by the low illicit ratio, which causes
laundering patterns to be lost among the large pool of trans-
actions. This is proven by the data in Table 1, where, as the
noise minimizes, the algorithm becomes progressively more
accurate.

As mentioned in the previous sections, the main limitation
that leads to the poor performance of CubeFlow is that it is
unable to detect laundering paths longer than 2. Considering
that many of the cycles and random patterns are large chains
of transactions, it is natural that the algorithm will not be able
to detect these chains.

One additional limitation that might break CubeFlow’s as-
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sumption for Fast-In/Fast-Out transfers is that of the time
distribution of laundering transactions. While CubeFlow ex-
pects transactions of a laundering chain to fall in the same
time bins, the patterns in AMLWorld are split throughout up
to six days, which represents 1/3 of the total timeframe of
the dataset. Setting the time aggregation too high, although
bringing transactions to the same bins, will result in very
noisy subsets (which was proven to decrease accuracy in the
case of FlowScope), while smaller time bins might spread
laundering patterns across too many timestamps. The pre-
ferred time aggregation for this analysis has been chosen as
24h, as it provides 18 time bins throughout the dataset, be-
ing loose enough to capture a certain degree of the patterns
in adjacent bins, but tight enough to create a sensible time
separation.

In the case of DenseFlow, there are two issues correspond-
ing to the two subsets identified by the algorithm. Firstly,
for most patterns, there is no maximum flow path identified
from the source to the dense laundering group. This means
that laundering sources are isolated, which is supported by
the 36% of sources with less than 15 reachable nodes. Fun-
damentally, the laundering patterns of AMLWorld are not de-
signed to reach larger groups, which breaks the assumption
of the algorithm.

Secondly, the suspicious accounts of AMLWorld do not fit
the criteria of the joint suspiciousness defined by DenseFlow.
In dispersed patterns, such as Fan-In, the source node has few
incoming edges from other laundering nodes, while receiver
nodes receive only one edge from a laundering node (which
already has a low topological score), leading to a low topo-
logical score for the overall pattern. Additionally, the tempo-
ral component of the suspiciousness metric, assumes that the
laundering patterns will create a temporal spike when com-
pared to adjacent time bins. However, laundering patterns
seem evenly distributed in time, as observable in Figure 5.
This leads to a low temporal score. By having both a low
temporal and topological score, the patterns are not selected
by the dense subgraph component of DenseFlow.

The first observation towards the results presented by
SMoTeF is the perfect precision. This means that all of the
identified edges are actual laundering edges, with no false
positives. This proves the efficiency of the two pruning
techniques employed by the algorithm, considering temporal
precedence and maximum temporal flow between the source
and destination of the smurf patterns. Despite the perfect pre-
cision, the low F1 score when compared to Graph Neural Net-
work solutions presented in [2] is caused by the low recall.
This reveals the main limitation of the algorithm, which is
that it is only able to consider smurf laundering patterns, as
closer inspection of the identified patterns shows that 100%
of them correspond to Scatter-Gather patterns in AMLWorld,
as depicted in 4. Moreover, when computed against just the
Scatter-Gather patterns in the dataset, the F1 score achieves
a value comparable to the Graph Neural Network solutions,
showing that SMoTeF is efficient in the context of smurfing
patterns, but it lacks flexibility for different categories of pat-
terns due to its graph mining approach to the extraction of
smurfing patterns.

8 Conclusions and Future Work

This work has aimed to explore money flow statistics as an
unsupervised approach to money laundering detection and
answer two questions, namely What are the existent solu-
tions using money flow statistics? and How would these solu-
tions perform on a realistic dataset of financial transactions?.
Coming as an answer to the first question, literature in the
field proposes five algorithms, FlowScope, CubeFlow, Weird-
Flows, DenseFlow and SMoTeF, out of which four have been
chosen to be benchmarked on the AMLWorld dataset, which
provides a realistically-generated dataset of synthetic finan-
cial transactions, by measuring the minority class F1 score
achieved on recognizing laundering transactions. This bench-
mark has aimed to answer the second research question.

The results, although significantly lower than those of
Graph Neural Networks, reveal several limitations of the flow
statistics algorithms, which opens the doors for further re-
search into how these limitations can be overcome such that
flow statistics become a feasible solution to money launder-
ing detection.

Firstly, as observed in the analysis of FlowScope and Cube-
Flow, the detection of laundering chains by chasing accounts
with a high difference between flow and retention of money
is overshadowed by very dense chains of transfers, which do
not necessarily represent laundering transactions. Further re-
search could explore how the the metric for identifying laun-
dering chains with low middle account retention could be
modified such that the Zero-Out property has more weight
than the density of transfers. One suggestion for this matter
could be using the percentage of the flow that money reten-
tion represents, instead of using their difference.

Secondly, one persisting issue in the analysis of the algo-
rithms is the inability of the flow statistics algorithms to adapt
to low-volume and dispersed patterns such as Fan-In, Fan-
Out or Stack. Therefore, further research could explore how
flow statistics can be used in combination with graph mining
algorithms to identify complex patterns and filter out false
positives using flow statistics. SMoTeF shows that maximum
flow analysis manages to efficiently filter out all false posi-
tives from pre-identified Scatter-Gather patterns.

Finally, for algorithms considering the temporal difference
between transactions in a laundering pattern in order to sat-
isfy the Fast-In/Fast-Out property, one limitation is the inabil-
ity to detect patterns loosely spread throughout time. Future
research could explore how time binning could be performed
dynamically in order to be able to detect patterns even if they
are spread across a large part of the dataset timeframe.
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Figure 4: Money laundering patterns [2].
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Figure 5: Time distribution of laundering transactions
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Figure 6: Flow conservation and capacity constraints for the maximum flow problem. [1]
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Figure 7: Suspicious rating (a), balance factor (c¢) and monetary suspiciousness (d) for DenseFlow.
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Figure 8: F1-score (a), Precision (b) and Recall (c) formulas specific to the minority class.
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