
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 15-06

Preconditioning Optimal In-Domain Control of
Navier-Stokes Equation Using Multilevel Sequentially

Semiseparable Matrix Computations

Yue Qiu, Martin B. van Gijzen, Jan-Willem van Wingerden
Michel Verhaegen, and Cornelis Vuik

ISSN 1389-6520

Reports of the Delft Institute of Applied Mathematics

Delft 2015



Copyright  2015 by Delft Institute of Applied Mathematics, Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission from Delft Institute of Applied Mathematics, Delft
University of Technology, The Netherlands.



Preconditioning Optimal In-Domain Control of Navier-Stokes
Equation Using Multilevel Sequentially Semiseparable Matrix

Computations

Yue Qiua,∗, Martin B. van Gijzena, Jan-Willem van Wingerdenb, Michel Verhaegenb,
Cornelis Vuika

aDelft Institute of Applied Mathematics, Delft University of Technology
bDelft Center for Systems and Control, Delft University of Technology

Abstract

In this manuscript, we study preconditioning techniques for optimal in-domain control
of the Navier-Stokes equation, where the control only acts on a few parts of the do-
main. Optimization and linearization of the optimal in-domain control problem results
in a generalized linear saddle-point system. The Schur complement for the generalized
saddle-point system is very difficult or even impossible to approximate. This prohibits
satisfactory performance of the standard block preconditioners. We apply the multilevel
sequentially semiseparable (MSSS) preconditioner to the underlying system. Compared
with standard block preconditioning techniques, the MSSS preconditioner computes an
approximate factorization of the global generalized saddle-point matrix up to a prescribed
accuracy in linear computational complexity. This in turn gives parameter independent
convergence for MSSS preconditioned Krylov solvers. We use a simple wind farm control
example to illustrate the performance of the MSSS preconditioner. We also compare with
the performance of the state-of-the-art preconditioning techniques. Our results show the
superiority of the MSSS preconditioning techniques to standard block preconditioning
techniques for optimal in-domain control of the Navier-Stokes equation.

Keywords: in-domain flow control, MSSS preconditioners, generalized saddle-point
system, Navier-Stokes control

1. Introduction

Nowadays, optimal control problems in practice are mostly solved with nonlinear
programming (NLP) methods based on some discretization strategies of the original
continuous problems in the functional space [1]. Once the optimization problem is dis-
cretized, the optimization variable is reduced to a finite-dimensional space. This results
in a parameter optimization problem [2]. Simultaneous strategies, explicitly perform a
discretization of the partial differential equations (PDEs) that prescribe the dynamics

∗Corresponding author
Email address: y.qiu@gmx.us (Yue Qiu)

Preprint submitted to ××× October 1, 2015



of the system as well as the cost function, i.e., PDE simulation and the optimization
procedure proceed simultaneously, cf. [3, 4, 5]. Sequential strategies, on the other hand,
just parameterize the control input and employ numerical schemes in a black-box manner
by utilizing the implicit function theorem (IFT) [2, 6, 7]. This approach turns out to be
very efficient when the dimension of the control variable is much smaller than the system
states that are described by the partial differential equations [2, 7], where optimal shape
design [8], boundary control of fluid dynamics [9, 10] are applications for this type of
optimization approaches. For the simultaneous approach, its high potential in terms of
efficiency and robustness turns out to be very difficult to be realized when the sizes of the
states and inputs are very large. This yields a very large optimization problem, where
the equality constraints by PDEs are appended to the augmented cost function. The
Lagrangian multipliers, the number of which is the same as the state variables of PDEs,
make the size of the optimization problem even bigger.

Just like many problems in science and engineering, the most time-consuming part
for the optimal control of PDEs is to solve a series of linear systems arising from the
simulation of PDEs [3]. With increasing improvement of computational resources and
the advancement of numerical techniques, very-large problem can be taken into con-
sideration [11]. An important building block for the optimal control of PDEs is the
preconditioning techniques to accelerate the simulation of PDEs. Many efforts have
been dedicated to the development of efficient and robust preconditioning techniques
for this types of problems [12, 13, 14, 15, 16]. These research projects are devoted to
preconditioning control problems of the tracking type where the control is distributed
throughout the domain. For the case of the in-domain control where the control only acts
on a few parts of the domain where the actuators are placed, or the boundary control
case that only the boundary condition can be controlled, preconditioning techniques for
this in-domain control problems do not give satisfactory performance. This is because
the developed preconditioning techniques highly depend on an efficient approximation of
the Schur complement of the block linear system arising from the discretized optimality
condition, cf. conclusion parts of [15, 17] for a discussion. Some research for optimal
in-domain control problems focuses on developing novel computational techniques for
the specific objective [1, 18, 19] without considering efficient preconditioning techniques.

In this manuscript, we focus on designing efficient and robust preconditioning tech-
niques for optimal in-domain control of the Navier-Stokes equation and use a simple
wind farm control example to illustrate the performance of our preconditioning tech-
nique. Our contributions include, (1) By formulating the optimal in-domain control of
the Navier-Stokes problem as a generalized saddle-point problem using the implicit func-
tion theorem (IFT), we can reuse the preconditioners for the linearized Navier-Stokes
equation to solve the adjoint equations for the computations of the gradient and Hessian
matrix. This reudces the computational cost significantly; (2) We study the multilevel
sequentially semiseparable (MSSS) preconditioner for the generalized saddle-point sys-
tem. In contrast to the standard block preconditioners that require to approximate the
Schur complement of the block linear system, the MSSS preconditioner computes an ap-
proximate factorization of the global system matrix up to a prescribed accuracy in linear
computational complexity. This is a big advantage over the standard block precondition-
ers; (3) We evaluate the performance of the MSSS preconditoner using incompressible

2



flow and fast iterative solver (IFISS) [20]1 and compare with the state-of-the-art precon-
ditioning techniques; (4) Our analysis show that the computational cost can be further
reduced by applying block Krylov methods to solve a linear system with multiple left-
hand sides and multiple right-hand sides for the computations of the gradient and Hessian
matrix.

The structure of this manuscript is organized as follows. In Section 2, we use a simple
wind farm control example to formulate an optimal in-domain Navier-Stokes control
problem. Applying numerical approaches to solve this optimization problem, we obtain a
generalized saddle-point system in Section 3. To preconditioning this generalized saddle-
point system, we study the MSSS preconditioning technique in Section 4. In Section 5, we
perform numerical experiments to illustrate the performance of the MSSS preconditioning
techniques for this type of problems. We also study the state-of-the-art preconditioning
techniques in Section 5 as a comparison. Conclusions are drawn in Section 6.

2. Problem Formulation

In this section, we use wind farm control as an example to formulate the in-domain
Navier-Stokes control problem. Many research activities illustrate that operating all the
turbines in a wind farm at their own optimal state gives suboptimal performance of the
overall wind farm [21, 22]. Wind farm control aims to optimize the total power captured
from the wind by taking coordinating control strategies to the turbines in the wind farm.
By appropriately choosing the computational domain for the flow, the wind farm control
can be formulated as an optimal flow control problem where the dynamics of the flow are
described by the incompressible Navier-Stokes equation. For the wind farm control, the
control only acts on a few parts of the domain where the turbines are located. This in
turn gives an optimal in-domain flow control problem. In the next part, we aim to build
a simple wind farm model and use this model to formulate the in-domain Navier-Stokes
control problem.

2.1. Fluid Dynamics
Some efforts have been devoted to develop a suitable model to simulate the wake effect

in the wind farm, cf. [23, 24] for a general survey and [21, 25] for recent developments.
In general there exist two approaches for modeling of the wake. One is the heuristic
approach that does not solve a flow equation but uses some rules of thumb [21, 26], a
typical example is the Park model [21]. The second approach is solving an incompressible
Navier-Stokes or Euler equation, cf. [11, 27]. In this manuscript, we use the second
approach to model the flow in the wind farm. Moreover, some recent research try to take
the boundary layer and some physical behavior into account. This in turn requires a
more complicated turbulent flow model for the wind farm simulation study [11, 24, 28].
However, these research activities do not take efficient preconditioning techniques into
account but focus on physical properties of the flow for the wind farm simulation. In
this manuscript, we focus on designing efficient and robust preconditioning techniques

1IFISS is a computational laboratory for experimenting with state-of-the-art preconditioned iterative
solvers for the discrete linear equation systems that arise in incompressible flow modeling

3



and we evaluate the performance of our preconditioning techniques by IFISS. We only
consider flow problems that can be addressed within the framework of IFISS.

Consider the stationary incompressible Navier-Stokes equation in Ω ∈ R2 that is given
by

−ν∆−→u + (−→u · ∇)−→u +∇p =
−→
f

∇ · −→u = 0
(1)

where ν is the kinematic viscosity, −→u is the velocity field, p denotes the pressure,
−→
f

is a source term. Here Ω is a bounded domain with its boundary given by Γ = ∂Ω =
∂ΩD ∪ ∂ΩN , where ∂ΩD denotes the boundary where Dirichlet boundary conditions are
prescribed and ∂ΩN represents the boundary where Neumann boundary conditions are
imposed. The Reynolds number Re ∈ R+ describes the ratio of the inertial and viscous
forces within the fluid [29] and is defined by

Re ,
urLr
ν

, (2)

where ur ∈ R+ is the reference velocity, Lr ∈ R+ is the reference distance that the
flow travels. The Reynolds number plays an important role in the flow equation that
describes whether the flow under consideration is laminar or turbulent. In many engi-
neering problems, turbulent flow happens when the Reynolds number Re > 2000 [29].
In the case of flow through a straight pipe with a circular cross-section, at a Reynolds
number below a critical value of approximately 2040, fluid motion will ultimately be
laminar, whereas at larger Reynolds numbers, the flow can be turbulent [30]. Since we
focus on efficient preconditioning techniques for optimal in-domain flow control using
IFISS in this manuscript and no turbulent flow model is included in IFISS, we consider
a flow with Reynolds number Re = 2000, although this does not correspond to practical
flow for wind farm control.

To study the aerodynamics of the wind farm, we cannot set an infinite dimensional
computational domain. We can prescribe suitable boundary conditions for the flow that
in turn gives a finite domain. We set a standard reference domain Ω = [−1, 1] × [−1, 1]
for the wind farm simulation study in Figure 1. The reference velocity ur is set to 1.

n
a
tu
ra
l

natural

natural

Figure 1: Computational domain for wind farm simulation

4



The turbines in the wind farm are located in a line that follows the stream direction,
and the leftmost turbine is placed at the center of the domain. Such configurations are
widely used in the wind farm simulation studies [11, 21, 27]. Here the diameter of the
turbine is set to be 1/64 of the reference domain in Figure 1. The distance between
turbines is set to be 5 times of the diameter of the turbines [27]. Constant inflow is
imposed on the left boundary and is given by

ux = uc, uy = 0, (3)
or equivalently

−→u · −→n = −uc. (4)
Here, −→n is the unit normal vector of the boundary that points outwards. For top, right,
and bottom boundary that are far away from the turbines, the flow is considered to be
free stream and the natural boundary outflow condition given by (5) is prescribed,

ν
∂−→u
∂−→n
− p−→n = 0. (5)

Here, ∂−→u
∂−→n is the Gâteaux derivative at ∂ΩN in the direction of −→n . This boundary

condition states that the flow can move freely across the boundary by resolving the
Navier-Stokes equation (1). Associated with the prescribed boundary condition (4) (5),
the resolved velocity without outer source for the Navier-Stokes equation (1) is shown in
Figure 2.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

y

Figure 2: Resolved velocity without outer source

2.2. Wind Turbines
Wind turbines can be modeled as outer sources that interact with the flow. Two

widely used methods for wind turbine modelling are the actuator disk method (ADM) [31]
and the actuator line method [32]. In this manuscript, we use the ADM method for wind
turbines, where the thrust force is denoted by,

f = −CT ρAû2
d. (6)

Here ûd is the average axial flow velocity at the turbine disk, CT is the disk based thrust
coefficient, ρ is the density of the flow and A is the area that is swept by the turbine
blades.

5



2.3. Objective Function
The wind farm control aims to maximize the total power captured by all the wind

turbines in the wind farm, which can be represented as

Pt =

Nt∑
j=1

−fj ûj = ρA

Nt∑
j=1

CTj
û3
j , (7)

where Nt is the number of turbines in the wind farm, ûj is the uniform disk averaged
axial flow speed of the j-th turbine.

To summarize, the in-domain Navier-Stokes control problem can be formulated as
the following optimization problem,

min
CT ,
−→u

−
Nt∑
j=1

CTj û
3
j

s.t. − ν∆−→u + (−→u · ∇)−→u +∇p =
−→
f (CT ,

−→u ),

∇ · −→u = 0,

0 ≤ CTj
≤ 1, (j = 1, . . . , Nt).

(8)

Here CTj varies from 0 to 1 based on individual pitch control and yaw control of the
turbine j,

−→
f (CT ,

−→u ) is a nonlinear function and it is of value (6) at the position where
turbines are placed and 0 elsewhere, and CT =

[
CT1

CT2
· · · CTNt

]T .

3. Reduced Nonlinear Programming

In the previous section, we formulated an in-domain control problem (8) by using a
wind farm control example. The size of the control variable Nt, which is the number
of turbines, is much smaller than the size of the state variables (number of velocity and
pressure grid unknowns). Therefore, we use the sequential approach that is based on the
implicit function theorem to solve a reduced optimization problem.

3.1. Reduced Optimization Problem
Denote the equality constraints in (8) for the flow equation by h(CT , φ) = 0 where

φ = (−→u , p), and the objective function by g(CT , φ), then the optimization problem (8)
can be written as

min
CT ,φ

g(CT , φ)

s.t. h(CT , φ) = 0,

0 ≤ CT ≤ 1.

(9)

The equality constraint in (8) implies that the velocity and pressure φ is a function of
−→
f . For the existence of this function, cf. [7] for a proof. Since

−→
f is an explicit function of

CT , φ is a function of CT and denote this function by φ = s(CT ). The function s(CT ) is
not explicitly computed but is obtained implicitly by solving the flow equation (1) using
given CT .

6



By using the implicit function theorem, we can re-write the optimization problem in
a reduced form,

min
CT

g(CT , s(CT ))

s.t. 0 ≤ CT ≤ 1.
(10)

Newton-type methods, which are second order methods, are well-suited to solve this type
of nonlinear programming (NLP) problems. An alternative approach to solve this type
of problem is the (reduced) sequentially quadratic programming ((R)SQP) [33]. For the
reduced optimization problem (10), these two types of methods are quite similar and we
refer to [7] for a detailed discussion.

In this section, we apply Newton’s method to solve the reduced NLP problem (10).
The reason to choose the Newton’s method is that the Hessian matrix for this problem
is of small size and can be computed explicitly. Moreover, we can reuse the information
from the last Newton step of solving the nonlinear flow equation to compute the gradient
and the Hessian matrix, which makes Newton’s method computationally competitive for
this optimization problem. This will be explained in the following part. The Newton’s
method for this problem is described by Algorithm 1.

Algorithm 1 Reduced Newton’s algorithm for (9)
1: procedure Opt(Wind) . Optimization procedure for wind farm control
2: Input: Initial guess C(0)

T , maximal optimization steps itmax, stop tolerance ε0

3: while ‖∇gk‖ > ε0 && k ≤ itmax do . outer iteration
4: solve h(C

(k)
T , φ) = 0 to compute φ(k) . inner iteration

5: evaluate the gradient ∇gk at (C
(k)
T , φ(k))

6: evaluate the Hessian matrix Hk at (C
(k)
T , φ(k))

7: compute the update ∆C
(k)
T = arg min ∆CTTHk∆CT +∇gTk ∆CT

8: C
(k+1)
T ← C

(k)
T + ∆C

(k)
T

9: Check inequality constraints by projection
10: if CTj

> 1 then
11: CTj = 1 . project on boundary
12: else if CTj < 0 then
13: CTj

= 0 . project on boundary
14: end if
15: k ← k + 1
16: end while
17: Output: Optimal control variable CT and corresponding solution of u
18: end procedure

In Algorithm 1, we denote the optimization step as the outer iteration, and at each
outer iteration, we need to solve a Navier-Stokes equation with nonlinear right-hand
side. This step is denoted by the inner iteration in line 4 of the algorithm. From
the description of Algorithm 1, it is clear that the most time-consuming part for this
optimization problem is the solution of the nonlinear flow equation and the computations

7



of the gradient and Hessian matrix. Therefore, efficient numerical methods need to be
deployed.

3.2. Computations of the Flow Equation
At each outer iteration of Algorithm 1, we need to solve a nonlinear flow equation

that has a nonlinear right-hand side at step 4. We explicitly write this equation in
decomposed form as

−ν(
∂2

∂x2
+

∂2

∂y2
)ux +

velocity convection︷ ︸︸ ︷
(ux

∂

∂x
+ uy

∂

∂y
)ux +

∂

∂x
p = fx(CT , ux, uy),

−ν(
∂2

∂x2
+

∂2

∂y2
)uy + (ux

∂

∂x
+ uy

∂

∂y
)uy︸ ︷︷ ︸

velocity convection

+
∂

∂y
p = fy(CT , ux, uy),

∂

∂x
ux +

∂

∂y
uy = 0.

(11)

Equation (11) is a nonlinear equation where the nonlinearity is caused by both the ve-
locity convection operator and the nonlinear right-hand side. To solve such a nonlinear
equation (11), we apply Newton’s method. At each Newton iteration of step 4 in Algo-
rithm 1, we need to solve a linear system of the following type,νK +N + Jnxx + Jfxx Jnxy + Jfxy BTx

Jnyx + Jfyx νK +N + Jnyy + Jfyy BTy
Bx By 0

∆ux
∆uy
∆p

 =

ab
c

 , (12)

after discretizing the nonlinear partial differential equation (11) using mixed finite ele-
ment method. Here N is the convection matrix, Jn(·) denote the Jacobian matrices from
the nonlinear velocity convection term, and Jf(·) represent the Jacobian matrices from the
nonlinear right-hand side. Since only a small part of the domain is controlled, fx and fy
are zero almost everywhere in the domain except in the vicinity where the turbines are
placed. This in turn gives singular Jacobian matrices Jf(·).

Comparing system (12) with the standard linearized Navier-Stokes equation by the
Newton’s method given byνK +N + Jnxx Jnxy BTx

Jnyx νK +N + Jnyy BTy
Bx By 0

∆ux
∆uy
∆p

 =

ab
c

 , (13)

we see that the linearized flow equation (12) is a perturbed linearized Navier-Stokes
equation with singular perturbation in the matrix blocks that correspond to the velocity.
Re-write equation (13) in a compact form as[

A BT

B 0

] [
∆u
∆p

]
=

[
f
g

]
, (14)

8



and the equation (12) is given by a perturbed form[
A+ Jf BT

B 0

] [
∆u
∆p

]
=

[
f
g

]
. (15)

The linear system (15) is large, sparse, and highly indefinite. It belongs to the type
of generalized saddle-point system. Efficient preconditioning techniques are needed to
solve such systems using Krylov solvers. Standard preconditioning techniques for such
2-by-2 system highly depend on efficient approximation of the Schur complement, or
computing a spectrally equivalent Schur complement. For the linearized Navier-Stokes
problem (14), there exits some well-established preconditioning techniques such as the
SIMPLE method [34], augmented Lagrangian preconditioner [35], pressure convection-
diffusion (PCD) preconditioner [36], et al. However, the aforementioned preconditioners
do not perform well to solve the perturbed linear system (15) because the Schur comple-
ment for the perturbed linear system is even more difficult to approximate. Numerical
experiments in Section 5 illustrate the performance of block preconditioners for (15).

As we will see in Section 4, all the blocks of the matrix in (12) have an MSSS
structure, it is therefore natural to permute the matrix with MSSS blocks into a global
MSSS matrix. With this permutation, we can compute an approximate factorization.
This factorization gives a global MSSS preconditioner for the system (12). This global
preconditioner does not require to approximate the Schur complement of the generalized
saddle-point system (15). Details of this preconditioning technique will be introduced in
Section 4.

3.3. Computations of Partial Derivatives
Denote the reduced gradient of the cost function by

∇g =
[

∂
∂CT1

g ∂
∂CT2

g . . . ∂
∂CTNt

g
]T
. (16)

The gradient can be computed using

∂

∂CTj

g =
∂g

∂CTj

+
∂g

∂ux

∂ux
∂CTj

+
∂g

∂uy

∂uy
∂CTj

, (j = 1, 2, . . . , Nt). (17)

Since the cost function g is an analytic function of CT , ux and uy, the partial derivatives
∂g
∂CTj

, ∂g
∂ux

, and ∂g
∂uy

are trivial to compute. Next, we show how to compute the partial

derivatives ∂ux

∂CTj
, and ∂uy

∂CTj
.

Assume that ux, uy, and p are twice differentiable with respect to CTj (j = 1, 2, . . . , Nt),
and that the first and second order derivatives have continuous second order derivative
in Ω, i.e.,

∂ux
∂CTj

,
∂uy
∂CTj

,
∂p

∂CTj

∈ C2(Ω),

and
∂2ux

∂CTi
∂CTj

,
∂2uy

∂CTi
∂CTj

,
∂2p

∂CTi
∂CTj

∈ C2(Ω),

for (i, j = 1, 2, . . . , Nt).
9



According to the flow equation (11), we have the first order derivative given by

−ν

diffusion operator︷ ︸︸ ︷(
∂2

∂x2
+

∂2

∂y2

)(
∂ux
∂CTj

)
+

convection operator︷ ︸︸ ︷(
ux

∂

∂x
+ uy

∂

∂y

)(
∂ux
∂CTj

)
+

linear term︷ ︸︸ ︷(
∂ux
∂x

∂ux
∂CTj

+
∂ux
∂y

∂uy
∂CTj

)
+

∂

∂x

(
∂p

∂CTj

)
=

∂

∂CTj

fx(CT , ux, uy),

−ν
(
∂2

∂x2
+

∂2

∂y2

)
︸ ︷︷ ︸
diffusion operator

(
∂uy
∂CTj

)
+

(
ux

∂

∂x
+ uy

∂

∂y

)
︸ ︷︷ ︸
convection operator

(
∂uy
∂CTj

)
+

(
∂uy
∂x

∂ux
∂CTj

+
∂uy
∂y

∂uy
∂CTj

)
︸ ︷︷ ︸

linear term

+
∂

∂y

(
∂p

∂CTj

)
=

∂

∂CTj

fy(CT , ux, uy),

∂

∂x

(
∂ux
∂CTj

)
+

∂

∂y

(
∂uy
∂CTj

)
= 0.

(18)

Here the partial differential equation (18) is obtained by computing the first order deriva-
tive with respect to CTj

(j = 1, 2, . . . , Nt) for the flow equation (11) and making use of
the linearity of the diffusion operator and the divergence operator.

Note that equation (18) is a linear partial differential equation. It is often called the
adjoint equation of (11). Homogeneous Dirichlet boundary conditions are imposed on
the constant inflow boundary and natural boundary conditions are prescribed for the
outflow boundary for the adjoint equation (18). We use a mixed-finite element method
to discretize (18) and use the following notations

χj =

[(
∂ux

∂CTj

)T (
∂uy

∂CTj

)T (
∂p
∂CTj

)T]T
.

We reuse the same notation to denote its discrete analog to get a linear system given byνK +Nl + Jnl
xx + Jfxx Jnl

xy + Jfxy BTx
Jnl
yx + Jfyx νK +Nl + Jnl

yy + Jfyy BTy
Bx By 0


︸ ︷︷ ︸

A

χj = ζj , (19)

where Nl is the convection matrix, Jnl
xx, Jnl

xy, Jnl
yx, and Jnl

yy are the corresponding Jacobian
matrices by linearizing the nonlinear velocity convection operator, respectively. Jfxx, Jfxy,
Jfyx, and Jfyy are the associating Jacobian matrices that linearize the nonlinear right-hand
side f with respect to CTj . They are all from the last Newton step of the linearized flow
equation (12). The right-hand side vector ζj is obtained by discretizing known variables
in (18). Therefore, the matrix A is nothing but the linear system matrix from the last
Newton step for solving the flow equation (12). The computed preconditioner for the
last Newton step to solve the flow equation can be reused. Therefore, the computational
work is much reduced.

By stacking χj , and ζj (j = 1, 2, . . . , Nt) as

χ =
[
χ1 χ2 . . . χNt

]
, and ζ =

[
ζ1 ζ2 . . . ζNt

]
,

10



we obtain the following linear equations with multiple left-hand sides and multiple right-
hand sides

Aχ = ζ. (20)

Here the size of unknowns Nt, is much smaller than the problem size. Block Krylov
subspace methods, such as block IDR(s) [37, 38], are well-suited to solve all the unknowns
simultaneously for this type of problems.

Next, we use the same idea as above to compute the Hessian matrix H, which is given
by

H =



∂2

∂C2
T1

g · · · · · · ∂2

∂CT1
∂CTNt

g

...
. . .

...
...

. . .
...

∂2

∂CTNt
∂CT1

g · · · · · · ∂2

∂C2
TNt

g

 .

According to (17), we have

∂2

∂CTj
∂CTk

g =
∂2g

∂CTj
∂CTk

+
∂2g

∂u2
x

∂ux
∂CTk

∂ux
∂CTj

+
∂g

∂ux

∂2ux
∂CTj

∂CTk

+
∂2g

∂u2
y

∂uy
∂CTk

∂uy
∂CTj

+
∂g

∂uy

∂2uy
∂CTj

∂CTk

.

(21)

Since g is an analytic function of CT , ux, uy and we have already computed the first
order derivative ∂ux

∂CTi
, and ∂uy

∂CTi
in the previous step, we just need to compute the second

order derivatives ∂2ux

∂CTj
∂CTk

, and ∂2uy

∂CTj
∂CTk

for the computations of the Hessian matrix.
Here we use the same idea as we used in the previous part to compute the first order
derivatives.

Compute the partial derivative with respect to CTk
using the adjoint equation (18),

we get

− ν

diffusion operator︷ ︸︸ ︷(
∂2

∂x2
+

∂2

∂y2

)(
∂2ux

∂CTj
∂CTk

)
+

convection operator︷ ︸︸ ︷(
ux

∂

∂x
+ uy

∂

∂y

)(
∂2ux

∂CTj
∂CTk

)

+

linear term︷ ︸︸ ︷(
∂ux
∂x

∂2ux
∂CTj∂CTk

+
∂ux
∂y

∂2uy
∂CTj∂CTk

)
+
∂

∂x

(
∂2p

∂CTj∂CTk

)

+

known︷ ︸︸ ︷(
∂ux
∂CTk

∂

∂x

(
∂ux
∂CTj

)
+

∂uy
∂CTk

∂

∂y

(
∂ux
∂CTj

))

+

known︷ ︸︸ ︷(
∂ux
∂CTj

∂

∂x

(
∂ux
∂CTk

)
+

∂uy
∂CTj

∂

∂y

(
∂ux
∂CTk

))
=

∂2

∂CTj∂CTk

fx(CT , ux, uy),

(22)

11



− ν
(
∂2

∂x2
+

∂2

∂y2

)
︸ ︷︷ ︸
diffusion operator

(
∂2uy

∂CTj∂CTk

)
+

(
ux

∂

∂x
+ uy

∂

∂y

)
︸ ︷︷ ︸
convection operator

(
∂2uy

∂CTj∂CTk

)

+

(
∂uy
∂x

∂2ux
∂CTj∂CTk

+
∂uy
∂y

∂2uy
∂CTj∂CTk

)
︸ ︷︷ ︸

linear term

+
∂

∂x

(
∂2p

∂CTj∂CTk

)

+

(
∂ux
∂CTk

∂

∂x

(
∂uy
∂CTj

)
+

∂uy
∂CTk

∂

∂y

(
∂uy
∂CTj

))
︸ ︷︷ ︸

known

+

(
∂ux
∂CTj

∂

∂x

(
∂uy
∂CTk

)
+

∂uy
∂CTj

∂

∂y

(
∂uy
∂CTk

))
︸ ︷︷ ︸

known

=
∂2

∂CTj
∂CTk

fy(CT , ux, uy),

∂

∂x

(
∂2ux

∂CTj∂CTk

)
+

∂

∂y

(
∂2uy

∂CTj∂CTk

)
= 0.

(23)

We see that (22) (23) is a linear partial differential equation and it is also an adjoint
equation of the flow equation (11). Boundary conditions for the adjoint equation (22) are
set by homogeneous Dirichlet boundary conditions on the constant inflow boundary and
natural boundary conditions for the outflow boundary. By using mixed finite element
method to discretize the equation (22) (23), we haveνK +Nl + Jnl

xx + Jf
′

xx Jnl
xy + Jf

′

xy BTx
Jnl
yx + Jf

′

yx νK +Nl + Jnl
yy + Jf

′

yy BTy
Bx By 0


︸ ︷︷ ︸

A′

γjk = ξjk, (24)

Here we reuse ∂2

∂CTj
∂CTk

ux, ∂2

∂CTj
∂CTk

uy, ∂2

∂CTj
∂CTk

p to represent their discrete analog,

respectively, and γjk =
[

∂2

∂CTj
∂CTk

uTx
∂2

∂CTj
∂CTk

uTy
∂2

∂CTj
∂CTk

pT
]T

.
For the linear system (24), Jnl

xx, Jnl
xy, Jnl

yx, and Jnl
yy are the corresponding Jacobian

matrices as introduced in (19). The Jacobian matrices Jf
′

(·) is obtained by computing the
second order derivatives of fx, fy with respect to CT and using partial differentiation
rules. It is not difficult to see that Jf

′

(·) are identical to Jf(·) in (19). Therefore, the
linear system (24) has the same system matrix as the linear system (19), i.e., A′ = A.
Moreover, A is just the system matrix from the last Newton step to solve the nonlinear
flow equation (11). The preconditioners computed for the last Newton step can also be
reused here.

The right-hand side vector ξjk is obtained by discretizing known variables in (22) (23).
By stacking the unknowns in the following way,

γ =
[
γ11 γ12 . . . γNtNt

]
and ξ =

[
ξ11 ξ12 . . . ξNtNt

]
,

12



We get the following linear system with multiple left-hand and right-hand sides,

Aγ = ξ. (25)

Here the size of unknowns N2
t is also much more smaller than the problem size, block

Krylov methods are still well-suited to this type of problems.

4. Multilevel Sequentially Semiseparable Preconditioners

The multilevel sequentially semiseparable (MSSS) preconditioning technique was first
studied for the PDE-constrained optimization problems in [39] and later extended to the
computational fluid dynamics problems in [40]. The global MSSS preconditioner com-
putes an approximate factorization of the global (generalized) saddle-point matrix up to
a prescribed accuracy in linear computational complexity using MSSS matrix computa-
tions. To start with, we first introduce the sequentially semiseparable matrices and the
block matrix definition for such matrices is given by Definition 4.1.
Definition 4.1 ([41]). Let A be an N ×N matrix with SSS matrix structure and let n
positive integers m1, m2, · · · mn satisfy N = m1 + m2 + · · · + mn such that A can be
written in the following block-partitioned form

Aij =

 UiWi+1 · · ·Wj−1Vj , if i < j;
Di, if i = j;
PiRi−1 · · ·Rj+1Qj , if i > j.

(26)

The matrices Ui, Wi, Vi, Di, Pi, Ri, Qi are matrices whose sizes are compatible for
matrix-matrix product when their sizes are not mentioned. They are called generators
for an SSS matrix.

Basic operations such as addition, multiplication and inversion are closed under
the SSS matrix structure and can be performed in linear computational complexity.
Multilevel sequentially semiseparable matrices generalize the SSS matrices to the multi-
dimensional case. Similar to Definition 4.1 for SSS matrices, the generators representa-
tion for MSSS matrices, specifically the k-level SSS matrices, is defined in Definition 4.2.

Definition 4.2 ([39]). The matrix A is said to be a k-level SSS matrix if all its gen-
erators are (k − 1)-level SSS matrices. The k-level SSS matrix is the SSS matrix that
satisfies Definition 4.1.

The MSSS matrix structure can be inferred directly from the discretization of PDEs,
which is studied in [39, 40]. For block linear system (27) from discretization of coupled
PDEs, all the blocks F , B, and D have an MSSS structure [40].[

F BT

B D

] [
u
p

]
=

[
f
g

]
. (27)

Therefore, the permutation operation introduced in [39] can be applied to permute the
system matrix of (27) into a global MSSS matrix, which gives

Π

[
F BT

B D

]
ΠT︸ ︷︷ ︸

Ā

Π

[
u
p

]
︸ ︷︷ ︸
x̄

= Π

[
f
g

]
︸ ︷︷ ︸

b̄

, (28)

13



where Π is a permutation matrix that is also introduced in [39]. After permutation,
the matrix Ā is an MSSS matrix and an approximate factorization can be computed in
O(r3Ns) complexity where r is the upper bound of the rank for the low-rank approxima-
tion used to approximate the off-diagonal blocks of intermediate dense matrices in this
factorization and Ns is the problem size. If r is bounded by a constant small enough
compared with the problem size, this factorization can be computed in linear computa-
tional complexity. Moreover, we have the following theorem that gives the bound of the
MSSS preconditioned spectrum for 2D problems.

Theorem 4.1. For a nonsingular 2-level SSS matrix Ā, we can compute an approximate
block factorization which is given by ˜̄A = L̃D̃Ũ that satisfies∥∥∥Ā− ˜̄A

∥∥∥
2
≤ ε, and

∥∥∥I − ˜̄A−1Ā
∥∥∥

2
≤ ε

ε0 − ε
,

where ε0 is the smallest singular value of Ā, I denotes the identity matrix, and ε satisfies

ε ≤ 2
√
n(n− 1)τ.

Here n is the number of 1-level SSS blocks and n is smaller than the number of grid points
in one dimension, τ is a freely chosen parameter to compute the MSSS preconditioner.

Proof: For the proof of this theorem, we refer to Lemma 3.2, Theorem 3.6, and
Theorem 5.3 of [42].

Theorem 4.1 states that the MSSS preconditioner can be computed up to arbitrary
accuracy, this in turn makes the MSSS preconditioned spectrum cluster around (1, 0)
and the radius of the circle that contains the preconditioned spectrum can be made
arbitrarily small. This results a robust preconditioner and makes the convergence of the
MSSS preconditioned Krylov solver independent of the mesh size and Reynolds number
for the generalized saddle-point system (15).

In practice, ε is usually of the same order with τ , which is much smaller than the
bound given by Theorem 4.1. This in turn yields a small r that is bounded by a constant
independent of Ns and r � Ns, which means that the MSSS preconditioner can be
computed in linear computational complexity. Numerical results in Section 5 verify this
statement.

5. Numerical Experiments

In the previous sections, we formulate an optimal in-domain control problem. It is
shown that this in-domain control problem can be solved by the reduced Newton method
described by Algorithm 1. The biggest computational issue is to solve a nonlinear flow
equation (11) by using the Newton’s method and two adjoint equations (19) (24) to
compute the gradient and the Hessian matrix. At each optimization step, we solve the
nonlinear flow equation (11) with inner iterations. A preconditioned Krylov solver is
performed at each inner iteration.

In Section 3, we showed that the linearized flow equation (12) is a perturbed lin-
earized Navier-Stokes equation (13) with singular perturbation on the (1, 1) block of
the linearized Navier-Stokes system matrix. Standard preconditioning techniques for the

14



Navier-Stokes equation, which highly depend on efficient approximation of the Schur
complement, fail to give satisfactory performance for this problem due to this perturba-
tion. This will be illustrated by numerical results later. In this section, we evaluate the
performance of the MSSS preconditioning techniques for the optimal in-domain control
problem and compare with the pressure convection diffusion (PCD) preconditioner [43]
that is implemented in IFISS. All the numerical experiments are implemented in MAT-
LAB 2015a on a desktop of Intel Core i5 CPU of 3.10 GHz and 16 Gb memory with the
Debian GNU/Linux 8.0 system.

5.1. Preconditioning Techniques
In this part, we report the performance of the MSSS preconditioner and the PCD

preconditioner for the second inner iteration of the first outer iteration of Algorithm 1.
We use the IDR(s) method [44] to solve the preconditioned system. The preconditioned
IDR(s) solver is stopped if the the 2-norm of the residual at step k, which is denoted by
‖rk‖2, satisfies ‖rk‖2 ≤ 10−4 ‖r0‖2.

The PCD preconditioner Pp for the linear system (15) is chosen as,

Pp =

[
A+ Jf BT

−Sp

]
, (29)

where Sp = LpA
−1
p Mp is the approximatation of the Schur complement B(A+Jf )−1BT .

Here, Ap and Lp are the convection-diffusion operator and Laplace operator in the finite
dimensional solution space of the pressure with prescribed boundary conditions, Mp

is the pressure mass matrix. For this PCD preconditioner, both A + Jf and Sp are
approximated by the algebraic multigrid (AMG) method that is implemented in IFISS.

We set the Reynolds number Re = 2000 as discussed in the previous section. We
report the performance of both preconditioners in Table 1-2. Here the column “precon.”
represents the time to compute the MSSS preconditioner or the time for the setup of the
AMG method, and the column “IDR(4)” denotes the time of the preconditioned IDR(4)

solver to compute the solution up to prescribed accuracy. Both time are measured in
seconds.

Table 1 shows the time to compute the MSSS preconditioner scales linearly with the
problem size. The number of iterations remains virtually constant with the refinement
of the mesh. The time of the preconditioned IDR(4) solver also scales linearly with the
problem size. For PCD preconditioner, the preconditioned IDR(4) solver fails to converge
to the solution of prescribed accuracy within 400 iterations for relatively bigger mesh size.
For a very fine mesh, the preconditioned IDR(4) solver computes the solution up to the
prescribed accuracy within 300 iterations. This is because the entries of perturbation by
the matrix Jf in (29), which is introduced by the nonlinear right-hand side, is of O(h2).
As h → 0, this perturbation by the Jacobian matrix becomes smaller compared with A
in the (1, 1) block of (29). Therefore, Sp approximates the perturbed Schur complement
well.

The computational results by the MSSS preconditioner in Table 2 show that the time
for the setup of AMG does not scale linearly with the problem size. The reason may be
that the AMG implemented in IFISS is not optimized, or the AMG algorithm in IFISS
does not have linear computational complexity.

15



Table 1: Computational results of the MSSS preconditioner for Re = 2000

grid problem size # iter. precon. (sec.) IDR(4) (sec.) total (sec.)
64× 64 1.25e+ 04 2 4.36 0.64 5.00

128× 128 4.97e+ 04 3 18.43 2.53 20.96
256× 256 1.98e+ 05 5 65.09 9.25 74.34
512× 512 7.88e+ 05 3 272.63 24.62 297.25

Table 2: Computational results of the PCD preconditioner for Re = 2000

grid problem size # iter. precon. (sec.) IDR(4) (sec.) total (sec.)
64× 64 1.25e+ 04 400 8.56 no convergence -

128× 128 4.97e+ 04 400 70.74 no convergence -
256× 256 1.98e+ 05 266 237.68 42.93 280.61
512× 512 7.88e+ 05 203 1386.98 101.72 1488.70

To compute the MSSS preconditioner, we set τ = 10−5 for the 512 × 512 grid and
10−4 for the rest grids. Here τ is the upper bound of the discarded singular values for
the model order reduction that is performed to compute the approximate factorization.
The adaptive rank for the low-rank approximation of the upper-triangular part dennoted
by ruk and for approximation of the lower-triangular part denoted by rlk for this set up
are plotted in Figure 3. For details of this approximate factorization, we refer to [42].

�

10 20 30 40 50 60

3

4

5

6

7

8

9

10

11

12

�
�

�

�
�

�

(a) τ = 10−4, 64× 64 grid

20 40 60 80 100 120
2

4

6

8

10

k

 

 

r l
k

ru
k

(b) τ = 10−4, 128× 128 grid

50 100 150 200 250

2

4

6

8

10

k

 

 

r l
k

ru
k

(c) τ = 10−4, 256× 256 grid
�

100 200 300 400 500

2

4

6

8

10

12
�
�

�

�
�

�

(d) τ = 10−5, 512× 512 grid

Figure 3: Adaptive semiseparable order to compute the MSSS preconditioner for Re = 2000

16



The adaptive rank in Figure 3 is bounded by a small constant around 10 for all
the computations of MSSS preconditioners. This in turn gives the linear computational
complexity of the MSSS preconditioning techniques, which is illustrated by Table 1-2.

5.2. Optimization Algorithm
We test Algorithm 1 for the optimization problem (9) by using a 256× 256 grid. At

each outer iteration, we need to solve a series of linear equations of size 197634× 197634
to compute the solution of the nonlinear flow equation (11) by the Newton’s method.
We also need to solve two adjoint equations (19) and (24) of the same size to compute
the gradient and the Hessian matrix.

We use the wind farm configuration as introduced in Section 2.1. With this problem
settings, the rightmost turbine just operates in the maximum power tracking mode, i.e.,
CT3

= 1. Therefore, we just need to optimize CT1
and CT2

for the first two turbines.
Without optimization, the turbines are operated in the mode that corresponds to the
maximal power extraction for a single turbine, i.e., CT = 1. We start with C(0)

T1
= C

(0)
T2

=
1 as an initial guess for this optimization problem. Then the (scaled) total extracted
power by the wind farm at each optimization step is given in Figure 4(a), while the
2-norm of the gradient at each optimization step is shown by Figure 4(b). Results in
Figure 4(a) show that the total power is increased by around 5.5% when applying optimal
control scheme.

Note that there is an overshoot after the second optimization step as illustrated by
Figure 4(a), which makes the optimization problem to converge to a local optimum. This
is primarily because of the non-convexity and highly nonlinearity of this optimization
problem. The convexity of this optimization problem is still an open problem. Another
reason that contributes to this behavior is the sensitivity of this optimization problem.
Here we measure the sensitivity of the change of the velocity in the flow direction with
respect to CTj by ∂ux

∂CTj
. We plot the magnitude of ∂ux

∂CT1
and ∂ux

∂CT2
at the local optimum

of CT1 and CT2 in Figure 5.

1 3 5 7 9 11

0.34

0.345

0.35

0.355

0.36

0.365

0.37

optimization step k

to
ta

l 
c
a
p
tu

re
d
 p

o
w

e
r 

(s
c
a
le

d
)

(a) Total power

1 3 5 7 9 11
10

−8

10
−6

10
−4

10
−2

optimization step k

‖∇
g
k
‖ 2

(b) 2-norm of the gradient

Figure 4: Total power and 2-norm of the gradient

17



(a) ∂ux
∂CT1

(b) ∂ux
∂CT2

Figure 5: ∂ux
∂CT1

and ∂ux
∂CT2

in magnitude

Figure 5 show that there is a big gradient in the vicinity of the places where the
turbines are located. This in turn tells us that the velocity in the vicinity of the turbines
is very sensitive to the changes of CTj

. This makes this optimization problem very
sensitive.

Another reason may be the robustness and the efficiency of the optimization method
around the optimum. Since we focus on preconditioning, we leave this for the discussions
and recommendations in the next chapter.

We also solve the optimization problem with an initial guess C(0)
T1

= C
(0)
T2

= 0, al-
though this corresponds to an impractical operation status. The scaled total power and
the gradient at each optimization step are given in Figure 6.

1 3 5 7 9 11 13
0.26

0.28

0.3

0.32

0.34

0.36

0.38

optimization step k

to
ta

l 
c
a

p
tu

re
d

 p
o

w
e

r 
(s

c
a

le
d

)

(a) Total power

1 3 5 7 9 11 13
10

−8

10
−6

10
−4

10
−2

optimization step k

‖∇
g
k
‖ 2

(b) 2-norm of the gradient

Figure 6: Total power and 2-norm of the gradient

For those two cases with different initial guesses, the corresponding optimized vari-
ables CT1

and CT2
at each optimization step are given in Figure 7.

18



1 3 5 7 9 11

0.7

0.8

0.9

1

optimization step k

 

 

C
(k)
T1

C
(k)
T2

(a) C(0)
T1

= C
(0)
T2

= 1

1 3 5 7 9 11 13
0

0.2

0.4

0.6

0.8

1

optimization step k

 

 

C
(k)
T1

C
(k)
T2

(b) C(0)
T1

= C
(0)
T2

= 0

Figure 7: Optimized CT1
, CT2

with different initial guesses

Figure 7(a) and 7(b) show that with different initial guesses, the optimized variables
(CT1

, CT2
) converge to the same point (0.729, 0.862), which corresponds to a local

optimum of the optimization problem.

6. Conclusions

In this manuscript, we studied preconditioning optimal in-domain Navier-Stokes con-
trol problem using multilevel sequentially semiseparable (MSSS) matrix computations.
For the in-domain Navier-Stokes control problem, the control input only acts on part of
the domain, which results in a problem even more difficult to solve. The optimization
problem was solved by a reduced Newton’s method while the most time consuming part
for this problem was solving a nonlinear flow equation and computations of the gradient
and the Hessian matrix. We showed that the gradient and the Hessian matrix can be
computed by solving an adjoint equation such that the preconditioner for the solution
of the flow equation can be reused. This in turn reduces the computational complex-
ity dramatically. We evaluated the performance of the MSSS preconditioning technique
by using IFISS. Numerical results show the superiority of the MSSS preconditioning
technique to the standard preconditioning technique.

Since we focused on preconditioning optimal in-domain Navier-Stokes control prob-
lem, we used a laminar flow model in IFISS to study the performance of the MSSS
preconditioning technique. The next step to extend this research shall focus on applying
the turbulent flow model for the real-world wind farm control applications.

References

[1] D. B. Leineweber, I. Bauer, H. G. Bock, J. P. Schlöder, An efficient multiple shooting based reduced
SQP strategy for large-scale dynamic process optimization. Part I: theoretical aspects, Computers
& Chemical Engineering 27 (2) (2003) 157 – 166.

[2] A. Borz̀ı, V. Schulz, Multigrid methods for PDE optimization, SIAM Review 51 (2) (2009) 361–395.

19



[3] L. T. Biegler, O. Ghattas, M. Heinkenschloss, B. van Bloemen Waanders, Large-scale PDE-
constrained optimization, Vol. 30, Springer Science & Business Media, 2012.

[4] P. E. Gill, W. Murray, D. B. Ponceleón, M. A. Saunders, Preconditioners for indefinite systems
arising in optimization, SIAM Journal on Matrix Analysis and Applications 13 (1) (1992) 292–311.

[5] J. Schöberl, W. Zulehner, Symmetric indefinite preconditioners for saddle point problems with
applications to PDE-constrained optimization problems, SIAM Journal on Matrix Analysis and
Applications 29 (3) (2007) 752–773.

[6] H. Badreddine, S. Vandewalle, J. Meyers, Sequential quadratic programming (SQP) for optimal
control in direct numerical simulation of turbulent flow, Journal of Computational Physics 256
(2014) 1–16.

[7] M. Hinze, K. Kunisch, Second order methods for optimal control of time-dependent fluid flow,
SIAM Journal on Control and Optimization 40 (3) (2001) 925–946.

[8] M. Laumen, Newton’s method for a class of optimal shape design problems, SIAM Journal on
Optimization 10 (2) (2000) 503–533.

[9] M. Berggren, Numerical solution of a flow-control problem: Vorticity reduction by dynamic bound-
ary action, SIAM Journal on Scientific Computing 19 (3) (1998) 829–860.

[10] A. V. Fursikov, M. D. Gunzburger, L. S. Hou, Boundary value problems and optimal boundary
control for the Navier-Stokes system: the two-dimensional case, SIAM Journal on Control and
Optimization 36 (3) (1998) 852–894.

[11] J. P. Goit, J. Meyers, Optimal control of energy extraction in wind-farm boundary layers, Journal
of Fluid Mechanics 768 (2015) 5–50.

[12] S. S. Adavani, G. Biros, Multigrid algorithms for inverse problems with linear parabolic PDE
constraints, SIAM Journal on Scientific Computing 31 (1) (2008) 369–397.

[13] J. W. Pearson, M. Stoll, Fast iterative solution of reaction-diffusion control problems arising from
chemical processes, SIAM Journal on Scientific Computing 35 (5) (2013) B987–B1009.

[14] A. Potschka, M. S. Mommer, J. P. Schlöder, H. G. Bock, Newton-picard-based preconditioning for
linear-quadratic optimization problems with time-periodic parabolic pde constraints, SIAM Journal
on Scientific Computing 34 (2) (2012) A1214–A1239.

[15] T. Rees, A. J. Wathen, Preconditioning iterative methods for the optimal control of the stokes
equations, SIAM Journal on Scientific Computing 33 (5) (2011) 2903–2926.

[16] M. Stoll, T. Breiten, A low-rank in time approach to PDE-constrained optimization, SIAM Journal
on Scientific Computing 37 (1) (2015) B1–B29.

[17] J. W. Pearson, Preconditioned iterative methods for Navier-Stokes control problems, Journal of
Computational Physics 292 (0) (2015) 194 – 207.

[18] E. Bänsch, P. Benner, J. Saak, H. K. Weichelt, Riccati-based boundary feedback stabilization of
incompressible Navier-Stokes flows, SIAM Journal on Scientific Computing 37 (2) (2015) A832–
A858.

[19] J. Meyers, C. Meneveau, Optimal turbine spacing in fully developed wind farm boundary layers,
Wind Energy 15 (2) (2012) 305–317.

[20] D. J. Silvester, H. C. Elman, A. Ramage, Incompressible Flow and Iterative Solver Software (IFISS)
version 3.2, http://www.manchester.ac.uk/ifiss/ (May 2012).

[21] J. Annoni, P. Seiler, K. Johnson, P. Fleming, P. Gebraad, Evaluating wake models for wind farm
control, in: Proceedings of American Control Conference, 2014, pp. 2517–2523.

[22] J. R. Marden, S. D. Ruben, L. Y. Pao, A model-free approach to wind farm control using game
theoretic methods, IEEE Transactions on Control Systems Technology 21 (4) (2013) 1207–1214.

[23] A. Crespo, F. J. R. Hernández, S. Frandsen, Survey of modelling methods for wind turbine wakes
and wind farms, Wind energy 2 (1) (1999) 1–24.

[24] B. Sanderse, S. P. van der Pijl, B. Koren, Review of computational fluid dynamics for wind turbine
wake aerodynamics, Wind Energy 14 (7) (2011) 799–819.

[25] P. M. O. Gebraad, Data-driven wind plant control, Ph.D. thesis, Delft University of Technology
(2014).

[26] O. Rathmann, S. T. Frandsen, R. J. Barthelmie, Wake modelling for intermediate and large wind
farms, in: 2007 European Wind Energy Conference and Exhibition.

[27] P. Torres, J.-W. Van Wingerden, M. Verhaegen, Modeling of the flow in wind farms for total power
optimization, in: Proceedings of the 9th IEEE International Conference on Control and Automation,
2011, pp. 963–968.

[28] M. Abkar, F. Porté-Agel, The effect of free-atmosphere stratification on boundary-layer flow and
power output from very large wind farms, Energies 6 (5) (2013) 2338–2361.

[29] F. M. White, I. Corfield, Viscous fluid flow, Vol. 3, McGraw-Hill, New York, 2006.
20



[30] K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, B. Hof, The onset of turbulence in pipe
flow, Science 333 (6039) (2011) 192–196.

[31] R. Mikkelsen, Actuator disc methods applied to wind turbines, Ph.D. thesis, Technical University
of Denmark (2003).

[32] N. Troldborg, Actuator line modeling of wind turbine wakes, Ph.D. thesis, Technical University of
Denmar (2008).

[33] J. Nocedal, S. Wright, Numerical optimization, Springer Science & Business Media, New York,
2006.

[34] C. Li, C. Vuik, Eigenvalue analysis of the SIMPLE preconditioning for incompressible flow, Numer-
ical Linear Algebra with Applications 11 (5-6) (2004) 511–523.

[35] M. Benzi, M. A. Olshanskii, Z. Wang, Modified augmented Lagrangian preconditioners for the
incompressible Navier-Stokes equations, International Journal for Numerical Methods in Fluids
66 (4) (2011) 486–508.

[36] D. Kay, D. Loghin, A. Wathen, A preconditioner for the steady-state Navier-Stokes equations,
SIAM Journal on Scientific Computing 24 (1) (2002) 237–256.

[37] K. Abe, G. L. Sleijpen, Hybrid Bi-CG methods with a Bi-CG formulation closer to the IDR ap-
proach, Applied Mathematics and Computation 218 (22) (2012) 10889 – 10899.

[38] L. Du, T. Sogabe, B. Yu, Y. Yamamoto, S. Zhang, A block IDR(s) method for nonsymmetric
linear systems with multiple right-hand sides, Journal of Computational and Applied Mathematics
235 (14) (2011) 4095 – 4106.

[39] Y. Qiu, M. B. van Gijzen, J.-W. van Wingerden, M. Verhaegen, C. Vuik, Efficient preconditioners
for PDE-constrained optimization problems with a multilevel sequentially semiseparable matrix
structure, Electronic Transactions on Numerical Analysis 44 (2015) 367–400.

[40] Y. Qiu, M. B. van Gijzen, J.-W. van Wingerden, M. Verhaegen, C. Vuik, Evaluation of multilevel
sequentially semiseparable preconditioners on CFD benchmark problems using incompressible flow
and iterative solver software, Mathematical Methods in the Applied Sciences 38. doi:10.1002/mma.
3416.

[41] S. Chandrasekaran, P. Dewilde, M. Gu, T. P. Pals, X. Sun, A.-J. van der Veen, D. White, Some
fast algorithms for sequentially semiseparable representations, SIAM Journal on Matrix Analysis
and Applications 27 (2) (2005) 341–364.

[42] Y. Qiu, M. B. van Gijzen, J.-W. van Wingerden, M. Verhaegen, C. Vuik, Conver-
gence analysis of the multilevel sequentially semiseparable preconditioners, Tech. Rep. 15-
01, Delft Institution of Applied Mathematics, Delft University of Technology, available at
http://ta.twi.tudelft.nl/nw/users/yueqiu/publications.html (2015).

[43] H. C. Elman, D. J. Silvester, A. J. Wathen, Finite Elements and Fast Iterative Solvers: with
Applications in Incompressible Fluid Dynamics, Oxford University Press, New York, 2005.

[44] M. B. van Gijzen, P. Sonneveld, Algorithm 913: An elegant IDR(s) variant that efficiently exploits
biorthogonality properties, ACM Transactions on Mathematical Software 38 (1) (2011) 5:1–5:19.

21

http://dx.doi.org/10.1002/mma.3416
http://dx.doi.org/10.1002/mma.3416

	Introduction
	Problem Formulation
	Fluid Dynamics
	Wind Turbines
	Objective Function

	Reduced Nonlinear Programming
	Reduced Optimization Problem
	Computations of the Flow Equation
	Computations of Partial Derivatives

	Multilevel Sequentially Semiseparable Preconditioners
	Numerical Experiments
	Preconditioning Techniques
	Optimization Algorithm

	Conclusions

