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A B S T R A C T

The rapid evolution of Unmanned Aerial Vehicles (UAVs) has revolutionized target search operations in various
fields, including military applications, search and rescue missions, and post-disaster management. This paper
presents the application of a multi-armed bandit algorithm for UAV search mission. The UAV’s mission is to
locate a mobile target formation, operating under the assumption of an unknown and potentially non-stationary
probability distribution, by learning the formation’s strategy over time. To achieve this, we formulate an
optimization problem and leverage the Exp3 algorithm (exponential-weighted exploration and exploitation)
for its solution. To enhance the learning process, we integrate environment observations as context, resulting
in a variant referred to as C-Exp3. However, C-Exp3 is not designed for scenarios where the target formation
strategy changes over time. Therefore, AC-Exp3 is proposed as an adaptive solution, featuring a human-centric
drift detection mechanism to detect the changes in the formation strategy and adjust the learning process
accordingly. Furthermore, the Exp4 algorithm is proposed as a self-adjustment meta-learner to address changes
in the formation’s strategy. We evaluate the performance of C-Exp3, AC-Exp3, and Exp4 through a series of
experiments with a focus on non-stationary environments. Our primary objective is reaching the unknown
optimal-in-hindsight policy as the time 𝑡 approaches the horizon 𝑇 , thereby reflecting the UAV’s capacity to
learn formation’s strategy. AC-Exp3 demonstrates enhanced adaptability compared to C-Exp3. Meanwhile, Exp4
emerges as a robust performer, swiftly adapting to new strategies.
1. Introduction

1.1. Motivation and background

Unmanned aerial vehicles (UAVs) have become essential tools
across various civilian sectors and critical domains, including mili-
tary operations, post-disaster wireless service restoration, and search
and rescue(SAR) operations (Mozaffari, Saad, Bennis, Nam, & Deb-
bah, 2019; Xiaoning, 2020). Equipped with off-the-shelf sensors and
advanced imaging technologies, UAVs provide real-time and precise
information regarding the locations and conditions of both individuals
and infrastructure (Gu, Su, Wang, Du, & Guizani, 2018).

SAR missions, as well as surveillance tasks, frequently entail the
challenge of locating targets over expansive areas. In military opera-
tions, this can involve finding enemy positions or tracking potential
threats. During these operations, sensors and imaging technologies are
systematically employed to explore unknown areas and allocate targets.
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(A. Mohamed).

UAVs strategically determine flight paths to observe and locate these
targets. The primary objective is to identify a formation of targets while
learning from their strategies. Consequently, the UAV dynamically fine-
tunes its flight trajectory based on real-time observations, optimizing
coverage, and adapting adapting to targets’ evolving strategies. This
necessitates the UAV’s ability to adapt to such changes.

In recent studies such as (Soliman et al., 2023a; Wei, Huang, Lu,
& Song, 2019; Yue, Guan, & Wang, 2019; Yue, Guan, & Xi, 2019), re-
inforcement learning (RL) techniques have been employed to optimize
UAV search processes. However, these models are typically trained in
ideal virtual environments, which do not account for the pervasive
noise found in real-world applications, especially in safety-critical fields
like UAVs and robotics (Goodfellow, Shlens, & Szegedy, 2014). Agents
trained under such conditions can adopt sub-optimal policies when
exposed to adversarial noise (Kos & Song, 2017), even from minor
perturbations. To train more robust models to noise, (Wan, Gao, Hu, &
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data mining, AI training, and similar technologies. 
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Wu, 2020) introduced an adversarial attack technique with the DDPG
algorithm that models the environmental noise as Gaussian noise added
to the current state.

Our approach assumes that the noise is not governed by a specific
distribution. The algorithm handles worst-case scenarios, where the
adversary’s distribution changes at each time step. We focus on locating
dynamic targets in uncertain environments without prior knowledge of
target formation distributions, addressing challenges from adversarial
environments where targets exhibit non-stationary mobility patterns
and may intentionally mislead the UAV.

To solve this problem, we apply online learning algorithms for the
UAV search mission, which provide performance guarantees without
incorporating stochastic assumptions about target probability distribu-
tions. While our approach employs a single agent, it can be expanded
into a multi-agent online learning framework. The concept of multi-
gent multi-armed bandit learning has been explored in offloading
cheduling in edge computing (Wu, Chen, Ni, & Wang, 2021), where
sers collaboratively provide feedback based on their observations.

1.2. Methodology and contributions

We leverage the adversarial multi-armed bandits (MAB) technique
to address challenges in navigating adversarial environments. Our ap-
proach utilizes the Exp3 algorithm for exponential-weighted explo-
ration and exploitation, as well as the Exp4 algorithm, which incor-
porates experts for exploration and exploitation. The algorithms, Exp3
and Exp4, were originally introduced in Auer, Cesa-Bianchi, Freund,
and Schapire (1995) and have since been the subject of many enhance-
ments and modifications, as detailed in the bibliographic remarks in
(Lattimore & Szepesvári, 2020), Ch. 11 and 18). The bandit problem

represents a simple RL formulation, where an agent interacts with
the environment by performing actions at discrete time steps (Baccour
t al., 2022). It is modeled as a sequential game between the learner
agent) and the environment over a time horizon 𝑇 . In each round 𝑡,
he learner selects an action 𝑘 from a predefined set  and receives
eedback in the form of a penalty associated with the chosen action. The
earner aims to improve performance by learning from this feedback to
each the optimal policy (target formation strategy) through ongoing
nteraction, assuming the targets exhibit adversarial behavior.

In this paper, we propose a new searching techniques that is based
on Exp3 and Exp4 algorithms, to deal with the non-stationary be-
havior in the unknown mobility of the targets. Therefore, the main
contributions of this paper are as follows:

1. Formulate the search mission problem as a game theoretic ap-
proach using the MAB technique, with the objective of learning
the unknown policy of the targets. Leverage the contextual Exp3
algorithm to address the challenge of a UAV’s search mission
in an unknown and adversarial environment, which ultimately
converges to the unknown optimal policy.

2. Propose an adaptive solution based on the contextual Exp3
algorithm to address periodic changes in the unknown policy by
incorporating a drift detection mechanism to identify changes in
the distribution of the targets.

3. Propose a meta-learner based of Exp4 algorithm to deal with the
changes in the optimal policy without the incorporation of drift
detector. The goal of the meta-learner is to attain the optimal
policy by selecting the best expert from a set of distinct experts,
each representing a unique approach to action selection.

4. Evaluate and compare the performance of Exp3, adaptive Exp3,
and Exp4, within the context of a UAV search mission. We
focus on showing the rate of convergence for the MAB-based
algorithms in non-stationary environment, and compare their
performance with RL-based model.
2 
The paper is structured as follows: Section 2 presents a compre-
ensive review of related literature. In Section 3, we establish the
ystem model and articulate the problem formulation as an optimiza-
ion problem. Section 4 propose the online learning framework under

the assumption of a fixed formation strategy. Section 5 further dis-
usses our solutions, modeling the problem within an online learning
ramework to address changes in the target formation strategy. Finally,
ection 6 evaluates the algorithms in reaching the optimal policy across

various scenarios.

2. Related work

In this section, we first review the broader context of UAV SAR
missions, followed by the technical approaches used to address these
challenges. We organize our discussion around two main themes: (1)
UAV SAR missions and their associated tasks, and (2) methodological
approaches for solving these problems.

2.1. UAV search and rescue missions

UAVs have been utilized in SAR missions across a variety of applica-
ions, including disaster response efforts (Alotaibi, Alqefari, & Koubaa,

2019; Silvagni, Tonoli, Zenerino, & Chiaberge, 2017; Zhang, Li, Wang,
i, & Li, 2022), human–UAV collaborations for finding escaped crim-
nals (Zheng, Du, Ling, Sheng, & Chen, 2019), searches for missing

tourists in nature reserves (Zheng, Du, Sheng & Ling, 2019), and
sea rescue operations (Wang et al., 2018). These applications tackled
ifferent mission objectives, which we discuss and compare with our
pproach.

Mission Objectives. For example, (Wang et al., 2018) enhanced
UAV-based SAR operations at sea using deep learning techniques but
did not account for uncertainties in target locations caused by ocean
drifts. Other research has explored multi-objective approaches to ad-
dress challenges like minimizing mission duration (Alotaibi et al., 2019;
Soliman et al., 2023b; Zhang, Zhao, Liu, & Li, 2023; Zheng et al.,
2019; Zheng, Du, Sheng & Ling, 2019), improving target identification
accuracy (Alotaibi et al., 2019; Hong, Wang, Du, Chen, & Zheng, 2021;
Zhang et al., 2023; Zheng, Du, Sheng & Ling, 2019), optimizing UAV
ommunication (Alotaibi et al., 2019; Zheng et al., 2019), enhancing

task allocation (Alotaibi et al., 2019; Hong et al., 2021; Zheng, Du,
Sheng & Ling, 2019), and managing environmental dynamics and
uncertainties (Alotaibi et al., 2019; Soliman et al., 2023b; Zhang et al.,
2023; Zheng, Du, Sheng & Ling, 2019). In this work, we specifi-
cally focus on addressing the challenges of managing environment
uncertainties.

The Layered SAR (LSAR) framework proposed by Alotaibi et al.
(2019) aimed to address these objectives while handling uncertainty.

owever, its implementation is hindered by challenges such as com-
putationally expensive real-time processing, integration complexities
with various UAV systems, and the need for robust statistical mod-
eling. Similarly, the Distributed Autonomous Collaborative Mission
Planning (DACMP) approach by Zhang et al. (2023) tackled environ-
mental uncertainty with objectives like mission duration minimization
and maximizing target identification probability. However, DACMP
faces scalability issues as the state space grows exponentially with
more UAVs, targets, and mission constraints. Meanwhile, (Zheng, Du,
heng & Ling, 2019) introduced a biogeography-inspired evolutionary

algorithm to tackle the high computational complexity of collaborative
human–UAV SAR missions. This approach effectively solves multi-
objective problems but suffers from long preparation times, limiting its
real-time adaptability in dynamic environment.

Despite these advancements, existing methods do not adequately
address the non-stationary behavior of the mobile targets. Our pro-
posed algorithm focuses on this gap by providing a computationally
efficient solution specifically designed to handle non-stationarity in
SAR missions.
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2.2. Methodological approaches

To address the aforementioned challenges in UAV SAR missions,
researchers have developed various technical approaches, each offering
distinct advantages for specific aspects of the mission. We review the
main categories of these approaches.

Optimization Approaches. Path planning, an important task in
search operations, poses an NP-hard problem that significantly impacts
mission effectiveness (Lin & Goodrich, 2014a). Recent optimization
techniques have focused on maximizing target detection probability
while considering real-world constraints (Gan & Sukkarieh, 2011; Li,
Xu, Nie, Mao, & Yu, 2021; Pérez-Carabaza, Scherer, Rinner, López-
Orozco, & Besada-Portas, 2019). Notable advances include the heuris-
tic crossing SAR optimization algorithm (HC-SAR) (Zhang, Zhou, Qin
& Tang, 2023), which improves convergence speed while maintain-
ing target formation diversity. Some approaches have incorporated
partial observation using heuristics to enhance performance (Lin &
Goodrich, 2014b). However, these methods often face limitations in
dynamic environments where target formations exhibit real-time move-
ment changes. Soliman et al. (2023b) have specifically addressed the
path planning problem considering target mobility uncertainty through
stochastic distribution modeling.

Reinforcement Learning Approaches. RL has been applied for
UAV search missions by formulating them as Markov Decision Pro-
cesses (MDPs) (Xu et al., 2022). Multiple works have applied different
RL models for target search missions involving single or multiple UAVs.
The majority of these studies (Blais & Akhloufi, 2024; Hu & Li, 2021;
Shurrab, Mizouni, Singh, & Otrok, 2023; Venturini et al., 2021; Zhang,
Zheng, & Lambotharan, 2020) applied the Deep Q-Network (DQN)
model to optimize the search process. Another work (Wu et al., 2023)
have utilized the Q-Table technique in for SAR operation, while assum-
ing an unknown environments. Additionally, (Qi, Yang, & Xia, 2024;
Qi, Zhao, Li, & Jia, 2024; Soliman et al., 2023b) employed the Proximal
Policy Optimization (PPO) algorithm to enhance the strategic approach
of agents for visiting multiple targets in vast areas. The existing RL
works for UAV search missions have not adequately considered the
potential impact of non-stationary behavior on target mobility in SAR
environments, which can significantly influence the learning process. In
this paper, we develop a more robust search algorithm that addresses
the adversarial nature of targets and compare its performance against
DQN, Q-Table, and PPO algorithms.

Multi-Armed Bandit Approaches. MAB frameworks have emerged
as a promising approach for addressing uncertainty and optimization in
search missions, gaining prominence across various domains (Bouneffou
Rish, & Aggarwal, 2020). Recent applications in search mission op-
timization (Zheng et al., 2022) have demonstrated their potential
for balancing exploration and exploitation in dynamic environments.
Studies have shown MAB algorithms’ effectiveness in improving system
performance during search missions (Balafrej, Bessiere, & Paparrizou,
2015; Cherif, Habet, & Terrioux, 2020), particularly in scenarios re-
quiring adaptive decision-making. However, the specific application of
MAB algorithms for UAV-based detection of target formations remains
relatively unexplored, especially in contexts involving non-stationary
target behavior. This gap presents an opportunity for novel contribu-
tions in developing more efficient and adaptive search strategies, which
we address in this work.

3. System model and problem formulation

In this section, we present the system model for a mobile
UAV(agent) with a search mission in an unknown and adversarial envi-
ronment. The unknown parameter in the environment is the mobility of
the targets. Specifically, the mobility or, equivalently, the observation
of the targets is assumed to be unknown a priori.

We focus on highlighting the key components of the environment
that facilitates solving the problem using bandit algorithms. Next,
3 
Table 1
Key notations

Notation Description

𝑃 𝑡
𝑘 Sampling distribution at round 𝑡 for selecting action 𝑘𝑡

𝐋𝑘𝑡
𝑡 Loss associated with the observed action 𝑘𝑡 at round 𝑡

�̂�𝑡,𝑘 Estimated weights for each action at time slot 𝑡
𝜂𝑜𝑝𝑡 Optimal learning rate
𝑇 Time horizon
 Set of possible cells for the UAV’s current location
 Set of contexts
 Action set for context 𝑐
𝐋𝑘𝑡
𝑐𝑡 Penalty received by the learner for action 𝑘𝑐𝑡 in context 𝑐 at time slot 𝑡

𝐄𝑡(𝑚) The loss vector of the of 𝑚 expert with respect to action 𝑘 at time 𝑡.
 Cumulative regret
𝑘∗ Best action in hindsight
 Set of RPG-based mobility pattern
 Set of experts

Fig. 1. The system model describes a possible scenario for the environment during one
time slot 𝑡. The targets are moving as a formation. The agent takes discrete actions
𝑘 ∈  to move from one cell to another.

we formulate our problem as an optimization problem. The objective
is to maximize the overall performance of the agent by minimiz-
ing the cumulative regret of the agent. The notion of regret mea-
sures the performance gap between the agent’s performance and the
optimal-in-hindsight unknown policy. Table 1 shows the key notations.

3.1. Architecture

We define the coverage area and the movement of the agent within
this area. The coverage area is represented as a grid consisting of | |

cells, each labeled with 𝑛 ∈ {1, 2,… , | |}. These cells correspond
to potential actions 𝑘 within the action space , as shown in Fig. 1.
Furthermore, each cell represents a unique location that can either be
empty or contain one or more targets. This grid structure serves as a
framework for the agent to systematically explore the area.

Agent’s Movement. The agent’s movement is defined by discrete
steps, ensuring that the UAV’s trajectory across the predefined grid-
based coverage area consists of discrete actions. At any time slot 𝑡, the
agent selects an action 𝑘 from its available action space , determining
its transition to a neighboring cell within the grid or choosing to remain
in the current cell. The time slot 𝑡 represents the duration required
for the agent to move between cells, depending on the cell size and
the UAV’s speed. The non-stationary nature reflecting the movements
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of the targets occurs between time slots, but the targets may require
multiple time slots or just one, depending on their speed. All algorithms
iscussed in this paper are agnostic to the actual duration of the
bstract concept of the time slot and remain applicable to different
onfigurations with the same guarantees.

Observation and Decision. The agent’s information is constrained
o its current cell 𝑛. It has the capability to observe the presence or
bsence of targets within the cell it currently occupies, leading to a
oss 𝐋𝑡 associated with the observation of targets at time slot 𝑡. Based
n the accumulated observations or losses, the agent then decides the
ext movement (action).

Exploration Strategy. The primary objective of the agent is to
earch for targets within a fixed coverage area. By systematically mov-
ng from cell to cell, the agent observes each cell to gather information

about target presence, enabling it to learn the strategy of the target for-
mation across the grid, assuming their movement resembles adversarial
behavior. The targets can observe the agent’s actions and gain insight
nto its policy, potentially leading them to attempt to deceive the UAV

in an adversarial environment.
Interactive Modeling and Observed Loss 𝐋𝑡. Our interactive

model for the search mission comprises two components: (1) The target
behavior model, representing the non-stationary movement of targets,
and (2) The agent, utilizing the MAB algorithm, responsible for the
search mission. In this model, the targets and the agent dynamically
interact at each time step 𝑡. If the agent fails to detect targets after
taking an action 𝑘𝑡, a loss of 𝐋𝑘𝑡

𝑡 is assigned as 1; otherwise, the loss is
set to 0. The optimal action 𝑘∗ is estimated based on the full knowledge
of future losses, with the benchmark being the cumulative loss incurred
by the agent, assuming it knows the presence of targets across all 𝑡 ∈  .
However, the optimal action remains unknown to the agent since it
cannot observe the time-varying cost associated with action 𝑘𝑡 without
first sampling 𝑘𝑡 and then observing the cost at time slot 𝑡. The loss 𝐿𝑘𝑡

𝑡
can be expressed as:

𝐋𝑘𝑡
𝑡 =

{

0 if a target is observed with 𝑘𝑡
1 if no target is observed with 𝑘𝑡

(1)

3.2. Problem statement

Our main objective is to maximize the agent’s performance by
ormulating the problem to minimize the cumulative losses, thus, mini-
izing the cumulative regret  , with the ultimate goal of identifying

he optimal action 𝑘∗. The optimal policy 𝑘∗ describes the underlying
trategy of the target formation. However, the policy 𝑘∗ is unknown

to the agent. Therefore, our aim is to find a policy 𝑘∗ that minimizes
the cumulative regret  . This can be formulated as the following
optimization problem:

𝐏 ∶ min
𝑘


∑

𝑡=1
𝐋𝑘
𝑡 (2)

According to P, the agent determines the action 𝑘 to be sampled at
each time slot 𝑡 in the time horizon  . The main challenge arises at time
lot 𝑡 when the agent needs to decide the next movement. At this point,
he loss 𝐋𝑘

𝑡+1 associated with the next movement is inaccessible, which
make it hard to solve it as an optimization problem. However, the loss
will indeed be revealed in the next time slot once the agent makes a
decision to take an action for the next destination cell 𝑛𝑡+1 to be visited
and subsequently makes an observation of the existing targets in cell
𝑛𝑡+1. Then, the 𝐋𝑘

𝑡+1 is revealed to the agent. Therefore, we apply the
MAB algorithms (Lattimore & Szepesvári, 2020), which learns from the
continuous interaction with the environment and reaches the optimal
policy 𝑘∗ as 𝑡 →  .
 d

4 
3.3. Optimal policy and cumulative regret.

In this subsection, we present the concept of regret in the context
of online convex optimization. Regret serves as a metric for assessing
the UAV’s decision-making performance during the mission, measuring
how effectively the agent’s decisions align with optimal action in
hindsight. In online convex optimization, a player, in our case the UAV,
repeatedly makes decisions without knowledge of future outcomes,
incurring costs based on its chosen actions, all with the ultimate objec-
tive of achieving the optimal policy 𝑘∗. This concept holds particular
relevance in our UAV search mission scenario, where the UAV strives
to optimize its actions while adapting to the non-stationary behavior of
the target formation.

Regret. To accomplish this, we begin by establishing the compo-
nents of the system. We adopt the standard online setup, where at
ach time slot 𝑡 ∈ {1, 2,… ,  }, the agent selects an action 𝑘𝑡 from a

set  at time slot 𝑡. This set is characterized as closed and bounded.
The outcome of action 𝑘𝑡 is reflected in the loss 𝐋𝑘𝑡

𝑡 associated with
action 𝑘 at time 𝑡. The regret, with respect to the best fixed action 𝑘∗,
is defined as the sequence of actions 𝑘𝑡 every time slot 𝑡 in terms of
their cumulative losses:

 =

∑

𝑡=1
(𝐋𝑘𝑡

𝑡 − 𝐋𝑘∗
𝑡 ) (3)

Optimal Policy. Here, 𝑘∗ ∈ ar g min𝑘∈
∑

𝑡=1 𝐋
𝑘
𝑡 represents the action

∗ that minimizes the accumulated loss between all actions in the
ction space . In essence, 𝑘∗ serves as a benchmark for comparison,
epresenting the optimal action based on perfect knowledge of the
utcomes. Over time, we expect to observe a saturation in regret 𝑅 as
approaches  , or in mathematical terms, lim𝑡→∞


 = 0. Specifically,

we aim to achieve  = 𝑂(
√

 ), demonstrating that the agent achieves
the optimal policy as 𝑡 approaches the time horizon  .

4. Contextual Exp3

In this section, we leverage Contextual Exp3 (C-Exp3) for the search
mission with a fixed optimal policy. Furthermore, we present a new
approach called Adaptive Contextual Exp3 (AC-Exp3), which detect
the change in the optimal policy by incorporating a drift detection
mechanism. The change in the optimal policy describes a change in
he underlying distribution of the target formation.

4.1. Exp3 algorithm

The Exp3 (Exponential-weights for Exploration and Exploitation)
lgorithm is a well-known approach to tackle the multi-armed bandit

problem, where the goal is to make a series of decisions (select-
ing actions) in adversarial environment while balancing the explo-
ration/exploitation trade-off.

Contextual Bandits. In many bandit problems, the agent has access
o additional information (context) that could aid in predicting the
uality of actions (Lattimore & Szepesvári, 2020). In our scenario, we

incorporate context into the Exp3 algorithm (C-Exp3). Here, we utilize
the UAV’s current location, which can be any cell 𝑛 ∈  , as a context

where 𝑐 ∈  with  representing the set of available contexts. The
ction space for each context 𝑐 is denoted as  and remains consistent
cross all contexts. It is defined as  = Current, North (N), South (S),
ast (E), West (W), Northeast (NE), Northwest (NW), Southeast (SE),
outhwest (SW). This action space offers the agent a choice among
ight possible directions for movement within a 2D grid at each time
lot, corresponding to the agent’s current position and its neighbor-
ng cells. Additionally, this definition of the action space imposes a
onstraint on the agent’s movement, allowing only one step in any
irection. Consequently, the agent moves to one of the adjacent cells
uring each time slot, promoting smaller and more localized actions.
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Algorithm 1 Contextual Exp3 (C-Exp3)
1: Input: Time horizon  , Action space , Learning rate 𝜂, Context

set 
2: Initialize �̂�0,𝑘 = 0 for all 𝑘 ∈ 
3: Initialize weights for actions
4: for 𝑡 = 1 to  do
5: Observe context 𝑐𝑡 ∈ 
6: Compute the sampling distribution 𝑃𝑡,𝑘 for all 𝑘 ∈ :

7: 𝑃𝑡,𝑘 = exp(𝜂�̂�𝑡−1,𝑘)
∑

||

𝑗=1 exp(𝜂�̂�𝑡−1,𝑗 )

8: Sample action 𝑘𝑡 according to 𝑃𝑡,𝑘 and observe the loss 𝐋𝑘𝑡

9: for each 𝑘 ∈  do
10: Update the estimate: �̂�𝑡,𝑘 = �̂�𝑡−1,𝑘 + 1 − I{𝑘=𝑘𝑡}⋅𝐋

𝑘𝑡
𝑐𝑡

𝑃𝑡,𝑘
11: end for
12: end for

Collectively, the action space for all contexts  defines the entire grid.
In each context, each cell 𝑛 represents a potential direction relative to
the current context 𝑐𝑡. For instance, cell 𝑛 = 9 can be associated with
context 𝑐 = 5 when moving in the S direction or context 𝑐 = 10 when
moving in the W direction (see Fig. 3).

Algorithm. The algorithmic steps are shown in Algorithm 1, and
detailed next. For simplicity, assume that we have a single context and
thus we drop 𝑐𝑡 in the next paragraph. The discussion still holds in the
general case since the steps (and the discussed quantities) are simply
replicated for each context 𝑐𝑡 ∈  . We begin by initializing the actions
weights uniformly, 𝑃𝑡 = (𝑃 𝑘

𝑡 ,∀𝑘 ∈ ), 𝑃 𝑘
𝑡 = (1∕||). which defines the

probability of the possible destination cells for the agent within the
grid. Then, at each time step 𝑡, this sampling distribution is updated
via the rule in line 6. Intuitively, the updated weights are made propor-
tional to the accumulated (estimated) reward for their corresponding
action �̂�𝑡−1,𝑘, then normalized by dividing on the sum to ensure that 𝑃𝑡
is still a distribution. The parameter 𝜂 controls how strong our update
is set as minimiax optimal of 𝜂 =

√

log𝐾∕𝑇 𝐾 (Lattimore & Szepesvári,
2020, Thm 11.1). After updating the sampling distribution, we select
and action 𝑘 ∼ 𝑃𝑡 (line 7), observe a reward, and update our estimate
for 𝑘’s rewards (line 9). Note that the fraction we accumulate in line 9
is an unbiased estimator for the loss (E[1 − (I{𝑘=𝑘𝑡}𝐋

𝑘𝑡
𝑐𝑡 )∕𝑃𝑡,𝑘] = 𝐋𝑘𝑡

𝑐𝑡 ), and
thus we will indeed move in the direction of actions with low losses at
the following weights update 𝑃𝑡+1 (see Fig. 2).

Regret. To evaluate the agent’s performance, we use a regret mea-
sure for each 𝑐, which quantifies the agent’s total loss compared to the
optimal context-dependent policy, 𝑘∗𝑐 , in hindsight in reference to Eq.
(18.1) in Lattimore and Szepesvári (2020):

 ,𝑐 =

∑

𝑡=1

[

(𝐋𝑘𝑡
𝑐𝑡 − 𝐋𝑘∗𝑐

𝑐𝑡 )
]

I{𝑐 = 𝑐𝑡} (4)

Hence, the regret  for agent is:
 =

∑

𝑐∈
 ,𝑐 (5)

Here, 𝑘∗𝑐 ∈ ar g min𝑘∈
∑

𝑡=1 𝐋
𝑘
𝑐𝑡
I{𝑐 = 𝑐𝑡}. We measure the differ-

ence in loss between the agent’s decision 𝑘𝑡 and the optimal context-
dependent best action 𝑘∗𝑐 for a given context 𝑐 at each time slot 𝑡.
By summing these differences across the time horizon  and potential
contexts from the set , we derive the total regret  . The identity
function I{𝑐 = 𝑐𝑡} acts as a filter, equaling 1 when the condition 𝑐 = 𝑐𝑡 is
true, indicating that the regret calculation applies only when 𝑐 matches
𝑐𝑡. If the condition is false, the identity function equals 0, effectively
excluding those instances from the sum.

Furthermore, we define a possible cell 𝑛 as optimal if it reflects a
𝑘∗𝑐 for multiple contexts that align with the strategy of the formation.
Our goal is to learn the mapping between contexts and optimal actions.
5 
Fig. 2. Performance of C-Exp3 with respect to 𝑐 at time 𝑡 assuming non-stationary
movements of target formation. The Agent aims to reach 𝑘∗𝑐 (minimize  ) as 𝑡 →  .
The 𝑘∗𝑐 represents the different movements with respect to context 𝑐 = {1, 2, 3}. For
instance, 𝑘∗𝑐=1 is a movement to E with respect to 𝑐 = 2.

Fig. 3. Example of a context dependent action selection.

The Exp3 algorithm provides an upper bound for worst-case scenarios,
accounting for the observed context distribution. This bound is valid in
adversarial environments for the entire system, as detailed in Eq. (18.3)
in Lattimore and Szepesvári (2020):

 ≤
∑

𝑐∈
 ,𝑐 ≤ 2

∑

𝑐∈

√

√

√

√log(||)

∑

𝑡=1
||I{𝑐 = 𝑐𝑡} (6)

This concept has a practical implications that can be explored
further. In the current approach, the agent’s movement is discretized
due to the discretization of the action space. However, if we increase
the number of cells in the grid, we can reduce the level of discretization
and allow for more precise movement for the agent. Nevertheless,
increasing the number of cells poses challenges. The location 𝑛 serves as
a context, leading to a large context space, which in turn, introduces
additional overhead for the agent. However, these challenges can be
addressed by employing alternative versions of contextual bandits, such
as Exp4. In this paper, our focus is on a small context space size, but
the potential for broader exploration exists.

State–Context Correlation. States in RL, for example, encompass
complete information about the environment and involve temporal
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Fig. 4. Performance of AC-Exp3 with respect to 𝑐𝑡 assuming non-stationary movements of target formation. The agent resets the algorithm according to the drift detector. At each
time interval 𝑖, the agent learns the optimal action 𝑘∗𝑐 which minimizes the 𝑖 .
dependencies, while contexts in contextual bandits capture relevant in-
formation for action selection in an episodic setting. Both concepts play
a role in decision-making and action selection, although in different
settings and with different considerations.

To summarize this, in each time slot 𝑡, the agent observes 𝑐𝑡, chooses
an action 𝑘𝑡 ∈ , and receives a penalty 𝐋𝑘𝑡

𝑐𝑡 . In this section, we
specifically focus on the One Bandit per Context approach, wherein
we define a separate instance of the Exp3 algorithm for each context
𝑐. Algorithm 1 shows the steps of contextual Exp3. Our goal is to learn
the mapping between contexts and optimal actions.

4.2. Adaptive contextual Exp3

The limitation of Exp3 stems from its focus on learning a fixed
optimal action for the entire duration, which proves too restrictive for
our problem. It fails to account for the possibility of target formation
changing their strategies, leading to changes in the optimal action
𝑘∗. Exp3 aims to minimize regret against the best action by using an
unbiased estimation to compute choice probabilities for each action as-
suming non-stationary movement every time slot (worst case scenario).
Non-stationary also occurs between intervals of time (e.g., periodically
every  ∈ 𝑇 ). If an action performs well over 1 (Exp3 converges to 𝑘∗)
but performs poorly in 2, the Exp3 algorithm may need a significant
number of trials, equal to the first interval’s length, to switch to a
different 𝑘∗.

We introduce the adaptive contextual Exp3 algorithm (AC-Exp3),
designed to learn multiple optimal actions 𝑘∗, each within a time
interval 𝑖. The change in 𝑘∗ is influenced by variations in the strategy
of the formation. At each time interval 𝑇 = {1, 2, 𝑖,…}, where 𝑡 ∈  ,
the best action 𝑘∗ is fixed for each interval 𝑖 but changes from one
interval to another, following a different strategy, denoted by 𝑝 ∈  .
Here,  represents a set of different mobility patterns. We deal with
each interval as a new problem with a new C-Exp3 instance. Within
each time interval  , the regret definition aligns with the contextual
Exp3 regret  defined in Section 4.1, Eq. (5), along with an upper
bound guarantee  as defined in Eq. (6). Consequently, we define
the cumulative regret of the adaptive contextual Exp3 as in Eq. (5) for
each interval of time. Furthermore, the context-dependent best action
𝑘∗𝑐 is fixed in each interval of time  . On Each interval  , We apply
the static regret definition and each of the time interval  maintains
its own upper bound guarantee.

The challenge here for the agent is to identify the changing in the
mobility pattern. Once a change in the mobility pattern is detected,
the agent can reset the C-Exp3 instance where it can be seen as a
new instance of the algorithm. To solve this challenge, we leverage
the concept of a drift detection to identify the change in the mobility
pattern, then reset the algorithm. There are different techniques that
can be used to design the drift detection, for example (Almarzoqi,
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Yahya, Matar, & Gomaa, 2022; Kanoun & van der Schaar, 2015). Here,
we introduce the concept of human-in-the-loop as a drift detection
mechanism.

Human-centric drift identifier. The human-in-the-loop (HITL)
approach enhances UAV adaptability in complex environments by
integrating human knowledge with machine learning (Mosqueira-Rey,
Hernández-Pereira, Alonso-Ríos, Bobes-Bascarán, & Fernández-Leal,
2023). Human operators provide feedback to the learning system
during operation, which includes insights and strategies that algorithms
might miss, such as sudden environmental changes. When such changes
occur, operators can issue an alert signal to the UAV system. This
signal triggers a reset of the learning process to prevent the UAV from
struggling to find successful paths on its own. For example, an alert
may be triggered in response to unexpected obstacles or other real-
time factors that the UAV’s onboard systems might not fully account
for. An example of introducing HITL feedback with RL is provided
by Zhang et al. (2023), where the algorithm learns from both human
demonstrations and self-exploration to accelerate the training process.

Algorithm. The algorithmic steps are shown in Algorithm 2, and de-
tailed next. The HITL-based drift detector operates by leveraging HITL
feedback to adjust a contextual bandit system in real-time. Initially, the
algorithm takes HITL feedback as input. For each time interval  , the
agent uses the C-Exp3 algorithm (as detailed in Algorithm 1). If an alert
indicating drift is detected, the C-Exp3 algorithm is reset to adapt to
the new conditions. This approach ensures that the contextual bandit
system remains responsive to changes in dynamic environments. Refer
to Fig. 4 for a visual representation for the agent during the learning
process with AC-Exp3.

Algorithm 2 HITL-based Drift Detector Algorithm
1: Input: 𝐻 𝐼 𝑇 𝐿 feedback
2: for  ∈ 𝑇 where 𝑖 = {1, 2, , ..} do
3: Run Contextual Exp3 for 𝑡 ∈ 
4: if alert is received then
5: Reset Contextual Exp3
6: end if
7: end for

5. Meta learner in non-stationary environments

Regret minimization algorithms have demonstrated their effective-
ness in adapting to unknown distribution environments and converging
towards optimal policy. Nevertheless, they face challenges in environ-
ments where the best action 𝑘∗ changes due to periodic changes in
distribution of the formation. Particularly, the contextual Exp3 algo-
rithm tends to converge to a fixed optimal policy even when the optimal
action varies. In the this section, we utilize the Exp4 algorithm which
serves as a meta-learner to handle changes in the 𝑘∗.
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Fig. 5. Performance of Exp4 with respect to 𝑐𝑡 assuming non-stationary movements of target formation. The meta-learner selects the expert 𝑚1 during 1, which minimizes the
regret of the system 𝑇 . Furthermore, the learner selects 𝑚2 during 2 (drift in the environment), which is tuned towards exploration.
5.1. Exp4

We follow a distinct approach in learning the optimal performance,
eliminating the necessity of detecting drifts in the environment. Instead
of relying on AC-Exp3, which was previously discussed in Section 4.2,
we embrace the conventional learning paradigm involving experts,
with a particular focus on the Exp4 algorithm. Exp4 falls under the
category of contextual multi-armed bandit algorithms (Lattimore &
Szepesvári, 2020). In this framework, multiple experts provide their
recommendations to the master learner (the agent), each offering their
unique perspective on the environment and predictions for action 𝑘𝑡.
The master learner evaluates a given set of experts  and selects the
best expert from this set to minimize the regret. The primary objective
of the master learner is to compete with the best expert in hindsight.
Therefore, the focus is not solely on the actions themselves, but rather
on the evaluation of the experts. We introduce the concept of experts
and presents the regret analysis of the Exp4 algorithm within the
context of the search mission problem.

Experts. We model the experts, denoted as 𝑚 ∈ , where 
represents a predefined set of experts, each deploying a C-Exp3 in-
stance. Specifically, expert 𝑚2 is configured with a high exploration
rate, while expert 𝑚1 is tuned with an optimal learning rate 𝜂𝑜𝑝𝑡 to
achieve a balance between exploration and exploitation. This setup
enables the Exp4 agent to handle changes in the best action more
effectively compared to C-Exp3.

In the context of adversarial bandits, fine-tuning the learning rate
is crucial. A learning rate that is excessively high can make the agent
vulnerable to noisy environmental changes, potentially leading to in-
stability and sub-optimal performance. Conversely, a learning rate that
is too low may result in slow adaptation. Our goal is to achieve a well-
balanced equilibrium that optimizes the trade-off between exploration
and exploitation in a non-stationary environment.

To illustrate how this configuration helps in reaching the optimal
performance in a non-stationary environment, we consider a use case
scenario where the best action changes between two time intervals
1 and 2. By changing the best action periodically, the best expert
is expected to change as well to balance between a high and a low
exploration rate according to this change. However, it is important to
note that this approach can be consistently employed across the entire
time horizon 𝑇 with any given ensemble of experts . We will use this
scenario as a consistent reference point throughout our paper.

During 1: The agent determines that the best expert is 𝑚1 as it em-
ploys C-Exp3 with 𝜂𝑜𝑝𝑡. In contrast, 𝑚2 persists in exclusively exploring
the optimal action, as it is specifically configured for exploration.

During 2: The performance of expert 𝑚2 begins to fall short of the
expected level as the best action changes. 𝑚2 takes multiple rounds to
adapt and eliminate the influence of the previous time interval 1 while
learning the new best action. In contrast, expert 𝑚2 performs better
since it continues to explore the changing mobility pattern. As a result,
we observe a crossover in performance between 𝑚 and 𝑚 during  .
1 2 2

7 
The primary idea behind the agent learning the best expert in hindsight
is to provide the best action observed during each time interval  (see
Fig. 5).

We have fine-tuned Exp4 to handle changes in the formation of
target strategies, which is reflected in periodic changes in the best
action. This approach empowers the agent to conduct extensive explo-
ration in the environment and learn new strategies, which could take
longer for the Exp3 agent to accomplish by integrating two experts with
distinct adjustments. Experts can show in various forms; for instance,
an expert can be a human-in-the-loop or another algorithm. However,
it is important to note that the algorithm incurs 𝑂(||) memory and
𝑂(||+||) computation per time slot (Lattimore & Szepesvári, 2020).
Consequently, its practicality is viable only when both  and  are
reasonably small.

Regret. The regret metric of Exp4 quantifies the cumulative loss
incurred by the master learner compared to the losses of the best expert
in hindsight 𝑚∗. The predictions of the || experts in time slot 𝑡 ∈ 𝑇
are represented by a matrix 𝐄𝑡 ∈ [0, 1](||×||), where each row 𝐄𝑡(𝑚)
(𝑚th row) corresponds to a probability vector over  indicating the
recommendations of the 𝑚th expert for time slot 𝑡. Furthermore, the
expression 𝐄𝑡(𝑚)𝐋

𝑘𝑡
𝑐𝑡 is the loss of the 𝑚 expert with respect to action

𝑘 at time 𝑡. We use the static regret definition as described in Eq.
(18.6) (Lattimore & Szepesvári, 2020):

̃𝑇 =
𝑇
∑

𝑡=1

[

𝐋𝑘𝑡
𝑐𝑡 − 𝐄𝑡(𝑚∗)𝐋𝑘𝑡

𝑐𝑡

]

(7)

𝑚∗ = ar g min
𝑚∈[]

𝐄𝑡(𝑚)𝐋
𝑘𝑡
𝑐𝑡

In this context, ̃𝑇 corresponds to the regret within the time horizon
𝑇 = {1, 2}. Regret evaluate the agent’s performance by measuring the
gape between the loss associated with the selected expert 𝑚 at time 𝑡
by the master learner and the performance of the best expert 𝐄𝑡(𝑚∗)
in hindsight based on its associated loss. The expert 𝑚∗ is chosen to
minimize loss, and the selection of the 𝑚 varies with each time slot.
As a result, each expert during the time interval  possesses its own
bound, utilizing the C-Exp3 bound specified in Eq. (6), along with its
corresponding best actions 𝑘∗𝑐 . The regret bound of the master learner
is estimated using Eq. (18.7) as outlined in Lattimore and Szepesvári
(2020).

̃𝑇 ≤
√

2𝑇 || log(||) (8)

Algorithm. The algorithmic steps are shown in Algorithm 3 and
detailed below. The meta-learner begins by initializing the weights
𝑄1 for all experts equally. At each time slot 𝑡, the learner receives
recommendations from the experts in the form of a matrix 𝐄𝑡, which
contains the possible actions from each expert.

The learner selects an action 𝑘𝑡 by sampling from a probability
distribution 𝑃𝑡, derived from the current weights vector 𝑄𝑡 and the
expert advice matrix 𝐄 . The 𝑖th row of 𝐄 represents the 𝑖th expert’s
𝑡 𝑡
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Algorithm 3 Exp4
1: Input: 𝑇 ,,, 𝜂
2: 𝑄1 ←

(

1
||

,… , 1
||

)

∈ [0, 1]1×|| (a row vector)
3: for 𝑡 = 1 to 𝑇 do
4: Receive advice 𝐄𝑡
5: Choose the action 𝑘𝑡 ∼ 𝑃𝑡, where 𝑃𝑡 = 𝑄𝑡𝐄𝑡
6: Receive the Cost 𝑌𝑡 = 𝐋𝑘𝑡

𝑐𝑡
7: Estimate the action Cost: 𝑌𝑡𝑖 =

I{𝑘𝑡=𝑖}
𝑃𝑡𝑖

(𝑌𝑡)

8: Propagate the Cost to the experts: 𝑌𝑡 = 𝐄𝑡𝑌𝑡
9: Update the distribution 𝑄𝑡+1 using exponential weighting:

𝑄𝑡+1,𝑚 ←
exp(𝜂𝑌𝑡,𝑚)𝑄𝑡,𝑚

∑

𝑚 exp(𝜂𝑌𝑡,𝑚)𝑄𝑡,𝑚
for all 𝑚 ∈ []

0: end for

recommendation, and the probability distribution is computed as 𝑃𝑡 =
𝑡 ⋅ 𝐄𝑡. Sampling from 𝑃𝑡 is equivalent to first sampling an expert and

hen sampling an action recommended by that expert. After executing
he selected action 𝑘𝑡, the learner receives a cost 𝑌𝑡 associated with this
ction. The learner then estimates the cost for each action using the
bserved cost and the probability distribution 𝑃𝑡. The estimated cost
or action 𝑖 is given by 𝑌𝑡𝑖 =

I{𝑘𝑡=𝑖}
𝑃𝑡𝑖

⋅ 𝑌𝑡, where 𝑌𝑡𝑖 serves as an unbiased
estimator for 𝑌𝑡. The estimated costs 𝑌𝑡 are propagated to the experts to
update the cost vector 𝑌𝑡 = 𝐄𝑡 ⋅𝑌𝑡, reflecting the aggregated performance
of the experts based on their recommendations and the observed costs.
Finally, the learner updates the weight distribution 𝑄𝑡+1 for the next
time slot using an exponential gradient weighting mechanism (line 9),
where 𝜂 is the learning rate parameter.

Combined Policy. In each time interval  , the master learner
dentifies the best expert that minimizes regret within that specific
nterval. This process is consistently applied across all time intervals

∈ 𝑇 , resulting in the formation of a combined policy which de-
fines a meta-learning policy that entails a decision-making combining
predictions from the experts based on their priority weights, which
are learned from observations at each time slot 𝑡. This approach un-
derscores the fundamental concept of meta-learning, where knowledge
is derived from multiple experts. Within this framework, the Exp4
agent systematically learns a combined policy over the entire dura-
tion 𝑇 , encompassing both 1 and 2. Each interval within this time
horizon possesses its own distinct best actions 𝑘∗𝑐 , tailored to the
formation’s strategy, which, in turn, represents the mobility pattern of
the formation.

Regret of the System. Now we derive the regret of the system
hich is composed of a master learner (Exp4) agent and the experts

C-Exp3). As previously explained in Section 4.1, the regret for each
ndividual expert ̃𝑚, during a time interval  is defined as:

̃ 𝑚, =

∑

𝑡=1

[

(𝐋𝑘𝑡
𝑐𝑡 − 𝐋𝑘∗𝑐

𝑐𝑡 )
]

I{𝑐 = 𝑐𝑡} (9)

The objective of the meta-learner is to learn the best expert at each
ime interval  , which will minimize the regret from the available set

of experts  according to:

𝑇 = min{̃1, , ̃2, } + ̃𝑇 (10)

Where ̃𝑇 represents the regret of the meta-learner and 𝑇 is the
regret of the system. The meta-learner selects the best expert with the
minimum regret ̃𝑚, , leading to a minimum regret for the overall
ystem 𝑇 at each time interval  ∈ 𝑇 . As the best actions 𝑘∗𝑐 changes
ithin the range 𝑇 = {1, 2}, the meta-learner adjusts its learning

process to accommodate these variations in the best action which is
reflected in the performance of the experts, following the use case
scenario that described earlier:

𝑇 =
{

̃1, + ̃𝑇 if 𝑡 ∈ 1 (11)
̃2, + ̃𝑇 if 𝑡 ∈ 2
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In Eq. (11), the meta-learner selects ̃1, since the best action is
fixed during 1. However, the best action changes during 2, therefore,
the meta-learner switches to ̃2, . Finally, the regret of the system
follows:

𝑇 =
𝑇
∑

𝑡=1

[

𝐋𝑘𝑡
𝑐𝑡 − 𝐄𝑡(𝑚∗)𝐋𝑘𝑡

𝑐𝑡

]

(12)

+

∑

𝑡=1

[

(𝐋𝑘𝑡
𝑐𝑡 − 𝐋𝑘∗𝑐

𝑐𝑡 )
]

I{𝑐 = 𝑐𝑡}

In summary, the master learner (Exp4) employs two experts, 𝑚1 and
𝑚2, which are specifically adapted to handle an environment where
the best action changes periodically due to shifts in the formation’s
strategy. The master learner continuously learns the best expert for
each time interval  by maintaining a probability distribution 𝑄𝑡 over
experts and updating it at each time slot 𝑡. As a result, experts 𝑚1 and
𝑚2 exhibit crossover performance when the best action changes, this
is how the agent learns the combined policy. The regret is estimated
using Eq. (7), and an upper bound is maintained as in Eq. (8).

6. Performance evaluation

In this section, we start with a detailed description of the environ-
ment, followed by an overview of the model parameters. Subsequently,

e will outline the performance metrics, and then proceed to evaluate
the performance of the three algorithms (contextual Exp3, adaptive
contextual Exp3, and Exp4) in the context of a search mission featuring
a single UAV agent. Our environment assumes an absence of obstacles
and focuses exclusively on the mobility of targets, disregarding any
xternal factors that might influence their movement. It is worth noting

that the environment remains unknown, and the targets adhere to the
obility pattern denoted as the reference point group (RPG) within a

time horizon 𝑇 . In this scenario, we assume that the agent operates at
 fixed altitude and is equipped with imaging sensors, enabling it to
bserve the environment. The code used to conduct the experiments is
ublicly available at the following GitHub repository.1

Environment. The RPG model serves as a potent tool for emulating
he collective dynamics of target formations. The RPG model is used
n Khan, Heurtefeux, Mohamed, Harras, and Hassan (2017) for the

problem of low complexity target tracking to cover and follow moving
targets using UAV. Within this model, each target is affiliated with a
logical center, known as the group leader, which governs the collective
motion characteristics of the group. The targets comprising a group
are distributed in an adversarial manner around the reference point.
By employing their distinct mobility models, these targets are moving
with random magnitude 𝜈 and angle direction 𝜃 assimilated into the
reference point, which steers their trajectories following the group’s
direction.

At any given moment in the time horizon 𝑇 , each target possesses
unique values of 𝜃 and 𝜈, which deviate randomly from those of
the group leader. However, the target remains within the leader’s
boundary. In our RPG model, the movement of the group leader in-
volves selecting a destination point within the deployment region in
a stochastic manner. The leader then moves towards this destination

ith corresponding values of 𝜃∗ and 𝜈∗. This motion profile establishes
he leader’s distinct trajectory and sets the overall motion trend for the
ntire group. As a result, each group member exhibits variations from

this predominant motion vector, introducing individualistic dynamics
into the collective formation. Therefore, the mobility pattern of the
targets, is influenced by the movement of a leader, which follows a
probability distribution over the | | cells within the grid during time
interval  ∈ 𝑇 . The movements of the followers are randomized, with
𝑙𝑡+1 = 𝑙𝑡 + (𝜃 𝜈). It is crucial to highlight that 𝑙𝑡+1 always remains within
he boundaries defined by the leader’s center point. Fig. 7 shows the
ovement of the RPG-based mobility pattern.

1 https://github.com/Noor-Khial/Online-Learning-UAV-Search.git

https://github.com/Noor-Khial/Online-Learning-UAV-Search.git
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Fig. 6. Probability Distribution of 𝑝 ∈  of the leader. The peaks of the distribution
showed in the red circles represent a frequently visited cells.

Fig. 7. RPG-based Mobility Pattern.

Mobility Pattern. We consider three distinct RPG-based mobility
patterns denoted as 𝑝 ∈  , each associated with a unique probabil-
ity distribution for the leader. Notably, each mobility pattern corre-
sponds to its specific optimal policy. Fig. 6 illustrates the probability
distribution of each 𝑝.

Model Parameters. In all experiments for the contextual Exp3
algorithm, we apply the optimal learning rate 𝜂𝑜𝑝𝑡 as discussed in
Section 4.1. The action space  and the context space  are predefined.
Given that each location cell 𝑛 ∈  = 36 represents a context 𝑐 ∈ ,
we have  = 36. In this paper, we specifically focus on analyzing the
algorithms’ performance, which is why we opted for a relatively small
context space. Furthermore, the interval of time  ∈ 𝑇 is predefined
and varies according to each experiment. Table 2 summarizes the
remaining parameters used in each experiment.

Performance Metric. We evaluate the algorithm’s performance
using cumulative regret and we show the utility and cell probabilities.
The goal is to minimize cumulative regret, which converges over time.
The utility measures the algorithm’s success in accumulating rewards
relative to the maximum potential rewards achievable with the best
action 𝑘∗. The utility at each time step is expressed as a percentage
of the benchmark. Furthermore, we average each data point with
the preceding 100 points. Additionally, cell probabilities indicate the
assigned weights to cell, with the highest weight signifying the agent’s
effective policy to minimize losses.

We conduct a thorough evaluation of algorithms in diverse non-
stationary environments. First, we evaluate the performance of the
contextual Exp3 algorithm in scenarios with both fixed and changing
best actions. Next, we assess the adaptive contextual Exp3 algorithm,
which incorporates a human-based drift detector (as discussed in Sec-
tion 4.2), along with the performance of Exp4 as a meta-learner in the
presence of changing best actions.
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Table 2
Parameters summary.

Parameter Experiment

1 2 3 4

1 × 103 [0, 40]
2 × 103 [40, 100] [40, 200] [40, 100] [40, 100]
Optimal policy 10 10,25 10,25 25,19
𝜂𝑜𝑝𝑡 0.0018

Fig. 8. 𝑇 ∕𝑇 for C-Exp3 with || = {9, 16, 36}.

6.1. Performance of the agent with C-Exp3 algorithm

We first analyze the performance of C-Exp3 with varying context
numbers, comparing it to the Exp3 version. Next, we evaluate C-
Exp3 under optimal context tuning with both fixed and dynamic best
actions, and benchmark it against state-of-the-art RL models. The C-
Exp3 algorithm, detailed in Algorithm 1, computes regret as per Eq. (5)
and upper bounds following the approach in Section 4.1 (Eq. (6)). We
use the optimal learning rate 𝜂𝑜𝑝𝑡 listed in Table 2.

6.1.1. Impact of context scaling on C-Exp3 performance
We study the performance of the C-Exp3, if we considered different

sizes of the context space ||. This is important to select the optimal
tuning for the number of contexts. Additionally, we test the Exp3
algorithm, without the addition of the context, which we assume to be
practically infeasible, and we explain next in details the configuration
for C-Exp3 and Exp3.

In our experimental setup, the environment consists of a 6 × 6 grid,
with a total of 36 cells. We define the context space by dividing the
environment into smaller sub-grids, each with dimensions of (𝑑 × 𝑑)
cells. The size of these sub-grids is carefully adjusted to create specific
numbers of contexts, where the context set sizes || are 9, 16, and 36.
As we decrease the size of the sub-grids (i.e., reduce the value of 𝑑), the
number of distinct contexts increases. This continues until each sub-grid
is reduced to just one cell.

In C-Exp3, the action space consists of directional movements,
enabling the agent to navigate through the environment. We also tested
an Exp3 version where actions involve selecting specific cells directly,
rather than moving directionally. However, this setup is impractical,
as it assumes the agent can instantly jump between cells (e.g., 0 → 36
cells) without intermediate steps, ignoring the agent’s need for stepwise
navigation.

Despite this impracticality, this version can serve as a benchmark,
since the exploration time for Exp3 would be shorter compared to C-
Exp3. In the C-Exp3 setup, the agent requires more time to navigate the
environment, moving from one context to another as it selects actions.

Discussion. Fig. 8 illustrates the performance comparison. It shows
that as the context space size increases to match the total cell count, the



N. Khial et al. Expert Systems With Applications 267 (2025) 126136 
Fig. 9. Performance of Contextual Exp3 in Adversarial Environment with Fixed Best Action.
Fig. 10. Performance of Contextual Exp3 in Adversarial Environment with Changing Best Action.
average regret  ∕ converges faster to zero. When each context is a
single cell, the agent can consistently learn the optimal action for each
cell across action–context pairs until reaching the targets. Meanwhile,
with larger sub-grid contexts, the agent encounters uncertainty among
several sub-optimal directions that slow the convergence.

6.1.2. Fixed best action
Results of experiment 1 is illustrated in Fig. 9. The leader adheres

to the mobility pattern 𝑝 = 1 as depicted in Fig. 6(a), with the optimal
policy 𝑛 = 10. To determine this optimal policy (benchmark), we use
the probability distribution based on the leader’s mobility pattern 𝑝 = 1
during 1.

Discussion. In Fig. 9(a), the agent’s cumulative regret consistently
remains lower than the upper bound. This convergence pattern suggests
a steady relationship between the cumulative regret of the optimal
policy 𝑛 = 10 and the agent’s cumulative regret. The utility in Fig. 9(b)
further emphasizes this trend by exhibiting a continuous increase over
time, ultimately matching the performance of the optimal policy 𝑛 =
10. Additionally, the alignment seen in Fig. 9(c) in the highest cell
probability 𝑛 = 10 adds further support to these observations.

6.1.3. Comparison with state-of-the-art solutions
According to the current work, DQN, Q-Table, and PPO are the

commonly used approaches in this problem. Therefore, we have imple-
mented these algorithms and compare them with C-Exp3. Furthermore,
we use the same action space  in all the RL models. The exploration–
exploitation trade-off is handled through the epsilon-greedy policy for
DQN and Q-Table, and through Gaussian noise for PPO. The hyperpa-
rameters used for these approaches are summarized in Table 3.

Table 4 compares the average regret ( ∕ ) of three reinforcement
learning algorithms (Q-Table, DQN, and PPO) against our proposed C-
Exp3 algorithm across different learning rates 𝜂. The results indicate
that C-Exp3 achieves the lowest regret of 0.08 at 𝜂 = 0.001, significantly
outperforming all RL approaches, while PPO maintains a high regret of
0.6.

The superior performance of C-Exp3 is due to its distinct learn-
ing approach. In C-Exp3, the agent leverages prior knowledge about
10 
Table 3
Hyperparameters and configurations for PPO, DQN, and Q-Table.

Parameter PPO DQN Q-Table

Discount Factor 0.99 0.9 0.9
Exploration Strategy Gaussian Noise 𝜖-greedy 𝜖-greedy
Exploration Rate (𝜖) – 0.2 0.2
Entropy Coefficient 0.01 – –
Neural Network Layers (64, 64) (64, 64) –
Optimizer Adam Adam –
Grid Size 6 × 6 6 × 6 6 × 6
Maximum Steps 1 per episode 1 per episode 1 per episode

Table 4
Comparison of RL Models and C-Exp3 in terms of  ∕ .

Algorithm Q-Table DQN PPO C-Exp3

𝜂 = 0.0001 0.20 0.25 0.6 0.18
𝜂 = 0.001 0.22 0.17 0.6 0.08
𝜂 = 0.01 0.27 0.21 0.6 0.19

the context space and treats each context independently, focusing on
learning the optimal action per context. Unlike RL methods, which
attempt to learn state transition probabilities and build value functions,
C-Exp3 makes no assumptions about probabilistic correlations between
contexts. This characteristic is particularly advantageous in adversarial
settings, where RL algorithms struggle to model transitions in arbitrary
and potentially misleading environments. The results demonstrate that
C-Exp3’s simpler modeling assumptions lead to more effective learning
in adversarial conditions compared to traditional RL approaches that
rely on learning state transition probabilities.

6.1.4. Changing best action
Results of experiment 1 is illustrated in Fig. 10. Initially, the leader

adheres to the mobility pattern 𝑝 = 1 as described in Fig. 6(a), with the
optimal policy set at 𝑛 = 10 during the time interval 𝑡 ∈ 1, as specified
in Table 2. Subsequently, the leader transitions to the mobility pattern
𝑝 = 2 as described in Fig. 6(b), where the optimal policy becomes 𝑛 = 25
during the time interval 𝑡 ∈  . The optimal policies of 𝑛 = 10 and 𝑛 = 25
2
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Table 5
Performance of AC-Exp3 with different initialization methods.

Initialization ∕ Utility % 𝑘∗ Probability
Method 1 2 1 2 1 2
Uniform Weights 0.27 0.23 89 97 0.45 0.62
Biased Weights 0.25 0.20 90 99 0.45 0.99

are determined based on the leader distribution corresponding to the
mobility patterns 𝑝 = 1 and 𝑝 = 2, respectively.

Discussion. In Fig. 10(a), during 1, the cumulative regret con-
verges, and the agent’s performance stays below the upper bound.
However, in 2, a shift in target formations to 𝑝 = 2 leads to an increase
in regret as the optimal policy changes to 𝑛 = 25. The regret eventually
converges, indicating the agent’s adaptation to the new optimal action.

Fig. 10(b) further highlights the difference between the agent’s
performance and the optimal policy. Initially, the agent’s performance
aligns with the optimal policy of 𝑛 = 10 but declines with the change in
the best action, eventually recovering. Similarly, Fig. 10(c) shows that
during 1, the highest action probability corresponds to 𝑛 = 10. As the
target formation changes, the agent needs time to adapt to 𝑛 = 25 in
2. Fig. 10(a) shows that the DQN model, with a higher 𝜂𝐷 𝑄𝑁 , performs
better during 1 but struggles more during 2 compared to C-Exp3.

6.2. Performance of the agent with AC-Exp3 algorithm

In this section, we present the AC-Exp3 algorithm implementation
as per Algorithm 2. For each interval 𝑖, we calculate cumulative
regret using Eq. (5), with upper bounds determined via Section 4.1
and Eq. (6). We examine two scenarios: AC-Exp3 with uniform initial
weights and with biased initial weights.

Uniform weights. In experiment 3, we have used the same setup
for testing the AC-Exp3 algorithm in a non-stationary setting and a
changing best action as in experiment 2. The initial weight for all
actions represents a uniform distribution, �̂�0,𝑖 = 0 on each  .

Biased Weights. In experiment 4, we apply the same setup as in
experiment 2 to test the AC-Exp3 algorithm in an adversarial scenario
with a changing best action. However, instead of initializing the actions
with uniform weights during the algorithm’s resetting, we adopted
biased weights based on the concept of aligning the leader’s mobility
pattern during 1 with the new mobility pattern during the interval
2. To elaborate further, during 1, the optimal policy is 𝑛 = 25,
while during 2, the optimal policy is 𝑛 = 19, where cell 𝑛 = 19 is
located just above cell 𝑛 = 25. Consequently, rather than starting with
uniform actions, the agent prioritizes the neighboring cells to the one
representing the best action in 1.

Comparing AC-Exp3 with Uniform and Biased Weights. The
experimental results in Table 5 demonstrate the superiority of AC-
Exp3 with biased weights over uniform initialization. During 2, biased
weights achieve 99% utility and 0.20 average regret, compared to 97%
utility and 0.23 regret with uniform weights. Most significantly, the
optimal action probability reaches 0.99 with biased weights versus
0.62 with uniform weights. These findings confirm that leveraging
relationships between consecutive optimal policies through biased ini-
tialization substantially improves the algorithm’s efficiency by reducing
unnecessary exploration.

Comparison Between AC-Exp3 and C-Exp3 with a Change in
Best Action. AC-Exp3 exhibits superior regret performance compared
to C-Exp3 because it considers the potential change in the best action
and subsequently resets the Exp3 algorithm. In the worst-case scenario
where the HITL-based drift detector fails to predict a change in the
leader’s mobility pattern, the agent’s performance will be the same as
C-Exp3.
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Table 6
Performance of Exp4 in adversarial environment with changing 𝑘∗.

Learner ∕ Utility % 𝑘∗ Probability
1 2 1 2 1 2

Expert 1 0.25 0.5 91 60 0.67 0.3
Expert 2 0.5 0.21 61 96 0.13 0.71
Meta-Learner 0.25 0.22 90 96 0.53 0.48

Fig. 11. 𝑇 ∕𝑇 for C-Exp3, AC-Exp3, and Exp4.

6.3. Performance of the agent with Exp4 algorithm

We demonstrate how Exp4 adapts to changes in the best action
𝑘∗ by transitioning between experts, without the necessity of a drift
detector. For experiment 5, we utilize the Exp4 algorithm, as described
in Algorithm 3. Within each time interval 𝑖 as in Table 2, the regret is
calculated using Eq. (7), and the upper bound is determined following
the method explained in Section 5.1 in Eq. (8).

6.3.1. Changing best action
We investigate the performance of the agent in a search mission

using the Exp4 algorithm. Table 6 shows the agent’s performance in an
adversarial environment where the optimal action changes periodically
over time. Initially, the leader adheres to mobility pattern 𝑝 = 1, as
depicted in Fig. 6(a). In this phase, the optimal policy is 𝑛 = 10 within
the time interval 1. Subsequently, the leader transitions to mobility
pattern 𝑝 = 2, as described in Fig. 6(b). In this phase, the optimal policy
becomes 𝑛 = 25 within the time interval 2.

Discussion. The average regret ̃𝑇 for the meta-learner conver-
gence is evident during two distinct intervals: 𝑡 ∈ 1 and 𝑡 ∈ 2. In
the first interval, 1, the meta-learner relies on expert 𝑚1, identified
as optimal with policy 𝑛 = 10. In the second interval, 2, the focus
shifts to expert 𝑚2 with policy 𝑛 = 25. Showing 𝑚1 as the best expert
during 1 and 𝑚2 during 2, leading to a combined policy and crossover
in performance. The utility increases steadily over time within each
interval  , reaching 90% of the optimal benchmark.

Experts. The performance of expert 𝑚1 mirrors the C-Exp3 algo-
rithm, while expert 𝑚2 focuses on exploration, with an optimal policy of
𝑛 = 25. The average utility of expert 𝑚2 remains stable despite changes
in the best action due to its exploratory nature. During 2, expert 𝑚2
outperforms expert 𝑚1 in utility, leading the master to switch to 𝑚2.
However, the master later reverts to 𝑚1 after it retains the best action,
resulting in a performance crossover. This highlights the meta-learner’s
ability to adapt by strategically switching between experts.

Comparing Exp4 and AC-Exp3 with Uniform Weights. The sys-
tem’s regret 𝑇 converges as 𝑡 approaches the time horizon 𝑇 . Fig. 11
shows that lim𝑡→∞

𝑇
𝑇 = 0, indicating sub-linear regret convergence.

For C-Exp3, the 𝑇 ∕𝑇 ratio exhibits a less favorable trend due to a
longer adjustment period, with a noticeable fluctuation during 𝑡 ∈ 2 =
[40, 10] × 105. In contrast, AC-Exp3 shows reduced fluctuation in 𝑇 ∕𝑇
during  , indicating better adaptation to the new strategy. The biased
2



N. Khial et al. Expert Systems With Applications 267 (2025) 126136 
Fig. 12. 𝑇 for Exp4 with different number of experts.

weights version of AC-Exp3 outperforms the uniform weight version
by leveraging prior knowledge and minimizing exploration. Exp4 out-
performs all other methods, rapidly adapting to the new strategy with
minimal fluctuation during 2.

6.3.2. Impact of the number of experts on Exp4
To test the adaptivity of the Exp4 algorithm under multiple shifts

in target mobility, which result in changes to the optimal policy, we
conducted experiments with || set to 1, 3, 5, and 7. Each expert was
assigned a different learning rate 𝜂, tuned using a logarithmic search
grid around the minmax optimal learning rate 𝜂opt. Specifically, for 3
experts, one expert uses 𝜂opt, while the other two use 𝜂 values that are
𝜂opt∕10 and 10 × 𝜂opt. For 5 experts, we included the same 3 experts
and added two more with 𝜂 values that are 𝜂opt∕100 and 100 × 𝜂opt.
The same approach was applied to 7 experts. We introduced 4 shifts in
this experiment. The target distribution was 𝑝1 during 1 = [0, 0.5], 𝑝2
during 2 = [0.5, 1], 𝑝3 during 3 = [1, 1.5], and returned to 𝑝1 during
4 = [1.5, 1.75], where  is scaled by 105.

Discussion. Fig. 12 presents the performance of the meta-learner
in terms of cumulative regret as the number of experts varies. The
results show that the rate of convergence improves with an increasing
number of experts. This improvement occurs because having more
experts enables the meta-learner to explore more effectively, given they
use logarithmic search grid around the minmax optimal learning rate.
Consequently, the algorithm adapts more quickly to changes in the
environment. Furthermore, the figure shows that the impact of the shift
is almost negligible with time as the peak of the cumulative regret in
each shift interval is flattened as in 3&4. While adding more experts
enhances the rate of convergence, it also increases computational com-
plexity, as the meta-learner must simultaneously manage and execute
more experts.

7. Conclusion

In conclusion, we use MAB algorithms for UAV search mission
in unknown and adversarial environments. The C-Exp3 algorithm is
applied with a fixed target formation strategy. To handle periodic
changes in this strategy, we introduce AC-Exp3, and use Exp4 as a meta-
learner. Our experiments show that AC-Exp3 and Exp4 perform better
than C-Exp3 in non-stationary environments.

7.1. Future work

We discuss several potential future directions for this work. The
cluttered and obstacle-filled nature of environments like military op-
erations or SAR missions can be Incorporated as part of the problem.
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Furthermore, we introduce our approach to operate online. However,
we have not yet considered some critical aspects of UAV operations,
such as energy limitations. The objective would be to learn the targets’
strategies while exploring the environment and to manage energy con-
sumption at each time step. Additionally, while we have demonstrated
the performance of C-Exp3 in comparison to DQN, it operates under
the assumption of the worst-case scenario at all times, which may not
always be realistic. The environment could vary between stochastic
i.i.d. (independent and identically distributed) conditions and fully
adversarial losses. This raises the question: How can we design an agent
capable of simultaneously considering these different scenarios? A possible
solution for this in introduced by Sachs, Hadiji, van Erven, and Guzmán
(2022).
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