Scalable Grid-.

Crowd

Conxp

GPU

Thesis Report

Jessai@omin

cnvironment

Simula
ex Mul

Based

At10nN 1N
f1-Layer
'S on the

Scalable Grid-Based Crowd
Simulation in Complex
Multi-Layer Environments on

the GPU

Thesis Report

by

Jesse Conin

4493516

Supervisors: Prof. E. Eisemann
Dr. L. Ferranti

Year: 2024 - 2025

Faculty: Mechanical Engineering, Delft
Computer Science, Delft

o]
TUDelft

Contents

Abstract

1 Introduction

2 Related Works

3 Continuum Crowds

4 Scene Representation in Multi-Layered Environments

4.1 Layer Extraction e
4.2 Identifying Vertical Fragments
43 Layer Connectivity e
44 BoundaryPadding
4.5 Agent Goal Annotation L

5 GPU-Based Continuum Crowds Simulation

5.1 Variable Field Computation
5.2 Solving the Eikonal Equation
5.3 Agent Movementand Update L
6 Results
6.1 Scene Representation Quality and Generalization
6.2 Scalability with Agent Count
6.3 Scalability with Grid Resolution
6.4 Effect of Multi-Angle Views on Obstacle Detection
6.5 GPU Memory Consumption o ottt e e e e e e
6.6 SUMMATIY ot ittt e e e e e

7 Discussion and Conclusion

7.1 DISCUSSION
7.2 Conclusion L e
References

Appendix A: Compute Shaders in GLSL

Appendix B: Shader Storage Buffer Objects (SSBOs)

O 00 0 U1 U1

11
11
13
14

15
16
16
17
17
18
19

19
19
20

20

21

21

Scalable Grid-Based Crowd Simulation in Complex Multi-Layer Environments on the GPU

Scalable Grid-Based Crowd Simulation in Complex Multi-Layer
Environments on the GPU

Jesse Conijn
TU Delft

Delft, The Netherlands

Figure 1: Real-time potential field projection in a densely populated, multi-level 3D scene.

Abstract

Simulating how crowds move through complex environments is
essential for applications in urban planning, robotics, gaming, and
safety analysis. However, many real-world spaces—such as multi-
story buildings, staircases, and layered architectural designs—are
too complex for traditional 2D or CPU-based crowd simulation
methods, which often oversimplify geometry or become computa-
tionally infeasible. This thesis introduces a fully GPU-accelerated
crowd simulation framework that efficiently handles complex, multi-
layered 3D environments. Building on the Continuum Crowds al-
gorithm, our method extracts walkable surfaces at different height
levels, identifies vertical obstructions, and enables real-time naviga-
tion for thousands of agents. The system avoids common artifacts
such as unrealistic wall clipping and enables realistic movement
across layers. In performance benchmarks, our GPU implementa-
tion achieves a speedup between 5x and 1000x over the original
CPU-based method, depending on scenario complexity, demonstrat-
ing strong scalability and consistent real-time performance. This
makes it particularly valuable in domains such as robotics, where
anticipating pedestrian flow is crucial for safe and intelligent robot
navigation in dynamic environments.

Keywords

Computer Graphics, Continuum Crowds, Path Planning, Crowd
Simulation, Multi-layer, Complex Environment, GPU, Robotics

1 Introduction

Simulating the movement of large crowds plays an essential role in
applications such as video games [26], visual effects [9], robotics
[22] and urban planning [6]. Realistic crowd simulation allows for
better decision-making in complex environments and can enhance

both the visual accuracy and the practical utility of virtual and real-
world systems. In robotics, for example, it supports motion planning
algorithms that must account for dynamic human environments,
such as airports or hospitals.

Traditional crowd simulation methods often rely on agent-based
models, where each individual is simulated separately using behav-
ioral rules or local navigation techniques. While these approaches
can produce natural movement patterns, they quickly become com-
putationally expensive as the number of agents increases, especially
in large or dynamic environments.

A significant breakthrough came with the Continuum Crowds
algorithm, introduced by Treuille et al. in 2006 [25]. Unlike previous
per-agent navigation models, Continuum Crowds treats the crowd
as a continuous fluid-like density field. It uses a series of variable
fields-like density, speed, and traversal cost-to compute a potential
field, which then guides each agent along a gradient toward their
goal. This approach shifts the computational focus from individual
agents to grid-based fields, making it highly scalable and more
suitable for real-time applications involving thousands of agents.

Despite its strengths, the original Continuum Crowds algorithm
has limitations. First, it was designed to run on the CPU, which
restricts its scalability in high-density scenarios. Second, the al-
gorithm assumes a flat, 2D environment, making it unsuitable for
complex, multi-layered spaces such as staircases, bridges, and multi-
story buildings. As modern applications increasingly demand real-
time simulations in rich 3D environments, these limitations become
more pronounced.

Following Continuum Crowds came several other publications
trying to improve this method, either focusing on speeding up
the algorithm by translating it to the GPU, or on expanding it

to more complex multi-layer environments. Unfortunately, no re-
search has yet succeeded in combining the two, since all methods
that were optimized for the GPU were still only usable in simple
2D environments, and other methods that worked in multi-layered
environments were incompatible with the GPU.

This thesis builds upon the Continuum Crowds framework and
focuses on restructuring the algorithm to build a bridge between
operating efficiently on the GPU and extending it to handle multi-
layered environments. By leveraging the parallel processing power
of modern GPUs and designing new techniques for layer detection
and representation, the goal is to enable scalable, real-time crowd
simulation in environments that reflect the complexity of real-world
spaces. To our knowledge, this is the first approach to combine
GPU-accelerated crowd simulation with support for complex, multi-
layered 3D environments—bridging a gap previously left open by
existing methods.

The remainder of this thesis is organized as follows. Section 2 re-
views existing work on crowd simulation, scene representation, and
GPU-based methods relevant to our approach. Section 3 provides an
overview of the original Continuum Crowds algorithm and its un-
derlying principles. Section 4 introduces our method for extracting
a structured, multi-layered scene representation using GPU-based
depth peeling, including the handling of vertical surfaces, inter-
layer connectivity, and goal annotation. Section 5 describes how the
original Continuum Crowds algorithm is adapted and integrated
into the fully GPU-parallel framework. This includes the computa-
tion of variable fields, the parallel solution of the Eikonal equation,
and the update of agents based on the resulting navigation fields.
Section 6 presents the results of our method across various scenes,
followed by a discussion in Section 7 that reflects on limitations,
challenges, and opportunities for future work.

2 Related Works

Early crowd simulation systems such as Reynolds’ Boids [23] demon-
strated flocking behavior using simple rule-based interactions. Since
then, more sophisticated agent-based approaches have emerged,
including the Social Force Model for pedestrian dynamics [12],
which models individuals as particles influenced by attractive and
repulsive forces. Other notable methods include force-based mod-
els [11], velocity-based collision avoidance [7], and vision-based
systems [21]. While effective for simulating local interactions and
producing realistic motion, these agent-based methods often face
scalability challenges in dense or geometrically complex settings.

To address such limitations, Treuille et al. [25] introduced the
Continuum Crowds algorithm, modeling crowd motion as a potential
field over a grid. This approach allows for global coordination
and smooth navigation by solving the Eikonal equation over a
discretized domain. Several extensions have adapted this framework
to support anisotropic cost metrics [10], group behaviors [17], and
GPU-accelerated computation [20].

Solving the Eikonal Equation on the GPU. Traditional meth-
ods for solving the Eikonal equation, such as the Fast Marching
Method (FMM) [24], provide accurate solutions but rely on se-
quential updates, limiting their parallel efficiency. To address this,
parallel-friendly variants like the Fast Sweeping Method (FSM) [28]
and its parallel extensions [2] [3] enable grid-wide updates through

Jesse Conijn

directional passes. The Fast Iterative Method (FIM) [14], in contrast,
is more compatible with GPU architectures because it avoids global
sorting or directional sweeps. Instead, it uses a relaxed, asynchro-
nous update strategy based on active sets, where only the texels
that may change are iteratively updated. This allows for efficient
parallelization without requiring tight synchronization or complex
memory management. Improved versions [13] [8] further reduce
computational overhead in large-scale simulations.

Navigating Complex Environments. Adapting crowd simulation
to multi-layered 3D environments introduces additional challenges.
Semantic models [15] [16] and layered navigation meshes [27]
offer ways to model vertical connectivity, but they are often not
optimized for GPU-based implementations.

To extract layered walkable surfaces efficiently, image-based and
rasterization-based techniques are more GPU-friendly. Methods
such as raycasting [19] and voxelization [4] allow for grid con-
struction without relying on triangle-level queries. However, these
typically capture only the nearest surface per pixel.

Depth Peeling [5] enables multi-layer surface extraction by suc-
cessively removing the nearest geometry layer across multiple
rendering passes. Bucket Depth Peeling (BDP) [18] and its adaptive
variant improve performance by capturing multiple layers in a sin-
gle pass using a fixed-depth bucket structure, reducing the number
of rendering passes required and improving GPU utilization.

Our Contribution. This work builds upon the Continuum Crowds
framework and extends it to general, multi-layered 3D environ-
ments. We introduce a depth-peeling-based GPU pipeline for ex-
tracting walkable surface layers, combined with texture-based inter-
layer connectivity encoding, requiring as little user annotation as
possible. We solve the Eikonal equation using an optimized GPU
implementation of the Fast Iterative Method, and support multi-
goal navigation and discomfort-aware boundary conditions. To our
knowledge, this is among the first fully GPU-based implementa-
tions of the Continuum Crowds algorithm specifically adapted to
handle multi-layered environments with minimal user input.

Notation. This report works with three main coordinate spaces:

e World-space coordinates (x,y,z): This is the primary 3D
coordinate system used for positioning geometry. We follow
OpenGL’s convention, where the x-axis points right, the
y-axis points upward (vertical), and the z-axis points into
the screen (depth).

e Texture-space coordinates (u,v): These 2D coordinates
lie in the range [0, 1]? and are used to sample from textures.
Although sometimes denoted as (x, y) in the shader code
for simplicity, we use (u, v) notation to clearly distinguish
them from world coordinates. The origin is typically the
bottom-left of the texture in OpenGL.

e Screen-space coordinates (xs, ys, zs): These are defined
in gl_FragCoord, where (xs, ys) are in pixel units and rep-
resent the fragment’s position on the screen. The origin
is at the bottom-left of the window, with x5 € [0, width],
ys € [0, height], and zs € [0, 1] corresponding to the depth
buffer range.

Scalable Grid-Based Crowd Simulation in Complex Multi-Layer Environments on the GPU

3 Continuum Crowds

The Continuum Crowds algorithm, introduced by Treuille et al. [25],
presents a macroscopic approach to simulating crowds by modeling
agents as a continuous fluid. Rather than treating individual agents
as discrete entities, the algorithm represents the combined behavior
of many agents using continuous scalar and vector fields defined
over a spatial grid. This allows for efficient simulation of large-scale
crowd behaviors while maintaining smooth, realistic movement
patterns.

At the core of the Continuum Crowds model are two key com-
ponents: a potential field and a velocity field. The potential field
guides agents toward their goals, and is computed by solving the
Eikonal equation, which encodes the travel cost from every cell
to the goal location. The cost of traversing each cell is influenced
by terrain factors (such as slope), environmental discomforts, and
dynamic agent density. The velocity field is derived as the spatial
gradient of the potential field, pointing in the direction of steepest
descent and indicating how agents should move to minimize their
travel cost.

To update the simulation, the algorithm evolves three fields over
time:

o A density field that tracks how many agents occupy each
location.

o A speed field that determines how fast agents can move,
influenced by crowd density and environmental features.

o A potential field that guides agents toward their goal.

e A velocity field that prescribes agent movement based on
potential.

This field-based model allows agents to implicitly avoid collisions
and dynamically adapt to congestion. It also enables large-scale
path planning and group navigation through complex environments
without requiring explicit pathfinding for each agent.

In the following sections, we build upon this foundational model
by extending it to support simulation in multi-layered 3D environ-
ments, leveraging modern GPU hardware to compute each field in
parallel for high performance.

4 Scene Representation in Multi-Layered
Environments

To enable real-time crowd simulation on the GPU, the environment
must first be transformed into a structured, grid-based representa-
tion that supports parallel computation. This section describes the
preprocessing steps required to extract walkable surfaces, identify
vertical obstructions, encode inter-layer connectivity, and annotate
navigation goals—all in a format optimized for GPU execution.
We begin by extracting a fixed number of horizontal scene lay-
ers using Depth Peeling [5], a rendering technique that captures
multiple depth layers from a single viewpoint. We describe how
this is adapted for our purposes in Section 4.1. Since near-vertical
geometry is not well captured from a top-down view, we then in-
troduce an additional step to identify vertical fragments using the
same technique, but from side and front perspectives (Sec. 4.2).
With this improvement to the scene representation, we proceed to
compute connectivity between layers to determine where agents
can traverse vertically (Sec. 4.3). Next, we apply boundary padding
to mark areas near unwalkable surfaces as invalid, ensuring agents

Figure 2: Scene 1, a multi-level environment. The stairs in the
middle connect the two levels. The white pill-shaped models
represent agents. [1]

do not intersect with walls or fall between layers (Sec. 4.4). Finally,
we describe a method for annotating agent goal regions within the
scene through user interaction, enabling group-specific navigation
targets (Sec. 4.5).

4.1 Layer Extraction

To enable grid-based simulation over complex, multi-layered envi-
ronments on the GPU, the environment must first be decomposed
into a stack of structured 2D layers. This representation allows the
complex 3D geometry of the scene to be reformulated into a regu-
lar grid structure, where each cell (or texel) can be independently
processed in parallel. By working with layered 2D textures, we
avoid the irregular memory access patterns and geometric queries
associated with mesh-based navigation, making the pipeline more
compatible with real-time GPU execution.

While alternative scene representations exist—such as navigation
meshes, semantic maps, or full 3D voxel grids—these often require
more extensive preprocessing or introduce scalability issues on the
GPU. In particular, pointer-based or hierarchical structures are not
directly compatible with GPU pipelines, which favor flat, texture-
based data representations. Textures, along with uniform buffers
and structured shader storage, remain among the few formats na-
tively supported in fragment and compute shaders.

Our layered texture-based approach provides a practical balance:
it captures key 3D navigational features such as elevation, slopes,
and multi-level connectivity, while remaining efficient to process
in parallel on the GPU.

Each layer corresponds to a horizontal slice of navigable geome-
try, captured from an orthographic top-down camera. These slices
are then encoded into texture arrays, with each array storing a
specific physical quantity such as world-space position, surface
normal, depth value, semantic label, or walkability flag. To pro-
vide a consistent visual context throughout this thesis, Figure 2
shows the multi-level scene used for all subsequent illustrations
and evaluations of the algorithm.

Jesse Conijn

L

Layer 0 — Texture Layer 1 — Texture

Layer 2 — Texture Layer 3 — Texture

Layer 0 — Geometry Layer 1 — Geometry

Layer 2 — Geometry Layer 3 — Geometry

Figure 3: Depth peeling results for layers 0-3. The top row shows the captured surface colors in the Color texture array. The
bottom row shows the corresponding geometry fragments assigned to each layer, visualizing the actual 3D surfaces that remain

after peeling away higher layers.

In order to represent the scene as a structured stack of 2D layers
suitable for GPU computation, a set of layered texture arrays is
created, each with k layers. During rendering, Multiple Render
Targets (MRTs) are used to write to different outputs from the
fragment shader, with each output directed to a corresponding layer
of a texture array.

Since different physical quantities (e.g., position, normal, flags)
vary in dimensionality and data type, each texture array is con-
figured with an appropriate internal format to match the size and
precision of the stored data. For instance, position and normal vec-
tors are stored using three-component (RGB) formats, while scalar
fields such as fragment flags require only a single component.

This design allows the simulation to efficiently access and pro-
cess different types of scene data in parallel on the GPU. For ex-
ample, normals are used to filter out steep surfaces, goal IDs deter-
mine agent destinations, and discomfort values affect path planning.
Choosing the correct format for each quantity ensures memory
efficiency and avoids performance bottlenecks during shader oper-
ations. Table 1 summarizes the structure of the texture arrays used
during the layer extraction stage.

Output Format Description
Position RGB World-space position vector
Normal RGB World-space surface normal
Grid R Encoded fragment flags
Goal R Goal IDs
Connection RGBA Inter-layer connections
Discomfort R Per-cell discomfort cost

Depth Depth component Z-buffer depth value

Table 1: Texture Arrays of Scene Layer Encodings

The spatial resolution (width x height) and the number of layers k
for each texture array are chosen empirically to balance simulation
accuracy and real-time performance. Higher resolutions provide
finer accuracy for agent navigation and obstacle detection, but
increase memory consumption and computational cost. Conversely,
lower resolutions improve rendering performance at the cost of
spatial detail. The number of layers k is primarily determined by the
vertical extent of the environment and the chosen spatial resolution.
It is selected to ensure complete coverage of all navigable surfaces
while minimizing unused entries in the texture array. In practice, the
chosen settings were selected through iterative testing to ensure
sufficient fidelity for complex environments while maintaining
interactive frame rates.

To extract individual layers of geometry from the scene, we
employ the GPU technique Depth Peeling [5]. Traditionally used
for order-independent transparency, Depth Peeling is repurposed
here to progressively capture deeper fragments at each pixel from
the camera’s orthographic view.

To ensure numerical stability when sampling multiple depth
layers, we apply a small depth offset (known as z-fighting preven-
tion) to avoid visual artifacts caused by overlapping surfaces being
rendered at nearly the same depth.

We denote:

e D;(x,y) the screen-space depth at pixel (x, y) in layer i

e Pi(x,y) the world-space position of the fragment at that
pixel in layer i

e N;(x,y) the world-space surface normal

e Gij(x,y) the walkability flag assigned to that texel

o Hi(x,y) = Piy (x,y) the vertical world height (i.e., the y-
component of P;)

e § a small depth bias to prevent z-fighting (e.g., 107%)

Scalable Grid-Based Crowd Simulation in Complex Multi-Layer Environments on the GPU

(a) Layer 0 (b) Layer 1

(c) Layer 2

(d) Layer 3 (e) Projection of layers

Figure 4: Visualization of the Grid textures across multiple layers. Yellow indicates walkable regions, Purple highlights texels
that lie too close beneath higher layers, and Cyan marks surfaces that are too steep (i.e., too vertical) to walk on or found under
these vertical surfaces. The final subfigure shows these values projected back onto the 3D scene for spatial context, with black

areas indicating invalid regions or vertical fragments.

The first layer (i = 0) captures the closest visible fragments at
each screen-space coordinate (x, y):

Do (x,y) = i depth,, (x, y) 1

where depthp (x,y) is the screen-space depth value of fragment
p at pixel (x,y). This produces the first depth-peeling layer via a
standard depth buffer pass.

Subsequent layers are computed by discarding fragments that
are closer than the previously stored depth:

if Dj(x,y) <Dj_1(x,y)+8 — discard)
This ensures that each layer i retains only the next-deepest
geometry, peeling away upper surfaces layer by layer. The process
is repeated until all visible layers are written into the corresponding
slices of the texture arrays.
To ensure the extracted surfaces are relevant for agent navigation,
fragments are filtered based on two geometric criteria:

(1) Surface Orientation: Fragments with surface normals
oriented too steeply relative to the up-axis (i.e., vertical
walls or slopes) are flagged as non-walkable, since such
surfaces cannot be realistically traversed:

if nm-yl<6nn — Gilx,y)=1 (3

where n is the world-space normal, y is the global up-vector
(0,1,0), and O, is a tunable threshold that defines the
minimum acceptable surface flatness.

(2) Vertical Separation: A minimum vertical offset A,y is
enforced to discard surfaces that are too close under prior
layers. This prevents narrow gaps between stacked surfaces
from being mistakenly treated as separate walkable layers:

if Hi-1(xy) -Hi(x,y) <hmn — Gilx,y)=2 (4

(3) All other fragments are considered walkable and assigned
a walkability flag of 0: Gj(x,y) =0

The walkability flag G;(x,y) is written to the corresponding
coordinate in the Grid texture array.

It is important that all non-walkable texels are explicitly flagged
(rather than discarded), as their vertical heights H;_1 (x, y) are re-
quired in the next depth-peeling iteration. This enables the system
to correctly evaluate the vertical separation for the next layer and
avoid invalid walkable surfaces beneath obstructions.

Position — Layer 0 Position — Layer 2

Normal — Layer 0 Normal — Layer 2

Figure 5: Visualization of the Position and Normal textures
for layers 0 and 2. The position textures encode world-space
coordinates (red = x, green = y, blue = z), while the normal tex-
tures represent surface orientation in world-space. Together,
they form the geometric basis for walkability analysis and
navigation computation.

Figure 3 illustrates the resulting stack of (the first four) color
texture layers (top) and visualizes the fragments captured with
each layer in the 3D environment (bottom), while Figures 4 and 5
and show representative outputs of the grid, position and normal
textures. Together, they highlight the layered scene representation
produced by the extraction stage. These texture-based representa-
tions form the basis for all subsequent GPU-parallel computations,
enabling fast and scalable access to spatial, semantic, and geometric
information.

4.2 Identifying Vertical Fragments

One of the challenges with the top-down orthographic depth peel-
ing approach is its inability to reliably detect vertical or near-vertical
surfaces. From the perspective of the top-down camera, these sur-
faces have normals that point sideways rather than upwards, and
are therefore invisible or misclassified, even though they may in-
tersect or occlude walkable surfaces like floors. This limitation
can lead to artifacts where agents are allowed to walk partially
through walls, especially if the floor extends beneath these vertical
obstructions.

To address this, we introduce a secondary analysis phase that
identifies vertical fragments using two additional orthographic
cameras—one facing the scene from the front and one from the side
(see Fig. 6). In a GPU rendering pipeline, adding such camera views
is straightforward and incurs minimal overhead, as the same depth
peeling shaders can be reused from different viewpoints. We repeat
the depth peeling process from both perspectives, storing position
and normal data for each layer as before.

Next, we use a compute shader to analyze each texel in parallel,
where each thread is assigned to one specific texel (Appendix 7.2).
It iterates over the texels representing the fragments detected from
the side and front views. For each texel, we check whether the
normal deviates significantly from the vertical axis, i.e., if

In-y] <.

We use a threshold of 7 = 0.5 to allow for some tolerance in
surface orientation; this corresponds to surfaces steeper than ap-
proximately 60° from vertical, which helps avoid misclassifying
slightly inclined walkable surfaces as vertical walls.

For each fragment flagged as vertical, we first determine where it
maps to in the top-down view by projecting its world-space position
into the top-down camera’s texture space. This allows us to identify
the corresponding texel in the original layer stack, where potential
occlusion or interference with walkable surfaces may occur.

The projection follows a standard transformation pipeline in
3D graphics, consisting of two matrices: the View matrix (which
aligns the camera with the scene), and the Projection matrix
(which maps the 3D coordinates into a 2D viewing frustum). The
fragment’s world-space position p is first transformed into clip
space:

Pclip = Projection x View X p,
This clip-space position is then normalized by dividing by its
fourth coordinate (w) to yield normalized device coordinates (NDC):
Pclip
Pclip-W .
The resulting NDC values lie in the range [—1, 1]. These are
converted to UV texture coordinates in the [0, 1] range as follows:

Pndc =

(4,0) = 0.5 - (Pndc-X, Pndc-y) +0.5.

After these transformations, the resulting UV coordinates corre-
spond to a specific texel in the top-down layer. From this location,
we iteratively search downward through the stack to find a valid
walkable surface that may be affected by the vertical geometry.

Jesse Conijn

(a) Front

(b) Side

Figure 6: Visualization of the scene with orthographic view
from front and side perspective.

Specifically, we look for the closest candidate that:

o lies below the vertical fragment (based on y position),

e is within a given vertical distance threshold (to avoid prop-
agating effects too far), and

e has a sufficiently horizontal surface normal (i.e., |dot(n, §)| >
0.5).

If a texel satisfies all criteria, it is marked as invalid in the
gridTextures array, preventing agents from navigating into or
through regions immediately adjacent to vertical walls. This ad-
ditional invalidation step improves realism and addresses a key
limitation of the original layer extraction method.

This solution effectively combines multiple orthographic per-
spectives to compensate for visibility limitations in any single view,
resulting in a more complete and semantically correct multi-layered
scene representation.

This step complements the top-down layer extraction, ensuring
that vertical occlusions are accurately flagged in the GPU memory
layout and eliminating navigation artifacts in real-time scenarios.

4.3 Layer Connectivity

With the scene rendered into multiple texture arrays encoding
different physical quantities, the next step is to define inter-layer
connectivity. This connectivity enables agents to traverse between
layers when transitions are physically valid, such as via stairs,
ramps, or other inclined surfaces.

While each layer is a flat representation of the scene in the form
of a texture, agents must be able to move between layers to reflect
real-world traversability. This requires detecting, for each grid cell
(i.e., texel), whether neighboring cells in all four cardinal directions
(North, East, South, West) exist on the same or another layer, and
whether a connection between them is feasible.

A connection is considered valid from texel (x, y, ¢) to neighbor
(x’,v’, 1) in direction j, if:

Scalable Grid-Based Crowd Simulation in Complex Multi-Layer Environments on the GPU

Figure 7: Visualization of the Connection textures, where the
RGBA channels encode the layer index of each neighbor-
ing texel in the four cardinal directions (North, East, South,
West). The values are normalized to the range [0, 1], where 0
corresponds to the first layer, 1 to the last, and intermediate
values are linearly mapped based on the total number of
layers. Texels appear white or light grey when all neighbor-
ing directions connect to the same (non-zero) layer — with
the brightness indicating which layer (e.g., white = highest
layer). Colorful texels (e.g., purple, yellow, cyan) occur when
neighboring directions connect to different layers, resulting
in variation across the RGBA channels. Dark or black regions
may indicate invalid or missing connections, or vertical frag-
ments.

(1) The neighbor texel is within texture bounds,

(2) The neighbor is flagged as walkable in the corresponding
Grid texture, and

(3) The height difference between the center and neighbor texel
is within a threshold hApax.

The parameter hpy,x defines the maximum vertical offset that an
agent is allowed to traverse between layers. It determines whether
the transition corresponds to a physically valid connection—such
as a ramp, step, or slope—versus an unrealistic vertical jump or
drop. In practice, this threshold is chosen empirically based on the
expected step height or slope angle agents are allowed to climb.
For example, if the grid resolution is 0.1 meters per cell, setting
hmax = 0.2 would allow transitions up to 20 cm, capturing typical
stair heights.

Let:

o 0 be the offset for direction j (e.g., North = (0, 1), East =
(1,0), etc.),
e Hc(x,y) be the height of the center texel at layer c,
e H;(x’,y") be the height of the neighbor texel at layer i,
e AH = [He(x,y) — Hi(x",y')].
Then, the connection is regarded as valid if AH < hpmay. If this
condition is satisfied, the index of the connected layer i is saved

in a vector at the index corresponding to direction j. If no valid
connection is found, the component is set to —1.

The result is stored in the Connection textures. Each texel stores
a four-component vector:

Connection(x,y,c) = (n,e,s,w)

Each component holds the index of the neighbor layer in the
corresponding direction:
R (red) = North
G (green) = East
B (blue) = South
A (alpha) = West

For example, Connection(x,y, 2) = (2,3,2, 1) means:

North neighbor is on the same layer (2)
East neighbor is on layer 3
South neighbor is on the same layer (2)
West neighbor is on layer 1

The result is shown in Figure 7, which is a directional connectiv-
ity map that makes inter-layer traversal by agents possible during
simulation, with per-texel access optimized for GPU parallelism.

4.4 Boundary Padding

After computing the layer connectivity, an additional preprocessing
step is required to ensure agents do not occupy positions that par-
tially intersect with non-walkable geometry. While steep surfaces,
low ceilings, or overlaps are filtered during the depth peeling stage,
certain invalid configurations can still arise, particularly near walls
or narrow architectural features where agents might clip into adja-
cent geometry. To avoid this, we introduce boundary padding—a
mechanism to pad the area around non-walkable cells and designate
surrounding cells as discomfortable.
Using a compute shader, the algorithm proceeds as follows:

o The four cardinal neighbors (north, east, south, west) are
inspected using the Connection texture.

o If any of the neighboring cells are invalid (i.e., have a con-
nection value of -1), the current texel is flagged as discom-
fortable.

o A discomfortable cell is marked by assigning it a discomfort
value of oo, making it functionally non-walkable during po-
tential field computation. This is written to the Discomfort
textures.

This ensures that even cells directly adjacent to obstacles are
excluded from potential paths, preventing agents from moving too
close to surfaces where artifacts like partial intersection with walls
would occur. An example is shown in Figure 8.

In cases where agents are significantly larger than the cell size—
specifically, when the agent radius exceeds twice the cell radius—a
single layer of padding is insufficient. To address this, the padding
step includes an extended pass: if a neighboring cell is invalid, the
algorithm also inspects the neighbors of that neighbor. If these
second-row neighbors are valid, they too are marked as uncom-
fortable. In this way, a thicker buffer zone is formed, ensuring that
larger agents are equally constrained from crossing architectural
boundaries.

Figure 8: Example visualization of padding around invalid
cells in the navigation grid. Black cells indicate non-walkable
(invalid) regions such as walls. Red cells represent the
surrounding discomfortable area created by the boundary
padding step, which prevents agents from navigating too
close to obstacles.

Figure 9: Visualization of the Discomfort textures, where the
red cells indicate the padding around invalid cells.

This process is sensitive to the size of agents present in the
simulation. If different agent groups have varying radii, the padding
logic may be adjusted accordingly. For the current implementation,
we assume a globally defined agent radius, and apply uniform
padding based on that value.

The boundary padding field is written to the Discomfort texture
array and used throughout the potential and speed computation
shaders (Fig. 9). Cells that are assigned as discomfortable are treated
as non-walkable and contribute no valid motion or path planning
behavior. This technique, while conceptually simple, substantially
improves the realism and robustness of the simulation, particularly
in dense or tightly structured environments.

4.5 Agent Goal Annotation

To enable agents to navigate meaningfully through the environ-
ment, goal regions must be assigned in a way that is both flexible

Jesse Conijn

and GPU-compatible. To define these destination regions for agents,
we introduce a method that allows the user to place goal planes—flat,
horizontal meshes—slightly above the ground in locations where
agents should eventually arrive (e.g., exits, points of interest). Each
goal plane must be assigned a unique goalID (with values > 0),
identifying it as a distinct goal region. Since these goal meshes
are not part of the scene itself, they do not participate in any of
the texture arrays involved in physical layer extraction (positions,
normals, connectivity, etc.).

During the standard layer extraction step (see Section 4.1), frag-
ments belonging to goal plane meshes are rendered into all standard
outputs (e.g., position, grid, depth) to maintain consistent layer
structure across texture arrays. However, goal-specific information
is handled separately: if a mesh has a valid goalID, this identifier
is excluded from the standard MRTs and instead written into a
dedicated Goal texture in a separate compute pass. This separation
ensures that goal planes do not interfere with physical surface data
while still being properly annotated for agent navigation.

Once the scene layers have been extracted, a separate compute
shader processes only the goal planes. For each texel corresponding
to a rendered fragment:

(1) The world-space position of the goal plane fragment is
projected into the top-down UV space using the same or-
thographic camera setup used during layer extraction.
The resulting UV coordinate is scaled to texel space, and for
each layer (from top to bottom), the shader searches for the
first valid walkable texel at the same texture coordinates
with a height that is lower than that of the goal plane
fragment.
(3) Once such a texel is found, the corresponding texel in the
goal texture is assigned the goalID of the goal plane that
was processed.

2

~

This method uses the position of the hovering mesh to define
the goal area in the layer directly beneath it. As a result, the mesh
must be placed slightly above the desired goal location so that it lies
above (but not too close to) the underlying walkable surface. If the
goal plane is placed too close, the target region may be incorrectly
marked as non-walkable due to discomfort logic (i.e., it may be
interpreted as lying too close to a higher layer). To prevent this,
the goal plane must be placed higher than the system’s height-
difference threshold hpiy,, ensuring correct goal annotation. While
this solution is effective within our pipeline, it does require manual
tuning and could be replaced by a more robust semantic tagging
approach in future work.

This step decouples goal annotation from physical scene repre-
sentation and ensures accurate mapping between annotated goal
regions and the layered environment grid.

Together, these steps produce a complete, GPU-compatible rep-
resentation of the environment. This structured data—stored in
layered texture arrays—serves as the foundation for the simulation
pipeline described in Section 5, where agent behavior is computed
in parallel using the Continuum Crowds framework. For static
environments, the layer extraction and encoding steps can be per-
formed offline, reducing runtime overhead during the simulation
and rendering loop.

Scalable Grid-Based Crowd Simulation in Complex Multi-Layer Environments on the GPU

Summary and GPU Integration

The steps outlined in this section collectively transform complex
3D environments into a structured, layered grid representation
full of semantic data essential for navigation and simulation. By
encoding scene data into texture arrays and using GPU-friendly
operations like depth peeling and compute shaders, we produce
a compact, parallel-accessible format that supports real-time per-
formance. Each texel in this representation encapsulates sufficient
geometric and semantic context—such as position, walkability, ver-
tical connectivity, discomfort, and goals—for agents to reason about
navigation.

This GPU-compatible structure serves as the foundation for the
Continuum Crowds simulation framework described in the next
section. The design ensures that all major computations—from
field generation to agent updates—can be performed efficiently and
entirely in parallel on the GPU.

5 GPU-Based Continuum Crowds Simulation

Building on the structured multi-layered scene representation from
the previous section, we now proceed to simulate agent movement
using the Continuum Crowds framework. This section presents a
GPU-based implementation of the algorithm, designed to operate
entirely in parallel over the extracted layered grid representation.

Unlike prior work, which has focused either on GPU acceleration
in simple 2D environments or on CPU-based simulations in com-
plex 3D spaces, our approach enables real-time, fully GPU-driven
simulation in multi-layered 3D environments. This requires several
novel adaptations to the Continuum Crowds model: we reformulate
the variable field computations to support stacked texture arrays;
solve the Eikonal equation using a parallel-friendly method com-
patible with our grid structure; and update agents efficiently across
different height layers, while incorporating discomfort zones and
inter-layer connectivity.

We begin by computing a set of dynamic variable fields over the
grid, including a density and speed field (Sec. 5.1). These fields form
the basis for solving the Eikonal equation (Sec. 5.2), which computes
a scalar potential field that guides agents toward their goals via
optimal paths. Finally, agents are updated in parallel based on the
local gradient of the potential and local crowd conditions (Sec. 5.3).
Together, these stages form a fully GPU-accelerated, scalable crowd
simulation pipeline capable of handling complex multi-layered
environments.

5.1 Variable Field Computation

In the previous section, we described how the environment is trans-
formed into multiple stacks of layered textures using MRTs, where
each layer corresponds to a 2D navigable grid and each texture
array encodes a specific physical property (e.g., position, normal,
walkability). Building on this representation, we now compute the
core variable fields required by the Continuum Crowds algorithm
on the GPU. These variable fields form the foundation for solv-
ing the Eikonal equation and ultimately guide agents through the
environment toward their goals.

Just like in the previous section, each field is stored as a lay-
ered texture array. Again, each texture array must be configured
according to the structure of the data it stores. Scalar fields such as

density, average velocity magnitude, discomfort, and potential re-
quire only a single channel and are stored in the red (R) component.
Directional fields such as speed and unit cost, which store values
for each of the four cardinal directions (North, East, South, West),
require four components and are stored in RGBA textures. The
velocity field, which encodes movement direction, requires at least
two channels (i.e. for the x- and z-direction), with an optional third
component for the y-direction if vertical displacement is explicitly
modeled (see Sec. 5.3).

Table 2 summarizes the texture arrays used for variable field
storage.

Output Format Description
Density R Scalar density field
AVG Velocity R Average velocity magnitude
Speed RGBA Dir. speed values (N,E,SW)
Potential (Read) R Read buffer for potential
Potential (Write) R Write buffer for potential
Velocity RG/RGB Agent movement direction vector

Table 2: Texture Arrays for Continuum Crowds Variable
Fields

Once these texture arrays are initialized, compute shaders are
used to populate them in parallel. Each texel corresponds to a cell
in the simulation grid, mirroring the structure used in the layer
connection stage (Sec. 4.3). The GPU-friendly architecture ensures
that each variable field can be efficiently calculated across the entire
environment at once.

The computation follows a specific dependency order:

(1) Density Field — Derived from agent presence and dis-
tribution, forming the basis for local interactions. Higher
density slows down movement, influencing how agents
flow through the environment.

(2) Speed Field — Computed from the local density and terrain
slope. This field defines how fast an agent can move in each
direction from a given location and is used as the cost metric
in the Eikonal equation.

(3) Potential Field — Computed using the Fast Iterative Method
(see Section 5.2). The potential field represents the cost to
move from each location to a goal, and it is calculated by
solving the Eikonal equation using the speed field as input.

(4) Velocity Field — Derived from the gradient of the potential
field, this vector field determines the movement direction
of agents at each texel.

In the following subsections, we describe the GPU-based com-
putation of each of these variable fields in detail, highlighting the
specific logic used in the compute shaders and how each field con-
tributes to the overall simulation pipeline.

5.1.1 Density Field. In both real-world and simulated crowd be-
havior, pedestrians tend to avoid congested areas, as higher local
densities lead to slower movement. Consequently, in the Contin-
uum Crowds framework, speed is modeled as a density-dependent
variable, and the accurate computation of a density field is a critical
first step.

The original method [25] involves "splatting” agents onto a grid
using simple techniques such as bilinear or Gaussian filters. How-
ever, in more complex or fine-grained simulations—particularly
those with smaller cell sizes—such naive splatting may introduce vi-
sual or numerical artifacts. To address this, Jiang et al. [16] proposed
a more robust two-step method for computing density.

First, for each agent i, an influence factor o is computed, defining
the number of grid cells around the agent that are affected by its
presence. This is given by:

gz{m—uzm}

:)

depending on radius r; of agent i and the grid’s cell size I. The
ceiling function ensures coverage of all neighboring cells within
the agent’s interaction range.

Secondly, for each cell, they compute a scale factor y.

diSt(Pagent, Pcell)

- el ©)

Here, dist(-) denotes the Euclidean distance between the agent’s

position Pygent (projected to cell height) and the center position of

the cell P.ep. In [16], they make a distinction between the distance

in x- and y-direction and take the larger of the two and divide it

by the cell size. This results in axis-aligned symmetry, where our

method gives a more desirable radially symmetric density around

the agents.

Finally, the density contributed to a given cell is defined as:

(1—-a)sin(2xX +/2) + (1+a)
2

{ (X—O.S)z} @
all- , 05<X <o
o—0.5

, 05X <05

p=

where a is the adjustment factor that controls the sharpness of
the falloff.

In our GPU-based method, this logic is implemented in a compute
shader, just like in the previous sections, where each thread is
assigned to a single grid cell in the multi-layered representation.
Figure 10 visualizes the density field projected onto the scene.

In a GPU implementation, computing density contributions from
all agents for every grid cell can become a bottleneck, especially
in large-scale simulations. To optimize performance, the algorithm
restricts computation to a fixed influence radius rmax, considering
only agents within that range for each cell.

This localized computation allows each GPU thread to evaluate
the density contributions for its assigned cell using only nearby
agents, reducing memory access overhead and improving parallel
efficiency. Agent data is typically passed via Shader Storage Buffer
Objects (SSBOs) (Appendix 7.2), which allow for dynamic updates
to agent properties during simulation.

5.1.2 Speed Field. In the Continuum Crowds model, the local speed
of a pedestrian is influenced by two competing factors: the under-
lying terrain (modeled via topographical speed) and the local crowd
density (modeled via flow speed). The speed field f(x, 0) captures
this relation and is used to determine how fast an agent can move
from position x in direction 6. The field is computed per cell and

Jesse Conijn

Figure 10: Projection of the Density textures onto the scene
geometry. Blue regions indicate local agent density, fading
with increasing distance from agents. For illustration pur-
poses, we used a = 0.3, r = 0.75, and [= 1.0 — significantly
larger than the actual cell size — to highlight spatial varia-
tion.

per direction, resulting in a four-component field (for North, East,
South, and West) stored in the RGBA channels of the Density
texture array.

Following the original formulation by Treuille et al. [25], the
speed field is defined piecewise based on the density p at a neigh-
boring location x + rng, where r is a fixed radius offset and ng is
the unit vector in direction 6. This offset ensures that agents do not
bias their own speed by self-contribution:

Topographical Speed. When the density at the neighboring point
is low (i.e., p < pmin), the speed is controlled by the slope of the
terrain:

VAG) Do = swin 0 e @)

Smax — Smin

f1(%,0) = fumax +

where VA(x)-ng is the directional slope (computed using the height
difference between neighboring cells), and fuin, fmax define the
lower and upper bounds for speed.

Flow Speed. When the density is high (p > pmax), the speed is
determined by the average local flow:
Jo(x,0) =¥(x+rng) - ng ©

where V is the average velocity field evaluated at an offset loca-
tion and projected onto the direction of motion.

Scalable Grid-Based Crowd Simulation in Complex Multi-Layer Environments on the GPU

Interpolated Speed. For intermediate densities (ppmin < p <
Pmax), the final speed is linearly interpolated between the topo-
graphical and flow speeds:

p(X+7110p) ~ Prin

max — Pmin

fx0) = fr(x0)+ (o (x.0) - fr(x.0))

(10)

The speed field is computed in a compute shader similar to the

density field. The process for computing the speed field in each
direction is as follows:

(1) Walkability Check: The shader first checks whether the
current cell is walkable by evaluating both the Grid and
Discomfort texture arrays at the same texture coordinate.
If not walkable or has a discomfort value above a certain
threshold, the cell’s speed vector is set to (-1, -1, -1,
-1) and skipped.

(2) Directional Iteration: For each of the four directions

(North, East, South, West), the connection texture is used

to determine the correct layer index of the neighboring cell,

which accounts for inter-layer traversal.

Neighbor Evaluation: In turn, the neighbor cell’s walka-

bility and discomfort are checked. If not valid, the direction

is skipped. Otherwise, the algorithm walks through sub-
sequent neighbor cells up to a radius r, checking at each
step:

o Validity of connection index (not -1)

o Walkability and discomfort level
The last valid cell within the radius is used to sample the
density and average velocity required to evaluate flow speed
or interpolated speed.

Speed Computation:

e If the sampled density p < ppin, compute topographi-

cal speed based on slope.

o If p > pmax, compute flow speed by projecting the

average velocity onto the direction.

e Otherwise, linearly interpolate between both speeds.
Storage: The computed speed values for all four directions
are packed into a vec4 and stored in the corresponding
texel of the Speed textures.

—
S
=

—
N
z

—
w1
=~

This implementation ensures that agent speeds reflect both phys-
ical constraints (e.g., slope and walkability) and dynamic factors
(e.g., crowding and flow), while supporting multi-layer environ-
ments and GPU acceleration. Figure 11 illustrates the computed
speed field in two complementary ways. Figure 11a shows the
smoothed speed magnitudes projected onto the scene geometry,
revealing the influence area around agents. Figure 11b visualizes the
dominant speed model (flow vs. topographical) in each direction,
with intensity indicating the degree of flow-based influence.

This speed field then forms the basis for solving the Eikonal
equation, which we use to compute globally consistent travel times
across the environment.

5.2 Solving the Eikonal Equation

The Eikonal equation lies at the core of the Continuum Crowds
algorithm, defining the scalar potential field ¢ (x) that guides agents
toward their goals. In our approach, we solve this equation using
the Fast Iterative Method (FIM), a GPU-friendly alternative to the

LA

vy
h
il Y

| m—
-
—

(a) Projected speed magnitudes

(b) Flow vs. topographical influence

Figure 11: Visualizations of the speed field. (a) Projected speed
magnitudes showing smoothed agent influence areas. (b)
Classification of directional speed influences: darker regions
use terrain-based (topographical) speed, brighter regions use
density-based (flow) speed, and intermediate tones represent
interpolated influence based on local density.

traditional Fast Marching Method (FMM). The FIM is well-suited
for parallelization, allowing the entire field to be updated efficiently
over several iterations.

Prior to solving the Eikonal equation, goal regions are annotated
using the method described in Section 4.5. This produces a Goal
texture array where each texel contains the goal ID it belongs to,
or -1 if it is not part of a goal.

To support multiple agent groups—each with distinct goals—we
allocate a separate set of potential textures arrays for each group.
Specifically, for each group g, we maintain:

e PotentialRead[g]: the potential field from the previous
iteration.

e PotentialWrite[g]: the output field for the current itera-
tion.

This is needed because, as we update the potential field, we
need to both read from and write to the potential texture array. To
avoid a-synchronized reading and writing, we separate it into two
texture arrays. Then, for each frame, before computing the potential
field, the data from PotentialWrite is copied to PotentialRead,
to keep it updated.

To update the potential field, we dispatch a compute shader
where each thread corresponds to a single texel. This shader per-
forms two logical phases: an initialization phase (on the first frame),
and an iterative update phase for all subsequent frames.

Initialization Phase. During the first frame, the potential field
must be initialized. For each texel, the shader performs the following
logic:

(1) If the texel is not walkable (as determined by the Grid tex-
tures) or its discomfort value exceeds a specified threshold,
the potential is set to co.

(2) If the texel’s goal texture contains the current group ID g,
it is marked as a goal texel and assigned ¢ = 0.

(3) All other texels are initialized with ¢ = co.

Iterative Update Phase. On subsequent frames, the shader per-
forms the core FIM update:

(1) For each texel, skip if not walkable or marked discomfort-
able.

(2) If the current texel’s previous potential value is 0.0 (i.e., a
goal), retain this value.

(3) Otherwise, gather values from the four cardinal neighbors
using the Connection textures.

(4) For each valid neighbor:

o Fetch the previous potential value.
e Compute the movement cost using:
a-si+f+y-di
CGi=—" ¥ —"
Si
where s; is the speed from the Speed texture array and
d; is the discomfort value.

(5) We find the neighbors with the least costly adjacent cell

along both the x- and y-axes:
my = argmin{g; + Cproi} my = arg min{g; + Cari}
ie{W,E} ie{N,S}

(6) Use these upwind directions to solve for the larger solution

to phips for grid cell M in the quadratic equation

(¢>M - ¢Mx)2 + (¢M - ¢My)2 _

CM—>mX

1 (11)

CM—>my

(7) Write the resulting ¢, value to the PotentialWrite tex-
ture.

This iterative approach enables efficient propagation of values
from the goal areas, as all valid texels are updated in parallel. There
is no need for centralized coordination or prioritization of up-
dates—the wavefront of ¢ values naturally expands outward over
successive iterations (Fig. 12).

Jesse Conijn

This implementation enables real-time updates of the potential
field directly on the GPU, allowing agents to respond continuously
to changes in terrain, density, and discomfort without centralized
coordination. The single-iteration-per-frame approach ensures sta-
bility while preserving responsiveness in complex, dynamic envi-
ronments

Although the compute shader can theoretically be run multi-
ple times per frame to accelerate convergence, we observed that
a single iteration per frame produces stable results and avoids vi-
sual artifacts such as agent jitter. Running multiple iterations per
frame introduced instability, likely due to a combination of fac-
tors: the asynchronous nature of the Fast Iterative Method (FIM),
the absence of convergence control between passes, and poten-
tial race conditions from parallel writes in GPU memory. These
effects can lead to non-smooth updates in the potential and velocity
fields, which manifest as flickering or oscillatory agent behavior.
By limiting the solver to a single pass per frame, we ensure gradual,
stable propagation of the potential field while maintaining real-time
performance.

In practice, each frame advances the potential field incrementally,
while the agent update step (see Section 5.3) ensures that crowd
motion is responsive to evolving environmental conditions. As the
density and discomfort fields change, the speed field and thus the
potential field adapt accordingly.

After each update of the potential field ¢, a velocity field is
derived to guide agent motion. This is done with the following
steps:

(1) Sample the scalar potential ¢ at the current texel and its
four cardinal neighbors (left, right, top, bottom), using the
Connection texture to ensure valid sampling between con-
nected layers.

(2) Compute the gradient V¢ using finite differences:

Plx+Ly) —Plx -1y ¢(xy+1)—¢(x,y—1)
2 ’ 2

Vg =

(3) Normalize and negate the gradient to obtain the velocity
direction:

V¢
Ivell
(4) Scale by the local speed s(x, y) from the Speed texture ar-
ray:

v(x,y) =

v(x,y) =s(x,y) - v(x,y)
(5) Store the result in the Velocity texture array.

This process yields a per-texel velocity vector pointing in the
steepest descent direction of the potential field, scaled by the agent’s
allowed movement speed at that location. The resulting velocity
field serves as the basis for agent motion in the next simulation
step (Fig. 13).

5.3 Agent Movement and Update

After computing the navigation fields, each agent must update
its position based on the velocity field derived from the potential
gradient. This is performed entirely on the GPU using a compute
shader, where each thread is responsible for updating a single agent.
The agents’ transformation matrices and velocity vectors are stored

Scalable Grid-Based Crowd Simulation in Complex Multi-Layer Environments on the GPU

Figure 12: Projection of the Potential field onto the scene ge-
ometry. The blue region marks the agents’ goal, from which
the potential propagates outward. The color gradient visual-
izes this propagation in the order: black — red — yellow —
green — cyan — magenta. Invalid or unreachable cells are
highlighted in purple.

Figure 13: Projection of Velocity field. Red is positive x-
direction, blue is positive z-direction, green is negative x-
direction.

in Shader Storage Buffer Objects (SSBOs) to avoid data transfer
overhead between GPU and CPU.

Due to the multi-layered structure of the environment, deter-
mining the correct texel that corresponds to an agent’s position
is non-trivial. The method begins by projecting the agent’s world-
space position into the orthographic camera space (used during
layer extraction) to compute the 2D texture coordinates:

(1) The agent’s position p is transformed by the top-down view-
projection matrix to get the projected coordinate ppro;-.

(2) Perspective division is applied: pproj <= Pproj/Pproj-W-

(3) The normalized texture UV coordinates are obtained using:
texUV = 0.5 - pproj-xy + 0.5.

To resolve the appropriate layer index, all layers are iterated. For
each layer, the corresponding grid cell is checked for:

o Walkability: Verified using the Grid texture array.

e Height proximity: The absolute height difference between
the agent’s current height and the sampled height from the
Position texture array.

The layer with the smallest valid height difference is selected
as the one the agent currently occupies. The resulting 3D texture
coordinate (including layer index) is then used to sample navigation
fields such as the velocity and potential.

Once the agent’s texture coordinate is resolved, the correspond-
ing velocity is fetched from the Velocity texture array. This veloc-
ity encodes directional influence derived from the potential field
(see Section 5.2). The agent’s position is then updated using an
explicit Euler integration step:

Pnew = Pold +V - At (12)

Here, At is the frame time passed sent from the CPU, and v is
the sampled velocity at the agent’s current texel.

For updating the vertical component (height), a straightforward
solution is employed. Instead of estimating vertical movement ve-
locity (which can be noisy and cause agents to float above or sink
below the surface), the new Y-coordinate is directly sampled from
the Position texture array using the updated 2D coordinates and
re-running the layer-matching projection function. The final Y-
position is then corrected by adding a model-specific height offset
(e.g., the distance from the ground to the model’s center).

The updated agent position and velocity are written back to the
corresponding SSBOs:

e Position: Stored in the translation component of each
agent’s transformation matrix.

o Velocity: Stored in a separate velocity SSBO, to be reused
for calculating average velocity in subsequent simulation
steps (see Section 5.1.2).

By keeping all agent data and navigation logic entirely on the
GPU, the system supports real-time, large-scale crowd simulations
with minimal latency and no CPU-GPU synchronization overhead.

This fully GPU-driven pipeline—from field generation to agent
movement—ensures responsiveness to dynamic environments while
maintaining high performance across complex, multi-layered scenes.

6 Results

We evaluated the performance and effectiveness of our proposed
method across several test scenarios. This section presents key
results from those evaluations, highlighting the combined effects
of the hybrid approach.

All experiments were conducted on a desktop machine equipped
with an Intel Core i7-7700HQ CPU (2.80GHz), 8 GB of RAM, and
an NVIDIA Quadro M1200 GPU with 4096 MB of video memory.
The system was implemented in C++ using OpenGL, with a custom

engine responsible for things like rendering, shader orchestration,
GPU resource management, simulation control, and a lightweight
entity—component system. This engine enabled efficient integra-
tion of multi-pass rendering and compute shader stages, forming
a flexible foundation for the GPU-accelerated crowd simulation
framework. Standard support libraries were used where appropri-
ate, such as for windowing, user interface, and texture loading.

While the test machine is not a state-of-the-art desktop, relying
on a mobile CPU and a mid-range GPU, the relative performance
difference between our method and the original approach remains
highly significant. The results reported here are therefore conserva-
tive estimates: on modern, high-end hardware, both methods would
achieve higher absolute frame rates, but the performance gap in
favor of our method is expected to be even more pronounced.

To ensure a fair comparison, all tests were performed in static
environments. This consistency was crucial for fair benchmark-
ing, allowing us to compare both methods under nearly identical
environmental conditions. Most evaluations were carried out us-
ing Scene 3, the maze (Figure 14), with a 3D version used for our
method, and an identical 2D version used for the original method,
making it ideal for direct comparison.

The results focus on several performance metrics, including
frame rate (FPS), compute time, memory consumption, and the
completeness of captured data.

(a) 3D version

(b) 2D version

Figure 14: Scene 2 (maze) as a 3D (left) and 2D (right) repre-
sentation, to compare results for our method and the original
method.

Jesse Conijn

6.1 Scene Representation Quality and
Generalization

One of the core strengths of our method lies in its ability to ro-
bustly represent a wide variety of 3D environments using a unified
texture-based grid system. Thanks to several key additions—such
as multi-angle layer extraction (Section 4.2) and automatic padding
around non-walkable regions (Section 4.4)—the system is capable of
accurately capturing complex spatial layouts, including overhangs,
stairs, and multi-level geometry.

In practice, this means that for a wide range of scenes—including
the staircase (Scene 1), the maze (Scene 2), and the villa (Scene
3, Figure 15)—the full set of texture arrays (e.g., Position, Grid,
Potential, etc.) can be computed automatically without any man-
ual intervention. As long as the camera positions and grid resolution
are chosen appropriately, the system is able to extract all necessary
spatial and semantic data from the 3D scene. This allows seam-
less initialization of the simulation pipeline and makes the method
highly generalizable across different types of environments.

This level of automation and robustness is essential for scaling
the method to more diverse and dynamic 3D scenes in the future,
and it significantly reduces the setup overhead compared to tradi-
tional approaches that require manual tagging, segmentation, or
precomputed navigation data.

Figure 15: Scene 3: a multi-story villa.

6.2 Scalability with Agent Count

To evaluate how well our method scales with increasing numbers
of agents, we measured the frames per second (FPS) across a range
of agent counts in Scene 2 with a 200 X 200 cell grid size. The agent
counts tested were: 5, 10, 50, 100, 200, 500, 1000, and 2000. Figure 16
compares the FPS achieved by our GPU-based method with the
original CPU-based implementation, plotted on a logarithmic scale
due to the significant performance gap.

Our method maintains high frame rates even with large numbers
of agents. Starting from ~380 FPS with 5 agents, the frame rate
only gradually declines to around 99 FPS with 2000 agents—still
comfortably real-time. Even with 10.000 agents, our method would
still run at 25 FPS. In contrast, the original method shows a steep

Scalable Grid-Based Crowd Simulation in Complex Multi-Layer Environments on the GPU

decline: from 3.8 FPS with 5 agents to less than 0.1 FPS with 2000
agents.

This exponential divergence in performance is primarily due to
the way the original method computes the density field: it processes
each cell sequentially on the CPU and, for every cell, calculates the
distance to every agent. As the number of agents increases, this
nested loop structure becomes increasingly costly. In contrast, our
method leverages GPU compute shaders and texture arrays to par-
allelize the update process. Rather than having the CPU iterate over
every cell and agent combination, our approach assigns a thread to
each agent and computes its contribution to the surrounding field
in a single pass. This massively reduces redundant computations
and significantly lowers the per-agent overhead, enabling real-time
performance even with thousands of agents.

Performance Comparison: Our Method vs Original

Our Method
—— Original Method

Average FPS (log scale)

10! 102 10%
Number of Agents

Figure 16: Comparison of FPS vs. number of agents (logarith-
mic scale) between the original CPU-based method and our
GPU-based method.

6.3 Scalability with Grid Resolution

To evaluate the scalability of both methods with respect to scene
resolution, we measured the average frame rate (FPS) across various
grid sizes while keeping the number of agents fixed at 50. The tested
grid sizes were 5050, 100100, 200 200, 500 500, and 1000 1000.
Results are shown in Figure 17.

Our method consistently outperformed the original method
across all resolutions. While the original CPU-based implemen-
tation already struggles at 200 X 200 with an average FPS of ap-
proximately 2.4, our method maintains well over 300 FPS at the
same resolution. Even at 1000 X 1000, our GPU-based method runs
at more than 200 FPS, making it viable for real-time simulation at
high resolutions.

Similar to the results in the previous subsection, the original
method becomes impractical at high resolutions due to its sequen-
tial, cell-by-cell updates and the need to compute distances to every
agent for each cell. This leads to a dramatic slowdown as the grid
size increases.

In contrast, our method leverages GPU parallelism to update the
entire field concurrently, resulting in significantly higher perfor-
mance. However, for grid sizes beyond 1000 X 1000, performance
begins to degrade slightly. This is primarily because the number of

Average FPS vs. Grid Size (50 agents)

\-o

Average FPS

—e— Our Method
Original Method

50x50 100x100 200%200 500x500 1000x1000
Grid Size

Figure 17: Comparison of FPS vs. grid size (logarithmic scale)
between the original CPU-based method and our GPU-based
method.

grid cells exceeds the number of threads that can execute in parallel,
requiring individual threads to process multiple cells sequentially.
Additionally, as texture sizes grow, memory bandwidth becomes a
limiting factor—reading from and writing to large textures increases
pressure on the GPU’s memory subsystem, which can become a
bottleneck.

Still, these results make our technique far more suitable for large-
scale crowd simulations in complex 3D environments, where higher
resolution is often required to accurately model narrow passages,
stairs, or layered terrain.

6.4 Effect of Multi-Angle Views on Obstacle
Detection

As described in Section 4.2, we introduced a method for identifying
vertical fragments using additional front and side views during the
depth peeling stage. To evaluate the effectiveness of this technique,
we measured the number of discomfort cells detected with and
without these additional perspectives.

Across all tested scenes, incorporating the front and side layers
consistently resulted in more comprehensive discomfort coverage.
Table 3 summarizes the difference for three representative scenes:
the staircase (Scene 1, used in the rest of the report), the villa
(Scene 2), and the maze (Scene 3). The improvement is especially
notable in Scene 3, where the number of discomfort cells more than
doubles.

Table 3: Number of discomfort cells in different scenes with
and without front/side layers

Configuration Scene 1 Scene2 Scene3
Without front/side layers 1514 3029 1813
With front/side layers 1897 3431 3682

Figure 18 provides a visual comparison. On the left, the additional
views allow the system to correctly tag the space beneath walls
and near vertical structures as discomfort zones. Without these

layers (right), those areas remain untagged, resulting in incomplete
obstacle representation.

This omission has practical implications. When computing the
Potential field, walls that lack proper discomfort tagging do not
sufficiently repel the propagation of the field. As shown in Figure 19,
this allows the field to extend beneath walls—resulting in agents
that may appear to walk through solid geometry. The inclusion of
multi-angle layer extraction effectively eliminates this unrealistic
behavior.

(a) With extra layers

(b) Without extra layers

Figure 18: Comparison of Discomfort textures with and with-
out multi-angle (front and side) layers.

6.5 GPU Memory Consumption

Our method relies heavily on GPU-resident 3D texture arrays,
which are accessed and updated during various shader passes. Since
GPU memory (VRAM) is typically more limited than system RAM,
it’s essential to quantify and manage the memory footprint of these
textures.

Each floating-point value occupies 4 bytes. Therefore, a single
texel in a texture is:

Texel Size (bytes) = 4 X Number of Channels

To compute the total memory usage of a 3D texture array, we
multiply the size of a single texel by the total number of texels
across the array’s width, height, and depth (layers), as shown in
Equation 13.

Memory = 4 X channels X width X height X layers (13)

Jesse Conijn

(a) With extra layers

(b) Without extra layers

Figure 19: Comparison of Potential fields. Without discom-
fort tagging from side/front layers, walls do not block propa-
gation effectively.

Tables 1 and 2 summarize the texture formats used in our imple-
mentation. For example, the Position texture uses an RGB format,
meaning each texel occupies 4 X 3 = 12 bytes. Given a grid reso-
lution of 200 X 200 and 10 layers, the total memory usage for this
texture would be:

12 X 200 X 200 X 10 = 4.8 MB

Summing the contributions from all textures listed in Tables 1
and 2 for a 200 X 200 x 10 grid results in approximately **38 MB**
of total GPU memory usage. In the context of modern GPUs, which
typically provide 8-24 GB of VRAM, this memory requirement is
negligible.

However, as grid resolution increases, so does memory usage.
For instance, a grid of 2000 x 2000 with the same number of layers
results in approximately **3.8 GB** of texture memory. While this
is still manageable on contemporary GPUs, it highlights the im-
portance of efficiency and possible future optimizations, especially
when scaling to very large environments or supporting multiple
concurrent simulations.

When comparing this to the memory usage of the original method,
we can estimate the footprint by measuring the size of a single Cell
object, which is approximately 250 bytes. Multiplying this by the
number of grid cells (200 X 200 x 10) results in roughly 100 MB of
CPU-side memory.

Scalable Grid-Based Crowd Simulation in Complex Multi-Layer Environments on the GPU

Although this is significantly more than the 38 MB used in our
GPU-based approach, the higher memory footprint is less problem-
atic in practice, as modern CPUs typically have substantially more
available RAM than GPUs. Therefore, the impact of this increased
usage is limited — though it may still influence performance when
scaling to very large environments or high agent counts.

6.6 Summary

The results across all test scenarios clearly demonstrate the ad-
vantages of our proposed method over the original CPU-based
implementation. In particular, we observe major improvements
in speed, scalability, and automation, all while maintaining low
memory usage and high environmental fidelity.

Key findings include:

o Achieves real-time performance with 2000 agents on a 200x
200 cell grid running at over 99 FPS.

o Offers a significant and scalable speed-up over the original
method, demonstrating improvements ranging from 5x to
over 1000x depending on grid resolution and agent count.

e Reduces GPU memory usage to well under 100 MB for
standard grids.

e Improves obstacle detection via multi-angle layer extrac-
tion.

o Generalizes effectively across a range of complex 3D envi-
ronments with minimal user annotation.

Together, these results highlight the method’s suitability for real-
time, large-scale crowd simulation in diverse and geometrically
complex environments.

7 Discussion and Conclusion

This thesis has presented a novel GPU-based extension to the Con-
tinuum Crowds algorithm, designed to support scalable, real-time
crowd simulation in complex, multi-layered 3D environments. By
integrating a range of GPU-accelerated techniques—including depth
peeling, compute shaders, and layered texture arrays—the method
achieves a significant leap in performance, flexibility, and general-
ization compared to the original CPU-bound formulation.

7.1 Discussion

The results have demonstrated that the system is highly scalable
both in terms of agent count and grid resolution. It consistently
maintains real-time performance even in scenarios where the origi-
nal method becomes unusable. These gains are largely due to the
use of parallel compute shaders and GPU-friendly data structures,
which allow each stage of the simulation pipeline—field computa-
tion, Eikonal solving, and agent updates—to be fully parallelized.

One of the most notable strengths of the proposed system is its
generalization capability. Thanks to the automatic scene representa-
tion pipeline—including multi-angle layer extraction and boundary
padding—the system can ingest arbitrary 3D environments and
extract all necessary simulation data without manual annotation.
This makes it applicable not just to synthetic benchmarks but to
real-world architectural spaces as well.

While the proposed method offers clear performance advantages
and automation benefits, several challenges and limitations remain
that should be acknowledged.

Goal Area Definition. The approach we used to define the goal
region—through a hovering mesh plane captured in the depth peel-
ing stage—proves functional, but it is not without caveats. Because
the discomfort detection relies on geometric relationships between
layers, placing the goal mesh too close to the underlying ground can
trigger false positives in marking the discomfort zones. Specifically,
the area beneath the goal mesh may be marked as "too close to the
previous layer" and thus treated as non-walkable. This prevents the
potential field from propagating outward, effectively disabling goal
attraction in those regions.

A workaround was to position the goal mesh higher than the
system’s height-difference threshold. While effective, this solution
requires scene-specific tuning and reduces generalizability. Future
work could explore more robust and semantically-driven ways
to define goal areas—e.g., tagging goal regions using metadata or
incorporating post-processing steps to override local discomfort
logic.

Implementation Complexity. It is also important to note that, de-
spite its performance benefits, the proposed GPU-based system
introduces significantly more complexity compared to traditional
CPU-based crowd simulation methods. Creating and managing
numerous GPU texture arrays, synchronizing shader dispatches,
and maintaining consistent data formats across rendering and com-
pute pipelines require advanced graphics programming knowledge.
In contrast, conventional CPU implementations typically involve
straightforward data structures (e.g., 2D arrays of cell objects) and
are easier to understand, debug, and extend.

This added complexity may pose a barrier for adoption in smaller
projects or educational contexts. However, we argue that this trade-
off is justified in scenarios where real-time performance and large-
scale simulations are critical. In such cases, the performance gains
and memory savings demonstrated in this work offer a compelling
incentive to invest in the GPU-based approach.

Scene Update Cost. Although the layered scene representation
provides rich geometric information for agent navigation, its con-
struction relies on Depth Peeling, which requires multiple render-
ing passes. In this implementation, scene extraction is performed
offline to avoid runtime cost. However, in use cases involving dy-
namic environments—such as destructible geometry or moving
obstacles—this step would need to be repeated during simulation,
reducing the system’s overall FPS advantage. Future work could
explore more efficient layer extraction methods, such as Bucket
Depth Peeling or Adaptive Depth Peeling [18], or investigate incre-
mental update strategies to better support dynamic scenes without
full reprocessing.

Memory usage. While memory usage remains relatively low for
standard grid sizes, very high resolutions (e.g., beyond 2000 X 2000)
can approach the limits of GPU memory, potentially requiring op-
timization strategies such as sparse textures or other methods of
compression. Additionally, while the method handles vertical navi-
gation via layered connections, it currently assumes static geometry
and does not yet support dynamic obstacles or moving platforms.

In terms of implementation, the system depends heavily on hard-
ware capabilities. Although performance is excellent even on mid-
range GPUs, some operations—such as multi-pass depth peeling or

large-scale texture updates—may still benefit from more powerful
hardware.

7.2 Conclusion

In summary, this thesis contributes the first fully GPU-based im-
plementation of Continuum Crowds adapted for complex, multi-
layered 3D environments. It:

o Offers up to three orders of magnitude speed-up over the
original CPU method.

e Maintains real-time performance for thousands of agents.

o Scales effectively with grid size and agent count.

e Requires minimal user input due to automated scene pro-
cessing.

e Accurately handles multi-level traversal and obstacle avoid-
ance.

These advancements make the method highly suitable for appli-
cations ranging from game development and robotics simulations
to large-scale virtual environments.

Future work may focus on dynamic environment support, fur-
ther performance optimization (e.g., texture streaming), and integra-
tion with reinforcement learning or semantic scene understanding
to enhance agent behavior. Still, as it stands, the system already
represents a robust and practical step forward in real-time crowd
simulation for complex environments.

Jesse Conijn

References

[1] [n.d.]. David s2 vl - Download Free 3D model by Arek @ Vonka Stairs
(@A.Vonka) — sketchfab.com. https://sketchfab.com/3d-models/david-s2-v1-
96{19¢33b3f343a383d02fbcfa048368. [Accessed 25-08-2025].

Stanley Bak, Joyce McLaughlin, and Daniel Renzi. 2010. Some improvements

for the fast sweeping method. SIAM Journal on Scientific Computing 32, 5 (2010),

2853-2874.

[3] Miles Detrixhe, Frederic Gibou, and Chohong Min. 2013. A parallel fast sweeping
method for the Eikonal equation. J. Comput. Phys. 237 (2013), 46-55.

[4] Elmar Eisemann and Xavier Décoret. 2006. Fast scene voxelization and applica-
tions. In Proceedings of the 2006 symposium on Interactive 3D graphics and games.
71-78.

[5] Cass Everitt. 2001. Interactive order-independent transparency. White paper,
nVIDIA 2, 6 (2001), 7.

[6] Tian Feng, Lap-Fai Yu, Sai-Kit Yeung, KangKang Yin, and Kun Zhou. 2016. Crowd-
driven mid-scale layout design. ACM Trans. Graph. 35, 4 (2016), 132-1.

[7] Paolo Fiorini and Zvi Shiller. 1998. Motion planning in dynamic environments
using velocity obstacles. The international journal of robotics research 17,7 (1998),
760-772.

[8] Tor Gillberg. 2011. A semi-ordered fast iterative method (SOFI) for monotone
front propagation in simulations of geological folding. In MODSIM2011, 19th
International Congress on Modelling and Simulation. 641-647.

[9] Stephen Gustafson, Hemagiri Arumugam, Paul Kanyuk, and Michael Lorenzen.
2016. Mure: fast agent based crowd simulation for vfx and animation. In ACM
SIGGRAPH 2016 Talks. 1-2.

[10] Stephen J Guy, Min Kim, Ming C Lin, and Dinesh Manocha. 2012. Clearpath:

Highly parallel collision avoidance for multi-agent simulation. In Proceedings of

the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 177-187.

Dirk Helbing, Illés Farkas, and Tamas Vicsek. 2000. Simulating dynamical features

of escape panic. Nature 407, 6803 (2000), 487-490.

Dirk Helbing and Peter Molnar. 1995. Social force model for pedestrian dynamics.

Physical review E 51, 5 (1995), 4282.

[13] Yuhao Huang. 2021. Improved fast iterative algorithm for eikonal equation for
GPU computing. arXiv preprint arXiv:2106.15869 (2021).

[14] Won-Ki Jeong and Ross T Whitaker. 2008. A fast iterative method for eikonal
equations. SIAM Journal on Scientific Computing 30, 5 (2008), 2512-2534.

[15] Hao Jiang, Wenbin Xu, Tianlu Mao, Chunpeng Li, Shihong Xia, and Zhaoqi Wang.
2009. A semantic environment model for crowd simulation in multilayered
complex environment. In Proceedings of the 16th ACM Symposium on Virtual
Reality Software and Technology. 191-198.

[16] Hao Jiang, Wenbin Xu, Tianlu Mao, Chunpeng Li, Shihong Xia, and Zhaoqi
Wang. 2010. Continuum crowd simulation in complex environments. Computers
& Graphics 34, 5 (2010), 537-544.

[17] Kwon Lee, Jinxiang Chai, Pieter S Reitsma, Jessica K Hodgins, and Nancy S

Pollard. 2007. Group behavior from video: A data-driven approach to crowd

simulation. ACM Transactions on Graphics (TOG) 26, 3 (2007), 1-9.

Fang Liu, Meng-Cheng Huang, Xue-Hui Liu, and En-Hua Wu. 2009. Efficient

depth peeling via bucket sort. In Proceedings of the Conference on High Perfor-

mance Graphics 2009. 51-57.

Tomas Moller and Ben Trumbore. 1997. Fast, minimum storage ray-triangle

intersection. Journal of Graphics Tools 2, 1 (1997), 21-28.

[20] Rahul Narain, Ariel Golas, Sean Curtis, and Ming C Lin. 2009. Aggregate dynam-

ics for dense crowd simulation. In ACM Transactions on Graphics (TOG), Vol. 28.

ACM, 122.

Jan Ondfej, Julien Pettré, Anne-Héléne Olivier, and Stéphane Donikian. 2010. A

synthetic-vision based steering approach for crowd simulation. ACM Transactions

on Graphics (TOG) 29, 4 (2010), 1-9.

[22] S.Poddar, C. Mavrogiannis, and S. S. Srinivasa. 2023. From crowd motion predic-

tion to robot navigation in crowds. In 2023 IEEE/RSF International Conference on

Intelligent Robots and Systems (IROS). IEEE, 6765-6772.

Craig W Reynolds. 1987. Flocks, herds and schools: A distributed behavioral

model. In Proceedings of the 14th annual conference on Computer graphics and

interactive techniques. 25-34.

[24] James A Sethian. 1999. Fast marching methods. SIAM review 41, 2 (1999),
199-235.

[25] Adrien Treuille, Seth Cooper, and Zoran Popovi¢. 2006. Continuum crowds.

ACM transactions on graphics (TOG) 25, 3 (2006), 1160-1168.

Branislav Ulicny and Daniel Thalmann. 2002. Towards interactive real-time

crowd behavior simulation. In Computer Graphics Forum, Vol. 21. Wiley Online

Library, 767-775.

[27] Wouter Van Toll, Roy Triesscheijn, Marcelo Kallmann, Ramon Oliva, Nuria

Pelechano, Julien Pettré, and Roland Geraerts. 2016. A comparative study of

navigation meshes. In Proceedings of the 9th International Conference on Motion

in Games. 91-100.

Hongkai Zhao. 2005. A fast sweeping method for eikonal equations. Mathematics

of computation 74, 250 (2005), 603-627.

[2

—_
jan

=
&,

(18

[19

[21

[23

[26

[28

https://sketchfab.com/3d-models/david-s2-v1-96f19c33b3f343a383d02fbcfa048368
https://sketchfab.com/3d-models/david-s2-v1-96f19c33b3f343a383d02fbcfa048368

Scalable Grid-Based Crowd Simulation in Complex Multi-Layer Environments on the GPU

Appendix A: Compute Shaders in GLSL

Modern graphics hardware enables not only traditional rendering
tasks but also general-purpose parallel computation through com-
pute shaders. In contrast to vertex and fragment shaders, which
are tied to the graphics pipeline, compute shaders allow for more
flexible, high-throughput parallel processing on the GPU.

A compute shader is a GLSL shader stage that runs independently
of the traditional rendering pipeline. It allows arbitrary read and
write access to textures, buffers, and images, and is ideally suited for
tasks that benefit from massive data parallelism, such as simulations,
image processing, or physics computations.

In this project, compute shaders are used extensively for:

e Preprocessing connectivity information, discomfort values
and agent goal areas.

e Computing variable fields like density and speed fields.

e Calculating potential fields (Fast Iterative Method) and ve-
locity fields.

o Update agent movements.

A compute shader is launched over a 1D, 2D, or 3D grid of work-
groups. Each workgroup contains a fixed number of local invocations,
defined with the layout(local_size_x = ..., ...) directive.
Each shader thread can access its unique global invocation ID using:

ivec3 texCoord = ivec3(gl_GlobalInvocationID); (14)

This maps one thread to one texel (or voxel) in a texture array,
enabling massively parallel computations such as updating the
potential field or checking neighboring cells.

Compute shaders use imagelLoad and imageStore operations to
directly read and write to textures:

imageStore(myTexture, texCoord, vec4(value));

vec4 value = imagelLoad(myTexture, texCoord);

This is crucial for updating intermediate outputs such as potentialWrite/poter
gridTextures, and discomfortTextures. In contrast, read-only
access (e.g., for previous potential values or normals) typically uses
texture or texelFetch functions.

Although compute shaders support memory synchronization
(e.g., barrier(), memoryBarrier()), this implementation gener-
ally avoids such requirements. Each thread works independently
on a texel, and no intra-group coordination is necessary in the
majority of cases.

This approach allows for highly parallelized, real-time simulation
of crowd behavior in complex, layered environments.

Appendix B: Shader Storage Buffer Objects
(SSBOs)

Shader Storage Buffer Objects (SSBOs) are OpenGL buffer objects
that allow shaders to read and write large blocks of data. Unlike
Uniform Buffer Objects (UBOs), SSBOs support more flexible and

dynamic storage, making them suitable for storing per-agent state
like transformation matrices or velocity vectors. They enable effi-

cient GPU-to-GPU data access across different shader stages, re-
ducing the need for CPU intervention and improving simulation
performance in parallel compute workflows.

	
	Abstract
	1 Introduction
	2 Related Works
	3 Continuum Crowds
	4 Scene Representation in Multi-Layered Environments
	4.1 Layer Extraction
	4.2 Identifying Vertical Fragments
	4.3 Layer Connectivity
	4.4 Boundary Padding
	4.5 Agent Goal Annotation

	5 GPU-Based Continuum Crowds Simulation
	5.1 Variable Field Computation
	5.2 Solving the Eikonal Equation
	5.3 Agent Movement and Update

	6 Results
	6.1 Scene Representation Quality and Generalization
	6.2 Scalability with Agent Count
	6.3 Scalability with Grid Resolution
	6.4 Effect of Multi-Angle Views on Obstacle Detection
	6.5 GPU Memory Consumption
	6.6 Summary

	7 Discussion and Conclusion
	7.1 Discussion
	7.2 Conclusion

	References
	Appendix A: Compute Shaders in GLSL
	Appendix B: Shader Storage Buffer Objects (SSBOs)

