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Abstract
The increasingly growing expansion of the Inter-
net of Things (IoT) along with the convergence of
multiple technologies such as the arrival of next
generation wireless broadband in 5G, is creating a
paradigm shift from cloud computing towards edge
computing. Performing tasks normally done by the
cloud directly on edge devices would ensure mul-
tiple benefits such as latency gains and a more ro-
bust privacy of data. However, edge devices are
resource-constrained and often do not possess the
computational and memory capabilities to perform
demanding tasks. Complex algorithms such as the
training and inference of a complete Deep Neural
Network (DNN) is often not feasible on these de-
vices.
In this paper we perform a novel empirical study
of the various ways that multiple inference tasks of
deep learning models can be loaded on these edge
devices. We analyse the run time gain, under differ-
ent resource limits, of various DNN layer loading
policies that aim to optimize the overall run time of
consecutive inference tasks. We combine this with
further research in the memory usage and swapping
behaviour when performing these inference tasks.
Using these results, we show that if the memory
overhead becomes too large, loading and executing
DNN layers in an interleaved manner provides sig-
nificant gains in run time. This is achieved trough
multiple experiments in our specially made evalua-
tion environment EdgeCaffe which is presented in
this paper as well.
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1 INTRODUCTION
The variety and amount of computing devices that are inter-
related with each other and make up the system known as
the Internet of Things (IoT), are expanding at an astonishing
rate. Indeed, the convergence of multiple technologies as well

as the ever-growing interest and demand in “Smart products”
has sparked a revolution in the production of such devices,
considerably expanding the range of the Internet of Things.
A report published by Fortune Business Insights [1] indicates
that the global IoT market valued at US$ 190.0 Bn in 2018,
is anticipated to reach US$ 1,102.6 Bn by 2026, showcasing
the burgeoning future of IoT. This rapid innovation is caus-
ing a paradigm shift from cloud computing, where the com-
putation is done by a centralized server, towards the newer
computing paradigm known as edge computing, where the
computation happens at the ‘edge’ of the IoT network. This
is due to the fact that in cloud computing the devices situated
at the edge of the network, also known as edge devices, gather
a large amount of data from their various sensors but do not
do anything with it. This data would be sent to the cloud for
further processing. Edge computing would remove the net-
work latency between the devices and the cloud as well as the
increasing bandwidth and load on the centralized servers, al-
lowing for real-time computation and a decrease in cost pres-
sures of IoT. Furthermore, edge computing limits the amount
of data sent to the cloud for processing, therefore ensuring a
more robust privacy of input data.

This paradigm shift brings a new prospect of performing
artificial intelligence (AI) at the edge. Indeed, AI applica-
tions such as machine learning can benefit immensely from
the shorter latency as well as the privacy advantages. How-
ever, one of the challenges that is faced by the industry is the
limited resources offered by these edge devices. The task of
performing computational and memory heavy algorithms on
these devices is one that has yet to be solved. This makes
the training and inference jobs of complete Deep Neural Net-
works (DNN) on these devices not feasible most of the time.
According to a chief scientist at Baidu’s Silicon Valley Lab
[2], training one of Baidu’s Chinese speech recognition mod-
els requires four terabytes of training data as well as 20 billion
billion math operations across the entire training cycle. For
this reason, training a DNN on a device such as a smartphone
is virtually impossible to run. The focus of this paper will
thus be on inference.

Stahl, Zhao, Mueller-Gritschneder, Gerstlauer, and
Schlichtmann [11] propose a solution to this issue by de-
scribing a memory and communication aware approach that
enables edge devices to partition and fuse consecutive fully
connected and convolutional deep neural network layers. The

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



combination of the partitioning and fusing methods would al-
low full deep neural network applications to be executed on
resource-constrained edge clusters in a fully distributed man-
ner. While this technique allows for the optimization of the
loading and processing of deep inference jobs on a cluster of
edge devices, it is not designed to be used on a single de-
vice. In contrast to this, the DeepEye paper [9], describes a
method applicable to a single edge device. The authors pro-
pose a novel approach to the issue by presenting a “match-box
sized wearable camera capable of running multiple could-
scale deep learning models locally on the device”. The paper
describes the design of their inference pipeline incorporated
in their machine. This execution pipeline includes a num-
ber of new optimization techniques, including their take on
the loading of the DNN layers in such a resource constrained
environment. This technique – known as “Runtime Interleav-
ing”, is built on the idea of interleaving the loading of fully
connected layers with the execution of convolution layers. In
combination with other techniques, the Runtime Interleav-
ing technique makes the proposed inference pipeline one of
the many required innovations to support this paradigm shift.
Although the authors of the DeepEye paper argue that the
optimization techniques described in their paper will operate
successfully for any mobile platform that target uses of deep
learning, it is designed to be used for image-based models.

The aim of this paper is to find the most optimal way
that multiple concurrent deep learning inference jobs can be
scheduled in a resource constrained environment. In order
to achieve this, we outline and compare different given load-
ing and executing methods for DNN layers meant to optimize
the overall run time of multiple inference jobs. We deter-
mine how effective each loading policy is by conducting run
time measurements in EdgeCaffe, our specially made evalu-
ation environment built around Caffe [5]. These evaluations
are undertaken with regard to both Convolutional Neural Net-
works (CNN) layers as well as fully connected layers by us-
ing different deep learning models, with different types and
amounts of layers: AgeNet and GenderNet [7], AlexNet [6],
FaceNet [3] and GoogleNet [12]. We combine the gathered
results with further research in other potential factors of the
overall inference time such as the impact of memory swap-
ping. Using these evaluations, we will showcase why loading
and executing a layers in a linear manner is the most desir-
able loading technique to use in order to optimize the infer-
ence time in a resource constrained environment. Using this
technique allows for run time gains up to 1.63x compared to
the normal bulk loading.

2 BACKGROUND

In this section we discuss the methodology undertaken to
answer the research question and the motivation behind the
choices we made. First, our specially made evaluation envi-
ronment built around Caffe [5] is described. This is followed
by a discussion of the motivation behind the project as well as
the possibilities it offers. And finally, the experimental setup
is described.

2.1 EdgeCaffe
Our evaluation environment known as EdgeCaffe aims to
run the Caffe [5] Deep Learning framework on edge de-
vices. Caffe is a deep learning framework which takes into
account expression, modularity and speed. It is tailored to-
wards the classification and segmentation of images all the
while supporting both convolutional and fully-connected neu-
ral network designs. The extensibility of the Caffe framework
made it the perfect project to built our evaluation environment
around. The EdgeCaffe code is targeted for Ubuntu 18.04 for
both x86-64 and Raspberry Pi machines (ARMv8-A). C++ is
the main language used throughout the project while a few
Python bindings are made.

Tasks are the core of the EdgeCaffe project. According to
the chosen schedule policy, the availability of workers, the
arrival distribution as well as other factors, the core system
will execute a set of tasks in a specific order. In essence, what
EdgeCaffe does is that it monitors and organizes the tasks
to be executed. In order to achieve this, EdgeCaffe stores the
tasks in three different types of task pools: the pool of waiting
tasks, the pool of ready tasks and the pool of finished tasks.
Figure 1 helps visualizing the organization of these different
task pools which can be described as follows:

• Pool of waiting tasks: These tasks depend and thus await
the execution of preceding tasks before they can be ex-
ecuted. The Orchestrator is in charge of verifying if a
task is ready to be executed and can be moved to the
ready pool.
• Pool of ready tasks: These tasks are awaiting to be se-

lected by a worker to be executed. This is done in a First
Come First Serve manner.
• Pool of finished tasks: This pool contains all the tasks

that have been performed. Once all the tasks are present
in this pool, the inference job is finished and the DNN
can be cleaned up.

Figure 1: EdgeCaffe task pools

The EdgeCaffe project distinguishes three types of tasks:

• LoadingTask: This task loads the current layer parame-
ters from disk to memory.
• ExecutionTask: This task utilizes the parameters that a

loading task stored in memory to calculate the values
for the next layer.
• DummyTask: This task task is used as a mock task in

order to simulate networks. When a network is gener-
ated randomly, the dummy task will estimate the exe-
cution time of a task by keeping the worker busy. The
execution time only is stalled, it does not actually con-
sume any memory. This type of task is not used for nor-
mal networks, other already trained deep models such as
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AgeNet [7] or FaceNet [3] only use loading tasks and
execution tasks.

Built around Caffe [5], EdgeCaffe supports any deep neu-
ral model geared towards image classification or segmenta-
tion. In order for a model to be processed by the EdgeCaffe
core it needs to be split beforehand by the ModelSplitter. This
specially made tool splits a .caffemodel file in smaller model
files. The main idea behind the EdgeCaffe project is the par-
tial execution of layers of a deep neural network. By splitting
a deep neural model into smaller parts, swapping can be pre-
vented from happening which will improve the inference time
in resource constrained environment. The idea of partial ex-
ecution is that each split layer of the model has to be loaded
into memory and executed. But by scheduling this process, a
dependency graph can be created of the tasks that need to be
executed before the current task can be ran.

Once a model is split, it can be submitted individually or
as a set of multiple models to EdgeCaffe. The set of networks
will then be processed according to the chosen policy. Cur-
rently, EdgeCaffe offers four scheduling policies to choose
from: Bulk, DeepEye, Linear and Partial. A more detailed
description and analysis of the methods that will be compared
can be found in section 3. After the set of networks is ex-
ecuted, the used memory is deallocated and the end-to-end
times are outputed to a csv file.

2.2 Experimental Setup
A series of experiments is conducted around the EdgeCaffe
environment. Using five different image-based deep mod-
els, a series of pipelines is generated, each varying in length
and computational complexity. These pipelines are created
by randomly combining these five deep models. In order to
evaluate the benefits of the different scheduling policies, the
numerous generated pipelines are executed according to each
of these policies. The amount of pipelines to be generated has
to be specified to the program. After running all the generated
pipeline, the program formats the measured data into an csv
output file.

These evaluations are undertaken with regard to both Con-
volutional Neural Networks (CNN) layers as well as fully
connected layers by using different deep learning models,
with different types and amounts of layers. These models
are all open source and available to download as a pre-trained
caffemodel1. Here is a description of each used model, for
more details see Table 1 which contains more detailed speci-
fications of each caffemodel:

• AgeNet and GenderNet [7]: Convolutional neural net-
work model for age and gender prediction based on an
input image of a person.
• AlexNet [6]: Winner of the 2012 ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) that popular-
ized CNNs, it is a deep convolutional neural network
able to classify high resolution images.
• FaceNet [3]: Convolutional neural network model for

multi-view face detection.
1Caffe Model Zoo: https://caffe.berkeleyvision.org/model zoo.

html

• GoogleNet [12]: Winner of the 2014 ILSVRC competi-
tion, it is a convolutional neural network able to classify
high resolution images with significant improvements
over AlexNet [6] and other previously proposed CNNs.

Caffemodel Size (in
MB)

# of conv.
layers

# of fc
layers

AgeNet 45.7 12 8
AlexNet 227.6 16 6
FaceNet 227.5 16 8
GenderNet 45.6 12 8
GoogleNet 23.9 10 142

Table 1: Specifications of the caffemodels used during evaluation

All experiments are run on a virtual machine using Virtu-
alBox [10] developed by Oracle. The guest virtual machine
runs a 64-bit version of Ubuntu 18.04.4 as operating system.
It has a single core Intel processor (Intel Core i7-7700HQ
CPU @ 2.80 GHz), 40GB of disk storage, 4096MB of usable
RAM and 16MB of video memory. In order to simulate the
resource limitations met on an edge device, the experiments
are performed under different memory limitations. This is
achieved by using control groups (cgroups), a feature pro-
vided by the Linux kernel allowing us to manage and restrict
groups of processes [8]. Using cgroups, the memory usage is
limited and the experiments are ran under the following byte
limits: 1GB, 512MB and 256MB. The maximum amount for
the sum of memory and swap usage is limited to 8GB.

3 DEEP NEURAL NETWORK LAYERS
LOADING POLICIES

In this section we discuss the different loading policies for
multiple model deep inference jobs that we will be compar-
ing in our empirical research. Each loading technique is de-
scribed in as much details as possible in order to provide
a high-level understanding of them. These descriptions are
then discussed in order to hypothesize how each technique
is to perform during the evaluation. In order to better show-
case these different loading policies, dependency graphs of
the AgeNet [7] model are generated for each of the policies.
These graphs can be found in appendix B.

3.1 Bulk
The Bulk loading policy can also be described as the ”Nor-
mal” mode. When selecting this policy, all the EdgeCaffe
loading tasks inferred from the first network in the set of sub-
mitted networks are moved to the pool of ready tasks first by
the orchestrator. Once all the layers are fully loaded, meaning
that all the loading tasks that were in the pool of ready tasks
are now in the pool of finished tasks, the orchestrator starts
to move the execution tasks from the pool of waiting tasks to
the pool of ready tasks. All the execution tasks are then per-
formed in order until the network is finished and its memory
deallocated. This process is then repeated for every network
in the set of networks. Figure 5 is the dependency graph of
the tasks that need to be executed when the AgeNet [7] model
is submitted using the Bulk policy.
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When performing inference tasks on resource-constrained
devices, the computational overhead is dominated by the exe-
cuting of convolutional operation while the memory overhead
is dominated by the loading of fully connected layer param-
eters. The Bulk loading policy does not optimize this in any
way as it loads all the layer parameters before executing them.
This policy is expected to perform the worst between all the
loading policies, and the difference in inference time to be in-
creasingly bigger as the complexity of the inference pipeline
increases as well. This policy will be used as baseline in the
evaluations.

The Bulk loading policy loads all the layers upfront be-
fore executing them.

3.2 DeepEye
The DeepEye loading policy is based on the ”Runtime Inter-
leaving” technique proposed in the DeepEye paper [9]. The
authors of DeepEye base this technique on the idea of inter-
leaving the loading of fully connected layers with the execu-
tion of convolution layers. They separate the layers of all the
models into a convolutional layers pool and a fully connected
layers pool. They then spawn two threads, a convolution-
execution thread and a data-loading thread. The convolution-
execution thread loads all the convolution filter parameters of
all the layers in the pool into the memory and starts perform-
ing convolution operations on the pre-processed input data
for each model. It does so in a pipelined manner, mean-
ing one model after the other. In parallel, the data-loading
thread loads all the fully connected layer parameters for each
model into the memory in the same manner. The goal of the
convolution-execution thread is to finish all the convolution
operations and pass the result of the final convolution layers
of each model to the data-loading thread. The objective of
the data-loading thread is to finish loading all the fully con-
nected layer parameters for a model and to then proceed to
get the final output by using the pre-computed convolution
outputs provided by the other thread.

In order to reproduce this concept on EdgeCaffe, two task
pools are spawned, one for the convolutional layers, and one
for the fully connected layers. The orchestrator organizes
the tasks between two workers such that one of the work-
ers, known as the convolution execution worker, is to perform
all convolutions on the input image, and and pass the results
of the final convolution layer of each model to the second
worker, known as the data-loading worker. When the data-
loading worker finishes loading the fully connected layer pa-
rameters for a model, it can use the precomputed convolution
outputs from the convolution execution tasks and proceed to
obtain the final classification results. This is depicted in Fig-
ure 6, showcasing the dependency graph of the tasks that need
to be executed when the AgeNet [7] model is submitted using
the DeepEye policy.

Since the loading of fully connected layers is interleaved
with the execution of convolutional layers, a significant gain
in inference time can be expected by using this loading pol-
icy. Indeed, the interleaving gain is equal to the maximum
execution time between the two workers. If the time to run
the convolutional operations is equal to the time taken to load

the fully connected layers, a maximized interleaving gain of
2 can be achieved. But as the memory resource get more and
more scarce, the loading of fully connected layers will start
to dominate the inference time and this technique might not
perform as well.

The DeepEye loading policy interleaves the loading of
fully connected layers with the execution of convolu-
tional layers.

3.3 Linear
The Linear loading policy, as the name states, executes layers
in a straight sequential manner. When selecting this policy, all
the EdgeCaffe tasks are performed in order, one at a time. The
loading task of the first layer of the first network is performed
first, followed by the execution task of the same layer. This
process is repeated in order for every layer of the submitted
deep learning models. Figure 7 depicts the dependency graph
of the tasks that need to be executed when the AgeNet [7]
model is submitted using the Linear policy.

Since the loading and the execution of layers is always al-
ternated, this loading method is expected to perform better
than the Bulk policy as it won’t reach the memory overhead
dominated by loading all the layer parameters in a sequence.
Instead, the memory usage is limited due to the fact that the
layer is executed immediately after it has been loaded. In a
more and more memory constrained environment, the Lin-
ear loading policy might then perform significantly better in
comparison to the other policies.

The Linear loading policy loads and executes a layer at
a time.

3.4 Partial
The Partial loading policy is a multi-threaded version of the
Linear loading policy. The orchestrator loads and executes
DNN layers in the same order for both policies. The differ-
ence with the Linear loading policy is that the loading tasks
can be split over multiple workers, while the execution tasks
are executed by a single worker. Thus, the loading of the
parameters of each layer can be distributed and accelerated.
Figure 8 shows the dependency graph of the tasks that need
to be executed when the AgeNet [7] model is submitted using
the Partial policy.

Since the loading tasks are distributed over multiple work-
ers, the Partial loading technique will in theory perform better
than the Linear loading policy. But this might not be the case
if the memory resources are too scarce to hold all the param-
eters of the DNN layers. In that case the Linear policy might
work better as the loading and executing of layers is always
interleaved.

The Partial loading policy loads all the layers greedily
over multiple workers, while a single worker executes
the loaded layers.

4 ANALYSIS
In this section, we present the multiple evaluations we per-
formed in order to compare the different loading policies and
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(a) No additional memory limit (b) Memory limit of 1GB

(c) Memory limit of 512MB (d) Memory limit of 256MB

Figure 2: Average inference time in ms per size of the pipelines for each loading technique based on the measurements of 100 differing runs
of the EdgeCaffe pipeline under different memory limitations

determine how effective each of these loading policies are un-
der different environments.

4.1 Impact on Inference Time
Here we evaluate the performance of the different loading
policies without setting any additional memory limitations as
well as under different memory limitations.

Setup. In total, 100 different pipelines are generated with
various length and complexities. Every pipeline is to be exe-
cuted and measured for each of the four loading policies. We
perform this evaluation under different memory limitations to
see if this has an impact on the performance of the different
loading techniques. We thus perform the same script under
the following byte limits: 1GB, 512MB, and 256MB.

Results. Figure 2a illustrates the performance of the differ-
ent scheduling techniques ordered by the size of each pipeline
under no additional memory limit. This means that the full
4096MB of memory is available to use. The results are ob-
tained by averaging the results that correspond to pipelines
within the same size range of 400MB. The run time gain is
displayed for each loading policy in comparison to the Bulk
policy which is used as baseline for the evaluation. Figure 2a
shows that as the run time memory available on the device is

not additionally limited, that all the four policies perform ap-
proximately the same. Indeed, the pipelines achieved similar
inference times for each of the policies for the ranges of size
with run times gains not exceeding the 1.01x mark.

Figure 2b shows the results under a memory limit of 1GB.
In this figure, the results start to differ from the previously
observed ones. The four policies still perform similarly for
smaller pipelines that have a size varying from 0 to 800 MB.
As the size of the pipeline increases, some policies start to
outperform others. An interesting observation here is the fact
that the difference in run time between the policies increases
with the length of the pipeline. A bigger gain in inference
time can be observed with the Linear loading policy over the
other policies with a maximum run time gain of 1.27x. The
Partial policy achieves a maximum run time gain of 1.09x.
Interestingly, the DeepEye policy performs worse than the
baseline with a maximum run time loss of 0.81x. In com-
parison to the previous figure, where no additional memory
limits were set, the overall inference time increases consider-
ably for all the policies. The baseline Bulk policy observes
a maximum inference time of approximately 53 seconds in
comparison to the observed 35 seconds inference time in Fig-
ure 2a which is 1.5x the inference time.
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Figure 2c shows the results under a memory limit of
512MB. A bigger difference in inference time can be ob-
served here between the policies. Similarly to the previous
memory limitations, the four policies achieve very close in-
ference times for the smaller pipelines. But in an identical
manner to the Figure 2b, as the size of the pipeline increases,
the difference in run time gains between the policies also in-
creases. The performance hierarchy between the loading poli-
cies also remains the same. The Linear loading policy does
still achieve the best inference times with a maximum run
time gain of 1.53x. The Partial policy achieves a maximum
run time gain of 1.12x which is significantly lower than the
run time gains achieved by the Linear policy. As discussed
in section 3, this is more than likely due to a memory over-
head created by the greedy execution of consecutive loading
tasks by the Partial policy in contrast to the loading and ex-
ecuting interleaving by the Linear policy. The DeepEye pol-
icy performs very similarly to the Bulk policy. Again here,
the overall inference time increases compared to the previous
memory limitations. In this instance, the Bulk policy achieves
a maximum inference time of approximately 129 seconds.

Figure 2d shows the results under a memory limit of
256MB. In such a memory constrained environment, com-
pelling changes appear in the performance hierarchy of these
different loading policies. As the size of the pipelines in-
creases, the Partial loading policy starts to achieves the worst
inference times in this environment with a maximum run time
loss of 0.83x. This could be due to the fact that as the memory
overhead caused by the greedy loading of layers increases due
to the pipeline being larger, the Partial policy experiences sig-
nificantly higher memory swapping which would slow down
the whole process. The Linear policy remains the finest with
a maximum run time gain of 1.63x. This further pushes the
idea that as the memory overhead becomes larger, the Linear
policy becomes more and more advantageous to use in com-
parison to the other techniques. The overall inference time
increases drastically under this environment. The Bulk policy
achieves a maximum inference time around 191 seconds.

As such, the findings above can be summarized as fol-
lows. We have found that in an environment with suf-
ficient memory - above 1GB - the DeepEye, the Lin-
ear and the Partial loading policies provide similar run
time gains in comparison to the Bulk policy which is
used as the baseline of the experiment. But as the envi-
ronment becomes more and more scarce and the size of
the pipeline larger, meaning that the memory overhead
is increasing, the Linear policy starts to outperform all
other loading policies. The overall inference time also
increases drastically as the memory limit becomes more
and more constrained.

4.2 Impact on Memory Usage
In this section we investigate the impact on the memory us-
age and swapping behaviour the different loading policies
have when performing inference tasks under different mem-
ory limitations.

Setup. We combined the previous evaluation with the cal-
culation of important memory information such as the max-

imum and average usage of both physical and swap memory
throughout the execution of each pipeline. We will be an-
alyzing the measured memory information for the 1GB and
512MB memory constrained environments.

Results. The most interesting results from this experiment
could be found by analyzing the average RAM usage and the
average swap space usage in these two environments.

Figure 3a shows the average RAM usage under a mem-
ory limit of 1GB. Indeed the RAM usage here does not ex-
ceed the 1GB mark for any of the four policies. As expected,
the memory usage increases as the size of the pipelines in-
creases. Another interesting observation is the fact that the
usage differs significantly between each loading policy. The
DeepEye and the Linear policy both use an approximately
similar amount of memory, the most between the four poli-
cies. The Linear policy is the most resource friendly policy
under this environment, with a memory usage not exceeding
600MB, 1.68x better than the baseline. Figure 3c shows the
average swap space usage under the same memory limit of
1GB. The memory consumption here is approximately sim-
ilar for all the policies despite the size of the pipeline. The
four policies have a swap space usage varying between 900
and 1100 MB. The Linear policy does however uses slightly
less swap space than the other policies.

Figure 3b shows the average RAM usage under a mem-
ory limit of 512MB. In Figure 3a, smaller sized pipelines
would not require the full 1GB of memory to be used and the
memory usage would increase with the size of the pipelines.
Here, the memory usage for each policy are vaguely simi-
lar to each other despite the size of the pipeline. The RAM
usage does not exceed the 500MB mark for any of the four
policies but the DeepEye policy borders it. The Linear policy
uses the least memory under this memory limit as well, with
a memory consumption fluctuating around 320MB. Figure 3d
shows the average swap space usage under a memory limit of
512MB. The swap space usage is remarkably higher than un-
der the 1GB memory limit. In Figure 3c the swap space usage
wouldn’t exceed the 1100 MB mark, while in Figure 3d all
the policies do exceed it. Thus, as the RAM memory limit is
exceeded, the swap space usage increases drastically. Indeed,
the DeepEye policy which bordered the maximum available
RAM, uses the most swap space with a consumption up to
1800MB for the largest pipelines.

We have found that as the maximum available RAM
usage is reached, the swap space usage increases sig-
nificantly. Thus, as the available memory is more and
more constrained, the pipeline is more likely to require
a higher amount of swap space. The DeepEye loading
policy uses the most memory while the Linear policy is
the most resource friendly of the four policies.

4.3 Impact of Number of Loaded Layers
Here we evaluate the impact of loading multiple layers at the
same time. We propose two alternate versions of the Partial
loading policy. The first variant which we will name the Dou-
ble loading policy, is a Partial policy with two workers. The
second variant, namely the Triple policy, is a Partial policy
with three workers.
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(a) Average RAM usage under the memory limit of 1GB (b) Average RAM usage under the memory limit of 512MB

(c) Average swap space usage under the memory limit of 1GB (d) Average swap space usage under the memory limit of 512MB

Figure 3: Average RAM usage and average swap space usage per size of the pipelines for each loading technique based on the measurements
of 100 differing runs of the EdgeCaffe pipeline under different memory limitations

Setup. In total, 100 different pipelines are generated with
various length and complexities. Every pipeline is to be exe-
cuted and measured for the Linear policy as well as the two
variants of the Partial policy. The evaluation is undertaken
under a memory limit of 512MB.

Results. Figure 4a shows the average inference time of
the three loading policies. A clear observation can be made
from this figure. As the number of layer that are loaded at the
same is bigger, the inference time becomes lengthier. This
coincides with the observations made in Figure 2c and Fig-
ure 2d, where it is noticeable that the Partial loading policy is
affected by the memory overhead caused by the greedy load-
ing of layers. Here, the more layers can be greedily loaded,
the more the inference time is affected. Figure 4b shows the
average RAM usage of the loading policies. The results from
this figure confirms that the memory overhead increases sig-
nificantly, as the number of greedily loaded layers grows.

We have found that as the number of available workers
for the Partial policy increases, the increased number
of greedily loaded layers cause a larger memory over-
head, ultimately slowing down the inference tasks sig-
nificantly.

5 Discussion
In this section, we discuss the results of our empirical re-
search. We provide a reflection on the achieved results for
each scheduling policy as well as how they can be explained.

Our first experiment has shown that as the available mem-
ory becomes more and more constrained, the inference time
increase drastically. Analyzing the memory consumption
during the running of these pipelines unveiled that this also
causes the average swap space usage to rise significantly. Fur-
thermore, when the memory overhead caused by the loading
of layer parameters grows, the Linear policy outperforms the
other policies with an increasing difference in inference time.
Figure 3c and Figure 3d have shown us that as the memory
overhead becomes larger, that the usage of swap memory in-
creases.

Swap memory is used to provide processes with additional
memory space when all the main memory (RAM) is used up.
But accessing the disk where the swap space is located, re-
quires a lot more time than accessing RAM. The speed scale
of RAM is in the area of 100ns while accessing data on a
rotating disk requires 10ms, 100.000 times the RAM [4].

The Linear policy loads and executes a layer a time, limit-
ing the memory usage. This is visible in Figure 3a and Fig-

7



(a) Average inference time

(b) Average RAM usage

Figure 4: Average inference time and RAM usage usage per size of
the pipelines for each the Linear and alternate Partial policies based
on the measurements of 100 differing runs of the EdgeCaffe pipeline
under a 512MB memory limit

ure 3b, where the Linear policy uses significantly less RAM
on average in comparison to the other policies. It is for this
reason that the Linear policy performs remarkably better in
resource constrained environments.

The Partial policy suffered deeply from greedily loading
layers in resource constrained environments. The results ob-
servable in Figure 4a showcase the fact that the more layers
are greedily loaded, the slower the inference time. Figure 4b
shows how this performance loss is related to the memory
overhead caused by loading layers in such a manner. Al-
though the Partial policy does not provide significant run time
gains in resource constrained environment, it can still perform
very well if the available memory is large enough to handle
the greedy loading.

Surprisingly, the DeepEye policy performed the worst be-
tween all four policies, even achieving inference time longer
than the Bulk policy. This is due in parts because of the
high RAM usage under this policy caused by the pre load-
ing of fully connected layers during the loading and execu-
tion of convolutional layers. Another factor for this surpris-
ing performance is that in the DeepEye paper [9], a specially
made hardware unit with a custom integrated carrier board

was build to run their experiments on, which could have pro-
vided better results.

Knowing that the memory overhead caused by the loading
of the DNN layers is the cause behind the biggest inference
time loss, it would be interesting to propose a unified system
that could determine the loading policy to use according to a
number of factors such as : the length of the pipeline, the rate
of fully-connected layers, the rate of convolutional layers and
the available main memory.

6 RESPONSIBLE RESEARCH
In this section, we review the integrity of our conducted re-
search. We conduct an epistemic review of our research in
order to assess the degree of validation and reproducibility of
our experiment and its results. For ethical concerns related to
our research, view appendix A.

Reliable. In order to assess a confident degree of relia-
bility of our research, we made sure the evaluations we per-
formed produced consistent results. Indeed, we used a script
to generate a large number of pipelines of various complex-
ities and sizes by combining five different deep models in
various ways. The results are then averaged over a range of
pipelines, ensuring that the accuracy of the results.

Reproducible. In order to make sure our research and all
the evaluations we performed are reproducible, we focused
on transparency and automation. First of all, we only used
data that was publicly available. Indeed, the deep learning
models used for our research are all pre-trained caffemodels
available to download on website such as Model Zoo [13].
Our evaluation environment, EdgeCaffe, is built around Caffe
[5], an open-source deep learning framework. It will also
be made publicly available in the near future. Secondly, in
order to avoid any human error during our evaluation setup,
we used multiple scripts to run the experiments. They will
also be made available along with the EdgeCaffe project.

7 CONCLUSION
In this paper, we performed an empirical study on the dif-
ferent scheduling techniques for the loading and execution
of deep neural network (DNN) layers. In a first place, we
described our specially made evaluation environment Edge-
Caffe that aims to run the Caffe Deep Learning framework on
edge devices. We then showed that the loading and executing
of DNN layers could be scheduled in several ways. We used
the evaluation environment to conduct several experiments
surrounding these scheduling techniques that we were inves-
tigating and determined the conditions under which each of
these methods are the most desirable to use. In other words,
the conditions for which they provided the biggest run time
gain during the execution of multiple concurrent inference
tasks. We highlighted the negative impact memory swapping
had on the overall run time of multiple inference jobs when
the memory overhead caused by the loading of DNN layer
parameters became to large. We also showed that interleav-
ing the loading and execution of DNN layers in a linear man-
ner could provide significant gains in run time when coming
across this issue.
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Appendices
A ETHICAL CONCERNS
In this section, we discuss some of the major ethical concerns
related to the execution of deep inference jobs on edge de-
vices and the impact our research might have on them.

Discrimination. A major issue with deep learning and ar-
tificial intelligence in general, is that these algorithms can be

biased. This issue know as algorithmic bias can be the cause
of many discriminating outcomes Our research on the other
hand, does not affect this issue. Indeed, the deep neural mod-
els used in our empirical study are all pre-trained. The differ-
ent inference scheduling policies do not affect the accuracy
of these models.

Humanity. The ever-growing interest in “Smart products”
as well as the integration of various innovations has sparked
a revolution in the production of edge devices, considerably
expanding the range of the IoT. Reinforcing this revolution
is the paradigm shift from cloud to edge computing, which
only gives these devices more and more capabilities. Our re-
search on the partial loading of deep network layers further
supports this paradigm shift and allows for more demanding
inference jobs to be executed on these devices. Which raises
the question of how far machines will affect our behaviour
and interaction?

Privacy and security concerns. One of the biggest con-
troversies surrounding cloud computing is the privacy and se-
curity concerns about personal and sensitive data. By sending
the data to the cloud for further processing, this data becomes
at risk of being abused by the cloud provider itself, a hacker or
another third party. By moving deep learning to the edge, we
are essentially keeping the data that would otherwise be send
to the cloud, as we use it immediately for processing. After
the inference jobs are terminated, only the inference output
is necessary and the input data doesn’t have to be retained,
therefore ensuring a more robust privacy of data. However,
other then having to ensure virtual privacy and security, IT
companies are going to have to ensure physical security as
well. Indeed, edge devices are required to physically pro-
tect the data that is stored on them. If for example an edge
device is hacked while collecting data, the attacker could ma-
nipulate the device to misunderstand the data it collected. As
for the privacy concerns surrounding the EdgeCaffe environ-
ment, the data used as input for our inference tasks is not
retained, only the output is stored in a csv file.

B DEPENDENCY GRAPHS
In this section, the generate dependency graphs of the AgeNet
[7] model are displayed for each of the policies. The follow-
ing figures are shown:

• Figure 5: AgeNet network dependency graph for the
Bulk policy
• Figure 6: AgeNet network dependency graph for the

DeepEye policy
• Figure 7: AgeNet network dependency graph for the

Linear policy
• Figure 8: AgeNet network dependency graph for the

Partial policy
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Figure 5: AgeNet network dependency graph for the Bulk policy
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Figure 6: AgeNet network dependency graph for the DeepEye policy
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Figure 7: AgeNet network dependency graph for the Linear policy
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Figure 8: AgeNet network dependency graph for the Partial policy
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