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This paper presents the design of an attitude controller for a magnetically actuated
nanosatellite. The goal of this attitude control system is to be able to dump excess kinetic
rotational energy as well as to point to a rotating frame with an accuracy of �ve degrees on
each axis. From the options considered, a locally asymptotically stable PD type controller is
chosen as the best solution to the local attitude control pointing problem. This design choice
is veri�ed via simulation which includes actuator constraints, environmental disturbance
torques due to drag, solar radiation, residual dipoles and gravity, and satellite models from
the cubesat Del�-n3Xt.

Nomenclature

1n�n Identity Matrix (nxn)
� Earth’s Gravitational Constant
� State Transition Matrix
	 Monodromy Matrix
!0 Orbital Period
!c
ab Angular rate between frame a and b expressed in frame c
b Earth’s Magnetic Field
I Inertia Matrix
m Magnetic Dipole Moment
a
bq Quaternion from reference frame b to frame a

R̂c
cm Distance from Earth’s center to satellite’s center of gravity

T c Torque in frame c
S( ) Skew Symmetric Cross Matrix

I. Introduction

The purpose of this paper is to evaluated the performance of several types of attitude controllers for
a cubesat using only magnetorquer-based actuation. As satellite miniaturization progresses to the cubesat
level(satellite structure is 10cm x 10cm x 34cm), attitude controllers must be designed to operate for this
new class size. Actuator miniaturization, however, lags most other bus hardware systems, and the full
complement of actuators available for commercial-sized satellites is not yet available to cubesats. Prototypes
of miniaturized reaction wheels and thrusters will be own as experimental payloads on Del�-n3Xt, leaving
only magnetorquers as a viable option for active attitude control. In addition, in future missions once
thrusters and reaction wheels have been properly space certi�ed, magnetorquer-based attitude control will
be used as a backup system, as magnetorquers will still be onboard for use in rate damping and momentum
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dumping. Consequently, the goal of this paper is to determine the best magnetorquer-based attitude control
system for Del�-n3Xt, given the restricted power budget available to a three-unit cubesat. Mission success
requires the ability to track a rotating reference frame. Rotating reference frame tracking is required to test
an experimental thruster, in order to point the thrust vector in the direction of orbital velocity to an accuracy
of �ve degrees on the velocity axis. While there is no �xed requirement for settling time, prior magnetorquer
performance of a cubesat has suggested on the order of 1-2 orbits1,2 starting from a 30� error on each axis.
While this is in part due to power restrictions, it is largely due to the unavoidable fundamental problem of
underactuation when dealing with magnetorquers. In an approximately polar low Earth orbit, the magnetic
�eld rotates twice per orbit, meaning a previously uncontrollable axis now becomes fully controllable within
a quarter orbit later. This suggests a theoretical limit of approximately 25 minutes (1/4 orbit) for settling
time to any given random initial attitude, a limit which is considered ideal during the design of this attitude
controller.

The �eld of magnetorquer-based attitude control has been extensively covered over the past decades.
One approach is to use a classical PD type control which assumes three independent torques can be applied
to the spacecraft.3 That design develops both a model dependent and independent controller, both of which
are proven to be asymptotically stable about a zero error equilibrium. Another PD type controller is shown
to be globally asymptotically stable by employing a time varying proportional gain with the aid of gravity
gradient stability.4 An alternate control approach is an LQR-based solution which can be either time varying
or time invariant.5 This approach takes advantage of the quasi-periodicity of the Earth’s magnetic �eld, and
allows for Floquet stability analysis to be performed after the fact. The LQR solution can be modi�ed
by adding integrators in order to counteract steady-state disturbance torques. Furthermore, this solution
can use the in�nite gain margin property of LQR control to employ saturation logic in order to maintain
controller stability.6 Several cubesat missions have also explored using an LQR controller including AAUSAT
I, Compass I, and Swisscube. In addition to LQR, another potential optimal approach is model predictive
control (MPC). Using a magnetic �eld model, a closed form solution can be derived which includes actuator
constraints.7 In addition, an eMPC for a magnetically actuated satellite can be shown to maintain accuracy
while achieving considerable decreases in energy consumption.8 Because it depends strongly on the magnetic
�eld model, MPC performance can vary signi�cantly when using a constant magnetic �eld assumption versus
a time varying magnetic �eld model.9 This analysis �nds sign�cant acceleration and angular rate reduction
when using the time varying model. Moreover, it shows that the addition of a terminal penalty has a
stabilizing e�ect on the control law.

In this paper we present the modeling and implementation of the detumbling and local attitude control
system for the cubesat Del�-n3Xt. In Section II, the spacecraft dynamics model is developed which is used
later in Section III to design the detumbling and pointing controllers. Section IV presents the simulations
of the implementation these two controllers on Del�-n3Xt subject to actuator constraints and disturbance
torques. Section V summarizes the controllers’ performance and gives arguments for the �nal attitude
controller design choice.

II. Spacecraft Model

A. Reference Frames

For the setup of the attitude control problem, the following reference systems are adopted:

� Inertial Axes (Xi Yi Zi): The origin of this frame is at the Earth’s center of mass. The X axis points
toward the vernal equinox and Z axis points to the geographic north pole.

� Control Axes (Xc Yc Zc): The origin of this frame is at the satellite’s center of mass. The axes are
aligned with the spacecraft principle moments of inertia. It is assumed that the body axes and control
axes are aligned.

� Orbital Axes (Xo Yo Zo): The origin of this frame is at the satellite’s center of mass. The X axis is
along the orbit normal, Z axis is in the zenith direction.
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B. Kinematics

One of the most common parameterizations of attitude is given by the four Euler parameters. Using these
variables, the following representation for attitude kinematics can be derived:10

_q =
1

2

q where 
 =

26664
0 !z �!y !x

�!z 0 !x !y

!y �!x 0 !z

�!x �!y �!z 0

37775 (1)

where q 2 R4 is the unit norm vector of Euler’s parameters and ! 2 R3 is the spacecraft angular rate. The
choice of quaternion for attitude parameterization is motivated by its property of nonsingular representation.

C. Dynamics

The attitude dynamics of a rigid body can be expressed by the following equation:10

I _!c = �!c � I!c + T c
ctrl + T c

d (2)

where I 2 R3 is the inertia matrix in the control reference frame, T c
ctrl 2 R3 is the vector of magnetic control

torques, and T c
d 2 R3 is the vector of external disturbance torques. The control torque is given by:

T c
ctrl = mc � bc (3)

where mc 2 R3 is the magnetorquer produced magnetic dipole moment and bc 2 R3 is the Earth’s magnetic
�eld in Tesla. The disturbance torque is given by:

T c
d = T c

drag + T c
rad + T c

mag + T c
gg (4)

where T c
drag , T c

rad, T c
mag, and T c

gg are the disturbance torques due to atmospheric drag, radiation pressure,
residual magnetic dipoles, and gravity gradient respectively.

D. Linearization

From the nonlinear models given by Eq. (1)-Eq. (4), a linearized system is derived for later use in linear
control theory. The nonlinear system takes on the form _x = f(x; u) where the state vector, x, is de�ned as
x = [ �q �! ] and the control signal, u, is de�ned as u = mc. The fourth term of the quaternion can be left
out of the state vector due to its relationship to the other terms given by q21 + q22 + q23 + q24 = 1. This system
is linearized about a trajectory given by the rotating reference frame de�ned as:

c
o~q = [0 0 0 1] ~!c

co = [0 0 0] ~u = [0 0 0] (5)

For this case these states express the nominal rotation from the orbital to the control reference frame, the
nominal angular rate between these two reference frames, and the nominal control input. The nonlinear
system can now be written:

_x = Ax+ Bu (6)

where the system matrices A and B are given as:

A =
@f(x; u)

@x

��
x=~x

B =
@f(x; u)

@u

��
u=~u

(7)

For orbital reference frame tracking, the ! given in Eq. (1) is a rotation rate from the orbital to the control
reference frame, !c

co, where as the ! given in Eq. (2) is a rotation rate from the inertial frame to the control
frame or !c

ci. In order to combine these into one linear model the following relationship between the two
rotation rates must be used:

!c
co = !c

ci �Rc
o!

o
oi where !o

oi = [!0 0 0] (8)

3 of 9

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n 
D

ec
em

be
r 

24
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

0-
35

11
 



where Rc
o is a rotation matrix from the orbital to control reference frame. In addition, due to its ease of

linearization in the orbital reference frame, the linearized gravity gradient torque is also included in the
system model:5

T c
gg =

3�

R3
cm

�
R̂c

cm � IR̂c
cm

�
� 6!2

0

264 (Iz � Iy)�q1

(Iz � Ix)�q2

0

375 (9)

where �q = [�q1 �q2 �q3 1] and is a small deviation of the attitude quaternion, c
oq, from the nominal. An

additional operation has been applied to the original magnetic dipole moment, m, to create a more e�cient
moment ~m. This operation maps the original, ideal moment, to the plane perpendicular to the magnetic
�eld line, thereby removing the component of the moment vector which contributes no torque:11

T c
ctrl = ~mc � bc where ~mc =

mc � bc

kbk
(10)

Given the above linearization procedure described in Eq. (5) - Eq. (10), the state vector x and corre-
sponding system matrices A and B are given as:

x =

2666666664

�q1

�q2

�q3

�!x

�!y

�!z

3777777775
A =

"
�S(~!) 1

213�3
T gg 3�3 I�1[S(I!)� S(~!)I]

#
B =

"
03�3

I�1 1
kbk [S(ob)][S(ob)]

#
(11)

where �! is a small deviation of the angular velocity, !c
co, from the nominal, and T gg 3�3 is 03�3 with Tgg

on the diagonals.

III. Control Design

A. Detumbling Controller

Upon exiting the orbital deployer, the cubesat will experience some of the highest rotation rates it will see
during its mission lifetime. Estimated maximum rates are 10deg

s on each axis. In order to dump this excess

energy, a detumbling controller will be used to bring body rotational rates down to below 1deg
s on each axis

before the attitude controller will become operational. This detumbling controller takes the form of the
well-known b-dot controller:12

m = �C _b (12)

where C is a positive de�nite gain matrix. Under the assumption that the magnetic �eld vector’s change
results from spacecraft rotation, _b � b�!, this controller e�ectively applies torque opposite the direction of
rotation, thereby reducing the satellite’s kinetic energy.

Due to noisy sensor readings of the magnetic �eld, di�erentiation of the magnetic �eld can be problematic.
It is common practice to use a �rst-order state variable �lter to estimate the time derivative of b:

H(s) =
b̂

b
(s) =

s!c

s+ !c
(13)

where b̂ is the estimate of the time derivative of b. For high frequency inputs (s >> !c) this tranfer
function behaves like a simple gain, and for low frequency inputs (s << !c) the function is a di�erentiator
in approximation. In this way !c can be used as a �ltering cuto� frequency.

B. Linear Quadratic Regulator

1. Problem Formulation

A constant gain linear quadratic regulator (LQR) is developed as a stablizing control law for a linear time-
invariant system. From prior research, the constant gain LQR has been found to be comparable in perfor-
mance to an in�nite horizon and �nite horizon controller.5 For this reason the constant gain controller was
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chosen as the test case LQR due to its lowest computational load. The problem is formulated as �nding a
full-state feedback control law minimizing the in�nite time linear quadratic cost function:

J(u) =

Z 1
0

�
xT (t)Qx(t) + uT (t)Ru(t)

�
dt (14)

where the weighting matrices Q and R are positive semide�nite and positive de�nite respectively. The
above cost function is also subject to the linearized state dynamic equations given by Eq. (6) with a slight
modi�cation on B:

_x(t) = Ax(t) + �Bu(t) and x(0) = x0 (15)

where �B is the control matrix B averaged over one time period (T):

�B =
1

T

Z t0+T

t0

B(t)d(t) (16)

Because the system is linear, time-invariant and controllable, a control law can be implemented from the
solution to the steady state Riccati equation.13 This optimal law is given by:

u = R�1 �BTPx or equivalently mc = Kx (17)

where P satis�es the Riccati Algebraic Equation:

PTA+ PA� P �BR�1BTP +Q = 0 (18)

2. Stability

Stability of the LQR approach must be veri�ed because although constant gain LQR theory guarantees
closed loop stability for linear time-invariant systems, it does not do so for periodic linear systems. In order
to check whether the system is stable for a given Q and R, Floquet analysis is employed.14 This analysis
states that a periodic linear system is asymptotically stable only if its complex characteristic multipliers lie
on the open unit disk. The characteristic multipliers are calculated as the eigenvalues of the monodromy
matrix, given by:

	(t0) =

Z T+t0

t0

~A�(t; t0)dt where ~A = A� B(t)K (19)

The constant T is the orbital period and � is the state transition matrix from reference time t0. In addition,
the weight matrices Q and R can be tuned from this analysis. The matrix Q can be set as a function of a
scalar tuning variable p:2

Q =

"
pk11 0

0 pk21

#T "
1
21 1

21
1
21 1

21

#"
pk11 0

0 pk21

#
(20)

where 0 and 1 are both 3x3 matrices, k1 = 0:001 and k2 = 0:00001. The variable p can then be swept
through a range of values and the maximum absolute value of the characteristic multipliers plotted as a
function of p. The p which minimizes the absolute value of the maximum eigenvalue of the monodromy
matrix corresponds to the weighting which generates the fastest system response time, and this Q can be
employed as the optimal state weighting.

C. PD Controller

A PD controller is tested due to its advantage as one of the least computationally intensive control approaches.
One type of PD controller is that which includes both a rate damping term, KD, and a quaternion term,
KP , as given below:4

mc(t) = KD !c
co � bc +KP

c
oq � bc (21)

Plugging this mc into Eq. (6) for u yields the new linearized form given by:

_x = Ax+ B(KP �q +KD�!) (22)

5 of 9

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n 
D

ec
em

be
r 

24
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

0-
35

11
 



Table 1. Algorithm Parameters

Parameter Value

C 11000

wc 2

p 26

R 13�3
KP diag(-0.03 -0.03 -0.15)

KD diag(-21 -21 -35)

Table 2. Simulation Parameters

Parameter Value Unit

Inertia Matrix diag(0:037 0:036 0:006) [kgm2]

Max. Magnetic Moment 0:06 [Am2]

Accuracy Required [5 5 5] [deg]

Orbital Angular Velocity 1:079� 10�3 [rad/s]

Initial Attitude [30 30 30] [deg]

Initial Angular Velocity [1 1 1]� 10�3 [rad/s]

Atmospheric Density 1:68� 10�14 [kg/m3]

Residual Dipole Moment [0 0 0:001] [Am2]

Equation(22) can be rewritten in the form:

_x = Âx where Â = A + B [ KP KD ] (23)

Now Floquet analysis can be employed by setting Â = ~A from Eq. (19). In addition the values in KP and KD

can be varied much like the parameter p in order to �nd an optimal gain matrix.

IV. Simulation

In this section the simulations are presented. Table 1 outlines the parameters used by the detumbling,
LQR, and PD controllers. These weightings were computed by the methods described in the previous
section on control design, and are used to calculate the gains used in these controllers. Table 2 displays the
parameters used in the simulation. The moments of inertia, maximum dipole moments, and residual dipole
moment are taken from the latest Del�-n3Xt cubesat designs.15 The simulation uses an IGRF 2010 model
to compute the Earth’s magnetic �eld as a function of position. The results of the simulation can be seen in
the �gures below.

The result of the detumbling simulation is within normal expectations, as seen in Fig. 1. This simulation
included actuator saturation and all disturbance torques. The satellite started from a 10deg

s rotation rate

on each axis and settled to roughly 0:2deg
s after 10000 seconds or just under 2 orbits. This steady state

rate was used as the initial rotation rate for all the pointing simulations. Fig. 2 shows the stability analysis
performed for the LQR controller. The optimal Q occurs at p = 17, which was proven in performance
by linear simulations without disturbance torques. However, in the nonlinear simulation that included
disturbance torques, it was found that a non-optimal tuning parameter of 26 was more e�ective at rejecting
those disturbances. Ultimately, the LQR controller was found to be inexible in terms of gain scaling, simply
due to the boundaries imposed by stability requirements of having a maximum absolute eigenvalue less than

Figure 1. Detumbling controller
Figure 2. Q matrix tuning
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Figure 3. LQR control law pointing errors including disturbance torques.

one. Changing the control matrix R was ine�ective because it is the relationship between Q and R and not
the absolute value that determines the control gains. The PD controller had more exibility in gain scaling,
as both relative and absolute values between the KP and KD matrices are important. In this way the gains
were increase while maintaining Floquet stability in order to better reject disturbance torques. However,
it was found that after a certain point, increasing KP and KD did not improve performance, but merely
consumed more power. The �gures below show the orbital frame tracking results and Table 3 summarizes
key �ndings from these simulations. Both controllers have 5� settling times of roughly 1

2 an orbit. The PD
controller, however, is 23 % faster or almost 700 seconds. From the same plots, it can also be seen that
the PD controller has better steady state performance than the LQR controller. The PD controller has a
maximum steady state error of about 2�.
The LQR controller, on the other hand, has much larger pitch errors at almost 5:5�. Both of these steady

state errors are periodic due to the periodic nature of the radiation pressure and residual dipole moment
disturbance torques. This increase in performance comes at a higher energy cost as seen in Fig. 5. The
energy consumption is arti�cially divided into two time segments for analysis. The �rst segment is the
energy required to achieve the steady state, which in Table 3 is labeled as 3000s Energy, or energy required
in the �rst 3000 seconds. The LQR controller performs slightly better consuming only 86 % of what the PD
controller consumes.

Figure 4. PD control law pointing errors including disturbance torques.
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Figure 5. Total energy consumed by LQR and PD control laws

Table 3. Simulation Summary

Parameter LQR Value PD Value

5� Settling Time [s] 3077 2385

Max Steady State Error [deg] 5.5 2

3000s Energy [J] 8.96 10.42

Avg Steady State Power [mW] 1.5 1.6

V. Conclusions

The second segment is the average power required to maintain steady state, which is calculated as the
average power consumption from 3000s to the end of the simulation. In this criteria the LQR controller again
performs slightly better, using only 94 % of the power required by the PD controller. The PD controller
was selected as the tracking controller for the Del�-n3Xt satellite attitude control system. This choice is
motivated by its superior performance, even at the expense of larger power requirements. The di�erence
in settling times and steady state errors at 25% and 65% respectively is signi�cant. In addition, one factor
not considered in this paper, but which is also a contributing factor to reference frame tracking error is
the attitude determination error due to sensor bias and noise. For Del�-n3Xt, both attitude determination
and attitude control were given their own accuracy requirements in order to achieve a total ADCS pointing
accuracy. While both controllers meet the requirements for control pointing accuracy, the additional PD
performance improvement beyond the required accuracy can be used to augment determination performance
in order to achieve total ADCS pointing accuracy. The di�erence in power consumption is not considered
signi�cant enough to be a determining factor in controller choice. While the LQR controller uses 14% less
to reach the steady state, in practice this translates to the magnetorquers being saturated for about 20
more seconds in the beginning for the PD controller than the LQR controller. The Del�-n3xt power budget
can accomodate magnetorquer power saturation for several hours, so a di�erence of 20 seconds is trivial.
Similarly, a di�erence in steady state consumption of less than 1 mW is also trivial.
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