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Preface

You are reading the thesis “Reduce model unfairness with maximal-correlation-based
fairness optimization”. This paper describes a framework that identifies the source of model
unfairness and alleviates its influence. The research paper is a part of the master thesis to
fulfil the requirement of the Computer Science master’s degree.

For me personally, this thesis is more than a description of the method. In the name of
efficiency and predictability, institutions pleasingly replaced human workflow with machine
learning algorithms. In my short experience of helping LGBTQ refugees in the Netherlands,
I witnessed their confusion when they had to evidentiarily prove that they belong to the
Queer community. As underprivileged individuals, there is a sense of powerlessness against
a metal-cold adversary that degrades him/her as merely a set of features. Will there be a
prospective algorithm that predicts whether someone is “sufficiently” gay?

During this project, Marco Loog, as daily supervisor, provides me with countless feedback
for conducting proper research and method validation. I want to thank him for his guidance
in more than 80 emails, many hours of meetings and written advice. He made me feel safe
when there were difficulties in conducting experiments and when I was alone in the
situation of a ruthless pandemic. I want to thank Jan van Gemert and Christoph Lofi for
their guidance in the form of emails and research guidelines. At last, I want to thank my
families for their unwavering support.

I hope you enjoy reading my thesis.

Wenxuan Huang
Feb 2022
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ABSTRACT
Supervised machine learning is a growing assistive framework for

professional decision-making. Yet bias that causes unfair discrim-

ination has already been presented in the datasets. This research

proposes a method to reduce model unfairness during the machine

learning training process without altering the sample value or the

prediction value. Using an objective function that identifies the

biased feature with maximal correlation estimation, the method

selects samples to train the updated classifier model. The quality of

the sample selection determines the extent of unfairness reduction.

With an adequate sample size, we demonstrate that the method

is valid in reducing model unfairness without severely sacrificing

classification accuracy. We tested our method on multiple bench-

mark datasets with demographic parity and feature independence

as the notions for a statistically fair classification model.

KEYWORDS
Demographic Parity, Independence, Maximal Correlation, Sensitive

Feature, Objective Function

1 INTRODUCTION
Supervised machine learning, accompanied with feature-rich or

sample-rich datasets, became a novel framework to generate sta-

tistical insight & prediction [1]. In growing cases, it influences

and assists the professional decision-making process and arbitrates

the outcome of critical applications including loan acceptance or

chance of bail and parole [2, 3]. Yet supervised machine learning

is susceptible to dataset biases that originate from data collection

[4] or model goal [5] because the dataset biases could be reinforced

into the model [6]. The reinforcement begins when the machine

learning model generates functions that map dataset features and

ground truth value during the training process, and then employs

feature-label patterns to facilitate prediction. Label, in this paper,

indicates ground truth given in the dataset. One instance of dataset

biases is unintended associations between classifier predictions and

the sensitive feature, since predictions using the information in this

feature lead to unequal rates of the outcome proportion for differ-

ent sensitive classes, suggested by cases in Zliobaite’s survey on

indirect data discrimination [7]. For instance, some African Amer-

ican criminal offenders have a higher risk score for the potential

to re-offend though they committed lighter crimes, compared to

Caucasian offenders [8]. The determination of sensitive features is

contextual. Common choices include inherent attributes like race,

gender, and sexual orientation.

This research aims to minimize chances where a classifier de-

livers unfair model predictions. The fairness notion we adopt is

independence. Independence between sensitive feature and clas-

sifier prediction states that the prediction does not use the infor-

mation from sensitive feature[9]. Demographic parity (i.e. DP), as

a mathematical interpretation of independence, pursues an equal

proportion of positive prediction outcomes for each sensitive group

[9]. The fairness in DP is defined by the consistency of the pre-

diction’s positivity-negativity ratio per sensitive group. Classifier

models with a perfect DP assume an equal rate of positive predic-

tion over different sensitive groups [10]. In Barocas’s review of

fairness notion [9], for a model with demographic parity, classifier

prediction and sensitive feature are assumed to be statistically in-

dependent and their probabilities of occurrence are not affected

by each other). In recidivism prediction, a classifier satisfies this

fairness criterion if both African-American and Caucasian groups

have an equal probability of being assigned to the positive recidivist

classification.

We propose a method to improve model fairness by reducing

dependence between the sensitive feature and model predictions.

Calders’ research and several others on anti-discriminatory ma-

chine learning similarly approach fairness through modifying de-

pendence between sensitive feature and model prediction [11–13].

These researches did not consider the correlation between the sen-

sitive feature and other non-sensitive features in the same dataset.

Non-sensitive features collected along the sensitive feature can

inherit the bias of the sensitive feature through an associative map-

ping [14, 15]. Hoffmann’s research on the intersectionality of data

biases shows that features other than racial identity are similarly bi-

ased with race-related assumptions [16]. Our unfairness reduction

method identifies biases from prominent non-sensitive feature and

reduces the dependence between biased non-sensitive feature and

the model prediction. Here the method uses maximal correlation

powered by the ACE algorithm to estimate the dependence between

the two above-mentioned variables. Maximal correlation is a popu-

lation correlation that expresses the degree of association between

two variables [17]. By estimating the maximal correlation between

non-sensitive features and sensitive feature, our method targets

non-sensitive feature that implicitly reinforces unfairness onto

model predictions. On the other hand, the estimation of maximal

correlation between biased feature and model prediction provides

insight into the negative impact of this feature over the prediction

value. These two maximal correlation measures are core to the

fairness constraint objective function the method uses to reduce

model unfairness.

If a non-sensitive feature has a higher maximal correlation with

the sensitive feature, our method identifies it as the biased feature.

Belitz et al.’s research use forward feature selection to procedurally

remove biased features from the training process [18]. Selecting
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only non-biased features to train models, however, could poten-

tially weaken the classification accuracy of the model severely if

the dataset features are intertwined with redundant encoding or

inexplicit connections [19]. Therefore, Belitz et al.’s feature-based

approach could risk over-sacrificing the classifier’s performance. In

the logistic regression training process, the feature weight of a bi-

ased feature determines the degree of impact the biased feature can

have on the classifier’s prediction. Since logistic regression is a gen-

eral linear model, the model prediction is a result of a linear opera-

tion of feature weights and corresponding feature values. Kamiran’s

research suppresses biased feature’s impact on model classifier by

directly changing ground-truth value (i.e. dataset massaging). This

triggers logistic regression to re-weight [20]. Kamiran’s research

provides a straightforward re-weighing technique to alleviate data

biases, but modified sample values change the distribution of the

dataset, which potentially causes incompatibility for downstream

processes including the objective function and model prediction on

testing dataset [21].

Our proposed method similarly uses reweighing of the logis-

tic regression to adjust feature importance. Instead of triggering

reweigh by modifying sample value, this method only selects a

limited number of samples from the validation pool as the classifier

trains. The selection requirement of samples is based on the value

of an objective function that is fairness constrained. Previously

Kamishima’s research [15] reduce the weight of biased features

externally from the internal working of the logistic regression. Our

method similarly would not directly change the weight of the biased

feature numerically, since feature weight assignment of logistic re-

gression is not a discrete process. A non-intrusive reweigh also

enables the adjustment of weight for other non-sensitive features,

and manual weight adjustment could not reproduce this dynamic

weight adjustment. After the samples are selected, this method

expects the updated classifier, trained with selected samples, to

output a fairer model prediction.

1.1 Main contribution
The main contribution of the paper includes:

• Annovel objective function to facilitate featureweight reweigh

by selecting samples to include in the training dataset for a

fairer classifier.

• An in-processing method that reduce the linear and complex

dependence between sensitive feature and model prediction

supported by maximal correlation measure and ACE estima-

tion.

• A framework to reduce model unfairness by imposing demo-

graphic parity as a fairness notion into the machine learning

training process.

2 BACKGROUND INFORMATION
This section defines two concepts our research adopts for identify-

ing model unfairness, measuring feature dependence, and fairness

notion.

2.1 Demographic parity
The demographic parity notion will assume that the model is fair

if the model prediction and the sensitive feature are stochastically

independent of each other [9], thus their probability of occurrence

is not affected by each other. Mathematically, the burden of proof

for fulfilling demographic parity is to prove that:

𝑃 (𝑌 = 1|𝑆 = 1) = 𝑃 (𝑌 = 1|𝑆 = 0) (1)

This is the definition of demographic parity where 𝑌 is model pre-

diction and 𝑆 is the sensitive feature. The measure of demographic

parity during the training process between two variables is the

maximal correlation between the two variables.

2.2 Maximal correlation estimation
The maximal correlation estimation is a measure of association

between two variables. Themeasure of demographic parity between

model prediction 𝑌 and sensitive feature 𝑆 requires an estimation

that can capture independence between the two variables. And the

maximal correlation estimation can capture linear, non-linear, and

polynomial dependence and independence. Similarly, the maximal

correlation between feature 𝑋 and 𝑆 provides a numerical measure

of whether a feature has a close association with the sensitive

feature. This enables the method to select the most biased feature

among all non-sensitive features available. In the sample selection

process, to examine a sample’s effect on feature weight reduction,

the maximal correlation of training samples’𝑋 feature and𝑦 ground

truth will be compared before and after the addition of each sample.

Given two variables 𝑆 and 𝑌 , the maximal correlation between

these two variables is:

𝑚𝐶𝑜𝑟 (𝑆,𝑌 ) =𝑚𝑎𝑥
𝑓 ,𝑔

𝐶𝑜𝑟𝑟 (𝑓 (𝑆), 𝑔(𝑌 )) (2)

where the maximum correlation value is obtained from all functions

𝑓 : 𝑆 → R and 𝑔 : 𝑌 → R. Function selection aims to capture the

most correlated function mappings of two variables. The selected

functions extract the most correlated aspect of 𝑆 and 𝑌 .

If the dependence between two variables is non-linear (e.g. in-

versely proportional) or polynomial, the estimation of dependence

cannot rely on an estimator that only works well linearly. There-

fore, we propose to use maximal correlation as the measure of in-

dependence. Appropriate estimation of independence between two

features or between features and prediction can provide a frame-

work for estimating and reducing unfairness. The appropriateness

of maximal correlation is based on its coverage of dependence es-

timation without restriction on monotonicity or linearity. There

are three reasons for using maximal correlation as the measure of

bivariate independence:

• Maximal correlation has the desired property to prove inde-

pendence, while prominent correlation measures (e.g. Pear-

son’s correlation) can only disprove independence. Maximal

correlation between two variables is 0 if and only if they are

independent [22].

• Maximal correlation accounts for non-linear and polyno-

mial association, which can estimate a wider spectrum of

dependence relationships. Maximal correlation is 1 if the

two variables are deterministically associated by a function

[23].
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• Maximal correlation estimation has a [0, 1] range and it is

independent to the marginal probabilities of the two vari-

ables. This enables the method to use maximal correlation

as independence measurement with absolute threshold [23].

The maximal correlation has the following properties, take ex-

ample of the maximal correlation between 𝑌 and 𝑆 [24]:

• 𝑚𝐶𝑜𝑟𝑟 (𝑆,𝑌 ) = 0 if and only if 𝑆 and 𝑌 are independent.

• 𝑚𝐶𝑜𝑟𝑟 (𝑆,𝑌 ) = 1 if there exist a dependence function be-

tween 𝑆 and 𝑌 , so that 𝑆 = 𝑔(𝑌 ) or 𝑌 = 𝑓 (𝑆).
The maximal correlation is the maximized correlation value of

maximal correlation functions 𝑓 (𝑆) and 𝑔(𝑌 ) (i.e. Equation 4). For

maximal correlation functions 𝑓 (𝑆) and 𝑔(𝑌 ):

𝑓 (𝑆) = (𝑓 (𝑠1), ..., 𝑓 (𝑠𝑛)), 𝑔(𝑌 ) = (𝑔(𝑦1), ..., 𝑔(𝑦𝑛)) (3)

where n is the number of samples in sensitive feature 𝑆 and model

prediction 𝑌 (i.e. n is the same in both case).

The maximal correlation functions have the following prereq-

uisites to ensure output of the maximal correlation function is

centered and scaled:

• Centering:
¯𝑓 (𝑆) = 𝑔(𝑌 ) = 0

• Scaling: 𝑓 (𝑆) · 𝑓 𝑇 (𝑆) = 𝑔(𝑌 ) · 𝑔𝑇 (𝑌 ) = I

Therefore, based on Equation 3 and the prerequisite above, the

maximal correlation between 𝑆 and 𝑌 is:

𝑚𝐶𝑜𝑟 (𝑆,𝑌 ) = max

¯𝑓 (𝑆)=𝑔 (𝑌 )=0

¯𝑓 2 (𝑆)= ¯𝑔2 (𝑌 )=1

𝑓 (𝑆)𝑔(𝑌 ) (4)

To estimate the maximum of 𝑓 (𝑆)𝑔(𝑌 )), maximal correlation con-

verts (𝑓 (𝑆) − 𝑔(𝑌 ))2 to a linear component composing 𝑓 (𝑆)𝑔(𝑌 ).
The conversion suggests that the objective of maximizing 𝑓 (𝑆)𝑔(𝑌 )
is equivalent to the objective of minimizing (𝑓 (𝑆) − 𝑔(𝑌 ))2 (see in

Equation 7).

(𝑓 (𝑆) − 𝑔(𝑌 ))2 = 𝑓 2 (𝑆) + 𝑔2 (𝑌 ) − 2(𝑓 (𝑆)𝑔(𝑌 ))
= 2 − 2(𝑓 (𝑆)𝑔(𝑌 ))

(5)

Hence, the maximal correlation function 𝑓 () and𝑔() are the optimal

function for maximal correlation estimation in Equation 5 if and

only if they are optimal in the following optimization problem:

min

¯𝑓 (𝑆)=𝑔 (𝑌 )=0

¯𝑓 2 (𝑆)= ¯𝑔2 (𝑌 )=1

(𝑓 (𝑆) − 𝑔(𝑌 ))2 (6)

In case of a fixed 𝑓 (𝑆), the optimization problem is to minimizing

over function 𝑔(𝑌 ):

min

𝑔 (𝑌 )
[(𝑓 (𝑆) − 𝑔(𝑦))2 |𝑌 = 𝑦]

⇒ 𝑔(𝑦) = 𝑓 (𝑆) |𝑌 = 𝑦

⇒ 𝑔(𝑌 ) = 𝑓 (𝑆) |𝑌

(7)

If the prerequisite of zero mean and norm being one is considered,

the maximal correlation function 𝑔(𝑌 ) is:

𝑔(𝑌 ) = 𝑓 (𝑆) |𝑌√︃
(𝑓 (𝑆) |𝑌 )2

(8)

In case of a fixed 𝑔(𝑌 ), the optimization problem is to minimizing

over function 𝑓 (𝑆):

min

𝑓 (𝑆)
[(𝑓 (𝑠) − 𝑔(𝑌 ))2 |𝑓 (𝑆) = 𝑠]

⇒ 𝑓 (𝑠) = 𝑔(𝑌 ) |𝑆 = 𝑠

⇒ 𝑓 (𝑆) = 𝑔(𝑌 ) |𝑆

(9)

If the prerequisite of zero mean and norm being one is considered,

the maximal correlation function 𝑓 (𝑆) is:

𝑓 (𝑆) = 𝑔(𝑌 ) |𝑆√︃
(𝑔(𝑌 ) |𝑆)2

(10)

This method uses ACE (alternating conditional expectation) algo-

rithm to estimate maximal correlation (shown in Algorithm 1).

Algorithm 1 Alternating conditional expectation algorithm

1: procedure ACE
2: 𝑓0 (𝑆) ← 𝑆−𝑆√

(𝑆−𝑆)2

3: for 𝑘 = 1, 2, ..., till 𝑓𝑘 (𝑆)𝑔𝑘 (𝑌 ) = 𝑓𝑘−1
(𝑆)𝑔𝑘−1

(𝑌 ) do
4: 𝑔𝑘 (𝑌 ) =

𝑓𝑘−1 (𝑆) |𝑌√︃
(𝑓𝑘−1 (𝑆) |𝑌 )2

5: 𝑓𝑘 (𝑆) =
𝑔𝑘 (𝑌 ) |𝑆√︃
(𝑔𝑘 (𝑌 ) |𝑆)2

6: 𝑚𝐶𝑜𝑟𝑟 (𝑆,𝑌 ) = 𝑓𝑘 (𝑆)𝑔𝑘 (𝑌 )

3 METHOD
Our research aims to reduce unfairness of the model prediction

and expects the updated classifier to produce predictions that have a

minimummaximal correlationwith the sensitive feature. Anahideh’s

research on fairness [25] proved that the covariance between sensi-

tive feature 𝑆 and model prediction 𝑌 attributes to both the feature

(non-sensitive)-feature (sensitive) covariance and the featureweight

of non-sensitive features. This research similarly attributes maxi-

mal correlation between features and model prediction to (Specified

in Appendix A):

• Themaximal correlation between feature 𝑖 in𝑋 and sensitive

feature:𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖 , 𝑆).
• The feature weight of feature 𝑋𝑖 : 𝜃𝑖 .

Maximal correlation between feature 𝑋𝑖 and sensitive feature 𝑆 (i.e.

𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖 , 𝑆)) estimates the dependence between them. A higher

maximal correlation value suggests a larger deviation from the

concept of independence, thus also further away from the notion

of demographic parity. Therefore, this method focuses on feature

𝑖 with the highest value of 𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖 , 𝑆) among all feature in 𝑋 ,

since this feature has, among all, the strongest association with the

sensitive feature (i.e. strong biases) and this association is a factor

determining biases of the model prediction.

Once we identify feature 𝑋𝑖 that has a higher association with

the sensitive feature, the method evaluates the value of the feature

weight 𝜃𝑖 in the current classifier. If the feature weight 𝜃𝑖 is higher

compared to other features, it will be the unfairness reduction target.

This is because the pattern of𝑋𝑖 is highly predictive of ground truth
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𝑌 in logistic regression. The predictability of this feature is high

since the model prediction of the logistic classifier is based linearly

on feature weights, thus higher weight 𝜃𝑖 increases the proportion

of 𝑋𝑖 in the constitution of the prediction 𝑌 , shown in Equation 11.

𝑦𝑖 = 𝑙𝑜𝑔𝑏
𝑝𝑖

1 − 𝑝𝑖
= 𝜃0 + 𝜃1𝑋1 + · · · + 𝜃𝑑𝑋𝑑 = 𝜃𝑇𝑋 (11)

By reducing the higherweight on a feature that has the top𝑚𝐶𝑜𝑟𝑟 (𝑋, 𝑆)
among all features, the method attempts to lower the linear ratio

of this biased feature on the constitution of model prediction 𝑌 .

3.1 Feature weight reduction
Previously we stated that adding limited samples to the training

dataset could help reduce model unfairness. This section details this

process inspired by An’s approach to the study of noise addition in

machine learning training [26]. Equation 12 is the likelihood func-

tion of logistic regression where 𝑦 is the ground-truth of training

data and 𝜃 is the feature weights of feature 𝑋 .

𝐿(𝜃 ) =
𝑛∏
𝑖=1

𝑃 (𝑌 = 𝑦𝑖 |𝑋 = x𝑖 ) = 𝑃 (𝑦1 |x1) · 𝑃 (𝑦2 |x2) · · · · · 𝑃 (𝑦𝑚 |x𝑚)

(12)

The likelihood function of logistic regression uses the likelihood of

individual training samples to determine feature weight. It is the

conditional probability, per sample, of ground-truth value given

feature values [27]. Therefore, our research reduces the weight

of the biased feature by changing the likelihood of the training

samples. This can be achieved by adding samples that reduce the

likelihood of the training data. By adding validation samples that

dilute the association between biased feature and model prediction,

the updated classifier model relies comparatively more on other

features, and thus assigns a lower feature weight to the biased

feature.

The weight reduction process adopts a pre-processing approach -

by transforming training sample data before the training process of

the logistic regression. The ACE algorithm is applied to transform

data, acting as a black box function that performs the maximal

correlation estimation.

Algorithm 2 Expected maximal correlation selection

1: procedure Expected selection

2: for 𝑖 = 1, 2, ..., for all features do
3: for 𝑗 = 1, 2, ..., for all samples in validation pool 𝜈 do
4: current mCorr←𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖 , 𝑌 )
5: 𝑥

( 𝑗)
𝑖
← Value of feature 𝑖 of sample 𝑗 in 𝜈

6: 𝑋 ′
𝑖
← 𝑢𝑛𝑖𝑜𝑛(𝑋𝑖 , 𝑋 ( 𝑗)𝑖

)
7: 𝑌 ′ ← 𝑢𝑛𝑖𝑜𝑛(𝑌,𝑌 ( 𝑗) )
8: expected mCorr←𝑚𝐶𝑜𝑟𝑟 (𝑋 ′

𝑖
, 𝑌 ′)

9: 𝛿 ← current mCorr - expected mCorr

10: obj𝑖← 𝑎𝑝𝑝𝑒𝑛𝑑 (𝜃𝑖 ·𝑚𝐶𝑜𝑟𝑟 (𝑆, 𝑋𝑖 ) · 𝛿)
11: obj← 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑜𝑏 𝑗𝑖 )
12: index← 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑜𝑏 𝑗, 𝑖) for 𝑖 with highest𝑚𝐶𝑜𝑟𝑟 (𝑆, 𝑋𝑖 )

For training samples, consider a feature 𝑋𝑖 that is highly depen-

dent on 𝑆 and this feature comes with a high feature weight 𝜃𝑖 . Due

to the likelihood estimation of the logistic regression, feature 𝑋𝑖

that is predictive of the ground-truth 𝑌 will be assigned a higher

feature weight. To bring down the value of this feature weight,

the lower maximal correlation𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖 , 𝑌 ) value of the training
dataset could indicate a weakening association between the biased

feature and the predictions [28].

One way to lower 𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖 , 𝑌 ) is to add specific samples to

the training dataset from validation pool. This method evaluate

the effect of the addition of every single validation sample to the

training dataset separately, and select a subset of samples that

lower the𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖 , 𝑌 ) more significantly. In this case, consider a

point in the validation pool 𝑃𝜈 = (𝑋 (𝜈) , 𝑌 (𝜈) , 𝑆 (𝜈) ). If the maximal

correlation between feature 𝑖 and sensitive feature is high, this

method add 𝑃𝜈 into the training dataset, and record the change of

𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖 , 𝑌 ).

Δ𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖 , 𝑌 , 𝑋 (𝜈)𝑖
) =𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖 , 𝑌 )−𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖∪𝑋 (𝜈)𝑖

, 𝑌 ∪𝑌 (𝜈) )
(13)

It will be iterated for every sample in the validation set (e.g. line 3-10

in algorithm 2). In case where feature 𝑖 has the top𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖 , 𝑆)
value across all features, this method proposes the multiplication

of𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖 , 𝑆) and Δ𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖 , , 𝑋 (𝜈)𝑖
) as the objective function.

3.2 Objective function

Figure 1: Procedure of objective function selecting sample
from validation set

The objective is to add the most effective set of samples to the

training data in terms of lowering𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖 , 𝑌 ) after their addi-
tion. The objective function provides numerical metrics to rank

each sample in the validation pool based on sample effectiveness.

Specifically, the objective function aims to aggregate a value on

the individual sample’s effect on changing the association between

biased feature and ground truth. The output value of the objective

function per sample is used for the decision on sample selection,

without changing logistic regression weight or parameters directly.

Given that a feature 𝑖 is the most biased feature, the value of the

objective function needs to indicate the sample’s potential to lower

the feature weight of feature 𝑖 . There are three factors to consider

for a sample to be selected into the training dataset:
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• The current feature weight of the biased feature (i.e. 𝜃𝑖 )

• The maximal correlation between the feature and sensitive

feature (i.e.𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖 , 𝑆))
• The addition of the samples’ effect on the feature weight (i.e.

Δ𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖 , 𝑌 , 𝑋 (𝜈)𝑖
))

This paper calls the first factor feature weight, second factormax-
imal sensitive correlation, and the third factor delta difference.
These components form an optimization problem

max(Φ(𝜃𝑖 ,𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖 , 𝑆),Δ𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖 , 𝑌 , 𝑋 (𝜈)𝑖
))) (14)

The objective function attempt to maximize the multiplication prod-

uct of these three measures. Samples that have the highest value of

the objective function are to be added to the training data in a batch.

The number of samples to be added serves as a parameter to control

the precision of sample effectiveness. The procedure of selecting

samples is illustrated in figure 1. The objective function combines

the value indicating these three factors through multiplication to

increase the variance of the objective value per sample. Multipli-

cation also prevents these three requirements from canceling out

each other.

Φ𝑚𝑎𝑥 =

𝑑∑︁
𝑖=1

|𝜃𝑖 ·𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖 , 𝑆) | · Δ𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖 , 𝑌 , 𝑋 (𝜈)𝑖
) (15)

The research from H.Anahideh(2021) also uses a similar objective

function, since both methods lower feature weight by adding sam-

ples to the training data. The difference is that, in their research,

the data from the validation pool is not labeled (i.e. lacking ground

truth), while this method directly uses the ground truth of vali-

dation data instead. However, both use feature weight, and the

association relationship as multiplication factors to construct the

objective function.

3.3 Evaluation of method effectiveness
The objective function selects samples to be added to the training

dataset. With the addition of samples from the validation pool,

model predictions from training data are expected to be fairer (i.e.

in the notion of demographic parity), since the classifier depends on

the biased feature less (i.e. less on the sensitive feature as well) with

the lowering of maximal correlation between the biased feature

and ground truth.

To evaluate the improvement of demographic parity fairness, our

method measures mutual information between the model predic-

tion and sensitive feature, before and after the addition of samples.

Mutual information measures the information of one variable given

another variable [29], or specifically the reduction of uncertainty

about one variable that results from observing the other variable

[30].

Since demographic parity pursues stochastic independence be-

tween model prediction and sensitive feature, mutual information

score of model prediction and the sensitive feature can measure

the improvement of fairness from the objective function [31]. A

decrease of mutual information score after applying the objective

function and sample addition reflects an improvement in model

fairness, in the scope of demographic parity notion of fairness.

𝑀𝐼 (𝑆,𝑦) = 𝐾𝐿(𝑝 (𝑆,𝑦) | |𝑝 (𝑆)𝑝 (𝑦)) (16)

The mutual information between sensitive feature set 𝑆 and model

prediction 𝑦 is determined by how different it is between the joint

distribution of 𝑆 and 𝑦 and the product of the marginal probability

of the two variables [32].

𝑀𝐼 (𝑆,𝑦) =
|𝑆 |∑︁
𝑖=1

|𝑌 |∑︁
𝑗=1

𝑝 (𝑆,𝑌 ) (𝑠,𝑦)𝑙𝑜𝑔(
𝑝 (𝑆,𝑌 ) (𝑠,𝑦)
𝑝𝑆 (𝑠)𝑝𝑌 (𝑦)

) (17)

where |𝑆 | is the size of a collection of sensitive feature values 𝑠 and

|𝑌 | is the size of a collection of model prediction values 𝑦.

4 EXPERIMENT
The experiment uses both synthetic dataset and realistic dataset to

answer the question of whether maximal-correlation-based objec-

tive function reduces model unfairness effectively, without signifi-

cantly reducing classification accuracy.

For all experiments, each dataset is divided into validation pool

and testing test by K-fold cross-validation. Several random samples

(e.g. 6 or 10, depending on overall sample size) will be initialized as

training samples, and more samples will be added from the valida-

tion set to the training set according to the objective of reducing

model unfairness. The data preparation step is detailed in Appendix

B.

The experiment will use mutual information (i.e. MI) between

model prediction and sensitive feature as the measure of unfairness

result. Lower MI indicates the classifier relies its model less on

the value of the sensitive feature, thus closer to the stochastic

independence pursued by the notion of demographic parity. The

classification accuracy is represented by Area Under the Curve (i.e.

AUC) values to indicate the classifier’s ability to distinguish classes

[33].

4.1 Experiment I: Applying synthetic dataset
The synthetic dataset contains 500 samples and 30 new samples

will be added into the training dataset that contains initially 10

samples.

In the synthetic dataset simplified from the COMPAS dataset, an

artificially biased feature has the overlapped feature value with the

sensitive feature, but in an adjustable 90%, 70% and 50% overlaps.

For example, 70% overlap entails that 70% of the sample from the

biased feature and sensitive feature has identical binary value. This

is achieved by flipping 10%, 30%, and 50% of the binary values in

the artificial feature (originally 100% identical to sensitive feature

value). An artificial feature overlapped with the sensitive feature

creates a scenario where this feature is known to highly correlates

the sensitive feature, making it biased with a known and adjustable

extent. Ground truth in this synthetic dataset is identical to the value

of the sensitive feature. This guarantees a high feature weight for

the artificial biased feature. This is necessary since a biased feature

with a relatively smaller influence over the model prediction does

not trigger the objective function to select samples that reduce its

feature weight values.

From Equation 15, the objective function selects samples that

reduce the feature(biased)-prediction dependence. It targets the

biased feature that has high feature weight and a high maximal

correlation with the sensitive feature.
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The section illustrates the method mechanism of a manipulated

training round and presents the result from the synthetic experi-

ment. Section 3.2 stated that the objective function selects samples

with three factors. The value of these factors by applying the syn-

thetic dataset helps show the objective function’s alignment with

the goal of unfairness reduction.

Three factors within the objective function the synthetic dataset

aims to manipulate are:

• Feature weight: Since the ground truth (identical to sensitive

feature value) and biased feature is 90%, 70% or 50% over-

lapped, the feature weight of the synthetic biased feature is

expected to be higher than other features if the algorithm is

effective.

• Maximal sensitive correlation: Since the sensitive feature

value and biased feature value is 90%, 70% or 50% overlapped,

the maximal correlation between sensitive feature and biased

feature is expected to be considerably higher compared to

other features.

• Delta difference: The maximal correlation difference of bi-

ased feature and ground truth before and after sample addi-

tion (i.e. Δ𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖 , 𝑌 , 𝑋 (𝜈)𝑖
)) is expected to be higher than

other features if the right samples are selected and trained.

4.2 Experiment II: Applying COMPAS datasets
4.2.1 Data description. The maximal correlation method and the

objective function are tested against a variant of the COMPAS

dataset. It has 5875 individual criminal records of juvenile felonies,

published by ProPublica [8]. The experiment sets ’race’ as the sensi-

tive feature and ’two- year-recid’ as ground truth. ’two-year-recid’

for each sample entry is a binary value differentiating whether sam-

ple individuals re-offend in a future time-frame of two years. The

9 training features include marriage status, age, prior convictions,

degree charged, and more. This dataset is normalized with zero

mean and unit variance on the requirement of maximal correlation

estimation.

4.2.2 Method comparison. The effectiveness of this method on

reducing model unfairness is compared against two other machine

learning methods. The first method uses randomized sampling for

sample addition. Compared to the proposed method, the samples

added to the training dataset are randomly selected samples through

a Python randomizer, without considering the effect of sample addi-

tion to unfairness. This research needs to ensure that the unfairness

reduction results from an effective objective function and sample

selection, instead of the effect of selecting a smaller training sample

size from the validation pool. Thus the unfairness measure between

random sampling and maximal correlation sampling is expected

to differ (similar to the comparison of RS and MC method in the

synthetic experiment).

Another method is the FBC (Fairness by covariance) method,

used in Anahideh et al.’s research on fair active learning. Although

FBC is proposed as the primitive method in their research [25], it

shares a similar objective function and sampling algorithm. FBC

uses covariance value between the biased feature and sensitive

feature while this research uses maximal correlation. Comparing

FBC’s result against the proposed maximal correlation sampling is,

essentially, to compare the ability to reduce model unfairness from

samples selected by maximal correlation-based objective function

and covariance-based objective function.

4.2.3 Sample selection size. These three methods select and add the

same amount of samples to the training dataset per experiment (i.e.

4300, 1000, and 200 validation samples). Adding 4300 samples to the

training dataset mimics the conventional machine learning training

process, in which almost all non-testing samples are added as a

part of the training dataset. For the proposed maximal correlation

method, unfairness reduction is achieved by adding 1000 or 200

samples of 4387 samples in the validation pool that best reduces

dependence between model prediction and the biased feature. In the

4300 sample addition case, there is essentially no sample selection

for all methods, thus it is expected to not affect unfairness reduction

and has similar classification and fairness measures before and after

sample addition. The purpose of the experiment that adds 4300

samples is to serve as a baseline (with sample selection having no

effect of reducing unfairness). The baseline result represents the

accuracy and unfairness value of a model generated by using the

only logistic regression learning method. Results from the baseline

(i.e. 4300 added samples) will be used as a default result to see

how much each method reduce unfairness, with effective sample

selection, through percentage decrease, shown in table 6 and 7 in

the result section.

4.2.4 result acquisition. The AUC andMI values are measured after

adding the specified amount of samples (i.e. 1000 and 200 samples)

into the training dataset, for 500 instances of training each. The

mean and standard deviation of both AUC and MI are compared

across three methods. Higher AUC and lower MI values are de-

sirable, as they indicate improved model fairness while retaining

decent classification accuracy.

4.3 Supplementary experiment: Applying Adult
dataset

4.3.1 Dataset description. This variation of the Adult dataset has

500 individual income data from the US Census Bureau, with 97

feature attributes, excluding the sensitive feature. The research sets

’gender’ as a sensitive feature and ’income’ as the ground truth.

’income’ for each sample entry is a binary value differentiating

sample individuals with income lower and higher than $50000. The

features include personal capital, level of education, marital status,
occupation, native country and more. The dataset is normalized

with zero mean and unit variance, based on the requirement of

maximal correlation estimation. All results in the Adult experiment

are significant at 95% significance of the K-fold cross-validated

paired t-test by Mlxtend.

4.3.2 Experiment description. This experiment shows the method’s

relevance to the non-racially sensitive dataset. The use of Adult

data is to validate the effectiveness of the proposed method in

datasets that are low in sample count and high in feature count,

opposite to the COMPAS experiment. Except for the dataset and

the sample selection size, the setup and goal for the Adult data

experiment follow the COMPAS setup. The 370 sample addition

case serves as the baseline. Since all samples from the validation

pool is selected for training, there is no sample selection, similar
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90% overlap 70% overlap 50% overlap

F
e
a
t
u
r
e
w
e
i
g
h
t

([[0.20496376],

[0.44800426],

[0.51815331],

[0.23798448],

[0.37344904],

[0.78492843],

[1.04620673]])

([[0.32657519],

[0.32841899],

[0.34667147],

[0.64679488],

[0.09596769],

[0.03695392],

[0.52859995]])

([[0.28604877],

[0.37431886],

[0.],

[0.10742105],

[0.0984099],

[0.11193722],

[0.46866759]])

M
a
x
i
m
a
l
s
e
n
s
i
t
i
v
e
c
o
r
r
e
l
a
t
i
o
n

([[0.3245813],

[0.556544],

[0.0209041],

[0.14016506],

[0.01565823],

[0.13341595],

[0.89607144]])

([[0.34770085],

[0.56025497],

[0.03292416],

[0.14576171],

[0.01548655],

[0.13303456],

[0.89585086]])

([[0.34534887],

[0.57055435],

[0.03439379],

[0.13084751],

[0.01582718],

[0.13152772],

[0.89551598]])

D
e
l
t
a
d
i
ff
e
r
e
n
c
e

([0.5595,

0.5721,

0.5675,

-0.579 ,

0.5110,

0.5891,

0.68887])

([0.005215,

0.0002795,

0.0001138,

0.0007796,

-0.10162,

-0.11043,

1.54438])

([ 0.08399,

-0.10426,

0.01673,

0.01748,

0.01700,

0.0147,

0.08148])

Table 1: Values of three factors of the objective function

Synthetic-30-90% RS MC

Accuracy (AUC) 0.792→ 0.904 0.792→ 0.736

Unfairness (MI) 0.2125→ 0.3813 0.2125→ 0.1200

Table 2: AUC (area under the curve) and MI (mutual infor-
mation) of Synthetic dataset (90% overlap) with 30 samples
addition for RS (random sampling method) and MC (pro-
posed maximal correlation method)

to using only logistic regression. For the second experiment, 30

samples are selected from 370 samples in the validation dataset.

5 RESULTS
5.1 Result of the synthetic experiment
The value of the objective function in a one-time run of the algo-

rithm using the synthetic dataset is shown in table 1. Bold values

are from the known biased feature. Since the three factors multiply

into the result of the objective function (see Equation 15), the higher

values each factor has for biased feature are desirable.

From the one-time run, the feature weight and maximal correla-

tion value of the biased feature (shown in table 1) are comparatively

higher than other features.

The AUC (Area under the curve) value and MI (Mutual informa-

tion) value before and after supplying 30 samples to the training

dataset are shown in table 2, 3, and 4 for different percentages of

overlap between the biased feature and the sensitive feature. The

Synthetic-30-70% RS MC

Accuracy (AUC) 0.592→ 0.704 0.592→ 0.640

Unfairness (MI) 0.01217→ 0.04727 0.01217→ 0.03614

Table 3: AUC and MI of Synthetic dataset (70% overlap) with
30 samples addition for RS and MC method

Synthetic-30-50% RS MC

Accuracy (AUC) 0.568→ 0.584 0.568→ 0.608

Unfairness (MI) 0.01096→ 0.02287 0.01096→ 0.02814

Table 4: AUC and MI of Synthetic dataset (50% overlap) with
30 samples addition for RS and MC method

AUC and MI value before sample addition is identical for both

random sampling and maximal correlation sampling, since the

10 initial training samples are the same for both methods. With

30 more samples, each added to different sampling methods, the

accuracy and unfairness measures start to differ. In general, the

classification accuracy of the classifier with the random sampling

method increases more significantly than that with the maximal

correlation method. Conversely, the unfairness value decreases

more after training with the maximal correlation method. With

a decreasing overlap, the fairness improvement of the maximal

correlation method diminishes.

5.2 Result of the COMPAS experiment
Table 5, 6 and 7 are AUC and MI results across three methods, with

three different sample selection sizes. All experiment values are

significant at 95% significance level in the K-fold cross-validated

paired t-test byMlxtend (based on p-value and critical value) [34], in

which the other two methods significantly differs from the random

sampling method.

Table 5 presents baseline results, applying almost all validation

samples to training datasets. The experiment ran 500 training in-

stances, each with a machine restart and Python reset. It contains

the average mean of 500 AUC value and MI value from RS (ran-

dom sampling), MC (maximal correlation), and FBC (covariance)

methods. The AUC and MI for each method are relatively similar,

which fits the expectation as a baseline result. This result shows

the classification accuracy of the logistic regression model without

factoring fairness issue.

Table 6 and 7 are similar to the experiment setup of table 5,

with the only difference in sample selection size. For the proposed

unfairness reduction method, the top 1000 out of 4387 samples

are trained, compared to a more rigorous selection of 200 effective

samples in table 7 (COMPAS dataset with 200 samples added to

training dataset).

The bold value shows the highest result per row among three

methods, and "win counts" show how many times the method

"wins" over other methods. For table 6 and 7, the percentage de-

crease of AUC and MI compared to the baseline (table 5) is shown.

This indicates the degree of unfairness reduction, as well as how

classification accuracy changes with unfairness reduction.
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COMPAS-4300 (full validation set) RS_AUC MC_AUC FBC_AUC RS_MI MC_MI FBC_MI

Mean 0.681 0.682 0.679 0.02670 0.02691 0.02712

Table 5: Baseline AUC (Classification accuracy, the higher the better) and MI (Unfairness measure, the lower the better)
of COMPAS dataset with 4300 samples addition for RS (random sampling), MC (proposed maximal correlation) and FBC
(covariance) method

COMPAS-1000 RS_AUC MC_AUC FBC_AUC RS_MI MC_MI FBC_MI

Mean 0.670 0.649 0.654 0.02242 0.01511 0.02132

Standard deviation 0.0081 0.0171 0.0221 0.0027 0.0069 0.0070

Win counts 337/500 61/500 102/500 40/500 349/500 111/500

Percentage decrease (%) 1.62 4.84 3.68 16.03 43.85 21.39

Critical value NIL 1.9633 1.9637 NIL 1.9637 1.9637

P-value NIL 1.04E-98 2.66E-46 NIL 3.88E-80 0.00112

Table 6: Averaged AUC and MI of COMPAS dataset with 1000 samples addition for RS, MC and FBC method

COMPAS-200 RS_AUC MC_AUC FBC_AUC RS_MI MC_MI FBC_MI

Mean 0.635 0.566 0.585 0.01722 0.00773 0.01177

Standard deviation 0.0196 0.0432 0.0444 0.02242 0.01511 0.02132

Win counts 398/500 30/500 72/500 39/500 283/500 178/500

Percentage decrease (%) 6.76 17.01 13.84 35.51 71.28 56.60

Critical value NIL 1.9634 1.9634 NIL 1.9623 1.9628

P-value NIL 4.35E-143 2.98E-87 NIL 2.32E-124 4.02E-31

Table 7: Averaged AUC and MI of COMPAS dataset with 200 samples addition for RS, MC and FBC method

Figure 2: Bar plot of MI across 4300, 1000 and 200 sample in-
take from validation set to the training set (lower the better)

Regardless of the difference in sample selection size, maximal

correlation sampling obtain a lower unfairness value with the high-

est percentage decrease in both experiments (43.85% and 71.28%

decrease in unfairness). Models with random sampling have the

lowest percentage decrease in unfairness measure while being able

to retain higher classification accuracy. As shown in Figure 2, the

FBC covariance method’s MI value is closer to random sampling in

the experiment with 1000 sample addition, while approaching the

unfairness reduction performance of maximal correlation in the

experiment with 200 sample addition.

5.3 Result of the Adult experiment
Results in table 8 and 9 use the Adult dataset with 370 and 30

samples added to the training dataset. The p-value and critical

value indicate significant results at 95% significance level.

The maximal correlation method has a 59.47% decrease in un-

fairness after adding 30 top samples from the validation pool, in

terms of each sample’s effectiveness over reducing dependence

between biased feature and model prediction. The classification

accuracy decreases 2.05% compared to the baseline. It has a consider-

able advantage compared to both random sampling and covariance

methods.

6 DISCUSSION AND CONCLUSION
6.1 Method analysis
From the one-time training instance of the synthetic experiment,

the feature weight and maximal correlation value of the biased

feature are considerably higher than other features (i.e. bold values

in table 1), suggesting that the algorithm correctly identifies the

problematic feature and its high influence over the model prediction.

With only 50% of the value that correlates to the sensitive feature,

the biased feature still has the highest maximal correlation value

with the sensitive feature among all features. The average delta

difference is higher on the biased feature compared to other features,

suggesting that the algorithm can effectively select samples that

can lower the𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖 , 𝑌 ) the most, given that 𝑋𝑖 is the biased

feature. A lowered𝑚𝐶𝑜𝑟𝑟 (𝑋𝑖 , 𝑌 ) distances model prediction from
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Adult-370 (full validation set) RS_AUC MC_AUC FBC_AUC RS_MI MC_MI FBC_MI

Mean 0.835 0.829 0.830 0.03702 0.04091 0.04200

Table 8: Baseline AUC and MI of Adult dataset with 370 samples addition for RS (Random sampling), MC (proposed maximal
correlation) and FBC (covariance) method

Adult-30 RS_AUC MC_AUC FBC_AUC RS_MI MC_MI FBC_MI

Mean 0.841 0.812 0.765 0.02432 0.01658 0.04115

Standard deviation 0.0179 0.0401 0.0419 0.0175 0.0142 0.0444

Win counts 322/500 166/500 12/500 117/500 234/500 149/500

Percentage decrease (%) -0.72 2.05 7.83 34.31 59.47 2.02

Critical value NIL 1.9634 1.9635 NIL 1.9625 1.9636

P-value NIL 3.99E-42 1.53E-166 NIL 3.89E-14 1.42E-14

Table 9: Averaged AUC and MI of Adult dataset with 30 samples addition for RS, MC and FBC method

the biases of the biased feature, thus helping the model to approach

the notion of demographic parity.

6.1.1 Limitation of the objective function. Comparing the unfair-

ness measure from high overlap (i.e. table 2) to lower overlap in

table 4, the advantage of the maximal correlation method is dimin-

ishing. From table 4, unfairness reduction on both methods achieve

similar results. Since sensitive feature and model prediction is iden-

tical in the synthetic dataset, the lower overlap between the biased

feature and sensitive feature results in a lower overlap between

the biased feature and model prediction. For the experiment with

low 50% overlap (e.g. table 4), half of the samples are potential

candidates to be selected since the biased feature value of these

samples is different from model prediction. With a flood of candi-

dates, it is no longer sufficient to select samples based on different

values between biased feature and model prediction. The selection

of samples thus has to consider other features’ weaker influence

on reducing feature (biased)-model dependence. The effectiveness

of these influence is not as significant (e.g. lower delta difference)

and the precision of selecting effective samples are diluted. Real-

world datasets often have even smaller percentage overlap, thus

this limitation is easily reproducible.

Secondly, the decrease of the feature weight due to a 50% data

difference can also contribute to ineffective sample selection, as

other non-biased or less biased feature might be wrongly targeted

by the objective function (e.g. when feature weight between other

features and biased feature are marginal). This limitation entails

the risk of using feature weight as a factor in the objective function

- the wrongly selected sample could negatively affect the unfairness

reduction by lowering the significance of the non-biased target

feature.

Last but not least, the objective function selects samples by mul-

tiplication of the three factors (section 3.2). It is adopted since it

highlights influential biased feature exponentially. However, it is

prone to error if one of the factor’s values is not prominent. For

example, if samples from the validation pool are unable to reduce

feature-model dependence, a low delta difference value could result

in an overall low objective function result, even if the feature is the

most biased.

6.1.2 Limitation on the training sample selection. Our objective
function limited samples to be added to the training data for a fairer

model. It does not interfere with the training process of the logistic

regression, therefore, feature weights of both the biased feature

and the other features are changed according to the need for a

fairer classifier. However, this method targets datasets where all

samples in the validation set are labeled (i.e. has ground truth by

default). Compared to other unfairness reduction methods [18, 35],

only using a slice of the validation sample to train results in the

incomplete representation of accuracy and fairness value over the

dataset, since the experiment did not account for the influence of

samples that are not selected, and the influence could potentially

be significant.

6.2 Real world result analysis
6.2.1 Accuracy & Fairness trade-off. In this research, methods with

an aim to reduce model unfairness inevitably encounter a decrease

in classification accuracy. Inversely, models became less fair with

a larger sample selection size, while the classification accuracy

increases. This is because the information and pattern given to the

model by smaller training samples aremore limited than larger sized

samples [36, 37]. The result from selecting 200 and 1000 samples

(from table 6 and 7) corroborate this claim. In the scope of each

method, results from 1000 sample selection size, per method, have

a higher classification accuracy and higher unfairness measure.

Several other pieces of research also claimed the validity of the

accuracy & fairness trade-off [38–40]. To determine whether the

trade-off of classification accuracy for a method is more worthy for

its fairness improvement, this research pursues scenarios where:

• The improvement of fairness is significant given the sacrifice

for classification accuracy is relatively marginal

• Under similar level of sacrifice in classification accuracy,

the improvement of fairness for one method is significantly

larger than other methods

From table 5, the baseline result indicates that the classification

accuracy of the COMPAS dataset, under the logistic regression

training, can reach approximately 68% classification accuracy rate.

For 1000 sample additions (table 6), compared to the percentage
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decrease of classification accuracy (below 5% for all methods), the

maximal correlation method can achieve a 43.85% decrease of un-

fairness measure, compared to 16% for random sampling and 21%

for covariance method. The proposed method, in the case of 1000

sample addition, satisfy the pursuit of the first scenario.

In table 7, themaximal correlationmethod and covariancemethod

have similar classification accuracy rates (i.e. 56.6% and 58.5%). The

unfairness reduction for the maximal correlation model is approxi-

mately 15% higher than that of the covariance method. However, if

the model is expected to function effectively, both 56.6% and 58.5%

classification accuracy rate is not desirable as a reliable classifier.

This could be attributed to the incompleteness of the data represen-

tation. 200 samples out of over 5000 samples in the original dataset

are not representative of a classifier model, and the training process

of logistic regression stopped immaturely as the training sample

ran out. Although unfairness is drastically lower than the baseline,

aside from the contribution of the objective function, lack of data

representation could also result in low unfairness, which does not

fit into the goal for a balanced accuracy/fairness trade-off scenario.

For a COMPAS dataset, the experiment of 1000 sample additions is

more applicable with its smaller impact on classification accuracy.

6.3 Conclusion
Overall, thismaximal-correlation-based unfairness reductionmethod

is empirically valid in reducing unfairness in both synthetic and real-

world experiments, especially if the biased feature is sufficiently

evident, and the parameters such as the size of the sample addi-

tion balance the accuracy/fairness trade-off. The deterioration of

classification accuracy is inevitable with a limited training sample

count, yet the percentage decrease is controllable and tolerable. Our

research illustrates the maximal correlation estimation’s versatility

in its functionality and its effectiveness, and a novel method that

uses training sample addition to reduce model unfairness. Under

the guidance of the independence notion of demographic parity,

the mutual information between biased features and the prediction

outcome can be reduced effectively, achieving improved statistical

model fairness.
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APPENDIX
A FEATURE-PREDICTION BIASES

ATTRIBUTION
To prove that the feature weight 𝜃 and maximal correlation of sen-

sitive feature and features𝑚𝐶𝑜𝑟𝑟 (𝑋, 𝑆) are the factor of the value
of maximal correlation of sensitive feature and model prediction

𝑚𝐶𝑜𝑟𝑟 (𝑌, 𝑆):
𝑚𝐶𝑜𝑟𝑟 (𝑆,𝑌 ) = [f∗ (𝑆)g∗ (𝑌 )]

= [f∗ (𝑆)
𝑛∑︁
𝑖=1

𝜃𝑖 · g∗ (𝑥𝑖 )]

= [f∗ (𝑆) · 𝜃1 · g∗ (𝑥1) + · · · + f∗ (𝑆) · 𝜃𝑛 · g∗ (𝑥𝑛)]
= [f∗ (𝑆) · 𝜃1 · g∗ (𝑥1)] + · · · + [f∗ (𝑆) · 𝜃𝑛 · g∗ (𝑥𝑛)]
= 𝜃1 · [f∗ (𝑆) · g∗ (𝑥1)] + · · · + 𝜃𝑛 · [f∗ (𝑆) · g∗ (𝑥𝑛)]

=

𝑛∑︁
𝑖=1

𝜃𝑖 ·𝑚𝐶𝑜𝑟𝑟 (𝑆,X𝑖 )

= 𝜃𝑇 ·𝑚𝐶𝑜𝑟𝑟 (𝑆, 𝑋 )

(18)

B DATA PREPARATION
Specific to this research, the initial training sample count is small

since we want the model training to be largely dependent on the

samples selected later from the validation set. Here we illustrate

how samples are categorized.

#𝐷𝑡𝑜𝑡𝑎𝑙 = 𝑛

𝐷𝑡𝑟𝑎𝑖𝑛 = {}
𝐷𝑡𝑒𝑠𝑡 = 𝑠𝑝𝑙𝑖𝑡 (𝑛, 𝑓 𝑜𝑙𝑑 = 4)

𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 = 𝐷𝑡𝑜𝑡𝑎𝑙 − 𝐷𝑡𝑒𝑠𝑡 → Validation pool 𝑉

𝑖𝑛𝑖𝑡 = 𝑟𝑎𝑛𝑑𝑜𝑚(5, 𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 𝑦 = 1) + 𝑟𝑎𝑛𝑑𝑜𝑚(5, 𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 𝑦 = 0)
𝐷𝑡𝑟𝑎𝑖𝑛 .𝑎𝑑𝑑 (𝑖𝑛𝑖𝑡)

𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 = 𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 − 𝐷𝑡𝑟𝑎𝑖𝑛

(19)


