<]
TUDelft

Delft University of Technology

Mitigating bias against non-native accents

Zhang, Yuanyuan; Zhang, Yixuan; Halpern, Bence Mark; Patel, Tanvina; Scharenborg, Odette

DOI
10.21437/Interspeech.2022-836

Publication date
2022

Document Version
Final published version

Published in
Proceedings of the Annual Conference of the International Speech Communication Association,
INTERSPEECH

Citation (APA)

Zhang, Y., Zhang, Y., Halpern, B. M., Patel, T., & Scharenborg, O. (2022). Mitigating bias against non-
native accents. Proceedings of the Annual Conference of the International Speech Communication
Association, INTERSPEECH, 2022-September, 3168-3172. https://doi.org/10.21437/Interspeech.2022-836

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.21437/Interspeech.2022-836
https://doi.org/10.21437/Interspeech.2022-836

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.



Interspeech 2022
18-22 September 2022, Incheon, Korea

Mitigating bias against non-native accents

Yuanyuan Zhang', Yixuan Zhang', Bence Mark Halpern®: % 3, Tanvina Patel', Odette Scharenborg!

'!Multimedia Computing Group, Delft University of Technology, Delft, the Netherlands
2Netherlands Cancer Institute, Amsterdam, the Netherlands
3ACLC, University of Amsterdam, Amsterdam, the Netherlands

(y.zhang-88, y.zhang-96)(@student.tudelft.nl,

(T.B.Patel, O.E.scharenborg)@tudelft.nl,

B.M.Halpern@uva.nl

Abstract

Automatic speech recognition (ASR) systems have seen sub-
stantial improvements in the past decade; however, not for all
speaker groups. Recent research shows that bias exists against
different types of speech, including non-native accents, in state-
of-the-art (SOTA) ASR systems. To attain inclusive speech
recognition, i.e., ASR for everyone irrespective of how one
speaks or the accent one has, bias mitigation is necessary.
Here we focus on bias mitigation against non-native accents
using two different approaches: data augmentation and by us-
ing more effective training methods. We used an autoencoder-
based cross-lingual voice conversion (VC) model to increase the
amount of non-native accented speech training data in addition
to data augmentation through speed perturbation. Moreover,
we investigate two training methods, i.e., fine-tuning and do-
main adversarial training (DAT), to see whether they can use the
limited non-native accented speech data more effectively than a
standard training approach. Experimental results show that VC-
based data augmentation successfully mitigates the bias against
non-native accents for the SOTA end-to-end (E2E) Dutch ASR
system. Combining VC and speed perturbed data gave the low-
est word error rate (WER) and the smallest bias against non-
native accents. Fine-tuning and DAT reduced the bias against
non-native accents but at the cost of native performance.

Index Terms: speech recognition, bias mitigation, voice con-
version, data augmentation, domain adversarial training

1. Introduction

Automatic speech recognition (ASR) has improved a lot since
the introduction of deep learning techniques [1-8]. Currently,
the state-of-the-art (SOTA) ASR systems work extremely well
for speakers whose speech patterns match its training data: typ-
ically, these are adult highly-educated first-language speakers
of a standardized dialect, with little or no speech disability (re-
ferred to as norm speakers). Anecdotal and recent empirical
evidence, however, have shown that for many groups of peo-
ple ASR works less well [9, 10], even when the ASR systems
are trained on the speech of that speaker group [11]. In other
words, SOTA ASR systems are biased against speakers whose
speech deviates from norm speakers. For instance, recent exper-
imental results in [9] showed a bias against non-native accents
in both read speech and human-machine interaction (HMI) dia-
logue speech for children and adult speakers. In this paper, we
focus on mitigating bias against non-native accented speech in
a SOTA end-to-end (E2E) ASR system, where we define bias
as the performance gap between accented and non-accented
speech. Specifically, we will work on the Dutch ASR system
for both read and conversational type of speech.

There is very limited research focusing on bias mitigation

Copyright (C) 2022 ISCA

against non-native accented speech. Instead, most existing re-
search focuses on improving non-native accented speech recog-
nition, i.e., lowering the word error rate (WER) or character
error rate (CER) [12-18]. However, we aim to build inclusive
ASR, i.e., ASR for everyone irrespective of how one speaks,
so our aim should not only be to reduce WER but also to re-
duce the performance gap between non-accented and accented
speech recognition. For example, in [13], the WER on non-
native accented speech improved while at the same time the
bias against the non-native accented speech increased, because
the native WER improved more. Non-native accented speech
recognition is typically a low-resource problem, i.e., very little
non-native accented training data is available. In this paper, we
focus on bias mitigation against non-native accents using two
different approaches: data augmentation to increase the amount
of training data and by using more effective training methods.

Common data augmentation techniques include SpecAug-
ment [19], speed perturbation [20], and reverberation [21],
which modify the speech or spectrogram directly, but ignore
some unique aspects of human speech [22]. To address this,
voice conversion (VC) can be used to generate more speech
data with different voices. The VC-generated speech data has
the potential to improve ASR performance, e.g., in [22], VC
was successfully used to augment the natural speech for four
kinds of languages in very low-resource settings. In [23], VC
was used to augment child speech data which improved child
speech recognition performance. Thus, VC has the potential
to augment non-native accented speech data, and improve non-
native accented speech recognition. Furthermore, in order to
make ASR systems more robust to non-native accents, various
training methods have been proposed. For instance, domain ad-
versarial training (DAT) [18] improved the performance of ac-
cented speech recognition for both E2E [17] and hybrid ASR
systems [18]. Combining DAT with transfer learning further
improved the performance [14].

In this paper, we used an autoencoder-based cross-lingual
VC model to increase the amount of non-native accented speech
training data in addition to using speed perturbation for data
augmentation. Moreover, we applied two training methods, i.e.,
DAT and fine-tuning, to investigate whether they can be used
to train the limited non-native accented speech data more effec-
tively than a standard training approach.

2. Methodology

We trained a baseline SOTA E2E model for Dutch (see Section
2.3.1) and tested it on native and non-native accented Dutch (see
Section 2.1). In order to mitigate bias against non-native ac-
cented speech, we investigated different combinations of cross-
lingual VC-based non-native accented speech augmentation and
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speed perturbation data augmentation (Section 2.2) and DAT
and fine-tuning training (Section 2.3) techniques.

2.1. Datasets
2.1.1. The spoken Dutch corpus (CGN)

Corpus Gesproken Nederlands-CGN [24] is a Dutch corpus
containing native speech data spoken by speakers from the
Netherlands and Flanders. We only use the data recorded in
the Netherlands to train our E2E ASR systems. In this study,
we followed the training and test sets used in [9]. The CGN
training data was processed into small chunks and cleaned us-
ing the Kaldi toolkit yielding 380.12 hours of standard Dutch
speech data, denoted by Ctrain. The CGN data consists of two
test sets, i.e., broadcast news )BN) and conversational telephone
speech (CTS) as follows:

¢ Cpn: broadcast news (0.4 hours)

¢ Ccrs: conversational telephone speech (1.8 hours)

2.1.2. Jasmin-CGN corpus

Jasmin-CGN corpus [25] is an extension of the CGN cor-
pus consisting of read speech and HMI speech spoken by na-
tive speakers (children, teenagers, older adults) and non-native
speakers (children, adults). Furthermore, the non-native speak-
ers come from 37 different countries such as Afghanistan, An-
dorra, Egypt and Spain, etc. We divided the Jasmin-CGN cor-
pus into a training set and 4 test sets. The 4 test sets are (In each
test set, half of the speakers are male and half are female):

¢ R native read speech (1.45 hours),
* Rnn: non-native read speech speakers (1.63 hours),
* Hn: native HMI speech (0.68 hours),
¢ Hnn: non-native accented HMI speech (0.36 hours).

The training set contains 36.12 hours speech data, denoted by
J¢rain, including 14.1 hours non-native accented speech (10.42
hours read data and 3.69 hours HMI data) and 22.02 hours na-
tive speech (16.31 hours read data and 5.70 hours HMI data).

2.1.3. VCTK corpus

The VCTK corpus [26] is an English multi-speaker corpus, con-
sisting of speech from 109 English speakers (62 male speakers
and 47 female speakers) with various accents. We will use the
VCTK corpus for our VC experiments.

2.2. Data Augmentation

Data augmentation is only applied to the original non-native ac-
cented speech data in J¢rain because we have relatively large
amounts of native speech data.

2.2.1. Cross-lingual VC-based non-native accents

For the VC experiments, we use a SOTA non-parallel VC
model: AGAIN-VC [27]". It is an autoencoder-based VC model
which disentangles the speaker and content information of the
input speech data. In contrast to the original paper [27], we use
AGAIN-VC cross-lingually. The reason is that we need to en-
sure that the generated VC speech contains non-native accented
speech characteristics. Converting Dutch native speech as the
source while using the Jasmin non-native accented speech or

"https://github.com/KimythAnly/AGAIN-VC
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the VCTK English speakers as the target will not ensure this,
because voice conversion increases the speaker variation but
does not change the accent of the source speech data. There-
fore, we convert the voices of the non-native Dutch speakers
from the Jasmin corpus to those of the English speakers in the
VCTK dataset, which will ensure that the converted speech is
non-native accented. To that end, in contrast to the original pa-
per [27], we train the VC model with more training data (more
speakers) and inference with two languages (English, Dutch)
speakers rather than one (English). In order to ensure that
the intelligibility and quality of the generated non-native ac-
cented speech data are good, we use the cosine speaker sim-
ilarity method [28] to find source speakers (non-native Dutch
speakers, keeping the content information of the speech) and
target speakers (English speakers in VCTK, keeping the speaker
information of the speech) which are relatively similar.

For data processing, we follow the experimental setup as in
[27]. The waveforms were first downsampled to a sampling fre-
quency of 22050Hz, after which silence at the start and end of
each audio clip were removed. Next, the mel-spectrogram fea-
tures of the audio clips were extracted with 1024 window size,
256 hop length, and 80 mel bins. We use the full VCTK dataset
(109 English speakers) and all non-native accented speech data
in Jirqin (86 Dutch speakers) to train the AGAIN-VC model.
The mel-spectrogram of each speech data was input to the en-
coder, where the mel-spectrogram was disentangled into two
parts: speaker information (voice) and the linguistic content in-
formation. After encoding, both the speaker information and the
content information were passed to the decoder, where the new
mel-spectrogram was reconstructed by combining the speaker
information and the content information. The AGAIN-VC only
uses the mean absolute error as the self-reconstruction loss [27].
Following [27], the batch size was set to 32, and the number of
training steps was 100k.

The output of the AGAIN-VC model is the mel-
spectrogram of the converted speech data. As in [27], the output
mel-spectrogram of the VC model is re-synthesised using a pre-
trained Mel-GAN vocoder and we downsampled the generated
speech data to 16000Hz for the subsequent ASR experiments.
As a result, we generated 4.25 hours of non-native HMI data
denoted by vcnmi and 19.13 hours of non-native read data de-
noted by vcrq, using 192 pairs of source-target speakers. vecan
denotes the VC training set that combines VChmi and vcrd.

2.2.2. Speed perturbation for non-native accents

We used the standard speech perturbation [20] data augmenta-
tion method: the speed command of sox is used to do two-fold
speed perturbation data augmentation (with 0.9 and 1.1 pertur-
bation factors) for both the non-native accented read speech data
and HMI data, respectively denoted by spra and Sphmi- SPaii
indicates the combination of spya and Sphmi-

2.3. ASR Training Strategies
2.3.1. Baseline model

The SOTA ASR model is a transformer-based sequence-to-
sequence (seq2seq) ASR model (referred to as T in Table 1).
It is trained using the transformer recipe of LibriSpeech in the
SpeechBrain toolkit [29]. Figure 1 shows the network con-
figuration of our baseline model (without the domain classi-
fier). The encoder consists of 3 CNN blocks and a 12-layer
transformer. The decoder is composed of a 6-layer transformer
with 8 heads. After inputting the training speech data, the 80-



dimensional mel-spectrogram was calculated as the input fea-
ture denoted by X. The output of the encoder consists of high
level features. The CTC loss and the transformer decoder both
use the same high level features to achieve joint CTC-Attention
decoding. All experiments share the same network configura-
tion as the baseline.

The baseline model is trained using the Dutch data from
Ctirain- Moreover, to investigate the effect of non-native ac-
cented speech data augmentation, the training data Cirain Was
augmented with: a) J¢rain; b) Jtrain and sprd; €) J¢rain and
SPhmi; d) b+c; €) Jtrain and verd; ) Jerain and Venmi; g)
e+f; h) d+g.

Domain classifier

4 linear Joint decoding
layer ‘,\
6-layer trénsformer
GRL cTC 4

decoder
> 3

NP -
| | | I
12-layer transformer encoder

(S R S T ST

3 CNN blocks

101 0 0 A A 8

Encoder

Input features: X = (x3, x2, X3,..., Xr)

Figure 1: Transformer-based ASR system with(out) DAT. Base-
line ASR: without the domain classifier; ASR combined with the
DAT training strategy: with the domain classifier.

2.3.2. Training strategies

We investigate the effect of fine-tuning and DAT on bias miti-
gation of non-native accented speech.

Fine-tuning is a transfer learning approach where a neu-
ral network is retrained starting from a pre-trained model. For
the fine-tuning experiments, we take the baseline E2E model
trained on the CGN training data Cgrain as the pre-trained
model. We fine-tuned the ASR model for 5 epochs using the
a) speech data from Jirain; b) speech data from Jirain, VCal ;
¢) speech data from J¢yrain, VCan and spaii.

DAT is a kind of domain adaption method, aiming to extract
domain-invariant features. To investigate the effect of DAT on
bias mitigation, a domain classifier was added to our baseline
ASR model, see top-left of Figure 1. The domain classifier is
a binary classifier composed of 4 linear layers which share the
same features with the decoder and is used to classify whether
the input data is spoken by a native speaker or a non-native
speaker. With the help of a gradient reversal layer (GRL), we
can change the features extracted by the encoder, making the
features accent-invariant.

The loss of the ASR model and the loss of the domain
classifier are denoted by Lossasr and LoSSdomain, respec-
tively. With DAT, the total loss is: Losspar = Lossasr +
AL0SSdomain, Where X € R is a hyper-parameter, which con-
trols the degree of influence of the domain classifier on the
whole model. In our DAT experiments, we set A to 0.01,
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the same value as [17]. In addition, we use supervised-DAT,
which means that except for training the ASR model with na-
tive speech data, we also use the non-native accented speech
data to train the ASR model because we have the transcriptions
of the non-native accented speech data and the experimental re-
sults in [18] suggest a benefit from supervised-DAT. We trained
three DAT models: the standard training set Cirain augmented
with a) speech data from Jtrain; b) speech data from Jirain,
Vvcal ; ¢) speech data from Jirain, VCan and spaii.

2.3.3. Evaluation

The performance is reported in terms of WER for the native and
non-native accented speech and for read speech and human-
machine interaction speech separately. The native speech is
evaluated on the CGN BN and CTS test sets (Csn, CcrTs)
and the Jasmin test sets (Rn, Hn). The non-native accented
speech is evaluated on the Jasmin test sets (R, Hnw). Bias
against non-native accents is conceptualized as the gap between
the WER performance on the native speech and the non-native
accented speech, and is calculated as the difference between the
WER on the non-native accented speech and the WER on the
native speech of the Jasmin corpus. For read data, the bias is
denoted as Br; for HMI data, the bias is denoted as Byy.

3. Results and Discussion

Table 1 shows the results in terms of WER and bias for the
Baseline model and the data augmentation experiments (T), and
fine-tuning (F-T) and DAT experiments on different data sets.
The baseline model shows a bias against non-native accented
read speech of 28.83% and a bias of 29.49% for HMI speech.

3.1. Data Augmentation Results

Table 1 shows the baseline results and the 8 data augmenta-
tion results (indicated by a-h) in Section 2.3.1. Adding J¢rain
to the training data reduced WER and bias against non-native
accented speech on the Jasmin tests substantially for both read
speech (by 13.04%) and HMI speech (by 13.11%) compared
to the baseline. This reduction in WER was not observed for
the native speech in the CGN test sets. Adding speed perturbed
or VC non-native accented speech further improved recogni-
tion performance on the Jasmin tests and reduced the bias,
with both techniques giving similar performance. Adding read
speech data leads to the biggest bias reduction for read speech;
while adding HMI speech leads to the biggest bias reduction
for HMI speech. The best results in terms of both WER and
bias were obtained when generated read and HMI speech were
both added. For the native speech in the CGN test sets, perfor-
mance did not change much when data augmentation of non-
native accented speech was applied, although also here a small
improvement could be observed when all generated data was
added. Compared to the baseline, our best model reduced WER
overall (final column) with 14.48% and, crucially, reduced bias
by 15.24% for read data and by 16.87% for HMI data.

CGN and Jasmin are two different databases, and training
and test set mismatches might lead to reduced performance.
Moreover, we wanted to check the quality of the VC-generated
non-native accented speech. To that end, we also trained our
system using only the Jasmin data, and with adding vcaii, Span
and both vcan and span. Table 2, shows the results: 1) the re-
duction in training data when removing the CGN training data
reduced performance. Moreover, performance improved when
VC-speech was added, although speed perturbation led to bet-



Table 1: Experimental results (WER and bias) of T: standard training, with(out) data augmentation; F-T: fine-tuning of the baseline
model trained on Cqrain on other data; DAT: DAT experiments, on the native speech from CGN and for the native and non-native
speaker groups from Jasmin, and for read speech and spontaneous/HMI speech, separately. R/Hn: Read/HMI speech, native speakers
in Jasmin; R/Hn~: Read/HMI speech, non-native speakers in Jasmin; Br su: Bias against non-native accents for read/HMI speech;
A jas: Averaged WER across native and non-native speakers in Jasmin.

Details | CGN (% WER) | Jasmin (% WER and Bias)
Model Training data hours ‘ CaN CCTS ‘ RN RN BR Hn Hnn Bu A.Jas
Baseline T Ctrain 380.12 | 9.64 37.99 249 5373 2883 30.77 6026 2949 38.64
T Ctrain, Jtrain 41624 | 9.75 37.01 537 21.16 1579 20.12 3650 16.38 16.13
T —,SPrd 437.08 | 10.08 37.54 490 18.78 13.88 20.77 35.89 15.12 1524
T —, SPhmi 423.62 | 9.61 37.25 528 2070 1542 2045 3420 13.75 15.75
T —, SPall 44446 | 9.59 36.72 498 18.75 13.77 20.22 33.16 1294 14.87
T —,VCrd 435.37 | 10.84 38.99 531 1949 14.18 21.09 3790 16.81 1591
T —, VChmi 42049 | 9.50 37.45 555 2048 1493 20.53 3543 1490 1594
T —, VCall 439.62 | 9.46 37.02 488 18.83 1395 20.80 3432 13.52 15.08
T —,VCan,SpPan  467.84 | 927 3653 | 479 1838 1359 19.62 3224 1262 1448
F-T Ctrain, Jtrain 30.93 48.51 5.00 2042 1542 2127 3526 1399 15.80
F-T —, VCall 39.18 53.71 475 19.73 1498 2280 3478 1198 15.69
F-T —, VCall, SPall 43.76 55.74 478 19.25 1447 2390 34.03 10.13 15.65
DAT Ctrain; Jtrain 11.00 40.89 6.12 21.81 1569 2225 38.77 1652 17.25
DAT —, VCall 10.95 39.94 540 1972 1432 22.19 3468 1249 15.84
DAT —, VCall, SPall 10.23 32.87 486 1840 13.54 20.24 3287 12.63 14.69

ter results. The best results were obtained when both VC-based
and speed perturbed speech were added.

Table 2: Experimental results (WER) when only using Jasmin
data for the standard training method

Training data Ajas
Jtrain 56.71
Jtrailn VCall 4643
Jtrain, SPall 35.90
Jtrain, VCall, SPall 31.58

3.2. Experimental Results of Fine-tuning and DAT

The Fine-tune results are shown in Table 1 (rows with F-T).
Compared with the baseline, both WER and bias are reduced
when fine-tuning using the Jasmin data is applied for native
and non-native accented speech in the Jasmin corpus. How-
ever, WER increases drastically for the native speakers in CGN.
Performance further improves for the Jasmin test sets (and de-
creases for CGN) when the fine-tuning data is increased with
VC speech and both the VC speech and the speed perturbed
speech, the latter yielding the best results, with a bias reduction
of 14.36% for read speech, and 19.36% for HMI speech - but
note that this latter result comes at the cost of an increase in the
WER for the native speakers in Jasmin.

The DAT results are quite similar to those for fine-tuning
with, except that the decrease in WER for the native speech in
CGN is less big. Again, the best result is obtained when adding
the VC and speed perturbed speech, leading to a bias reduction
of 15.29% for read data, and 16.86% for HMI data.

Comparing all results showed that the best non-native ac-
cent results and overall WER were obtained when using a stan-
dard training approach with both VC and speed perturbed data

added. The smallest bias for read speech was found for DAT
combined with both data augmentation approaches. The small-
est bias for HMI speech was observed for fine-tuning with both
data augmentation (but at the cost of native performance).

Although DAT improved performance, the improvement is
smaller than in [18] and [17]. Their amount of accented speech
data was however substantially larger than ours. Moreover, we
used their value of the hyper-parameter A. Finding the optimal
value for our database is to be explored in the future.

4. Conclusions and Future Work

In this paper, we aim to reduce bias against non-native accents
using augmentation techniques and by exploring alternate train-
ing methods. The results showed that both cross-lingual voice
conversion based data augmentation and speed perturbation
lead to the improvement of non-native accented speech recogni-
tion performance and reductions in bias against non-native ac-
cents for all training methods. A combination of VC and speed
perturbed data gave the lowest WER and smallest bias. Com-
parison of the standard training approach, fine-tuning, and do-
main adversarial training showed that that the standard training
approach gave the best results. The best model was trained with
the combination of VC and speed perturbed speech with stan-
dard training method, and reduced the non-native bias for read
data from 28.83% to 13.59%, and for HMI data from 29.49%
to 12.62% simultaneously.

Future work will focus on further exploring the cross-
lingual VC and the speed perturbation. For both techniques we
used the same amount of data in all experiments, while different
amounts of additional VC-augmented data and speed perturbed
data are worth exploring. Moreover, it is worth investigating
whether different E2E and hybrid architectures will lead to fur-
ther reductions in bias against non-native accented speech.
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