
 
 

Delft University of Technology

Visualization of Urban Digital Twins on the web with attribute-driven adaptive tiling

Usta, Ziya; Akın, Alper Tunga; Ohori, Ken Arroyo; Stoter, Jantien

DOI
10.1016/j.envsoft.2026.106863
Licence
CC BY
Publication date
2026
Document Version
Final published version
Published in
Environmental Modelling and Software

Citation (APA)
Usta, Z., Akın, A. T., Ohori, K. A., & Stoter, J. (2026). Visualization of Urban Digital Twins on the web with
attribute-driven adaptive tiling. Environmental Modelling and Software, 197, Article 106863.
https://doi.org/10.1016/j.envsoft.2026.106863

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.envsoft.2026.106863
https://doi.org/10.1016/j.envsoft.2026.106863


Environmental Modelling and Software 197 (2026) 106863 

A
1

 

Contents lists available at ScienceDirect

Environmental Modelling and Software

journal homepage: www.elsevier.com/locate/envsoft  

Visualization of Urban Digital Twins on the web with attribute-driven 

adaptive tiling
Ziya Usta a,b ,∗, Alper Tunga Akın a,c, Ken Arroyo Ohori a, Jantien Stoter a
a 3D Geoinformation, Urban Data Science, Delft University of Technology, Delft, 2628 BL, The Netherlands
b Department of Geomatics Engineering, Faculty of Engineering, Artvin Çoruh University, Artvin, 08100, Türkiye
c Department of Geomatics Engineering, Faculty of Engineering, Karadeniz Technical University, Trabzon, 61080, Türkiye

A R T I C L E  I N F O

Keywords:
Urban Digital Twins
3D city models
CityJSON
3D visualization
Web
Geospatial
WebGPU

 A B S T R A C T

Despite growing use of 3D city models (3DCMs) and urban digital twins (UDTs), web tools for their processing 
and visualization remain scarce. We present an interoperable, high-performance web application composed of a 
3D tiler and a WebGPU viewer that enables scalable conversion, streaming, and rendering of urban datasets in 
compliance with open standards. The proposed system allows users to explore large-scale 3DCMs interactively 
without local installations. A showcase visualizing quality-validation results for a 3DCM demonstrates practical 
value. Experiments confirm that 3D Tiles 1.1 standard enables scalable data management and richer interaction, 
whereas WebGPU offers up to 7x better rendering performance on modern hardware. By presenting this 
solution and usage example, we aim to foster development of next-generation web-based 3D geospatial, 
digital-twin, and metaverse solutions.
Software and data availability

• Developers: Ziya Usta
• Contact:
• Date first available: June 2, 2025
• Software required: Anaconda, NodeJS
• Program language: Python, JavaScript, HTML
• Source code at: https://osf.io/rhfxn/?view_only=a2fca00c4b144
a0f90cb8ea9488d94df

• Test data at: https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46
b3423e4d4455c5c2

• Documentation: Detailed documentation is in the Wiki section of 
the shared repository.

1. Introduction

For sustainable planning and design, cities are increasingly using 
three-dimensional city models (3DCMs) or Urban Digital Twins (UDTs) 
as the primary source of data. As a result, an increasing number of 
cities are producing 3DCMs and sharing them as open data, such as 
Berlin, Helsinki, and New York City (Labetski et al., 2023). While many 
cities share their 3D models through open data repositories, they rarely 
have a user-friendly way to explore these data. Leveraging Web 3D 
technologies offers a promising approach to visualize 3DCMs (Gaillard 
et al., 2020). Various software tools are employed to generate 3DCMs 

∗ Corresponding author at: 3D Geoinformation, Urban Data Science, Delft University of Technology, Delft, 2628 BL, The Netherlands.
E-mail address: z.usta@tudelft.nl (Z. Usta).

and develop applications based on them. However, having a well-
performing viewer stands out as crucial among these tools (Arroyo 
Ohori, 2020). With rapid developments in web technologies such as 
HTML5 and WebGL, WebGIS applications have started to replace desk-
top applications for 3D GIS (Usta, 2021). One of these applications 
is visualizing 3DCMs via browsers. With the increasing popularity of 
web-based applications, the utilization of 3D city models would benefit 
from the availability of web applications that can handle 3D city 
models (Vitalis et al., 2020). Access to 3DCMs from internet browsers 
enables the use of 3DCMs by a large mass of professionals who are 
not experts in spatial information but who can benefit from 3DCMs in 
their own studies (Prandi et al., 2015). Beyond their technical capacity, 
digital twin technologies rely heavily on clarity and precision in how 
information is modeled and conveyed. This communicative accuracy 
ensures that the digital representation faithfully reflects the physical 
system, thus improving decision-making and collaboration (Khan and 
Ahmad, 2025)

However, 3DCMs or UDTs can be huge in size, while browsers are 
essentially document viewers with restricted memory and only limited 
ability to render large-scale UDTs. Existing solutions to address these 
issues, such as OGC 3D Tiles 1.0 and WebGL, suffer from their own 
specific architectural constraints. In 3D Tiles 1.0, models are batched 
into .b3dm files using a batch table for identification. However, this 
https://doi.org/10.1016/j.envsoft.2026.106863
Received 7 June 2025; Received in revised form 1 December 2025; Accepted 5 Jan
vailable online 6 January 2026 
364-8152/© 2026 The Authors. Published by Elsevier Ltd. This is an open access ar
uary 2026

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/envsoft
https://www.elsevier.com/locate/envsoft
https://orcid.org/0000-0003-2232-2011
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/rhfxn/?view_only=a2fca00c4b144a0f90cb8ea9488d94df
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
https://osf.io/y43hr/?view_only=0fe0c56a8c8f4a46b3423e4d4455c5c2
mailto:z.usta@tudelft.nl
https://doi.org/10.1016/j.envsoft.2026.106863
https://doi.org/10.1016/j.envsoft.2026.106863
http://creativecommons.org/licenses/by/4.0/


Z. Usta et al. Environmental Modelling and Software 197 (2026) 106863 
table supports only feature-level IDs, meaning complex semantic hier-
archies are lost and individual sub-components, such as roofs or walls, 
cannot be distinguished. Furthermore, 1.0 requires explicit definitions 
for bounding volumes and metadata, resulting in bloated tileset.json 
files that hinder client performance. Similarly, WebGL, based on the 
legacy OpenGL ES standard, restricts access to the low-level features of 
modern GPUs.

This research bridges the gap between these legacy standards and 
their successors, OGC 3D Tiles 1.1 and WebGPU. We present a novel 
tiler and viewer designed to convert large-scale CityJSON files for 
high-performance rendering. A key contribution of our solution is its 
‘‘attribute-aware’’ methodology, which proves that leveraging data con-
text significantly optimizes both the tiling and visualization processes. 
The remainder of the article is organized as follows: Sections 2 and 3 
review relevant technologies and related work; Sections 4 and 5 present 
our methodology and use case scenarios; and Sections 6 and 7 offer a 
discussion and conclusion.

2. Background

2.1. Streaming standards for 3D geospatial data

To enable the efficient dissemination of large amounts of 3D data, 
the data needs to be decomposed into smaller chunks. For this purpose 
there are two OGC community standards, OGC 3D Tiles and I3S. 
OGC 3D Tiles, originally developed by Cesium, is an open standard 
for streaming and rendering massive, heterogeneous 3D geospatial 
datasets. OGC 3D Tiles builds on the glTF 3D format and was adopted 
as an OGC community standard in 2019 (Open Geospatial Consortium, 
2019). I3S, introduced by ESRI, is an open standard for streaming and 
storing large-scale 3D geospatial data. I3S was approved as an OGC 
community standard in 2017 (Belayneh, 2022). Both standards are 
based on the same fundamental concepts and organize 3D geospatial 
data (e.g., point clouds, meshes, buildings) into a hierarchical spatial 
structure of tiles, using a tree-like organization. Each tile contains a 
subset of the data at varying levels of detail (LOD). Thus, only the tiles 
needed for the current view (based on the user’s location, zoom level, 
and viewport) are streamed, reducing bandwidth usage and enabling 
smooth rendering of massive datasets progressively, even on low-end 
devices.

I3S is more prevalent in ESRI-centric environments, while 3D Tiles 
benefits from a broader open-source adoption in diverse applications. 
3D tiles integrates with many open-source platforms such as Cesium, 
NVIDIA Omniverse, Unreal Engine, Unity, Godot, and QGIS.

2.2. Attribute-driven adaptive tiling of 3D geospatial data

The concept of attribute-driven tiling, particularly in 3D datasets, 
is a useful method for effectively managing and analyzing complex 
environments that reflect non-geometric attributes alongside geospatial 
factors. This multifaceted approach aims to enhance how spatial data 
is utilized, extracting more detailed insights from 3D objects by incor-
porating the contextual non-geometric information that the data has. 
Such partitions, or tilings, are not just a function of spatial coordinates 
but also consider environmental, contextual, and functional attributes. 
The integration of these elements can create more informative models 
that accurately reflect the complexities of the environments they repre-
sent. This is particularly evident in frameworks that focus on dynamic 
visualization, as discussed by Hairuddin et al. (2019) and Beil et al. 
(2022) Furthermore, the hierarchical structure of 3D Tiles supports the 
tiling of both geometric and semantic layers, enabling detailed urban 
analyses, such as modeling energy consumption, as demonstrated by 
Mao et al. (2020).
2 
2.3. 3D graphics on the web

Before WebGL’s introduction in 2011, web-based 3D graphics relied 
on proprietary plugins like Adobe Flash and Microsoft Silverlight, 
which posed performance, compatibility, and security challenges due 
to the lack of a standardized, hardware-accelerated API.

To overcome aforementioned issues, WebGL, a graphics API based 
on OpenGL that enables hardware-accelerated 3D rendering without 
plug-ins was introduced in 2011. Using WebGL, 3D functionality can be 
realized directly on the browser utilizing the client’s graphic hardware 
without any plug-in installation (Chaturvedi et al., 2015). Numerous 
studies have successfully visualized 3D city models (3DCMs) and digital 
twins directly in web browsers, eliminating the need for additional 
software or plug-ins. Gesquière and Manin (2012) utilized WebGL to 
render CityGML data, Jaillot et al. (2020) incorporated time-dynamic 
data into 3DCM visualizations, and Gaillard et al. (2020) proposed a 
method for visualizing 3DCMs at multiple levels of detail.

WebGL is based on OpenGL, which itself was originally developed 
in 1992, and has started to show its age (Usta, 2024). Modern GPUs, 
which prioritize parallelism and low-level control, are slightly different 
from GPUs 30 years ago. As GPU hardware evolves, WebGL’s reliance 
on OpenGL ES becomes a liability. Unlike WebGPU, which supports 
general-purpose GPU (GPGPU) computing through dedicated compute 
shaders, WebGL lacks native compute shader support and relies on 
cumbersome workarounds using vertex and fragment shaders, limiting 
its efficiency for advanced rendering techniques like ray tracing and 
GPGPU tasks critical for modern applications.

As a response to the limitations of WebGL, a new modern graphics 
API called WebGPU has been emerged. WebGPU is built on next-
generation GPU APIs like Vulkan, Metal and Direct3D 12 which are 
designed for modern GPU hardware and offers lower overhead, better 
parallelism, and advanced features. WebGPU’s low-level API reduces 
driver overhead, allowing more efficient GPU utilization. WebGPU sup-
ports multi-threaded rendering and compute tasks, leveraging modern 
multi-core CPUs and GPUs. WebGPU supports hardware-accelerated 
ray tracing (where available), enabling photorealistic lighting, shad-
ows, and reflections. WebGPU had been in development since 2011, 
but it gained significance in 2023 when Chrome started to support it. 
While WebGPU has made significant strides since its initial release in 
Chrome in 2023, it is not yet as universally reliable or mature as WebGL 
due to incomplete browser support, evolving ecosystem, and debugging 
challenges. The WebGPU specification, maintained by the W3C GPU 
for the Web Community Group, is stable for its core features, such as 
rendering, compute shaders, and resource management, but developers 
should monitor for minor breaking changes in browser updates.

In summary, the background outlined above demonstrates that effi-
cient web-based visualization of large-scale 3D geospatial data depends 
on standardized streaming formats and modern GPU-based rendering. 
Although these components have been advanced individually, they are 
seldom integrated within a single, fully web-based framework. The 
following section reviews recent studies that have addressed these 
aspects to contextualize the contribution of this work.

3. Related work

In recent years, a growing body of research and software develop-
ment has focused on the efficient visualization and delivery of large-
scale 3D geospatial data, particularly through the use of OGC 3D Tiles 
and related web technologies. While several academic studies have ex-
plored various aspects of 3D Tiles integration—from API-based delivery 
methods to real-time simulations and BIM visualization—existing tools 
often exhibit significant limitations. Most solutions either lack full web-
based functionality, do not support emerging standards such as OGC 
3D Tiles 1.1 or WebGPU, or are incompatible with lightweight formats 
like CityJSON. The following section reviews both academic efforts 



Z. Usta et al. Environmental Modelling and Software 197 (2026) 106863 
Table 1
Summary of the existing software components.
 Software Viewer Generator 3DTiles1.0 3DTiles1.1 Platform WebGPU CityJSON 
 NINJA ✓ × ✓ × Web × ✓  
 3DBAG Viewer ✓ × ✓ × Web × ✓  
 iTowns ✓ × ✓ × Web × ×  
 3DTilesRendererJS ✓ × ✓ × Web × ×  
 Azul ✓ × × × Desktop × ✓  
 Py3DTilers × ✓ ✓ × Desktop × ×  
 obj2tiles × ✓ ✓ × Desktop × ×  
 citygml-to-3dtiles × ✓ ✓ × Desktop × ×  
 cesium.js ✓ × ✓ ✓ Web × ×  
 giro3d ✓ × ✓ × Desktop × ×  
 3dtiles × ✓ ✓ × Desktop × ×  
 mago 3DTiler × ✓ ✓ × Desktop × ×  
 Usta (2024b) ✓ ✓ ✓ × Web × ×  
 Proposed solution ✓ ✓ ✓ ✓ Web ✓ ✓  
and software tools, highlighting their capabilities and shortcomings in 
relation to modern 3D geoinformation needs.

In their work, La Guardia et al. (2024) proposed an open-source 
solution for developing UDTs accessible via web using 3D Tiles. In 
their work, Santhanavanich et al. (2022) focuses on interoperable 3D 
data delivery on the web by using OGC 3D GeoVolumes API and 
OGC 3D Tiles. They generated standardized URL paths to access 3D 
Tiles datasets in a server by implementing the OGC 3D GeoVolumes 
API. Würstle et al. (2022) has tested OGC 3D Tiles and Esri Indexed 
3D Scene Layer in a game engine environment and showed that 3D 
Tiles can be used directly in game engines. Mao et al. (2020) proposed 
a dynamic online 3D visualization framework based on 3D Tiles for 
displaying real-time energy simulation results. Zhan et al. (2021) pro-
posed a 3D Tiles-based visualization method on the web for complex 
BIM models. Ilgar et al. (2024) developed a Web-based 3D cadastre pro-
totype for visualization of condominiums. Colin et al. (2024) used 3D 
Tiles to visualize 3D geospatial urban entities. obben (2024) Integrated 
3D functionality into Tailormap using 3D Tiles. Coors and Padsala 
(2024) visualized UDTs enriched with energy-related data on the web 
using 3D Tiles and GeoVolumes standards for public participation. Chen 
et al. (2024) developed a platform for coastal resistance planning using 
3D Tiles. Yu et al. (2025) used 3D Tiles for streaming 3D spatial data 
on the web.

13 different software components have been examined regarding 
their type tiler or viewer, whether they support the OGC 3D Tiles 
specifications, CityJSON, or WebGPU. The results are listed in Table 
1. Most of the software in the table either views or generates a 3D 
Tileset, but cannot do both. None of them supports WebGPU. Only 
Cesium.js (CesiumJS, 2025), a product of the company behind the 3D 
Tiles specification, fully supports OGC 3D Tiles 1.1. For viewers, only 
NINJA (Vitalis et al., 2020), 3DBAG Viewer (3DBag Viewer, 2025), 
and Azul (Arroyo Ohori, 2020) support CityJSON. Azul and NINJA 
do not implement OGC 3D Tiles and view 3DCMs all at once. This 
is not a problem for Azul, which is developed for macOS by Arroyo 
Ohori (2020); however, NINJA is a web-based product developed by 
TU Delft 3D Geoinformation Group and has memory limitations im-
posed by browsers. For example, in 32-bit Chrome, memory cannot 
be allocated more than 2 GB, whereas in 64-bit Chrome, there is a 
4 GB limit. Hence, if the CityJSON file exceeds 4 GB in size, Chrome 
will crash, and the 3DCM will not be able to be visualized by NINJA. 
iTowns (iTowns, 2025) and 3DTilesRendererJS (3DTilesRendererJS, 
2025) are two JavaScript libraries for viewing OGC 3D Tilesets based 
on well-known open-source 3D render library THREE.js. They do not 
support OGC 3D Tiles 1.1 and WebGPU. 3DBAG Viewer is developed by 
TU Delft 3D Geoinformation Group and their spin-off 3DGI. It can view 
11 million buildings on the web and uses 3DTilesRendererJS under 
the hood. For the generation of 3D tilesets from 3DCMs, web-based 
solutions are respectively rare. There is desktop software, Py3DTilers 
(Marnat et al. 2022). For 3D tiling, there are no open-source web-based 
solutions available. ‘obj23dtiles’ (obj23tiles, 2025) is an open source 
3 
Node.js module designed to convert 3D data to 3D Tiles. obj23dtiles 
has a significant limitation: it does not construct a hierarchy; thus, it 
does not implement a tiling method. It merely converts the entire 3DCM 
in the OBJ format to a single B3DM file. Similarly, the open-source 
Node.js component citygml-to-3dtiles (citygml-to-3dtiles, 2025) has the 
same limitation; it only converts CityGML data to the b3dm format 
without a tiling method. The most advanced open-source component is 
Py3DTilers, which converts CityGML data to 3D Tiles by tiling the data 
and constructing a hierarchical tileset. However, Py3DTilers is not web-
based and must be installed as standalone software, and it is not based 
on OGC 3D Tiles 1.1 When academic studies and existing software 
components are examined, it is evident that many are not web-based, 
do not support the CityJSON format, do not support OGC 3D Tiles 1.1, 
and do not support WebGPU.

4. Methodology

4.1. Implementation of the 3D tiler according to OGC 3D Tiles 1.1

The implementation of OGC 3D Tiles 1.1 comprises two primary 
components: a 3D Tiler and a 3D Viewer. The overall system architec-
ture is illustrated in Fig.  1.

Client-side operations facilitate data ingestion, where users provide 
datasets in CityJSON format. The client is also responsible for visual-
ization, utilizing 3DTilesRendererJS with support for both WebGPU and 
WebGL backends. This dual-backend capability enables a comparative 
performance analysis across diverse hardware configurations.

Server-side operations focus on the parsing of geometries and se-
mantics to execute tileset generation. This process incorporates user-
defined attribute prioritization, the mechanics of which are detailed in 
Section 5. Upon completion, the generated dataset is streamed to the 
client in OGC 3D Tiles 1.1 format for rendering.

4.1.1. Pre-processing
The pre-processing step begins with parsing the CityJSON file. For 

this purpose, the open-source Python library ‘cjio’ has been used. 
Using cjio’s classes and methods, city objects are traversed, and their 
geometries and attributes are extracted. At this stage, two specific 
situations need to be handled. First, the CityJSON file does not include 
vertex normals, they must be computed and added to the data. This is 
because some viewers calculate vertex normals on the fly when they 
are missing, while others do not. Since there is no standard behavior 
among viewers in this regard, it is essential to compute vertex normals 
at this stage if they are not already present in the CityJSON file. Second, 
both WebGL and WebGPU support only points, lines, and triangles as 
geometric primitives. Hence, to display geometries on the browsers, 
polygonal surfaces in CityJSON need to be triangulated. In this regard, 
an ear-clipping algorithm has been implemented to convert polygonal 
surfaces into triangles.



Z. Usta et al. Environmental Modelling and Software 197 (2026) 106863 
Fig. 1. General system overview.
 

4.1.2. Spatial partitioning of 3DCM
For subdivision of 3DCM into tiles, a density-based QuadTree data 

structure has been implemented. Any data structure can be used along 
with OGC 3D Tiles as long as it is a tree. However a density based 
QuadTree has some advantages. First, if it is density-based, each tile is 
subdivided into child tiles only if the tile size is exceeded. Thus, the 
data sizes across the tiles are approximately equal, which results in the 
same fetching and loading times while displaying the tiles.

Another advantage is that using regular subdivision schemes such 
as QuadTree or Octree make it possible to implement ‘implicit tiling’, 
which is a new feature of OGC 3D Tiles 1.1. Unlike explicit tiling in 
3D Tiles 1.0, where each tile’s bounding volume, content URI, and 
metadata are explicitly specified in a tileset.json file, implicit tiling 
uses a predefined, regular pattern to implicitly determine the structure 
and availability of tiles. By eliminating the need to explicitly define 
each tile’s bounding volume and URI in tileset.json, implicit tiling 
significantly reduces the size of tileset metadata, especially for large 
datasets. A tileset with millions of tiles no longer requires a massive 
JSON file, as tile locations are computed algorithmically.

4.1.3. Implementation of OGC 3D Tiles 1.1
In 3D Tiles, hierarchical information and metadata about tiles are 

encoded to a JSON file called ‘‘tileset.json’’. Thus, the tileset.json 
file is consumed by the client at runtime, and the scene graph is 
derived for the spatial queries and optimizations in the visualization 
pipeline (Usta et al., 2024). Hierarchical information is extracted from 
the QuadTree and encoded into the tileset.json file. For 3D model 
format, OGC 3D Tiles 1.1 uses glTF. Hence, for each tile, the data of 
the tile is converted to glTF 2.0 format and encoded as binary .glb 
files. To avoid losing semantic information and object hierarchy in the 
CityJSON file, two extensions of glTF specification ‘EXT_mesh_features’ 
and ‘EXT_structural_metadata’, have been implemented.

The EXT_mesh_features extension allows developers to assign unique
identifiers (feature IDs) to specific subcomponents of a glTF asset’s 
geometry, which can be a building, a part of a building, etc. These IDs 
enable the association of attributes with individual ‘‘features’’ without 
requiring separate meshes or nodes, preserving rendering efficiency.

The EXT_structural_metadata extension provides a framework for 
storing structured attributes associated with glTF assets in a compact, 
4 
binary format. It defines schemas which are templates for attribute 
classes and storage mechanisms such as property tables, attributes, or 
textures to link attributes to features identified by EXT_mesh_features. 
This enables complex, typed attributes such as strings, floats, vectors, 
or arrays of these types to be associated with geometry at various 
levels of granularity, from entire nodes to individual vertices. Thus this 
extension enables queries or visualizations based on attributes, such as 
coloring the buildings based on the height attribute.

4.2. Implementation of the 3D viewer based on WebGPU and OGC 3D Tiles 
1.1

Designing a web-based viewer using OGC 3D Tiles 1.1 and WebGPU 
involves creating a high-performance, interactive 3D visualization plat-
form capable of streaming and rendering large-scale geospatial datasets 
in a browser. This viewer will leverage the advanced features of 3D 
Tiles 1.1 and WebGPU’s modern GPU capabilities.

4.2.1. 3D Tiles 1.1 support
For 3D Tiles 1.1 Support, the viewer fetches and parses the tile-

set.json file to extract the tile structure and properties of the tiles. To 
support streaming of the tiles, a tile loader that fetches relevant tiles 
based on the information extracted from the tileset.json file has been 
implemented.

4.2.2. Streaming of tiles
To enable progressive visualization of the tiles based on the position 

of the camera, a tile loader has been developed. The tile loader utilizes 
error-based metrics such as geometric error (GE) and screen space error 
(SSE) to decide which tiles should be loaded and unloaded. GE is a per-
tile property defined in the tileset.json file. SE is a calculated metric 
that measures the visual error of a tile’s geometry in screen pixels 
when projected onto the viewer’s screen. It can be calculated as in the 
following formula (1). In the formula (1) ‘‘FOV’’ stands for vertical field 
of view angle of the camera measured in radians. 

𝑆𝑆𝐸 =
𝐺𝐸 ⋅ 𝑠𝑐𝑟𝑒𝑒𝑛𝐻𝑒𝑖𝑔ℎ𝑡

2 ⋅ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ⋅ 𝑡𝑎𝑛(𝐹𝑂𝑉 ∕2) (1)



Z. Usta et al. Environmental Modelling and Software 197 (2026) 106863 
Fig. 2. Sequence diagram of the rendering pipeline.
Each tile in a 3D Tiles tileset has a predefined GE, set during tileset 
creation. This value is static and reflects the level of simplification of 
the tile. The SSE is dynamically computed by the renderer based on the 
GE, camera distance, and viewport properties. The renderer compares 
the SSE to a maximum SSE threshold to decide whether to render the 
current tile, load child tiles or skip rendering. If the SSE is below the 
threshold, the tile’s detail is sufficient and it is rendered. If the SSE 
exceeds the threshold, more detailed child tiles which have lower GE 
are fetched from the server to reduce the visual error. If the SSE is too 
high and no children are available, the tile must be culled from the 
scene to keep the number of tiles manageable for rendering. Thus, the 
rendering process is to be prevented from clashes by keeping browser 
memory sufficient.

To optimize streaming performance, a LRU (Least Recently Used) 
based caching mechanism has been implemented to optimize repeated 
tile access while zooming in and out. Thus, instead of fetching the 
relevant tiles from the server each time, frequently used tiles are stored 
in the browser’s cache and can be loaded much faster when needed. 
This caching mechanism reduces the networking overhead between the 
server and the client, improving the overall performance of the viewer.

4.2.3. Rendering pipeline
A rendering pipeline is a series of GPU operations that process 

input data, such as 3D geometry, textures, and metadata, to produce 
a rendered image to display on the screen. For a 3D Tiles 1.1 viewer, 
the pipeline must efficiently handle loading glTF content from tiles 
based on the URI of the tiles and processing geometry, materials, and 
metadata for visualization. The pipeline is designed to leverage the 
low-overhead API and modern features of WebGPU to achieve better 
performance in a Web browser. WebGPU enables high-performance 3D 
graphics in web browsers but lacks direct file input capabilities, requir-
ing integration with other languages and libraries for data handling. 
To address this, we use the THREE.js library to parse glTF buffers, 
extracting positions, normals, indices, and feature IDs, which are then 
loaded into WebGPU GPUBuffer objects for rendering. JavaScript is 
employed to process vertex attributes, including feature IDs from the 
EXT_mesh_features extension, to ensure proper attribute linkage for 
WebGPU’s rendering pipeline (Fig.  2).

4.2.4. Interactivity
A viewer must enable rich, dynamic, and semantically meaningful 

interactions with 3D geospatial models in a web browser. Interactivity 
refers to the ability of a user to actively engage with a 3D model in a 
viewer, such as feature picking, dynamic styling, and attribute queries. 
Feature picking involves clicking or hovering over a 3D object to select 
it and retrieve associated information.

EXT_mesh_features and EXT_structural_metadata provide the data 
infrastructure to enable interactivity in 3D Tiles 1.1. Feature IDs allow 
5 
the viewer to pinpoint specific objects within a 3D model, forming the 
basis for picking and styling. When a user clicks on a model, the viewer 
renders feature IDs to an offscreen buffer to determine which feature 
was selected. Feature IDs are passed through the rendering pipeline to 
associate geometry with attributes. Feature IDs from EXT_mesh_features 
act as indices into property tables defined by EXT_structural_metadata. 
The viewer retrieves attributes (e.g., height, owner) for the selected 
feature and uses them for styling or UI display. The class diagram 
of EXT_mesh_features and EXT_structural_metadata is given in Fig.  3. 
Furthermore, the visualization system can fetch additional metadata 
from an external API using feature IDs as keys, enabling efficient 
attribute-based queries in GIS applications, such as retrieving building 
properties for spatial analysis.

5. Use cases

In the following use cases, attribute-driven tiling is demonstrated 
through two representative categorical attributes: ‘‘roofType’’ and
‘‘isWatertight’’. These attributes were selected based on a systematic 
rationale aimed at ensuring transparency, reproducibility, and method-
ological clarity. The roofType attribute is commonly present in many 
CityJSON datasets and is a suitable example of an attribute that can be 
broadly used in tiling scenarios across datasets. In contrast, isWatertight 
is a dataset-specific attribute produced by a validation workflow from 
another study of the author group; although not commonly found in 
publicly available datasets, it offers a direct link between semantic 
validation results and the tiling logic. Together, these two attributes 
illustrate the flexibility of the approach: while the glTF writer can 
transfer all attributes present in the data, making tiling technically 
possible with any attribute, the chosen examples demonstrate both 
a widely available real-world attribute and a specialized, analysis-
derived attribute. This combination highlights how the method can 
accommodate diverse user requirements and remain fully reproducible 
across different contexts.

5.1. Tiling according to validation results

This implementation adopts visualizing the results of a CityJSON 
model validator. The objective of this validator is to highlight invalid 
objects identified by the validator by distinguishing them from valid 
ones in the visualization interface. The validator detects various types 
of geometric and semantic errors in CityJSON models, and these iden-
tified invalidities can be leveraged in an attribute-driven tiling process. 
In particular, users can select one specific type of invalidity, recorded as 
an attribute in the CityJSON data, via the interface to give it priority 
during tiling. As a result, the tiling algorithm stores objects with the 
selected invalidity and their specified value into the upper tiles. This en-
sures that such invalid objects are more prominently displayed during 



Z. Usta et al. Environmental Modelling and Software 197 (2026) 106863 
Fig. 3. Class diagram of the EXT_mesh_features and EXT_structural_metadata.
zoom operations. In the current implementation, attribute prioritization 
follows a user-driven criterion: the selected attribute is ‘‘isWatertight’’, 
determines which features are aggregated in higher-level tiles. This 
design ensures transparency and reproducibility, as the prioritization 
directly reflects user-defined semantics rather than implicit heuristic 
weighting. Such explicit criteria for prioritization align with adap-
tive data-handling principles discussed in Rangarajan and Al-Quraishi 
(2023), where transparent decision logic is emphasized as a prerequi-
site for context-aware data processing. This integration of validation 
result data into the tiling logic illustrates the potential of attribute-
driven tiling, where spatial subdivision is guided not only by geometry 
or view-dependent factors, but also by the attributes of the dataset. 
As a result, the viewer becomes more informative and responsive to 
the user’s needs, supporting targeted scenarios. The context in which 
attributes are defined or users’ needs may vary across different applica-
tion domains, allowing this approach to be tailored to diverse scenarios 
and requirements. Fig.  4 demonstrates the flexibility described. The 
images in the first row include snapshots during different zoom levels, 
while watertight (‘‘isWatertight == 1’’) objects are in the upper tiles. 
The bottom row includes the snapshots of the scenario in which non-
watertight objects (‘‘isWatertight == 0’’) are in the upper tiles. The 
green and red circles mark the locations where the difference in tiling 
between the two scenarios is visible.

5.2. Tiling according to roof type

This implementation uses the roofType attribute to prioritize a spe-
cific roof category within the CityJSON data. The test dataset employed 
for this use case is the DenHaag dataset provided by CityJSON.org 
(2025). The table below lists the roofType codes, their corresponding 
meanings as defined in the CityGML code list (CityGML Code Lists, 
2025), and their occurrence counts within the dataset. Among the 1991 
Building and BuildingPart objects, 411 are classified as Gable roofs 
(code 1030). In our implementation, Gable roofs are given priority 
during the tiling process, allowing users to see these objects first in 
the upper tiles, at initial zoom levels. The roof type to be prioritized 
can later be changed by the user, offering flexibility for different 
exploration scenarios. Fig.  5 shows the scenario, the images at the first 
row show the tiling results without an attribute priority, and the second 
row includes the roofType-driven tiling results (see Table  2).
6 
6. Results and discussion

6.1. Performance and interoperability of the 3D tiler

3D tiler was tested using 4 different CityJSON data sets, namely 
Rotterdam, Montreal, New York, and Zurich. These datasets are open 
datasets and can be found at CityJSON.org (2025). Information about 
the data sets and times to generate 3D tilesets from them can be found 
in Table  3.

For the first three datasets, namely Rotterdam, Montreal, and New 
York, the processing time per tile increases almost linearly with the 
total number of elements. A constant time cost of approximately 20 ms 
per million elements (vertices + indices) is observed. For Zurich, the 
processing time per million elements is around 23.3 ms. Although this 
is still a good performance, it shows a slight deviation compared to 
the earlier datasets. This difference may be due to approaching mem-
ory bandwidth limitations. The ability to process millions of vertices 
and indices in just milliseconds indicates that our program is highly 
efficient. 3D Tiler achieves near-linear time complexity on large-scale 
3D geospatial datasets by generating nearly equally-sized tiles based on 
data density, ensuring response times remain consistent across diverse 
building types and complex geometries, such as intricate landscapes 
with high vertex and index counts.

For interoperability, the datasets generated by 3D Tiler should be 
able to display with different OGC 3D Tiles compatible viewers without 
any issues. To show this, the 3D Tiles datasets produced were rendered 
in the browser environment via Cesium.js and 3DTilesRenderer.js, both 
of which are compatible viewers for OGC 3D Tiles (Fig.  6).

6.2. Challenges to implement OGC 3D Tiles 1.1

OGC 3D Tiles 1.1 modernizes the standard by leveraging glTF for 
improved efficiency and attribute flexibility. By utilizing the
EXT_mesh_features and EXT_structural_metadata exten-
sions, attributes can be assigned at varying granularity, from whole 
features to individual vertices. This allows for multiple semantic layers 
within a single mesh (Fig.  7), enabling complex highlighting and 
interaction. However, this flexibility introduces storage overhead and 
processing constraints. Feature IDs must be pre-calculated prior to 
tiling to ensure balanced tile sizes. Furthermore, variable-length string 
attributes complicate parallelization; the reliance on sequential string 



Z. Usta et al. Environmental Modelling and Software 197 (2026) 106863 
Table 2
CityGML roof type classification and occurrence counts.
 Code English translation Description Occurrence count 
 1000 Flat roof A roof that is horizontal or nearly level. 1238  
 1010 Shed roof A roof with a single slope (Lean-to Roof). 110  
 1030 Gable roof A roof with two sloping sides that meet at a ridge. 411  
 1040 Hip roof A roof where all sides slope downward to the walls. 40  
 1060 Mansard roof A four-sided roof with a double slope on each side (lower slope is steeper). 5  
 1070 Half-Hip roof A hip roof where the hip is cut short, leaving a small gable section at the top. 13  
 1120 Turret roof/Spire roof A steep, conical or pyramidal roof, typically found on towers. 34  
 1130 Arch roof/Barrel roof A roof with a continuous, curved shape. 138  
 9999 Other/Unknown A classification for roof types that do not fit into the other defined categories. 1  
Fig. 4. Demonstration of the validation results (isWatertight = 0 or 1 priority) scenario.
Fig. 5. Demonstration of roofType = 1030 (Gabled roof) priority scenario.
7 



Z. Usta et al. Environmental Modelling and Software 197 (2026) 106863 
Table 3
Datasets and 3D tiles generation times.
 City Vertices Triangles Time (ms) Tot. Ele. (V + I) Time for each 1M Ele. (ms) 
 Rotterdam 85,104 37,478 2.51 122,582 20.48  
 Montreal 253,060 62,987 6.34 316,047 20.05  
 New York 3,757,910 1,930,067 113.65 5,687,977 19.97  
 Zurich 10,917,773 4,928,826 369.60 15,846,599 23.32  
Fig. 6. Same 3D tileset rendered using 3DTilesRenderer.js (left) and Cesium.js (right).
Fig. 7. The Feature_ID hierarchy can be used for different coloring for semantic surfaces(both), selecting and highlighting subcomponents of features (left) or 
highlighting invalid surface of a feature (right).
offsets creates dependencies between features, making multiprocessing 
difficult.

6.3. Performance and interoperability of the web viewer

The viewer’s performance was tested using one mobile phone and 
two computers — one with a modern high-end graphics card and the 
other with a low-end, old one. All the machines screens refresh rates 
were set to 60 Hz to eliminate the impact of different screen refresh 
rates. Table  4 shows the system specifications of the machines.

Using these devices, the rendering performance of the viewer has 
been compared using both WebGL and WebGPU. Table  5 shows the 
results of the Computer 1, Table  6 shows the results of the Computer 
2, and Table  7 shows the results of the Mobile. ‘‘10×’’ stands for that 
each dataset contains ten times more features than normal.
8 
Additionally, render visuals from different devices have been com-
pared (Fig.  8). The best visual is from Computer 2, and the worst visual 
is from a mobile device. This is mainly because of the maximum screen 
resolutions the devices have.

It can be seen in both Tables  5 and 6 that WebGPU render times are 
slower on both computers. This is because processes such as memory 
allocation for low-level memory management in WebGPU take more 
time. Surprisingly, WebGL performs better than WebGPU on Computer 
1. This indicates that WebGPU drivers or optimizations are immature 
or inefficient on older hardware. Poor WebGPU performance is likely 
due to weak support on older NVIDIA GPUs, immature WebGPU drivers 
for legacy systems, and a lack of optimized GPU pipelines for older 
hardware. However, Table  5 shows exactly the opposite results. We-
bGPU consistently outperforms WebGL in all models. This indicates 
that WebGPU aligns very well with modern hardware and outperforms 
WebGL drastically, especially in heavy scenes. For instance, Zurich 10x 



Z. Usta et al. Environmental Modelling and Software 197 (2026) 106863 
Table 4
System specifications.
 Computers CPU RAM GPU OS Browser  
 Computer 1 Intel Core i7-7700HQ 2.80 GHz 32 GB DDR4 4 GB GTX1050 Ubuntu 22.04.5 LTS Chrome 136.0.7103.113 
 Computer 2 Apple M3 Max 36 GB LPDDR5 Up to 128 GB Apple M3 Max GPU MacOS Sequoia Chrome 136.0.7103.113 
 Mobile Snapdragon 732G 8 GB LPDDR4X Adreno (TM) 618 Android 13 Tiramisu Chrome 136.0.7103.125 
Fig. 8. Different renders from different devices.
Table 5
Computer 1 WebGL vs. WebGPU performance.
 Model WebGL render 

time (ms)
WebGL 
FPS

WebGPU render 
time (ms)

WebGPU 
FPS

 

 Rotterdam 0.12 60.00 0.16 40.00  
 Montreal 0.15 60.00 0.17 33.00  
 New York 0.16 25.00 0.19 3.20  
 Zurich 0.18 20.00 0.23 1.30  
 Rotterdam 10x 0.20 46.00 0.15 10.00  
 Montreal 10x 0.18 48.00 0.19 7.00  
 New York 10x 0.14 3.00 0.18 0.3  
 Zurich 10x 0.20 2.00 0.21 0.1  

Table 6
Computer 2 WebGL vs. WebGPU performance.
 Model WebGL render 

time (ms)
WebGL 
FPS

WebGPU render 
time (ms)

WebGPU 
FPS

 

 Rotterdam 0.06 120.00 0.10 120.00  
 Montreal 0.09 120.00 0.12 120.00  
 New York 0.08 85.00 0.13 120.00  
 Zurich 0.07 40.00 0.15 120.00  
 Rotterdam 10x 0.10 120.00 0.13 120.00  
 Montreal 10x 0.12 120.00 0.12 120.00  
 New York 10x 0.03 25.00 0.13 120.00  
 Zurich 10x 0.04 12.00 0.02 90  

was rendered as 12 FPS in WebGL, while the same model was rendered 
as 90 FPS in WebGPU. New York 10x was rendered as 25 FPS in WebGL, 
while the same model was rendered as 120 FPS in WebGPU. Although 
WebGL is more stable across both machines, it begins to struggle at 
scale. WebGPU is clearly the future, offering major gains on modern 
hardware.

Table  7 shows that the capability in mobile is not yet as eligible 
for use as in computers for such use, as is foreseeable. The WebGL 
performance decreases drastically as models grow larger; in fact, it 
does not respond in Zurich, New York 10x, and Zurich 10x models. 
The WebGPU setup worked well on mobile, but the rendering process 
crashed a few seconds after initialization for all models due to the 
immaturity of the WebGPU engine on mobile browsers.

Table  8 shows WebGPU performance on Mozilla Firefox on different 
machines. Since WebGPU is not yet enabled on Mozilla Firefox standard 
releases, the latest nightly version has been used, forcing it WebGPU 
enabled. Tables  8, 5, and 6 show that on Computer 1, in small models, 
WebGPU on Firefox performs worse than on Chrome, but in bigger 
9 
models, Firefox WebGPU performance is better than Chrome. On the 
other hand, in Computer 2, more consistent results are obtained only 
with Firefox, just 3 FPS slower than Chrome, only in the biggest model, 
Zurich 10x. These results show that Mozilla Firefox shows inconsistent 
results in older machines on WebGPU. In addition, the use of WebGPU 
required a sort of activation of experimental flags in the Chrome 
browser compared to desktop browsers. The WebGPU is still immature 
on desktop browsers, especially for use in legacy hardware, so it needs a 
longer time to use the mature WebGPU API, considering the downsizing 
of the improvements to smaller architecture processors as in mobile.

Performance improvement in WebGPU contributes not only to im-
proving viewer performance, but also to improving the performance of 
the tiler and the overall application. Since WebGPU increases perfor-
mance on the viewer side, the tile data size can be increased accord-
ingly. This enables the creation of larger tiles without compromising 
rendering performance, helps reduce the total number of tiles, and 
decreases the network overhead between the server and the client

6.4. Challenges and limitations

Implementing OGC 3D Tiles 1.1 in both the 3D tiler, the tool or 
pipeline that generates 3D Tiles tilesets, and the 3D viewer, and also 
implementing WebGPU on the rendering pipeline of the 3D viewer 
presents several challenges. While these standards improve scalabil-
ity, flexibility, and interactivity for geospatial applications, they also 
introduce complexities in data processing, rendering, and software-
developing processes.

3D Tiles 1.1’s implicit tiling replaces the explicit listing of tiles in 
tileset.json with an algorithmic approach using quadtree or octree sub-
division, URI templates, and subtree files with availability bitstreams. 
As a consequence, generating implicit tiling requires defining regular 
subdivision schemes such as QuadTree or Octree. In some application-
specific tasks, such as spatial queries, R-Tree or any other irregular 
data structure may be more efficient (Usta et al., 2024). However, 
the implicit tiling feature makes it impossible to implement irregular 
schemes such as R-Tree. Converting a CityJSON dataset to a quadtree-
based implicit tileset requires mapping irregular data to a regular 
scheme, potentially creating empty tiles. Another disadvantage of this 
feature is that it increases computational overhead by creating subtree 
files with bitstreams to indicate tile and content availability that is more 
complex than 1.0’s explicit tiling. Hence, this feature must be selected 
carefully by the user according to its application. If the application will 
not sufficiently benefit from this feature, it should not be selected.



Z. Usta et al. Environmental Modelling and Software 197 (2026) 106863 
Table 7
Mobile WebGL vs. WebGPU performance.
 Model WebGL render time (ms) WebGL FPS WebGPU render time (ms) WebGPU FPS 
 Rotterdam 0.35 60.00 0.60 60.00  
 Montreal 0.30 60.00 0.55 60.00  
 New York 0.45 7.00 1.00 60.00  
 Zurich Not responding Not responding 0.60 30.00  
 Rotterdam 10x 0.70 25.00 1.00 60.00  
 Montreal 10x 0.75 24.00 0.93 60.00  
 New York 10x Not responding Not responding 1.00 8.00  
 Zurich 10x Not responding Not responding 1.3 3.00  
Table 8
WebGPU performance in Mozilla Firefox on different devices.
 Model Computer 1 

render time (ms)
Computer 
1 FPS

Computer 2 
render time (ms)

Computer 
2 FPS

 

 Rotterdam 0.15 20.00 0.15 120.00  
 Montreal 0.18 20.00 0.15 120.00  
 New York 0.20 20.00 0.20 120.00  
 Zurich 0.20 20.00 0.15 120.00  
 Rotterdam 10x 0.25 23.00 0.15 120.00  
 Montreal 10x 0.20 20.00 0.18 120.00  
 New York 10x 0.20 12 0.10 120  
 Zurich 10x 0.13 0.5 0.08 86  

3D Tiles 1.1 replaces 1.0’s batchTable with EXT_mesh_features
and EXT_structural_metadata glTF extensions for fine-grained 
attribute support. Implementing these features correctly requires as-
signing feature IDs to geometry subcomponents of features and involves 
mapping CityJSON semantics to feature IDs, which can be complex and 
may require data restructuring, especially for large-scale datasets. Map-
ping input data to glTF extensions causes high complexity, increased 
memory, and processing requirements for generating binary buffers and 
schemas.

Binary formats are easy for machines to process, but difficult to 
debug for developers. Storing string attributes in binary buffers is 
especially difficult. For each city object, attributes and string offsets 
must be calculated and stored for string types. Calculation of string 
offset values depends on the previous values, which are calculated 
sequentially and prevent them from being parallelized using methods 
such as multiprocessing.

7. Conclusion

This paper explores the new standards, specifically OGC 3D Tiles 
1.1 and WebGPU, for the Web-based visualization of UDTs. For this 
purpose, two web-based software components have been developed to 
implement these standards.

Key features such as EXT_mesh_features and EXT_structural_
metadata significantly enhance the precision of attribute integration 
and interactivity within 3D geospatial models. These new features 
enable finer-grained control, allowing users to interact with individual 
vertices, texels, or specific features in a mesh. The introduction of 
feature IDs and their linkage to property tables has facilitated more 
efficient querying and rendering of spatial data, essential for dynamic 
styling and interaction in various application domains, including GIS 
and digital twins. Furthermore, the hierarchy of feature IDs enables 
the storage of semantic attributes of the CityGML data model, which 
was not possible in 3D Tiles 1.0.

Additionally, the integration of validation results into the tiling pro-
cess for the visualization use case showcases the potential of attribute-
driven tiling, where spatial subdivision is guided not only by geometric 
or view-dependent factors but also by the specific attributes of the 
dataset based on the purpose of the application. This ability to prioritize 
the attributes, such as ‘‘isWatertight’’ and ‘‘roofType’’, allows for a more 
informed and user-centric visualization experience according to the use 
case of the application.
10 
The performance evaluation of the 3D Tiler and its interoperability 
with different viewers has shown promising results. The tiling process 
scales effectively with larger datasets, and the use of implicit tiling 
in 3D Tiles 1.1 provides a more compact and efficient approach for 
managing large-scale datasets.

The comparative analysis between WebGL and WebGPU rendering 
pipelines demonstrated that WebGPU’s performance is highly condi-
tional on the rendering environment and dependent on modern hard-
ware and mature driver support. While WebGPU consistently and dras-
tically outperforms WebGL on modern hardware, demonstrated by 
rendering gains from 12 FPS to 90 FPS on a Zurich 10x model, its 
performance is notably slower and often worse than WebGL on older 
or legacy systems due to the immaturity of its drivers and optimization 
for legacy hardware. Furthermore, WebGPU’s current implementation 
is highly unstable on mobile browsers, often crashing the application, 
and exhibits inconsistent performance across different desktop browsers 
like Chrome and Mozilla Firefox, further highlighting its dependence 
on hardware maturity and stable driver support. This performance 
improvement in WebGPU is significant because it not only improves 
viewer performance but also allows for the creation of larger, denser 
tiles without compromising rendering speed, thereby helping to reduce 
the total number of tiles and network overhead.

Beyond its technical novelty, this study contributes to the broader 
goal of interoperability in urban digital twins. By supporting open 
standards such as CityJSON and OGC 3D Tiles 1.1, and implement-
ing them in a fully web-based environment, the proposed pipeline 
promotes transparent data exchange and sustainable reuse of 3D city 
information across platforms. This aligns with the principles outlined 
in Khan and Ahmad (2025), where interoperability and standardization 
are identified as key enablers of scalable and sustainable digital twin 
ecosystems.

However, challenges remain, particularly in terms of data process-
ing complexities and the implementation of WebGPU across diverse 
hardware configurations. Despite these challenges, the advancements 
introduced in 3D Tiles 1.1 pave the way for more scalable, flexible, and 
interactive geospatial applications. As WebGPU continues to mature 
and its hardware and software support improve, the potential for 
even larger and more efficient 3D tilesets will increase. Hence, further 
contributions of WebGPU to the future development of the digital twin, 
metaverse, and GIS fields will take a wider place.

Finally, this study demonstrates that the OGC 3D Tiles 1.1 standard 
enables substantially richer user interactions compared to version 1.0, 
and WebGPU delivers significantly improved rendering performance 
over WebGL on modern graphics hardware.

CRediT authorship contribution statement

Ziya Usta: Writing – original draft, Visualization, Methodology. 
Alper Tunga Akın: Writing – original draft, Visualization, Method-
ology. Ken Arroyo Ohori: Writing – review & editing, Supervision, 
Investigation. Jantien Stoter: Writing – review & editing, Supervision, 
Investigation.



Z. Usta et al. Environmental Modelling and Software 197 (2026) 106863 
Funding

This work was supported by the Scientific and Technological Re-
search Council of Türkiye (TÜBİTAK) with application numbers
1059B142301188 and 1059B192402172.

Declaration of competing interest

The authors declare no conflict of interest.

Data availability

The link of used data is shared in the text.

References

3DBag Viewer, 2025. 3Dbagviewer. URL https://3dbag.nl/en/viewer.
3DTilesRendererJS, 2025. 3Dtilesrendererjs. URL https://github.com/NASA-AMMOS/

3DTilesRendererJS.
Arroyo Ohori, Ken, 2020. Azul: A fast and efficient 3d city model viewer for macos. 

Trans. GIS 24, 1165–1184.
Beil, Christof, Kendir, Murat, Ruhdorfer, Roland, Kolbe, Thomas H, 2022. Dynamic and 

web-based 4d visualization of streetspace activities derived from traffic simulations 
and semantic 3d city models. ISPRS Ann. Photogramm. Remote. Sens. Spatial Inf. 
Sci. 10, 29–36.

Belayneh, Tamrat, 2022. Indexed 3d scene layers (i3s)–an efficient encoding and 
streaming ogc community standard for massive geospatial content. Int. Arch. 
Photogramm. Remote. Sens. Spatial Inf. Sci. 43, 349–355.

CesiumJS, 2025. Cesiumjs. URL https://cesium.com/platform/cesiumjs/.
Chaturvedi, Kanishk, Yao, Zhihang, Kolbe, Thomas H, 2015. Web-based explo-

ration of and interaction with large and deeply structured semantic 3d city 
models using html5 and webgl. In: Bridging Scales-Skalenübergreifende Nah-
und Fernerkundungsmethoden, 35. Wissenschaftlich-Technische Jahrestagung der 
DGPF.

Chen, Changjie, Han, Yu, Galinski, Andrea, Calle, Christian, Carney, Jeffrey, Ye, Xinyue, 
van Westen, Cees, 2024. Integrating urban digital twin with cloud-based geospatial 
dashboard for coastal resilience planning: A case study in florida. J. Plan. Educ. 
Res. 0739456X251316185.

CityGML Code Lists, 2025. Citygml code lists. URL https://www.citygmlwiki.org/index.
php?title=CityGML_Code_Lists.

citygml-to-3dtiles, 2025. Citygml-to-3dtiles-tiles. URL https://github.com/njam/citygml-
to-3dtiles.

CityJSON.org, 2025. Cityjsonorg. URL https://www.cityjson.org/datasets/.
Colin, Clement, Vinasco-Alvarez, Diego, Samuel, John, Servigne, Sylvie, Borto-

laso, Christophe, Gesquière, Gilles, 2024. A model-driven methodology for 
integrating heterogeneous 3d geospatial urban entities. AGILE: GIScience Ser. 5, 
3.

Coors, Volker, Padsala, Rushikesh, 2024. Urban digital twins empowering energy 
transition: citizen-driven sustainable urban transformation towards positive energy 
districts. Int. Arch. Photogramm. Remote. Sens. Spatial Inf. Sci. 48, 51–56.

Gaillard, Jérémy, Peytavie, Adrien, Gesquiére, Gilles, 2020. Visualisation and per-
sonalisation of multi-representations city models. Int. J. Digit. Earth 13, 
627–644.
11 
Gesquière, Gilles, Manin, Alexis, 2012. 3D visualization of urban data based on citygml 
with webgl. Int. J. 3D Inf. Model. (IJ3DIM) 1, 1–15.

Hairuddin, A, Azri, S, Ujang, U, Cuétara, MG, Retortillo, GM, Salleh, S Mohd, 
2019. Development of 3d city model using videogrammetry technique. Int. Arch. 
Photogramm. Remote. Sens. Spatial Inf. Sci. 42, 221–228.

Ilgar, Azer, Kara, Abdullah, Çağdaş, Volkan, 2024. Identifying legal, bim data and 
visualization requirements to form legal spaces and developing a web-based 3d 
cadastre prototype: A case study of condominium building. Land 13, 1380.

iTowns, 2025. Itowns. URL https://www.itowns-project.org/.
Jaillot, Vincent, Servigne, Sylvie, Gesquière, Gilles, 2020. Delivering time-evolving 3d 

city models for web visualization. Int. J. Geogr. Inf. Sci. 34, 2030–2052.
Khan, Muuhammad Nawaz, Ahmad, Imtiaz, 2025. Harnessing digital twins: Advancing 

virtual replicas for optimized system performance and sustainable innovation. 
Babylon. J. Mech. Eng. 2025, 18–33.

La Guardia, Marcello, Koeva, Mila, Díaz-Vilariño, Lucia, Nourian, Pirouz, 2024. 
Open-source solutions for real-time 3d geospatial web integration. In: ISPRS 
TC IV Mid-Term Symposium ‘‘Spatial Information To Empower the Metaverse’’. 
Copernicus, pp. 289–295.

Labetski, Anna, Vitalis, Stelios, Biljecki, Filip, Ohori, Ken Arroyo, Stoter, Jantien, 2023. 
3D building metrics for urban morphology. Int. J. Geogr. Inf. Sci. 37, 36–67.

Mao, Bo, Ban, Yifang, Laumert, Björn, 2020. Dynamic online 3d visualization framework 
for real-time energy simulation based on 3d tiles. ISPRS Int. J. Geo Inf. 9, 166.

obben, Stein K, 2024. Integrating 3d Functionality Into a Web Application for Sharing 
Geo-Information (Msc thesis in geomatics). Delft University of Technology, Master 
thesis.

obj23tiles, 2025. Objto3d-tiles. URL https://github.com/PrincessGod/objTo3d-tiles.
Open Geospatial Consortium, 2019. OGC 3D Tiles. Technical Report 18–053r2, Open 

Geospatial Consortium, Internal reference number of this OGC® document.
Prandi, Federico, Devigili, Federico, Soave, Marco, Staso, Umberto Di, Amicis, Raf-

faele De, 2015. 3D web visualization of huge citygml models. Int. Arch. 
Photogramm. Remote. Sens. Spatial Inf. Sci. 40, 601–605.

Rangarajan, Sarathkumar, Al-Quraishi, Tahsien, 2023. Navigating the future of the 
internet of things: emerging trends and transformative applications. Babylon. J. 
Internet Things 2023, 8–12.

Santhanavanich, Thunyathep, Wuerstle, Patrick, Padsala, Rushikesh, Coors, Volker, 
2022. Digital 3d city models towards urban data platform using ogc 3d geovolumes 
api. In: 42. Wissenschaftlich-Technische Jahrestagung der DGPF, 5.-6. Oktober 2022 
in Dresden. Geschäftsstelle der DGPF, pp. 237–242, 30.

Usta, Ziya, 2021. The Design and Development of a Web-Based 3D Geographic Infor-
mation Management Framework (Doctoral thesis). Karadeniz Technical University, 
The Graduate School of Natural and Applied Sciences.

Usta, Ziya, 2024. Webgpu: A new graphic api for 3d webgis applications. Int. Arch. 
Photogramm. Remote. Sens. Spatial Inf. Sci. 48, 377–382.

Usta, Ziya, Cömert, Çetin, Akın, Alper Tunga, 2024. An interoperable web-based 
application for 3d city modelling and analysis. Earth Sci. Inform. (ISSN: 1865-0473) 
17, 163–179. http://dx.doi.org/10.1007/s12145-023-01167-5.

Vitalis, S., Labetski, A., Boersma, F., Dahle, F., Li, X., Ohori, K. Arroyo, Ledoux, H., 
Stoter, J., 2020. Cityjson+ web=ninja. ISPRS Ann. Photogramm. Remote. Sens. 
Spatial Inf. Sci. 6, 167–173.

Würstle, Patrick, Padsala, Rushikesh, Santhanavanich, Thunyathep, Coors, Volker, 2022. 
Viability testing of game engine usage for visualization of 3d geospatial data 
with ogc standards. ISPRS Ann. Photogramm. Remote. Sens. Spatial Inf. Sci. 10, 
281–288.

Yu, Dayu, Yue, Peng, Wu, Binwen, Biljecki, Filip, Chen, Min, Lu, Luancheng, 2025. 
Towards an integrated approach for managing and streaming 3d spatial data at the 
component level in spatial data infrastructures. Int. J. Geogr. Inf. Sci. 39, 847–871.

Zhan, Wenxiao, Chen, Yuxuan, Chen, Jing, 2021. 3D tiles-based high-efficiency visu-
alization method for complex bim models on the web. ISPRS Int. J. Geo Inf. 10, 
476.

https://3dbag.nl/en/viewer
https://github.com/NASA-AMMOS/3DTilesRendererJS
https://github.com/NASA-AMMOS/3DTilesRendererJS
https://github.com/NASA-AMMOS/3DTilesRendererJS
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb3
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb3
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb3
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb4
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb4
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb4
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb4
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb4
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb4
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb4
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb5
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb5
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb5
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb5
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb5
https://cesium.com/platform/cesiumjs/
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb7
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb7
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb7
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb7
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb7
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb7
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb7
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb7
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb7
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb8
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb8
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb8
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb8
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb8
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb8
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb8
https://www.citygmlwiki.org/index.php?title=CityGML_Code_Lists
https://www.citygmlwiki.org/index.php?title=CityGML_Code_Lists
https://www.citygmlwiki.org/index.php?title=CityGML_Code_Lists
https://github.com/njam/citygml-to-3dtiles
https://github.com/njam/citygml-to-3dtiles
https://github.com/njam/citygml-to-3dtiles
https://www.cityjson.org/datasets/
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb12
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb12
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb12
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb12
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb12
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb12
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb12
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb13
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb13
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb13
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb13
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb13
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb14
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb14
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb14
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb14
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb14
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb15
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb15
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb15
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb16
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb16
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb16
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb16
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb16
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb17
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb17
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb17
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb17
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb17
https://www.itowns-project.org/
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb19
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb19
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb19
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb20
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb20
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb20
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb20
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb20
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb21
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb21
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb21
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb21
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb21
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb21
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb21
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb22
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb22
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb22
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb23
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb23
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb23
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb24
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb24
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb24
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb24
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb24
https://github.com/PrincessGod/objTo3d-tiles
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb26
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb26
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb26
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb27
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb27
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb27
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb27
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb27
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb28
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb28
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb28
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb28
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb28
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb29
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb29
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb29
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb29
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb29
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb29
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb29
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb30
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb30
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb30
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb30
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb30
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb31
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb31
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb31
http://dx.doi.org/10.1007/s12145-023-01167-5
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb33
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb33
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb33
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb33
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb33
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb34
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb34
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb34
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb34
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb34
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb34
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb34
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb35
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb35
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb35
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb35
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb35
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb36
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb36
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb36
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb36
http://refhub.elsevier.com/S1364-8152(26)00010-1/sb36

	Visualization of Urban Digital Twins on the web with attribute-driven adaptive tiling
	Software and Data Availability
	Introduction
	Background
	Streaming Standards for 3D Geospatial Data
	Attribute-Driven Adaptive Tiling of 3D Geospatial Data
	3D Graphics on the Web

	Related Work
	Methodology
	Implementation of the 3D Tiler According to OGC 3D Tiles 1.1
	Pre-Processing
	Spatial Partitioning of 3DCM
	Implementation of OGC 3D Tiles 1.1

	Implementation of the 3D Viewer based on WebGPU and OGC 3D Tiles 1.1
	3D Tiles 1.1 Support
	Streaming of Tiles
	Rendering Pipeline
	Interactivity


	Use Cases
	Tiling According to Validation Results
	Tiling According to Roof Type

	Results and Discussion
	Performance and Interoperability of the 3D Tiler
	Challenges to Implement OGC 3D Tiles 1.1
	Performance and Interoperability of the Web Viewer
	Challenges and Limitations

	Conclusion
	CRediT authorship contribution statement
	Funding
	Declaration of competing interest
	Data availability
	References


