
DELFT UNIVERSITY OF TECHNOLOGY

MASTER’S THESIS

S-QUERY: Opening the Black Box of
Internal Stream Processor State

Author:
Jim VERHEIJDE

Thesis advisor:
Dr. Asterios KATSIFODIMOS

Daily supervisor:
Dr. Marios FRAGKOULIS

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Web Information Systems Group
Software Technology

August 20, 2021

http://www.tudelft.nl
http://www.wis.ewi.tudelft.nl/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

i

Declaration of Authorship
I, Jim VERHEIJDE, declare that this thesis titled, “S-QUERY: Opening the Black Box of
Internal Stream Processor State” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

2021-08-20

Date Signature

ii

DELFT UNIVERSITY OF TECHNOLOGY

Abstract
Electrical Engineering, Mathematics and Computer Science

Software Technology

Master of Science

S-QUERY: Opening the Black Box of Internal Stream Processor State

by Jim VERHEIJDE

At the moment we are witnessing the maturation of distributed streaming dataflow
systems whose use-cases have departed from the mere analysis of streaming win-
dows and complex-event processing, as they now extend to cloud applications, work-
flows and even e-commerce. The state of streaming operators has been so far hidden
from external applications. In this thesis it is argued that exposing this internal state
to outside applications by making it queryable, opens the road for novel use-cases.
To this end, we introduce S-QUERY: a system and reference architecture where the
state of stream operators can be queried - either live or through snapshots, achiev-
ing different isolation levels. It is shown how this can be implemented in an existing
open-source stream processor and how queryable state can affect the performance
of such a system. Our experimental evaluation suggests that snapshot configuration
adds only up to 5ms in latency in the 99.99th percentile and no increase in 0-90th per-
centiles. S-QUERY scales horizontally, allowing for sustainable throughput to scale
linearly with nodes in the cluster.

HTTP://WWW.TUDELFT.NL
https://www.tudelft.nl/en/ewi/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

iii

Acknowledgements
This thesis would not have been possible without the help and support of several
people. Therefore, I would like to acknowledge them before the start of this thesis.

A large thank you to my supervisors, Dr. Asterios Katsifodimos and Dr. Marios
Fragkoulis for the guidance and the great ideas contributing to the end result. And
of course the hard work on the paper version of this thesis.

I’d also like to thank Vassilios Karakoidas and Dimitrios Kokmadis from Deliv-
ery Hero for taking interest in this work, contributing to the paper, and providing
resources for the experiments.

And of course I’d like to thank my family for their unconditional support while
writing this thesis.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1

2 Why do we need Queryable State? 3

3 Preliminaries 5
3.1 Streaming Model . 5
3.2 State Management & Fault Tolerance . 5
3.3 Key-Value Stores & Relation to Stream Processors 6
3.4 Isolation levels in distributed query systems 6

4 Approach Overview 8
4.1 Architecture . 8

4.1.1 Colocating State & Compute . 8

5 Exposing Internal State to External Systems 10
5.1 Storing Operator State in a KV Store . 10
5.2 Modeling & Storing State Externally . 10
5.3 Querying Live & Snapshot State . 12

6 Isolation levels 13
6.1 Querying Live state . 13
6.2 Querying Snapshot State . 13

7 Implementation 15
7.1 Platform choice . 15
7.2 State structure . 15
7.3 Fault-tolerance . 15
7.4 Query system . 16

7.4.1 Direct object interface . 17
7.4.2 SQL interface . 17

8 Use Case: Q Commerce in Delivery Hero 18

9 Evaluation 22
9.1 Experimental Setup . 22
9.2 Overhead Experiments . 23
9.3 Effect of Snapshotting Mechanism on System Performance 23
9.4 Query Performance . 26

v

9.5 Scalability . 27

10 Related Work 30
10.1 Transactional Stream Processing . 30
10.2 Queryable State . 30

11 Future work 32

12 Conclusions 33

Bibliography 34

vi

List of Figures

2.1 Stream processing pipeline with stateful ‘average’ operator. Input
items are 10, 30, 5 respectively. Output corresponding to the input
items have the same colors (and same order as in the input stage).
Internal state of the operator is in the rectangle inside the operator. . . 4

3.1 DAG distribution for two stateful transformations on a keyed stream
with 100 unique keys . 5

3.2 Marker alignment phase on checkpoint for operator with two input
channels. Red squares are markers, circles are records. 6

4.1 S-QUERY system architecture. Stream operators store state in state
store which is in turn queried by the query system. Query system
only queries snapshot 8 as 9 is still in progress (dashed outline=in
progress). 9

5.1 S-QUERY stream operator state representation for both live and snap-
shot state including queries. 11

6.1 Live state isolation level example. 14
6.2 Snapshot state isolation level example. 14

7.1 Jet state partition structure across a 3 node cluster [17] 16
7.2 Jet state partition rebalancing [17]. Dashed outline are the states from

(failed) node 1. 16

8.1 Traditional caching architecture . 19
8.2 Stream-based architecture, events are processed by stateful operators

with corresponding state inside. External systems are able to query
the internal state. 20

9.1 NEXMark query 6 latency distribution, 3-node cluster. x-axis shows
percentiles on an inverted log scale, y-axis shows the latency in mil-
liseconds. 24

9.2 NEXMark query 6 latency distribution. Vanilla vs. S-QUERY, 3-node
cluster at 1M, 5M, 9M events/s. x-axis shows percentiles on an in-
verted log scale, y-axis shows the latency in milliseconds. 24

9.3 Latency distribution of snapshot mechanism between original Jet and
S-QUERY for 1K/10K/100K unique keys across a 7 node cluster. x-
axis shows the percentiles on an inverted log scale, y-axis shows the
latency in milliseconds. 25

9.4 Latency distribution of snapshot mechanism on 7 node cluster with
and without S-QUERY queries for different # of unique keys. x-axis
shows percentiles on an inverted log scale, y-axis shows the latency
in milliseconds. 26

vii

9.5 Query/snapshot ID latencies on 7 node cluster for different # of unique
keys. x-axis shows percentiles on inverted log scale, y-axis shows la-
tency in milliseconds. 27

9.6 Direct object query throughput. Throughput in queries/s on the log
scale y-axis, number of keys selected in the query shown on the log
scale x-axis. Data labels are S-QUERY on top, TSpoon on the bottom. . 28

9.7 Scalability experiment results, DOP (degrees of parallelism) on x-axis,
max. throughput on left y-axis, normalized throughput on right y-
axis. Bars from left to right correspond to 0.5s, 1s, and 2s snapshot
intervals respectively. 29

viii

List of Tables

3.1 Phenomena possible in different isolation levels [5]. ✓ denotes possi-
ble, ✗ denotes not possible. 7

5.1 Live state structure . 10
5.2 Snapshot state structure . 11

7.1 IMap state structure in Jet . 15

8.1 SQL query results for Query 1 and Query 2 20
8.2 SQL query results for Query 3 and Query 4 21

9.1 c5.4xlarge node properties . 22

ix

List of Abbreviations

S-QUERY State/Stream-query
RDBMS Relational Database Management System
KV Key Value
ACID Atomicity Consistency Isolation Durability
DAG Directed Acyclic Graph
IMDG In Memory Data Grid
SSID SnapShot IDentifier
2PC 2 Phase Commit
DOP Degrees Of Parallelism

1

1 Introduction

Over the last decade stream processing systems have evolved from experimental
engines producing approximate results to production-ready sophisticated platforms
providing correct executions of long-running jobs on hundreds of nodes even in face
of failures [16]. State management in particular, enabled important advancements in
fault tolerance and scalability by partitioning state and enforcing global coordinated
checkpoints [15, 9]. Now that streaming systems can reason about their state and
keep it consistent, exposing their internal state to applications can pave the way for
new capabilities, such as auditing and debugging.

At the same time streaming systems are no longer used just to serve analytics
use cases, but they are increasingly preferred for executing new types of workloads
such as serving machine learning models [8] and running cloud applications based
on microservices and stateful functions [12, 2, 21]. Especially for operational use
cases such as the execution of cloud applications, the ability to query the distributed
state of a streaming system in one shot offers a database view of its processing state,
similar to what query interfaces offer in traditional database systems. For instance,
an e-commerce application running on top of a streaming system would be able to
join user accounts with purchases to determine sales grouped by user characteristics,
such as age, gender, and preferences.

The problem of querying the state of distributed streaming systems externally
presents important challenges. Streaming systems perform continuous processing
and thus their state also mutates all the time. Accessing the state in order to answer
an external query entails some form of access synchronization. In addition, exter-
nal access is bound to affect the processing progress of the system as operators of
the streaming system compete with query processing for access to the state. Alter-
natively, the complexities of accessing live state can be avoided by leveraging the
system’s checkpointed state to answer external queries without obstructing the nor-
mal processing of the system. In this case, however, query results do not correspond
to the system’s current state. This is similar to directing database queries to repli-
cas of primary nodes, which hold a stale version of the data. Surprisingly external
queries to the state of streaming systems have received scant attention in the liter-
ature. Systems such as FlowDB [1] and TSpoon [24] are able to query the system’s
state. However, these systems are limited to querying the object directly by key and
are thus not able to natively perform more complicated operations such as joining
two states, or filtering by and aggregating the state values.

Having discussed the problem of querying state in stream processing systems,
the following research question and subquestions are formulated:

RQ 1 How can state be exposed from stateful stream operators?

RQ 1.1 How can it minimally impact the stream processing performance itself?

RQ 1.2 How could this work in a distributed setting?

RQ 1.3 What consistency guarantees are achievable when querying the state?

Chapter 1. Introduction 2

In this thesis, S-QUERY is proposed, a query interface to the distributed state
of a stream processing system. S-QUERY exposes the internal distributed state of
a streaming system through an external SQL query interface. S-QUERY is imple-
mented in Hazelcast Jet [17], a distributed streaming system that optimizes low-
latency performance. Our experimental evaluation suggests that snapshot config-
uration adds only up to 5ms in latency in the 99.99th percentile and no increase in
0-90th percentiles. In addition, S-QUERY scales horizontally, allowing for sustainable
throughput to scale linearly with nodes in the cluster. Overall, this thesis makes the
following contributions to the state of the art:

• design and implementation of S-QUERY, the first system that exposes an SQL-
like interface for querying the state of distributed streaming systems, all while
minimally impacting their throughput and latency.

• S-QUERY provides different isolation levels in a configurable manner, demon-
strating the achievable isolation levels for consistent query results, including
serializable isolation.

• thorough performance evaluation with queries of the NEXMark benchmark
highlighting the tradeoffs between state size, checkpoint frequency, isolation
levels, performance, and scalability.

• application of S-QUERY for real-time reflection of order delivery in Delivery
Hero SE, a global company offering quick (Q) commerce services.

The structure of this thesis goes as follows. Section 2 describes a series of example
use cases for queryable state in stream processing systems, next Section 3 provides
preliminary background knowledge. Section 4 gives an overview of our approach
to the problem with S-QUERY. In Section 5, the state structure used in S-QUERY is
explained. Next, Section 6 demonstrates the impact of the state configuration on the
isolation levels of S-QUERY. In Section 7 we describe S-QUERY’s implementation.
Section 8 shows a real world use case in Delivery Hero SE demonstrating the novel
functionality of S-QUERY. The evaluation of S-QUERY follows in Section 9. In Sec-
tion 10 several similar and related works are discussed and compared to S-QUERY.
Finally, in Section 11 matters for future consideration are presented with concluding
remarks in Section 12.

3

2 Why do we need Queryable
State?

The capability of exposing and querying the distributed state of a streaming system,
which is referred to as queryable state throughout the thesis, introduces novel and
important advancements and use cases that are highlighted in this section.

Substituting Caching and Static Views. For half a century people have been using
databases for application state management. With the advent of the web and mo-
bile devices, user experience requirements have sharply escalated putting pressure
to the database layer. In order to provide a satisfying experience to end users, a
level of indirection, caching, has been added to make the desired data available to
applications faster.

In order to scale traditional relational database managemnent systems (RDBMS),
caching is a quick to implement solution to provide improved performance, but they
introduce a difficult problem. Being a level of indirection, caches have to be in sync
with the database in order to provide consistent results. Keeping a cache consistent
in a distributed setting, which is the norm for many real-world web applications, is
challenging and adds significant overhead. Moreover, an application has to retrieve
the cached data and compute views over the data at the application side. The views
are most probably computed on stale data, since the data may have changed in the
database in the meantime. Finally, this extra work that is irrelevant to the applica-
tion logic burdens application developers, who suddenly have to deal with memory
space overheads and efficient computation of views.

Instead of constantly transferring data from the database to the cache in order
to maintain the consistency between the two different levels of state management,
continuous queries on data flowing in a streaming system and ad-hoc queries on
the system operators’ state obviate the need for different levels of state management
and relieve applications from the programming and processing overhead of view
computation in a scalable and fault tolerant fashion.

Reducing Complexity. It is quite common for streaming systems to update an exter-
nal database with intermediate results. That database is then used to answer appli-
cation queries. However, using queryable state, this extra database layer can be re-
moved and the application can directly query the state of the streaming system. Ad-
ditionally, since traditional relational database management systems (RDBMS) are
hard to scale out, they can become bottlenecks in high throughput data workloads,
which are well met by streaming systems. Thus, queryable state reduces database
dependencies and potential bottlenecks from a streaming topology.

Auditing and Compliance. Queryable state makes streaming systems auditable.
The processing of personal data is one important case. According to article 4 of EU’s
GDPR, ‘processing’ means any operation that operates on personal data [14], there-
fore streaming systems used to process personal data need to comply with GDPR.
In addition, individuals also have the right to request their personal data as defined
in article 15 of the GDPR [14]. Thus, organizations using streaming systems need

Chapter 2. Why do we need Queryable State? 4

Average

Total: 45
Count: 3

10

Source Sink

30 10205 15

FIGURE 2.1: Stream processing pipeline with stateful ‘average’ operator. Input
items are 10, 30, 5 respectively. Output corresponding to the input items have the
same colors (and same order as in the input stage). Internal state of the operator is
in the rectangle inside the operator.

to provide even their internal state on request. Therefore, the ability to query the
internal state of a streaming system greatly facilitates regulation compliance.

Debugging. Currently, debugging stateful streaming topologies is a difficult pro-
cess. With state being internal, a streaming system’s input and output are the main
observable clues. With queryable state however, it is possible to have an overview of
this state or isolate a very specific part of it. This makes debugging stateful operators
easy, as one can access their internal state just like usual data stored in a database.
Furthermore, if there is also the option of switching between specific versions of the
state, one would also be able to see how the state mutates over time. This is an
invaluable capability for debugging complex streaming systems.

Simplifying Streaming Topologies. Often developers need to include new compu-
tations on a streaming job for ad-hoc analytics, auditing, and other use cases. Cur-
rently, these ad-hoc computations are adapted to existing jobs making them more
complex, which also leads to reduced maintainability and higher resource consump-
tion.

Let us consider the example of a simple streaming job depicted in Figure 2.1. The
internal state of the job is a counter and the total sum of all items, which are used to
calculate the average. Now imagine if besides the average, there is a need to know
the amount of items that have come in so far. A new job can be created that also
takes in the same items and outputs the amount of numbers that it received. With
queryable state though it is possible to query the amount of numbers directly from
the state of the existing averaging operator. By querying the operator’s state, the
need for an extra or more complex streaming job is eliminated.

Having shown these various use-cases, it is clear that having queryable state is
useful and in some cases even necessary.

5

3 Preliminaries

This section will lay out the required background knowledge for this thesis. Topics
explained are the basics of stream processing including state management with key-
value stores, and isolation levels in query systems.

3.1 Streaming Model

Stream processing queries and applications jobs are modeled as a directed acyclic
graph (DAG) of operators, which is sometimes also called a dataflow graph. The
edges on the DAG represent the data streams and the vertices represent the opera-
tions on the (incoming) data edges. An output edge points to downstream vertex
applying another operation. In order to distribute a streaming job over a cluster,
stream processing systems typically perform data partitioning and deploy one or
more instances of a partitioned operator on each cluster node (or CPU core) and
connect operators across nodes when they are partitioned by key range. This is de-
picted in Figure 3.1, where the stream is partitioned according to a key allowing load
balancing across the two nodes.

3.2 State Management & Fault Tolerance

Virtually all modern stream processing systems, including Apache Flink [7], Apache
Spark [3], Jet [17], Apache Samza, Apache Pulsar, and IBM Streams [20] have con-
verged to a common state management approach that guarantees at-least- or exactly-
once processing based on the seminal Chandy-Lamport’s distributed snapshots pro-
tocol [11] adapted to stream processing [9, 29]. In short, the most common state
management approach involves periodic coordinated checkpoints (also called snap-
shots) that are taken when special markers that flow through the topology of a

ST1

ST2

Node 1

Keyed source
(~50 keys) Sink

ST1

ST2

Node 2

Keyed source
(~50 keys) Sink

ST1

ST2

Keyed source
(100 keys) Sink

DAG

FIGURE 3.1: DAG distribution for two stateful transformations on a keyed stream
with 100 unique keys

Chapter 3. Preliminaries 6

Stream
operator

State9

9

Snapshot

id 8

(A) Top input channel at
marker 9, bottom input chan-
nel still processing. Top input
channel needs to wait

Stream
operator

State9

9

Snapshot

id 9
id 8

(B) Once bottom input channel
has finished processing and is
at marker 9, snapshot with id
9 is created

Stream
operator

State

9

Snapshot

id 9
id 8

(C) Snapshot done, broad-
cast marker to output channels
and continue processing input
records

FIGURE 3.2: Marker alignment phase on checkpoint for operator with two input
channels. Red squares are markers, circles are records.

dataflow graph, instruct the operators to snapshot their state. The state is typically
stored in stable storage in order to survive node failures. In order to achieve exactly-
once processing guarantees, a marker alignment phase ensures that operators with
multiple input channels will not process inputs following a marker until all markers
are received by all input channels and the checkpoint is performed. During recov-
ery, all operators of the system roll back to the latest checkpoint and start processing
input from that point onwards ensuring that the processing of each input record will
be recorded to an operator’s state exactly-once.

Figure 3.2 depicts this process. First, Figure 3.2a depicts an operator with two
input channels is shown. The top channel is at marker 9, while the bottom chan-
nel still needs to process some input records. The operator will only start taking
a snapshot of its state when all markers arrive, as shown in Figure 3.2b. After the
snapshot is complete, the operator will forward the marker to the output channel(s)
and continue processing the records from the input channels, as is shown in Fig-
ure 3.2c. S-QUERY takes advantage of such a checkpointing mechanism found in
many streaming systems in order to make the state of the stream operator available
for querying.

3.3 Key-Value Stores & Relation to Stream Processors

Modern key-value (KV) stores such as Cassandra[22] and DynamoDB[13] basically
implement a distributed map data structure, comprising a key and value. Like
stream processors partition streams, KV stores partition their key space on multi-
ple machines with a partitioning function (e.g., hashing). They also keep replicas of
each key value pair for fault tolerance and scalability. Finally, KV stores typically
support a dialect of SQL, which allows external applications to query the KV store.
Since S-QUERY stores its state in a KV store, that state is also immediately made
available for querying. Section 5 details how this is done.

3.4 Isolation levels in distributed query systems

In database systems, ACID is used to describe the atomicity, consistency, isolation,
and durability of database transactions [19]. The isolation level is an important part

Chapter 3. Preliminaries 7

TABLE 3.1: Phenomena possible in different isolation levels [5]. ✓ denotes possible,
✗ denotes not possible.

Isolation
level

Phenomena
dirty
write

dirty
Read

lost
update

fuzzy
read

phantom
read

read
skew

write
skew

None ✓ ✓ ✓ ✓ ✓ ✓ ✓

Read uncommitted ✗ ✓ ✓ ✓ ✓ ✓ ✓

Read committed ✗ ✗ ✓ ✓ ✓ ✓ ✓

Repeatable read ✗ ✗ ✗ ✗ ✓ ✗ ✗

Snapshot ✗ ✗ ✗ ✗ ✓ ✗ ✓

Serializable ✗ ✗ ✗ ✗ ✗ ✗ ✗

of ACID, as it details how well transactions are visible to other transactions. The iso-
lation level of a query system is determined by the possibility for certain phenomena:
dirty writes, dirty reads, lost updates, fuzzy reads, phantom reads, and read/write
skew [5]. These phenomena are used in the analysis as they improve upon the orig-
inal ANSI SQL isolation levels by taking into account snapshots of data [5]. Below a
short summary is provided of these phenomena, ordered from worst (dirty write) to
least worst (write skew):

1. Dirty write. This occurs if a transaction T1 modifies an item, after this transac-
tion T2 then also modifies the same item. Then if T1 or T2 performs a rollback,
there is no clear correct value [5].

2. Dirty read. This phenomenon occurs when a transaction T1 reads a value
while another transaction T2 rolls back that value to a previous version. T1
then has an out of date result which is called a dirty read [5].

3. Lost update. This happens when a transaction T1 reads a data item, T2 then
updates it, and T1 updates it again based on its first read [5]. The effect is that
the update by T2 is then lost by the overwrite of T1.

4. Fuzzy read. This occurs when a transaction T1 reads the same item twice,
but gets a different result for both reads. This can be is caused by another
transaction T2 modifying the item between the two reads of T1 [5].

5. Phantom read. This can occur when a transaction T1 reads a set of items
according to a criterion while another transaction T2 also updates the items
matching that criterion. If T1 queries the set of items twice, the size of this set
can change because T2 changed the items matching this criterion [5].

6. Read/write skew. Read/write skew occurs when there are constraints between
items. Take for example constraint C between items A and B. If T1 reads A,
and T2 updates A and B to new values, when T1 reads B constraint C might be
violated, this is read skew. Another issue arises when T1 reads both A and B, T2
does the same and writes A. If T1 then writes B, constraint C could be violated,
this is write skew [5].

The isolation level is determined by the phenomena that can happen and check-
ing the corresponding isolation level in Table 3.1.

8

4 Approach Overview

S-QUERY is an SQL interface for querying the state of a distributed stream process-
ing system where the state is dispersed over the system’s operators. S-QUERY dis-
tinguishes between two modes of state: live state and snapshot state. Live state is
the actual running state of an operator at any given moment of execution. Snapshot
state is a past version of state captured by a checkpoint. Each checkpoint records a
version of the state back at the time when the checkpoint was taken. S-QUERY can
query both live state and snapshot state by configuration. Queries to snapshot state
can refer, analyze, and compare specific versions of snapshot state. S-QUERY can be
introduced to any streaming system employing a checkpoint-based state manage-
ment approach.

4.1 Architecture

Figure 4.1 depicts the high level system architecture of S-QUERY. The architecture
consists of two separate but tightly coupled systems: the stream processor which com-
prises a Directed Acyclic Graph (DAG) of stateful operators and the state store which
is a partitioned, in-memory key-value store (or any partitioned database system, for
that matter). Any change in the stateful operator state is directly reflected in the
state store and updates the live state stored there. At the same time, the state store
holds the snapshots that are triggered by the checkpointing mechanism [9, 29] of the
stream processor.

The query subsystem of the state store, computes queries on the snapshot state or
the live state. The live state can be accessed directly, whereas queries to the snapshot
state require a specific snapshot id. By default, the latest snapshot id is implied when
querying the snapshot state, but users are free to pinpoint any valid snapshot id. In
the case of Figure 4.1, snapshot with id 9 is still being processed, so 8 is the latest
snapshot id which corresponds to the latest completed checkpoint.

4.1.1 Colocating State & Compute

RQ 1.2 asks how it is possible to query state in a distributed system where state is
fragmented across different nodes. This is solved in S-QUERY as follows: Figure 4.1
shows that both the live state of each operator as well as the respective checkpoints
are colocated with the compute of the same partitioning. This is one of the main
design decision behind S-QUERY: in order to guarantee local updates to the state
without going through the network for each state update, the state store and the
stream processor have to i) share the same partitioning function and ii) the system’s
scheduler needs to make sure that state and compute of the same partition are colo-
cated.

Chapter 4. Approach Overview 9

 State store

 Stream Processor
Node ZNode A

Stateful stream
operator Z

State Z

id 9
id 8

Snapshot
state A

id 9
id 8

Snapshot
state Z

Query system

SQL
interface

Direct object
interface

Live state
Z

Node B

9

Live state
A

Stateful stream
operator B

State B

Stateful stream
operator A

State A

Live state
B

id 9
id 8

Snapshot
state B

FIGURE 4.1: S-QUERY system architecture. Stream operators store state in state
store which is in turn queried by the query system. Query system only queries
snapshot 8 as 9 is still in progress (dashed outline=in progress).

10

5 Exposing Internal State to
External Systems

This section describes how S-QUERY utilizes a KV store in order to make the state of
a stream operator externally visible and queryable while minimally impacting the
stream processing capabilities, to answer RQ 1.1.

5.1 Storing Operator State in a KV Store

The distinguishing feature of S-QUERY is that it stores both its live state and its
snapshots in a KV store, using the same partitioning key as the key of the operator
holding that state as seen in Figure 4.1. This way, instead of performing remote calls
for each change to the operator state (help in the KV store), the change remains local,
allowing for high throughput processing of events. The same holds for snapshots:
each snapshot is first written locally and the KV store can replicate it according to its
internal replication strategy, typically implementing Paxos [23] or Raft [28]. Again,
at first the snapshots are only written locally speeding up both the checkpointing
mechanism but also the recovery process. If a node fails, the respective operator can
be scheduled on the node holding that snapshot’s replica.

5.2 Modeling & Storing State Externally

S-QUERY uses two tables per stateful vertex in the dataflow graph: one for live state,
and one for snapshot state as depicted in Figure 5.1. It is important to note here
that we assume that the state of an operator is in the form of a Map (e.g., a Java
HashMap), i.e., it holds a key and an associated value to it. Finally, note that the
value can be any object (e.g., complex objects in Java, Python, etc.).

Storing Live State. The schema for storing live state in a table is shown in Table 5.1.
The key of the table simply corresponds to the key of the actual operator state and it
is stored along with the corresponding state object, which becomes the value object
in the KV store. Each table is named after the operator whose live state it holds.
Finally, the name of a table is used to address SQL queries to the live state of the
corresponding operator. As seen in Figure 5.1, the operator (vertex) is called average
and that matches the name of the table. Note that if the average vertex has multiple
instances i.e., it runs partitioned in multiple nodes, the table called average will
contain all the KV pairs of the state of all these operators across the cluster.

TABLE 5.1: Live state structure

Key Value
Key State object

Chapter 5. Exposing Internal State to External Systems 11

average

snapshot live

count
total

snapshot_average average

key ssid count total
1 8 2 30
1 9 3 45
2 8 1 5
2 9 2 20

key count total
1 3 30
2 2 20

SELECT count, total
FROM average
WHERE key=1

SELECT count, total
FROM snapshot_average
WHERE ssid=9 AND key=2

FIGURE 5.1: S-QUERY stream operator state representation for both live and snap-
shot state including queries.

TABLE 5.2: Snapshot state structure

Key Value
Key Snapshot ID State object

Storing Snapshots. The way that snapshot state is stored, can be seen in Table 5.2.
Storing snapshots differs slightly from storing live state in that the table is now
formed by two elements: the key of the keyed state (determining the partition), and
the snapshot ID. Again the value is the actual state object. This makes it possible
to store different snapshots of the same keyed state independently. This is useful
for the cases when different versions of the state need to be kept, either for auditing
reasons or for historical queries. The name of the table holding the snapshot state
is - by convention- snapshot_<vertex name>, where <vertex name> is the name of
the stateful operator in the DAG for which the snapshot state is stored. For ex-
ample, if the vertex name is statefulmap, then the table containing the live state
is also identified by statefulmap, and the table storing the snapshot state is called
snapshot_statefulmap. Using this mechanism each stateful stream operator has its
own live/snapshot state table, which stores the complete state of the operator that is
distributed across its partitioned instances in different nodes. In addition, it is also
possible in S-QUERY to enable/disable the live/snapshot state mechanism. In case
only snapshot state is needed, the live state can be disabled for better performance.

As discussed in Section 3, the checkpointing mechanism of most modern stream-
ing systems follows a two-phase commit (2PC) snapshot process: once all operators
have completed taking a snapshot of their state, they inform the snapshot manager
and the snapshot manager directs the operators to commit their snapshots only if all
operators have succeeded. After this snapshot 2PC process is done, S-QUERY adds
an additional step: it updates a counter to reflect the latest committed snapshot ID.
This latest snapshot ID is needed for identifying which is the latest completed snap-
shot across the distributed system.

Chapter 5. Exposing Internal State to External Systems 12

5.3 Querying Live & Snapshot State

The tables storing the state can now serve as the connection point between the
streaming system and applications or other external systems that want to query the
state of a stream processing job. As seen in Figure 5.1, an SQL query can be used to
query the state of running operator, or the state at the moment when snapshots have
been taken at different moments in time, during the lifetime of the streaming job.

RQ 1.1 asks how queryable state can be achieved while minimally impacting
the stream processing performance itself. This is achieved by S-QUERY as it de-
signed to leverage the existing 2PC process to store the state in an easy to query
form/location, therefore minimally impacting the stream processing performance
itself when querying snapshot state. The next section describes the different isola-
tion levels that can be achieved with S-QUERY.

13

6 Isolation levels

Since S-QUERY exposes the internal state of a stream processor to the outside world,
this section discusses the isolation levels that one can achieve with S-QUERY to an-
swer RQ 1.3. Since S-QUERY can query both the live state of a stream processing job
as well as its snapshot state created and updated by periodic checkpoints. The two
capabilities entail different performance characteristics and consistency guarantees.

6.1 Querying Live state

S-QUERY locks each entry of the table being accessed in order to safeguard from con-
current updates to the live state by the job being processed. The stateful operators
use the same locking mechanism when they access and mutate the state.

Consider the case where the internal, live state of an operator is read before a
checkpoint is taken. and that the operator is not deterministic [4, 29]. The replay
after the failure could yield different results. This is exactly the dirty read phe-
nomenon, which according to Table 3.1 results in the read uncommitted isolation
level.

Thus, live state queries provide read uncommitted isolation level because of the
possibility of dirty reads. Take for instance the following example where the state
of a stream operator that counts incoming records is 4. At that point a checkpoint
is taken that creates snapshot with id 1 (Figure 6.1a). Following the checkpoint the
state becomes 5. Then, a query on the live state returns 5 (Figure 6.1b). However,
before the state could be committed to a new snapshot, the job fails. Now, according
to the query, the state is still 5, but in reality the state is 4 after the new operator
recovered its state from the latest snapshot (Figure 6.1c). Therefore, this example
demonstrates the possibility of a dirty read.

6.2 Querying Snapshot State

Querying the live state tampers with the processing of a job because it requires access
synchronization. Alternatively, queries can be answered by accessing the snapshot
state of a job, which offers safe unrestricted data access. However, the data in the
snapshot state are stale as the job’s live state continues to be modified.

The only pitfall regards which snapshot is being queried. If a query to snapshot
state is being processed and at that same time a new snapshot is committed, which
takes the place of the previous one, then phantom reads are possible. For this reason
S-QUERY keeps track of the snapshot id in the form of a distributed atomic integer
value and always reads it before executing a query on the snapshot state. This way,
phantom reads are impossible because the query is guaranteed to be processed on
the latest available snapshot atomically.

In addition, read and write skew are not possible in this situation as there is
exactly one partition responsible for writing the state, meaning multiple partitions
never write to the same location.

Chapter 6. Isolation levels 14

Snapshot (id=1)
Counter: 4

Count operator
Counter: 4

(A) Initial state is 4 and snap-
shot is made with id 1

Query
Counter: 5

Count operator
Counter: 5

Snapshot (id=1)
Counter: 4

(B) Live state is updated to 5,
query result is 5

Query
Counter: 5

Count operator
Counter: 4

Snapshot (id=1)
Counter: 4

(C) Snapshot 1 restored, query
result is a dirty read

FIGURE 6.1: Live state isolation level example.

Snapshot (id=1)
Counter: 2

Count operator
Counter: 2

(A) Initial state is 2 and snap-
shot is made with id 1

Snapshot (id=1)
Counter: 2

Count operator
Counter: 3

Query
snapshot 1
Counter: 2

(B) State is updated to 3, query
result for snapshot 1 is 2

Snapshot (id=1)
Counter: 2

Count operator
Counter: 2

Query
snapshot 1
Counter: 2

(C) Snapshot 1 restored, query
result is still correct

FIGURE 6.2: Snapshot state isolation level example.

Let us consider an example that highlights the aforementioned situation. At
some point the state of a stream operator is 2. Then a snapshot with id 1 is cre-
ated (Figure 6.2a). After the checkpoint, the state is updated to 3. A query to the
snapshot state is issued with the latest snapshot id, which is 1, so the result will be
2 (Figure 6.2b). Even if the stream operator were to fail and recover, the query re-
sult will always be 2 as the query specifically targets snapshot 1 (Figure 6.2c). Dirty
reads are never possible in this setting and phantom reads can only happen if no
latest snapshot ID is specified in the query.

As no phenomena as described in Section 3.4 can occur, under this scheme,
S-QUERY provides serializable isolation.

15

7 Implementation

This section will explain how S-QUERY was implemented, what implementation
choices were made and why.

7.1 Platform choice

The decision was made to implement S-QUERY on top of Jet in order to leverage
Jet’s state management approach, its neat integration with the IMDG, and Hazel-
cast’s SQL interface to IMDG. Since Jet implements Chandy-Lamport-style coordi-
nated checkpoints, snapshot state captures a consistent distributed snapshot of the
system’s overall state. Jet leverages the IMDG as a fast store for state snapshots. In
the rest of the thesis, original Jet is used to refer to the unmodified version of Jet, and
S-QUERY to signify the system developed as a result of this thesis. In our implemen-
tation IMDG’s IMap shares the same partitioning scheme as the keyed state of Jet
in order to hold state snapshots on the same node as the corresponding keyed state.
This is an important property as the state does not need to travel across the network
when writing snapshots or live state.

7.2 State structure

Original Jet used to store the state of each operator in a single key-value pair in
IMDG, where the key was metadata and the value a blob structure encapsulating
the key-value pairs of the operator’s state (see Table 7.1). As a result, this structure
was not queryable. In contrast, S-QUERY exposes the state of each operator stored
in the KV structure depicted in Table 5.1 and Table 5.2 as first-class key-value pairs
(see Section 5.2), allowing each operator to be queried externally.

7.3 Fault-tolerance

To protect data in IMDG from failures, it implements an Available under network
Partition (AP) mechanism. While the state is kept locally as the primary source, Jet
also keeps one backup replica on a different node for fault-tolerance. This is shown
in Figure 7.1, where the state is partitioned across a 3 node cluster. In Figure 7.2
node 1 has failed and node 2 and 3 rebalance the state across the new cluster to

TABLE 7.1: IMap state structure in Jet

IMap Key IMap Value

partition
N

snapshot
ID

vertex
name

sequence
number

128KB array
of key-state
pairs in par-
tition N

Chapter 7. Implementation 16

P1, P4, P7, P10

Processor state

P1 P4 P7 P10

P2 P3 P5 P6

primary

replica

backup

replica

Jet node 1

P2, P5, P8, P11

Processor state

IMDG Map state

P2 P5 P8 P11

P1 P4 P9 P12

Jet node 2

P3, P6, P9, P12

Processor state

IMDG Map state

P3 P6 P9 P12

P7 P8 P10 P11

Jet node 3

IMDG Map state

FIGURE 7.1: Jet state partition structure across a 3 node cluster [17]

keep availability at 100%. In addition, a Consistency under Network partitions (CP)
subsystem using Raft [28] is used. This subsystem preserves strongly consistent
distributed data structures across Jet nodes such as the atomic integer containing
the latest snapshot id (see Section 5.3).

7.4 Query system

The query system is the gateway between the S-QUERY and external systems that
want to inspect the stream processor state.

P1, P2, P4, P5, P8, P11

Processor state

IMDG Map state

P4 P5 P8 P11

P7 P9 P10 P12

Jet node 2

P1 P2

P3 P6

P3, P6, P7, P9, P10, P12

Processor state

IMDG Map state

P7 P9 P10 P12

P4 P5 P8 P11

Jet node 3

P3 P6

P1 P2

FIGURE 7.2: Jet state partition rebalancing [17]. Dashed outline are the states from
(failed) node 1.

Chapter 7. Implementation 17

7.4.1 Direct object interface

In S-QUERY, this gateway is facilitated by using the Hazelcast client libraries. Hazel-
cast has client libraries for several programming languages that can interact with a
Hazelcast cluster (which runs Jet). These libraries can access the IMDG which store
the state. This is done using operations such as get(key) or get(predicate), result-
ing in state entry objects native to the programming language of the client library. As
this method uses native objects, this is called the direct object interface. As the state
is accessible in a custom program, there are virtually endless possibilities in what
one can do with the state, such as using it as a backend for a visualizing website, a
reporting tool, etc.

7.4.2 SQL interface

Hazelcast IMDG features an SQL interface, which allows applications to query IMap
data structures in IMDG. The SQL interface supports a subset of SQL, such as the
WHERE, ORDER BY, SUM, and COUNT clauses1. Essentially, querying the state
becomes as simple as querying a traditional relational database system. The JOIN
functionality is not officially released yet, but it was already available in a develop-
ment branch.2 Unfortunately, this branch was not compatible even with original Jet,
so custom modifications were made in S-QUERY Jet to make them compatible.3,4

1https://docs.hazelcast.com/imdg/4.2/sql/expressions.html
2https://github.com/hazelcast/hazelcast/tree/sql
3https://github.com/Jimver/hazelcast/tree/sql-jet-4.4
4https://github.com/Jimver/hazelcast-jet/tree/4.4-statefulP

https://docs.hazelcast.com/imdg/4.2/sql/expressions.html
https://github.com/hazelcast/hazelcast/tree/sql
https://github.com/Jimver/hazelcast/tree/sql-jet-4.4
https://github.com/Jimver/hazelcast-jet/tree/4.4-statefulP

18

8 Use Case: Q Commerce in
Delivery Hero

Delivery Hero SE is a global company enabling Q-commerce in more than 50 coun-
tries. Q-commerce is an advancement of e-commerce offering fast, on-demand deliv-
ery with innovations at the last mile of delivery. To serve its customers, the company
relies on a sophisticated large-scale software infrastructure where fast access to con-
sistent data is of utmost importance. Therefore, databases hosting daily data about
points of sale, orders, purchases, and rider locations are supported by caches in or-
der to respond fast to user requests sent via web browsers and mobile applications
according to the architecture in Figure 8.1.

Caching as a pattern is used in application development to avoid the load of com-
plex operations by storing results from expensive database queries to intermediate
memory-based layers like Redis [10] or Memcache [26]. With this common pattern,
application programmers can develop scalable and low-latency web services. At the
same time, however, they are forced to adopt the following issues that arise with it.

• The engineering team has to implement the caching mechanism, dealing with
sophisticated issues, such as throttling and invalidation, since caching is im-
plemented at the application layer.

• A time-to-live is a common functional requirement for each data source that is
being cached, resulting to stale data for a period of time.

• Out-of-the-box systems such as Redis, do not support queries to the data thereby
pushing the manipulation to the application level.

The aforementioned issues increase the complexity of the services and rely on the
expertise of the engineering team to implement them properly for use in production.
In addition, the caching pattern promotes duplication of development effort across
the organization, since each engineering team should develop its own caching solu-
tion.

Instead S-QUERY can substitute caching along with its inefficiencies leading to
a more scalable and efficient system as depicted in Figure 8.2. In this thesis we
demonstrate S-QUERY’s effectiveness and efficiency by applying it to a real work-
load composed of order delivery events ingested by a Jet job, which accumulates
state for rider locations, order statuses, and order information in each of the job’s
operators respectively. Four real queries are used to evaluate the expressiveness and
performance of S-QUERY, Query 1, Query 2, Query 3 and Query 4 with (partial) re-
sults in Table 8.1 and Table 8.2. Each of the queries captures the need for a real-time
ad-hoc view on the state of orders in the system that can guide on-the-spot business
decisions and improve customer service.

The data stream workload consists of the following events.

Rider location includes the coordinates of the delivery rider with latest update times-
tamp.

Chapter 8. Use Case: Q Commerce in Delivery Hero 19

2. If data is not found in the cache,
the database is queried and the
results are stored in the cache

Database

Web service

Mobile app

Web service

Mobile app

Cache

Cache

Events

1. Services search the cache for
the desired data

FIGURE 8.1: Traditional caching architecture

SELECT COUNT(*), deliveryZone FROM "snapshot_orderinfo" JOIN
"snapshot_orderstate" USING(partitionKey) WHERE
(orderState='VENDOR_ACCEPTED' AND
lateTimestamp<LOCALTIMESTAMP) GROUP BY deliveryZone;

↪→

↪→

↪→

QUERY 1: How many orders are late (in preparation by the vendor for too long)
per area?

Order status contains the state of an order, that is from ORDER_RECEIVED to PICKED
UP to DELIVERED (and several other states omitted for space savings). It also includes
a deadline when it should have transitioned to the next state.

Order info is a one-time event per order containing general information about an
order such as customer location, vendor location, vendor category and delivery zone
(postal code range).

Details of the performance of this workload can be found in the evaluation (Sec-
tion 9).

SELECT COUNT(*), vendorCategory FROM "snapshot_orderinfo" JOIN
"snapshot_orderstate" USING(partitionKey) WHERE
(orderState='NOTIFIED' OR orderState='ACCEPTED') GROUP BY
vendorCategory;

↪→

↪→

↪→

QUERY 2: How many deliveries are ready for pickup per shop category?

Chapter 8. Use Case: Q Commerce in Delivery Hero 20

Rider location
event

Order status
event

Order info
event

Rider Location

Order Status

Order Info

coordinates
update timestamp

order status
update timestamp

coords customer
coords vendor
delivery zone
vendor category
promised delivery
timestamp
committed pickup
timestamp

Web service

Mobile app

Web service

Further event
processing

Query

Stream
event

Legend

FIGURE 8.2: Stream-based architecture, events are processed by stateful operators
with corresponding state inside. External systems are able to query the internal
state.

SELECT COUNT(*), deliveryZone FROM "snapshot_orderinfo" JOIN
"snapshot_orderstate" USING(partitionKey) WHERE
(orderState='VENDOR_ACCEPTED') GROUP BY deliveryZone;

↪→

↪→

QUERY 3: How many deliveries are being prepared per area?

SELECT COUNT(*), deliveryZone FROM "snapshot_orderinfo" JOIN
"snapshot_orderstate" USING(partitionKey) WHERE
orderState='PICKED_UP' OR orderState='LEFT_PICKUP' OR
orderState='NEAR_CUSTOMER' GROUP BY deliveryZone;

↪→

↪→

↪→

QUERY 4: How many deliveries are in transit per area?

TABLE 8.1: SQL query results for Query 1 and Query 2

(A) Order late in preparation per area (Query 1)

Count(*) deliveryZone
121 9700-9747
113 8200-8245
132 9400-9408
134 6500-6546
118 3500-3585
118 4800-4839
113 5600-5658
137 4200-4208
120 2600-2629...

...

(B) Orders ready for pickup per shop category
(Query 2)

Count(*) vendorCategory
3630 lunch
3631 sushi
3553 groceries
3675 pizza
3647 breakfast

Chapter 8. Use Case: Q Commerce in Delivery Hero 21

TABLE 8.2: SQL query results for Query 3 and Query 4

(A) Orders being prepared per area (Query 3)

Count(*) deliveryZone
484 6200-6229
495 7500-7547
475 8900-8941
513 1000-1099
483 8200-8245
527 9700-9747
516 9400-9408
517 6500-6546
521 3500-3585...

...

(B) Orders in transit per area (Query 4)

Count(*) deliveryZone
1588 6200-6229
1510 7500-7547
1525 8900-8941
1534 1000-1099
1496 8200-8245
1518 9700-9747
1565 9400-9408
1527 6500-6546
1542 3500-3585...

...

22

9 Evaluation

S-QUERY is evaluated on a) a real workload capturing real-time views of online
Q-commerce orders with deliveries provided by Delivery Hero SE and b) NEX-
Mark [30], the de facto benchmark in stream processing. The focus of the evalua-
tion lies on four different dimensions of S-QUERY’s operation. First, we measure
S-QUERY’s overhead to Jet in terms of latency (Section 9.2. Second, we analyze the
overhead of S-QUERY to Jet’s snapshot mechanism with and without query execu-
tion (Section 9.3). Third, we present S-QUERY’s performance using four real queries
on a workload of online order and delivery events that is central to the everyday
business of Delivery Hero SE.1 We also compare S-QUERY’s query performance
against TSpoon [24] (Section 9.4). Finally, we study the scalability of S-QUERY by
measuring the system’s throughput with different cluster sizes (Section 9.5).

9.1 Experimental Setup

Two clusters of 7 nodes in Amazon AWS, one of them provided by Delivery Hero
SE, were used in the experiments. The hardware specification of the cluster nodes
used in the experiments are detailed in Table 9.1. Per cluster node, 12 CPUs are
used for processing data in Jet while the other 4 are used for garbage collection. The
same configuration was chosen by Jet’s development team for evaluating Jet [17]. In
this setup, the 4 CPUs used for garbage collection are also used to process S-QUERY

queries.
Overhead experiments measure the latency from source to sink, that is, how long

it takes for the effects of an input record to reach a sink. The experiments are exe-
cuted on a three-node cluster with a warmup period of 20 seconds and a measure-
ment period of 240 seconds. The streaming job executed by Jet in the overhead ex-
periments is query 6 of Apache Beam’s Nexmark benchmark implementation.2,3 The
job computes the average selling price for each seller in an auction from a bid and
auction stream. It accumulates state for 10K auction sellers and checkpoints state
snapshots every second. The average selling price is taken over the last 10 auctions
per seller.

TABLE 9.1: c5.4xlarge node properties

CPU 16 vCPUs
Memory 32 GB
Network 10 Gbit/s
OS Ubuntu 20.04.2 LTS
Java AdoptOpenJDK (build 15.0.2+7)

1https://github.com/Jimver/S-Query-examples
2https://beam.apache.org/documentation/sdks/java/testing/nexmark/
3https://github.com/hazelcast/big-data-benchmark

https://github.com/Jimver/S-Query-examples
https://beam.apache.org/documentation/sdks/java/testing/nexmark/
https://github.com/hazelcast/big-data-benchmark

Chapter 9. Evaluation 23

The snapshot performance experiments are performed on the Delivery Hero SE
workload (Section 8) demonstrating that S-QUERY is capable of supporting real
world applications. For the snapshot experiments, 1K, 10K and 100K unique keys,
representing the number of orders in Jet’s state, provide a variable and significant
workload for the snapshot management system, with a snapshot interval of 1 sec-
ond. The snapshot latency is measured at three points in the node that controls the
2PC process, before phase 1 begins, after phase 1 completes, and after phase 2 com-
pletes. Two concurrent threads run queries on the state in parallel at full speed to
create a significant workload on the system. Each configuration was run for at least
20 minutes, with the first minute used as a warmup period.

For the query experiments there are two setups, the SQL query experiment,
which shares the same setup as the snapshot performance experiment and the direct
object access experiment, which uses a 3 node cluster totaling 48 vCPUs to compare
to related work, TSpoon [24].

Finally, the scalability experiment is performed on NEXMark query 6 while vary-
ing the cluster size between 3, 5, and 7 nodes. The number of unique keys that rep-
resent the number of auctions is 10K, the same as in the overhead experiments. In
parallel to the job execution of query 6, S-QUERY is used to input and process 10
SQL queries per second that select the list of the 10 latest auction prices.

9.2 Overhead Experiments

The experiment results for query 6 of NEXMark are shown in Figure 9.1. The exper-
iment consists of four configurations, a) S-QUERY with both live and snapshot state
enabled, b) S-QUERY with only live state enabled, c) S-QUERY with only snapshot
state enabled, and d) original Jet. Live state incurs significant overhead, which is
to be expected, since it amounts to communicating every single state change that
happens at each operator of the system to the respective live state representation in
IMDG. The latency distribution for the snapshot state configuration is equivalent to
the original Jet configuration. Therefore, for the remaining experiments, we focus
our evaluation on the snapshot state configuration.

Figure 9.2 compares S-QUERY’s snapshot state configuration to original Jet at
three input throughput levels, 1M/5M/9M events/s. Naturally, higher through-
put results in higher latency. At 1M events/s throughput, S-QUERY’s overhead is
unnoticeable. For throughput at 5M events/s, S-QUERY achieves virtually equal la-
tency as original Jet until around the 90th percentile. In higher percentiles S-QUERY

becomes marginally slower by 4ms at most. At 9M events/s throughput, S-QUERY’s
overhead is minor reaching up to 5ms more latency. In conclusion, S-QUERY achieves
similar low latency performance as original Jet demonstrating that the state snap-
shot configuration of S-QUERY has very little impact on the system’s latency and
throughput.

9.3 Effect of Snapshotting Mechanism on System Performance

Because S-QUERY introduces changes to the snapshot creation process of original
Jet, it is important to measure the effect of the snapshotting mechanism on the sys-
tem’s performance with and without query execution on the state. For each of the
two configurations we compare the time it takes to commit a snapshot with exactly-
once processing guarantees between S-QUERY and original Jet considering different

Chapter 9. Evaluation 24

99.99%99.9%99%90%0%
Percentiles

0

10

20

30

40

50

60

La
te

nc
y

(m
s)

Source-sink latency distribution

S-Query live+snap

S-Query live

S-Query snap

Original Jet

FIGURE 9.1: NEXMark query 6 latency distribution, 3-node cluster. x-axis shows
percentiles on an inverted log scale, y-axis shows the latency in milliseconds.

99.99%99.9%99%90%0%
Percentiles

0

5

10

15

20

25

30

35

La
te

nc
y

(m
s)

Source-sink latency distribution

S-Query 1M

S-Query 5M

S-Query 9M

Original Jet 1M

Original Jet 5M

Original Jet 9M

FIGURE 9.2: NEXMark query 6 latency distribution. Vanilla vs. S-QUERY, 3-node
cluster at 1M, 5M, 9M events/s. x-axis shows percentiles on an inverted log scale,
y-axis shows the latency in milliseconds.

Chapter 9. Evaluation 25

99.9%99%90%0%
Percentiles

10

20

30

40

50

60

La
te

nc
y

(m
s)

Snapshot 2PC latency distribution

S-Query 1k

S-Query 10k

S-Query 100k

Original Jet 1k

Original Jet 10k

Original Jet 100k

FIGURE 9.3: Latency distribution of snapshot mechanism between original Jet and
S-QUERY for 1K/10K/100K unique keys across a 7 node cluster. x-axis shows the
percentiles on an inverted log scale, y-axis shows the latency in milliseconds.

snapshot state sizes. The measured snapshot latency determines how much time an
operator spends in processing records as opposed to taking snapshots.

S-QUERY Operation Without Queries. Figure 9.3 shows the snapshot creation
time for both original Jet and S-QUERY ranging the number of unique keys in the
snapshot state. S-QUERY achieves virtually equal latency performance to original
Jet for 1K keys and is only 2-4ms slower than original Jet for 10K keys throughout
the distribution. Even for the 100k keys of state, S-QUERY is merely 19-27ms slower
than original Jet. While the difference might seem considerable, the overhead would
be unnoticeable to most applications. To further illustrate the impact, the snapshot
interval si is set at 1 second, which is already very low. The 50th percentile of the
worst case (100K keys), has a snapshot latency sl of 44ms for S-QUERY and 23ms
for original Jet. The ratio r between time available for processing and total time
(processing + snapshot) is:

r = (si/(si + sl))

Then rS-QUERY = 1/1.044 ≈ 0.958 and rvanilla = 1/1.023 ≈ 0.978. Comparing these
two, S-QUERY would only process 1 − rS-QUERY/rvanilla ≈ 0, 02011 = 2.01% less
than original Jet. The implication is that in theory the sustainable throughput would
be 2.01% lower for S-QUERY than original Jet, which is still manageable, as this is for
the worst case (100k unique keys, 1 second snapshot interval). For smaller number
of keys the difference becomes almost negligible: 0.25% for 10K and close to 0 for
1K. Consequently, S-QUERY’s impact on the performance of the streaming system is
minimal.

Query Execution. The execution of S-QUERY queries can potentially affect the
snapshot creation mechanism. The latency distribution of the snapshot mechanism
is measured as before with and without queries being executed on the snapshot
state. For the experiments Query 1 is used, which is a relatively expensive query in-
cluding both a JOIN and GROUP BY clause. Figure 9.4 shows the impact of queries
on the snapshot 2PC latency. For 1K and 10K keys the impact is zero until the 70th

percentile. For 10K a small difference appears from 80% onwards, which increases

Chapter 9. Evaluation 26

99.9%99%90%0%
Percentiles

10

20

30

40

50

60

70

La
te

nc
y

(m
s)

Snapshot 2PC latency distribution (query vs. no query)

No Query 1k

No Query 10k

No Query 100k

Query 1k

Query 10k

Query 100k

FIGURE 9.4: Latency distribution of snapshot mechanism on 7 node cluster with
and without S-QUERY queries for different # of unique keys. x-axis shows per-
centiles on an inverted log scale, y-axis shows the latency in milliseconds.

up to 16ms, while for 100k there is a similar difference throughout the entire dis-
tribution. In general, the impact is no more than 16ms across all unique key con-
figurations. Notably, the time it takes to commit a snapshot is much smaller than
the snapshot interval itself. Thus, querying non-stop from multiple threads does not
affect the performance of a streaming job significantly.

9.4 Query Performance

The query execution performance of S-QUERY is measured through its SQL interface
and through its direct object interface.

SQL Interface. The performance is measured in terms of latency by the time it
takes to execute a query on the state and the time required to get the latest snapshot
ID across the distributed system, results are shown in Figure 9.5. This experiment
uses Query 1 as the SQL query. As expected, the query execution latency increases
with larger state size as a query has to process more state entries. However, the la-
tency distributions remain relatively flat even in the higher percentiles. The snapshot
ID times slightly increase as the state size increases, but this is owed to the increased
system load that is related to the larger state size. The performance of the queries
is decent given that these latencies represent the time between the moment before
query submission and complete result reception, including network delays. To illus-
trate, the query on 100K keys works on a dataset of size 22.4MB. Over a 10 Gbit/s
network connection it takes 18ms in the best case to execute the query without tak-
ing into account network overhead. Notably, a relatively flat latency distribution
provides the opportunity for reliable SLA agreements.

Direct Object Interface. In this experiment the performance of S-QUERY is
compared to TSpoon [24], another stream processing system offering simple state
queries. The rider location operator from the Delivery Hero SE use case from Sec-
tion 8 is used as the query target, whose state consists of two doubles (coordinates)

Chapter 9. Evaluation 27

99.99%99.9%99%90%0%
Percentiles

0

50

100

150

200

La
te

nc
y

(m
s)

SQL query latency distribution

Query time 1k

Snapshot ID time 1k

Query time 10k

Snapshot ID time 10k

Query time 100k

Snapshot ID time 100k

FIGURE 9.5: Query/snapshot ID latencies on 7 node cluster for different # of unique
keys. x-axis shows percentiles on inverted log scale, y-axis shows latency in mil-
liseconds.

and the time it was last updated. An external query from the direct object interface
retrieves the total state of the rider location operator. The experiment is executed on
a 3-node cluster totaling 48 vCPUs. On a fourth identical node, 180 threads are used
to send queries to the 3-node cluster in parallel. On the other hand, TSpoon used
one double (account balance) as state in their experiment [24], which was conducted
on a cluster with 50 vCPUs. Figure 9.6 plots the query throughput of direct object
access queries when selecting 1, 10, 100, and 1000 keys out of 100K unique keys for
both S-QUERY and TSpoon.

The same plot also shows a power law trendline, which fits the data points with
an R2 of 0.993 and 0.97, indicating that the query throughput follows a power law
distribution. A power law distribution is reasonable since selecting more keys takes
more time thereby resulting in less throughput. In addition, throughput will never
become zero as long as the queries finish, which explains the long tail being non zero,
and justifies the power law distribution. Compared to the equivalent experiment
from TSpoon [24], S-QUERY outperforms TSpoon by a factor of two when querying 1
key while performing similarly for the other key selections even though S-QUERY is
slightly disadvantaged in terms of state size per key and number of vCPUs available
for query processing.

9.5 Scalability

Since modern streaming systems are typically horizontally scalable, it is important
to test S-QUERY’s scalability. For this purpose, we identify the sustainable through-
put for each experiment configuration, which is the throughput at which the system
achieves the highest sustainable performance with steady latency. Different exper-
iment configurations are defined by varying the degree of parallelism in terms of
number of nodes in the cluster and the snapshot interval. The snapshot interval
affects the amount of time available for processing, which can have an effect on
S-QUERY’s scalability. For the experiment, query 6 of the NEXMark benchmark is

Chapter 9. Evaluation 28

of keys selected

Q
ue

ry
 th

ro
ug

hp
ut

 (q
/s

)

 1

 10

 100

1 000

10 000

100 000

 1 10 100 1 000

S-Query Power law trendline (S-Query) R² = 0.993
TSpoon Power law trendline (TSpoon) R² = 0.97

Query throughput vs. Key selection

FIGURE 9.6: Direct object query throughput. Throughput in queries/s on the log
scale y-axis, number of keys selected in the query shown on the log scale x-axis.
Data labels are S-QUERY on top, TSpoon on the bottom.

used as the streaming job and execute 10 JOIN queries per second on the state of the
job’s operators. This setting simulates a realistic workload.

The results of the scalability experiment are shown in Figure 9.7. The existing
horizontal scalability of Jet [17] is clearly replicated in our experiment. The R2 of the
trendlines are always higher than 0.96, which means that the sustainable throughput
follows a linear relationship with the degree of parallelism conveyed as number of
Jet threads. Thus, S-QUERY is horizontally scalable.

The experiment also shows that the snapshot interval has a small but measurable
effect on the sustainable throughput. The reason for this is that the snapshot inter-
val is not the interval between the start times of two consecutive snapshots, but the
interval between the end of the current snapshot and the start of the next one. There-
fore, having a smaller snapshot interval results in more time being spent on taking a
state snapshot vs. actual processing, which in turn results in decreased sustainable
throughput.

Chapter 9. Evaluation 29

Degrees of parallelism (DOP)

M
ax

. t
hr

ou
gh

pu
t (

M
 e

ve
nt

s/
s)

N
or

m
. t

hr
ou

gh
pu

t (
k

ev
en

ts
/s

/D
O

P
)

0

5

10

15

20

25

0

100

200

300

36 60 84

Max. throughput (0.5s) Trendline (0.5s) R² = 0.962 Max. throughput (1s)
Trendline (1s) R² = 0.973 Max. throughput (2s) Trendline (2s) R² = 0.977

Normalized throughput (0.5s) Normalized throughput (1s) Normalized throughput (2s)

Degrees of parallelism vs. max. throughput for different snapshot intervals

FIGURE 9.7: Scalability experiment results, DOP (degrees of parallelism) on x-axis,
max. throughput on left y-axis, normalized throughput on right y-axis. Bars from
left to right correspond to 0.5s, 1s, and 2s snapshot intervals respectively.

30

10 Related Work

Existing pieces of work focus on state access across operators within a stream pro-
cessing system, often referred to as transactional stream processing [6, 25, 31, 1, 24,
18], while others support state queries from external sources [7, 27, 1, 24, 18]. We
compare and contrast these pieces of work to S-QUERY.

10.1 Transactional Stream Processing

The Unified Transaction Model (UTM) [6] is one of the first systems supporting
transactions in a stateful stream processing system. Using a transaction manager
with a strong strict 2-phase locking mechanism, it provides in-order access to stor-
age resources and rollback functionality, resulting in consistent histories. S-Store [25]
supports transactional stream processing with shared state access inside the system.
S-Store and S-QUERY both use an in-memory data structure for storing the state. Fi-
nally, TStream [31] improves upon S-Store by dynamically restructuring transactions
into operation chains, which can be processed in parallel eliminating lock contention
[31]. S-QUERY differs from transactional streaming systems in that it focuses on ex-
ternal queries to the state instead of transactions on the state inside the system.

10.2 Queryable State

Apache Flink [7] provides a simple API for state queries. Flink uses a client(proxy)-
server model where the client sends a query to the client proxy, which in turn for-
wards it to the correct state server where it gets processed and the result is returned.
Flink only features a programmatic interface for queries. In addition, it requires
to specify data types upfront1, which is not the case with S-QUERY. Furthermore,
queries in Flink always return the live state, so as discussed in Section 6.1, this al-
lows for dirty reads when the system recovers from a failure. Consequently, Flink
only supports the read-uncommitted isolation level when querying state.

Apache Samza [27] allows streaming jobs to access the state of other streaming
jobs using the Table API, which supports both an in-memory store, RocksDB, or
other custom remote tables.2 Remote tables would allow external applications to
query the state, but the state would need to be transported over the network, in-
curring a heavy performance penalty compared to in-memory state. Queries are
key-value lookups.

FlowDB [1] supports queries to the internal state from external components.
It uses non-exclusive locks to read the live state of multiple operators. However,
FlowDB only works with live state, thus it supports read-uncommitted isolation
level at best, when considering failures where the state needs to be recovered from
checkpoints. In addition, the queries are simple key lookup operations.

1https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/dev/datastream/
fault-tolerance/queryable_state/

2https://samza.apache.org/learn/documentation/1.6.0/api/table-api.html

https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/dev/datastream/fault-tolerance/queryable_state/
https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/dev/datastream/fault-tolerance/queryable_state/
https://samza.apache.org/learn/documentation/1.6.0/api/table-api.html

Chapter 10. Related Work 31

PipeFabric [18] supports ad-hoc queries on the state by external parties. PipeFab-
ric uses an MVCC-based state management system combined with commit times-
tamps to write and read the state thereby achieving snapshot isolation. However,
the query system only allows key-value lookups on the state. In addition, it is only
suitable for single node applications.

TSpoon [24] focuses more on transactions between operators than external queries.
TSpoon requires queries to be programmed in advance as it is bound to each stateful
operator. Thus it cannot support ad-hoc queries. In addition, a query is a get oper-
ation for the whole state of a specific key. There are no built-in predicates to filter
results or join multiple results together, compared to S-QUERY.

S-QUERY is the first system offering an SQL interface and two different query
modes with complementary properties and isolation levels.

32

11 Future work

There are still opportunities for optimization in the S-QUERY implementation in Jet.
As discussed in Section 9.2, the live state configuration of S-QUERY is not viable
for high throughput streams as putting the state to the IMap every time the state
changes causes too much overhead. Therefore, a big opportunity for improvement
lies in that area.

A similar but less severe performance point is the increased snapshot latency.
While it doesn’t have a significant impact on the stream processing operation, it is
still desirable to have no impact or make it even faster. The cause of the increased
snapshot latency is the increased amount of entries being put to the IMap. Even
though the IMap is very fast, it still has some overhead causing the snapshots to be
slower compared to the bunched up key strategy in original Jet. This could be solved
by having a dedicated and efficient putAllSnapshot() implementation on the IMap
without unneeded functionality such as data validation, as it is an internal method
not available to end users. This was partly implemented in S-QUERY but could be
further improved upon.

Another small issue is that querying the latest snapshot state now requires first
getting the latest snapshot ID and then performing the query, however this is not
ideal as the extra request for the latest snapshot ID incurs some extra latency. There-
fore, having the SQL engine automatically retrieving this ID locally on the node
could eliminate this extra step.

As a final recommendation for future research, it is deemed useful to implement
S-QUERY on top of other stream processing systems, as it has now only been im-
plemented on top of Jet. Such further implementations would allow for interest-
ing comparisons on the performance characteristics of S-QUERY between different
stream processing systems.

33

12 Conclusions

This thesis presents S-QUERY, a novel system supporting SQL queries to the dis-
tributed state of a stream processing system. S-QUERY is able to query both the live
and the snapshot state of a streaming system providing complementary isolation
levels, including serializable isolation, and performance characteristics. We evalu-
ate the performance of S-QUERY on the NEXMark benchmark as well as on a real
workload from Delivery Hero SE, a global company offering Q-commerce services.
We find that S-QUERY adds little overhead to a streaming system when querying the
snapshot state, is horizontally scalable, and is able to perform thousands to tens of
thousands of queries per second depending on query selectivity. Most importantly,
S-QUERY paves the way for novel capabilities by substituting caching layers and
intermediate databases commonly used by applications. It also introduces new use
cases in the streaming domain, such as auditing and advanced debugging.

34

Bibliography

[1] Lorenzo Affetti, Alessandro Margara, and Gianpaolo Cugola. “FlowDB: In-
tegrating Stream Processing and Consistent State Management”. In: Proceed-
ings of the 11th ACM International Conference on Distributed and Event-Based Sys-
tems. DEBS ’17. Barcelona, Spain: Association for Computing Machinery, 2017,
134–145. ISBN: 9781450350655. DOI: 10.1145/3093742.3093929. URL: https:
//doi.org/10.1145/3093742.3093929.

[2] Adil Akhter, Marios Fragkoulis, and Asterios Katsifodimos. “Stateful Func-
tions as a Service in Action”. In: Proc. VLDB Endow. 12.12 (Aug. 2019), 1890–1893.
ISSN: 2150-8097. DOI: 10.14778/3352063.3352092. URL: https://doi.org/
10.14778/3352063.3352092.

[3] Michael Armbrust et al. “Structured Streaming: A Declarative API for Real-
Time Applications in Apache Spark”. In: Proceedings of the 2018 International
Conference on Management of Data. SIGMOD ’18. Houston, TX, USA: ACM,
2018, pp. 601–613. ISBN: 978-1-4503-4703-7. DOI: 10.1145/3183713.3190664.
URL: http://doi.acm.org/10.1145/3183713.3190664.

[4] Magdalena Balazinska et al. “Fault-tolerance in the Borealis Distributed Stream
Processing System”. In: Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’05. Baltimore, Maryland: ACM,
2005, pp. 13–24. ISBN: 1-59593-060-4. DOI: 10.1145/1066157.1066160. URL:
http://doi.acm.org/10.1145/1066157.1066160.

[5] Hal Berenson et al. “A Critique of ANSI SQL Isolation Levels”. In: Proceed-
ings of the 1995 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’95. San Jose, California, USA: Association for Computing Machin-
ery, 1995, 1–10. ISBN: 0897917316. DOI: 10.1145/223784.223785. URL: https:
//doi.org/10.1145/223784.223785.

[6] Irina Botan et al. “Transactional stream processing”. In: 15th International Con-
ference on Extending Database Technology, EDBT ’12, Berlin, Germany, March 27-
30, 2012, Proceedings. Ed. by Elke A. Rundensteiner et al. ACM, 2012, pp. 204–
215. DOI: 10.1145/2247596.2247622. URL: https://doi.org/10.1145/
2247596.2247622.

[7] Paris Carbone et al. “Apache Flink™: Stream and Batch Processing in a Single
Engine”. In: IEEE Data Eng. Bull. 38.4 (2015), pp. 28–38. URL: http://sites.
computer.org/debull/A15dec/p28.pdf.

[8] Paris Carbone et al. “Beyond Analytics: The Evolution of Stream Processing
Systems”. In: Proceedings of the 2020 International Conference on Management of
Data, SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-
19, 2020. Ed. by David Maier et al. ACM, 2020, pp. 2651–2658. ISBN: 9781450367356.
DOI: 10.1145/3318464.3383131. URL: https://doi.org/10.1145/3318464.
3383131.

https://doi.org/10.1145/3093742.3093929
https://doi.org/10.1145/3093742.3093929
https://doi.org/10.1145/3093742.3093929
https://doi.org/10.14778/3352063.3352092
https://doi.org/10.14778/3352063.3352092
https://doi.org/10.14778/3352063.3352092
https://doi.org/10.1145/3183713.3190664
http://doi.acm.org/10.1145/3183713.3190664
https://doi.org/10.1145/1066157.1066160
http://doi.acm.org/10.1145/1066157.1066160
https://doi.org/10.1145/223784.223785
https://doi.org/10.1145/223784.223785
https://doi.org/10.1145/223784.223785
https://doi.org/10.1145/2247596.2247622
https://doi.org/10.1145/2247596.2247622
https://doi.org/10.1145/2247596.2247622
http://sites.computer.org/debull/A15dec/p28.pdf
http://sites.computer.org/debull/A15dec/p28.pdf
https://doi.org/10.1145/3318464.3383131
https://doi.org/10.1145/3318464.3383131
https://doi.org/10.1145/3318464.3383131

Bibliography 35

[9] Paris Carbone et al. “State Management in Apache Flink&Reg;: Consistent
Stateful Distributed Stream Processing”. In: Proc. VLDB Endow. 10.12 (Aug.
2017), pp. 1718–1729. ISSN: 2150-8097. DOI: 10.14778/3137765.3137777. URL:
https://doi.org/10.14778/3137765.3137777.

[10] Josiah L. Carlson. “Database row caching”. In: Redis in Action. USA: Manning
Publications Co., 2013, pp. 31–34. ISBN: 9781617290855.

[11] K. Mani Chandy and Leslie Lamport. “Distributed Snapshots: Determining
Global States of Distributed Systems”. In: ACM Trans. Comput. Syst. 3.1 (Feb.
1985), 63–75. ISSN: 0734-2071. DOI: 10 . 1145 / 214451 . 214456. URL: https :
//doi.org/10.1145/214451.214456.

[12] Martijn De Heus et al. “Distributed transactions on serverless stateful func-
tions”. In: DEBS. 2021.

[13] Giuseppe DeCandia et al. “Dynamo: Amazon’s highly available key-value
store”. In: ACM SIGOPS operating systems review 41.6 (2007), pp. 205–220.

[14] European Union. “Regulation (EU) 2016/679 of the European Parliament and
of the Council of 27 April 2016 on the protection of natural persons with regard
to the processing of personal data and on the free movement of such data,
and repealing Directive 95/46/EC (General Data Protection Regulation)”. In:
Official Journal L119 59 (May 2016), pp. 1–88. URL: https://eur-lex.europa.
eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC.

[15] Raul Castro Fernandez et al. “Integrating Scale out and Fault Tolerance in
Stream Processing Using Operator State Management”. In: Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data. SIGMOD
’13. New York, New York, USA: ACM, 2013, pp. 725–736. ISBN: 978-1-4503-
2037-5. DOI: 10.1145/2463676.2465282. URL: http://doi.acm.org/10.1145/
2463676.2465282.

[16] Marios Fragkoulis et al. A Survey on the Evolution of Stream Processing Systems.
2020. arXiv: 2008.00842. URL: https://arxiv.org/abs/2008.00842.

[17] Can Gencer et al. “Hazelcast Jet: Low-latency Stream Processing at the 99.99th
Percentile”. In: Proceedings of the VLDB Endowment 14.12 (2021).

[18] Philipp Götze and Kai-Uwe Sattler. “Snapshot Isolation for Transactional Stream
Processing”. In: Advances in Database Technology - 22nd International Conference
on Extending Database Technology, EDBT 2019, Lisbon, Portugal, March 26-29,
2019. Ed. by Melanie Herschel et al. OpenProceedings.org, 2019, pp. 650–653.
DOI: 10.5441/002/edbt.2019.78. URL: https://doi.org/10.5441/002/
edbt.2019.78.

[19] Theo Härder and Andreas Reuter. “Principles of Transaction-Oriented Database
Recovery”. In: ACM Comput. Surv. 15.4 (1983), pp. 287–317. DOI: 10.1145/289.
291. URL: https://doi.org/10.1145/289.291.

[20] Gabriela Jacques-Silva et al. “Consistent Regions: Guaranteed Tuple Process-
ing in IBM Streams”. In: Proc. VLDB Endow. 9.13 (Sept. 2016), pp. 1341–1352.
ISSN: 2150-8097. DOI: 10.14778/3007263.3007272. URL: https://doi.org/
10.14778/3007263.3007272.

https://doi.org/10.14778/3137765.3137777
https://doi.org/10.14778/3137765.3137777
https://doi.org/10.1145/214451.214456
https://doi.org/10.1145/214451.214456
https://doi.org/10.1145/214451.214456
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
https://doi.org/10.1145/2463676.2465282
http://doi.acm.org/10.1145/2463676.2465282
http://doi.acm.org/10.1145/2463676.2465282
https://arxiv.org/abs/2008.00842
https://arxiv.org/abs/2008.00842
https://doi.org/10.5441/002/edbt.2019.78
https://doi.org/10.5441/002/edbt.2019.78
https://doi.org/10.5441/002/edbt.2019.78
https://doi.org/10.1145/289.291
https://doi.org/10.1145/289.291
https://doi.org/10.1145/289.291
https://doi.org/10.14778/3007263.3007272
https://doi.org/10.14778/3007263.3007272
https://doi.org/10.14778/3007263.3007272

Bibliography 36

[21] Asterios Katsifodimos and Marios Fragkoulis. “Operational Stream Process-
ing: Towards Scalable and Consistent Event-Driven Applications”. In: Advances
in Database Technology - 22nd International Conference on Extending Database Tech-
nology, EDBT 2019, Lisbon, Portugal, March 26-29, 2019. Ed. by Melanie Herschel
et al. OpenProceedings.org, 2019, pp. 682–685. DOI: 10.5441/002/edbt.2019.
86. URL: https://doi.org/10.5441/002/edbt.2019.86.

[22] Avinash Lakshman and Prashant Malik. “Cassandra: a decentralized struc-
tured storage system”. In: ACM SIGOPS Operating Systems Review 44.2 (2010),
pp. 35–40.

[23] Leslie Lamport et al. “Paxos made simple”. In: ACM Sigact News 32.4 (2001),
pp. 18–25.

[24] Alessandro Margara, Lorenzo Affetti, and Gianpaolo Cugola. “TSpoon: Trans-
actions on a stream processor”. In: Journal of Parallel and Distributed Computing
140 (2020), pp. 65–79. ISSN: 0743-7315. DOI: 10.1016/j.jpdc.2020.03.003.
URL: https://doi.org/10.1016/j.jpdc.2020.03.003.

[25] John Meehan et al. “S-Store: Streaming Meets Transaction Processing”. In: Proc.
VLDB Endow. 8.13 (Sept. 2015), 2134–2145. ISSN: 2150-8097. DOI: 10.14778/
2831360.2831367. URL: https://doi.org/10.14778/2831360.2831367.

[26] Rajesh Nishtala et al. “Scaling Memcache at Facebook”. In: Proceedings of the
10th USENIX Symposium on Networked Systems Design and Implementation, NSDI
2013, Lombard, IL, USA, April 2-5, 2013. Ed. by Nick Feamster and Jeffrey C.
Mogul. USENIX Association, 2013, pp. 385–398. URL: https://www.usenix.
org/conference/nsdi13/technical-sessions/presentation/nishtala.

[27] Shadi A. Noghabi et al. “Samza: Stateful Scalable Stream Processing at LinkedIn”.
In: Proc. VLDB Endow. 10.12 (Aug. 2017), pp. 1634–1645. ISSN: 2150-8097. DOI:
10.14778/3137765.3137770. URL: https://doi.org/10.14778/3137765.
3137770.

[28] Diego Ongaro and John K. Ousterhout. “In Search of an Understandable Con-
sensus Algorithm”. In: 2014 USENIX Annual Technical Conference, USENIX ATC
’14, Philadelphia, PA, USA, June 19-20, 2014. Ed. by Garth Gibson and Nicko-
lai Zeldovich. USENIX Association, 2014, pp. 305–319. URL: https://www.
usenix.org/conference/atc14/technical-sessions/presentation/ongaro.

[29] Pedro F Silvestre et al. “Clonos: Consistent Causal Recovery for Highly-Available
Streaming Dataflows”. In: SIGMOD. 2021.

[30] P Tucker et al. NEXMark—A Benchmark for Queries over Data Streams. Tech. rep.
Technical report, OGI School of Science & Engineering at OHSU, 2002.

[31] Shuhao Zhang et al. “Towards Concurrent Stateful Stream Processing on Mul-
ticore Processors”. In: 36th IEEE International Conference on Data Engineering,
ICDE 2020, Dallas, TX, USA, April 20-24, 2020. IEEE, 2020, pp. 1537–1548. DOI:
10.1109/ICDE48307.2020.00136. URL: https://doi.org/10.1109/ICDE48307.
2020.00136.

https://doi.org/10.5441/002/edbt.2019.86
https://doi.org/10.5441/002/edbt.2019.86
https://doi.org/10.5441/002/edbt.2019.86
https://doi.org/10.1016/j.jpdc.2020.03.003
https://doi.org/10.1016/j.jpdc.2020.03.003
https://doi.org/10.14778/2831360.2831367
https://doi.org/10.14778/2831360.2831367
https://doi.org/10.14778/2831360.2831367
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://doi.org/10.14778/3137765.3137770
https://doi.org/10.14778/3137765.3137770
https://doi.org/10.14778/3137765.3137770
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.1109/ICDE48307.2020.00136
https://doi.org/10.1109/ICDE48307.2020.00136
https://doi.org/10.1109/ICDE48307.2020.00136

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Why do we need Queryable State?
	Preliminaries
	Streaming Model
	State Management & Fault Tolerance
	Key-Value Stores & Relation to Stream Processors
	Isolation levels in distributed query systems

	Approach Overview
	Architecture
	Colocating State & Compute

	Exposing Internal State to External Systems
	Storing Operator State in a KV Store
	Modeling & Storing State Externally
	Querying Live & Snapshot State

	Isolation levels
	Querying Live state
	Querying Snapshot State

	Implementation
	Platform choice
	State structure
	Fault-tolerance
	Query system
	Direct object interface
	SQL interface

	Use Case: Q Commerce in Delivery Hero
	Evaluation
	Experimental Setup
	Overhead Experiments
	Effect of Snapshotting Mechanism on System Performance
	Query Performance
	Scalability

	Related Work
	Transactional Stream Processing
	Queryable State

	Future work
	Conclusions
	Bibliography

