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Chapter 1
Introduction

World-wide, the demand for portable, hand-held devices is increasing strongly. More
and more cellphones, personal digital assistants (PDAs), MP3 players and Game
Boys are bought. At the same time, there is an increase in the number of different
tasks such devices are expected to be capable of doing, ranging from image processing
to data communications. Thus, an overall trend is visible towards ever smaller
devices integrating ever more functions. Furthermore, most processing tasks tend
to be data-centric, i.e., most computational effort is put in processing data streams.
As such, the operating cores can be seen as data stream processors.

The tendency of cramming more functionality in smaller devices is enabled by
the continuing growing capabilities of semi-conductor technology. Ever smaller de-
vices can operate on ever higher frequencies, at lower operating supply voltages.
Unfortunately, the advances in semi-conductor technology do not solve all of our
problems, because we do not want to do the same with improved devices, we want
to do more with less. Therefore, the tools used to design and create the chips have to
be improved, so that the increasing design gap between ideas and silicon realizations
can be bridged.

The call for portable devices, especially in telecommunication applications, im-
poses increasingly strict requirements on, for instance, the dimensions and the energy
consumption of the apparatus. Ideally, your cellphone should be able to operate for
months on a single lightweight battery. Unfortunately, the energy storage capac-
ity of batteries is only being improved slowly [57, 66]. Therefore, already at the
design stage, care must be taken to reduce the energy consumption of the devices
as much as possible, but this should not affect the performance of the device or
the required silicon area. A designer must find a balance between these competing
design objectives.

In this thesis, a high-level design method is presented that aids the designer in
finding that balance. Furthermore, design automation tools are implemented to test
and verify this method for the design of an OFDM (orthogonal frequency-division
multiplexing) transceiver. This chapter introduces the ideas and concepts underlying
the method and tools.

1
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Figure 1.1: The abstraction pyramid represents the trade-offs between the abstrac-
tion level, the cost of changes, the impact of design decisions and available informa-
tion.

1.1 High-level system design

As device sizes shrink, the complexity of a chip increases. To describe the complex
designs, designers have to make use of languages at higher levels of abstraction in
order to meet time-to-market deadlines. Current hardware description languages
(HDLs) such as VHDL (very high speed integrated circuit hardware description lan-
guage) and Verilog are not equipped to handle these levels of abstraction. As a
result, designers resort to general programming languages to start with the func-
tional exploration of their designs.

High-level exploration of the design space is crucial when one must design an
embedded system with competing objectives while limited design time is available.
Significant changes to the functionality or the architecture at lower levels are ex-
tremely expensive and should be avoided in all cases. Furthermore, choices made at
a high level tend to have a huge impact on the performance and costs of the final
design. For example: given an ultra low-power multiplier, a change in algorithm
that doubles or triples the number of multiplications still causes a large increase
in the power consumption. In figure 1.1, the trade-offs between abstraction level,
the cost of changes, the impact of design decisions and the available information is
depicted in a so-called abstraction pyramid, originally introduced in [34]. A similar
representation of the design space “reachability” can be found in [13].

Because of their popularity as general-purpose programming languages, and the
corresponding abundance of libraries and tools, C and C++ are commonly used
to construct an executable specification of the functional part of the design. The
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desired functionality is described by a set of functions that together implement the
algorithm. Functions are expressed purely sequentially and an explicit notion of
time is lacking. Hence, timing can only be expressed as the order in which the
functions are called.

However, the high abstraction level of these programming languages allows for
a very terse description of the algorithm. Moreover, changes to the algorithm are
easily incorporated and, because of the high simulation speeds, quickly verified.
These properties make programming languages like C or C++ the de facto standard
for the initial, high-level specification of a complex design, even though originally
these languages were never intended for this purpose.

1.1.1 Hardware-software partitioning

Once the initial specification of the algorithm is fixed, one of the first questions
that arises is which parts of the algorithm should be implemented in hardware and
which in software in order to find an implementation that best suits the design’s
requirements (see figure 1.2). A key problem is that at this stage usually only
insufficient or at least inaccurate information to make a proper decision is available
to the designer. Moreover, the partitioning problem is a multi-objective optimization
problem and although methods for multi-objective optimization exist, normally the
designer wants to have a firm control over the decision process. In the end, it is up
to the designer to prioritize the design objectives.

specification

executable

algorithm design

hardware

description description

software

synthesis

placement & routing linking

compilation

?

embedded system

idea

Figure 1.2: Once the algorithm is fixed, the design flow of an embedded system
starts with an executable specification. Subsequently, it is decided which parts to
implement in software and which in hardware.
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The overwhelming number of options and the pace with which they change,
render it impossible for a human to make a sound decision about today’s complex
designs. He simply cannot predict the consequences of a particular choice accurately.
Therefore, a tool to quickly identify the trade-offs is indispensable in making well-
founded partitioning decisions. Such a tool should be able to cope with the inherent
uncertainties due to the high level of design.

In addition to the aforementioned uncertainties there is another complicating
factor: the precise algorithm or the set of algorithms to be implemented may not
even be given yet. Several implementations and alternatives may be available, out
of which the best should be selected and for which an optimal architecture should
be constructed.

In support of the partitioning tool, additional instruments should be available
to quickly generate estimates of cost and performance figures, if not absolute then
at least relative numbers. If all these tools are available, a designer can quickly
explore different partitionings and select the one that best suits his needs. In this
thesis a solution to the partitioning problem is presented. Its workings are verified
by implementing the solution in a partitioning tool and applying it to a test case.

The partitioning tool takes as input a series of algorithms specified as data flow
graphs. The possible architectures are specified by data processing blocks, such as
processing cores and memories, and data transfer elements such as busses. The
optimization problem itself is formulated as a mathematical programming problem,
more precisely, as a mixed integer linear program. In order to deal with the imprecise
nature of the cost and performance figures, the linear program uses fuzzy instead of
crisp numbers to represent the coefficients. The necessary fuzzy solver is constructed
in such a way that it optimizes the most probable outcome, while minimizing the
chances of finding a worse solution and maximizing the chances of a better one.

1.1.2 Hardware specification

After establishing the functional correctness, one has to create a high-level hardware
description of the design for the parts of the design to be implemented in hardware.
That is, one must model the system as concurrently executing processes. Also the
notion of time has to be introduced. To represent the system at this level, one can
use a hardware description language.

A hardware description language typically supports different description models
for hardware. These commonly include a register transfer level (RTL) model and a
behavioral model.

• Register transfer level: Formally speaking an RTL model describes hardware
as state elements (registers) together with the combinatorial logic connecting
them. The resulting description is cycle accurate, both at the interfaces and
internally.

RTL is best suited for a design if the design is best conceived by its structure.
The structure is usually divided into a data path and a a finite state machine
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(FSM) as controller. Because RTL specifies a structural view of hardware,
algorithms are difficult to express. However, RTL allows the designer complete
control over the architecture, enabling very high-performance designs.

• Behavioral model: A behavioral model describes a design algorithmically. Al-
though the internal behavior of the design is not described cycle accurate, the
input-output behavior is.

Behavioral languages commonly allow for higher levels of abstraction with
respect to an RTL description. Hence, more concise descriptions are possible.

Today, Verilog and VHDL are the most popular HDLs. Numerous tools are available
for simulation and synthesis, either directed to ASICs (application specific integrated
circuit) or FPGAs (field programmable gate array).

Difficulties arise when one tries to translate the executable specification into a
hardware description, because of the differences in representation: sequential versus
concurrent. Current solutions that automatically convert the executable specifica-
tion to an HDL either extend the language with specific constructs for hardware
description, or target a predefined fixed architecture. Examples of these solutions
are Ocapi [72] from IMEC, and A|RT Designer from Adelante Technologies (former
Frontier Design), respectively. Serious drawbacks of these solutions are that the
designer either must learn the specific extensions to standard C or C++, or has to
restrict himself to the particular architecture targeted. Other approaches, such as
SA-C [67] and Handel-C [42] use variants of the C language, thus also forcing the
designer to learn a new language.

As a final resort, the conversion can be done manually by rewriting the system
model from scratch. The major drawback is the time-consuming and error-prone
nature of this process. Furthermore, discrepancies between the executable specifica-
tion and the hardware description are easily introduced. This significantly increases
the risk that the final product does not meet its specifications. In that case, an
expensive re-design would be necessary, introducing a delay in the time-to-market
of the product.

Moreover, at this stage it is often still unclear which parts of the design should
be implemented in software and which in hardware. Therefore, the time and effort
invested in the conversion should be kept to a minimum, as some of this work might
become obsolete in a later stage.

Recently, with the introduction of SystemC as a modeling language, an alterna-
tive trajectory has become possible. Now, the executable specification is translated
into SystemC instead of into a conventional HDL. SystemC offers the same modeling
properties as these, but additionally it provides a higher level of abstraction, effec-
tively offering all features of the high-level programming language C++. Of course
not all constructs are synthesizable, but the translated code offers a good starting
point for further refinement towards synthesis.
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Figure 1.3: Design flow used throughout this thesis; the dashed arrows denote miss-
ing tools in the flow.

1.1.3 Design flow

In accordance with the arguments raised in the previous sections, we come to the de-
sign flow presented in figure 1.3. First, the algorithm to be implemented is described
in a high-level programming language, in particular in C. Then, a partitioning has
to be made, deciding which parts to implement in hardware and which parts to
implement in software. The original C code can directly be used to describe the
software, and additional steps are not needed. In contrast the C code describing the
functionality of the hardware parts has to be converted into an HDL, either an RTL
or a behavioral description. For both descriptions, we choose to use SystemC.

It is apparent that a number of steps cannot be done automatically yet. The
first is the decision how to divide the design into hardware and software parts.
The second is the automatic generation of the hardware descriptions, either using
a structural (RTL) or a behavioral representation. The focus of this thesis is on
partial automation of these steps, in order to quickly guide a designer towards a
feasible solution that meets the requirements.

To test and verify the ideas and the design flow presented thus far, several design
tools have been written to aid a chip designer in making architectural decisions at
a high level. Because these decisions are made at a high level, they have a large
impact on the performance and costs of the final design. In particular attention is
paid to the energy consumption of a device, and therefore, power is incorporated
into the design flow as one of the primary design constraints.
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1.2 Power as design constraint

In general, power is defined as the conversion rate of energy. In the context of
this thesis a more restricted definition is used, because the thesis focuses on in-
tegrated circuits (ICs). In this restricted context, power is defined as the rate at
which electrical energy is converted into some other form, usually heat (dissipa-
tion). Equivalently, it is defined as the rate at which an IC consumes energy from
an electrical power source.

It is important to note that the terms ‘power’ and ‘energy’ are often used in-
terchangeably, although they are not the same quantities. To be precise, if at time
instance τ0 a system has energy E(τ0), and at τ1 only E(τ1) is left, then the power P
is defined as the amount of energy ∆E = E(τ1)−E(τ1) consumed in that particular
time interval ∆t = τ1 − τ0

P =
∆E

∆t
=

E(τ1)− E(τ1)

τ1 − τ0

. (1.1)

Taking the limit ∆t → 0 leads to the definition of the instantaneous power con-
sumption p(t) at time t

p(t) =
d

dt
E(t), (1.2)

where E(t) is the energy present in the system at time t.
Power has been a constraint in the design of analog systems for a long time,

for instance in medical applications such as pacemakers and hearing aids. However,
power was not an issue in the design of digital systems. Area and timing were by
far the most important design constraints. However, recently power has become a
more and more important constraint, for a number of reasons.

• Rapidly growing complexity: The current trend towards higher operating fre-
quencies, higher integration densities and higher performance still continues
in accordance with Moore’s law [45].

• Application in mobile devices: The rapidly growing demand for mobile de-
vices, such as personal digital assistants (PDAs) and cellular phones, increases
the need for battery-powered devices.

• Slowly increasing battery capacity: Unfortunately progress in battery technol-
ogy cannot keep pace with advances in electronics circuits [57, 66], thereby
increasing the gap between supply and demand.

• Reduced lifetimes because of heating: With the higher frequencies and the in-
creasing integration densities, operating temperatures rise, thereby increasing
the failure rate of electronic devices.1

1The failure rate can be estimated using the Arrhenius equation λ = λ0e
−Ea

kT , where λ is
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Figure 1.4: Predicted relative growth (data taken from [3]).

• Problematic power supply: The required energy must be transported from an
external source (for instance a battery) onto the chip via its pins and bonding
pads. Because of the large currents involved, many pins are required in order
to reduce the current per pin.

A number of these effects are depicted in figure 1.4. Plotted are the relative predicted
increase of frequency, supply voltage, battery power and power dissipation. The data
for the graphs originate from [3]. The increase in dissipation is apparent, as is the
lagging of the battery power.

Depending on the application, power consumption varies from a marginal design
constraint to the most important one. It can nearly be neglected in low performance
designs connected to a fixed power grid, while in high-performance battery-powered
mobile devices it is crucial. Furthermore, power consumption is a dominant factor for
systems which are hard to access, such as satellites, and medical systems implanted
in the human body.

Various aspects of the power consumption of a system have already been inves-
tigated. In [56] a classification is given of current power management solutions for
operating systems. A framework is presented that allows the implementation of co-
operating power management policies at this level. Additionally, a novel scheduling
algorithm is described that finds an energy-efficient setting for modern microproces-
sors exploiting voltage scaling. In [43] a classification is given of the sources of power
dissipation in deep sub-micron CMOS logic. Reduction techniques are presented for
each source of dissipation. Also a new technique to reduce the weak-inversion cur-
rent is presented. This thesis focuses on the effects of design choices on, among
others, the energy consumption of a design and how to make these effects quickly
visible to the designer.

the failure rate, λ0 a reference value, Ea the activation energy of the failure mechanism, and k
Boltzmann’s constant [39]. With an increase of 10◦C at an operating temperature of 70◦C, the
failure rate increases by a factor of 1.8 to 6.6 for typical values of the activation energy.
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1.3 Application

To check whether the tools created operate properly, and whether the design flow
is complete, we need a representative application to serve as a test case. For this,
an orthogonal frequency-division multiplexing transceiver is selected. The tools and
design flow are applied to design the baseband processing of the OFDM modulator
and demodulator used in the Ubiquitous Communications (UbiCom) program [36].

In the UbiCom scenario, a user is equipped with a wearable device consisting
of a terminal and a see-through display. Text, graphics, images and video can be
displayed before the user’s eyes, properly aligned and consistent with the real world,
thereby enhancing the user’s view (so-called augmented reality).

To transfer all this data to and from the user, a high-speed wireless link is
necessary using an OFDM transceiver. The design of the baseband processing of this
transceiver is selected as a case to test the design flow and tools. It is chosen because
the modulation and demodulation are data-dominated operations. Moreover, there
are strongly conflicting design constraints, in particular the required high processing
speed versus the severe restrictions on the energy consumption, and hence it serves
as a challenging test case.

1.4 Outline

This thesis describes several methods and tools to come to a consistent design flow,
starting with a high-level specification in C. An essential part of this flow is a new
tool to automate the hardware-software partitioning. The tool finds an optimal
architecture to implement one or more algorithms. The resulting architecture is
optimal with respect to the chip area, the execution time, or the energy consumption.

As the successful operation of the partitioning tool depends on the quick avail-
ability of accurate estimates for area, latency and energy consumption, we need
an additional tool to convert the original C code into a hardware description lan-
guage, in particular into SystemC. The automated conversion from C to SystemC
enables a closed design flow where tedious manual rewrites are no longer necessary.
Furthermore, the automated conversion eliminates the chances of coding errors.

To test and verify the new design automation tools, we will apply the design tools
to implement an OFDM transceiver. But first, we investigate several techniques to
reduce the energy consumption of the OFDM transceiver beforehand.

In chapter 2 we give an overview of existing estimation techniques for area usage,
delay and energy consumption. Then, both the partitioning tool and the conversion
tool are described in chapter 3. In chapter 4 we describe the novel energy reduction
techniques for OFDM, and in chapter 5 we discuss the implementation of the OFDM
transceiver using the presented methods and tools. Finally, in chapter 6, we conclude
this thesis.





Chapter 2
Design trade-offs

2.1 Introduction

To prevent expensive re-designs in the final part of the development of a sys-
tem/product the designer needs to obtain feedback about the performance and costs
of the current design as early as possible in the design flow. Performance feedback
is already incorporated in modern design flows, applying formal analysis, high-level
functional simulations and lower-level behavioral and structural simulations.

Cost feedback, on the other hand, is only available at the final stages of the design
flow, e.g. only when a net list is available. Yet, choices made at a high level may
severely constrain the final product. In particular in the design of a power-limited
system, power estimation early in the design cycle is crucial.

This chapter gives an overview of cost estimation techniques, more specifically
techniques for determining area, delay and energy consumption. Of course, these
three are not independent and therefore their dependencies, i.e., the trade-offs, are
discussed in the final section of this chapter.

2.2 Area estimation

In the early days of VLSI design, the area consumption was the decisive limit on
what could be integrated on a chip. Over the years, as chip area and transistor
densities steadily grew, it remained one of the primary design constraints, because
of its impact on processing costs and yield. Therefore, chips produced in large
quantities are designed to be as small as possible.

The total area used for a circuit can be divided into two main categories, namely
the area used by the gates, and the area due to the interconnect. As the interconnect
can be positioned on top of the gates, these two overlap and the total area is not
merely their sum. However, not all interconnects can be placed over the gates, so
some additional area is needed to accommodate the interconnect.

11
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2.2.1 Gate area estimation

Several techniques exist for estimating the area. Depending on the level of detail
available, different estimation methods and techniques are used. These include:

• transistor counting,

• complexity-based techniques, and

• Rent’s rule.

Each technique is discussed in more detail in the following sections.

Transistor count

If a net list is available, the area of the design can be estimated by counting the
number of transistors used and by multiplying the result with the area of a single
transistor. For every library cell the number of transistors used is available, thus
calculating the total area estimate is simply a summing operation.

Obviously, the area due to interconnect is not accounted for. Moreover, ideal
placement is assumed, i.e., gaps between cells are not taken into account. Therefore,
the transistor count estimate gives a lower bound of the total area.

If a net list is not available, a synthesis step can be made to obtain a preliminary
estimate. Depending on the complexity of the design this synthesis can be expensive
in terms of computation time. Therefore, for quick iterations when exploring the
design space, this approach is not very attractive.

Complexity-based area estimation

With complexity-based estimation techniques, it is assumed that the area needed
to implement a certain boolean function depends on its area complexity, i.e., it is
assumed that the area complexity of a boolean function corresponds to the minimum
number of gates required to implement the function and thus can serve as a valid
estimate of the gate count. Different measures and approaches exist to express the
area complexity in terms of known properties of the function to be implemented. Of
course, once the area for the combinatorial part of a design has been estimated, the
area needed for the registers and other memory elements should also be accounted
for.

In [16] the authors use the number of literals L(f) of a boolean function f as
an area complexity measure. An exponential relation with the function’s entropy is
found via the so-called computational work of a function. The computational work
is a measure for the computing power of a function.

L(f) ∝ W (f) (2.1)

The computational work W (f) of an n-input combinatorial function f with m
outputs is given by [27]

W (f) = 2nH(f). (2.2)
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Here, H(f) is the entropy of the function and it is defined as

H(f) =
2m∑
i=1

Pi log2

1

Pi

. (2.3)

where Pi is the probability of the ith output vector yi, given by

Pi =
nyi

2n
(2.4)

with nyi
the number of input vectors that have yi as result.

The authors show that this model is suitable for estimating the area for randomly
generated functions. However, it is argued in [48] that this measure for the area
complexity does not hold for typical VLSI circuits. Therefore, the authors suggest
an extension to the model. They argue that the model should be extended by
adding information about the structure of the boolean space of the function, to
accommodate typical VLSI circuits.

In order to capture the characteristic structure of a boolean function, the authors
introduce the so-called linear measure L(f) for a single-output boolean function f .
It is defined as

L(f) = Lon(f) + Loff(f). (2.5)

Here, Lon(f) and Loff(f) represent the linear measure of the on-set and off-set of the
function f , respectively.

The linear measure for the on-set1 of an n-input, single-output boolean function
f is calculated as the weighted sum of the distinct sizes of the prime implicants in
a minimal cover of the on-set [44] of f

Lon(f) =
N∑

i=1

ci · pi. (2.6)

Here, N is the number of distinct sizes of prime implicants in the cover, {ci}
is the ordered set of distinct sizes of these implicants for i = 1 . . . N such that
c1 < c2 < . . . < cN , and pi is the weight factor on the prime implicants of size ci.

The weighing factors are defined as follows

pi =

{
P (fi)− P (fi−1), if i > 1,
P (fi), if i = 1,

(2.7)

where P (fi) is the probability that fi = 1, assuming an equal probability for all
points in the boolean space of fi. Sub-function fi of the original function f is
defined such that its on-set solely consists of the prime implicants of the on-set of f
with sizes c1, c2, . . . ci. With these definitions we get

N∑
i=1

pi = P (f). (2.8)

1The linear measure for the off-set is calculated similarly.
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Thus P (fi) is equivalent to the fraction of the boolean space of f covered by sub-
function fi.

In order to estimate the area of a boolean function, the authors use almost-
exponential relations to translate the linear complexity measure into an area esti-
mate. These relations are derived by randomly generating boolean functions for
different entropies H(f), calculating the linear measure, and finally measuring the
gate count after synthesis.

In order to apply this technique to multi-output boolean functions, a multi-
output function is transformed into an equivalent single-output function. The trans-
formation boils down to adding a multiplexer to the circuit and calculating the linear
measure for the result. Finally the additional area of the multiplexer is compensated
for.

Rent’s rule

An empirical method to predict the area of a circuit is based on the observation
made by Rent that the average number of terminals T per module is exponentially
dependent on the number of gates G used by the module [40]

T = t ·Gp. (2.9)

Here, the Rent coefficient t is interpreted as the average number of terminals required
by a single gate and p is known as the Rent exponent. This relationship is commonly
known as Rent’s rule.

Conversely, the area can be expressed in the number of pins T

G =

(
T

t

) 1
p

. (2.10)

Thus, if the technology and design parameters t and p are known, an estimate of
the area can be made based on the number of pins of the circuit.

If the Rent coefficient and exponent are not known beforehand, they have to be
estimated. As Rent’s rule is an exponential relationship, an error in the prediction
of the Rent exponent can have large impact on quantities derived using Rent’s rule.
It is important to note that the Rent coefficient and exponent cannot be regarded
as independent variables [17].

Current methods to determine the Rent coefficient and exponent are based on
two approaches. The first is to use statistical estimates from previous designs that
are similar (various estimates can be found in literature [5]). The second is to
estimate the parameters from the properties of the net list. This again requires a
synthesis step. However, because of the self-similarity within the design, the same
properties apply throughout the whole design. Therefore, only small sub-circuits
have to be synthesized to obtain a representative net list.
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2.2.2 Interconnect estimation

The estimation of interconnect characteristics is important as it influences the three
main design constraints directly.

• Area: Obviously, the wires have to be placed somewhere on the chip. Espe-
cially structures like busses require a large area.

• Delay: The propagation delay is directly dependent on the length of the wires
(see also section 2.3.1).

• Power: The parasitic capacitance and resistance of the wires are dependent
on the length of the wires, thus longer wires require more energy to transport
a signal value.

Estimation methods can be divided into a priori and a posteriori methods. As
a posteriori techniques usually require a full placement step, this method is not
feasible for quick iterations. Therefore, in the remainder of this section we will focus
on a priori estimation methods only.

An a priori estimation technique for interconnects is the method introduced by
Donath [19]. The author recursively applies Rent’s rule to come up with estimates
for the average lengths lk and the expected number of interconnections nk at each
level k of the design hierarchy. Using these, the average length L of the interconnect
is calculated

L =

∑K−1
k=0 nklk∑K−1
k=0 nk

, (2.11)

where K is the top level in the hierarchy. Now, with

nk = αC4K
(
1− 4p−1

)
4k(p−1), (2.12)

where C is the total number of gates in the design and p the Rent exponent, and
with

lk =
2

9

(
7λ− 1

λ

)
, (2.13)

where λ = 2k, we have all the information we need to calculate the average inter-
connection length L. As the width the minimum separation distance of the wiring
is usually known, the interconnect area can easily be calculated.

In [77] Donath’s model is refined to accommodate additional placement infor-
mation. It is assumed that an optimal placement procedure will preferably place
gates that are interconnected close together. This results in a lower estimate of the
lengths of the interconnections. Therefore, Donath’s model can be used as an upper
bound estimate, whereas the refined model gives more accurate predictions.
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2.3 Delay estimation

In many systems to be designed, timing is a critical design constraint. This is
especially true for real-time systems, i.e., systems that should generate a response
within a specified maximum delay after applying a stimulus. In the remaining
systems the temporal behavior may not be critical, but it still is an important
performance measure. Therefore delay estimation is a crucial aspect of a design
trajectory.

In this section we focus on delay estimation of synchronous circuits. The delay
or execution time of a synchronous circuit can be expressed by two figures of merit,
namely the cycle time and the latency of the circuit. The cycle time is the period
of the fastest clock that can be applied to the circuit, without introducing errors.
The latency is the time required to execute operations, expressed in terms of clock
cycles. Herewith the product of cycle time and latency gives the overall execution
delay of the circuit.

Delay estimation techniques can be subdivided into two main categories: delay
estimation for individual resources, and system delay estimation. The methods in
the first category try to estimate the delay of relatively small building blocks. Tech-
niques in the second category use these results to estimate the delay of a complete
system consisting of several of these building blocks.

2.3.1 Resource delay estimation

Various methods exist for estimating the delay of individual resources. They are
based on different principles.

• Measurement: An evident way to obtain a delay estimate is to measure the
timing characteristic of a circuit once it has been built. Though accurate,
the method is only applicable for relatively small designs, because of the time
needed to physically build the circuit and because of the associated costs.

• Calculus: A second method to estimate the delay of a circuit is to calculate
the waveforms on all nodes of the circuit either analytically or numerically.
These waveforms are then used to calculate the timing behavior of the circuit.

The applicability of this method is heavily influenced by the level of detail
required. For instance, in a synchronous circuit, the exact calculation of the
minimum cycle time is more difficult than the calculation of the latency of a
circuit once the cycle time is known.

• Simulation: Simulation-based methods are used at different levels of detail for
delay estimation. The underlying models determine the accuracy of the esti-
mation, and range from detailed transistor models to behavioral gate models.

All three methods assume that the implementation of the resource is already
known. Thus a net list or a layout specification of the resource must be available.
Of course, for measuring the delay of circuit, the circuit has to be realized already.
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Calculus and simulation-based methods require knowledge and subsequent mod-
eling of the delay mechanisms. In digital synchronous circuits, two sources of delay
can be identified: gate delay, and propagation delay. The former is the time it takes
a gate to switch from one level to another. The latter is the time needed to transport
a signal over a certain distance on a chip. Each of these is discussed in more detail
in the following paragraphs.

Gate delay

As CMOS FETs have a limited current driving capability, charging or discharging
of the load capacitance of a gate causes some delay larger than zero. In this section
a lower bound for this delay is presented.

We consider a charged load capacitance which is discharged by a conducting
NMOS transistor (see figure 2.1). The amount of electrical charge Q∆ that has
accumulated on the capacitor equals

Q∆ = CL · V∆, (2.14)

where CL is the load capacitance and V∆ is the voltage swing.

in(t)

CL

Q∆

Vss

Figure 2.1: Discharging a load capacitance through an NMOS transistor.

The total charge transported through the transistor is given by the integral of
the transistor current in(t). If the capacitor is to be fully discharged, this value
should be equal to the accumulated charge Q∆

Q∆ =

∫ τ1

τ0

in(t) dt. (2.15)

To calculate a lower bound on the delay of the gate, we assume that the tran-
sistor conducts the maximum current given by the saturation current IDsat. Then
substituting IDsat for in(t) in equation 2.15 gives

Q∆ =

∫ τ1

τ0

IDsat dt = (τ1 − τ0) · IDsat. (2.16)

Substitution of equation 2.14 gives the lower bound of the delay τ∆ = τ1 − τ0

τ∆ =
CL · V∆

IDsat

. (2.17)
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To further explore the delay bound, we need an expression to calculate the sat-
uration current. A widely used transistor model is the long-channel approximation.
In this model the saturation current has a quadratic relation with the gate voltage.

However, the long-channel approximation fails to accurately model recent short-
channel FETs, primarily because it does not incorporate carrier velocity saturation
effects. To overcome the shortcomings of this model, an alpha-power law model
has been developed [71] which models the velocity saturation effects by a velocity
saturation index α. The value of the index varies from 2 for long-channel transistors
to ultimately 1 (linear relation) when the speed of the carriers is always at saturation
speed.

In the alpha-power law model the saturation current has the following relation
with the gate voltage VG

IDsat = β (VG − VT )α , (2.18)

where VT is the threshold voltage of the transistor and β a transistor-dependent
parameter.

Substitution of equation 2.18 in equation 2.17 gives

τ∆ =
CL · V∆

β (VG − VT )α ≈
CL

β · γαVdd
α−1 . (2.19)

Here we used V∆ ≈ Vdd and VG − VT ≈ γVdd. Thus the gate delay is inversely
proportional with the supply voltage

τ∆ ∝
1

Vdd
α−1 . (2.20)

Apparently the gate delay can be lowered by increasing the supply voltage, i.e.,
by increasing the driving power. However this has a serious impact on the power
consumption of a circuit (see section 2.4.3).

Propagation delay

With ever decreasing feature sizes and ever higher switching speeds, the propagation
delay becomes more and more important. To model an interconnect, resistance-
capacitance (RC) trees are commonly used. A popular and widely used RC delay
metric is the Elmore delay [21] because of its simple closed-form expression. How-
ever, the Elmore delay metric is derived for point-to-point connections, and lacks
consistent accuracy for RC trees, especially at the near end, because it ignores re-
sistive shielding.

It has been shown that the Elmore delay corresponds to the first moment of
the impulse response of an RC tree [70]. A natural step is to include higher-order
moments to increase the accuracy. A simple and accurate metric is the so-called
D2M metric [4]. It is an empirical metric based on the first two moments of the
impulse response of the RC tree.
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Given an RC tree with nodes {v0, . . . , vN}, where v0 is the source of the tree, let
Ci be the capacitance at node vi for 0 < i ≤ N . If p(vi) is the predecessor of node
vi then Ri is defined as the resistance between nodes p(vi) and vi. Now define Rki

as the total resistance of the portion of the path from v0 to vi that overlaps with
the path from v0 to vk.

For j ≥ 1, the jth moment mi
j of the impulse response for node vi is recursively

expressed as

mi
j = −

N∑
k=1

RkiCkm
k
j−1. (2.21)

For j = 0 we have mi
0 = 1 for all nodes.

Now, the D2M delay metric is defined as

DD2M =
m1

2

√
m2

ln 2. (2.22)

Here, mj denotes the jth moment for a generic node.

2.3.2 System level delay estimation

As soon as the cycle time and latencies of the resources have been estimated, an
estimate can be made of the delay of a system composed of those resources. In most
cases the execution order of the resources is not yet known and therefore a schedule
has to be made.

Apart from the resource characteristics, the following aspects of the system
should be taken into account while defining a schedule.

• Data storage: In synchronous circuits, data should be stored in some form of
memory when it has to go from one functional resource to another.

• Wiring: To transport data from one resource to another, wires are needed.
Naturally these cause some delay.

• Steering logic: To properly guide the data from one resource to another some
steering logic is needed. Usually it consists of some form of multiplexers.

• Control unit: In order to control the resources and the data transports, one
needs a control unit. Depending on the type of circuit (data or control-
dominated) this unit may significantly contribute to the total delay of the
system.

In this thesis we consider data-dominated systems, i.e., we assume that the control
part of the system can be neglected with respect to the data part.

Once the schedule is known, the latency of the circuit is known. Additionally, if
the cycle time is known, an estimate is available for the total delay of a system. Of
course different scheduling strategies evoke different delays.
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The scheduling problem can be formulated as follows. Given a set of tasks and
resources, we have to find an ordering of tasks and assignment to resources while
satisfying given constraints. Different constraints can be applied separately or si-
multaneously. Constraints can be anything ranging from minimizing total latency,
restricting the number of resources, to hard deadlines for certain tasks. Depend-
ing on the constraints, different scheduling strategies are viable. Three scheduling
strategies are covered in more detail in the next sections.

Unconstrained scheduling

In unconstrained scheduling we want to find the minimum latency schedule. There
are no constraints, neither on the number of resources, nor on time limits to be met.
Unconstrained minimum latency scheduling can be solved in polynomial time by
applying the ASAP (as soon as possible) scheduling algorithm.

Time-constrained scheduling

In time-constrained scheduling only time constraints are set. The number of re-
sources is not limited. Time-constrained scheduling comes in two flavors: latency-
constrained scheduling, and scheduling under timing constraints. Also a combina-
tion of the two is possible.

In latency-constrained scheduling a global maximum latency constraint is spec-
ified. This scheduling problem can be solved by running the ASAP algorithm and
by verifying that its solution meets the latency constraint.

When scheduling under timing constraints, one can specify additional constraints
for the individual resources. These timing constraints can be either absolute or rela-
tive. Scheduling under absolute timing constraints can be solved using the Bellman-
Ford algorithm.

Resource-constrained scheduling

Resource-constrained scheduling arises from resource-limited circuits, typically in-
curred by constraints on the total chip area. The number of resources necessary
to implement a circuit largely determines the area used by the circuit. Therefore
resource-constrained scheduling can be used to find latency vs. area trade-offs.

Resource-constrained scheduling is intractable. However, several exact algo-
rithms and heuristics exist to come up with a, possibly approximate, solution in
reasonable time. These include integer linear programming algorithms, list schedul-
ing and force directed scheduling.

2.4 Power estimation

In order to properly design for low power, one needs feedback in the form of power
estimation techniques. Several power estimation techniques exist for VLSI and can
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be applied at different levels in the design flow. The following criteria should be
taken into account when comparing estimation techniques.

• Efficiency: The efficiency of a power estimator indicates whether the estimator
can deal with large circuits in reasonable time. Especially at the beginning
of the design of a system, feedback must be provided quickly, to aid early
exploration of the design space.

• Accuracy: The accuracy of a power estimator is determined by the difference
between the estimated and the actual (after implementation) power usage.
If absolute accuracy is not required, the estimator should at least properly
estimate the relative power consumption of design alternatives.

• Uncertainty: Especially in an early stage of the design trajectory, not every-
thing is yet known about the design and its implementation. Therefore a power
estimator should be able to cope with these uncertainties and unknowns.

Together these three criteria determine the effectiveness of a power estimator in a
particular stage of the design trajectory.

A number of approaches is available to estimate the power consumption of a
design [15, 38, 48, 63].

• Measurement: An obvious method to estimate the power usage of a circuit is to
build it and to measure the current drawn from the power supply. However this
technique is not applicable for other designs than very small ones, as building
larger designs rapidly becomes too time consuming and too expensive.

• Calculus: A straightforward way to estimate the power dissipation of a circuit
is to calculate all currents and voltages of dissipating elements, either analyt-
ically or numerically. The product of these gives the instantaneous power of
all these elements. Finally summing the intermediates gives the power con-
sumption of the whole circuit.

Calculating the exact power consumption is only feasible for relatively small
circuits. For larger circuits it is extremely complex, and for some circuits even
not possible to find analytical expressions of the currents and voltages and
numerical calculation is usually too time consuming.

• Probabilistic methods: If the probabilities of the input signals of a network
are known, the probabilities of all signals on all nodes of the network can
be calculated. Using these probabilities, activity levels can be estimated and
based on these the power usage of the network can be estimated with a charged
capacitance model [69].

A drawback of this method is that the inputs must be independent. If they
are not, calculating the signal probabilities becomes very complex.
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• Statistical methods: Another approach similar to the probabilistic methods is
to apply a large number of random inputs to the circuit and to statistically
find the activities of the nodes. Again a switched capacitance model can be
used to estimate the power usage of the circuit.

• Simulation-based methods: Finally, a large category of power estimators is
based on simulation. These simulate a design and use some power model
for its components to estimate the power consumption. Simulation techniques
can be applied at various levels; they range from methods using detailed tran-
sistor models to techniques estimating the power usage of large sub-systems
such as full-blown Fourier transforms.

Except for the technique of direct measurement of the power consumption, all
techniques rely on models of the power dissipation in an IC. To get a better un-
derstanding of power dissipation in CMOS circuits, we take a look at its origins.
Power dissipation in CMOS ICs can be divided into two main categories [61]: static
power dissipation, and dynamic power dissipation. Both categories will be discussed
shortly.

Moreover, several of these methods are based on estimating the activity of the
internal signal nodes of the network. Therefore activity-based power estimation will
be discussed in more detail in section 2.4.3.

2.4.1 Static power dissipation

Assuming ideal transistors, a CMOS circuit does not dissipate any power when it
is not switching. However, this is not a realistic assumption: a certain amount
of power is always lost due to a number of mechanisms such as leakage currents
and substrate injection currents. These currents cause a static power dissipation
component in CMOS circuits.

Static power dissipation can be minimized by choosing a proper technology. Once
the designer has chosen one, there is little else he can do to influence this type of
power dissipation. Therefore we will focus on dynamic power dissipation.

2.4.2 Dynamic power dissipation

For CMOS circuits, the dynamic power dissipation can be subdivided into two types.

• Short-circuit current: During a switching transient, for a short time, both
the NMOS pull-down network and the PMOS pull-up network of the gate
will conduct simultaneously. In this time a short circuit is formed between
the voltage supply and ground, resulting in a power loss. This loss can be
minimized by carefully designing the devices and the gates.

• Capacitance charging: Every time switching occurs, parasitic capacitances are
either charged or discharged. The discharging process does not draw any
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current from the power supply. However, for the charging of the capacitors
energy is needed, which is drawn from the power supply. Hence, power is
dissipated when capacitances are charged. The amount of dissipated power
depends on the size of the parasitic capacitances and the voltage swing.

Capacitance charging is the dominating factor in power dissipation in CMOS
circuits. Furthermore, at the high level of design we are concerned with, we have
little influence (except from choosing a proper technology) on the short circuit cur-
rents of individual transistors. Therefore, in the remaining parts of this section, we
will focus on power dissipation due to capacitance charging.

2.4.3 Activity-based power estimation

Activity-based power estimation is founded on the assumption that dynamic power
dissipation is the dominating factor in the total power dissipation of a circuit. There-
fore it estimates the amount of capacitance being charged every time a node in the
network switches. The energy needed to charge these capacitances gives an estimate
of the dissipation in the circuit.

Capacitance charging

The amount of capacitance charged during a transition must be translated into a
power figure. Therefore we calculate the energy dissipation due to the charging of
capacitances in complementary MOS gates.

NMOS
pull-down

PMOS
pull-up

+
vr(t)
−

+
vc(t)
−

Vss

CL

i(t)

Vdd

inputs

Figure 2.2: Capacitance (dis)charging in CMOS gates.

The current through the capacitive load ic(t) of a CMOS gate is given by (see
figure 2.2)

i(t) = CL
dvc(t)

dt
, (2.23)
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where vc(t) is the voltage over the load capacitor and CL the load capacitance.2

Switching from a low level at time τ0 to a high level at τ1 results in charging the
load capacitance with energy EC

EC =

∫ τ1

τ0

i(t)vc(t)dt. (2.24)

Then substitution of equation 2.23 gives

EC = CL

∫ τ1

τ0

dvc(t)

dt
vc(t)dt

=
1

2
CL

(
vc(τ1)

2 − vc(τ0)
2
)
.

(2.25)

The energy stored in the load capacitance is lost at the consecutive discharging
(switching from high to low) of the gate.

In addition to the energy used to charge the capacitive load, the PMOS circuit
dissipates energy ER in the form of heat

ER =

∫ τ1

τ0

i(t)vr(t)dt,

where vr(t) is the voltage drop over the PMOS circuit. Substituting equation 2.23
and using vr(t) = Vdd − vc(t) leads to

ER =

∫ τ1

τ0

i(t) (Vdd − vc(t)) dt

= CLVdd (vc(τ1)− vc(τ0))−
1

2
CL

(
vc(τ1)

2 − vc(τ0)
2
)
.

(2.26)

Using equation 2.25 and 2.26, we obtain the total energy E lost during a low to
high transition, given by

E = EC + ER = CLVddV∆, (2.27)

where the voltage swing V∆ of the gate is given by

V∆ = vc(τ1)− vc(τ0). (2.28)

Assuming the voltage swing approximately equals the supply voltage, V∆ ≈ Vdd,
leads to

E ≈ CLVdd
2. (2.29)

It is important to note that in this approximation the dissipated energy only depends
on the capacitive load and the supply voltage. Gate-specific and transistor-specific
parameters such as the channel width or length of a FET do not influence the energy
dissipation.

If we use the exact equation 2.27 instead, gate and device parameters do influence
the energy dissipation as they determine the voltage swing V∆ of the gate.

2The load capacitance CL is assumed to be independent of the load voltage vc(t).
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Load capacitance

To estimate the load capacitance CL of a gate we use the following model. If an
output of a gate switches from a low to a high level, several capacitances have to be
charged, namely:

• the output capacitance of the gate,

• the input capacitances of the connected gates, and

• the wire capacitances of the interconnect.

An example is shown in figure 2.3.

driving gate

C
I1

in

C
I1
in

C
I1
wire

C
I1
wire

C
O

out C
O

wire

driven gates

Figure 2.3: Example of the switched capacitance model.

The total capacitance CL charged by the gate is given by

CL = CO
out + Cwire + Cin, (2.30)

where CO
out is the output capacitance of the driving gate, Cwire the capacitance due

to the interconnect and Cin the total input capacitance of the gates being driven.

The interconnect capacitance is modeled by an output wire capacitance CO
wire

and several input wire capacitances CIi
wire. The total wire capacitance is given by

Cwire = CO
wire +

N∑
i=1

CIi
wire. (2.31)

The input capacitance of the gates being driven is given by the sum of the input
capacitances of every gate CIi

in. Then the total input capacitance is

Cin =
N∑

i=1

CIi
in. (2.32)
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Substituting equation 2.31 and 2.32 into equation 2.30 leads to

CL = CO
out + CO

wire +
N∑

i=1

(
CIi

wire + CIi
in

)
. (2.33)

Here the total switched capacitance is clearly divided into capacitances related to
either the driving or the driven side. Therefore the total switched capacitance
of a circuit can be calculated by summing the switched input, output and wire
capacitances per gate.

Circuit level power estimation

The total energy dissipated in a large integrated circuit is calculated using

E =
N∑

i=1

aiCLiVdd
2 (2.34)

where N is the number of nodes in the circuit, ai the number of times the ith node
switches from a low to a high level, and CLi is the load capacitance of node i.

The load capacitance is approximated by the average load capacitance given by

CLi ≈ CL =
C

N
(2.35)

where C represents the total capacitance. Substituting equation 2.35 in 2.34 gives

E ≈ 1

N

N∑
i=1

aiCVdd
2 = αCVdd

2. (2.36)

Here α is the average switching activity of the circuit

α =
1

N

N∑
i=1

ai. (2.37)

It should be noted that equation 2.36 is a rough estimate of the total energy used
by the circuit, based on global averages.

2.4.4 System level power estimation

A major obstacle in estimating the energy or power consumption at a high level is
that in general detailed structural information of the design is still lacking. This
kind of information is usually only available after scheduling, and the final net list
only after a full synthesis step. Although they are more accurate, it takes too much
time to compute these estimates so they cannot be used for a quick estimate in an
iterative process.
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If however, a design is constructed using fixed sub-circuits, the time needed to
estimate the cost figures of a sub-circuit once may be acceptable with respect to the
overall design time. If the sub-circuits have been used in a previous design, these
numbers might even be available beforehand.

Nevertheless, if only the functional description is available, simulation is cur-
rently the most obvious way to quickly estimate the power consumption of a design.
It typically involves estimating the average activity α and the capacitive load C of
the circuit.

2.5 Area, delay, power trade-offs

Obviously, the area, delay and power of a circuit are strongly interdependent. As
a result, design constraints are often in conflict and trade-offs have to be made. Of
course, trade-offs can be made between every combination of two or more constraints.
This results in four possible trade-off combinations:

• area – delay,

• delay – power,

• power – area, and

• area – delay – power.

The third option, power versus area, is usually considered the least interesting and
also mostly covered in the last combination. Therefore only the other three are
discussed in the next sections.

2.5.1 Area versus delay

For many years area and delay were the primary cost and performance measures of
a design. With the recent rise of power usage as an important design issue, the focus
has moved a little. However, trade-offs between area and delay are still of prime
importance in most designs.

This section starts with a discussion on circuit techniques. Here a circuit is
assumed to be given and techniques are discussed to exchange area for delay and
vice versa. This pragmatic approach leads to the more fundamental question of what
these techniques can achieve theoretically. Thus, in the remainder of this section
some theoretical bounds on area and time (delay), the so-called AT bounds, are
discussed.

Circuit techniques

Circuit techniques are used to modify the area and delay of a given circuit, with-
out changing the circuit behavior. Two alternatives are discussed: re-timing and
pipelining.
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Re-timing A synchronous network can be modified by shifting, adding or deleting
registers. This process is called re-timing. The logical behavior of the circuit does
not change during or after re-timing.

Re-timing can be applied to achieve different optimization goals.

• Cycle time minimization: In cycle time minimization the delay of the longest
path (not interrupted by registers) in the circuit is reduced. This is done
by shifting the registers such that the longest path is shortened or replaced
by another path, hereby reducing the path delay. Thus after re-timing it is
possible to reduce the cycle time to match the newly found longest path delay.

• Area minimization: As adding or removing registers respectively increases or
decreases the area of the circuit, re-timing can also be used to minimize the
area.

Obviously, cycle time and area minimization are not independent. Thus, joint op-
timization requires another approach. Besides re-timing, combined area and delay
optimization requires combinatorial optimization. In this scheme, combinatorial op-
timization is used to remove combinatorial bottlenecks in the circuit. Afterwards
re-timing is applied to meet the cycle time requirements.

Pipelining Pipelining is a technique used to increase the throughput of a circuit.
Throughput is defined as the number of data samples processed per clock cycle.
Strictly speaking, pipelining does not reduce the delay of a circuit. However, given
an increased throughput after pipelining, the cycle time of the circuit can be lowered
to get the same overall processing rate (data samples per time unit).

Of course, pipelining is not for free and usually increases the area of the circuit
because of the extra registers and control logic needed.

Area-time (AT) bounds

Given a certain implementation of an algorithm, the area and the execution delay
are known. When another implementation is used with a different area and delay,
the question arises how the area and delay of the first implementation relate to the
second and vice versa.

Lower bound arguments for three different relations are summarized in [81].
These are based on three different observations regarding the information processing
capabilities of a circuit with a certain area A and a certain execution delay T .

• Memory limited: A circuit can only remember a limited number of bits from
one time step to the next. This number of bits is proportional to the area.
Therefore,

A = constant . (2.38)

Another interpretation of this rule is that the area of the registers in the data
path of a circuit does not depend on the delay of the circuit.
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• IO limited: A circuit can only process and generate a limited number of inputs
and outputs. This number is proportional to the product of the area and the
delay. Thus,

AT = constant . (2.39)

For instance to read n input ports, one needs n input terminals for a single
time unit, or only one input port for n time units.

• Information exchange limited: The amount of information that can flow from
one part of the area to the other in a single time unit is limited to the square
root of the area. Thus the total information flow is limited to the product of
the square root of the area and the delay. Hence,

AT 2 = constant . (2.40)

An equivalent interpretation is that the number of interconnections (wires) is
limited to the square root of the area (i.e. the largest possible value for the
shortest side of a rectangular area).

It is assumed that the circuits considered contain a large number of operations.
Furthermore it is assumed that numerous alternative implementations can be found.

In [55] these bounds were experimentally verified. It appeared that the first two
bounds can be used as good approximations. The third, however, was not validated.
Still, it was noted that almost all experiments showed the following relationship

AT r = constant , (2.41)

where r varied between 1.2 and 1.5.

2.5.2 Delay versus power

The average power used by the circuit is defined by

P =
E

T
, (2.42)

where E is the total energy consumed by a circuit in T time. The total energy can
be approximated by (see equation 2.36)

E = αCVdd
2, (2.43)

where α is a measure of the the average switching activity of the circuit, Cav the
average total switched capacitance, and Vdd the supply voltage. This expression is
similar to equation 2.29, where the load capacitance CL is replaced by the total
switched capacitance C.

Substitution of equation 2.43 in 2.42 gives

P = α
CVdd

2

T
. (2.44)
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This expression clearly shows the dependence between the power usage, the supply
voltage and the execution delay of the circuit.

Once a circuit is implemented, its power can be reduced by either increasing the
execution delay or by decreasing the supply voltage. These methods are known as
frequency and voltage scaling.

Frequency scaling

Obviously, the power can be reduced by increasing the execution delay T . This
corresponds in a synchronous circuit to decreasing the frequency f as f = 1

T
. Sub-

stitution in equation 2.44 leads to the relation

P ∝ f. (2.45)

Thus, the power linearly depends of the frequency and it can be reduced by decreas-
ing the frequency.

Voltage scaling

In frequency scaling, the power reduction is only linear in frequency. At first sight,
a quadratic reduction can be achieved by scaling down the supply voltage of the
circuit

P ∝ Vdd
2. (2.46)

However, when we lower the supply voltage, the gate delay increases (see equa-
tion 2.19). As a result, the power is even more reduced3, ultimately resulting in a
cubic dependency on the supply voltage

P ∝ Vdd
3. (2.47)

It should be noted that the voltage cannot be reduced indefinitely, because when
the supply voltage approaches the threshold voltages of the transistors, the robust-
ness of the transistors against noise is severely lowered and proper circuit behavior
is compromised.

2.5.3 Area versus delay versus power

Above, power reduction techniques were discussed. These techniques are used for
already implemented circuits and consequently the area is assumed to be fixed. If
we release this restriction, the influence of the area on the capacitance and delay
has also to be taken into account.

3It is assumed that the circuit is running as fast as possible, i.e., the gate delay directly influences
the delay of the circuit. If not, the quadratic dependency remains valid.
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To relate area to delay, we use the lower bound specified in equation 2.40 in a
slightly modified form

AT r = γ, (2.48)

where r and γ are constants.
For the power usage we have found (see section 2.5.2)

P = α
CVdd

2

T
. (2.49)

Two options emerge: either the supply voltage is kept constant, or it is scaled,
thus decreasing the power and increasing the delay. These alternatives are discussed
below.

Constant voltage

In order to come up with a solvable set of equations, we have to find an expression
for the average switched capacitance in the circuit. We assume it to linearly depend
on the total area of the circuit. Hence

C = µcA, (2.50)

with µc some constant.
Now combining equation 2.48, 2.49 and 2.50 and solving them gives the area and

power as function of the delay

A =
γ

T r
, P = αµcγ

Vdd
2

T r+1
. (2.51)

In figure 2.4 this solution is plotted for various values of γ. For the sake of clarity,
all other constants are set to unity.

Scaled voltage

Using a slightly modified version of equation 2.19, the average delay per gate Tg is
given by

Tg =
Cg

βVdd

. (2.52)

Here, Cg is the average load capacitance per gate and β a constant. The total delay
of the circuit is assumed to linearly depend on the gate delay

T = cT Tg, (2.53)

where cT is again some constant.
Also it is assumed that the total capacitance is linearly dependent on the product

of the average gate capacitance and the area

Cav = µsCgA, (2.54)
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Figure 2.4: Constant voltage area, delay, power trade-off, for various values of γ.

with µs a constant (different from µc).
Combining and solving equation 2.48, 2.49, 2.52, 2.53 and 2.54 gives the delay,

area and power as function of the supply voltage or delay

T =
cT Cg

βVdd

, A =
γ

T r
, P = αµsγ

(
cT

β

)2
Cg

3

T r+3
. (2.55)

In figure 2.5 this solution is plotted for various values of γ. Again, for the sake
of clarity, all other constants are set to unity.

2.6 Summary

In this chapter we have presented a short overview of techniques to estimate the
chip area, delay and energy consumption of digital circuits. These estimates may
serve as cost figures in the hardware-software partitioning tool presented in the next
chapter. Crucial for the exploration of the design space of an algorithm (or set of
algorithms) to be implemented is that the designer can quickly iterate within the
design flow presented in figure 1.3, making changes to, for example, the original
specification of the algorithm. To this end, a means to quickly get cost estimates is
essential.

Fortunately, in present-day synthesis tools, area and timing prediction are com-
monly available. These predictions should be used whenever possible. Otherwise
one would end up characterizing and modeling the internals of the synthesis tool.
This meticulous job should then be repeated every time a new version of the tool
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Figure 2.5: Scaled voltage area, delay, power trade-off, for various values of γ.

is released, and whenever one switches to a different synthesis tool. Unfortunately,
predicting the energy consumption of a circuit is harder than predicting the area
and timing, as it strongly depends on the particular characteristics of the processed
data. As a consequence, synthesis tools still lack this feature and therefore one of
the methods discussed in section 2.4 should be applied.

Another issue discussed in this chapter is the possible trade-off between area, time
and energy consumption. These trade-offs can be used to quickly find a range of costs
estimates, given the cost figures of only a few realizations of a circuit (ultimately
only one). Moreover, they give insight in what can be realistically expected within
reasonable time.

As a final remark, we note that it would be interesting to investigate whether or
not the entropy-based area estimation techniques described in section 2.2.1 can be
extended to accurately estimate the energy consumption of any given function.





Chapter 3
Architecting with uncertainties

3.1 Introduction

As argued in section 1.1.3, we need to decide which parts of an algorithm should be
implemented in hardware and which in software. These decisions are governed by
competing desires and needs:

• the desire to keep the development costs low; these costs include among others
the design time and the production costs,

• the need to meet the required performance, otherwise the resulting chip might
become useless or worthless, and

• at least in case of battery-operated devices1, the goal to keep the energy con-
sumption low.

These can be translated into the following opposing design goals.

• Keep the chip small (the smaller, the better): A chip with a larger area is more
expensive to produce and furthermore has a lower yield.

• Make the chip fast (the faster, the better): Often, the performance of a chip
is measured by the time it takes to execute an algorithm or by a derivative
thereof, such as the data rate. If so, reducing the execution time increases the
performance of the chip.

• Consume little energy (the cooler, the better): Obviously, to increase uninter-
rupted device operation times, the device should use as little energy as possible
to accomplish its task.

1In case of devices connected to a power grid, high energy consumption might still be unac-
ceptable because of undesirable side effects, such as reduced lifetime, expensive heat sinks, noisy
fans, etc.

35
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A partitioning tool should come up with a feasible solution, while clarifying to what
extent the design goals are met. This allows the designer to explore the design space
and to make a well-founded decision.

The basic operation of the partitioning tool is to map an algorithm onto an ar-
chitecture instance. From the set of all specified possible architectures to implement
the algorithm, it should give the best instance with respect to given constraints.
This approach was originally introduced in [32], and forms the basis of the work
presented in the first part of this chapter.

architecture
class

library

algorithm

CDFG

DFG

embedded
code

mappingdesign
constraints

architecture
instance

Figure 3.1: Design flow to map an algorithm to an architecture instance.

In figure 3.1 the partitioning process is depicted. The start is an executable
specification of the algorithm. Subsequently, this specification is first translated into
a combined control data flow graph (CDFG), and then into a data flow graph (DFG).
To implement the DFG, a set of architectures is specified, using the components
specified in a library. For the DFG the best architecture instance is selected, and
simultaneously the algorithm is optimally divided into a hardware and a software
part; this division is optimal with respect to one of the design constraints, which
include the maximum allowed chip area, the maximum execution time and the
maximum energy consumption.

Once a solution has been found for the partitioning problem a single algorithm,
the solution is extended to support multiple algorithms. Subsequently, a method
is introduced to enable the use of inexact, i.e., fuzzy, numbers in the mathematical
formulation, both for the single-algorithm case and for the multiple-algorithm case.

The second part of this chapter deals with the generation of synthesizable code
from the original specification in C. The generated code is used to quickly come up
with cost estimates to feed the optimization problem. The underlying thought is
that without such a tool, the whole optimization procedure becomes only an exercise
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in linear programming, and no longer useful, as it cannot rely on reasonably accurate
estimates (even though they are represented by fuzzy numbers).

3.2 Application model

In this thesis we consider data-dominated algorithms. Therefore, we model the
algorithms with a data flow graph (DFG). A DFG G = {V, E} is a directed graph
where the nodes v ∈ V represent processing and storage elements and the edges
e ∈ E represent data flowing to and from these elements.

The nodes (or vertices) V of the DFG G can be one of two types.

• Processing elements v ∈ Vb: Processing elements or processing blocks are ver-
tices representing operations performed on the incoming data (incoming edges).
The results of the operation are sent to storage elements (outgoing edges).

• Storage elements v ∈ Vs: Storage elements or (data) symbols are nodes repre-
senting pieces of stored data (variables or constants).

All nodes are either processing elements (blocks) or storage elements (symbols)

V = Vb ∪ Vs (3.1)

and no other types exist.
To construct the DFG from the C description of the algorithm, one needs to take

a number of steps (see figure 3.1).

• Create the combined control data flow graph: The C-description of the algo-
rithm is used to construct a graph representing both the control and the data
flow of the algorithm.

• Annotate the combined control data flow graph: Running the algorithm, pro-
filing information is generated and used to annotate the combined graph.

• Extract the data flow graph: The data flow is extracted from the combined
CDFG. The control flow is discarded.

• Annotate the data flow graph: The sizes of the variables used in the algorithm
and other profiling information are taken to annotate the DFG.

In the remainder of this section, each of these steps is discussed in more detail.
First, from the C-description of the algorithm, the combined CDFG is con-

structed. In the algorithm both control flow and data flow statements are identified.
The control flow represents the sequential behavior of the program. The data flow
represents the flow of data and the operations performed on that data.

The C-code is parsed and the statements are analyzed. With every statement
analyzed, the graph is extended: functions are mapped to processing elements and
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/* dummy functions */
int f(int x) { return x; }
int g(int x) { return x; }
int h(int x) { return x; }

/* main algotithm */
void main() {
  /* control variables */
  int i;

  /* data variables */
  int u, v, w, x;

  /* input data */
  x = 1;

  /* static control */
  for (i=0; i<10; i++) {

u = f(x);
v = g(x);

/* dynamic control */
if (u > v)

w = h(v);
else 

w = h(u);
  }
}

(a) original C-code

begin

store

end

for-cond

return f

if-cond

hh

if-end

x

g

u v

w

constant-0

(b) extracted CDFG

store

x

f

u

g

v

h

w

h

constant-0

(c) extracted DFG

Figure 3.2: Example of a combined control data flow graph (CDFG) and the ex-
tracted data flow graph (DFG).

variables to storage elements. An example of a CDFG is depicted in figure 3.2(b)
together with the original C-code fragment in figure 3.2(a).

The newly created CDFG does not contain profiling information yet. Therefore,
the original C-description is compiled and run using a representative input data
set. During the execution of the algorithm, a sequence is generated that contains
the names and order of the functions called. This profiling information is used to
annotate the CDFG with:

• the number of times a processing block (function) is executed,

• the number of times a storage element (variable) is accessed, and

• the number of times a flow is activated.

These numbers are used during the mapping to calculate the latency and the energy
usage of the algorithm.

To extract the data flow graph from the CDFG, one simply removes the nodes
and edges associated with control flow from the graph. This results in a graph
representing the data flow of the algorithm. An example of an extracted DFG is
depicted in figure 3.2(c).

At this stage the only information missing in the data flow graph is the sizes of
the variables used. The sizes cannot be extracted automatically yet, therefore they
are manually specified in a list separate from the algorithm. This list is used to
annotate the data flow graph with the sizes of the variables.
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3.3 Architecture class

The algorithm should be mapped to an architecture. As the optimal architecture
is not known yet, a class of architectures is specified, out of which the optimal
architecture should be fabricated. An architecture class C = {P, U,M, I} is defined
by its components.

• Processor cores p ∈ P : A processor core is capable of executing code which
implements various functions (processing elements). Additionally, it acts as
the controller of the architecture. Only one processor core can be used in the
final architecture instance.

• Processing units u ∈ U : A processing unit can be either a hardware unit or a
software unit. A hardware unit is an additional specialized piece of hardware
connected to the processor core implementing a specific function. A software
unit is a code fragment to be run on the processor core which implements a
certain functionality.

• Memories m ∈ M : A memory is capable of storing the variables and constants
(symbols) used in the algorithm.

• Interfaces i ∈ I: An interface models the connections between the processor
core, the additional hardware units and the memories. The same interface can
be used to connect multiple units, thus modeling busses. Interfaces can be
either hardware interfaces or mixed interfaces. A hardware interface connects
a hardware processing unit with a memory. A mixed interface connects a
software processing unit on a processor with a memory.

An example of an architecture class is depicted in figure 3.3.
The building blocks of an architecture class are used to construct the architecture

instance (see figure 3.4) that best suits the algorithm to be implemented. The
building blocks are divided into the subsets listed in table 3.1. This leads to the
following relations

∀v∈V Uv = UH

v ∪
⋃
p∈P

USp
v , (3.2)

∀e∈E Ie = IH

e ∪
⋃
p∈P

IMp
e . (3.3)

3.4 Hardware-software partitioning

To map the algorithm to an architecture (see figure 3.5), we formulate the mapping
as a mixed integer linear programming problem (MILP) (see appendix B). The
variables in this linear programming problem (see table 3.2) are binary valued vari-
ables which determine whether an implementation unit, memory or interface is used
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dedicated
hardware units

processing
unit

processing
unit

processor
core

memory

memory

memories

interfaces

Figure 3.3: Example of an architecture class C = {P, U,M, I}, defined by the avail-
able processor cores P , dedicated hardware units U , memories M and interfaces I.

processor
core

memory

memoryprocessing
unit

Figure 3.4: Example of an architecture instance.

symbol description
Uv all available processing units for node (processing element) v
UH

v available hardware processing units for node v
U

Sp
v available software processing units on processor p for node v

Mv available memories for node (storage element) v
Ie all available interfaces for edge (flow) e
IH
e available hardware interfaces for edge e

I
Mp
e available mixed interfaces for processor p for edge e

Table 3.1: Sets of building blocks defining an architecture class.
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v = g(x);
w = f(u, v);

processor
core

memory

memoryprocessing
unit

architecture

algorithm

u v

w

f

x

g

Figure 3.5: Example of mapping an algorithm on an architecture. During this
mapping the optimal architecture is selected from the class of architectures.

for a particular node (processing and storage elements) or edge (data flows). The
constraints can be split up in two parts.

• General selection constraints: These constraints guarantee that a valid map-
ping is found. The mapping is not optimized in any way.

• Cost constraints: In addition to the general constraints, cost constraints are
added in order to optimize the mapping. The cost constraints can be used as
an optimization goal (maximize or minimize) or as boundary conditions.

These constraints are discussed in more detail in the next sections.

3.4.1 Selection constraints

The general selection constraints ensure that a valid solution is found for the map-
ping of the algorithm to an architecture.

Unit selection constraints

Every processing block v ∈ Vb has to be implemented with either a hardware or a
software unit. Only one implementation unit is selected for each block

∀v∈Vb

∑
u∈Uv

sv
u = 1. (3.4)
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symbol description
su true if unit u is used
sm true if memory m is used
si true is interface i is used
sv

u true if unit u is used for block v
sv

m true if memory m is used for symbol v
se

i true if interface i is used for flow e
sv

H true if a hardware processing element or memory is used for node
v

sv
Sp

true if a software processing element with processor p is used for
node v

se
H true if a hardware interface is used for edge e

se
HSp

true if a hardware → software interface with processor p is used for
edge e

se
SHp

true if a software → hardware interface with processor p is used for
edge e

sp true if processor p is used

Table 3.2: Binary valued decision variables (true = 1, false = 0).

Memory selection constraints

Every symbol v ∈ Vs has to be assigned to a memory. Only one memory is selected
for every symbol

∀v∈Vs

∑
m∈Mv

sv
m = 1. (3.5)

Furthermore, a memory has a maximum size. Therefore, the combined size of the
symbols assigned to a memory should not exceed the maximum size Sm of the
memory

∀m∈M

∑
v∈Vs

Svs
v
m ≤ Sm. (3.6)

Interface selection constraints

All edges e ∈ E in the DFG have to be assigned to an interface. Interfaces represent
connections between processing blocks and storage elements. Therefore the type of
an interface is dependent on the type of the source and target of the flow (a hardware
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unit or a software unit). With the convenience variables

∀v∈V sv
H =

∑
u∈UH

v

sv
u, (3.7)

∀v∈V sv
Sp

=
∑

u∈U
Sp
v

sv
u, (3.8)

the proper type is selected using

∀e∈E se
H = s

vs(e)
H · svt(e)

H , (3.9)

∀e∈E ∀p∈P se
HSp

= s
vs(e)
H · svt(e)

Sp , (3.10)

∀e∈E ∀p∈P se
SHp

= s
vs(e)
Sp · svt(e)

H , (3.11)

where vs(e) and vt(e) denote the source and target node of edge e, respectively. The
· operator denotes a Boolean “and”. It can be translated into integer programming
constraints as described in appendix B.3.

Obviously, only one type of interface is allowed per edge

∀e∈E se
H +

∑
p∈P

(
se

SHp
+ se

HSp

)
= 1. (3.12)

The equal sign ensures that exactly one interface type is selected per edge.
The only thing left is to select an interface once the proper type is known

∀e∈E

∑
i∈IH

e

se
i = se

H, (3.13)

∀e∈E ∀p∈P

∑
i∈I

Mp
e

se
i = se

SHp
+ se

HSp
. (3.14)

Since only one type is selected, only one interface is selected per edge with these
constraints.

Processor selection constraints

For every processing block implemented in software, the appropriate processor is
selected

∀v∈Vb
∀p∈P sp ≥

∑
u∈U

Sp
v

sv
u. (3.15)

This constraint guarantees that the appropriate processor is selected if a processing
block is implemented in software on that particular processor.

To ensure that exactly one processor is selected for all blocks, the following
constraint is added ∑

p∈P

sp = 1. (3.16)
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Constraints for the selection of a processor for the interfaces are not necessary,
because the interfaces are selected such that they match the source and target im-
plementations.

3.4.2 Cost constraints

In addition to the general constraints, specific cost constraints can be added to ex-
press costs such as memory size, code size, etc.. If necessary, maximum or minimum
values can be specified to limit these costs.

The main cost objectives implemented are: area, latency, energy, and the global
clock period. Either one can be selected for minimization or maximization. The
last cost objective added is the overall execution time. This objective cannot be
optimized directly, as explained in section 3.4.2.

For convenience, we introduce the selection variables listed in table 3.3. They
determine whether a unit, memory or interface is used anywhere

∀u∈U su =
∨

v∈Vb

sv
u, (3.17)

∀m∈M sm =
∨

v∈Vs

sv
m, (3.18)

∀i∈I si =
∨
e∈E

se
i , (3.19)

where the
∨

operator refers to a Boolean inclusive “or”. A Boolean “or” can be
translated into integer programming constraints as described in appendix B.3.

symbol description
su true if unit u is selected
sm true if memory m is selected
si true if interface i is selected

Table 3.3: Convenience variables (true = 1, false = 0).

Area

The area cost is the amount of chip area that is necessary for the processor core, the
additional hardware units, the memories, plus the connecting interfaces. For every
processor, unit, memory and interface, area estimates are given (see table 3.4).

The area costs for the processor core, the hardware units, the memories and
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symbol description
Au area for processing unit u
Ao

m minimum required area for memory m
Ad

m additional area per byte for memory m
Ai area for interface i
Ap area needed for processor core p

Table 3.4: Area cost estimates.

interfaces are given by

AP =
∑
p∈P

Apsp, (3.20)

AU =
∑

u∈UH
v

Ausu, (3.21)

AM =
∑
m∈M

Ao
msm +

∑
v∈Vs

Sv

∑
m∈Mv

Ad
msv

m, (3.22)

AI =
∑
i∈IH

e

Aisi +
∑
p∈P

∑
i∈I

Mp
e

Aisi, (3.23)

respectively. From equation 3.22 one can see that the area for the memories is split
into two respective parts: independent and dependent of the size of the symbols Sv

stored in the memories.

Because we use the variables su and si in equation 3.21 and 3.23, these equations
express the area cost for shared resources. If the resources are not shared, they have
to be duplicated for every instance. Then, the aforementioned equations should be
modified to use sv

u and se
i instead and iterate over all nodes and edges.

The total area cost is calculated using

AT = AP + AU + AM + AI , (3.24)

where AT is the total chip area needed.

Latency

The total latency is expressed by the number of cycles necessary to execute the
complete algorithm. Hence, for every unit, memory and interface, latency estimates
are provided (see table 3.5).
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symbol description
Lu latency of processing unit u
LA

m latency for accessing data in memory m
LT

m latency for transferring data to or from memory memory m
Li latency per byte of data transferred via interface i

Table 3.5: Latency cost estimates (latency is expressed by the number of cycles
necessary to complete an operation).

The latencies per unit, memory and interface are given by

LU =
∑
v∈Vb

Fv

∑
u∈Uv

Lus
v
u, (3.25)

LM =
∑
v∈Vs

∑
m∈Mv

FvL
A
m +

∑
e∈e(v)

FeSeL
T
m

 sv
m, (3.26)

LI =
∑
e∈E

FeSe

∑
i∈Ie

Lis
e
i , (3.27)

respectively, where e(v) denotes all incoming and outgoing edges of node v. The
total latency is calculated using

LT = LU + LM + LI , (3.28)

where LT is the total number of cycles necessary to complete the algorithm.

Energy

The energy cost is the total amount of energy used during execution of the algorithm
on the selected hardware. It includes energy used by the processor core to run the
processing blocks implemented in software and the energy consumed by the hardware
units, memories and interfaces. For every processor, unit, memory and interface,
energy estimates are given (see table 3.6).

symbol description
Eu energy usage of unit u
EA

m energy usage for accessing data in memory m
ET

m energy usage for transferring data to or from memory m
Ei energy usage per byte of data transferred via interface i
Ep energy usage per cycle for processor p

Table 3.6: Energy cost estimates.
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The energy usage per unit, memory and interface is given by

EU =
∑
v∈Vb

Fv

∑
u∈UH

v

Eus
v
u +

∑
p∈P

Ep

∑
u∈U

Sp
v

Lus
v
u

 , (3.29)

EM =
∑
v∈Vs

∑
m∈Mv

FvE
A
m +

∑
e∈e(v)

FeSeE
T
m

 sv
m, (3.30)

EI =
∑
e∈E

FeSe

∑
i∈IH

e

Eis
e
i +
∑
p∈P

∑
i∈I

Mp
e

(Ei + EpLi) se
i

 , (3.31)

respectively. The total energy cost is calculated using

ET = EU + EM + EI , (3.32)

where ET is the total energy used to run the algorithm on the selected architecture.

Clock period

Another important optimization objective is the global clock period. It is assumed
that in the final architecture, all blocks are governed by a single clock. For ev-
ery processor, hardware unit, memory and interface, the minimum clock period is
specified (see table 3.7).

symbol description
Cu minimum clock period for unit u
Cm minimum clock period for memory m
Ci minimum clock period for interface i
Cp minimum clock period for processor p

Table 3.7: Minimum clock period estimates.

The global clock period C is lower bounded by

∀u∈UH C ≥ Cusu, (3.33)

∀m∈M C ≥ Cmsm, (3.34)

∀i∈IH C ≥ Cisi, (3.35)

∀p∈P C ≥ Cpsp, (3.36)

where UH =
⋃

v∈Vb
UH

v and IH =
⋃

e∈E IH
e denote the available hardware units and

hardware interfaces, respectively. Software units and mixed interfaces do not impose
any additional constraints, because these execute with the same clock period as the
processor core they are executing on or connected to.
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Execution time

As the total execution time T is the product of the total latency and the overall
clock period T = LT C, i.e., the product of two variables, it cannot be expressed
directly in a linear form necessary for MILP formulation. Therefore, the following
procedure is applied to circumvent this problem.

An upper bound for the global clock period is obtained using

C ≤
∑
x∈X

Cxsx (3.37)

and ∑
x∈X

sx = 1, (3.38)

where X is the set of clock estimates, Cx the estimated clock period and sx a binary
valued variable indicating whether clock estimate x is selected or not. The latter
constraint is introduced to ensure that only one clock estimate is selected.

Once an estimate is available, the maximum execution time can be translated
into a maximum number of cycles (latency). Thus the maximum execution time can
be guaranteed to be less than the desired maximum execution time Tmax by means
of

LT ≤
∑
x∈X

Tmax

Cx

sx. (3.39)

These linear equations suit the MILP formulation. Obviously, this formulation does
not allow the execution time to be an optimization objective.

To enable execution time optimization, we introduce the local optimization vari-
ables λx to replace the selection variables sx in equation 3.39

LT ≤
∑
x∈X

Tmax

Cx

λx. (3.40)

Now, by minimizing the global optimization variable λ

λ =
∑
x∈X

λx, (3.41)

we minimize the execution time T provided that λx = 0 if sx = 0. Therefore we add

∀x∈X λx ≤ sx, (3.42)

which ensures a correct optimization.



3.5 Extension to multiple algorithms 49

3.4.3 Mixed integer linear programming formulation

The selection and cost constraints can be reordered and summarized in matrix form
as

Asxs ≤ bs (3.43)

and
Acxc ≤ bc. (3.44)

With these definitions we can define several MILP problems, each of which aims at
minimizing a different objective under different constraints

minimize
AT , ET or λ,

subject to [
As 0
0 Ac

] [
xs

xc

]
≤
[
bs

bc

]
,

bounded to
AT ≤ Amax,
ET ≤ Emax,
LT ≤ Lmax,
C ≤ Cmax,
T ≤ Tmax.

(3.45)

In equation 3.45, Amax, Lmax, Emax, Cmax and Tmax are the maximum values
for the area, latency, energy, clock period, and execution time, respectively. These
bounds can be updated in sequential optimization runs, which each change the
optimization objective and lower the maximum allowed costs.

3.5 Extension to multiple algorithms

In the approach presented so far, an optimal architecture instance was selected for a
single algorithm. This approach does not suffice for solving more general problems.

• How to implement multiple algorithms using the same hardware: Often, a de-
vice has to perform different tasks. These tasks should preferably be imple-
mented on the same hardware to save chip area. Therefore, the partitioning
tool should be able to find an optimal mapping for a set of algorithms to be
implemented on the same hardware.

• How to select the best algorithm: In case multiple algorithms are available to
implement a system, there may not yet be an algorithm of choice. Hence, the
partitioning tool should be able to select the best algorithm (in terms of cost)
out of many.

Obviously, the tool does not take into account the performance of the algo-
rithms. It is still up to the designer to evaluate and compare the relative
performance of the algorithms.



50 Chapter 3. Architecting with uncertainties

To address these problems, we have to modify the partitioning tool in several ways.
In the next sections, the above two problems are first addressed individually and
finally a combined solution is presented.

3.5.1 Multiple algorithm support

The extension of the partitioning tool to support a set of algorithms to be imple-
mented is relatively straightforward. All it requires is replacing the original single
DFG by a combined DFG by compounding the nodes and edges of the DFGs of the
individual algorithms in the set.

No other modifications are necessary, since in the original MILP formulation,
resource sharing was already enabled. The resulting architecture instance will be
optimal for the combination of algorithms and not necessarily optimal for a single
algorithm.

3.5.2 Algorithm selection support

In order to support algorithm selection, we modify the original MILP formulation in
two ways. First the same extension is applied as presented in the previous section to
support sets of algorithms. Second an algorithm selection variable is introduced and
the selection constraints 3.4, 3.5 and 3.12 are modified such that they only enable
the selection of blocks when the algorithm is selected (algorithm selection variable is
true). To ensure that exactly one algorithm is selected, we need one extra constraint.

3.5.3 Combined solution

The modifications presented in the previous sections are combined to address the
more general case of selecting the best set of algorithms to be implemented on the
same hardware. The additional sets and variables necessary are listed in table 3.8(a)
and 3.8(b), respectively.

First, the DFG G is replaced by a combination of the DFGs of all algorithms

G =

{⋃
a∈A

Va,
⋃
a∈A

Ea

}
. (3.46)

Second, the selection constraints are modified to support the selection of algorithms

∀a∈A ∀v∈V a
b

∑
u∈Uv

sv
u = sa, (3.47)

∀a∈A ∀v∈V a
s

∑
m∈Mv

sv
m = sa, (3.48)

∀a∈A ∀e∈Ea se
H +

∑
p∈P

(
se

SHp
+ se

HSp

)
= sa. (3.49)
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symbol description
G set of algorithm groups (sets)
A complete set of algorithms
Ag set of algorithms in group g
Va set of nodes representing processing elements or memories in algo-

rithm a
V a

b set of nodes representing processing elements in algorithm a
V a

s set of nodes representing data symbols in algorithm a
Ea set of edges representing data flows in algorithms a

(a) Sets

symbol description
sa true if algorithm a is selected
sg true if algorithm group g is selected

(b) Variables

Table 3.8: Additional sets and variables for the extended MILP formulation.

Third, if a group is selected, all algorithms in that group should be selected as well

∀g∈G

∑
a∈Ag

sa = |Ag| sg, (3.50)

and finally only one group of algorithms should be selected∑
g∈G

sg = 1. (3.51)

Together, these modifications ensure that the group of algorithms with the lowest
costs is selected. At the same time they determine the optimum architecture instance
for the group as a whole.

As the area, energy, latency and clock period costs are all computed solely us-
ing selection variables, only calculation and optimization of the the execution time
have to be modified to support multiple algorithms. Thereto, the λx variables in
equation 3.40 and 3.41 are replaced by λa

x, which yields

LT ≤
∑
a∈A

∑
x∈X

Tmax

Cx

λa
x (3.52)

and

λ =
∑
a∈A

∑
x∈X

λa
x. (3.53)
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To ensure that λa
x becomes if when an algorithm is not selected, λa

x is limited,
not only by sx, but now also by the algorithm selection variable sa

∀a∈A ∀x∈X λa
x ≤ sa, (3.54)

∀a∈A ∀x∈X λa
x ≤ sx. (3.55)

Minimizing λ reduces the combined execution time of a group of algorithms to a
minimum.

3.6 Dealing with uncertainty

In the MILP formulation of the partitioning problem presented in previous sections,
exact cost estimates are assumed. These numbers might be available if IP-blocks are
re-used, but for many units and memories, the exact numbers will not be available
and one has to use estimates for the area, latency and energy usage per instance.
Inherent to the design process is that the higher level one starts the design process,
the more inaccurate the initial estimates will be.

A drawback of the MILP formulation of the partitioning problem is that the op-
timal solution will be found on a boundary of the solution space. As a consequence,
a small error in an estimate might result in an infeasible solution that crosses the
boundary and thus violates a constraint.

Hence, it would be desirable if the cost estimates could be entered as inexact
or non-crisp numbers, i.e., fuzzy numbers. If we use triangular fuzzy numbers, the
resulting fuzzy MILP can be solved using Zimmermann’s [86] fuzzy programming
method with the normalization process described in [37].

A triangular fuzzy number is an imprecise number with a triangular possibility
distribution as depicted in figure 3.6. A triangular number c̃ is specified by its most
possible value cm and its least possible values cl and cu

c̃ = {cl, cm, cu} , (3.56)

where cl and cu are the lower bound and the upper bound of c̃ respectively, and thus
cl ≤ cm ≤ cu.

First, the single objective MILP with fuzzy (triangular) coefficients is translated
into a multi-objective MILP with crisp coefficients, which is subsequently translated
into a crisp single-objective MILP. Finally, a solution is determined using a standard
solver for a single objective MILP with crisp coefficients. Solving a single fuzzy MILP
is equivalent to solving seven crisp MILPs of approximately the same size. For a
detailed description, see appendix C.
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c
cl cm cu

0

1

Figure 3.6: Fuzzy (imprecise) number c̃ = {cl, cm, cu} with triangular possibility
distribution πc.

3.7 C to SystemC conversion

As discussed earlier in section 1.1, the design of an ASIC usually starts with a func-
tional specification of the algorithm to be implemented in a high-level programming
language like C, C++ or Matlab, because of the high level of abstraction and the
high simulation speeds. However, these languages are typically purely sequential
and lack constructs to express timing.

In order to use this specification to design an ASIC, we have top map it to
a hardware description language (HDL). Current tools to map a specification in
C to an HDL such as VHDL or Verilog either support only a small subset of the
programming language or restrict a designer in other ways, e.g., by targeting a
predefined architecture. These difficulties arise because of the previously mentioned
differences in representation between a programming language like C and an HDL:
sequential versus concurrent (see section 1.1.2).

With the recent growing support for SystemC [41], and especially the availability
of SystemC synthesis tools (for instance the CoCentric SystemC Compiler of Syn-
opsys), another approach has become attractive, namely to create a SystemC model
of the design from the original specification in C or C++. This SystemC model
can subsequently be refined to a final synthesizable description. The approach still
suffers from the conversion difficulties mentioned earlier. However, since SystemC is
based on C++, the majority of the code can directly be incorporated in the SystemC
model. This greatly simplifies the conversion process.

3.7.1 SystemC language

SystemC was first introduced to the general public in September 1999 with the
release of SystemC v1.0. It consisted of a C++ class library providing the necessary
constructs for hardware modeling such as modules, ports, processes and events and a
simulation kernel. In addition, it included basic data types such as bits, bit vectors,
arbitrary precision integers and fixed-point numbers. At that time, the functionality
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behavioral

modules
structural

module

memories

Figure 3.7: Example of the targeted SystemC model, consisting of structural and
behavioral modules communicating via dedicated memories.

of SystemC roughly matched the functionality offered by VHDL or Verilog.

With the subsequent release of SystemC v2.0 in October 2001 the core language
was extended with the abstract notion of communication channels and interfaces.
Furthermore, a master-slave library and a verification library were added. At this
stage, the functionality of SystemC clearly superseded VHDL and Verilog, offering
gradual refinement from a high abstract level towards synthesizable code within a
single language. At the time of this writing, SystemC is supported by various EDA
(Electronic Design Automation) companies, including Synopsys and Cadence.

3.7.2 Conversion approach

The major difference with the original executable specification is that the system
is now modeled as concurrently executing processes. In SystemC, these processes
correspond to SystemC modules. Each module consists of one or more concurrently
executing threads. Of course these modules have to interface with other modules.
Therefore ports are added, to communicate data between modules. To break the
dependency between reading and writing of data between two modules, dedicated
memories are inserted between the modules, acting as buffers. This way, a module
can generate and output its results without having to wait for the next module to
be ready to accept input. An example of this model is depicted in figure 3.7. Each
module has either a structural or a behavioral description. A structural module is
composed of several nested modules.

In essence we fit the sequential C code into a data flow model. However, since
generic C does not necessarily match a data flow model, we impose a number of
restrictions on the C code.

• Only static memory allocation is allowed: Dynamic memory allocation (via
calls to malloc() and free()) requires a memory allocation unit and a shared
memory [74], which is undesirable.
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• Pointers may only be used as references: For the same reason, pointer arith-
metic is disallowed. Pointers may be used as references to variables, however.

• Only local variables are allowed: Global variables require a shared memory.
Hence, only variables with a local scope are allowed.

• Arrays passed via function arguments must have defined sizes: In order to re-
serve storage space within a module, it must be known explicitly what the size
of an array passed to a function via its arguments is.

It must be noted that these restrictions are necessary to enable the conversion step.
When we target synthesizable code, additional restrictions arise, imposed by the
synthesis tools used (see also section 3.7.5).

To construct the SystemC model, we need a module hierarchy. For this, we
adhere to the hierarchy of the C code. Good programming practice is to divide the
global function to be implemented into several sub-functions, which in turn may
again be divided, and so on. Hence, we exploit this common practice to decompose
the overall algorithm hierarchically. The hierarchy forms a so-called call graph, a
directed graph where the nodes represent the functions, and the edges the function
calls (see figure 3.8).

A function (node in the call graph) has to be mapped to one of three alternatives:

• a structural description for the corresponding SystemC module,

• a behavioral description for the corresponding SystemC module, or

• a supporting function of a behavioral module.

Furthermore, two mapping rules have to be obeyed:

• only structural modules can incorporate other modules (either behavioral or
structural modules), and

• only behavioral modules can use supporting functions.

An example of a possible mapping and the corresponding C code and SystemC
model are shown in figure 3.8.

Implicitly, the mapping rules result in an important constraint for functions
which are converted into either structural or behavioral modules: recursive function
calls, either direct or indirect ones, are not allowed. This requirement ensures that
nodes in the call graph corresponding to structural and behavioral modules are not
part of any cycle.

The requirements and restrictions to the C code presented so far are easily met:
just follow a limited set of simple programming rules. The designer does not need
to learn any extensions or annotate the C code in any other way.

The selection of a mapping together with the one-to-one correspondence between
functions and modules give the designer full control over the granularity of the final
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r() {

x = s();

t(x);

}

void   intt(    x) {

u(x);

v(x);

}

void   int

int

u(    x) {

tmp = w();

}

void   intv(    x) {

}

int s() {

w();

}

return

int w() {

0;

}

return

Figure 3.8: Example of mapping a call graph (S = structural module, B = behavioral
module, F = supporting function), with the original C code and its corresponding
SystemC model.

SystemC model. Selecting a mapping is not done automatically, but left to the
designer. To our opinion the mapping is a design decision that the designer has
to take. Furthermore, it is very difficult to make a sensible decision automatically
without prior knowledge of the target.

3.7.3 Behavioral conversion

A behavioral module consists of input and output ports for control and data signals,
and methods specifying at least the functional behavior of the module. In the
generated modules, three methods are defined: input(), output() and exec().
The first two manage the reading and writing of data from and to the input and
output ports, respectively. The third contains the main functionality of the module.

The function’s body specifies its behavior and can be incorporated directly into
the SystemC module, into the exec() method. To enable the tracing2 of variables,
all variable declarations are stripped from the function’s body and the variables are
declared as data members of the SystemC module. Any pointers are detected and
replaced by references.

The remaining problem in constructing a behavioral module involves translating
the input and output arguments of the function to their port equivalents. In the
C language no explicit mechanisms exist to uniquely identify whether an argument

2SystemC supports the tracing of a data member of a module, i.e., it logs all value changes of
that data member.
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is an input or an output of a function. However, implicitly some information is
available.

• Variables passed by value to the function cannot be modified by the called
function and thus these arguments are always inputs.

• Constant arguments (whether variables are passed by value or by reference)
are inputs by definition.

• Arguments passed by reference (through pointers or array constructs) can
serve both as input and output.

• A non-void return value of the function serves as an output.

Summarizing, the only ambiguity arises when arguments are passed by reference.
Several options exist to remove this ambiguity.

• Interpret these arguments as a combined input and output.

• Annotate the original code (for instance via a dedicated #pragma directive3).

• Parse and analyze the body of the function to see whether arguments are read
or written to.

• Make sure that the programmer declares all inputs passed by reference as
constant.

The first option introduces unnecessary overhead in many cases. The second is
unattractive, because it is error prone. It might introduce a discrepancy between
the executable specification, which does not use the annotated information, and the
generated SystemC model, which does. The third is the most general, but is difficult
to implement. Finally the fourth does not cause overhead, because combined input
and output ports are no longer possible. It is easy to implement and guarantees
equivalent C and SystemC models. Therefore, the fourth option is chosen to remove
the ambiguity. If the designer erroneously does not declare an input passed by
reference as constant, this error is detected when the generated SystemC model is
executed.

3.7.4 Structural conversion

As depicted in figure 3.9, a two-step approach is used to convert a C function into
a structural SystemC module. First a combined control data flow graph is derived
from the C source. Second, the CDFG is used to construct a structural module
of the function. The CDFG is a directed graph where the nodes represent either
variables or operations. The edges represent either the data or control flow.

3The #pragma directive is a preprocessing construct like #include, which causes
implementation-dependent behavior if the token sequence following the directive is recognized.
Unrecognized pragmas are ignored.
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Figure 3.9: Two-step structural conversion approach: C into a control data flow
graph (CDFG) and the CDFG into a SystemC module.

To derive the CDFG from a C function, we use the SUIF system [1, 83]. The
SUIF tools are used to parse the source code of the function and to generate the
SUIF intermediate representation (IR) of the program, a tree. Subsequently, a pass
is written that traverses the IR tree and generates the CDFGs of the functions
encountered.

Next, the data flow graph is extracted from the CDFG. The nodes are translated
into modules and memories, the edges to signal connections between them. The
modules correspond to the functions called by the function and the memories to its
variables and arguments.

Each module has a controller that orchestrates the execution of the underlying
modules. The information stored in the CDFG allows for basic scheduling opti-
mizations [44], but these have not been implemented yet. For now, we use profiling
information to construct a valid schedule for the controller of the module.
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3.7.5 Conversion alternatives

The designer is offered a set of features and alternatives to influence the conversion
process. For example, he can choose to alter the timing scheme or to target synthe-
sizable SystemC code. The conversion alternatives at the designer’s discretion are
discussed in the next sections.

Timing scheme

The designer has the possibility to select one of two alternative timing schemes.

• Self-timed: In this scheme, modules are allowed to execute as soon as they
have gathered enough data at their data input ports. The modules do not
have explicit control ports to trigger the execution of the module.

• Scheduled: Modules are started explicitly by a controller unit. They have
explicit control ports to trigger their execution.

An advantage of the first scheme is that the central controller can be removed from
the structural modules. However, if this timing scheme is applied, the SystemC
module is not guaranteed to have the same behavior as its corresponding C function.
For instance, if a function is originally called twice using the same inputs, the absence
of new data at the input ports of the self-timed module will cause the second function
call to be missed. The second scheme requires explicit control, but guarantees the
same behavior for the SystemC module and its equivalent C function.

Pipelining

In normal operation the generated behavioral modules have a single thread of exe-
cution. The thread calls the input(), exec() and output() methods sequentially.

To increase the throughput of the modules, pipelined modules are supported.
These modules have three concurrently executing threads. Each thread calls one of
the input(), exec(), or output() methods. As a consequence, the methods can
be called concurrently. Of course the data passed between the thread has to be
buffered with additional registers.

Limited-precision data types

An important step in the refinement of C code to a hardware description is the
conversion of standard data types like integers and doubles into limited-precision
data types. To this end, SystemC supports various limited-precision data types,
both integer types and fixed-point types. For each type the number of bits must be
chosen, and for the fixed-point types also the position of the fractional point.

Optionally, the conversion tool can convert all integer and floating-point variables
into their SystemC equivalents. The exact formats of the numbers must be supplied
by the designer. The formats can be derived using methods based on the analysis or
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simulation of the data flow model or they can be derived of the original executable
specification (e.g. [35, 78, 82]).

Another possibility is to use an external software tool to convert either the orig-
inal C code or the generated SystemC code such that is uses limited-precision data
types only. Several packages are available for this, such as FRIDGE [33] or the
commercial package CoCentric Fixed-Point Designer from Synopsys [79].

Synthesis oriented conversion

So far, we have not considered generating synthesizable SystemC code specifically.
In this section we concentrate on a particular synthesis tool: CoCentric SystemC
Compiler from Synopsys. Therefore, the considerations regarding synthesizable code
presented in this section apply to this synthesis tool. Similar considerations may
arise for tools from other vendors.

The Synopsys synthesis tool requires synchronous modules. Therefore, clocked
processes are applied and a clock input port is added to the modules, introducing
time into the model. Consequently, we have to solve a number of timing issues [80]:

• to prevent zero-delay between consecutive port accesses, and

• to prevent zero-delay loops.

These issues only affect behavioral modules.
The first issue is readily solved by adding a wait() statement4 after each port

access, causing the module to suspend until the next clock cycle after each read or
write from or to a port. As ports are only accessed in the input() and output()

methods, the main functionality in the exec() method is left unmodified.
To solve the second issue, the main functionality of the module (the exec()

method) has to be modified. In every loop statement, a wait() statement is inserted.
(For now, we only support for and while loop constructs.)

3.8 Summary

In this chapter we discussed a mathematical programming solution to the hardware-
software partitioning problem. First a formulation was introduced for mapping a
single algorithm to an optimal architecture. Subsequently, the formulation was
extended to support the mapping and selection of multiple algorithms.

To deal with the uncertainty inherent to high-level design, triangular numbers
were introduced to describe the cost estimates, leading to a fuzzy optimization
problem. The optimization method used optimizes the most probable outcome,

4The SystemC wait() statement causes the module to suspend process execution until an event
occurs on one of the signals the process is sensitive to. In a clocked process, one such signal is the
module’s clock.
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while minimizing the chances of finding a worse solution and maximizing the chances
of a better one.

Apart from the solution for the partitioning problem, we described a procedure
to quickly generate a synthesizable description of the original specification in order
to get the initial cost estimates. The description language used is SystemC, as it has
a large syntactic resemblance to the C language, used for the initial specification of
the algorithms. Existing approaches to translate C into VHDL or Verilog did not
provide a satisfactory solution.

The methods introduced in this chapter have all been implemented. To test
and verify the ideas we will apply these design tools in chapter 5, to implement
an OFDM transceiver. But first, to get a better understanding for this kind of
transceiver, the next chapter discusses multi-carrier communications in general, and
OFDM in particular.





Chapter 4
Multi-carrier communications

4.1 Introduction

In a multi-path channel, data transmission suffers from frequency selective fading.
At high symbol rates, this result in severe inter-symbol interference. An approach
to overcome this problem is to divide the available bandwidth into many indepen-
dent narrow sub-bands and to assign each sub-band to a so-called subchannel [9].
As a results the symbols are not transmitted serially over a single channel, but in
parallel over the subchannels. This lowers the symbol rate per subchannel, effec-
tively reducing the inter-symbol interference while maintaining the overall symbol
rate. Additional measures, such as the use of a cyclic prefix, effectively annul the
remaining inter-symbol interference.

Orthogonal frequency-division multiplexing (OFDM), also known as multi-carrier
modulation (MCM) or discrete multi-tone (DMT), is a popular transmission scheme,
in which such a technique is used. It enables reliable transmission over frequency-
selective fading channels. It is adopted in several international standards such as
digital audio broadcasting (DAB) [23], digital video broadcasting (DVB-T) [65],
asymmetric digital subscriber lines (ADSL) [10] and more recently in the IEEE
802.11a standard [28]. Furthermore, it has been proposed for the universal mobile
telecommunications system (UMTS) [25] standard.

In the first part of this chapter we will introduce multi-carrier communications
and in particular OFDM, starting with an explanation of the effects encountered in
high data rate communications. Next, multi-carrier modulation is explained, which
mitigates these effects, and finally we derive classical OFDM.

Before optimizing the implementation of a system with respect to area, latency
and energy costs, one should first investigate the possibilities to reduce these costs
beforehand. This means modifying the functionality of the system itself, of course
within its specifications.

In multi-carrier systems, such as OFDM, it is possible to assign different en-
ergy levels to each subchannel. This property can be exploited to minimize the
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total energy necessary to realize a desired average bit error rate. In this way the
transmission power can be reduced while still meeting the desired performance.

To reduce the costs even further, we use fixed-point or integer arithmetic instead
of floating-point calculations for the baseband processing. Of course, we aim to use
as few bits as possible in order to keep the area, latency and energy usage as low as
possible.

When implementing OFDM systems on integer digital signal processors (DSPs)
or on fixed-point dedicated hardware, one has to decide how many bits to assign for
the integer and fractional part of a fixed-point number. The main design constraint
governing this decision is the performance desired of the resulting quantized OFDM
system. Usually the relationship between the number of integer or fractional bits
used and the resulting performance is found using Monte Carlo simulations. This
would take a prohibitive amount of time in our approach to architecting. Therefore,
in the second part of this chapter simple analytical expressions are derived for the
performance of uniformly quantized and soft-limited OFDM systems, so that the
design space can be quickly explored, and the minimum number of integer and
fractional bits needed to achieve the desired performance can be determined.

4.2 Multi-path channels

When a radio wave is transmitted from one antenna to another, multiple propagation
paths may exist. A line-of-sight path may or may not be present. Other propagation
paths are caused by various propagation effects.

• Reflection: Reflection occurs when an electromagnetic wave strikes an object
which is very large in comparison with the wavelength of the propagating wave.

• Scattering: Scattering occurs when many small objects (in comparison with
the wavelength of the propagating wave) obstruct the propagation path of the
radio wave.

• Diffraction: Diffraction occurs when the radio wave hits a surface with sharp
edges. The surface irregularities cause the wave to be deflected in all directions,
and can even cause the wave to bend around the obstructing object.

As the wavelengths of the radio waves get smaller for higher frequencies, objects
with small dimensions which did not obstruct the signal for lower frequencies start
to interfere with the radio wave.

4.2.1 Channel impulse response

Each propagation path has its own characteristic propagation delay, amplitude at-
tenuation and phase rotation. Consequently, the propagation effects of a multi-path
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channel can be modeled by its complex low-pass equivalent impulse response h(τ)

h(τ) =
L−1∑
i=0

αie
jθiδ(τ − τi). (4.1)

Here, αi, θi and τi are the amplitude attenuation, phase rotation and relative time
delay of the ith propagation path, respectively, and L is the number of propagation
paths. Without loss of generality the L paths are assumed to be ordered according
to their path lengths (and thus according to their delay times).

As a physical channel must have a causal response, all delay times are larger
than or equal to zero. Furthermore, because the absolute arrival times of the waves
are not relevant, the delay of the shortest path is set to zero (τ0 = 0).

4.2.2 Delay spread

The root-mean-square (RMS) delay spread τRMS of a multi-path channel is defined
as the second central moment of the channel’s normalized delay power spectrum
φc(τ) [30]

τRMS =

√∫ ∞

−∞
(τ − τm)2φc(τ)dτ , (4.2)

where τm is the average excess delay time defined by

τm =

∫ ∞

−∞
τ · φc(τ)dτ. (4.3)

The channel’s normalized delay power spectrum is given by

φc(τ) =
1

A

L−1∑
i=0

α2
i δ(τ − τi), (4.4)

where α2
i is the power attenuation of the ith propagation path and A is given by

A =
L−1∑
i=0

α2
i , (4.5)

which is the average power response or power gain of the channel.
The multi-path delay spread of a channel, Tm, is defined as the maximum path

delay of the delay power spectrum. If the channel impulse response is known, it
is equal to the longest path delay Tm = τL−1. If the impulse response is not fully
known, the multi-path delay spread is often taken as

Tm ≈ γ · τRMS, (4.6)

where γ is a constant depending on the channel model assumed (usually between 3
and 5).



66 Chapter 4. Multi-carrier communications

4.2.3 Inter-symbol interference

As data rates increase, symbol periods decrease (the symbol period is inversely
related to the data rate). At very high data rates or in channels with a large
delay spread, the symbol period becomes smaller than the delay spread. As a
result, delayed versions of the transmitted symbols (or echoes) start to interfere
with subsequent symbols. This effect is known as inter-symbol interference and is
illustrated in figure 4.1.

symbol rate

impulse response h(τ )

25×

5×

1×
time

Figure 4.1: Multiple echoes cause inter-symbol interference.

Even within a single symbol interval, the echoes can distort the signal. As each
echo has its own amplitude attenuation and phase rotation, the echoes can either
behave constructively or destructively.

Of course, in the presence of multiple propagation paths, there is always inter-
symbol interference between two consecutive symbols. However, for long symbol
periods, this interference is only a small fraction of the symbol period and the effect
is usually negligible. In contrast, for short symbol periods, the interference may
span several symbols and affects the whole symbol; it cannot be neglected anymore.

4.2.4 Frequency-selective fading

In the frequency domain, the inter-symbol interference can be viewed as frequency-
selective fading, that is, the frequency response of the channel changes significantly
within the bandwidth of the transmitted signal. This in contrast with flat fading
where the frequency response of the channel is approximately constant within the
bandwidth of the transmitted signal.

Where the symbol period decreases with higher data rates, the symbol bandwidth
increases. Thus at low symbol rates, where the signal has a narrow bandwidth, the
signal only experiences flat fading, but as the bandwidth increases, the signal starts
to suffer from frequency-selective fading. This effect is shown in figure 4.2.
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frequency

channel response

signal bandwidth

(a) High data rate: frequency-selective fading

frequency

channel response

signal bandwidth

(b) Low data rate: flat fading

Figure 4.2: At high data rates the transmitted signal suffers from frequency-selective
fading.

4.3 Principles of multi-carrier modulation

Sequential equalizers are often used to mitigate the inter-symbol interference. How-
ever, many taps are needed when the interference spans many symbols at high data
rates. In a time-variant environment, the equalizer becomes even more complex,
because many tap coefficients have to be estimated quickly.

Another method to prevent inter-symbol interference is to enlarge the symbol
period until the echoes of a single symbol do no longer span multiple symbols, i.e.,
the symbol period must be much larger than the delay spread of the channel. In the
frequency domain this can be seen as decreasing the bandwidth of the transmitted
symbols until they only suffer from flat fading and no longer from frequency-selective
fading. Further interference reduction is achieved by using a guard interval between
two consecutive symbols. A guard interval is a short protective period inserted
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between two symbols to prevent that echoes from the first symbol corrupt the second.
Expansion of the symbol period effectively lowers the symbol rate. To preserve

the data rate, multiple symbols are transmitted simultaneously at different frequen-
cies, known as sub-carriers. This can be achieved by applying a form of frequency-
division multiplexing (FDM). In its simplest form FDM utilizes filter banks to sep-
arate the individual bands.

Summarizing, instead of transmitting symbols sequentially at a high rate, they
are are transmitted in parallel at a lower rate. This way, the high data rate is
preserved but the signal does not suffer from inter-symbol interference (or frequency-
selective fading).

4.3.1 Orthogonal FDM

FDM methods that rely on filter banks use the available bandwidth inefficiently. To
remedy this, we should space the sub-carriers as close as possible. The sub-carriers
should be mutually orthogonal to retrieve the information mapped onto them.

In general the message signal mi(t) transmitted on the ith sub-carrier consists of
the data symbols zk

i mapped on pulses with shape g(t). It is given by

mi(t) =
∞∑

k=−∞

zk
i g(t− kT ), (4.7)

with T the symbol period and k the symbol index. Applying FDM gives the complex
envelope of a multi-carrier signal x(t)

x(t) =
N−1∑
i=0

ci(t), (4.8)

where N is the number of sub-carriers and ci(t) the ith message mapped on the
sub-carrier with frequency fi

ci(t) = mi(t)e
j2πfit. (4.9)

The orthogonality constraint requires that the cross correlation of two modulated
sub-carriers is zero ∫ ∞

−∞
cu(t)cv(t)dt = 0, ∀ u 6= v, (4.10)

where cv(t) designates the complex conjugate of cv(t), or using equation 4.9∫ ∞

−∞
cu(t)cv(t)dt =

∫ ∞

−∞
mu(t)e

j2πfut ·mv(t)e
−j2πfvtdt

=

∫ ∞

−∞
mu(t)mv(t)e

j2π(fu−fv)tdt = 0.

(4.11)
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Now consider the special case where g(t) is a rectangular pulse

g(t) = Π

(
t

T

)
, (4.12)

with

Π(t) =

{
1 if 0 ≤ t ≤ 1,
0 elsewhere.

(4.13)

Then the resulting integral in equation 4.11 can be split as follows∫ ∞

−∞
cu(t)cv(t)dt =

∞∑
k=−∞

xu
kx

v
k

∫ T

0

ej2π(fu−fv)tdt. (4.14)

Thus in this special case orthogonality is guaranteed when∫ T

0

ej2π(fu−fv)tdt = 0, (4.15)

which leads to
1

j2π(fu − fv)
ej2π(fu−fv)t

∣∣∣∣T
0

= 0, (4.16)

and finally gives
ej2π(fu−fv)T − 1 = 0, fu − fv 6= 0. (4.17)

It follows that the frequency separation f∆ which guarantees orthogonality should
be a multiple of the symbol rate 1

T

f∆ = fu − fv =
k

T
, k = ±1,±2, . . . . (4.18)

Combining equation 4.8 and equation 4.18 gives the complex envelope of an OFDM
signal with a minimum bandwidth

x(t) =
N−1∑
i=0

mi(t)e
j2π it

T . (4.19)

Here, the frequency of the ith sub-carrier is recognized as fi = i
T
, which leads to a

frequency separation of f∆ = 1
T
. Finally an OFDM signal transmitted on carrier

frequency fc is represented by

s(t) = Re
{
x(t)ej2πfct

}
= Re

{
ej2πfct

∞∑
k=−∞

N−1∑
i=0

zk
i Π

(
t− kT

T

)
ej2π it

T

}
.

(4.20)

An OFDM signal can be represented equivalently in the time domain as well as
in the frequency domain. In the time domain the signal can be viewed as the sum
of several sines and cosines. Their periods are a multiple of the symbol period.

In the frequency domain an OFDM signal can be interpreted as the sum of several
sinc functions (frequency-domain representation of a rectangular pulse shape), which
are spaced f∆ = 1

T
apart (see figure 4.3). This particular separation distance ensures

that the maximum of one sinc occurs exactly where all others are zero.
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f∆

frequency

magnitude

Figure 4.3: Overlapping power spectra of four sub-carriers. At the peak of a sub-
carrier, the spectra of all other carriers are zero, illustrating their orthogonality.

4.3.2 Guard interval

To combat the remaining interference between two consecutive symbols, we intro-
duce a guard interval. We choose a cyclic prefix as guard interval to ease the channel
estimation and equalization. A cyclic prefix is constructed by cyclically extending
a symbol, i.e., by copying the last part of a symbol and placing it in front of the
symbol (see figure 4.4).

Tg Ts

cyclical extension

Figure 4.4: Construction of a cyclic prefix. The cyclical extension of the symbol
acts as a guard interval against inter-symbol interference while preserving the or-
thogonality of the sub-carriers over the original symbol period Ts.

To find a representation of a cyclically extended OFDM signal, we enlarge the
symbol period

T = Ts + Tg, (4.21)

where Ts is the original symbol period and Tg is the duration of the cyclic prefix.
Now, the complex envelope of a cyclically extended OFDM signal is given by

x(t) =
∞∑

k=−∞

N−1∑
i=0

zk
i Π

(
t− kT

T

)
ej2π

i(t−Tg)

Ts . (4.22)
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This leads to

s(t) = Re

{
ej2πfct

∞∑
k=−∞

N−1∑
i=0

zk
i Π

(
t− kT

T

)
ej2π

i(t−Tg)

Ts

}
. (4.23)

Here, the ith sub-carrier frequency is given by fi = i
Ts

. The frequency separation is
given by

f∆ =
1

Ts

. (4.24)

To completely eliminate all inter-symbol interference, one should choose a dura-
tion of the cyclic prefix that is longer than the multi-path delay spread Tm of the
channel.

4.3.3 OFDM demodulation

The complex envelope of the received signal is represented by

r(t) = h(t) ∗ x(t), (4.25)

where the ∗ operator denotes the convolution with the channel impulse response.
Assuming ideal demodulation, i.e., a perfectly synchronized receiver, the demod-

ulated data symbol z̃k
i′ in the kth symbol and on the i′ sub-carrier is given by

z̃k
i′ =

1

T

∫ (k+1)T

kT+Tg

r(t)e−j2π
i′(t−Tg)

Ts dt

=
1

T

∫ (k+1)T

kT+Tg

rk(t)e
−j2π

i′(t−Tg)

Ts dt,

(4.26)

where
rk(t) = h(t) ∗ xk(t) (4.27)

is the complex envelope representation of the received signal in the time interval
t ∈ [kT + Tg, (k + 1)T 〉. Here, xk(t) is given by

xk(t) = Π

(
t− kT

T

)N−1∑
i=0

zk
i ej2π

i(t−Tg)

Ts , (4.28)

which is the complex envelope of the cyclically extended OFDM symbol in the time
interval t ∈ [kT, (k + 1)T 〉. Equation 4.27 is only valid if the guard interval duration
Tg is longer than the multi-path delay spread Tm of the channel.

Substitution of equation 4.27 in 4.26 gives

z̃k
i′ =

1

T

∫ (k+1)T

kT+Tg

h(t) ∗ xk(t)e
−j2π

i′(t−Tg)

Ts dt

=
1

T

∫ (k+1)T

kT+Tg

[∫ ∞

−∞
h(τ)xk(t− τ)dτ

]
e−j2π

i′(t−Tg)

Ts dt.

(4.29)



72 Chapter 4. Multi-carrier communications

Subsequent substitution of equation 4.28 leads to

z̃k
i′ =

1

T

∫ (k+1)T

kT+Tg

[∫ ∞

−∞
h(τ)

N−1∑
i=0

zk
i ej2π

i(t−τ−Tg)

Ts dτ

]
e−j2π

i′(t−Tg)

Ts dt

=
1

T

N−1∑
i=0

zk
i

∫ (k+1)T

kT+Tg

[∫ ∞

−∞
h(τ)ej2π

i(t−τ−Tg)

Ts dτ

]
e−j2π

i′(t−Tg)

Ts dt.

(4.30)

Moving the term ej2π
i(t−Tg)

Ts out of the inner integral gives

z̃k
i′ =

1

T

N−1∑
i=0

zk
i

∫ (k+1)T

kT+Tg

[∫ ∞

−∞
h(τ)e−j2π iτ

Ts dτ

]
ej2π

(i−i′)(t−Tg)

Ts dt

=
1

T

N−1∑
i=0

zk
i

∫ ∞

−∞
h(τ)e−j2π iτ

Ts dτ

∫ (k+1)T

kT+Tg

ej2π
(i−i′)(t−Tg)

Ts dt

=
1

T

N−1∑
i=0

zk
i Hi

∫ (k+1)T

kT+Tg

ej2π
(i−i′)(t−Tg)

Ts dt,

(4.31)

with

Hi = H

(
i

Ts

)
, (4.32)

where

H(f) =

∫ ∞

−∞
h(τ)e−j2πfτdτ, (4.33)

which is the frequency response of the channel (the Fourier transformed channel
impulse response).

Thus we arrive at
z̃k

i′ = zk
i Hi, (4.34)

where it is clearly seen that in an ideal receiver, the multi-path channel causes an
amplitude attenuation and a phase rotation given by the frequency response of the
channel. This effect can easily be compensated for, with a one-tap equalizer.

4.4 Optimal energy assignment

Multi-carrier systems such as OFDM allow the assignment of different energy levels
to each sub-carrier. This enables pre-distortion of the transmitted sub-symbols in
order to improve the performance. In [31] an optimization scheme is presented to
maximize the overall bit rate in case the total transmitter power is limited. This
is achieved by an optimal division of the available power amongst the sub-carriers,
similar to the water-pouring solution known from information theory. In this chapter
however, a different approach is taken. Given a power budget, the probability of a
bit error is minimized, instead that the overall bit rate is maximized.
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Figure 4.5: Model of a multi-carrier communication system.

4.4.1 Channel model

Since the inter-symbol interference is effectively canceled, the individual sub-carriers
do not suffer from frequency-selective fading. The remaining flat fading is modeled
with a power attenuation factor Ci for every sub-carrier i. This factor is a piecewise
constant approximation of the channel transfer function H(f) (see equation 4.33)
and is given by

Ci = |H(fi)|2, (4.35)

where fi is the central frequency of the ith sub-carrier.
In addition to frequency-selective fading, the channel also suffers from additive

white Gaussian noise (AWGN) which limits the transmission capacity. The noise
power N0 is assumed constant and equal for all sub-carriers.

4.4.2 System model

On every sub-carrier i an average bit energy Ebi
is used to transmit the data symbols

(see figure 4.5). The probability of a bit error on the ith sub-carrier is a function
of the average bit energy, the power attenuation factor Ci, and the average noise
power N0

Pei
= F (Ebi

, Ci, N0) . (4.36)

In general F is a strictly decreasing function with respect to Ebi
. The precise form

depends on the applied symbol mapping scheme.
For the remaining part of this chapter, we assume a uniform modulation scheme

for each sub-carrier. This assumption is made only for analytical convenience and
does not limit the validity of the model.
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The total energy transmitted over the channel Eb is the sum of the energies
transmitted over all sub-carriers, i.e.,

Eb =
N−1∑

0

Ebi
, (4.37)

where N is the number of sub-carriers. The average bit error rate is given by the
mean of the bit error probabilities per sub-carrier

Pe =
1

N

N−1∑
0

Pei
. (4.38)

The total number of bits B transmitted depends on the number of bits per symbol
bi which, still assuming a uniform symbol mapping scheme for all sub-carriers, is
given by

B =
N−1∑

0

bi = N · b, (4.39)

where b is the number of bits per sub-carrier.

4.4.3 Optimization problem

With the definitions above, the following optimization problem can be formulated.

Find the average bit energies Ebi
∀ i = 1 . . . N , with N the number of sub-

channels, such that the total energy Eb is minimized

min

[
Eb =

N∑
1

Ebi

]
,

while the average bit error probability Pe does not exceed the desired error
rate Re

Pe =
1

N

N∑
1

Pei
≤ Re.

Solving this optimization problem gives the minimum amount of energy needed
to transmit B bits given a desired bit error rate Re.

Since the individual error probability functions per subchannel Pei
are strictly

decreasing functions of the average bit energy per subchannel Ebi
, the overall average

bit error probability Pe is also a strictly decreasing function. An optimum is reached
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when the partial derivatives of the average bit error probability with respect to the
average bit energy per subchannel are equal, that is

∂Pe

∂Ebi

=
∂Pe

∂Ebj

. (4.40)

The solution to equation 4.40 gives the relative energy distribution. To find
the absolute energy per subchannel, we have to satisfy the additional boundary
condition, i.e.,

Pe =
1

N

N∑
1

Pei
= Re, (4.41)

where Re is the desired average bit error rate. Solving equation 4.40 and 4.41
simultaneously gives the optimal energy distribution to achieve the desired bit error
rate at the lowest total energy cost.

QPSK optimization

In case of QPSK (quadrature phase shift keying) symbol modulation we are able to
derive a closed formula for the relative energy distribution. The error probability
per subchannel Pei

for QPSK symbol modulation is given by [29]

Pei
= Q

(√
2
CiEbi

N0

)
. (4.42)

Q is defined, as usual, by

Q(z) =
1√
2π

∫ ∞

z

e−
1
2
λ2

dλ. (4.43)

The partial derivative with respect to the average energy per bit then boils down to

∂Pe

∂Ebi

= −1

2

√
ai

πEbi

e−aiEbi , (4.44)

with ai = Ci

N0
. Substitution of equation 4.44 in equation 4.40 gives√

ai

Ebi

e−aiEbi =

√
aj

Ebj

e−ajEbj . (4.45)

Squaring and rearrangement lead to

aiEbj
e2ajEbj = ajEbi

e2aiEbi . (4.46)

Finally solving equation 4.46 for Ebj
, substituting ai = Ci

N0
and assuming a unity

reference attenuation factor Ci = 1, gives the optimum normalized energy

Êbj

N0

=
1

2Cj

W

(
2C2

j

Ebi

N0

e
2

Ebi
N0

)
. (4.47)
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W (x) is Lambert’s W function, which obeys

W (x) eW(x) = x. (4.48)

Equation 4.47 gives the relative energy distribution over the subchannels; the
absolute values can be found by an iterative approximation of equation 4.41, using
for example Newton-Raphson.

QAM-16 optimization

In case of QAM-16 (16-ary quadrature amplitude modulation) symbol modulation,
we derive a numerical procedure to calculate the optimal energy distribution. The
bit error probability per subchannel Pei

for QAM-16 symbol modulation is given by

Pei
=

3

4
Q

(√
1

5

CiEbi

N0

)
+

1

4
Q

(√
9

5

CiEbi

N0

)
. (4.49)

Setting the partial derivatives equal and solving the resulting equations however,
does not yield a simple analytical solution. Therefore the solution is calculated
numerically using the following procedure.

1. assign Ebi
∀ i = 1 . . . N such that Pei

= Re

2. calculate
∣∣∣ ∂Pe

∂Ebi

∣∣∣
Ebi

∀ i = 1 . . . N

3. while
∣∣∣ ∂Pe

∂Ebi

∣∣∣
Ebi

6=
∣∣∣ ∂Pe

∂Ebj

∣∣∣
Ebj

∀ i = 1 . . . N, j = 1 . . . N

(a) select the subchannels with the largest and smallest partial derivatives∣∣∣ ∂Pe

∂Ebi

∣∣∣
Ebi

(b) increase the energy for the subchannel with the largest partial derivative

(c) find the new Ebi
for the subchannel with the smallest partial derivative

while satisfying Pe = Re

(d) calculate the new partial derivatives

The procedure above can be applied for any modulation scheme with a bit error
probability Pei

per subchannel of the form

Pei
=

K∑
1

αkQ

(√
γk

CiEbi

N0

)
, (4.50)
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where K is an arbitrary integer and αk and γk are modulation-dependent con-
stants. The same procedure can also be applied for non-uniform symbol modulation
schemes. If the bit error probability per subchannel Pei

is a strictly decreasing
function of Ebi

, then the procedure converges.

4.4.4 Comparison

To validate and demonstrate the effectiveness of the proposed optimal energy assign-
ment scheme, we compare the method with two other widely used energy assignment
schemes. The first is the traditional approach to assign all subchannels the same
energy per bit (a uniform energy). The second scheme assigns the energies in such
a way that all subchannels have the same error rate (a uniform error rate). In all
cases QPSK is used for the symbol modulation.

Obviously the uniform energy assignment scheme does not take into account the
channel conditions when assigning energy to each subchannel, whereas the uniform
error rate assignment scheme does. However, the latter only locally optimizes the
energy for each subchannel. The proposed optimal method globally optimizes the
energy assigned to each subchannel, making maximum use of the channel charac-
teristics and the available energy.

Energy distribution

Figure 4.6 shows the energy distributions for increasing energy levels for each of
the assignment methods. From the graphs, it is observed that the optimal scheme
assigns relatively less energy to the (poor) subchannels with low attenuation factors
than the uniform error rate scheme and at the same time, it assigns more energy
to the (good) subchannels with higher attenuation factors. The higher error rate
for poor subchannels is compensated for by a lower error rate for good subchannels,
resulting in a decrease of the average error rate.

For low energy levels it is observed that the optimal scheme resembles the uni-
form energy scheme. For higher levels, it behaves more like a uniform error rate
assignment scheme.

Performance

The three assignment schemes are compared by simulation, using a Ricean fading
channel model [60]. For different numbers of subchannels, a large number of channel
responses is generated representing different channel conditions. This is achieved by
changing the Ricean K-factor, which represents the severity of multi-path effects in
the channel. The lower the K-factor, the more the multi-path effects dominate. In
case the Ricean K-factor equals zero, the Ricean fading channel model turns into a
Rayleigh fading channel model.

The performance of the schemes is compared by plotting the average bit error
rate Pe against the average normalized energy per subchannel Ebi

/N0 (see figure 4.7,
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Figure 4.6: Comparison of different energy distribution schemes for various values
of the total normalized energy Eb/N0.

left-hand graphs, solid curves). Next to the average, the performance with the best
and that with the worst channel conditions are shown (dashed curves). Additionally
the energy gain G of the optimal scheme with respect to that of the other two schemes
is plotted (figure 4.7, right-hand graphs).

In all cases the simulations show that the scheme proposed in this paper per-
forms best. The improvement is most significant with respect to the uniform energy
distribution. The gain is moderate with respect to the uniform error rate distri-
bution scheme. The most energy is gained (compare figure 4.7, right-hand graphs)
when the channel conditions are worst, i.e., when the channel suffers from deep fades
(K ≈ 0).
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Figure 4.7: Performance comparison of distribution schemes over a Ricean fading
channel (K - Ricean K-factor, number of subchannels N = 128, number of simula-
tions n = 100).
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4.5 Quantization level

To derive an analytical expression for the performance of quantized OFDM systems,
we investigate the effects of quantization on a, apart from that, ideal modulator-
demodulator pair. Performance degradation due to the limited precision of the
arithmetic is not taken into account, but numerous references on this topic and
strategies to reduce computational noise can be found in literature, e.g. [50] and
[82].

4.5.1 System model

The quantized OFDM system model under consideration is depicted in figure 4.8. It
consists of a sub-symbol encoder and an inverse discrete Fourier transform (IDFT)
connected to a forward discrete Fourier transform (DFT) and a sub-symbol decoder
via a uniform quantizer Q. In this model, the extension of the OFDM symbol with
a cyclic prefix can be neglected, as ideal time synchronization is assumed.

inverse
Fourier

transform

forward
Fourier

transform

demodulationmodulation

Q

quantizer

Figure 4.8: Model of a quantized OFDM system.

Channel effects and distortions, such as multi-path interference and propagation
loss, are not taken into account; we only focus on the effects of quantization on the
data transmission capabilities. For the same reason, we assume ideal time and fre-
quency synchronization in the receiver. Hence, the expressions found in section 4.5.2
give a lower bound for the bit error probability of a quantized OFDM system.

A fixed-point number consists of a number of bits, split into an integer part
and a fractional part separated by the radix point (see figure 4.9). When uniform
quantization is applied, the level distance d of the quantizer is determined by the
number of fractional bits n

d = 2−n. (4.51)

The quantization process distorts the modulated signal, causing errors in the
demodulated data.

Quantization noise before transformation

We approximate the effect of quantization of the OFDM signal by adding quanti-
zation noise (see figure 4.10). The noise is modeled as a complex uniform random
variable nQ

nQ = inQ
+ jqnQ

, (4.52)
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integer part fractional part

bw−1 bw−2 · · · bn . bn−1 · · · b1 b0

radix point

Figure 4.9: Fixed-point number with n fractional bits (bi is the ith bit of a binary
number with in total w digits).

where inQ
and qnQ

are the in-phase and quadrature components of the noise, re-
spectively. The probability density function (PDF) fnQ

(inQ
, qnQ

) of nQ is given by

fnQ
(inQ

, qnQ
) =

{ (
1
d

)2 ∀(inQ
, qnQ

) : |inQ
| ≤ d

2
and |qnQ

| ≤ d
2
,

0 elsewhere,
(4.53)

where n is the number of fractional bits and d the level distance defined in equa-
tion 4.51.

forward
Fourier

transformQ
=⇒

nQ

forward
Fourier

transform

Figure 4.10: The quantization of the signal is modeled as the addition of quantization
noise nQ.

The model discussed so far does not enable us to easily deduce an expression for
the performance of a quantized OFDM system. Therefore, we try to develop the
model further to come to a more suitable framework.

Quantization noise after transformation

A quantized OFDM signal with K sub-carriers is demodulated using a K-point DFT.
Because a Fourier transform is a linear operation, the addition of quantization noise
can be moved after the DFT as long as the same transformation is applied to the
noise as well.

The forward K-point DFT is given by

x̂(k) =
1√
K

K−1∑
n=0

x(n)e−
j2πkn

K for k = 1 . . . K. (4.54)

Applying this transformation to the noise can be viewed as taking the weighted
sum of K phase-rotated samples of nQ. Therefore, we introduce two new random
variables, n′Q and φ, where n′Q is equal to nQ except for the random phase rotation φ

n′Q = nQeφ. (4.55)
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Now, we substitute for the transformed quantization noise a weighted sum of random
variable n′Q as depicted in figure 4.11.

Summarizing, we have replaced the original uniform quantization noise nQ before
the DFT with a weighted sum of K samples of n′Q after the DFT. Consequently, if
K is large, the central limit theorem applies if

VAR
[
n′Q
]

> B1 > 0 (4.56)

and
E
[∣∣n′Q − E

[
n′Q
]∣∣3] < B2, (4.57)

where B1 and B2 are positive numbers [53], and where E[·] and VAR[·] denote the
expected value and variance of a random variable, respectively. Then, the resulting
sum can be approximated by a Gaussian random variable (see figure 4.11). Hence, we
introduce a new random variable NQ with a Gaussian probability density function.

nQ

forward
Fourier

transform

=⇒

forward
Fourier

transform

n
′

Q
1

√

K

K−1∑

0

=⇒

forward
Fourier

transform

NQ

Figure 4.11: The addition of uniform quantization noise nQ before the Fourier trans-
form can be modeled as the addition of Gaussian noise NQ after the Fourier trans-
form.

We now have arrived at a model with additive white Gaussian noise (AWGN)
after transformation. In contrast to the model with uniform noise before demodu-
lation, the new model allows us to easily derive an expression for the performance
of the quantized OFDM system.

4.5.2 Performance of quantized OFDM systems

The noise after transformation is now modeled as a complex Gaussian random vari-
able. Therefore, the performance of the quantized OFDM system can be calculated
easily, because the consecutive inverse and forward DFTs are each other’s inverse
and both can thus be removed from the OFDM system model (see figure 4.12).
Hence, the noise can be seen as AWGN directly added to the sub-symbols. There-
fore, the noise performance of the sub-symbol modulation scheme determines the
overall performance of the quantized OFDM system.

Analytical derivation

Usually, an analytical expression for the performance of the applied sub-symbol en-
coding scheme in the presence of AWGN is known. In order to apply this expression,
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NQ

Figure 4.12: Collapsed model of a quantized OFDM system.

we must find the properties of the Gaussian noise. Therefore, we have to derive the
key parameters of the Gaussian variable NQ, namely its mean µNQ

and its standard
deviation σNQ

. To that end, we first calculate the mean and variance of the original
uniform variable nQ. Obviously, the mean of nQ is zero

E[nQ] = 0, (4.58)

and its variance is given by

VAR[nQ] = E
[
nQ

2
]
− E[nQ]2 =

1

6
4−n. (4.59)

Because the mean of nQ is zero and because a phase rotation does not influence
the variance of a random variable with zero mean, the mean and variance of n′Q are
equal to the mean and variance of nQ, thus

E
[
n′Q
]

= E[nQ] = 0 (4.60)

and

VAR
[
n′Q
]

= VAR[nQ] =
1

6
4−n. (4.61)

Obviously, the variance of n′Q is bounded and positive for n 6= −∞, and the first
condition (see equation 4.56) to apply the central limit theorem is met. Now, we
only have to check the second condition (see equation 4.57), and to that end, we
calculate the third central moment of n′Q

E
[∣∣n′Q − E

[
n′Q
]∣∣3] = E

[∣∣n′Q∣∣3] = E
[
|nQ|3

]
. (4.62)

An upper bound is given by

E
[
|nQ|3

]
≤

d
2∫

− d
2

d
2∫

− d
2

1

d2

(
d2

2

) 3
2

dxdy =
1

2
√

2
8−n, (4.63)

which is again bounded for n 6= −∞. Thus, the mean and variance of NQ can be
calculated using the central limit theorem

µNQ
= K · E

[
n′Q
]

= 0. (4.64)
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Due to the weighting factor 1√
K

in the sum, the variance of NQ equals the variance
of nQ

VAR[NQ] = K · VAR

[
1√
K

nQ

]
=

1

6
4−n, (4.65)

which gives the standard deviation σNQ
of NQ

σNQ
=
√

VAR[NQ] =

√
1

6
4−n. (4.66)

As the one-dimensional noise power is given by 1
2
σNQ

2, the bit error probability
Pe for QPSK sub-symbol modulation can be calculated using

Pe = Q

(√
Eb

1
2
σNQ

2

)
= Q

(√
12Eb4n

)
, (4.67)

where Eb is the average energy per bit. Likewise, for QAM-16 (16-symbol quadrature
amplitude modulation), the probability of a bit error is

Pe =
3

4
Q

(√
2

5

Eb

1
2
σNQ

2

)
+

1

2
Q

(√
18

5

Eb

1
2
σNQ

2

)
− 1

4
Q

(√
10

Eb

1
2
σNQ

2

)

=
3

4
Q

(√
24

5
Eb4n

)
+

1

2
Q

(√
216

5
Eb4n

)
− 1

4
Q
(√

120Eb4n
)

.

(4.68)

The Q-function is defined, as usual, by

Q(z) =
1√
2π

∫ ∞

z

e−
1
2
λ2

dλ. (4.69)

With equation 4.67 and 4.68 we have deduced analytical expressions for the
performance of quantized OFDM systems applying QPSK and QAM-16 sub-symbol
modulation schemes, respectively, using the model depicted in figure 4.12. The same
model and the same performance derivations can be applied for other sub-symbol
encoding schemes as well.

4.5.3 Verification

In figure 4.13 the bit error rates (dotted lines) of several quantized OFDM systems
are plotted against the number of fractional bits with a unity average energy per bit
(Eb = 1) for QPSK and QAM-16 sub-symbol modulation and different numbers of
sub-carriers. These curves were found using Monte Carlo simulations. Also plotted
are the derived bit error probabilities (solid lines).

The predicted bit error probabilities match the simulation results well, suggesting
that our assumptions and derivations are valid. Only for strongly quantized systems
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Figure 4.13: Performance of quantized OFDM systems (Eb = 1).

(region where n < −1) the derived curves diverge from the simulation results. Addi-
tional simulations have shown that for severely quantized systems, the noise can no
longer be modeled as a uniform random variable. In fact, the quantization noise for
heavily quantized OFDM systems has distribution that is Gaussian instead of the
assumed uniform one. Thus, the derived expressions for the performance no longer
apply. However, the regions of interest for most systems lie well away from these
extremes.

4.6 Clipping level

To derive an analytical expression for the performance of soft-limited OFDM sys-
tems, we apply the same procedure as that presented in the previous section, but
now for soft-clipped OFDM systems. A number of authors have also investigated the
performance of clipped OFDM (and other non-linear distortions) [6, 7, 49], but they
take a different approach, as they limit the envelope of the complex OFDM signal,
whereas here both the real an imaginary signal parts are limited in amplitude.

4.6.1 System model

The clipped OFDM system model under consideration is depicted in figure 4.14.
The difference with the model presented in section 4.5.1 is that the quantizer is
replaced by a soft limiter L.
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inverse
Fourier

transform

forward
Fourier

transform

demodulationmodulation
limiter

L

Figure 4.14: Model of a soft-limited OFDM system.

Again channel effects and distortions, such as multi-path interference and prop-
agation loss, are not taken into account, in order to focus only on the effects of
limiting the signal on the data transmission capabilities.

If a signal is represented by a fixed-point number, its maximum amplitude is
determined by the number of bits used for the representation of the integer part
(see figure 4.9). The clipping level c is given by

c = 2(ni−1), (4.70)

where ni is the number of integer bits used.

4.6.2 Noise modeling

In general, one cannot model the limiting of a signal straightforwardly by using an
equivalent of quantization noise. Nevertheless, as an OFDM signal with random
data sub-symbols has a complex Gaussian distribution if the number of sub-carriers
is large (central limit theorem), we assume that the limiting can be modeled as a
combination of attenuating the signal and adding clipping noise (see figure 4.15).

forward
Fourier

transformL
=⇒

forward
Fourier

transform

αC

nC

Figure 4.15: The limiting of the signal is modeled as a combination of multiplying
the signal with an attenuation factor αc and adding clipping noise nC .

This assumption is loosely based on Bussgang’s theorem [68] (a special case of
Price’s theorem [59]), which states that applying a Gaussian input to a nonlinearity,
such as a soft limiter, results in an attenuated version of the input signal plus an
additional noise term.

Following the same reasoning as in section 4.5.1, we transform the clipping noise
into Gaussian noise. Because the Fourier transform is a linear operation, we can
easily move the attenuation factor αc after the DFT. The resulting model is shown
in figure 4.16.
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forward
Fourier

transform

αC

nC

=⇒
NC

αCforward
Fourier

transform

Figure 4.16: The multiplication with an attenuation factor and the addition of
clipping noise nC before the Fourier transform can be replaced by the same multi-
plication and the addition of the transformed clipping noise NC after the Fourier
transform.

4.6.3 Performance of soft-limited OFDM systems

The effects of limiting the OFDM signal have been modeled as the multiplication
with an attenuation factor αC and the addition of a complex Gaussian noise term
NC . The resulting model is depicted in figure 4.17, where the inverse and forward
DFTs are removed from the system model.

NC

αC

Figure 4.17: Collapsed model of a soft-limited OFDM system.

Analytical derivation

To find an analytical expression for the performance of a soft-limited OFDM system,
we must find the properties of the Gaussian noise. To derive the mean µNC

and its
standard deviation σNC

we first calculate the mean and variance of the clipping noise
nC .

The PDF of an OFDM signal fs(is, qs) is Gaussian and therefore given by

fs(is, qs) =
1√

2πσs

e
− is

2+qs
2

2σs2 , (4.71)

where 2σs
2 is the energy of the signal and is and qs its in-phase and quadrature

components, respectively. For simplicity we assume symmetrical clipping, i.e., the
OFDM signal is limited to values between −c and c, where c is the clipping level.
As a consequence, the mean of the clipping noise nC equals zero

E[nC ] = 0. (4.72)
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The variance can be calculated using

VAR[nC ] = E
[
nC

2
]
− E[nC ]2

=
4√

2πσs

∫ ∞

c

∫ ∞

c

(
(x− c)2 + (y − c)2

)
e
−x2+y2

2σs2 dxdy+

4√
2πσs

∫ c

−c

∫ ∞

c

(x− c)2e
−x2+y2

2σs2 dxdy

=4
(
σs

2 + c2
)
Q

(
c

σs

)
− 2

√
2

π
σsce

− c2

2σs2 .

(4.73)

Here, the first integral calculates the noise power if both the in-phase and quadrature
components are clipped. The second term calculates the power when either the in-
phase or the quadrature component is limited.

Now, the mean µNC
and standard deviation σNC

are easily determined

µNC
= E[nC ] = 0 (4.74)

and

σNC
=
√

VAR[nC ] =

√
4 (σs

2 + c2) Q

(
c

σs

)
− 2

√
2

π
σsce

− c2

2σs2 . (4.75)

The only thing left is to find an expression for the attenuation factor αC . If the
noise power VAR[nC ] is small with respect to the signal power VAR[s], this factor
can be approximated by the square root of the power ratio of the limited signal and
the original signal

αC ≈

√
VAR[sC ]

VAR[s]
. (4.76)

Here, VAR[s] is the variance of the OFDM signal, which is given by

VAR[s] = 2σs
2. (4.77)

The variance of the clipped signal VAR[sC ] can be calculated with

VAR[sC ] =
1√

2πσs

∫ c

−c

∫ c

−c

(
x2 + y2

)
e
−x2+y2

2σs2 dxdy+

4√
2πσs

∫ ∞

c

∫ ∞

c

2c2e
−x2+y2

2σs2 dxdy+

4√
2πσs

∫ ∞

c

∫ c

−c

(
x2 + c2

)
e
−x2+y2

2σs2 dxdy

=4c2Q

(
c

σs

)
+ 2σs

2

(
1− 2Q

(
c

σs

))
− 2

√
2

π
σsce

− c2

2σs2 .

(4.78)
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The first integral represents the power in the undistorted parts of the signal, the
second the power if both the in-phase and quadrature components are limited to c,
and the third the power if only one of the components is clipped.

Substituting equation 4.77 and 4.78 into equation 4.76 gives

αC ≈

√
1 + 2

(
c2

σs
2
− 1

)
Q

(
c

σs

)
+

√
2

π

c

σs

e
− c2

2σs2 . (4.79)

With the found expressions for σNC
and αC , we can calculate the error probability

for Pe limited OFDM systems with QPSK sub-symbol modulation as follows

Pe = Q

(√
αc

2Eb

1
2
σNC

2

)
. (4.80)

Here, 1
2
σNC

2 is the one-dimensional noise power. Similar expressions can be found
for QAM-16 sub-symbol modulation and other modulation schemes.

4.6.4 Verification

In figure 4.18 the bit error rates (dotted lines) of several soft-limited OFDM systems
are plotted against the number of integer bits ni with a unity average energy per bit
(Eb = 1) for QPSK and QAM-16 sub-symbol modulation and different numbers of
sub-carriers. These curves were found using Monte Carlo simulations. Also plotted
are the derived bit error probabilities (solid lines).

Clearly, the derived expressions match the simulation results very well for OFDM
systems with QAM-16 sub-symbol modulation. However, the predicted error rates
strongly deviate from the simulated error rates for QPSK sub-symbol modulation,
especially for low numbers of integer bits. Obviously, the assumption that soft
limiting can be modeled as an attenuation factor and the addition of noise is invalid
for extreme clipping levels, because at these levels the clipping signal almost equals
the original signal.

4.7 Summary

This chapter started with an introduction of the problems encountered in a multi-
path channel, which is common to high frequency and high symbol rate radio trans-
mission. Multi-carrier communication was introduced as a means to overcome the
frequency-selective fading caused by the multi-path. Subsequently, OFDM was in-
troduced as a particular multi-carrier communication scheme.

As this thesis focuses on power optimizations, among others, we investigated a
method to use the energy assigned to the sub-carriers more efficiently. Furthermore,
reckoning with a fixed-point implementation of the OFDM transceiver, we investi-
gated the effects of such an implementation on the performance of the transceiver.
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Figure 4.18: Performance of soft-limited OFDM systems (Eb = 1).

The results can be used to determine the minimum number of bits necessary to
implement an OFDM transceiver given a desired bit error rate.

Now that we have a better understanding of multi-carrier communications in
general, and OFDM in particular, the next chapter will describe the implementation
of an OFDM transceiver. Its design will serve as a test case, in order to test and
verify the design automation tools developed in chapter 3.



Chapter 5
Application

5.1 Introduction

To verify the completeness of the design flow and the correct operation of the au-
tomation tools, we need a representative application to serve as a test case. As
already mentioned in section 1.3, the baseband processing for an OFDM transceiver
was selected. The transceiver is used in an experimental setup to supply a mo-
bile user with augmented reality, as envisioned in the Ubiquitous Communications
program (see appendix A).

Because the baseband modulator and demodulator are not fully specified, we
first have to determine the key communication parameters, such as the number of
sub-carriers, and the sub-symbol modulation and multiple access schemes. Each
time, the consequences of a particular decision have to be evaluated, in terms of the
cost and performance of the resulting transceiver.

Subsequently, several alternatives for the baseband modulation and demodula-
tion are described in C. This code serves as a starting point for the design flow
presented in section 1.1.3, applying the hardware-software partitioning and code
generation tools described in chapter 3. Finally, the results are presented and dis-
cussed.

5.2 Transceiver specification

As already mentioned in appendix A, a number of design choices have already been
made for the UbiCom scenario. These include the use of OFDM on a 17 GHz radio
channel. To fully specify a mobile transceiver, additional choices have to be made.
These include the key parameters for the OFDM transceiver such as the number
of sub-carriers and the frequency separation, and the multiple-access and duplexing
schemes.

To make a well-founded decision, we have to characterize the radio channel accu-
rately and specify the user requirements. Then, the key communication parameters
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for the transceiver can be deduced. Throughout this process, the effects on the
power consumption and other performance measures should be taken into account.

5.2.1 Frequency band

As described in section A.3, for the UbiCom project initially a target carrier fre-
quency was chosen of roughly 17GHz. In the frequency range from 16 to 18GHz, only
two bands are available, according to international regulations: the 17.1− 17.2 GHz
band, and the 17.2−17.3GHz band.1 In the Netherlands these bands are freely avail-
able without license for radio local area networks (RLANs) applying short range de-
vices (SRDs), according to the Dutch national frequency register [47]. In Europe the
bands are recommended to be allocated to HIPERLANs (high-performance RLANs)
[24], starting from the year 2008 [22].

For UbiCom the first band was chosen, which means that the center carrier
frequency is fc = 17.15 GHz and the total available bandwidth B = 100 MHz.

Radio channel measurements

To characterize the 17 GHz radio channel an extensive measurement campaign was
conducted by A. Bohdanowicz [11, 12]. Wideband channel measurements were con-
ducted in both indoor and outdoor environments.

• Office building: Indoor measurements were performed in an office building at
several locations, a.o. in office rooms, corridors and in a large room (canteen).
Both line-of-sight (LOS) and obstructed, non-line-of-sight (OBS) cases were
studied.

• Parking area: The outdoor measurements were performed at two parking ar-
eas: one without large obstacles, and one with trees surrounding it. In both
cases line-of-sight was preserved.

The main results of the RMS delay spread measurements are shown in figure 5.1,
5.2 and 5.3 (courtesy of A. Bohdanowicz).

The typical ranges of the delay spread values were calculated for different confi-
dence intervals. These, together with the mean, are listed in table 5.1.

5.2.2 Gross bit rate

The refresh rate of the displayed graphics and the required quality depend heavily
on the distance of the user from the displayed virtual object. As nearby objects

1Near 17 GHz, no ISM bands (bands internationally reserved for non-commercial use for
industrial, scientific and medical purposes) are available. The nearest ISM bands are the
5725.0− 5875.0 MHz band and the 24.0− 24.25 GHz band.
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Figure 5.1: Cumulative density function of the root-mean-square (RMS) delay
spread τRMS for various indoor line-of-sight (LOS) environments.
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Figure 5.2: Cumulative density function of the root-mean-square (RMS) delay
spread τRMS for various indoor obstructed, non-line-of-sight (OBS) environments.
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Figure 5.3: Cumulative density function of the root-mean-square (RMS) delay
spread τRMS for various outdoor, line-of-sight (LOS) environments.
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environment place 1% 5% 95% 99% mean
indoor (LOS) CorridorLB 1.97 3.55 28.57 36.42 14.28

Corridor16 6.29 8.20 25.88 27.61 15.28
Canteen 2.45 4.85 29.14 40.81 13.91
OfficeRoomA 2.25 3.17 7.67 7.77 5.42
OfficeRoomB 3.82 5.34 9.99 12.58 7.73
overall 2.54 3.90 25.30 32.69 11.32

indoor (OBS) Corridors16 3.82 4.35 10.47 11.54 7.56
Rooms16 3.82 4.59 11.07 11.75 7.54
overall 3.82 4.54 10.67 11.75 7.55

outdoor (LOS) Parking A 12.74 14.41 49.14 55.37 29.63
Parking B 1.90 4.48 29.39 31.59 20.92
overall 3.71 5.27 44.32 52.85 25.28

Table 5.1: Measured values for the root-mean-square (RMS) delay spread τRMS

(in ns) for various indoor and outdoor, line-of-sight (LOS) or obstructed (OBS)
environments.

show more detail than those far away, usually the closer the user is to the virtual
object, the more detail he will require.

Usually the requirements become more stringent when a user is close to a virtual
object, as a more detailed image or graphic is required, to be acceptable to the user.

A detailed study [51] has been conducted on the effects of various level of detail
(LOD) rendering variants on the required link capacity, taking into account effects
like the distance of the user from the virtual object, and the lifetime of the object.
Overall, for a graphic quality acceptable to the user, a gross bit rate Rb is needed
ranging from 1 kbit/s to 10 Mbit/s.

5.2.3 Symbol format

Based on the user requirements and the channel characteristics, the format of an
OFDM symbol can be specified. A proper symbol format ensures robustness against
the multi-path distortions and temporal distortions of the channel.

Inter-symbol interference

To cancel all inter-symbol interference, the guard interval should be longer than the
multi-path delay spread of the channel

Tg ≥ Tm. (5.1)

In order to prevent too large a reduction in capacity, one must choose the symbol
period Ts with useful information to be at least a few times longer than the guard
interval Tg, as the guard interval does not contain useful information. For a symbol



5.2 Transceiver specification 95

efficiency of η = Ts

Ts+Tg
, the symbol period should be at least

Ts ≥
η

1− η
Tg. (5.2)

From equation 4.24 we have the sub-carrier frequency separation

f∆ =
1

Ts

. (5.3)

Substitution of equation 4.6, 5.1 and 5.2 leads to

f∆ ≤
1− η

γη

1

τRMS

. (5.4)

If the total bandwidth available for a user equals Bu, then the minimum number
of sub-carriers N to meet the efficiency demand is given by

N =
Bu

f∆

. (5.5)

Substitution of equation 5.4 gives a lower bound to the number of sub-carriers

N ≥ γη

1− η
Bu · τRMS. (5.6)

Coherence bandwidth

To determine whether the individual sub-carriers can be considered narrow-band, we
calculate the coherence bandwidth Bc of the channel. The coherence bandwidth is
approximated with the reciprocal of the multi-path delay spread of the channel [60]

Bc ≈
1

Tm

. (5.7)

To prevent frequency-selective fading within a sub-carrier, one should choose the
frequency separation smaller than the coherence bandwidth

f∆ ≤ Bc. (5.8)

This again leads to a lower bound to the number of sub-carriers N

N ≥ B

Bc

. (5.9)

Substitution of equation 5.7 and 4.6 gives

N ≥ γBu · τRMS. (5.10)

It should be noted that for η > 1
2
, equation 5.6 specifies a more strict requirement.
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Coherence time

The Doppler spread of a channel is defined by [60]

Bd =
vo

λc

= vo
fc

c
, (5.11)

where vo is the maximum speed of objects interfering with the radio beam, c is the
speed of light, and λc = c

fc
the wavelength of the carrier.

The reciprocal of Bd is a measure of the coherence time tc of the channel. That
is,

tc ≈
1

Bd

. (5.12)

The relative coherence time τc with respect to the symbol period is defined by

τc =
tc
T

. (5.13)

It indicates how rapidly the channel conditions are changing and can be used to
determine how often a channel estimate should be updated for proper channel equal-
ization.

5.2.4 Sub-symbol encoding scheme

The sub-symbol encoding scheme determines the amount of bits transmitted per sub-
carrier. The data bits can be encoded in the phase or the amplitude of the symbol,
or in a combination of both. As a result, all variants of PSK (phase shift keying),
ASK (amplitude shift keying) and QASK (quadrature amplitude shift keying), also
known as QAM (quadrature amplitude modulation), are applicable.

The gross bit rate is the total number of bits transmitted on all sub-carriers per
symbol period

Rb =
1

T

N−1∑
i=0

`i, (5.14)

where `i is the number of bits transmitted on the ith sub-carrier.

With a uniform sub-symbol encoding scheme, i.e., when the same encoding
scheme is used for all sub-carriers `i = `, equation 5.14 simplifies to

Rb =
N · `
T

, (5.15)

where ` is the number of bits per sub-symbol. It is directly related to the number of
possible symbols M of the encoding scheme via M = 2`, or, equivalently, ` = log2 M .
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Channel estimation and equalization

As seen in section 4.3.3, the effects of the multi-path channel ultimately translate into
multiplying the transmitted sub-symbols by the frequency response of the channel.
As a consequence, if the frequency response of the channel is known, the equalization
can be performed by multiplying by the inverse of the channel’s frequency response.

To estimate the frequency response, one can transmit known sub-symbols. Cal-
culating the phase rotation and amplitude attenuation of these symbols gives the
frequency response of the channel.

For differential sub-symbol encoding schemes, it is not necessary to estimate and
equalize the channel, as the data is encoded in the difference between sub-symbols,
so coherent decoding is not necessary.

5.2.5 Time and frequency synchronization

Only a demodulator that has been synchronized to the modulator, both in time
and in frequency, can correctly demodulate an OFDM symbol. Especially frequency
synchronization is crucial, as a slight offset already disrupts the orthogonality of the
sub-carriers, as depicted in figure 5.4. Two effects occur because of the frequency
offset: one is the reduction of signal strength of the desired sub-carrier, and the
second is the introduction of inter-carrier interference from the other sub-carriers.
A worse bit error rate is the result [54].

frequency

magnitude

∆f

Figure 5.4: Loss of orthogonality due to a frequency offset ∆f . Illustrated is the
power spectrum of four sub-carriers, where a frequency offset causes a reduction in
the signal strength of the desired sub-carrier (�) and introduces interference between
the sub-carriers (◦).

The impact of a small timing offset is less severe, as it results in a progressive
phase rotation of the demodulated symbols. In coherent sub-symbol demodulation,
this can be detected and compensated for by properly adjusting the equalization.
Differential demodulation is robust against these phase rotations, although they can
lead to a performance degradation.
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Numerous synchronization schemes are known from literature, e.g. [8, 46, 73]. A
comprehensive overview can be found in [76]. Two main approaches are identified:

• demodulators that extract the information needed for synchronization before
sub-carrier demodulation, either using a training sequence or using the specific
structure of an OFDM symbol, and

• demodulators that extract the information after the demodulation of the sub-
carriers using special data symbols or symbol patterns.

To keep the synchronization overhead to a minimum, we chose the synchroniza-
tion method suggested by Witrisal [85]. The method utilizes a training symbol
constructed by modulating the odd sub-carriers with a PN (pseudo-random noise)
sequence, while setting the even sub-carriers to zero. This leads to a symbol with,
apart from the sign, identical halves. This training symbol is used to simultaneously
estimate the timing and frequency offsets.

5.2.6 Multiple access

In the UbiCom scenario, multiple users are envisioned, possibly interacting with
each other. As a consequence a base station has to serve more than one user, and
it has to divide the available communication resources, i.e., it has to implement the
multiple access of the radio channel.

In principle OFDM supports all traditional multiple-access methods such as
TDMA (time-division multiple access) and FDMA (frequency-division multiple ac-
cess). Another possibility is to assign different sub-carriers to different users, a
technique known as OFDMA (orthogonal FDMA).

The last scheme, however, requires the mobile device to demodulate all the sub-
carriers in order to retrieve the data of only a few, thus wasting energy. Furthermore,
the higher the number of sub-carriers, the more computing power is needed for the
frequency multiplexing.

From equation 5.5 it is clear that the number of sub-carriers is restricted by
reducing the bandwidth per user Bu. Increasing the carrier frequency separation f∆

is not possible, since its maximum value is determined by the channel characteristics.
Whereas with TDMA a user gets the whole available bandwidth assigned, with

FDMA he gets only a fraction of the total bandwidth. Hence, with FDMA, the num-
ber of sub-carriers is less than with TDMA. Furthermore, in a TDMA scheme, the
user has to wait for his turn to transmit and receive, decreasing the responsiveness
of the mobile device. Therefore, we chose FDMA. To prevent cross-talk between
transmitter and receiver, time-division duplexing (TDD) is applied as a duplexing
scheme.

In section A.3.2 the minimum number of users per base station Nu is given

Nu ≥ 10. (5.16)
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Figure 5.5: Minimum number of sub-carriers N as a function of the root-mean-square
(RMS) delay spread τRMS (channel model constant γ = 5, bandwidth Bu = 10MHz).

The total bandwidth is equally divided over the users. Thus,

Bu =
B

Nu

≤ 10 MHz, (5.17)

gives an upper limit to the total bandwidth available to a user.

5.2.7 Summary

As both conditions formulated in equation 5.6 and 5.10 have to be fulfilled, the
minimum number of sub-carriers is given by

N ≥
{

γBu · τRMS η ≤ 1
2
,

η
1−η

γBu · τRMS otherwise.
(5.18)

This relationship is depicted in figure 5.5.
Using Ts = N

B
and T = 1

η
Ts gives the maximum gross bit rate

Rb ≤ ηBu`. (5.19)

Obviously, the number of carriers does not influence the gross bit rate.
In table 5.2 the main communication parameters discussed so far are calculated

for different channel conditions, using the results from the radio channel measure-
ment campaign. Overall the maximum frequency separation is approximately 1MHz
and the minimum number of sub-carriers is 11. In all cases the relative coherence
time τc is larger than 400, indicating that the channel can be assumed quasi-static
for at least 400 symbols.

At this point, we are able to specify an OFDM transceiver for the UbiCom
project. This transceiver serves as a test case for the design trajectory, laid out in
section 1.1.3. The key parameters of the transceiver setup are listed in table 5.3.
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indoor (LOS) indoor (OBS) outdoor (LOS)
min mean max min mean max min mean max

τRMS [ns] 2.54 11.32 32.69 3.82 7.55 11.75 3.71 25.28 52.85
Bc [MHz] 78.74 17.66 6.12 52.36 26.49 17.02 53.91 7.91 3.78
Ts [ns] 50.80 226.48 653.80 76.40 150.99 235.00 74.20 505.51 1057.00
f∆ [MHz] 19.69 4.42 1.53 13.09 6.62 4.26 13.48 1.98 0.95
N 1 2 7 1 2 2 1 5 11
τc 9917 2224 771 6594 3337 2144 6790 997 477

Table 5.2: OFDM parameters for line-of-sight (LOS) and obstructed (OBS) indoor
and outdoor environments (channel model constant γ = 5, symbol efficiency η = 0.8,
available bandwidth Bu = 10MHz, maximum object velocity vo = 100km/h, carrier
frequency fc = 17 GHz, τRMS values taken from [11]).

number of sub-carriers N 16
frequency separation f∆ 0.50 MHz
user bandwidth Bu 8 MHz
symbol efficiency η 0.8
bits per carrier ` 2
gross bit rate Rb 12.8 Mbit/s

Table 5.3: Key parameters of the UbiCom OFDM transceiver.

As argued, the setup applies FDMA in combination with TDD to simultaneously
accommodate a maximum of 10 users. Its frequency spectrum is shown in figure 5.6.
The transceiver applies QPSK, possibly differentially, as a sub-symbol modulation
scheme.

Given these parameters, the relative coherence time τc is approximately 250.
Therefore, to estimate the channel and to synchronize the demodulator in time and
frequency, we use a training sequence. The training sequence is transmitted before
the start of a series of symbols. The total length of the series must be smaller than
the relative coherence time. For instance, if we set the series length to 32 symbols,
each series contains 1 kbit of information. It should be noted that the training
overhead reduces the efficiency of the transmission scheme.

5.3 Implementation alternatives

To implement the mobile transceiver as described in section 5.2.7, we have to decide
how to partition the transceiver. Therefore, first an executable specification of the
transceiver is written in C with several different implementations of the functions.
Then, cost estimates are made for implementing these functions in hardware or
in software. The costs for the hardware blocks are estimated, using synthesizable
descriptions in SystemC generated from the original C code.

The goal of these steps is to come up with design alternatives and their associated
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Figure 5.6: Spectrum assignment for the UbiCom OFDM transceiver.

costs. This information can be used to answer questions such as:

• “How much power does it take to increase the data rate of the transceiver?”
The data rate can be raised for example by changing to a higher-order sub-
symbol modulation scheme. This probably also increments the costs, but it is
unclear to what extent.

• “What is the cost difference between coherent and non-coherent (differential)
sub-symbol modulation schemes?” Differential modulation increases the prob-
ability of bit errors, but it is unknown what the gains are in terms of energy,
speed and area.

• “What does pre-distortion cost?” Is it worthwhile to implement a pre-distortion
scheme, as it enables the reduction of the transmission power while maintain-
ing the same performance through a more effective use of the channel, as
described in section 4.4?

The tools do not answer these questions directly as they cannot compare the per-
formance and costs qualitatively. However, they provide quickly the necessary in-
formation about the costs of certain design choices.
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5.3.1 Building blocks

A classic OFDM transceiver consists of a few basic building blocks. Each of these
blocks can be implemented in numerous ways, each resulting in different costs (area,
delay, power). Furthermore, the functionality of the block can be changed to arrive
at a different transceiver setup.

Sub-symbol encoding / decoding

The sub-symbol encodings considered are all variants of QASK schemes. In par-
ticular three schemes are investigated: 4-ary QASK, alternatively known as QPSK
(quadrature phase shift keying), differential QPSK (DQPSK) and 16-ary QASK,
alternatively known as QAM-16.

The bit error probability Pei
of QPSK for the ith sub-carrier is given by

Pei
= Q

(√
2
Ebi

N0

)
. (5.20)

Differential encoding has a 3 dB penalty

Pei
= 2 ·Q

(√
2
Ebi

N0

)
, (5.21)

and finally the bit error probability of QAM-16 is

Pei
=

3

4
Q

(√
1

5

Ebi

N0

)
+

1

4
Q

(√
9

5

Ebi

N0

)
. (5.22)

Both QPSK and QAM-16 require coherent demodulation and hence some form
of channel estimation and equalization. In differential QPSK, the information is
encoded in the phase difference between two consecutive sub-symbols. As a con-
sequence, coherent demodulation is not necessary, making channel estimation and
equalization obsolete.

Differential encoding can be applied in frequency and in time. In the first case,
symbols are differentially encoded between two adjacent sub-carriers. In the latter,
consecutive symbols (in time) on the same sub-carrier are encoded differentially.
Differential encoding is only possible if the channel responses of the adjacent or the
consecutive sub-carriers is approximately the same.

Fast Fourier transform

Numerous efficient implementations of the discrete Fourier transform are known
in literature [14, 18, 58, 62], the so-called fast Fourier transforms (FFTs). Three
implementations are taken into consideration. The first two are different versions of
the Cooley and Tukey radix-N FFT [18], and the third is a combination of them,
the so-called split-radix FFT [20].
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• Radix-2 FFT: The key observation in a radix-2 implementation is that multi-
plication by ejπn for n ∈ N is equal to multiplication by ±1, which are trivial
operations. The order of the radix-2 FFT should be a power of 2.

• Radix-4: Additionally, in the radix-4 implementation, it is observed that mul-
tiplication by ej π

2
n for n ∈ N is equal to multiplication with ±1 or ±j, again

trivial operations. A drawback of the radix-4 FFT is that the order of a radix-
4 FFT should be a power of 4 instead of 2. However, the number of non-trivial
multiplications is lower than that when using a radix-2 FFT.

• Split-radix: The split-radix FFT combines the properties of the radix-2 and
radix-4 FFTs. This results in an implementation with an even lower number
of non-trivial multiplications [75], while the order should be a power of 2. A
drawback is the slightly less regular structure.

The radix-2, radix-4 and split-radix butterfly structures are depicted in figure 5.7.
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Figure 5.7: The butterfly structures for the radix-2, radix-4 and split-radix Fast
Fourier Transforms (FFTs).

All three implementations can be performed in place, i.e., the intermediate re-
sults can be stored in the same place as the original data. Consequently, the memory
requirements do not increase while performing an FFT. Other FFTs like the Wino-
grad FFT [84] do not have this property and require more and more memory space.

Bit reversal A side effect of in-place calculation is that either the inputs or the
outputs are ‘bit reversed’, i.e., they are not ordered sequentially, and thus they have
to be sorted. In case of decimation in time (DIT), the inputs have to be re-ordered
and in case of decimation in frequency (DIF), the outputs.

However, if a DIT inverse Fourier transform in the modulator is followed by a
DIF forward transform in the demodulator, the re-ordering can be skipped, since
the two re-ordering steps effectively cancel each other. It should be noted that
this approach leads to a different channel assignment, which can be viewed as a
scrambling step. Scrambling can be advantageous, as it spreads localized errors.
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Figure 5.8: The number of fractional bits nf necessary to achieve the desired bit
error probability Pe for QPSK and QAM-16 sub-symbol modulation.

Word length To determine the minimum word length for the FFT, we use the
expressions derived in section 4.5, i.e., equation 4.67 and 4.68. Given a desired
bit error probability, the number of fractional bits nf can be calculated for QPSK
and QAM-16 sub-symbol modulation schemes, as depicted in figure 5.8(a) and fig-
ure 5.8(b), respectively. Given a desired error probability of at least 10−6, both
QPSK and QAM-16 sub-symbol modulation require at least a single fractional bit
(nf = 1).

To determine the number of integer bits necessary, we substitute equation 4.75
and 4.79 into 4.80. Given a desired bit error probability, the number of integer
bits ni required can be calculated for QPSK and QAM-16 sub-symbol modulation
schemes, as depicted in figure 5.9(a) and figure 5.9(b), respectively. Given a desired
error probability of at least 10−6, QPSK sub-symbol modulation requires at least 2
integer bits (ni = 2) and QAM-16 modulation at least 5 integer bits (ni = 5).

Cyclic prefix extension / removal

An OFDM symbol can be extended straightforwardly with a cyclic prefix by repeat-
ing the last samples of the symbol. The cyclic prefix can be removed by discarding
those samples if the correct symbol timing is known from the timing synchronization.
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Figure 5.9: The number of integer bits ni necessary to achieve the desired bit error
probability Pe for QPSK and QAM-16 sub-symbol modulation.

Pre-distortion / equalization

As discussed in section 4.3.3, the multi-path channel causes an amplitude attenu-
ation and a phase rotation of each sub-symbol, given by the frequency response of
the channel

z̃k
i′ = zk

i Hi. (5.23)

This effect can easily be compensated for, with a one-tap equalizer. A one-tap
equalizer basically consists of a complex multiplication to multiply the raw sub-
symbol with the inverse of the estimate of Hi.

The same approach can be used to pre-distort the sub-symbols in the modulator.
A precondition is that an accurate estimate of the channel response is available. This
condition can only be met if the channel can be considered quasi-static (which is
the case, as argued in section 5.2.7).

5.3.2 Processor alternatives

To accommodate the software tasks, a processor core must be selected. Additionally,
the core has to implement the global control for the modules implemented in hard-
ware. A prerequisite for the selection of a suitable processor core is that a compiler,
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an assembler and a linker should be available in order to generate the object code
for the functionality implemented in software (see figure 1.3).

We have implemented two versions of the MIPS processor described in [52],
called the µMIPS. The µMIPS has a 32-bit RISC (reduced instruction set computer)
architecture. It is selected because of its simplicity, and because it can easily be
modified. The data path of the first version is depicted in figure 5.10. It supports
all basic integer operations except division. A floating-point unit is not included.
The second version of the µMIPS has the same architecture except for the multiplier,
which has been omitted.
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Figure 5.10: Simplified data path of the µMIPS architecture. For clarity, the control
path and the program counter data path are excluded.

A compiler is constructed using the retargetable ANSI-C compiler LCC [26]
originally developed at Princeton University. For the assembler and linker, the GNU
binutils are used. Instructions not supported by the µMIPS architecture (e.g. an
integer division) are emulated in software. The compiler can either emulate integer
multiplication or use the integer multiplier, if available.

Both versions of the µMIPS are described in SystemC. The code is fully synthe-
sizable. Each version of the µMIPS has been synthesized targeting different clock
speeds. In addition, the SystemC code is used to construct a cycle-accurate sim-
ulator. The simulator can execute the compiled programs directly. It is used to
estimate the cycle counts for the building blocks implemented in software.
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5.3.3 Cost estimates

All design alternatives will be constructed using a limited set of building blocks.
The cost figures for each block have to be calculated, using one (or more) of the
methods presented in chapter 2.

To estimate the execution time and area of a block, a hardware description is
generated. Subsequently, to estimate the clock period, the latency and the necessary
area, we use a quick scheduling step. The total area estimate is composed of two
factors:

• the combinatorial and non-combinatorial area, i.e., the area necessary to ac-
commodate the combinatorial and sequential gates, and

• the net interconnect area, i.e., the area forecasted to be used by the additional
interconnect.

These area estimates are used to predict the total capacitive load of the circuit. In
combination with an activity estimate obtained through simulation, these estimates
are used to calculate an estimate of the energy consumption of the block.

Of course, as absolute figures, the estimates of the energy consumption are not
accurate. However, they do give a good estimate of the relative energy costs of the
building blocks. Therefore, the results of the partitioning on the energy consumption
should not be interpreted in terms of absolute numbers, i.e., quantitatively. Instead,
one should see the results qualitatively: one solution is better or worse than another
in terms of energy consumption.

On the other hand, the area and delay estimates are much more accurate. We
verified this by fully synthesizing a few selected blocks and comparing the results
with the estimates. All tests show close agreement between the synthesis results
and the estimates obtained after scheduling.

5.3.4 Implementation alternatives

With the building blocks presented in the previous section, we studied several alter-
natives to implement an OFDM modulator, demodulator or combined transceiver.

Stand-alone modulator

Figure 5.11 shows three alternatives to implement a stand-alone OFDM modulator.
They apply QPSK, differential QPSK and QAM-16 sub-symbol modulation, respec-
tively. Except for the differential QPSK sub-symbol modulation, pre-distortion of
the sub-symbols can optionally be applied in order to improve the performance
(expressed as the probability of a bit error) as discussed in section 4.4.
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(e) differential QPSK demodulator
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(f) QAM-16 demodulator

Figure 5.11: Stand-alone OFDM modulation and demodulation implementation al-
ternatives.

Stand-alone demodulator

Figure 5.11 also shows three alternatives to implement a stand-alone OFDM demod-
ulator. The first and third coherently decode QPSK-encoded or QAM-16-encoded
sub-symbols and thus require an accurate channel estimation and equalization. The
second decodes differentially encoded sub-symbols and consequently does not need
coherent detection.

Synchronization aspects like coarse-grained and fine-grained frequency synchro-
nization or time synchronization are not taken into account, nor is channel esti-
mation. As the relative coherence time τc is fairly large for all environments (see
table 5.2), the channel can be assumed quasi-static. Therefore, in the current setup,
synchronization and channel estimation will be performed only at the start of a
series of symbols. Thus, the impact of the synchronization and channel estimation
algorithms will be small with respect to the symbol demodulation, and these are
therefore neglected.

Transceiver

A transceiver combines an OFDM modulator and a demodulator in one device.
Consequently, the device has to implement two different algorithms. Possibly, the
device’s resources can be shared between the algorithms.

A few straightforward implementations for the transceiver are constructed by
combining the modulator and demodulator alternatives presented in the previous
sections. Additionally, in figure 5.12, six alternatives are presented to implement
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an OFDM transceiver. The combined QPSK, DPQSK and QAM-16 transceivers
make use of a modified FFT block, which is capable of performing both the forward
and the inverse transform. Possibly, this resource sharing reduces the area cost. In
contrast, the DIT-DIF alternatives use two separate FFT blocks. However, they
do not re-order the data, as discussed in section 5.3.1, possibly leading to a faster
implementation.

transceiver
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(a) combined QPSK transceiver
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differential

differential

(b) combined differential QPSK trans-
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(c) combined QAM-16 transceiver
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(e) DIT-DIF differential QPSK trans-
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decimation
in time

decimation
in frequency

FFT

IFFT

(f) DIT-DIF QAM-16 transceiver

Figure 5.12: Transceiver (combined modulation and demodulation) implementation
alternatives.

5.3.5 Partitioning results

We used the partitioning tool described in chapter 3 to find the best architecture
for the OFDM transceiver. We partitioned the transceiver several times for several
optimization goals, under different constraints. The results are used to span the
three-dimensional design space (area, power and latency). To aid the designer in
identifying the trade-offs, we first partitioned the OFDM modulator and demod-
ulator separately. Subsequently, we applied the same procedure to partition the
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combined modulator-demodulator. The results are discussed in the next sections.
Moreover, trends observed in the partitioning process are described.

Stand-alone modulator

The normalized partitioning results for the three implementation alternatives for
the stand-alone modulator are plotted in figure 5.13. It is clear that the costs for a
QPSK modulator, a differential QPSK modulator or a QAM-16 modulator do not
differ significantly.

In figure 5.14 and 5.15 the results are plotted for QPSK and QAM-16 modulation
with and without pre-distortion. It is apparent that the addition of a pre-distortion
unit increases all costs. However, the possible improvement in performance caused
by such a unit is not incorporated in the figure.
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Figure 5.13: Normalized partitioning results for the stand-alone QPSK modulator
(×), the stand-alone differential QPSK modulator (◦), and the stand-alone QAM-16
modulator (4).

Stand-alone demodulator

Figure 5.16 shows the normalized partitioning results for the three implementation
alternatives for the stand-alone demodulator. In contrast to the stand-alone mod-
ulator, the differential QPSK demodulator is obviously less expensive than the co-
herent QPSK demodulator, because it does not require an equalizer. The difference
between QPSK and QAM-16 sub-symbol modulation schemes remains small.
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Figure 5.14: Normalized partitioning results for the stand-alone QPSK modulator
with (◦) and without (×) pre-distortion.
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Figure 5.15: Normalized partitioning results for the stand-alone QAM-16 modulator
with (◦) and without (×) pre-distortion.
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Figure 5.16: Normalized partitioning results for the stand-alone QPSK demodulator
(×), the stand-alone differential QPSK demodulator (◦), and the stand-alone QAM-
16 demodulator (4).

Transceiver

In figure 5.17, the normalized partitioning results for the alternatives for the com-
bined transceiver are plotted. Still the differential QPSK transceiver is the least
expensive. In figure 5.18, 5.19 and 5.20 the results of the combined transceivers are
compared with their DIT-DIF (scrambled) equivalents for QPSK, differential QPSK
and QAM-16 sub-symbol modulation respectively. The DIT-DIF transceivers show
both an improvement in execution time and in energy consumption.

General observations

Examining the partitioning results in more detail, we can identify a few trends. In
general we have seen that when implementing a certain functionality, realizations
with dedicated hardware is faster and consumes less energy than an implementation
on a general-purpose processor. It must be noted that the processors used are
probably a bit heavyweight for their purpose. Nevertheless the difference in cost is
quite large, and an implementation with a lighter processor will probably be still
more expensive in terms of energy and execution time than an implementation with
dedicated hardware.

Moreover, we observe the following.

• Area optimization favors software implementation. This observation is quite
expected, as a processor is always required in a valid partitioning and as a
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Figure 5.17: Normalized partitioning results for the combined QPSK transceiver
(×), the combined differential QPSK transceiver (◦), and the combined QAM-16
transceiver (4).
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Figure 5.18: Normalized partitioning results for the combined QPSK transceiver,
both the normal (×) and the scrambled (◦) version.
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Figure 5.19: Normalized partitioning results for the combined differential QPSK
transceiver, both the normal (×) and the scrambled (◦) version.
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Figure 5.20: Normalized partitioning results for the combined QAM-16 transceiver,
both the normal (×) and the scrambled (◦) version.
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consequence a trivial solution is to implement all functionality in software
using the smallest processor.

• Area optimization favors a single large memory, whereas time and energy
optimization favors dedicated distributed memories.

• A decimation in time radix-4 FFT in hardware gives the best results with
respect to execution time and energy consumption.

• A decimation in time split-radix FFT is always selected in software, of course
except when the decimation in frequency is explicitly required, but then still
the split-radix is used.

• A combined FFT engine gives little overhead in terms of execution time and
energy consumption. It is practically always selected, except when maximum
speed or minimum energy is desired.

• To implement a combined modulator and demodulator, the FFT blocks with-
out bit reordering give the best results in terms of execution time and and
energy consumption.

It must be noted that these are trends observed for specific implementations. Other
implementations and different optimization settings may yield other results.

5.4 Summary

To test and verify whether the design flow introduced in chapter 3 is complete, and
whether the implemented tools work correctly, we implemented an OFDM trans-
ceiver. First, the interdependencies between the key communication parameters
were described. Subsequently, these parameters could be determined quantitatively
for the UbiCom scenario, given the properties of the multi-path channel in the
17 GHz band and the graphic quality required for augmented reality.

Using the newly found specification of the OFDM transceiver, we identified var-
ious alternative implementations. These alternatives were used to specify various
algorithms, each implementing an OFDM modulator or demodulator in a different
manner. Finally, the consequences for the area, execution time, and energy con-
sumption were evaluated using the design tools. In this process, we explored the
design spaces of a single modulator, a single demodulator, and a combined trans-
ceiver.

In the UbiCom program, we can directly apply the results of the transceiver
specification and the subsequent design space explorations. We can use their out-
come to determine the best trade-off between cost and performance for the various
implementations.





Chapter 6
Conclusions

Today’s designs are characterized by their ever increasing size and complexity. A
key problem is that initially a designer has only insufficient or at least inaccurate
information available to make proper decisions. Moreover, the overwhelming number
of options and the pace with which they change, render it impossible for a human
to make a sound decision about the complex designs. He simply cannot predict the
consequences of a particular choice accurately. Therefore, tools to quickly identify
the trade-offs are indispensable in making well-founded design decisions.

Another problem that a designer faces is that traditional hardware description
languages no longer suffice to express the increasing complexity. Therefore, design-
ers turn to general programming languages like C or C++ for the initial high-level
specification of the algorithms to be implemented. This causes inconsistencies in the
design flow (see figure 1.3), as these languages are not easily translated to hardware
description languages like VHDL or Verilog.

This thesis describes several methods and tools to come to a consistent de-
sign flow, starting with a high-level specification in C. The resulting design flow
is depicted in figure 6.1. An essential part in the flow is a new tool to solve the
hardware-software partitioning problem. The tool finds an optimal architecture to
implement one or more algorithms. The architecture is optimal with respect to
one of the design constraints, which include the maximum allowed chip area, the
maximum execution time and the maximum energy consumption. The partitioning
problem is solved using mathematical programming, more precisely, using a mixed
integer linear program. To deal with the uncertainties inherent to high-level design,
the linear program uses fuzzy instead of crisp numbers to represent the coefficients.
The linear program is constructed in such a way that it optimizes the most probable
outcome, while minimizing the chances of finding a worse solution and maximizing
the chances of finding a better one.

Apart from the optimal architecture, the partitioning tool gives a prediction of
the total chip area, execution time and energy consumption. The quick operation
allows us to spend more time on the exploration of the algorithms, and ascertains
that crucial decisions are based on facts and not on mere assumptions or guesses.
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Figure 6.1: Final design flow, using the tools developed in chapter 3.

Ultimately, this prevents that we end up with a product that does not meet its
specifications.

As the successful operation of the partitioning tool depends on the quick avail-
ability of accurate estimates for area, latency and energy consumption, we imple-
mented an additional tool to convert the original C code into, preferably synthe-
sizable, SystemC. This novel approach was taken because existing solutions that
translate C code into an HDL were inadequate, at least for our purposes. The au-
tomated conversion from C to SystemC enables a closed design flow where tedious
manual rewrites are no longer necessary. Furthermore, the automated conversion
eliminates the chances of coding errors. After the generation of synthesizable Sys-
temC code, a partial synthesis step quickly delivers reliable cost estimates. Partial
synthesis was chosen to prevent the otherwise necessary modeling of the synthesis
tools.

Of course, the proof of the pudding is in the eating, and therefore the newly
crafted tools were put to the test in the design of an OFDM transceiver as specified
in the Ubiquitous Communications program. Using the new methods and tools, we
were able to quickly design a power-efficient OFDM transceiver. However, before
optimizing the implementation of the transceiver with respect to area, latency and
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energy costs, we investigated several techniques to reduce the energy consumption
of the OFDM transceiver beforehand.

Multi-carrier systems such as OFDM allow the assignment of different energy
levels to each sub-carrier. This enables pre-distortion of the transmitted sub-symbols
in order to improve the performance. We developed an optimization scheme that
either minimizes the probability of a bit error for a given energy budget, or that
minimizes the total energy necessary to attain a desired bit error rate.

Furthermore, reckoning with a fixed-point implementation of the OFDM trans-
ceiver, we investigated the effects of such an implementation on the performance of
the transceiver. The results are simple analytical expressions for the performance of
uniformly quantized and soft-limited OFDM systems, so that the design space can
be quickly explored, and the minimum number of integer and fractional bits needed
to achieve the desired performance can be determined.

Looking forward, we foresee a further increase in the (ab)use of general program-
ming languages as system specification languages. The ever growing complexity of
the devices envisioned simply cannot be expressed with the current languages, as
they lack the level of abstraction necessary to cope with the complexity. Of course,
languages like C, C++ or even Matlab were never intended for this purpose, but just
because of their popularity and widespread use, they set the standard.

Furthermore, we expect energy consumption to become an ever more important
constraint, if not the most important constraint, for future designs. Design au-
tomation tools must take energy consumption into account. This will require that
knowledge of the data to be processed is made available to the synthesis tools in
some form or another.

Looking beyond single embedded systems, a similar design methodology can
be used to implement networks of embedded systems, such as wireless sensor net-
works [2]. In such networks, the individual nodes collect, process and exchange
information, and a balance must be found between data processing and communi-
cation to increase the lifetime of the network as a whole. The data flow oriented
approach introduced in chapter 3 nicely fits this emerging field, and as a consequence
similar optimization strategies can be used.





Appendix A
Ubiquitous Communications

The UbiCom program is a multidisciplinary research program at Delft University
of Technology. It aims to develop wearable systems for mobile multimedia com-
munications, with a focus on i) real-time communication and processing of visual
information for context-aware applications such as augmented reality, ii) high bit
rate communication at 17 GHz, and iii) architectural issues and performance opti-
mization of heterogeneous communication and computation systems.

A.1 Applications

In a scenario such as that depicted in UbiCom, all kinds of applications become
feasible. Apart from applications already envisioned for GPRS (general packet ra-
dio services) devices, also applications specifically exploiting the augmented-reality
aspects become viable.

The possible applications can be divided into several categories:

• geographical information services: A geographical information system (GIS)
can provide the user with information related to his current location. This
information can be represented graphically or textually to the user in the
form of arrows, highlighted objects, text balloons, and in many other ways.
Exemplary applications include:

– route planners, and

– guided tours (in cities, museums, etc.).

• remote information services: All kinds of applications requiring remote exper-
tise or information become possible. To name a few:

– up-to-date traffic information,

– online interactive manuals, and

– maintenance supervised by remote experts.
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• entertainment: Of course, games are challenging applications, as they usually
demand a high level of responsiveness and accuracy. More than one user may
play, in games like:

– 3D Quake: play hide and seek and shoot in the ‘real’ world, and

– virtual mazes.

• military: In military applications, soldiers at a battlefield are supplied with
up-to-date maps, strategic overviews and targeting information.

A.2 Necessities and consequences

To enable the applications mentioned above, a number of prerequisites have to be
fulfilled. The most important are:

• wearable: The terminal and display should be easy to wear, and ideally the
user should not be hindered or restricted in any way by carrying and operating
them. Consequently, these demands impose two important restrictions on the
devices:

– lightweight: Of course the devices used should be lightweight, i.e., the
total weight should be less than half a kilogram, but preferably the device
should weigh the same as a cellular phone.1

– wireless: As cables and wires severely limit the freedom of movement of
a user, they cannot be applied.

As a consequence, power cables and large and heavy battery packs are not
suitable. Therefore, the devices should not consume more than the limited
amount of battery power available. Other alternative sources of energy, such
as solar panels or fuel cells, are not feasible either because of their limited
capacity or because of their weight.

• remote information retrieval: In almost all applications envisioned, the user
needs to access data that is not available beforehand, because the user needs
up-to-date data, specific to his current position and current activity. As a con-
sequence, the data required cannot be carried along on some storage medium,
but it has to be remotely requested and fetched from a distant information
source. This implies the use of some form of wireless communication.

1Other issues like form factor and esthetics are equally important, but are neglected at this
point, as they primarily impose limitations on the final construction of the device and not on the
electronics within.
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• high-quality graphics: As the user’s view of the real world is augmented with
additional visual information, the graphics and images displayed have to be
precisely aligned with the real world. Moreover, they have to be updated
frequently to adjust for minute changes in the user’s view, caused by movement
of the user himself, his head, or even his eyes. Otherwise the user might become
disoriented and dizzy, as the added visual information does not match the real
world anymore.

• localization and determination of direction of view: Especially for GIS and mil-
itary applications, the user’s position and direction of view should be known, to
enhance his view with relevant information. Therefore, positional information
about the user has to be communicated when information is requested.

A.3 Preliminary choices

In the UbiCom research program, a number of choices were already made at the
start of the project. These include: the use of a high-speed data link at a carrier
frequency of 17 GHz, the use of OFDM as a modulation scheme, and the type of
infrastructure used. These choices are discussed in more detail in the next sections.

A.3.1 Carrier frequency and OFDM modulation

The choice for the 17GHz band is primarily based on criteria for the analog front-end
design. A carrier frequency was targeted that would allow for integrated front-ends.
Integration at higher frequencies was not considered feasible within the life span of
the project.

The choice for 17 GHz as carrier frequency also influences the choice for OFDM
as modulation scheme. At this frequency, the wavelength of the radio wave is ap-
proximately 1.7 cm. Therefore, the channel is expected to exhibit severe frequency-
selective fading at the data rates envisioned. To combat the resulting inter-symbol
interference, OFDM was selected.

A.3.2 Infrastructure

The device carried around by the user is part of a larger infrastructure. A cellular
network is envisioned like that depicted in figure A.1. It consists of four parts:

• mobile terminal: The device carried by the user capable of both augmenting
the user’s view and communicating with the base stations to send positional
information and to retrieve requested information.

• base stations: Each base station serves a single cell. The wearable devices
communicate with one base station at a time.



124 Appendix A. Ubiquitous Communications

• data servers: The data servers process the user’s requests and subsequently
retrieve the information required. For instance, the GIS databases required in
some applications are implemented in the data servers.

• backbone: The backbone interconnects the base stations and the data servers.
It also connects to the internet if required.

A base station should be able to serve and accommodate at least 10 users.

data
server

data
server

base
station

base
station

backbone

Figure A.1: Infrastructure in the UbiCom scenario.



Appendix B
Mixed integer programming

B.1 Linear programming

In general, a linear programming problem has the form

maximize
c1x1 + c2x2 + . . . + cnxn,

subject to
a11x1 + a12x2 + . . . + a1nxn ∼ b1,
a21x1 + a22x2 + . . . + a2nxn ∼ b2,
...
am1x1 + am2x2 + . . . + amnxn ∼ bm,

bounded to
l1 ≤ x1 ≤ u1,
l2 ≤ x2 ≤ u2,
...
ln ≤ xn ≤ un,

(B.1)

where ∼ can be any of ≤, ≥ or =. The upper and lower bounds ui and li may be
positive or negative infinity, or any real number. The known constants and unknown
variables of this program are

objective function coefficients c1, . . . , cn,
constraint coefficients a11, . . . , amn,
constraint limits b1, . . . , bm,
lower bounds l1, . . . , ln,
upper bound u1, . . . , un,
variables x1, . . . , xn.
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Equation equation B.1 can be expressed in matrix form as follows

maximize

[
c1 c2 . . . cn

]


x1

x2
...

xn

 ,

subject to 
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn




x1

x2
...

xn

 ∼


b1

b2
...
bn

 ,

bounded to 
l1
l2
...
ln

 ≤


x1

x2
...

xn

 ≤


u1

u2
...

un

 ,

(B.2)

which leads to
maximize cT x,
subject to Ax ∼ b,
bounded to l ≤ x ≤ u.

(B.3)

In practice, general linear programming problems are solved very quickly by
the Simplex algorithm. The algorithm visits the corner points of the search space
(the region that satisfies Ax ∼ b), where the optimal solution is known to exist.
However, the Simplex algorithm is not guaranteed to reach a solution in polynomial
time. The ellipsoid algorithm and Karmarkar’s algorithm do reach a solution in
polynomial time, however.

B.2 Mixed integer programming

In mixed integer programming, any of the variables x1, . . . , xn of a linear program
can be restricted to integer or binary values. In general, integer programming is
NP-hard.

B.3 Boolean algebra

In chapter 3, Boolean algebra is used to set up the partitioning MILP. Therefore, the
Boolean equations have to be substituted by one or more arithmetical (in)equality
constraints.



B.3 Boolean algebra 127

B.3.1 Boolean inversion

A Boolean inverse
y = x (B.4)

is replaced by a single equality
y = 1− x, (B.5)

provided that x and y are binary valued variables.

B.3.2 Boolean and

A Boolean product

y =
n∧

i=1

xi = x1 · x2 · . . . · xn (B.6)

is replaced by two inequalities

n∑
i=1

xi ≥ n · y,

n∑
i=1

xi ≤ y + (n− 1),

(B.7)

provided that xi and y are binary valued variables.

B.3.3 Boolean or

A Boolean sum

y =
n∨

i=1

xi = x1 + x2 + . . . + xn (B.8)

is replaced by two inequalities 

n∑
i=1

xi ≥ y,

n∑
i=1

xi ≤ n · y,

(B.9)

again provided that xi and y are binary valued variables.





Appendix C
Possibilistic linear programming

C.1 Introduction

In this appendix we try to solve a possibilistic linear program (LP) given by

minimize
c̃1x1 + c̃2x2 + . . . + c̃nxn,

subject to

ã11x1 + ã12x2 + . . . + ã1nxn ∼ b̃1,

ã21x1 + ã22x2 + . . . + ã2nxn ∼ b̃2,
...

ãm1x1 + ãm2x2 + . . . + ãmnxn ∼ b̃m,
bounded to

l1 ≤ x1 ≤ u1,
l2 ≤ x2 ≤ u2,
...
ln ≤ xn ≤ un,

(C.1)

or in short

minimize c̃T x,

subject to Ãx ≤ b̃,
bounded to l ≤ x ≤ u,

(C.2)

where c̃, Ã and b̃ are the imprecise coefficients for the objective, constraints and
limits, respectively.

In case the imprecise coefficients are represented by triangular fuzzy numbers
(see section 3.6), we can solve equation C.2 using Zimmermann’s fuzzy programming
method [86] with the normalization process described in [37].
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C.2 Fuzzy objective coefficients

First consider the case of imprecise objective coefficients c̃ and precise (or crisp)
constraint and limit coefficients. As x is not fuzzy but crisp, minimizing c̃x is
equivalent to minimizing {clx, cmx, cux}. Instead of simultaneously minimizing these
three objectives, we will minimize cmx, maximize (cm−cl)x, and minimize (cu−cm)x,
i.e.,

minimize c̃x ⇒


minimize z1 = cmx,
maximize z2 = (cm − cl)x,
minimize z3 = (cu − cm)x.

(C.3)

This means minimizing the most possible value of the imprecise objective, while
maximizing the possibility of a lower cost and minimizing the risk of a higher cost,
respectively.

To solve equation C.3, we use Zimmermann’s fuzzy linear programming approach
using the min operator, in combination with the linear membership functions of the
three objective functions

µz1 =


1 if z1 < zl

1,
z1 − zu

1

zl
1 − zu

1

if zl
1 ≤ z1 ≤ zu

1 ,

0 if z1 > zu
1 ,

(C.4)

µz2 =


0 if z2 < zl

2,
z2 − zl

2

zu
2 − zl

2

if zl
2 ≤ z2 ≤ zu

2 ,

1 if z2 > zu
2 ,

(C.5)

and µz3 similar to µz1 . The lower and upper bounds zl
i and zu

i of an objective
function zi are given by

zl
i = min

x∈X
zi, (C.6)

zu
i = max

x∈X
zi, (C.7)

for all i ∈ 1, 2, 3, and where X = {x | Ax ≤ b, l ≤ x ≤ u} is the solution space.
With Zimmermann’s method, the membership functions zi are maximized simul-

taneously. Thus we arrive at the single objective crisp LP given by

maximize
λ,

subject to
µzi

≥ λ, ∀i ∈ (1, 2, 3),
Ax ≤ b,

bounded to
l ≤ x ≤ u,

(C.8)

which can be solved using a standard LP solver.
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C.3 Fuzzy objective, constraint and limit coeffi-

cients

If, not only the fuzzy objective function c̃ is imprecise, but also the constraint Ã
and/or limit b̃ coefficients, the same approach as that presented in the previous
section can be used. First however, we need to convert the imprecise constraints
into crisp ones using the fuzzy ranking concept. All constraints with imprecise
coefficients can be replaced by three auxiliary constraints [64]

Aα
l x ≤ bα

l , (C.9)

Aα
mx ≤ bα

m, (C.10)

Aα
ux ≤ bα

u , (C.11)

where α is the minimal acceptable possibility, specified by the designer. From fig-

πc

c
cl cuc

α

l c
α

u

α

c
α

m

0

1

Figure C.1: Minimal acceptable possibility α of a triangular fuzzy number c̃ =
{cl, cm, cu}.

ure C.1 it can be seen that

cα
m = cm, (C.12)

cα
l = αcm + (1− α)cl, (C.13)

cα
u = αcm + (1− α)cu. (C.14)

Once α is known, we again have crisp constraints with a fuzzy objective.
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Summary

World-wide, the demand for portable, hand-held devices like cellphones, personal
digital assistants (PDAs), MP3 players and Game Boys is increasing strongly. Ever
smaller devices have to operate uninterruptedly for longer periods of time. At the
same time, an overall trend is visible to integrate various functions on the same
device, for instance, taking photographs and transmitting them with a cellphone.
Usually, the required functionality tends to be data-dominated, i.e., most computa-
tional effort is put in processing data.

The tendency of putting more and extended functionality into the devices is
enabled by the continuing growing capabilities of semi-conductor technology. Ever
smaller transistors can operate on ever higher frequencies, at lower operating supply
voltages. As a consequence, designers face increasingly complex designs and multiple
competing design objectives and constraints. The traditional hardware description
languages no longer suffice to express the increasing complexity. Therefore, design-
ers turn to general programming languages like C or C++ for the initial high-level
specification of the algorithms to be implemented.

Once the initial specification of the algorithm is fixed, the designer has to decided
which parts to implement in software and which in hardware. The complexity of
the designs render it impossible for a human to make a sound decision. The number
of options and the pace with which they change is simply overwhelming. Therefore,
a tool to quickly identify the trade-offs is indispensable in making well-founded
partitioning decisions. Such a tool should be able to cope with the three main
design constraints: chip area, execution time and energy consumption. Especially
energy consumption is crucial in mobile applications.

This thesis describes a high-level design method to help the designer find a
balance between the competing design objectives. Furthermore, several design au-
tomation tools are implemented to test and verify this method for the design of an
OFDM (orthogonal frequency-division multiplexing) transceiver. One of the tools
finds an optimal solution to the hardware-software partitioning problem, using a
mathematical programming approach. As the successful operation of the partition-
ing tool depends on the quick availability of accurate estimates for area, latency
and energy consumption, we implemented an additional tool to convert the original
C code into the system description language SystemC.

To take into account the imprecise nature of the cost and performance estimates,
the linear program uses fuzzy triangular numbers instead of crisp numbers to rep-
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resent the coefficients. The triangular numbers specify the most probable, the most
pessimistic, and the most optimistic values for the estimates. The partitioning tool
optimizes the most probable outcome, while minimizing the chances of finding a
worse solution and maximizing the chances of a better one.

In addition to the aforementioned uncertainties there is another complicating
factor: several alternatives may be available to implement an algorithm. Therefore,
the partitioning tool can be supplied with different possible implementations of the
algorithm, out of which the best implementation is selected. The best solution is
the one with the smallest chip area, the shortest execution time, or the least energy
consumption.

Next to the design method described above, this thesis presents a number of tech-
niques to reduce the energy consumption of an OFDM transceiver, independently of
its implementation. In multi-carrier systems, such as OFDM, it is possible to assign
different energy levels to each so-called subchannel. This can be exploited to divide
the available energy more efficiently over the sub-carriers in order to achieve a better
performance. The other techniques determine the minimum number of bits needed
to transmit an OFDM signal reliably. Reduction of the number of bits reduces the
amount of energy necessary to modulate and demodulate the OFDM signal.

The design method and tools and the energy reduction techniques have been
used successfully in the design of an OFDM transceiver. The results can be used to
explore the design space of the transceiver. Based on this exploration, a qualitative
comparison of the alternative implementations is possible. This gives the designer
sufficient information to make well-founded decisions.

Maarten Ditzel



Samenvatting

Vermogensbewust ontwerpen
voor datagedomineerde applicaties

De wereldwijde vraag naar kleine elektronische apparaten zoals mobiele telefoons,
elektronische zakagenda’s en MP3-spelers stijgt explosief. Steeds kleinere apparaten
moeten voor langere tijd steeds meer kunnen. Tegelijkertijd is er een trend zicht-
baar om verschillende functies in één apparaat te combineren, zoals het maken en
versturen van foto’s met je mobieltje. In het algemeen is de gewenste functionali-
teit datagedomineerd, wat inhoudt dat het grootste deel van de rekenkracht besteed
wordt aan dataverwerking en niet aan besturingstaken.

De steeds uitgebreidere functies van de apparaten worden mogelijk gemaakt door
de nog immer groeiende mogelijkheden van de elektronica: meer kleinere transis-
toren werken op hogere schakelsnelheden en met lagere voedingsspanningen. Als
gevolg hiervan worden ontwerpers geconfronteerd met steeds grotere en complexere
schakelingen en met tegenstrijdige doelen en voorwaarden. De klassieke beschrij-
vingstalen voor hardware voldoen niet meer om de groeiende complexiteit weer te
geven. Daarom gebruiken ontwerpers steeds meer generieke programmeertalen om
de functionaliteit van een systeem in eerste instantie vast te leggen.

Als de functionaliteit van een systeem eenmaal vastligt, moet de ontwerper be-
slissen hoe deze gerealiseerd wordt: of in hardware, of in software. Voor de steeds
complexere ontwerpen is een mens niet meer in staat om een zinnige beslissing te
nemen; er zijn te veel alternatieven. Hij ziet simpelweg door de bomen het bos
niet meer. Daarom heeft de ontwerper gereedschap nodig dat hem helpt om snel
de consequenties van een ontwerpbeslissing duidelijk te krijgen. Zulk ontwerpge-
reedschap moet goed om kunnen gaan met de drie belangrijkste ontwerpcriteria:
chipoppervlakte, snelheid en energieverbruik. Het laatste wordt met name in mo-
biele toepassingen steeds belangrijker.

Dit proefschrift beschrijft een ontwerpmethode die een ontwerper helpt een even-
wicht te vinden tussen de concurrerende ontwerpdoelen. Om de achterliggende
ideeën en de correcte werking van deze methode te verifiëren zijn ontwerpgereed-
schappen gemaakt. Deze zijn gebruikt om de signaalverwerking van een zender-
ontvanger voor OFDM-signalen te ontwerpen. Een van de gereedschappen is een
programma om een functie in hardware- en softwareblokken in te delen. Dit pro-
gramma modelleert het partitioneren van een algoritme of een groep algoritmen als
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een lineair programmeringsprobleem. Natuurlijk zijn er schattingen nodig van de
kosten van implementaties in hardware en in software. Om deze snel te genereren is
een conversieprogramma geschreven om de originele beschrijving van het algoritme
in C om te zetten naar de beschrijvingstaal SystemC.

Inherent aan een schatting is de onzekerheid die eraan gekoppeld is. Om met de
onzekerheid van de schattingen om te kunnen gaan, worden de coëfficiënten van het
lineaire programma niet als exacte getallen weergegeven, maar als fuzzy driehoeksge-
tallen. De driehoeksgetallen specificeren de te verwachten en de meest optimistische
en pessimistische schattingen. Het programma vindt een optimum voor de meest
waarschijnlijke waarden. Tegelijkertijd maximaliseert het de kans op een betere
oplossing en minimaliseert het de kans op een slechtere oplossing.

Een complicerende factor in het ontwerpproces is dat er verschillende alterna-
tieve manieren kunnen zijn waarop een algoritme gëımplementeerd wordt. Daarom
kunnen aan het partitioneringsprogramma tegelijkertijd verschillende versies van een
algoritme worden aangeboden. Uit deze set van alternatieven wordt vervolgens de
beste oplossing gekozen. Het best is de oplossing met het kleinste chipoppervlakte,
de kortste executietijd of het laagste energieverbruik.

Naast de bovengenoemde ontwerpmethode staat in dit proefschrift ook een aantal
manieren beschreven om het energieverbruik van een zender-ontvanger voor OFDM
te verlagen, onafhankelijk van de specifieke implementatie. De eerste manier maakt
gebruik van het feit dat in een OFDM-signaal een verschillende hoeveelheid energie
kan worden toegewezen aan een zogenaamd subkanaal. Elk subkanaal heeft zijn
eigen overdrachtskarakteristiek en door de beschikbare energie beter te verdelen
over de subkanalen kunnen de prestaties worden verbeterd. De overige methodes
bepalen het kleinste aantal bits dat nodig is om een OFDM-signaal betrouwbaar
over te sturen. Beperking van het aantal bits verlaagt de hoeveelheid energie die
nodig is om het OFDM-signaal te genereren en te demoduleren.

De ontwerpmethode en -programma’s en de energiebesparingstechnieken zijn met
succes toegepast in het ontwerp van een zender-ontvanger voor OFDM-signalen. De
resultaten zijn direct toepasbaar voor het verkennen van de ontwerpruimte. Op basis
van deze gegevens kan een kwalitatieve vergelijking worden gemaakt van de verschil-
lende implementaties. Hiermee heeft de ontwerper genoeg informatie in handen om
gefundeerde ontwerpbeslissingen te kunnen nemen.

Maarten Ditzel



Nawoord

Zes jaar geleden wees mijn vader mij op een advertentie in de Volkskrant. De
TU Delft zocht AIO’s voor het DIOC-programma Ubiquitous Communications. Het
doel: een gebruiker een laserbril op zetten om draadloos verstuurde beelden op zijn
netvlies te branden, dit alles in een interfacultair, multidiscplinair project. Ik was
eigenlijk meteen verkocht.

De eerste maanden gingen wat moeizaam: de enige AIO binnen P1, geen vaste
computer of werkplek, enzovoort. Dit veranderde toen UbiCom verhuisde naar de
16e verdieping. Ik kwam terecht in een kamer samen met Arjen en Hylke, twee
uitstekende kamergenoten en niet alleen vanwege Worms of kaatsen. In de tijd die
daarop volgde werd P1 ook uitgebreid met een aantal prima collega’s: Chris, Slawek
en Adrian.

Een paar jaar later is UbiCom “succesvol” afgerond, hoe je dat ook zou kunnen
meten. Ik denk dat het succes van UbiCom niet zozeer in de Heidagen en virtuele
focuspunten zit, als wel in het simpele feit dat mensen met verschillende achter-
gronden en expertises bij elkaar werden gebracht op één verdieping. Alle moderne
communicatiemiddelen ten spijt werkt even snel iemand aanspreken, bij iemand bin-
nenlopen of gezamenlijk lunchen of koffie drinken nog steeds het beste om discussies
en interactie te krijgen. Dit aspect vond ik verreweg het leukste en ik hoop dat ik
er ook nog wat van opgestoken heb. Wat me wel zorgen baart, is dat ik, voor zover
ik weet, pas de tweede UbiCom-AIO ben die daadwerkelijk gaat promoveren.

Mijn boekje is nu af, maar gelukkig hebben daar veel mensen (al dan niet bewust
of opzettelijk) een bijdrage aan geleverd en hen wil ik dan ook hartelijk bedanken.
Ralph en Wouter natuurlijk als promotor en toegevoegd promotor. Arjen, Hylke,
Jacco en Jan als kamergenoten. Adrian, Chris, Johan, Koen, Relja, Slawek en (de
andere) Wouter als directe collega’s. Pappa, Jan en (jawel) Brigitte voor de kaft.
Mirjam en Maaike voor de spelling (alle vaudten die er nu nog staan zijn volledig
aan mijzelf te wijten). Laura en Marion voor de laatste niet inhoudelijke loodjes en
natuurlijk Paul en Eelco als mede-mestkevers.

Tenslotte wil ik Brigitte, pappa, mamma, Maaike en Auke nogmaals hartelijk
bedanken voor hun steun.

Maarten
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