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The effect of perturbation properties on system identification of human balance control during stance 
Jurriaan C. de Veij Mestdagh 
 
  ABSTRACT- Introduction: System identification of the neuromuscular controller that regulates human balance, gives 
insight in the causes and effects of human balance disorders.  The combination of varying perturbation properties in 
literature and lack of rationale behind chosen perturbation properties, reveals possible violations of assumptions 
made to perform system identification. This study investigates the effect of number of repetitions of the perturbation 
signal and the perturbation amplitude on the identification quality. Methods: 12 subjects were perturbed at their 
support surface with a multisine signal. Kinematics of the subjects were recorded with a motion capture system; 
ground reaction forces were recorded with force plates. The best linear approximation of the neuromuscular controller 
was identified. Measures for variability of identification with respect to the number of repetitions and for nonlinearity 
with respect to the perturbation amplitude were calculated. Results: Identification variability was found to significantly 
decrease with number of repetitions. Nonlinearity within the neuromuscular controller increased significantly with 
perturbation amplitude.   Conclusions: After having measured 6-8 repetitions, measuring subsequent repetitions does 
not decrease identification variability significantly for the following 6-7 repetitions. The balance between suppressing 
noise effects by using a high amplitude perturbation and minimising nonlinear effects by using a low amplitude 
perturbation was identified to be optimized between a perturbation signal amplitude of 8 cm PtP and 11 cm PtP. 

INTRODUCTION 
Active control is necessary for the inherently unstable 

human body to maintain an upright posture in the 

gravitational field. The human body is controlled by the 

central nervous system (CNS) to counteract the pull of 

gravity and external disturbances, such as moving 

support surfaces (for example while standing in a 

moving bus) or forces on the body (for example force 

exerted by the wind). To do so, the CNS uses visual, 

vestibular and proprioceptive sensory feedback to gain 

information about the current posture of the body. 

Using this information, the CNS invokes balance 

recovering corrective torques by activating muscles 

around the ankle, knee and hip joints.  

Ageing, medication side-effects, and pathologies such 

as stroke, Parkinson's disease, and cerebral palsy can 

affect human balance control resulting in balance 

disorders1–3. As balance control consists of an interplay 

between sensory cues, control in the CNS and muscle 

actions, the source of a balance disorder is hard to 

determine. To treat patients with balance disorders 

with personalized and targeted interventions, it is 

therefore important to know what subsystem of 

human balance control is affected and in which 

manner. 

From an engineering perspective, the human balance 

system can be considered a closed loop system. 

Following this approach, we model the human body as 

an inverted pendulum, acting as the plant 𝑃 (Figure 1). 

The plant is controlled by the neuromuscular controller 

(NMC), representing the CNS. The NMC receives 

feedback about the state of the pendulum, which for a 

SIP, is the rotation around the SIP’s joint axis.  

 

 

Figure 1: Human balance control scheme. The human body, plant 

𝑷, is modelled as an inverted pendulum, challenged in upright 

position by external perturbation 𝒅𝒆𝒙𝒕, either presented as an 

external force 𝑭𝒅𝒊𝒔,𝒆𝒙𝒕 or a support surface translation �̈�𝒔𝒔. 

Information about the state of the body (𝜽) is fed back into the 

neuromuscular controller 𝑪𝑵𝑴𝑪, which outputs a corrective 

ankle torque 𝑻.  

Because the human balance system is a (closed loop) 

feedback system, causes and effects are interrelated. 

To gain more insight in the underlying mechanisms and 

distinguish cause and effect, closed loop system 

identification (SI) techniques can be applied4. In system 

identification, a system is perturbed to gain 

information about its behaviour.  SI is used in various 

papers5–8 to investigate balance pathologies by 

identifying the controller of the human balance system, 

called the neuromuscular controller (NMC).  

Noise, introduced into the loop by internal noises of 

the human and measurement noise, influences the 

results of SI. Therefore, in most SI applications, noise is 

decreased by averaging over multiple repetitions of the 

same perturbation.  The result of identification of the 

NMC is therefore dependent on the amount of 

repetitions which is averaged over. 
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Furthermore, single-input single-output (SISO) SI needs 

the assumption of a single inverted pendulum (SIP). 

However, when perturbation amplitude increases, the 

human changes from a strategy in which the ankles are 

used to stabilize the body (‘ankle strategy’), to a 

strategy in which the hip joints and possibly the knee 

joints also contribute to stability (‘mixed strategy’)9–11. 

When the knee and hip joints are also mobile, the SIP 

assumption is invalid and the estimation of the NMC 

(which is only informative on the ankle strategy in SISO 

SI) might be degenerated. More complex multi-input 

multi-output SI should be applied in the case of SIP 

assumption invalidity. 

Moreover, the SI method used to identify the NMC 

assume a linear, time-invariant (LTI) system12,13. 

However, balance control is known to be nonlinear14 

and nonstationary15. Nonlinear systems may be 

approximated by linearization, which is only 

reasonable within a limited range around the 

linearization’s operating point. When the system is 

operating too far away from the operating point, for 

example resulting from a high amplitude perturbation, 

the accuracy of the linearization diminishes.  

Additionally, the NMC might change its behaviour 

within the ankle strategy with increasing perturbation 

amplitude. This could result in a different identification 

of the NMC in different perturbation amplitude 

conditions. 

These effects indicate that the assumptions made to be 

able to apply SI on the human balance system, might 

be violated when the number of repetitions and the 

perturbation amplitude are chosen arbitrarily.  

From literature on human balance system 

identification4–8,16–30, no general conclusions can be 

drawn on which perturbation signal properties are 

optimal for SI of the NMC, because the authors do not 

mention the rationale behind the used perturbation 

signal properties, such as the number of repetitions or 

the perturbation amplitude. Furthermore, the signal 

properties differ significantly between studies. For 

example, the number of repetitions varies between 3 

to 16 repetitions and support surface translations 

differ from 0.5 cm to 23 cm in studies where the NMC 

is estimated4–8,16–30. The variation in perturbation signal 

properties, combined with the lack of mentioned 

rationale, implies that the some of the used 

perturbation signals might break assumptions that are 

made to be able to apply the SI methods, such as the 

assumption of a linear system.  

Therefore, this study will investigate the effect of 

number of repetitions of the perturbation signal and 

perturbation amplitude on the identification of the 

NMC in healthy adults.  

We hypothesize that increasing the number of 

repetitions available to estimate the NMC, will 

decrease the variability of the identification result, by 

reducing the influence of disturbing noises through 

averaging. 

Furthermore, we hypothesize that decreasing 

perturbation amplitude will decrease the signal-to-

noise ratio and therefore decrease the identification 

accuracy. On the other hand, increasing the 

perturbation amplitude, might increase nonlinearity of 

the NMC in two different ways: 

1) the NMC will start to operate outside of the 

range in which it can be considered linear, 

from here on called “type I nonlinearity” 

2) the NMC will change behaviour within the 

ankle strategy, i.e. change to a different 

operating point, from here on called “type II 

nonlinearity” 

Lastly, we hypothesize that the assumption of a single 

inverted pendulum (SIP) will be increasingly violated 

when perturbing subjects with a higher perturbation 

amplitude, e.g. by shifting balance strategy from 

mainly using the ankle joints for stability to the mixed 

use of the ankles, hips and knees for balance control31. 

The results of this study will contribute to the selection 

of appropriate perturbation signal properties for SI 

application in human balance control, reducing noise 

and nonlinearity contributions that can decrease the 

quality of the identification result. 

METHODS 

A. Participants 
Twelve healthy subjects (six women; median age 26 

years, range 24-65 years, length 1.73 m ± 0.09 m) 

participated in the study. This study was approved by 

the Human Research Ethics Committee of Delft 

University of Technology. All subjects gave written 

informed consent before participating in the study. 

B. Apparatus and Recording 
Experiments were performed using the GRAIL system 

(MotekForce Link, Amsterdam, the Netherlands). 

GRAIL consists of a split belt treadmill with 6 degrees 

of freedom force plates beneath the belts, surrounded 

by ten motion capture cameras (Vicon Bonita, Vicon 
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Motion Systems, Oxford, UK) and a semi-cylindrical 

screen (Figure 2). 

The positions of motion capture markers were 

recorded in the Vicon Nexus 2.5 software with a 

sampling frequency of 100 Hz. Force information from 

the instrumented treadmills was recorded at 1000 Hz 

using the D-Flow software that drives GRAIL and 

streamed to Vicon Nexus, which saved both motion 

capture data and force plate data. 

 
Figure 2: GRAIL system with dual belt instrumented treadmill 

(A), motion capture cameras (B), subject, motion capture 

markers (C) and semi-cylindrical screen (D). 

C. Perturbation Signal 
Both treadmill belt positions were controlled using the 

same multisine signal. A multisine is a signal composed 

of the superposition of sines with various frequencies 

and various amplitudes:  

𝑑𝑒𝑥𝑡,𝑖𝑛(𝑡) = ∑ 𝐴𝑘(2𝜋𝑓𝑜𝑘𝑡 + ϕk)

𝑁

𝑘=1

  

where: 

• 𝑑𝑒𝑥𝑡,𝑖𝑛(𝑡) is the perturbation signal as input to 
the GRAIL system 

• 𝑘  is the frequency line, an integer number 
which corresponds to the Fourier coefficients. 

• 𝐴𝑘 is the amplitude at frequency line 𝑘, which 
can be zero or nonzero. The frequencies where 
amplitude 𝐴𝑘 is nonzero, are called the excited 
frequencies 𝑓𝑒𝑥. 

• 𝑓0  is the frequency resolution ( 𝑓0 = 1/𝑇 
where 𝑇 is the period of the signal). 

• 𝜙𝑘 is a random phase at frequency line 𝑘. 

• 𝑁 is the number of samples in one period of 
the signal. 

• 𝑡 is the time vector. 

The perturbation signal used in this study was designed 

to excite specific frequencies, which are distributed 

logarithmically between 0.05 Hz and 5 Hz on odd 

frequency lines (k=1, 3, 7, 11, 13, 17, 21, 23, 25, 29, 35, 

43, 51, 57, 63, 75, 91, 99). The remaining, nonexcited 

frequencies, enable analysis of nonlinear 

contributions32, see Data Analysis.  

The designed perturbation signal has a flat velocity 

spectrum (Figure 3), except for the first excited 

frequency (𝑓0 = 0.05 𝐻𝑧), for which the amplitude was 

decreased, such that it was, in position spectrum, equal 

to the magnitude of the second excited frequency 

(𝑓1 = 0.15 𝐻𝑧).  The perturbation signal lasts for 20 s. 

The same phase realisation of the perturbation signal 

was used for all experiments. The amplitude of the 

perturbation signal varies between conditions (see 

‘Conditions’). 

 
Figure 3: Normalized time signal (top), and the corresponding 

power spectrum (bottom) for the position (left) and 

corresponding velocity (right) perturbation signal of the 

treadmill belt. 

D. Conditions 
To study the effect of perturbation amplitude, seven 

distinct amplitude conditions were created by scaling 

of the perturbation signal. The perturbation 

amplitudes ranged from 0.02 m peak to peak (PtP) in 

the A2 condition to 0.2 m PtP in the A20 condition, as 

shown in Table 1. 

Table 1: Experimental conditions. 

Condition m PtP # 
trials 

# repetitions 
total 

# repetitions 
for analysis 

A2 0.02 1 6.5 6 
A5 0.05 1 6.5 6 
A8 0.08 4 26 24 
A11 0.11 1 6.5 6 
A14 0.14 1 6.5 6 
A17 0.17 1 6.5 6 
A20 0.20 1 6.5 6 

Total  10   
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Each amplitude condition was presented in a separate 

trial, containing 6.5 repetitions of the scaled 

perturbation signal, resulting in trials of 130 s. Of every 

recorded trial, the first 0.5 repetition was discarded to 

eliminate transient effects, resulting in 6 repetitions 

available for analysis, which is a moderate value 

compared to literature4–8,16–30.  

The trial containing the A8 condition, which uses a 

moderate perturbation amplitude compared to 

literature4–8,16–30, was repeated four times, resulting in 

24 repetitions available for analysis of the effect of 

number of repetitions. All other trials were presented 

once to each subject, resulting in a total amount of 10 

trials being presented to each subject (Table 1).  

E. Procedure 
Reflective motion capture markers were symmetrically 

attached to the subjects on the following body 

landmarks: acromioclavicular joints (shoulders), major 

trochanters (hips), lateral epicondyles (knees) and 

lateral malleoli (ankles). Furthermore, a marker was 

attached on each treadmill belt (Figure 2).  

Subjects were asked to stand on the treadmill with 

eyes open and arms crossed over the chest. Subjects 

were secured using a body harness to prevent falling, 

which did not constrain movement. The semi-

cylindrical screen displayed a grey environment with 

two static horizontal white lines for visual reference.  

First a static trial was recorded, which required the 

subjects to stand upright comfortably for five seconds. 

After that, the subjects practiced during three trials of 

one minute, of which no data were recorded, in which 

they were perturbed with A2, A11 and A20 

perturbations. After practicing, all 10 full-length (130 s) 

trials were presented in a random order and data were 

recorded. Between each trial (including practice trials), 

the subjects could take an optional break of one 

minute.  

F. Data Analysis 

1) Pre-processing 
Marker data and force plate data were analysed in 

MATLAB R2016b (MathWorks, Natick, MA, USA). Force 

plate data were resampled to 100 Hz to match the 

marker data sample frequency.   

2) External Perturbation, Body Sway, and 

Ankle Torque Signal, Discrete Fourier 

Transforms and Power Spectral Densities 
The external perturbation signal 𝑑𝑒𝑥𝑡(𝑡) was recorded 

using markers on the treadmill belts.  

To calculate angular displacement of the inverted 

pendulum over time, i.e. body sway 𝑢𝑏𝑠(𝑡), the centres 

of mass (CoM) of body segments and of the total body 

were calculated according to Winter et al. (1990)33 

from the marker data of each perturbation trial. 

Furthermore, the length of the inverted pendulum was 

calculated from static trial marker data and was 

defined as the length from the body CoM to the ankle 

joint in the sagittal plane. The body CoM position in 

perturbation trials and the length of the inverted 

pendulum from the static trial were then used to 

calculate 𝑢𝑏𝑠 (𝑡)  per perturbation trial, which was 

defined as the angle between body CoM in the sagittal 

plane and the line perpendicular to the floor plane. 

To calculate the ankle torque 𝑦𝑡𝑜𝑟(𝑡) per perturbation 

trial, the dynamic centre of pressure (CoP) was 

calculated from the force plate data. 𝑦𝑡𝑜𝑟(𝑡) was then 

determined by calculating the torque that the forces at 

the CoP exert around the ankle joint axis, as 𝑦𝑡𝑜𝑟(𝑡) =

𝐹𝑧(𝑡) ∗ 𝐶𝑜𝑃(𝑡) + 𝐹𝑦(𝑡) ∗ ℎ𝑎𝑛𝑘𝑙𝑒(𝑡) , in which 𝐹𝑦(𝑡) 

and 𝐹𝑧(𝑡)  are the normal and friction force on the 

treadmill belt in the sagittal plane and ℎ𝑎𝑛𝑘𝑙𝑒(𝑡) is the 

height of the ankle, determined from marker data. 

All signals (𝑑𝑒𝑥𝑡(𝑡), 𝑢𝑏𝑠(𝑡), 𝑦𝑡𝑜𝑟(𝑡))  were divided into 

the 6.5 repetitions that were recorded for each 

condition and the first 0.5 repetition was discarded to 

eliminate transient effects. For each of the remaining 

six repetitions in 𝑑𝑒𝑥𝑡(𝑡), 𝑢𝑏𝑠(𝑡), and 𝑦𝑡𝑜𝑟(𝑡) , the 

single sided Discrete Fourier Transform (DFT) was 

calculated, resulting in 𝑈𝑏𝑠(𝑓), 𝑌𝑡𝑜𝑟(𝑓) and 𝐷𝑒𝑥𝑡(𝑓).  

Power spectral densities were calculated according: 

𝑃𝑆𝐷𝑥 =
1

𝑁
|𝑋(𝑓)|2 

where 𝑃𝑆𝐷𝑥  is the power spectral density of 𝑥(𝑡), 𝑁 

the total number of samples in the signal, and 𝑋(𝑓) the 

DFT of 𝑥(𝑡).  

3) Frequency Response Functions & 

Coherence 
The frequency response function 𝐶𝑁𝑀𝐶(𝑓) of the 

NMC can be defined as:  

𝐶𝑁𝑀𝐶(𝑓) = 𝐶𝐵𝐿𝐴(𝑓) + 𝐶𝑆𝑁𝐿(𝑓) + 𝐶𝑛𝑜𝑖𝑠𝑒(𝑓) 

in which 𝐶𝐵𝐿𝐴(𝑓) is the best linear approximation (BLA) 

of the system, 𝐶𝑆𝑁𝐿(𝑓) represents stochastic nonlinear 

distortions, and 𝐺𝑛𝑜𝑖𝑠𝑒(𝑓)  represents distortions of 

the BLA estimate due to the presence of noise. 𝐶𝑛𝑜𝑖𝑠𝑒 

is assumed to be zero-mean noise, uncorrelated to the 

perturbation signal. 𝐺𝑆𝑁𝐿  is constant over repetitions 
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when a constant (single phase realisation) perturbation 

signal is used. 

The BLA of the NMC’s FRF was estimated on the excited 

frequencies with an open loop estimator, by dividing 

the average Discrete Fourier Transform (DFT) of the 

sway signal by the average DFT of the torque signal at 

the excited frequencies34: 

𝐶𝐵𝐿𝐴(𝑓) =
𝑌𝑡𝑜𝑟
̅̅ ̅̅ ̅(𝑓𝑒𝑥)

𝑈𝑏𝑠
̅̅ ̅̅̅ (𝑓𝑒𝑥)

  

where 𝑈𝑏𝑠
̅̅ ̅̅̅(𝑓) and 𝑌𝑡𝑜𝑟

̅̅ ̅̅ ̅ (𝑓) are the mean DFT of 𝑢𝑏𝑠(𝑡) 

and 𝑦𝑡𝑜𝑟(𝑡)  over repetitions respectively and 𝑓𝑒𝑥 

represents the excited frequencies.  

Furthermore, the coherence functions between the 

external perturbation signal and the body sway signal 

𝛾𝑑𝑒𝑥𝑡𝑢𝑏𝑠

2 (𝑓) , and between the external perturbation 

signal and the ankle torque signal 𝛾𝑑𝑒𝑥𝑡𝑦𝑡𝑜𝑟

2 (𝑓)  were 

calculated on the excited frequencies, according: 

𝛾𝑥𝑦
2 (𝑓) =

|𝑆𝑥𝑦
̅̅ ̅̅̅(𝑓𝑒𝑥)|

2

𝑆𝑦𝑦
̅̅ ̅̅̅(𝑓𝑒𝑥)𝑆𝑥𝑥

̅̅ ̅̅ (𝑓𝑒𝑥)
 

where 𝑆𝑥𝑦
̅̅ ̅̅̅ represents the mean cross-spectral density 

(CSD) of 𝑥 with 𝑦 over repetitions and 𝑆𝑥𝑥
̅̅ ̅̅  is the mean 

autospectral density (ASD) of 𝑥 over repetitions. Mean 

CSDs and ASDs were estimated by multiplying the 

single sided DFTs with conjugates and averaging over 

repetitions: 

𝑆𝑥𝑦
̅̅ ̅̅̅ =

1

𝑅
∑ 𝑋(𝑓) ∗ 𝑌∗(𝑓)

𝑅

𝑟=1

 

where 𝑅 is the number of repetitions.  

4) Analysing Identification Variability with 

Respect to Number of Repetitions 
The influence of the number of repetitions was 

examined by using the 24 repetitions that were 

recorded for the A8 condition. To do so, for every 

number of repetitions, 15 combinations of that 

number of repetitions were randomly drawn from the 

available 24 recorded repetitions. So, for one 

repetition, one repetition was drawn 15 times; for two 

repetitions, a random combination of two repetitions 

was drawn 15 times, etc. For 24 repetitions, only one 

combination was possible, so this amount of 

repetitions was not included in the analysis.  

For every drawn combination, the BLA was estimated, 

resulting in 15 BLA estimations per amount of 

repetitions. The standard deviation between the 15 

BLAs was calculated for each number of repetitions, 

which served as a measure for variability: 

𝑚𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
[𝑥 𝑟𝑒𝑝𝑠]

(𝑓) =
√∑ (𝐶𝐵𝐿𝐴

[𝑥,𝑖]
(𝑓) − 𝐶𝐵𝐿𝐴

[𝑥]
(𝑓)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
)

2
N
i=1  

N − 1
    

where: 

• 𝑚𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
[𝑥 𝑟𝑒𝑝𝑠]

(𝑓) is a measure of identification 

variability when 𝑥  repetitions are used for 

identification. 

• 𝐶𝐵𝐿𝐴
[𝑥,𝑖]

(𝑓)  is the best linear approximation of 

the controller calculated with the 𝑖th 

combination of 𝑥 repetitions. 

• 𝐶𝐵𝐿𝐴
[𝑥]

(𝑓)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 is the mean BLA over all 

combinations for this amount of repetitions 

• 𝑁  is the number of combinations drawn for 

each number of repetitions (i.e. 15). 

A higher value for 𝑚𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
[𝑥 𝑟𝑒𝑝𝑠]

 means more variability 

in identification of the NMC, a lower value means a 

steadier identification. 

5) Quantifying Type I Nonlinearity 
While a linear system only generates output at the 

excited frequencies, type I nonlinear contributions 

show up at the nonexcited frequencies as well. 

Furthermore, noise appears in all frequencies, 

resulting in the following distribution of contributions: 

• At the (odd) excited frequencies: linear + odd 

nonlinear + noise contributions  

• At the even (nonexcited) frequencies: even 

nonlinear + noise contributions 

• At the odd nonexcited frequencies: odd 

nonlinear + noise contributions 

Because of the distribution of contributions, it is 

possible to quantify nonlinear distortions on the FRF by 

observing the level of distortions at the nonexcited 

frequencies35.  

First, the output spectrum was corrected for possible 

inaccuracy caused by the GRAIL system, for example 

due to inaccurate perturbation signal tracking. A first 

order correction was applied, as described in 

Schoukens et al. (2001)36:  

�̃�𝑡𝑜𝑟(𝑓) = 𝑌𝑡𝑜𝑟(𝑓) − �̃�𝐵𝐿𝐴(𝑓)𝑈𝑏𝑠(𝑓)  

where 

• �̃�𝑡𝑜𝑟(𝑓) is the corrected output spectrum. 

• �̃�𝐵𝐿𝐴(𝑓)  is the BLA interpolated to the 

nonexcited frequencies. 
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By interpolating the level of distortions of the 

corrected output spectrum at the nonexcited 

frequencies to the excited frequencies and dividing by 

the spectrum of the input at the excited frequencies, 

an estimation of the total distortion of the BLA, 𝜎𝑡𝑜𝑡𝑎𝑙 

was obtained36. Furthermore, the noise standard 

deviation 𝜎𝑛𝑜𝑖𝑠𝑒  was estimated by calculating the 

standard deviation of the mean BLA at the excited 

frequencies. 

Next, an estimate of the contribution of the stochastic 

nonlinear distortions to the bias of the BLA was 

obtained by: 

𝜎𝑁𝐿(𝑓) = √|𝜎𝑡𝑜𝑡𝑎𝑙
2 − 𝜎𝑛𝑜𝑖𝑠𝑒

2 | 

where 𝜎𝑛𝑜𝑖𝑠𝑒  is the noise standard deviation and 𝜎𝑡𝑜𝑡𝑎𝑙 

is the total standard deviation. Due to interpolation 

problems at the first, second and last excited frequency, 

𝜎𝑡𝑜𝑡𝑎𝑙  and 𝜎𝑁𝐿  were only available at 15 of the 18 

excited frequencies. 

To know the relative influence of the stochastic 

nonlinear distortions, a measure for type I nonlinearity 

was defined as the ratio between the standard 

deviation due to stochastic NL distortions and standard 

deviation of the noise on the mean BLA, calculated 

over P consecutive periods. The type I nonlinearity 

measure was calculated at the frequencies on which 

both 𝜎𝑁𝐿 and 𝜎𝑛𝑜𝑖𝑠𝑒  exist: 

𝑚𝑁𝐿1(𝑓) =
𝜎𝑁𝐿(𝑓𝑒𝑥,𝑒𝑥𝑖𝑠𝑡)

𝜎𝑛𝑜𝑖𝑠𝑒(𝑓𝑒𝑥.𝑒𝑥𝑖𝑠𝑡)
 

where 

• 𝑚𝑁𝐿1(𝑓) is a measure for type I nonlinearity. 

• 𝑓𝑒𝑥,𝑒𝑥𝑖𝑠𝑡  represents the exited frequencies at 

which both exist, which are all excited 

frequencies except the 1st, 2nd, and last excited 

frequency, due to interpolation issues at both 

ends of the frequency range. 

The measure 𝑚𝑁𝐿1 represents the relative amount of 

type I nonlinearity in the system. The higher the ratio 

(𝑚𝑁𝐿1 ), the more type I nonlinear behaviour of the 

NMC. 

6) Quantifying Type II Nonlinearity 
Type II nonlinearity was defined as the change of 

control behaviour of the NMC within the ankle strategy. 

Therefore, type II nonlinearity was expected to be 

observed as a change of the identified BLA FRF when a 

different perturbation amplitude is applied.  

Accordingly, a measure of type II nonlinearity was 

defined by: 

𝑚𝑁𝐿2
[𝑎𝑚𝑝 𝑥]

(𝑓) = ||𝐶𝐵𝐿𝐴
[𝑎𝑚𝑝 𝑥]

(𝑓)| − |𝐶𝐵𝐿𝐴
[𝑎𝑙𝑙 𝑎𝑚𝑝𝑠]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

(𝑓) || 

where 

• 𝑚𝑁𝐿2
[𝑎𝑚𝑝 𝑥]

(𝑓)  is the measure for type II 

nonlinearity for perturbation amplitude 𝑥. 

• 𝐶𝐵𝐿𝐴
[𝑎𝑚𝑝 𝑥]

(𝑓)  is the BLA estimate for 

perturbation amplitude 𝑥. 

• 𝐶𝐵𝐿𝐴
[𝑎𝑙𝑙 𝑎𝑚𝑝𝑠]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

(𝑓) is the mean BLA estimate over 

all perturbation amplitudes. 

The measure 𝑚𝑁𝐿2
[𝑎𝑚𝑝 𝑥]

(𝑓)  represents the amount a 

BLA estimate calculated at a specific perturbation 

amplitude differs from the average BLA estimate over 

all perturbation amplitudes, therefore a higher value of 

𝑚𝑁𝐿2
[𝑎𝑚𝑝 𝑥]

(𝑓) indicates higher type II nonlinearity. 

7) Single Inverted Pendulum (In)validity 
The assumption of a single inverted pendulum was 

checked by observing the ankle, knee and hip joint 

angles. These joint angles were calculated by 

computing the angle between segments in the sagittal 

plane, as shown in Figure 4. 

 

Figure 4: Joint angle definitions in the sagittal plane 

Two measures for single inverted pendulum invalidity 

were calculated as the ratio between PSD’s of the knee 

and ankle angle and the hip and ankle angle: 

𝑚𝑥𝐼𝑃,𝑘𝑎(𝑓) =
𝑃𝑆𝐷𝑘𝑛𝑒𝑒(𝑓𝑒𝑥)

𝑃𝑆𝐷𝑎𝑛𝑘𝑙𝑒(𝑓𝑒𝑥)
 

𝑚𝑥𝐼𝑃,ℎ𝑎(𝑓) =
𝑃𝑆𝐷ℎ𝑖𝑝(𝑓𝑒𝑥)

𝑃𝑆𝐷𝑎𝑛𝑘𝑙𝑒(𝑓𝑒𝑥)
 

where  

• 𝑚𝑥𝐼𝑃,𝑘𝑎(𝑓)  and 𝑚𝑥𝐼𝑃,ℎ𝑎(𝑓)  are measures for 

single inverted pendulum invalidity. 

• 𝑃𝑆𝐷𝑥(𝑓) is the power spectral density of the 

specified joint angle. 

• 𝑓𝑒𝑥 are the excited frequencies. 
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When the measures 𝑚𝑥𝐼𝑃,𝑘𝑎(𝑓)  and 𝑚𝑥𝐼𝑃2,ℎ𝑎(𝑓) are 

significantly larger than one, the knee and hip joints are 

more affected by the perturbation than the ankle joint 

angle, rendering the SIP assumption less valid. 

Therefore, 𝑚𝑥𝐼𝑃,𝑘𝑎(𝑓) and 𝑚𝑥𝐼𝑃2,ℎ𝑎(𝑓) represent the 

invalidity of the single inverted pendulum assumption. 

8) Frequency Groups & Averaging Measures 

over Frequencies and Subjects 
All five measures (𝑚𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑓), 𝑚𝑁𝐿1(𝑓), 𝑚𝑁𝐿2(𝑓) 

𝑚𝑥𝐼𝑃,𝑘𝑎(𝑓) , and 𝑚𝑥𝐼𝑃,ℎ𝑎(𝑓) ) are a function of 

frequency. For further analysis, all measures were split 

into three frequency groups: low, medium and high. 

Each group contained 6 excited frequencies (Table 2). 

Table 2: Frequency groups 

Low Medium High 

Frequencies in each frequency group (Hz) 

0.05 1.05 2.55 

0.15 1.15 2.85 
0.35 1.25 3.15 

0.55 1.45 3.75 
0.65 1.75 4.55 

0.85 2.15 4.95 

 
To yield a single value per measure per frequency 

group, the measures were averaged over the 

frequencies within the frequency group. 

Calculation of mean FRFs over subjects was done by 

averaging the complex numbers of the FRF over all 

subjects. Mean coherences and mean measure values 

over subjects was done by first calculating the measure 

per subject, and then averaging over subjects. 

9) Statistical analysis 
For all five measures ( 𝑚𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 , 𝑚𝑁𝐿1, 𝑚𝑁𝐿2,

𝑚𝑥𝐼𝑃,𝑘𝑎, and 𝑚𝑥𝐼𝑃,ℎ𝑎), a two-way repeated measures 

ANOVA was performed to analyse whether the number 

of repetitions or the perturbation amplitude had a 

significant effect on each measure, and to investigate 

whether the effects were different for each frequency 

group. An effect was considered significant when the 

p-value fell under 0.05.  

If interaction was significant, for each frequency group 

a post-hoc one-way repeated measures ANOVA was 

performed. Bonferroni corrections were applied to the 

p-values of these three separate tests, to counteract 

the problem of false-positives when doing multiple 

comparisons. The Bonferroni correction amounted to a 

multiplication of the p-values by three, because for 

each of the three frequency groups, a post-hoc test 

was done. 

RESULTS 
All subjects were able to complete all trials without 

moving their feet (stepping out). Figure 5 gives an 

overview of the perturbation signal tracking by the 

treadmill belts for the two extreme perturbation 

amplitude conditions (A2 and A20).  

 
Figure 5: Perturbation signal tracking by treadmill belts for A2 

condition (left) and A20 condition (right), position (top) and 

power spectral density (bottom). 

Perturbation signal tracking was better for higher 

perturbation amplitudes. In general, perturbation 

tracking was good.  

A. Body Sway, Ankle Torque, FRF 

 
Figure 6: Body sway (left) and ankle torque (right) signals (top), 

with corresponding power spectral densities (bottom). Six 

repetitions and the mean over repetitions are shown. 

In Figure 6, the body sway angle and ankle torque 

signals with corresponding power spectral densities 

are shown for one representative subject in the A8 

condition. All six repetitions and their mean are shown. 
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In both power spectral densities, the peaks at the 

excited frequencies are easily recognizable. 

 
Figure 7: Mean and standard deviation of FRF magnitude with 

𝝈𝑵𝑳 and 𝝈𝒏𝒐𝒊𝒔𝒆 (top), FRF phase (second panel), coherence from 

external perturbation to body sway (third panel) and coherence 

from external perturbation to ankle torque (bottom), averaged 

over subjects. The low, medium and high frequency groups are 

divided by a solid black line.   

The mean and standard deviation over FRFs for all 

subjects in the A8 condition are shown in Figure 7. Both 

the coherence from external perturbation to body 

sway and from external perturbation to torque are 

plotted. Furthermore, 𝜎𝑁𝐿 and 𝜎𝑛𝑜𝑖𝑠𝑒 are plotted. 

B. Effect of Number of Repetitions 

 

Figure 8: BLA magnitude plots for a representative subject. Every 

subplot contains 15 BLAs (for 15 samples). The low, medium and 

high frequencies are divided by a solid black line. 

In Figure 8, BLAs calculated from all 15 samples are 

plotted for various numbers of repetitions for a 

representative subject. Less variability in identification 

is obtained when using more repetitions. 

 

Figure 9: Mean and standard deviation of 𝒎𝒗𝒂𝒓𝒊𝒂𝒃𝒊𝒍𝒊𝒕𝒚
[𝒙 𝒓𝒆𝒑𝒔]

 for all 

numbers of repetitions, averaged over subjects. 

Figure 9 shows 𝑚𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
[𝑥 𝑟𝑒𝑝𝑠]

 for all numbers of 

repetitions for which there were samples. The two-way 

repeated measures ANOVA revealed a significant 

interaction effect. 

Post hoc tests revealed significant decreases in 

variability with number of repetitions for the low, 

medium and high frequency group (𝑝 < 0.001 for all 

frequency groups).  
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C. Effect of the Perturbation Amplitude  

 

Figure 10: Mean of FRF magnitude (top), FRF phase (second 

panel), coherence from external perturbation to body sway 

(third panel) and coherence from external perturbation to ankle 

torque (bottom) for each perturbation amplitude condition, 

averaged over subjects. The low, medium and high frequency 

groups are divided by a solid black line. 

FRF’s averaged over all subjects for different 

perturbation amplitudes are shown in Figure 10. The 

coherences from external perturbation to body sway 

and to torque are shown. It can be clearly seen that for 

lower perturbation amplitudes (A2 and A5), 

coherences are lower.  

1) Type I Nonlinearity 

 

Figure 11: Mean and standard deviation of 𝒎𝑵𝑳𝟏 for different 

perturbation amplitudes and frequency groups, averaged over 

subjects.  

In Figure 7 (and Figure 17 in the Appendix) mean FRF 

plots with 𝜎𝑛𝑜𝑖𝑠𝑒  and 𝜎𝑡𝑜𝑡𝑎𝑙  can be found. Figure 11 

shows, for each perturbation amplitude, the mean and 

standard deviation of the nonlinearity measure for 

type I nonlinearity (𝑚𝑁𝐿1) for each frequency group, 

averaged over all subjects.  

The two-way repeated measures ANOVA showed there 

was a significant interaction between the effects of 

perturbation amplitude and frequency group ( 𝑝 <

0.001). Post hoc analysis showed that within the low 

and high frequency groups, there was no significant 

effect of perturbation amplitude (𝑝 = 0.537 and 𝑝 =

0.060 respectively), whereas in the medium frequency 

group, the measure for type I nonlinearity significantly 

increases with perturbation amplitude (𝑝 < 0.001).  

2) Type II Nonlinearity 

 

Figure 12: Mean and standard deviation of 𝒎𝑵𝑳𝟐 for different 

perturbation amplitudes and frequency groups, averaged over 

subjects 
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Figure 12 shows, for each perturbation amplitude, the 

mean and standard deviation of the nonlinearity 

measure for type II nonlinearity ( 𝑚𝑁𝐿2 ) for each 

frequency group, averaged over all subjects. The two-

way repeated measures ANOVA showed a significant 

interaction effect of perturbation amplitude and 

frequency group on the measure for type II 

nonlinearity (𝑝 = 0.001).  

Post hoc analysis revealed a significant decrease of 

type II nonlinearity with perturbation amplitude for all 

frequency groups ( 𝑝 = 0.024 , 𝑝 = 0.009  and 𝑝 =

0.009, respectively). 

3) SIP Invalidity 

 

Figure 13: Mean and standard deviation of 𝒎𝒙𝑰𝑷,𝒉𝒂 for different 

perturbation amplitudes and frequency groups, averaged over 

subjects. 

Figure 13 shows the measure for SIP invalidity related 

to the hip joint angle. The two-way repeated measures 

ANOVA showed no significant effect of perturbation 

amplitude or interaction effects on SIP validity (𝑝 =

0.289 and 𝑝 = 0.774 respectively).  

 

Figure 14: Mean and standard deviation of 𝒎𝒙𝑰𝑷,𝒌𝒂 for different 

perturbation amplitudes and frequency groups, averaged over 

subjects. 

Figure 14 shows the SIP invalidity related to the knees, 

𝑚𝑥𝐼𝑃,𝑘𝑎 . The two-way repeated measures ANOVA 

revealed a significant interaction effect.  

Post hoc analysis showed that 𝑚𝑥𝐼𝑃,𝑘𝑎  was not 

significantly influenced by the perturbation amplitude 

in the low and high frequency groups (𝑝 = 1.000 and 

𝑝 = 1.000 respectively), but it decreased significantly 

with perturbation amplitude in the medium frequency 

group (𝑝 < 0.001).  

DISCUSSION 
By perturbing subjects standing upright on a treadmill 

and recording the ankle torque and body sway, we 

were able to construct the BLA for the NMC for each 

subject. By constructing a measure for identification 

variability and three measures of NMC nonlinearity, 

the variability of the BLA identification with respect to 

the number of repetitions that are used for 

identification and the nonlinearity of the NMC with 

respect to the perturbation amplitude was 

investigated. 

A. Effect of the number of repetitions 
We hypothesized that an increasing number of 

repetitions would decrease variability in identification. 

As the results show, the variance of the identification 

result over samples indeed significantly decreases with 

the number of repetitions for all three frequency 

groups. This indicates that adding more repetitions 

increases the identification consistency.  

However, recording more repetitions costs time.  

Therefore, researchers want to strike a balance 

between number of repetitions and the influence of 

noise on the identification result. As can be seen in  

Table 4, Table 5, and Table 6 in the Appendix, pairwise 

comparisons show that some numbers repetitions are 

followed by numbers of repetitions that do not differ 

significantly in the measure of variability. For example, 

when having measured 6 repetitions, additionally 

measuring the 7th, 8th, 9th 10th, 11th and 12th repetition 

does not decrease the variability of identification for 

high frequencies significantly. Table 7 in the Appendix 

shows the mean number of insignificantly differing 

subsequent repetitions for all numbers of repetitions, 

over all frequency groups. There is a peak around 6-8 

repetitions. In other words, when having measured 6-

8 repetitions, the variability does not decrease 

significantly for the most subsequent repetitions 

compared to other numbers of repetitions. 



MSc Thesis Jurriaan de Veij Mestdagh        15 
 

B. Effect of the Perturbation Amplitude 
For all subjects, the perturbation amplitude ranged 

from a barely noticeable perturbation amplitude of 2 

cm PtP to a perturbation amplitude of 20 cm PtP. In this 

paragraph, we will discuss the effect of the 

perturbation amplitude on the body sway and torque 

signal, and on both nonlinearity measures discussed 

previously. 

1) Perturbator System Linearity & 

Coherence 
The response of the treadmill was inspected to ensure 

correct tracking of the perturbation signal. For low 

amplitude perturbation signals, noise is of a greater 

influence on the tracking than for large amplitude 

perturbation signals. This can be seen in Figure 5, in 

which the time series and the auto spectral densities of 

the input signal are compared to those of the resulting 

treadmill belt movement. The figure further shows that 

in the perturbation signal as executed by the treadmill, 

energy is already transferred from the excited 

frequencies to the nonexcited frequencies. This means 

that the generator of the perturbation, in our case the 

GRAIL system, is behaving nonlinearly itself.  Therefore, 

we cannot assume that all power in nonexcited 

frequencies in the body sway and ankle torque signals 

(Figure 3) comes from NMC nonlinearity, because the 

GRAIL is injecting energy at the nonexcited frequencies 

into the loop. The amount of energy in the excited 

frequencies in the perturbation signal is shown in Table 

3 in the Appendix. This is compensated for using the 

perturbator system impurity correction, see Frequency 

Response Functions & Coherence.  

Despite some perturbator system nonlinearity, the 

excited frequencies contain more power than the 

nonexcited frequencies, as shown by the peaks in the 

power spectral density plots in Figure 3. This means 

that exciting specific frequencies by perturbing a 

subject standing on treadmill belts with a multisine 

with these specific frequencies, transfers to the body 

sway and ankle torque signals. In other words, the 

perturbation signal and the body sway and torque 

signal are somewhat coherent. This is also seen in 

Figure 10, which furthermore shows that the 

coherences from external perturbation to body sway 

and from external perturbation to ankle torque 

increase with perturbation amplitude. This is an 

expected result, as the increase in perturbation 

amplitude suppresses the effect of noises present in 

the human balance system and in recording systems 

(motion capture and force plates) and therefore 

increases coherence.  

2) Effect on Type I Nonlinearity 
We hypothesized that type I nonlinearity would 

increase with perturbation amplitude. The measure for 

type I nonlinearity is based on analysis of the power 

that a nonlinear system transfers from excited 

frequencies to nonexcited frequencies. By applying the 

analysis as described in Schoukens et al. (2001)36, the 

contributions of noise and stochastic nonlinearities to 

the standard deviation of the identified BLA were 

separated.  

The results showed that the measure for type I 

nonlinearity in the NMC, 𝑚𝑁𝐿1, indeed increases with 

perturbation amplitude, but only significantly for the 

medium frequency group. The increase in this type of 

nonlinearity shows that by increasing perturbation 

amplitude, the NMC is pushed further away from its 

linearization operating point and therefore the control 

system cannot be approximated by a linear system 

anymore. This effect is also visible in the body sway 

signals in the time domain, which can be found in the 

Appendix, where for all subjects, the body sway range 

increases with perturbation amplitude. 

Qualitatively inspecting the medium frequency bars in 

Figure 11, there seems to be larger increase in 𝑚𝑁𝐿1 

between A11 and A14 than between other 

perturbation amplitudes. Furthermore, the interaction 

effect is an interesting result: type I nonlinearity only 

increases significantly with perturbation amplitude in 

the medium frequency group. Qualitatively looking at 

Figure 11, we see that the measure also slightly 

increases in the other frequency groups. 

3) Effect on Type II Nonlinearity 
We hypothesised that as perturbation amplitude 

increases, the balance system would change balance 

operation, which would be visible as a different shape 

of the identified BLA’s FRF.  Therefore, the measure for 

type II nonlinearity was based on the difference 

between the identified BLA for a specific perturbation 

amplitude and the mean BLA over all perturbation 

amplitudes.  

The results show an effect that is opposing 

expectations: for all three frequency groups, the 

measure for type II nonlinearity significantly decreases 

with perturbation amplitude. The difference can be 

explained by the results found for coherence values 

and by looking at the total standard deviations of the 

FRFs, plotted in Figure 15. As the perturbation 

amplitude increases, noise effects are suppressed. The 

identification at the A2 condition especially is 
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influenced by noise. At perturbation amplitudes larger 

than A5, the measure for 𝑚𝑁𝐿2 stabilizes.  

 

Figure 15: Mean total standard deviation contributions (𝝈𝒕𝒐𝒕𝒂𝒍) 

for BLAs, averaged over subjects (note: linear scale in y). 

This effect indicates that 𝑚𝑁𝐿 is not the best measure 

for changing balance operation, as it is more influenced 

by noise and type I nonlinearity (the two contributions 

to 𝜎𝑡𝑜𝑡𝑎𝑙) than by balance operation changes. 

4) Effect on SIP Validity 
We hypothesized that increasing the perturbation 

amplitude would generate knee and hip joint angle 

rotations that render the SIP assumption invalid. 

The two measures for SIP invalidity, 𝑚𝑥𝐼𝑃,𝑘𝑎  and 

𝑚𝑥𝐼𝑃,ℎ𝑎, are based on the idea that when the transfer 

function from external perturbation to a joint angle is 

large, this joint angle is heavily influenced by the 

external perturbation. By dividing the transfer 

functions of knee and hip joint angles by the ankle joint 

angle, we compare the amount of joint angle rotations 

in the hip and the knee to the rotations in the ankle 

joint.  

Of course, the measures for SIP invalidity do not 

describe any active contributions, as they are not 

related to joint torques but to joint angles. The 

measures are therefore only informative on the SIP 

assumption and not informative on joint control. 

Furthermore, an ankle joint angle displacement of 1 

degree has a larger influence on the position of the 

CoM of the human body than a displacement of 1 

degree of the knee angle or a displacement of 1 degree 

of the hip joint angle, because of its position in the 3-

link inverted pendulum arising from 3 mobile joints. 

Therefore, it is no surprise that the values for 𝑚𝑥𝐼𝑃,ℎ𝑎 

and 𝑚𝑥𝐼𝑃,𝑘𝑎  are steadily larger than 1: this does not 

mean that the knee and hip joint influence on the 

CoM’s position is larger than that of the ankle. In other 

words: values larger than one do not immediately 

invalidate the SIP assumption. 

No significant effect of the perturbation amplitude on 

the measure for SIP invalidity related to the hips was 

found. This means that, contrary to our expectations 

and literature9–11,37, in this study, the hips show no 

increasing contribution to the stability of the human 

when the perturbation amplitude increases. However, 

when qualitatively looking at Figure 13, a slight 

increase in the measure might be seen. This could 

indicate that the effect is there, but the statistical 

power of measuring 12 people is not enough to result 

in a significant effect. 

Furthermore, results show no significant trend in 

perturbation amplitude dependency of the measure of 

SIP invalidity related to the knees, for the low and high 

frequency group. Even more surprisingly, for the 

medium frequency group, 𝑚𝑥𝐼𝑃,𝑘𝑎  decreases 

significantly with perturbation amplitude, contrary to 

expectation. The trend is especially visible between the 

A2 and A5 conditions. It seems that the knee joints are 

more mobile than the ankles at the smallest 

perturbation amplitudes and medium frequencies, 

where at higher amplitudes and medium frequencies, 

the knees are as mobile as the ankles, i.e., the ankles 

absorb more of the medium frequency perturbations 

as the perturbation amplitude increases. 

5) Finding the Optimal Perturbation 

Amplitude  
The combination of the increase in type I nonlinearity 

with perturbation amplitude and the low robustness of 

the identification against noise effects at low 

perturbation amplitudes shows that there is a balance 

between noise effects at low perturbation amplitudes 

and nonlinear effects at large perturbation amplitudes. 

Godfrey et al. (2005)38 summarizes this balance as 

follows: 

 “For linear system identification, there are two main 

requirements of a perturbation signal. Firstly, it should 

be small enough to minimise any nonlinear distortion, 

and secondly it should be large enough to minimise any 

noise effects. These requirements are conflicting [..].” 

As there is a larger increase in nonlinearity between 

A11 and A14, and a stabilisation of identification 

variability due to noise at perturbations larger than A5, 

we can identify the range of perturbation amplitudes 

at which this balance is optimized as the range 

between A8 and A11. 
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C. Effect of Frequency Groups 
As all measures were calculated for the three different 

frequency groups, an effect of frequency group is 

visible as well. As this can be informative for 

researchers searching for information on the effect of 

frequency on identification variability, nonlinearity and 

balance strategy, the frequency effects are discussed 

here.  

Firstly, the variability of the identification increases 

with the frequency group, as seen in Figure 9. This 

means that the frequency spectrum a researcher is 

most interested in can also influence the choice for 

number of repetitions. If the researcher is only 

interested in identification in the low frequency group, 

a lower amount of repetitions gives an equal 

consistency of estimation compared to when the 

researcher is interested in the higher frequencies as 

well. 

Secondly, an increase of type II nonlinearity with 

frequency group for all perturbation amplitudes can be 

seen in Figure 12. As discussed before, this is an 

indication of an influence of noise, type I nonlinearity 

or the combination of both, that is increasing with 

frequency group. 

Furthermore, a clear increase in SIP validity related to 

the hips can be seen in Figure 13. This confirms findings 

in literature that describe the effect that for slower and 

low frequency perturbations, the ankle strategy is 

mostly used, whereas a mixed ankle/hip strategy is 

used when perturbation speed and/or frequency 

increase9–11,37. 

Lastly, the measure for SIP validity related to the knees 

clearly increases strongly with frequency group. 

Especially the high frequency group shows use of the 

knees for balance recovery. In most studies, only an 

ankle strategy and mixed ankle/hip strategy was 

discussed, however, this result shows that a mixed 

hip/knee/ankle strategy might exist for high frequency 

perturbations, which was also reported in Ko (2013)27.  

It seems as if the knees are acting as a shock absorber 

for the body: high frequency perturbations are partly 

absorbed by the knees, such that these vibrations are 

not transferred to the upper body. 

D. Limitations & Recommendations 
As measuring the full amount of 24 repetitions for all 

perturbation amplitudes was out of the time scope of 

this study, data about the cross-effects of perturbation 

amplitude and number of repetitions was not recorded. 

However, the perturbation amplitude and number of 

repetitions influence each other. With the limited 

information about the cross-effects of these two study 

variables, we can already hypothesize the effect of 

both variables combined.  

A higher perturbation amplitude increases the signal-

to-noise ratio and therefore decreases the noise effect 

on the identification result. As a result, increasing the 

amplitude of the perturbation can decrease the 

number of repetitions needed to obtain a reasonably 

low noise level. The other way around, increasing the 

number of repetitions can decrease the need for a high 

perturbation amplitude. This trade-off can be of use 

when measuring weak subjects (for example balance 

disorder patients), who cannot keep their balance at 

high perturbation amplitudes. More repetitions could 

be recorded for such patients, probably over the 

course of several trials, to preserve feasible trial 

lengths for these subjects. 

Furthermore, in this study, 12 subjects participated. 

Increasing the number of subjects could increase 

statistical power, which might reveal more significant 

trends. For example, 𝑚𝑁𝐿1  seems to have a positive 

trend with perturbation amplitude for the low and high 

frequency groups as well, which might turn out to be 

statistically significant when more subject would be 

measured. The as does the SIP invalidity measure 

related to the hip shows a slight positive trend with 

amplitude, which might turn out to be significant if 

more subjects would be measured.  

Moreover, accelerations of the support surface were 

used to perturb the subjects in this study. However, 

directly following decelerations can have a stabilizing 

effect without subjects having to react to the 

perturbation39. This can be a drawback of using support 

surface translations as a means of perturbation, which 

can be prevented by using manipulators that can push 

and pull the body29. 

The extrapolation of distortion by type I nonlinearities 

from the nonexcited frequencies to the excited 

frequencies can lead to under- and overestimates of 

type I nonlinearity when BLA’s spectrum is not flat. The 

type I nonlinearity analysis can be made more robust 

against this problem, by using a special odd-odd 

multisine36 with components at 𝑘 = 1,3,9,11,17, … , 

however, this was not done in the present study. Use 

of such a perturbation signal is advised in further study 

of the linearity of human balance control. 

The system identification technique used in this 

research assumes a LTI system. However, human 
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behaviour and motor control is time-variant15. This can 

lead to problems when averaging multiple repetitions, 

especially when these repetitions are recorded in 

different trials. Therefore, research into the time 

varying properties of the human balance system is 

advised.  

Multiple input-multiple output (MIMO) system 

identification has already been applied to the human 

balance system26,29,40. As MIMO SI assumes a more 

realistic multiple inverted pendulum model, SIP 

assumption validity is not an issue. However, type I and 

type II nonlinear effects might still influence the 

identification result. The methods described in this 

paper can be adapted to be used in the analysis of 

MIMO SI. Furthermore, in application of MIMO SI to 

balance control, the methods described in this paper 

can give insight into possible nonlinearity of within 

other strategies than only the ankle strategy. 

CONCLUSIONS 
The goal of this study was to investigate the influence 

of number of repetitions and perturbation amplitude 

on the contributions of nonlinearity and noise to the 

standard deviation of BLA identification of human 

balance control.  

Increasing the number of repetitions indeed reduces 

noise significantly in all three frequency groups, 

however, when having measured 6-8 repetitions, 

measuring subsequent repetitions does not decrease 

identification variability significantly for the 

subsequent 6-7 repetitions. 

The balance between suppressing noise effects by 
using a high perturbation amplitude and minimising 
nonlinear effects by using a low perturbation 
amplitude was identified to be optimized between a 
perturbation signal amplitude of 8 cm PtP and 11 cm 
PtP. The validity of a single inverted pendulum model 
does not decrease significantly with perturbation 
amplitude. 
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APPENDIX 

A. Tables and Figures 
Table 3: Group-average relative power distribution and noise-to signal ratio over excited, nonexcited odd, and nonexcited even frequencies. 

 𝑬𝒆𝒙 (%) 𝑬𝒖𝒏𝒆𝒙−𝒐𝒅𝒅 
(%) 

𝑬𝒖𝒏𝒆𝒙−𝒆𝒗𝒆𝒏 (%) NSR (dB) 

Power in perturbation (position) signal: mean (SD) 

A2 99.4 (0.2) 0.4 (0.1) 0.3 (0.2) 40.3 (3.5) 
A5 99.9 (0.0) 0.1 (0.0) 0.0 (0.0) 45.0 (3.7) 
A8 99.9 (0.0) 0.0 (0.0) 0.0 (0.0) 47.9 (3.1) 
A11 100.0 (0.0) 0.0 (0.0) 0.0 (0.0) 49.8 (3.0) 
A14 100.0 (0.0) 0.0 (0.0) 0.0 (0.0) 49.7 (4.4) 
A17 100.0 (0.0) 0.0 (0.0) 0.0 (0.0) 49.4 (4.0) 
A20 100.0 (0.0) 0.0 (0.0) 0.0 (0.0) 50.1 (3.7) 

Power in body sway signal, mean (SD) 

A2 64.8 (15.7) 8.0 (6.4) 27.2 (14.2) -1.7 

A5 88.2 (5.7) 3.8 (4.2) 8.1 (5.8) 3.2 
A8 90.9 (7.1) 1.9 (1.3) 7.1 (6.8) 6.4 

A11 93.6 (3.1) 1.5 (1.0) 4.9 (2.8) 8.0 
A14 95.5 (2.2) 0.9 (0.5) 3.6 (1.9) 9.9 

A17 96.6 (1.4) 0.8 (0.7) 2.6 (1.2) 10.6 

A20 96.3 (2.3) 0.8 (0.4) 2.9 (2.2) 11.8 

Power in ankle torque signal, mean (SD) 

A2 56.8 (11.7) 17.1 (6.5) 26.1 (10.4) -0.4 (1.5) 
A5 76.8 (6.8) 13.5 (5.1) 9.6 (6.6) 4.6 (3.0) 

A8 82.4 (2.7) 11.0 (1.7) 6.6 (2.5) 7.5 (1.9) 

A11 85.2 (2.5) 9.4 (2.2) 5.4 (2.1) 9.1 (2.1) 

A14 87.1 (1.8) 8.7 (2.1) 4.3 (1.6) 11.0 (1.9) 

A17 88.2 (2.5) 8.4 (2.4) 3.4 (1.0) 11.6 (1.6) 

A20 89.4 (1.9) 6.9 (1.6) 3.6 (1.3) 12.3 (1.7) 
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Figure 16: Four perturbation amplitude effect measures: trendlines over perturbation amplitude conditions (left) and trendlines over 

frequency groups (right) 
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Table 4: (Bonferroni corrected) p-values for pairwise comparisons of 𝒎𝒗𝒂𝒓𝒊𝒂𝒃𝒊𝒍𝒊𝒕𝒚 per amount of repetitions for the low amplitude group 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 

R1 x                       

R2 0.003 x                      

R3 0.002 0.818 x                     

R4 0.001 0.028 0.200 x                    

R5 0.002 0.051 0.035 1.000 x                   

R6 0.001 0.012 0.018 1.000 1.000 x                  

R7 0.003 0.242 1.000 1.000 1.000 1.000 x                 

R8 0.000 0.001 0.000 0.000 0.021 0.361 1.000 x                

R9 0.000 0.002 0.000 0.000 0.004 0.784 1.000 1.000 x               

R10 0.000 0.001 0.000 0.000 0.001 0.410 1.000 1.000 1.000 x              

R11 0.001 0.002 0.000 0.000 0.000 0.275 1.000 0.730 0.424 1.000 x             

R12 0.000 0.001 0.000 0.000 0.000 0.037 1.000 0.007 0.000 0.251 0.096 x            

R13 0.000 0.001 0.000 0.000 0.000 0.056 1.000 0.016 0.003 0.000 0.003 1.000 x           

R14 0.003 0.021 0.014 0.198 0.012 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 x          

R15 0.001 0.002 0.001 0.001 0.004 0.131 1.000 0.319 0.032 1.000 1.000 1.000 1.000 1.000 x         

R16 0.000 0.000 0.000 0.000 0.000 0.018 0.928 0.002 0.000 0.000 0.000 0.004 0.000 1.000 1.000 x        

R17 0.000 0.001 0.000 0.000 0.000 0.017 0.742 0.003 0.000 0.000 0.000 0.004 0.001 1.000 1.000 0.462 x       

R18 0.000 0.001 0.000 0.000 0.000 0.020 0.661 0.004 0.001 0.000 0.000 0.009 0.002 1.000 1.000 0.137 1.000 x      

R19 0.000 0.000 0.000 0.000 0.000 0.013 0.475 0.002 0.000 0.000 0.000 0.002 0.001 1.000 0.498 0.010 0.118 0.321 x     

R20 0.000 0.000 0.000 0.000 0.000 0.014 0.440 0.003 0.000 0.000 0.000 0.003 0.001 1.000 0.242 0.008 0.032 0.001 1.000 x    

R21 0.000 0.000 0.000 0.000 0.000 0.010 0.340 0.002 0.000 0.000 0.000 0.002 0.000 1.000 0.069 0.003 0.008 0.000 0.011 0.001 x   

R22 0.000 0.000 0.000 0.000 0.000 0.008 0.264 0.001 0.000 0.000 0.000 0.001 0.000 0.556 0.040 0.001 0.001 0.000 0.001 0.000 0.002 x  

R23 0.000 0.000 0.000 0.000 0.000 0.007 0.201 0.001 0.000 0.000 0.000 0.001 0.000 0.302 0.014 0.001 0.001 0.000 0.000 0.000 0.000 0.003 x 

                        
No. 

insig. 0 3 2 4 2 8 16 5 3 4 3 3 2 9 6 2 2 1 1 0 0 0 0 

 

  



MSc Thesis Jurriaan de Veij Mestdagh        23 
 

Table 5: (Bonferroni corrected) p-values for pairwise comparisons of 𝒎𝒗𝒂𝒓𝒊𝒂𝒃𝒊𝒍𝒊𝒕𝒚 per amount of repetitions for the medium amplitude group 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 

R1 x                       

R2 0.001 x                      

R3 0.000 0.004 x                     

R4 0.000 0.001 1.000 x                    

R5 0.000 0.001 0.004 0.115 x                   

R6 0.000 0.000 0.001 0.043 1.000 x                  

R7 0.000 0.001 0.006 0.011 0.088 1.000 x                 

R8 0.000 0.000 0.001 0.003 0.008 0.636 1.000 x                

R9 0.000 0.000 0.001 0.002 0.001 0.087 0.146 1.000 x               

R10 0.000 0.000 0.001 0.001 0.001 0.033 0.001 0.115 0.103 x              

R11 0.000 0.000 0.002 0.003 0.005 0.104 0.004 0.036 0.582 1.000 x             

R12 0.000 0.000 0.000 0.001 0.000 0.003 0.000 0.001 0.000 0.017 1.000 x            

R13 0.000 0.000 0.000 0.001 0.000 0.005 0.000 0.000 0.000 0.001 0.019 1.000 x           

R14 0.000 0.000 0.001 0.001 0.000 0.008 0.000 0.003 0.001 0.002 0.042 0.944 1.000 x          

R15 0.000 0.000 0.000 0.001 0.000 0.003 0.000 0.000 0.000 0.000 0.001 0.059 0.025 1.000 x         

R16 0.000 0.000 0.001 0.001 0.000 0.002 0.000 0.000 0.000 0.000 0.001 0.016 0.007 0.320 1.000 x        

R17 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.004 0.010 1.000 x       

R18 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.001 0.086 1.000 x      

R19 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.002 0.393 x     

R20 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.230 x    

R21 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.219 1.000 x   

R22 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.007 0.017 x  

R23 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.002 x 

                        
No. 

insig. 0 0 1 1 2 4 2 2 2 1 1 3 1 2 1 2 1 1 2 1 0 0 0 
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Table 6: (Bonferroni corrected) p-values for pairwise comparisons of 𝒎𝒗𝒂𝒓𝒊𝒂𝒃𝒊𝒍𝒊𝒕𝒚 per amount of repetitions for the high amplitude group 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 

R1 x                       

R2 1.000 x                      

R3 0.005 0.108 x                     

R4 0.003 0.007 1.000 x                    

R5 0.001 0.002 0.006 0.033 x                   

R6 0.000 0.001 0.002 0.001 1.000 x                  

R7 0.001 0.001 0.005 0.006 0.804 1.000 x                 

R8 0.001 0.000 0.004 0.001 0.180 1.000 1.000 x                

R9 0.001 0.000 0.003 0.001 0.026 1.000 1.000 1.000 x               

R10 0.001 0.000 0.002 0.001 0.015 0.467 0.070 0.057 1.000 x              

R11 0.001 0.000 0.002 0.001 0.013 0.180 0.087 0.072 0.257 1.000 x             

R12 0.000 0.000 0.001 0.000 0.002 0.051 0.001 0.007 0.010 0.156 1.000 x            

R13 0.000 0.000 0.001 0.000 0.002 0.017 0.001 0.003 0.005 0.006 1.000 0.910 x           

R14 0.001 0.000 0.002 0.001 0.005 0.036 0.012 0.008 0.007 0.011 0.904 1.000 1.000 x          

R15 0.001 0.000 0.002 0.001 0.007 0.036 0.007 0.008 0.014 0.008 0.585 1.000 1.000 1.000 x         

R16 0.000 0.000 0.001 0.000 0.001 0.005 0.001 0.001 0.001 0.000 0.007 0.043 0.062 0.025 0.714 x        

R17 0.000 0.000 0.001 0.000 0.001 0.008 0.001 0.001 0.001 0.000 0.018 0.036 0.057 0.003 0.012 1.000 x       

R18 0.000 0.000 0.001 0.000 0.002 0.007 0.001 0.001 0.001 0.000 0.008 0.024 0.037 0.003 0.007 1.000 1.000 x      

R19 0.000 0.000 0.000 0.000 0.001 0.003 0.000 0.000 0.000 0.000 0.002 0.002 0.001 0.000 0.000 0.019 0.026 0.229 x     

R20 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.002 0.001 0.001 0.000 0.000 0.010 0.002 0.039 1.000 x    

R21 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.001 0.000 0.002 0.021 1.000 x   

R22 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.001 0.000 0.003 0.613 1.000 x  

R23 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.006 0.028 0.159 x 

                        
No. 

insig. 1 1 1 0 3 6 4 3 2 2 4 3 4 1 1 2 1 1 1 2 1 1 0 

 

Table 7: Mean amount of insignificant p-values for the pairwise comparisons of 𝒎𝒗𝒂𝒓𝒊𝒂𝒃𝒊𝒍𝒊𝒕𝒚 per amount of repetitions over all frequency groups 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 

No insig. 0.33 1.33 1.33 1.67 2.33 6 7.33 3.33 2.33 2.33 2.67 3 2.33 4 2.67 2 1.33 1 1.33 1 0.33 0.33 
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Figure 17: Mean FRF magnitude with standard deviation contributions, averaged over subjects. 
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Figure 18: Mean of 𝒎𝒙𝑰𝑷,𝒉𝒂 and 𝒎𝒙𝑰𝑷,𝒌𝒂 without averaging over frequency groups, averaged over subjects 
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B. Human research ethics  

 

Figure 19: Delft University of Technology Human Research Ethics Committee approval
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Figure 20: Delft University of Technology Ethics Review Checklist 
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Figure 21: Informed consent form 
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C. Research protocol 
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Figure 22: Research protocol 
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Figure 23: Research protocol checklist.  


