
 
 

Delft University of Technology

Fault-tolerant quantum computation
Theory and practice
Vuillot, Christophe

DOI
10.4233/uuid:7cb715f4-eaf0-4526-8552-9f97cc864383
Publication date
2020
Document Version
Final published version
Citation (APA)
Vuillot, C. (2020). Fault-tolerant quantum computation: Theory and practice. [Dissertation (TU Delft), Delft
University of Technology]. https://doi.org/10.4233/uuid:7cb715f4-eaf0-4526-8552-9f97cc864383

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:7cb715f4-eaf0-4526-8552-9f97cc864383
https://doi.org/10.4233/uuid:7cb715f4-eaf0-4526-8552-9f97cc864383


FAULT-TOLERANT QUANTUM COMPUTATION:
THEORY AND PRACTICE





FAULT-TOLERANT QUANTUM COMPUTATION:
THEORY AND PRACTICE

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology,

by the authority of the Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,
Chair of the Board of Doctorates,

to be defended publicly on Wednesday 15th, January 2020 at 12:30 o’clock

by

Christophe VUILLOT

Master of Science in Computer Science,
Université Paris Diderot, Paris, France,

born in Clamart, France.



This dissertation has been approved by the promotor.

promotor: prof. dr. B. M. Terhal

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof. dr. B. M. Terhal Technische Universiteit Delft, promotor

Independent members:
Prof. dr. C.W.J. Beenakker Universiteit Leiden
Prof. dr. L. DiCarlo Technische Universiteit Delft
Prof. dr. R.T. König Technische Universität München
Dr. A. Leverrier Inria Paris
Prof. dr. ir. L.M.K. Vandersypen Technische Universiteit Delft
Prof. dr. R.M. de Wolf Centrum Wiskunde & Informatica

Keywords: quantum computing, quantum error correction, fault-tolerance

Printed by: Gildeprint - www.gildeprint.nl

Front: Kandinsky Vassily (1866-1944), Auf Weiss II, 1923
Photo © Centre Pompidou, MNAM-CCI, Dist. RMN-Grand Palais /
image Centre Pompidou, MNAM-CCI

Copyright © 2019 by C. Vuillot

ISBN 978-94-6384-097-2

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

www.gildeprint.nl
http://repository.tudelft.nl/


This thesis is dedicated to my daughter Andréa and her mother Lisa.





CONTENTS

Summary xi

Preface xiii

1 Introduction 1
1.1 Introduction to quantum computing . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Quantum mechanics. . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Elementary quantum systems . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Quantum computation . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.4 Fragility of quantum information . . . . . . . . . . . . . . . . . . 12

1.2 Quantum error correction. . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.1 Principle of quantum error correction . . . . . . . . . . . . . . . . 14
1.2.2 Stabilizer formalism . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.3 Notable examples . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Fault-tolerance and universality . . . . . . . . . . . . . . . . . . . . . . 25
1.3.1 Fault-tolerance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.2 Magic states and their distillation . . . . . . . . . . . . . . . . . . 26
1.3.3 Techniques to get to fault-tolerant universality . . . . . . . . . . . 28

1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 29
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Testing Quantum Fault-Tolerance 35
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2 Demonstrating fault-tolerance . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.1 General approach . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.2 The IBM 5Q chip and [[4,2,2]] . . . . . . . . . . . . . . . . . . . . 37
2.2.3 Comments on the tested circuits . . . . . . . . . . . . . . . . . . . 40

2.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.1 Parameters and runs . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.2 Performance metric . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.3 Comparisons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Calibration data and additional experiment. . . . . . . . . . . . . . . . . 44
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Quantum error correction with the toric-GKP code 51
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 General considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Definitions and notations . . . . . . . . . . . . . . . . . . . . . . 53
3.2.2 Maximum-likelihood vs. minimum-energy decoding . . . . . . . . 55

vii



viii CONTENTS

3.3 Protecting a Single GKP Qubit. . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.1 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.2 Decoding Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Concatenation: Toric-GKP Code . . . . . . . . . . . . . . . . . . . . . . 67
3.4.1 Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.2 Noiseless Measurements & Numerical Results . . . . . . . . . . . . 68

3.5 Noisy Measurements: 3D Space-Time Decoding . . . . . . . . . . . . . . 70
3.5.1 Error model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5.2 Equivalent formulation with U (1) symmetry . . . . . . . . . . . . . 73
3.5.3 Decoder and numerical results. . . . . . . . . . . . . . . . . . . . 75

3.6 No-Go Result for Linear Oscillator Codes . . . . . . . . . . . . . . . . . . 81
3.7 Proof of No-Go Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.7.1 Logical Error Model under Displacement Errors . . . . . . . . . . . 83
3.7.2 Eigenvalues of the Covariance Matrix . . . . . . . . . . . . . . . . 85
3.7.3 Existence of a Spread-out & Orthogonal Logical Operator Basis . . . 87

3.8 Continuous-Variable Toric-Code . . . . . . . . . . . . . . . . . . . . . . 87
3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 Code Deformation Techniques 93
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2 Code Deformation and Lattice surgery . . . . . . . . . . . . . . . . . . . 95

4.2.1 Code Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.2 Lattice Surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Gauge Fixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4 Fault-Tolerance Analysis with Gauge Fixing . . . . . . . . . . . . . . . . . 100

4.4.1 Fault-Tolerance of Code Deformation . . . . . . . . . . . . . . . . 102
4.4.2 Code Deformation Examples. . . . . . . . . . . . . . . . . . . . . 106

4.5 Logical operation of a code deformation . . . . . . . . . . . . . . . . . . 117
4.5.1 Merge operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.5.2 Split operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.5.3 General code deformation operation . . . . . . . . . . . . . . . . 121

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 Quantum Pin Codes 125
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.2 Pin codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2.1 Terminology and formalism . . . . . . . . . . . . . . . . . . . . . 127
5.2.2 Definition of an (x, z)-pin code. . . . . . . . . . . . . . . . . . . . 128
5.2.3 Relation to quantum color codes. . . . . . . . . . . . . . . . . . . 129
5.2.4 Constructing pin codes . . . . . . . . . . . . . . . . . . . . . . . 130
5.2.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3 Transversal gates and magic state distillation . . . . . . . . . . . . . . . . 136
5.3.1 Weighted polynomials and transversal gates . . . . . . . . . . . . . 137



CONTENTS ix

5.4 Properties of quantum pin codes . . . . . . . . . . . . . . . . . . . . . . 139
5.4.1 Code parameters and basic properties . . . . . . . . . . . . . . . . 139
5.4.2 Colored logicals and unfolding. . . . . . . . . . . . . . . . . . . . 141
5.4.3 Gauge pin codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.4.4 Transversality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.4.5 Boundaries and free pins. . . . . . . . . . . . . . . . . . . . . . . 144

5.5 Examples and applications . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.5.1 Coxeter groups, hyperbolic color codes . . . . . . . . . . . . . . . 146
5.5.2 Pin codes from chain complexes . . . . . . . . . . . . . . . . . . . 147
5.5.3 Puncturing triply-even spaces . . . . . . . . . . . . . . . . . . . . 149
5.5.4 Logical circuits of CCZ s . . . . . . . . . . . . . . . . . . . . . . . 151

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6 Conclusion 157

Acknowledgements 159

Curriculum Vitæ 161

List of Publications 163





SUMMARY

Quantum computation is the modern version of Schrödinger’s cat experiment. It is backed
up in principle by the theory and thinking about it can make people equally uncomfort-
able and excited. Besides, its practical realization seems so extremely challenging that
some people even doubt it is possible. On the other hand, we are nowadays much closer
to realizing quantum computation and in addition, it has much more implications than
Schrödinger’s original cat experiment.

One of the major difficulties in realizing quantum computation is the inevitable pres-
ence of noise in realistic quantum devices which makes the direct realization of quan-
tum computers impossible. In order to protect quantum information and quantum pro-
cesses against noise, quantum error correction and fault-tolerance have been devised.
Although the gap between experiments and the requirements of fault-tolerance is still
daunting, the field of quantum error correction and fault-tolerance extends and influ-
ences architectural decisions from the hardware to the ideal quantum programs that we
want to run. That is why it has the potential to make or break the practicality of quantum
computation and a lot of research effort goes into this field.

In this thesis we investigate and improve several aspects of fault-tolerant schemes
and quantum error correction. We implement an experiment which validates on a small
device the usefulness of fault-tolerance for quantum computation. We investigate the
advantages of harnessing quantum continuous degrees of freedom present in the lab to
protect discrete quantum information in a scalable way. We establish a framework to
analyze the fault-tolerant properties of code deformation techniques which are versatile
techniques to process quantum information protected by an error correcting code. We
also present some novel code deformation techniques with the potential to increase re-
liability. Finally we define a new class of quantum error correcting codes, quantum pin
codes, with built in capabilities for fault-tolerant quantum gates. We give some practical
constructions and show some protocols with interesting parameters.

The roads towards universal and fault-tolerant quantum computation are still steep
but research efforts are pushing in the right directions.

xi





PREFACE

W HY SHOULD we build a quantum computer? With this foreword I would like to try
to present a case for investing in building a quantum computer. This case mainly

consists in what makes me excited about working in the field of quantum computing.
Besides, this is the humble opinion of a young and inexperienced researcher probably
lacking a more broad view of science, technology and academia.

One of the fascinating aspects of science is that advancing our understanding actu-
ally allows us to modify the world around us. Not necessarily in a useful way: making
fireworks, drawing beautiful fractals, going to the moon or trapping and monitoring the
presence of a single photon for milliseconds are not really directly useful. When we un-
cover such ways of conjuring something new, and when someone takes on themselves
to figure out how to use it, it often has dramatic consequences. However, the marvelous
part to me is more in the former than the latter.

The field of computing is a prime example which obviously dramatically changed the
world. It is also constructed from many such marvelous understandings that were neces-
sary to produce the final object, a computer. The original question that was raised was: is
it possible to compute using physical mechanized processes, or really any kind of phys-
ical process? The first surprising results about this question was that there are problems
that cannot be solved by any machine we could come up with. Problems that would re-
quire such a machine computing forever before giving an answer. The second surprising
answer is that there is a simple machine that can perform all the feasible computations.
Sure enough this machine, the computer, got built at some point. On the physics side, an
ever growing understanding of condensed matter and its electrical properties brought us
to a place where we can build these computers so efficiently and so small that they can
do billions of operations per seconds and we can store trillions of bits in our pockets.
Computers are truly fascinating objects even before considering all the work they do for
us.

The field of quantum physics is also a major example filled with surprising under-
standings. From thought experiments about light and particles, it brought us to a place
where real experiments can measure time more precisely than we will ever be able to
experience. All this progress highlights a powerful aspect of science which is that well
crafted theories can sometimes predict more than what they were designed for. In other
words, they sometimes still hold even when they are pushed to their farthest-reaching
conclusions. That is why scientists so much like pushing theories to their limits as it al-
lows them to discover new aspects of the world or limitations of the theory most of the
time. In the case of quantum mechanics, after many such successful extensions, we are
still in this pushing phase. Maybe the first notable success was to apply the particle-wave
duality broadly to any particle. It has been followed by the successful violation of Bell’s
inequalities which continues even today to make people unsure about the status of our

xiii
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understanding.
But remarkably we have not finished to push quantum mechanics to its most dra-

matic conclusion, namely the possibility of quantum computation. Schrödinger’s cat
thought experiment was designed to test our faith in quantum physics by making our-
selves uncomfortable about its consequences. Yet so far they are still holding and larger
and larger systems have been put in superposition. The idea of a quantum computer is
even more dramatic and can test quantum physics even further and should make our-
selves even more uncomfortable.

Indeed, the field of computing and quantum physics entered a collision phase a few
decades ago when it was noted that computers are pretty inefficient at simulating quan-
tum processes. This presented a direct challenge to the universality of computers in
practice and sparked many research questions in both fields.

This exploration is now well underway both from the theoretical side and the ex-
perimental side but its outcome, sitting at the interface, is still very much clouded. If
possible to build, what is exactly the advantage quantum computers can provide com-
pared to classical computers, is it only polynomial, exponential for some problems, or
non-existent? Is it actually possible to build this machine and harness complex quan-
tum processes on a macroscopical level? If not possible to build, what parts of quantum
physics are unreliable and should be modified?

This perspective is enough for me to want to build at least one quantum computer at
least once and use it as a scientific tool to explore quantum physics and computation.

Christophe Vuillot
Delft, September 2019
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INTRODUCTION

The context and fundamental notions of quantum mechanics, quantum computation,
quantum error correction and fault-tolerance as well as a reading guide for the rest of this
thesis are presented.

1
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2 1. INTRODUCTION

Since appearing first as a mathematical trick to solve the unexplained radiation of a black
body in the ultraviolet regime [1], quantum mechanics has been gradually expanding
and demonstrated that it actually stands as a fundamental theory governing the behavior
of elementary physical systems. Some of its most far reaching implications for the phys-
ical world have now been experimentally demonstrated, notably the violation of Bell
inequalities [2]. As of today, the main consequence of quantum mechanics lacking an
experimental demonstration is the possibility of quantum computation and it is proba-
bly the most dramatic one. The main reason for this, is the tremendous challenge that
controlling elementary quantum degrees of freedom of a system represents, together
with the impossibility of perfect controls and perfect isolation from outside perturba-
tions. This thesis is focused on the realization of quantum computation in its noiseless
definition. For this to be realizable it is therefore imperative to introduce a layer be-
tween the physical systems realized in laboratories and the quantum algorithm acting
ideally on perfect systems. This layer implements protocols designed to deal with the
inevitable errors and disturbances in the system in a way that allows to drive down arbi-
trarily the error rates seen by the layer of quantum algorithms above. This is the field of
quantum error correction and fault-tolerance. It is the interface between hardware and
software whose performance could make or break the possibility of implementing large
scale quantum algorithm on actual experimental devices.

In this context, this thesis presents a series of results contributing to bridging the gap
between experiments and systems implementing large scale algorithms by providing a
proof of concept, studying and improving quantum error correcting protocols and de-
vising new quantum error correcting codes.

In the present chapter we give an introduction and present the terminology needed
for the rest of the thesis. For some more comprehensive and well crafted introductory
works, we refer the reader to [3–7].

1.1. INTRODUCTION TO QUANTUM COMPUTING

1.1.1. QUANTUM MECHANICS
The theory of quantum mechanics can be nicely axiomatized in a few principles. We
present them and illustrate their main features here.

STATES

The first principle concerns the states a physical system can be in. It posits that they can
always be described using the structure of a Hilbert space over the complex numbers. We
usually denote the complex Hilbert space as H and the vectors in it using the Dirac ket
notation, like |ψ〉 ∈H . Being a complex Hilbert space, H possesses an inner product be-
tween vectors, denoted 〈ϕ|ψ〉 ∈ C, which is conjugate symmetric, 〈ϕ|ψ〉 = 〈ψ|ϕ〉∗, right-
linear, 〈ϕ|αψ1 +βψ2〉 = α〈ϕ|ψ1〉+β〈ϕ|ψ2〉, and positive definite, 〈ψ|ψ〉 = 0 ⇔ |ψ〉 = 0.
The physical states, more precisely, are the rays in H , represented by normalized vec-
tors |ψ〉 (〈ψ|ψ〉 = 1), equivalent under multiplication by a global phase: |ψ〉 ∼ eiθ |ψ〉. As
hinted in the above notation the Dirac bra notation 〈ψ| denotes the linear form dual to
the state |ψ〉 and is convenient to form inner products.

The interpretation given to two states, |ψ〉 and |ϕ〉, that are orthogonal, i.e. 〈ψ|ϕ〉 = 0,
is that they are perfectly distinguishable by some measurement, whereas they are more
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and more similar and less and less distinguishable when their overlap grows. That is to
say that the dimension of H gives the number of perfectly distinguishable states the sys-
tem can be in, given for example by vectors forming an orthonormal basis of H . Linear
combinations with complex coefficients of basis vectors by definition also belong to H

and therefore also constitute valid states for the system. They are referred to as superpo-
sitions of basis states. Since there is in general no preferred basis, being in superposition
is mostly a matter of point of view.

We can now readily explain that the state space of the union of two physical systems
is given by the tensor product of their respective Hilbert spaces, denoted as H1 ⊗H2.
Indeed if the first system has d1 perfectly distinguishable states and the second one d2

then surely the union has d1 ×d2 perfectly distinguishable states. Since the joint system
should still fall in the formalism, the tensor product of the Hilbert spaces is the correct
choice.

The states described this way are also called pure states, as they exactly and fully
describe the state of a system. In certain situations the information about the state of
a system is not complete and one has to use a probabilistic mixture of pure states to
describe it. That is to say, a set

{(
pi , |ψi 〉

)}
where pi represent the probability for the

system to be in state |ψi 〉, hence with
∑

pi = 1. This representation is not unique as
different choices of mixtures can produce states which are virtually equivalent opera-
tionally. That is why it is actually more convenient to represent mixed states as density
operators. Namely, ρ =∑

pi |ψi 〉〈ψi |, a weighted sum of the outer products of the states
in the mixture. Density operators can be simply characterized as Hermitian operators
with non-negative eigenvalues and trace one. For pure states, ρ = |ψ〉〈ψ| is a rank-one
projection onto the state |ψ〉.

Interestingly mixed states can arise as soon as one discards part of a system originally
in a pure state: this is the phenomenon referred to as entanglement. The smallest exam-
ple of entanglement can be constructed using two systems with Hilbert spaces H1 and
H2 and two orthogonal states from each, |ψ1〉 , |ψ⊥

1 〉 ∈ H1 and |ψ2〉 , |ψ⊥
2 〉 ∈ H2. Using

these states one can, for example, form the following state

|Ψ〉 = 1p
2

(|ψ1〉⊗ |ψ2〉+ |ψ⊥
1 〉⊗ |ψ⊥

2 〉
)

. (1.1)

The state |Ψ〉 is not separable, meaning that there does not exist any way to write it in
product form: |Ψ〉 6= |ψ̃1〉⊗|ψ̃2〉. States that are not separable are called entangled states.
If one were to discard the second part of the system, H2, there is no way to write the
remaining state on the first system as a pure state. It becomes a mixed state given by

ρ1 = 1

2

(|ψ1〉〈ψ1|+ |ψ⊥
1 〉〈ψ⊥

1 |
)

. (1.2)

The formal rule to discard a part of a system is to take the partial trace on density matri-
ces.

OBSERVABLES AND MEASUREMENTS

The second principle states that any observable physical quantity is represented by a
Hermitian operator, say Ô, acting on H . So we have that Ô† = Ô, where Ô† is the trans-
pose and conjugate operator to Ô. Such an Ô is therefore called an observable. Being
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Hermitian, Ô can be diagonalized to an orthogonal set of eigenvectors and the spectrum
of Ô gives the value of the observable can take. The rule to describe a measurement of
Ô is as follows: the outcome of the measurement is one of the eigenvalues of Ô with
probability given by the overlap which the measured state has with the corresponding
eigenspace. The resulting state after measurement is given by its orthogonal projection
onto the outcome eigenspace.

This type of measurement is called a projective measurement, it is fully character-
ized by the set of projectors onto the different eigenspaces of Ô. Denoting the different
projectors

{
P j

}
, the measured state |ψ〉 and the output state after oberving outcome j ,

|ψ j 〉, we have

P(outcome j ) = ∣∣∣∣P j |ψ〉∣∣∣∣2 , |ψ j 〉 =
P j |ψ〉∣∣∣∣P j |ψ〉∣∣∣∣ . (1.3)

Note that for a set of projectors,
{
P j

}
, to form a valid measurement they have to obey∑

j P j =1. In a mixed state situation the description becomes

P(outcome j ) = Tr(P jρ), ρ j =
P jρP j

Tr(P jρ)
. (1.4)

Measurements can also be presented as a more general procedure than projective
measurement, which is equivalent once we add unitary evolution and auxiliary systems.

EVOLUTION

The third principle states that the evolution of an isolated quantum system is governed
by the Schrödinger equation, given here for pure and mixed states

iħ d

dt
|ψ(t )〉 = Ĥ(t ) |ψ(t )〉 , iħ d

dt
ρ(t ) = [

Ĥ(t ),ρ(t )
]

, (1.5)

where Ĥ is the observable corresponding to the total energy of the system and [A,B ] =
AB −B A denotes the commutator. One can deduce from this equation that the transfor-
mation between any two instants t1 and t2 is always a unitary transformation, it is linear
and preserves the inner product. So any evolution of a quantum system can be written
using some unitary U ∈ U(H )

|ψ(t2)〉 =U |ψ(t1)〉 , ρ(t2) =Uρ(t1)U †. (1.6)

The evolution of a system which is not isolated can be deduced by adding any nec-
essary auxiliary system to it until one obtains an isolated system, computing the unitary
evolution of the full system and then discarding the auxiliary system. This kind of general
evolution is also called a quantum channel. One can verify that these transformations
on density operators are the completely positive and trace preserving maps. Completely
positive means that it maps positive operators to positive operators, even when the map
is applied only on part of a larger system. Such maps can be represented using what is
called a Kraus representation, see for example [6], which says

E (ρ) =
m∑

j=1
A jρA†

j , (1.7)
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where the A j are called the Kraus operators which can be any linear operator. They

need to obey
∑

j A†
j A j = 1 for the channel to be trace preserving. For a given channel,

different sets of Kraus operators can be found to represent it, the different representation
are related by a unitary transformation. One can operationally interpret such a Kraus
representation as a classical mixture of different outcome states given by each term in
the sum with the probabilities given by the norm of the terms.

1.1.2. ELEMENTARY QUANTUM SYSTEMS
In the rest of this thesis we encounter primarily two types of elementary quantum sys-
tems, qubits and oscillators.

QUBITS

A qubit is arguably the simplest quantum system, it has exactly two distinguishable
states, we denote them |0〉 and |1〉, and we have H = C2. These basis states are usu-
ally referred to as the computational basis states. The name comes from the fact that a
classical bit has two states, 0 and 1. Any qubit pure state |ψ〉 can be written as

|ψ〉 =α |0〉+β |1〉 , (α,β) ∈C2, |α|2 +|β|2 = 1. (1.8)

Some important operators acting on qubits are the Pauli operators, represented as
matrices they are:

X =
( 〈0| 〈1|

|0〉 0 1
|1〉 1 0

)
, Y =

( 〈0| 〈1|
|0〉 0 −i
|1〉 i 0

)
, Z =

( 〈0| 〈1|
|0〉 1 0
|1〉 0 −1

)
. (1.9)

The Pauli matrices are at the same time Hermitian and unitary and so can be interpreted
both as observables and operations on qubits. Together with the identity and the phase
i , they form an algebra

X 2 = Y 2 = Z 2 =1, X Y = i Z , Y Z = i X , Z X = i Y , (1.10)

and follow anti-commutation relations

{X ,Y } = X Y +Y X = {Y , Z } = {Z , X } = 0. (1.11)

Moreover with the identity, they form an orthogonal basis for the linear operators acting
on H , that is to say any 2×2 complex matrix, M , can be decomposed as

M =α1+βX +γY +δZ , (1.12)

where (α,β,γ,δ) ∈C4 and M is Hermitian if and only if (α,β,γ,δ) ∈ R4. In particular any
qubit density matrix ρ can be parameterized in the following way

ρ = 1

2
(1+ rX X + rY Y + rZ Z ) , (1.13)

where r = (rX ,rY ,rZ ) ∈R3 is a real vector with norm at most unity, |r | ≤ 1.
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The Pauli operators have eigenvalues +1 and −1 and their eigenstates form three
important bases called the X , Y and Z bases and given by{

|+〉 = |0〉+ |1〉p
2

, |−〉 = |0〉− |1〉p
2

}
,

{
|+i 〉 = |0〉+ i |1〉p

2
, |−i 〉 = |0〉− i |1〉p

2

}
, {|0〉 , |1〉} .

(1.14)
Most of the time we will deal not with one but many qubits. The Hilbert space for

n qubits is H ⊗n = C2n
. The Pauli operators extend to the multi-qubit case simply by

forming tensor product of Pauli operators. They form a group called the Pauli group on
n qubits and denoted Pn . Using the fact that Z X = i Y , it is possible to represent every
element of the group using a binary symplectic vector and a phase using the notation

P (e) = X u1 Z v1 ⊗·· ·⊗X un Z vn , e = (u, v ) ∈Z2n
2 , (1.15)

so that
Pn = {

i s P (e) | ∀s ∈ {0,1,2,3}, ∀e ∈Z2n
2

}
. (1.16)

The commutation relation between two elements can then be computed in term of the
symplectic inner product

P (e)P (e ′) = (−1)e ′ΩeT
P (e ′)P (e), Ω=

(
0 1n×n

−1n×n 0

)
. (1.17)

The n-qubits Pauli operators with trivial phases also form a basis for the n-qubits oper-
ators.

1D PARTICLES AND OSCILLATORS

Oscillators are ubiquitous in many experimental setups and a very natural elementary
quantum system. In striking contrast to qubits, the Hilbert state space of one oscil-
lator is infinite-dimensional. Given by H = L2(R), it is the space of square-integrable
complex functions of the real line. The direct interpretation of this Hilbert space comes
more naturally from a 1D particle interpretation, where a point-like particle can evolve
in 1D space and is characterized by its wave function, ψ ∈ L2(R). This means that the
probability density to find the particle at the position x ∈ R is given by |ψ(x)|2, and is
therefore normalized

∫ ∞
−∞ |ψ(x)|2dx = 1. The inner product between ϕ and ψ is given by∫ ∞

−∞ϕ∗(x)ψ(x)dx.
With this Hilbert space being infinite-dimensional, some aspects are more subtle

than for finite-dimensional spaces. For example, H possesses some bras (linear forms)
which do not have valid dual kets in H . The most notable and useful examples are

〈x0| : |ψ〉 7→ψ(x0) =
∫ ∞

−∞
δ(x0−x)ψ(x)dx, 〈p0| : |ψ〉 7→ FT[ψ](p0) = 1p

2π

∫ ∞

−∞
e−i p0xψ(x)dx,

(1.18)
where FT[ψ] denotes the Fourier transform of ψ. The natural objects which would be
dual kets to these bras are Dirac delta distributions and plane waves:

|x0〉 = δ(x0 −x), |p0〉 = ei p0x

p
2π

, (1.19)
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which are not square-integrable functions. However, they each have all the properties of
an orthogonal basis and can be seen as some limit of states which are valid. Hence, we
will use them conveniently as if they were valid kets. These two bases are called respec-
tively the dimensionless position and momentum bases. Since we work with dimen-
sionless variables we set the reduced Planck constant to unity: ħ= 1. A wave function ψ

can be seen as decomposed over the position basis, i.e.
{ |x0〉

}
x0∈R, and its Fourier trans-

form, FT[ψ] as the same state but decomposed over the momentum basis, i.e.
{|p0〉

}
p0∈R.

These two bases are also the eigenbases of the position and momentum observables,
which we denote as x̂ and p̂, and therefore can be written

x̂ = x̂† =
∫ ∞

−∞
x |x〉〈x|dx, p̂ = p̂† =

∫ ∞

−∞
p |p〉〈p|dp. (1.20)

The position and momentum operators act in the position basis as follows

x̂ |ψ〉 = |xψ〉 , p̂ |ψ〉 = |1

i

∂ψ

∂x
〉 . (1.21)

Using this representation, one can readily check that the position and momentum oper-
ators satisfy the canonical commutation relation:[

x̂, p̂
]= i1. (1.22)

This commutation relation and the spectrum of the two operators completely character-
izes the system. For the system to describe an harmonic oscillator one has the following
Hamiltonian, specifying the energy of the system

Ĥ = ω

2

(
x̂2 + p̂2) , (1.23)

for some real value ω. This Hamiltonian is more easily analyzed by introducing new
operators called annihilation and creation operators which are conjugate of one another
and are denoted respectively a and a†

a = x̂ + i p̂p
2

, a† = x̂ − i p̂p
2

. (1.24)

Using these operators the Hamiltonian rewrites

Ĥ =ω

(
a†a + 1

2

)
=ω

(
n̂ + 1

2

)
, (1.25)

where we also defined the number operator n̂ = a†a. Using the fact that n̂ is a positive
operator by construction and the commutation relation

[
a, a†

] = 1, it is fairly straight-
forward to find that the spectrum of n̂ is N (in our notation we consider 0 ∈N) and that
the eigenstates, also called Fock states and denoted as |n〉, are such that

∀n ∈N, a |n〉 =p
n |n −1〉 , a† |n〉 =p

n +1 |n +1〉 . (1.26)

These Fock states are the energy eigenstates of the harmonic oscillator, they are evenly
spaced in energy and the indexing number n is often referred to as the number of ele-
mentary energy excitation of the state also called the photon number. The Fock states
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form an orthonormal basis of the Hilbert space, {|n〉}n∈N, and correspond in the position
basis to the Hermite functions, which can be derived from (1.21), (1.24) and (1.26).

We now introduce the equivalent to the Pauli matrices on qubits for oscillators which
are formed by exponentiation of the position and momentum operators and are called
displacement operators:

U (u, v) = ei ux̂+i v p̂ , (1.27)

where u and v are two real numbers. Displacement operators are unitary operators and
their name comes from their action on the position and momentum bases,

U (0, v) |x〉 = |x − v〉 , U (u,0) |p〉 = |p +u〉 . (1.28)

Their composition can be derived from the Baker-Campbell-Haussdorff formula and
reads

U (u1, v1)U (u2, v2) = e
i
2 (v1u2−u1v2)U (u1 +u2, v1 + v2), (1.29)

and hence they follow the commutation relation:

U (u1, v1)U (u2, v2) = ei (v1u2−u1v2)U (u2, v2)U (u1, v1). (1.30)

Remarkably the displacement operators form a basis for the operators acting on H .
If we consider n different oscillators at once, so H ⊗n = L2(R)⊗n , we can identify each

by its canonically commuting position and momentum operators, for 1 ≤ j ≤ n,
(
x̂ j , p̂ j

)
,

where x̂ j is a shorthand notation for 1⊗( j−1) ⊗ x̂ ⊗1⊗(n− j ) and similarly for p̂ j . They are
characterized by the commutation relations[

x̂ j , p̂k
]= iδ j k ,

[
x̂ j , x̂k

]= 0,
[
p̂ j , p̂k

]= 0, (1.31)

where δ j k denotes the Kronecker delta.
On such a system we can also consider the group formed by tensor products of dis-

placement operators. Similarly to multi-qubit Pauli operators, multi-oscillator displace-
ment operators can be characterized by a phase and a symplectic vector of real numbers.
We use the following notation

U (e) =
n⊗

j=1
U (u j , v j ) =

n∏
j=1

ei u j x̂ j +i v j p̂ j , e ≡ (u, v ) ∈R2n , (1.32)

where we aggregate in a single vector e all the displacement parameters for every oscilla-
tor, with first the x̂ part, u, and then the p̂ part, v . The composition rule extends to these
operators as follows

U (e)U (e ′) = e
i
2 e ′ΩeT

U (e +e ′), (1.33)

where Ω is the symplectic form, see Eq. (1.17), and the commutation relation becomes

U (e)U (e ′) = ei e ′ΩeT
U (e ′)U (e). (1.34)

These operators together with arbitrary phases form an irreducible representation of the
Heisenberg group.
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Similarly to changing variables, it is also possible to redefine position and momen-
tum operators by taking linear combinations of the original ones. It is imperative that the
new operators still fulfill the correct commutation relation given in (1.31). If we denote
as r̂ = (

x̂ , p̂
)

the vector of all position operators followed by all momentum operators, we
can write down the transformed vector r̂ ′ using a 2n ×2n real matrix A,

r̂ ′ = Ar̂ . (1.35)

Enforcing the canonical commutation relation for r̂ ′ can be shown to be equivalent to
demanding that the matrix A is symplectic, i.e.

AΩAT =Ω. (1.36)

with Ω the symplectic form given in Eq. (1.17). Some unitary transformations, called
Gaussian operations, physically realize this kind of transformations.

1.1.3. QUANTUM COMPUTATION
Questions about the nature and limits of computation have emerged in the 20th century.
Since then they have had a large influence on many topics in science. The first questions
asked were about what problems could be solved by a mechanized process (or really any
physical process), what functions could be computed. This question of course depends
on what processes are allowed. Several models of computation have been devised, trying
to capture the full extent of what physical processes can do. The most famous is called
the Turing machine [8] (several others turned out to be equivalent such as Church’s λ-
calculus), and this model is still the most complete definition we have for computation.
This is often referred to as the Church-Turing thesis. It states that every physically real-
izable computation can be simulated on a Turing machine. Note that this notion, called
computability, does not include any consideration for the size of the system doing the
computation nor the time required for the computation to finish.

That is why some time later, the notion of complexity was introduced and is still
widely studied today. For an in depth introduction to complexity theory we refer the
reader for example to [9, 10]. Roughly this notion refines the question to what prob-
lems can be solved on a machine given a certain amount of resources in space (size of
the machine) and time (for the execution). It turns out that the most fruitful way to talk
about the complexity of some problem is in terms of the scaling of the procedure which
computes the solution. More precisely, given a problem with instances of growing sizes,
how does the space or the time required by the computation to solve the most difficult
instance of a given size grow with this size. This is called the worst-case complexity.
Notably, it has been observed that the class of problems which have a worst-case poly-
nomial scaling between the size of the input and the time of the computation constitute
a good definition for feasible computation. With this refined notion of feasibility the
model of computation becomes more important: in order to be equivalent two different
models need not only to be able to simulate one another but the simulation needs to be
efficient as well. An extended version of the Church-Turing thesis was recently formu-
lated asserting that every physically realizable computation can be simulated efficiently
on a Turing machine.
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It was also observed that no efficient simulation of quantum phenomena on a Tur-
ing machine seems to exist [11]: all the known simulation techniques need exponential
time. This observation motivated the exploration of the computational capabilities of
quantum processes since they seem to be at odds with the extended Church-Turing the-
sis. The first definitions of quantum Turing machines appeared in [12, 13] followed by
a circuit model version in [14] which is the most commonly used now. One of the most
striking pieces of evidence that quantum computing could be more powerful than clas-
sical computing was discovered by Shor [15]: a polynomial time quantum algorithm to
find the prime factorization of a number. This problem is not believed to have an effi-
cient classical algorithm although no proof of this has been established.

The circuit model of quantum computation works as follows. Given a problem to
solve, for each input size there is a classical procedure constructing a quantum circuit
acting on a number of qubits depending on the size of the input. A quantum circuit is
a sequence of gates, i.e. unitary operations acting on a subset of the qubits. The cir-
cuit is run on the input encoded in the corresponding computational basis state and
any auxiliary qubit initialized in zero. Then the output quantum state is measured in
the computational basis and the outcome is interpreted as the solution. If the size of the
quantum circuit is polynomial in the size of the input and the procedure constructing the
circuit also has a polynomial complexity then it is considered to be an efficient quantum
computation. It is also possible to include measurements in the body of the circuit, not
only at the end, and even adaptively using the measurement outcomes without chang-
ing the complexity class defined. There even is an equivalent model of computation
using quantum states independent of any problem but performing adaptive measure-
ments depending on the problem to solve. This is called measurement based quantum
computation [16]. In this thesis we take the point of view of the circuit model.

|0〉 

|0〉
|0〉 H • • H H • •
|0〉 H • H

|0〉

Figure 1.1: An example of quantum circuit: There are five qubits initialized in the |0〉 state. Then a sequence
of Hadamard gates (H) on individual qubits and controlled-not gates (CNOT) on pairs of qubits where the
• symbol represent the control qubit and the ⊕ symbol the target. Finally the top qubit is measured in the
computational basis outputting a single classical bit. See Chapter 2 for its use.

Quantum circuits have a convenient graphical representation using wires and boxes,
see Figure 1.1. Each wire represent a qubit and boxes represent gates, i.e. unitary opera-
tions, to apply to the qubits they intersect. Measurements have a specific representation,
and usually represent measurements in the computational basis unless specified other-
wise.

So far we have not specified what gates are allowed in a circuit. In order for the mea-
sure of complexity in terms of the size of the circuit to make sense, one requires that each
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gate take a constant time to execute. In particular it would not be wise to allow to bundle
up large chunks of the circuit and label them as gates since that could hide the com-
plexity of the circuit. To solve this problem we can define a gate set over which to build
circuits. The first constraint for the gates is to act on a constant number of qubits, typi-
cally one, two or three. Then we would like to still be able to construct any unitary from
the gate set which is captured by the notion of universality. A gate set is called univer-
sal if one can construct any unitary by using only gates from the set, and approximately
universal if one can approximate any unitary using gates from the set arbitrarily well.
One important result concerning gate sets, named the Solovay-Kitaev theorem after the
name of its two independent discoverers, states that any approximately universal gate
set can efficiently approximate any other one. Here efficiently means with an overhead
growing poly-logarithmicaly in the inverse desired precision [17]. This means that we
should only be concerned that our gate set is approximately universal, since they are all
efficiently convertible to one another.

Several universal gate sets have been devised. One of the most used is called Cliffords+T ;
it is composed of the Hadamard gate, H , the controlled-not gate, CNOT, and the T gate:
{H ,CNOT,T } [18]. The Hadamard gate is a single-qubit gate which converts between the
Z and X bases (see Eq. (1.14)). The CNOT gate is a two-qubit gate which acts in the com-
putational basis as a bit flip on the second qubit (the target) if the first one (the control)
is in the |1〉 state and identity otherwise. The T gate is a single-qubit gate which applies
a phase, eiπ/4 to the |1〉 state. Expressed as matrices they are

H = 1p
2

(
1 1
1 −1

)
, T =

(
1 0
0 ei π

4

)
, CNOT =


〈00| 〈01| 〈10| 〈11|

|00〉 1 0 0 0
|01〉 0 1 0 0
|10〉 0 0 0 1
|11〉 0 0 1 0

.

(1.37)
An important subset of the unitary operations generated by these gates are called

Clifford operations; they are generated by H , CNOT and S = T 2. Clifford operations
form a group, which is finite for any fixed number of qubits. A lot of the iconic quan-
tum processes such as teleportation, or quantum key distribution as well as the majority
of quantum error correction processes can be realized using only Clifford operations.
However, Clifford operations alone are not universal and, even more strikingly, they can
be efficiently classically simulated (Gottesman-Knill theorem) [19]. This fact is due to
the relation of Clifford operations to Pauli operations which provides another definition
for the Clifford operations:

Cn =
{

U ∈ U
(
2n) | ∀P ∈Pn , U †PU ∈Pn

}
, (1.38)

where Pn are the Pauli operators as defined in Eq. (1.16). In words, Clifford operations
map Pauli operators to Pauli operators. Note that any operator is completely character-
ized up to a global phase by how it maps the Pauli operators since they form a basis. The
Clifford group is also referred to as the second level of the so-called Clifford Hierarchy,
C (2)

n =Cn and Pauli operators as the first level, C (1)
n =Pn . The kth level is defined as

C (k)
n =

{
U ∈ U

(
2n) | ∀P ∈Pn , U †PU ∈C (k−1)

n

}
. (1.39)
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Since Pn ⊂ C (2)
n , for any j ≤ k we have C ( j ) ⊂ C (k)

n . One can check that the T gate is
in the third level, T ∈ C (3)

n , and grants universality to the gate set Cliffords+T . As an
alternative to the T gate, the CCZ gate, also from the third level, can be added to the
Clifford group to yield a universal gate set. The CCZ gate is a three qubit gate diagonal
in the computational basis which flips the phase of the |111〉 state,

CCZ |b1b2b3〉 =
{ |b1b2b3〉 b1 = 0∨b2 = 0∨b3 = 0
−|b1b2b3〉 b1 = b2 = b3 = 1

. (1.40)

The third level and higher levels do not form groups and their exact structure is not fully
understood.

1.1.4. FRAGILITY OF QUANTUM INFORMATION
Several physical systems have been proposed to serve as qubits and are explored in lab-
oratories around the world. Some of the notable candidates, in no particular order, in-
clude:

• Trapped ions, where some ions are trapped in a (dynamic) electromagnetic poten-
tial and different energy levels of their outer electrons are used as qubit subspace.
Manipulation of the qubits is done by shining lasers off or on resonance on the
ions.

• Superconducting circuits, where a non-linear element such as a superconducting
Josephson junction is added to an LC circuit creating an an-harmonic oscillator
permitting to isolate the two lowest energy levels to serve as a qubit. Many differ-
ent circuits and realizations exists. Manipulations are done by coupling the system
to microwave resonators controlled with waveform generators.

• Electron spins, where a 2D electron gas is created using semi-conductor tech-
niques and individual electrons are singled out using electric fields, permitting to
use the spin degree of freedom of single electrons or pairs of electrons as qubits.
Manipulations are done using the electric and magnetic field.

• Optical photons, where Fock states of optical photonic modes are used to encode
a qubit. Manipulations are done using single-photon sources, linear optical trans-
formations and photon counting detectors.

• Bosonic codes, where a large portion of the Hilbert space of a bosonic mode is
used to encode a qubit using a bosonic error correcting code. 3D cavities in the
microwave regime and the motion degrees of freedom of trapped ions are exam-
ples of platforms where this can be realized, e.g. [20–22].

• Majorana particles, where qubits are encoded in the edge modes of a symmetry-
protected topologically ordered system.

For all these candidates and in any realistic situation it is impossible to have perfect
control over a system as well as complete elimination of undesired interactions. Many
different sources of noise exist and modeling them precisely is generally not an easy task
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but some approximations can be made. It is often the case for instance that the two
states representing the |0〉 and |1〉 of a physical qubit have different energies in which
case the natural evolution of the system is such that the |1〉 state has an oscillating phase
relative to the |0〉 state whose period is given by the energy difference. This can be ac-
counted for when knowing the energy difference, but any imprecision or fluctuation in
the energy difference will accumulate and randomize the relative phase between the two
computational basis states of the qubit. This is called dephasing noise, and a simplified
version of this noise can be modeled as follows: with a given probability, p ∈ [0,1], the
phase between |0〉 and |1〉 is flipped, i.e. Z is applied to the qubit, and with probability
(1−p) nothing happens, acting on the state ρ using the Kraus representation it reads

Dephasingp (ρ) = (1−p)ρ+p ZρZ . (1.41)

This is called an incoherent dephasing process, meaning that it is a classical stochas-
tic process deciding to apply the phase error or not. Another type of error could be a
symmetric exchange of energy with the environment so that the |0〉 and |1〉 states are in-
terchanged. This is called a bit flip and if there is a probability p that it happens then the
error channel can be written as

Bitflipp (ρ) = (1−p)ρ+p XρX . (1.42)

Another process involving exchange of energy with the environment is called amplitude
damping. It models a more common situation where only loss of energy from the qubit
to the environment occurs. A simple Kraus representation is

Dampingγ(ρ) = E0ρE †
0 +E1ρE †

1 , E0 =
(
1 0
0

√
1−γ

)
, E1 =

(
0

p
γ

0 0

)
. (1.43)

The operator E1 sends |1〉 to |0〉 which corresponds to losing energy to the environment.
One can think of a small real number γ as the damping rate. Observe that E0 is close
but not proportional to the identity as it is impossible to have a Kraus representation
with an operator proportional to the identity for this channel. This can be understood
as the fact that in the event that no energy leaks from the qubit, then it is more likely
that the qubit was in the state |0〉 in the first place. This is also sometimes referred to
as a back-action error process. Another interesting channel is called the depolarizing
channel, when there is an equal probability for a X , Y or Z error to happen

Depolarizingp (ρ) =
(
1− 3p

4

)
ρ+ p

4

(
XρX +Y ρY +ZρZ

)
. (1.44)

Interestingly, another characterization of this channel is that with probability p the states
becomes completely mixed, i.e. 1/2, and all information is lost or it stays intact with
probability (1−p). In general any channel which involves randomly applying Pauli op-
erators is called a Pauli channel. It takes the form

PaulipX ,pY ,pZ (ρ) = (
1−pX −pY −pZ

)
ρ+pX XρX +pY Y ρY +pZ ZρZ . (1.45)

Pauli channels are not a particularly realistic models of naturally occurring errors al-
though they already give a good idea of what can happen and can be handled analyti-
cally quite well as we will see later. Moreover, any qubit channel can be converted to a
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Pauli channel by a process called twirling which consists in randomly choosing a Pauli
(or the identity) and applying it before and after the noise [23].

The presence of noise in realistic systems implies that we cannot expect to be able to
realize large quantum computations flawlessly with them which is what is expected from
the definition of quantum computation that we have presented. In the presence of weak
noise it is still unclear if an efficient classical simulation of a quantum system exists. It is
also unclear what useful problems can be solved using noisy quantum systems. Indeed,
ongoing research tries to understand what is possible to realize using noisy quantum
systems [24].

1.2. QUANTUM ERROR CORRECTION

1.2.1. PRINCIPLE OF QUANTUM ERROR CORRECTION
The principle of quantum error correction was first proposed in [25, 26]. The idea is to
use a large number of physical quantum degrees of freedom (e.g. qubits) and restrict
their possible states to a specific subspace of the original Hilbert space. Therefore en-
coding a smaller number of logical quantum degrees of freedom. The choice of subspace
is such that a large set of possible errors (ideally the most probable ones) occurring on
the physical degrees of freedom can be detected and undone so that they do not affect
the logical degrees of freedom. More precisely, given the error channel we would like to
protect against, there should exist a recovery operation such that if one applies the error
channel to a state in the code space followed by the recovery then the output state is the
input state. One can derive the necessary and sufficient conditions on the subspace and
the set of errors to be corrected, they are called the quantum error correction conditions
and were first formulated in [27, 28]. We denote the Hilbert space of the physical system
as H and the code subspace as C ⊂ H . We denote an orthogonal basis for the code

space as
{
|ψ j 〉

}
∈C . We also denote the set of error operators that we wish to be able to

correct as
{
E j

}
. The quantum error correction conditions can be stated as

∀i , j ,k, l , 〈ψi |E †
j Ek |ψℓ〉 =α j kδiℓ, (1.46)

where α j k are complex numbers forming a Hermitian matrix. The proof can be found for
example in [4]. The basic idea is this: First, different errors should send the code space
to different orthogonal error spaces (or exactly the same error space in which case errors
are called degenerate). This is so that errors can be detected by measuring in which error
space the system is in. The error spaces can be identified by diagonalizing the Hermitian
matrix α j k . Second, errors should not act differently on different code states in the code
space, since detecting errors would then leak information or modify the logical state of
the system.

One very important feature of these conditions is that if they hold for a set of error
operators

{
E j

}
then they also hold for any set

{
F j

}
where the F j are linear combinations

of the E j , see also [4]. This remarkably means that if a qubit code is capable of correct-
ing against any t-qubit Pauli error, then it is in fact capable of correcting any t-qubit
channel. So one has just to design codes to work against Pauli errors and is guaranteed
that they will also work against arbitrary noise. This is referred to as the discretization of
errors and it is a crucial feature of quantum error correction.
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Most of the time we will consider the situation where the physical space consists of n
qubits, so H =C2n

, and a code space, C . Suppose the code C is designed to correct any
t-qubit Pauli errors. Consider as a simple example that there is a qubit noise channel
acting independently on each qubit. As a first case we can consider that one of the Kraus
operators of this channel is proportional to the identity and happens with probability
(1− p) for small p, and the others are errors. Applying this channel independently to
the n qubits starting in the code space, and then the recovery operation of C , one can
check that all terms where at most t qubits have a non-identity Kraus operator will be
corrected. Therefore, the first term which will not be back on the original code state will
have a prefactor of p t+1 and a combinatorial factor c in front. For this channel the un-
encoded logical error probability is p, while the encoded one is cp t+1, which is smaller
than p for sufficiently small p. There is a subtlety which requires a second considera-
tion, if the channel does not have any representation where one of the Kraus operators is
the identity. This is the case for example for the amplitude damping channel presented
above. In this case one of the Kraus operators is close to the identity but with some
perturbation, let us denote it as 1̃ = 1+ A, where A is some operator with small norm,
say

p
p. When applying the channel independently on every qubit, we can separate the

terms in the sum according to how many qubits get acted on by the 1̃ operator. Terms
where less than t + 1 qubits have the 1̃ will have a prefactor of p t+1, if p is the square
norm of the other operators than 1̃ in the qubit channel. We are now examining the
other terms where j ≤ t qubits are acted on by an error, say B , they look like

1̃⊗(n− j ) ⊗B⊗ j ·ρ ·
(
1̃⊗(n− j ) ⊗B⊗ j

)†
. (1.47)

By expanding 1̃ into 1+ A we get some terms looking like

1⊗(n− j−k) ⊗ A⊗k ⊗B⊗ j ·ρ ·
(
1⊗(n− j−k) ⊗ A⊗k ⊗B⊗ j

)†
, (1.48)

which get corrected by the recovery map if j +k ≤ t or have a prefactor of p t+1. We also
get some terms looking like

1⊗(n− j−k1) ⊗ A⊗k1 ⊗B⊗ j ·ρ ·
(
1⊗(n− j−k2) ⊗ A⊗k2 ⊗B⊗ j

)†
, (1.49)

with k1 6= k2, which are not Kraus-like terms and cannot be directly interpreted like the
others. Fortunately by choosing a basis for the errors A and B which send the code space
to orthogonal error spaces, one can see that the measurements done during the recovery
can make these terms vanish. So in the end we are in the same situation as earlier with
the non-corrected terms all having a prefactor cp t+1.

1.2.2. STABILIZER FORMALISM
Now that we have presented the principle of quantum error correction we present how
one can construct quantum error correcting codes. We first start by a short presentation
of classical linear codes, see [29] for an in depth presentation.

Classical linear codes are designed to protect information which can be represented
as classical bits. The basic principle is the same as for quantum error correction. One
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has access to n bits, which can be seen as the vector space Fn
2 and one chooses a sub-

space C ⊂ Fn
2 of dimension k as a code space encoding k bits. Elements in C are referred

to as codewords. Classical bits can only suffer from one type of error, bit flips, so the
performance of the code can be assessed by looking at what is the minimal number of
bits to flip to go from one code word to another. This is called the distance of the code,
denoted as d , and such a code is described as an [n,k,d ] code, encoding k bits using n
bits with distance d . There are two ways of specifying a classical linear code, either by
its generating matrix G or its parity check matrix H . The generating matrix G is a k ×n
matrix over F2 whose rows generate the code space C . The parity check matrix H is an
(n−k)×n matrix over F2 specifying all the parity checks that the codewords have to obey.
A row vector c is a codeword if and only if it passes all the checks:

c ∈C ⇔ Hc T = 0T, (1.50)

where the inner product between a row of H and column cT is with respect to F2 arith-
metic. The relation between G and H is given by

G H T = 0. (1.51)

Another way of looking at the parity check matrix H is that it is the generating matrix
of the code dual to C , denoted as C⊥, i.e. the subspace of all vectors orthogonal to C .
Thinking of a code in terms of its parity check matrix is useful as, besides defining the
code, it also gives a way of performing error correction. Consider a binary vector v which
is a codeword c with some added noise ϵ, so that v = c ⊕ ϵ (⊕ is the addition modulo
two). Given v , one can compute the value of the parity checks, also called the syndrome,
s, using H ,

sT = H v T = HϵT, (1.52)

where we used the property that the codewords pass every parity check. So we can see
that the syndrome directly gives information about the error. One can use the syndrome
to find the smallest possible error with the same syndrome as the most probable error.
Here the smallest possible error is the vector ϵ with the smallest number of 1s.

This approach to error correction can be extended to quantum codes. It has been
developed in a slightly restricted way in [30, 31] and generalized to the full stabilizer for-
malism by Gottesman [32]. The idea is to use Pauli operators as parity checks. They con-
strain the code states as follows: if the Pauli operator is measured the outcome should
be the +1 eigenvalue. Equivalently, if |ψ〉 is in the code space and P is a Pauli operator
chosen as a parity check then

P |ψ〉 = |ψ〉 . (1.53)

Said yet differently, P is a stabilizer of the code space. The way to define a stabilizer code
is therefore to choose an Abelian subgroup of the Pauli operators S ⊂ Pn , and define
the code as the common +1 eigenspace of the elements of the group S :

C = {|ψ〉 ∈H | ∀S ∈S , S |ψ〉 = |ψ〉} . (1.54)

Note that the set of stabilizers is necessarily a group and Abelian since every Pauli op-
erator in it has to commute with every other, otherwise they could not have a common
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eigenspace. Moreover, the operator −1 cannot be included in S otherwise there would
not be any common +1 eigenspace. The dimension of the code space C can be simply
calculated by counting the number of independent stabilizers in S , where independent
here means not generated by taking products of the others. If we consider n physical
qubits and n −k independent stabilizers then the code space is that of k logical qubits(
dim(C ) = 2k

)
.

Stabilizer code are particularly suited to Pauli error channels. Consider a code state
|ψ〉 ∈C , and a Pauli operator E ∈Pn acting as an error on |ψ〉, then consider measuring
a stabilizer element S ∈ S . Pauli operators can either commute or anti-commute, see
Eq. (1.17), so if they anti-commute then

S
(
E |ψ〉)=−ES |ψ〉 =−E |ψ〉 , (1.55)

and the measurement outcome of S will be −1 but if S and E commute measuring the
stabilizer S will not detect the error and the outcome will be +1.

If the error E commutes with every stabilizer in S , it can mean two things. Either E
is an element of S , in which case no harm is done to the code state. Or it is not in S

and then necessarily E maps the code state to another code state. This is therefore called
a logical operation, since it acts within the code space, or in this case is an undetected
logical error. The group of all Pauli operators commuting with S is called the normalizer
of S , it includes all logical Pauli operations and is denoted as N (S ):

N (S ) = {P ∈Pn | PS =S P } . (1.56)

We have S ⊂ N (S ) and elements in S act trivially on the code space. Moreover two
elements in N (S ) have identical effects if they are related by multiplication with a sta-
bilizer. This means that to get the group of independent logical Pauli operators, L , one
should build the quotient of N (S ) by S ,

L =N (S )/S . (1.57)

This quotient group is not to be confused with N (S ) \ S , which is just the set of Pauli
operators preserving the code space and acting non-trivially on it. Finding the element
in this latter set, N (S )\S , which acts on the smallest number of qubits, gives an equiv-
alent notion of code distance in the case of stabilizer codes

d = min
L∈N (S )\S

|L|, (1.58)

where |L| means the number of qubits that L acts on non-trivially. If d is the distance,
then we say we have an [[n,k,d ]] stabilizer code. The double bracket is there to dis-
tinguish this from the classical code notation with single brackets. Given an [[n,k,d ]]
stabilizer code, one straightforwardly verifies the quantum error correction conditions,

Eq. (1.46), on the set of all Pauli errors acting on at most
⌊

d−1
2

⌋
qubits. As we have seen in

the previous section, the distance then gives an idea of the error correction performance

of the code since it roughly allows to reduce the noise from p to p

⌊
d
2

⌋
. Besides being

able to correct every error affecting
⌊

d−1
2

⌋
qubits, a code with distance d is also able to
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detect every error affecting d −1 qubits. This means the syndrome will always indicate
when such errors happen even if trying to correct is not guaranteed to succeed. So by
using post-selection one can boost the noise reduction to roughly pd . The ratio of the
parameters k and n is called the encoding rate, r = k/n, and is the first measure of the
overhead of the code.

Using the binary symplectic vector representation of Pauli operators, see Eq. (1.15),
we can rewrite in a matrix form the elements presented so far. We define H to be a
(n−k)×2n binary matrix whose rows represent the generators of the stabilizer group S .
We can consider the rows of H as the first elements of a symplectic basis for the vector
space F2n

2 , and complete the basis for the full space. The rest of this basis will contain first
(n −k) symplectically conjugated vectors to H , we denote them as a (n −k)×2n binary
matrix D . Secondly it will contain 2k pairwise conjugated vectors which we will split in
two k×2n binary matrices P and Q. The elements in D are sometimes referred to as pure
errors or destabilizers as they give Pauli errors which anti-commute with exactly one
stabilizer. The elements in P and Q are the logical Pauli operators forming the correct
algebra required of the Pauli operators representing k qubits.

If a Pauli error represented by the binary vector e affects the system, the syndrome
s that is going to be observed by measuring the stabilizer generators is given by its sym-
plectic inner product with the generators:

sT = HΩeT. (1.59)

Given the observed syndrome s, one can deduce that the error which affected the system
must be such that

∃(p , q) ∈ F2k
2 , ∃r ∈ Fn−k

2 , e = sD + r H +pP +qQ. (1.60)

A way to think about these quantities is the following: The vector sD represents an error
with the correct syndrome, it is completely determined by the choice of D we made for
our basis. It is often called the candidate error. The other parts of the error do not change
the syndrome as they represent either stabilizers or logical operators. The row vector
pP + qQ represents the logical operation done on top of the candidate error. This is
the part that needs to be found in order to undo any logical error done to the system.
The row vector r H represents the freedom of adding a stabilizer operator to the error. It
does not change the logical action but it does change the probability of the error. The
task of syndrome decoding then, is to find the most probable p and q . The existence
of an efficient and accurate decoding algorithm is also crucial for an error correcting
code since the running time and the accuracy of the decoding will both affect the overall
performance of error correction.

1.2.3. NOTABLE EXAMPLES
In this section we introduce some notable examples and families of stabilizer codes.

CSS CODES

CSS (Calderbank-Steane Shor) codes were the first type of quantum error correcting
codes discovered and form a subset of the stabilizer code family. They are stabilizer
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codes where the stabilizer generators can be split in two sets, one with only X -type sta-
bilizers (Pauli operators with only X elements) and the other with only Z -type stabilizers
(Pauli operators with only Z elements). These codes can be described by two classical
codes, CX ⊂ Fn

2 and CZ ⊂ Fn
2 , which generates the vectors corresponding to the X and Z

stabilizers. In order for the stabilizers to commute with one another, each code needs to
be in the dual of the other which can be expressed using their generating matrices HX

and HZ

HX H T
Z = 0. (1.61)

Note that we use the letter H for the generating matrices of the classical codes here since
they actually correspond to checks of the quantum code.

The number of encoded logical qubits is given by

k = n −dim(CX )−dim(CZ ). (1.62)

The logical operators are then simply given by the dual codes to CX and CZ . More
precisely C⊥

X gives the Z -type logical operators and C⊥
Z the X -type logical operators.

Similarily as before to obtain the independent logical operators we quotient out the X -
stabilizers and Z -stabilizers respectively,

LX =C⊥
Z /CX , LZ =C⊥

X /CZ . (1.63)

The notion of distance can be split into the distance of the X -type logical operators, dX ,
and for the Z -type logical operators, dZ ,

dX = min
x∈C⊥

Z \CX

|x |, dZ = min
z∈C⊥

X \CZ

|z |. (1.64)

Then the overall distance of the code is given by

d = min(dX ,dZ ) . (1.65)

Even if CSS codes are a slightly restricted family of stabilizer codes, this restriction
does not seem to be so fundamental, for example it is possible to map any stabilizer
code to a CSS code with the same parameters up to constant factors [33]. A lot of work
has already been done on classical error correcting codes, and a lot of constructions to
find codes with good parameters exist. The main difficulty in transferring these results
to the quantum setting resides in the constraint in Eq. (1.61).

THE TORIC CODE AND HOMOLOGICAL CODES

The toric code is probably the most famous quantum error correcting code. It was pro-
posed by Kitaev in [34, 35]. It is a CSS code which is constructed by using the properties of
tilings of surfaces and their homology. The idea is to start from a surface which is tiled,
see for example the square tiling on a torus represented in Fig. 1.2. Then one places a
qubit on each edge of the tiling and defines an X -stabilizer for each vertex acting on the
four adjacent edges and Z -stabilizer for each face acting on the four adjacent edges, see
Fig. 1.2.

The fact that this defines a valid CSS code can be thought of as coming from a well
known property of the boundary map of a tiling, namely “the boundary of the boundary
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Figure 1.2: Representation of a toric code. The tiling has periodic boundary condition and is therefore a torus.
The qubits are placed on the edges, the X -stabilizers are defined by the stars (red) and the Z -stabilizers by the
plaquettes (green). There are two logical qubits, whose operators are represented by non-contractible loops
around the torus represented in blue for X and purple for Z .

is empty”. More precisely, given the set of faces F , edges E , and vertices V , one can define
the corresponding F2 vector spaces F = FF

2 , E = FE
2 and V = FV

2 . Then the adjacency rela-
tion between them can be thought of as a linear map, called the boundary map, denoted
as ∂F→E and ∂E→V ,

F
∂F→E−−−−→ E

∂E→V−−−−→ V . (1.66)

Since ∂E→V ◦∂F→E = 0, if we write these linear maps as matrices (denoted as Mat(·)), we
obtain exactly the CSS condition in Eq. (1.61) by choosing

HZ = Mat(∂F→E )T, HX = Mat(∂E→V ). (1.67)

Concerning the logical operators we can also make a connection with what is called
the homology of the surface. Recall that the Z -logicals are given by C⊥

X /CZ and an
other way of writing this is ker(HX )/im

(
H T

Z

) = ker(∂E→V )/im(∂F→E ). This exactly cor-
responds to what is called the homology group of the surface. When worked out, the
elements in the homology group are sets of edges forming closed loops which cannot
be contracted. On a torus there are two loops around the surface in both directions, see
Fig. 1.2. Transposing everything one gets the notion of co-homology, which coincides
with the X -logicals so C⊥

Z /CX = ker(HZ )/im
(
H T

X

)= ker
(
∂T

F→E

)
/im

(
∂T

E→V

)
.

This connection makes it easier to find the parameters of such codes. The number
of encoded logical qubits, k, is directly related to the number of non-contractible loops,
which is in turn related to the genus (number of handles) and orientability of the surface.
For the torus, there are two non-contractible loops, so k = 2. The distance is given by the
length of the smallest non-contractible loop. For the toric code on a square lattice, this
gives the parameters [[2L2,2,L]], if we denote as L the side length of our torus.

These features are the reason to call such codes topological codes. This means codes
which have geometrically local stabilizers on some manifold and distance growing with
the overall size of the manifold.
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This procedure works for any tiling of any surface, and it is also possible to cut the
surface and introduce boundaries [36, 37]. It also works in higher dimensions, since the
property of the boundary map to square to zero still holds. The procedure is then to
place qubits on the j -cells, X -stabilizers correspond to ( j −1)-cells and Z -stabilizers to
( j +1)-cells.

COLOR CODES

Color codes are another geometrical construction of CSS codes, also part of the category
of topological codes, introduced by Bombín in [38, 39], see also [40].

(a) (b)

Figure 1.3: (a) Triangulation of a torus where the vertices are tri-colorable. One can define a color code using
this tiling. The qubits are placed on the triangles and every vertex defines both a X -stabilizer and Z -stabilizer
on the adjacent triangles. (b) Representation of a red, a green and a blue string wrapping around the torus.
They are formed of pairs of triangles sharing an edge linking vertices of a given color.

The prescription to construct a color code in 2D is to take a triangulation of a 2D sur-
face which has the property of being tri-colorable for its vertices. Under such conditions,
one can show that putting qubits on the triangles and X -stabilizers and Z -stabilizers on
each vertex yields a valid CSS code. Putting a stabilizer on a vertex means that it acts on
all the adjacent triangles, for example, in Figure 1.3, the stabilizer associated with the red
vertex labeled c0

0 acts on the six qubits labeled f0, f1, f2, f3, f4 and f5. See Fig. 1.3a for an
example of a tri-colorable triangulation of a torus. Pictures of color codes are also often
represented in a picture dual to that of Figure 1.3 where each triangle is replaced by a
vertex and each colored vertex by a colored face, see Figure 1.4.

The logical operators of such codes can be constructed by forming what is called
colored strings. The idea is that putting Pauli operators, say X , on a pair of adjacent tri-
angles anticommutes only with the two Z -stabilizers given by the two opposed vertices
which are of the same color. So by forming closed strings of these pairs of triangles join-
ing vertices of a given color, one can form operators commuting with all the stabilizers,
see Fig. 1.3b. If the strings are homologically trivial then they turn out to be stabilizers,
but logical operators when they are non-trivial. If three strings of each color meet at the
three vertices of the same triangle they can be joined together to form what is called a
string net. This is represented in Figure 1.4.
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Figure 1.4: Two examples of color codes with boundaries (left and middle) represented in the picture dual to
the one in Figure 1.3 and a schematic representation of their logical operators (right). The qubits are placed on
the vertices of the lattice and X and Z stabilizers on each colored faces. The color of the boundaries are repre-
sented by stripes of color along them. A red boundary is a boundary adjacent to only blue and green faces, and
the same by permuting the colors for the other boundaries. The support for a logical Pauli operator is repre-
sented for each triangular patch, highlighted by yellow boxes. It consists in three strings of each color attached
to the boundary of their color and meeting in the middle of the patch. This is schematically represented on the
right. Such logical operators are called string nets.

One can also introduce boundaries to color codes, we represent the concept in Fig-
ure 1.4. Different colors for the boundary are possible, if a boundary borders only of
green and blue faces, it is called a red boundary. This can be understood by the fact that
one could place a red face extending along the red boundary. Blue and green boundaries
are defined similarly. Since boundaries are similar to missing stabilizers, one can termi-
nate red strings at red boundaries, blue strings at blue boundaries and green strings at
green boundaries. This is illustrated in Figure 1.4. The string nets of triangular patches
of color codes, as in Figure 1.4, can also be deformed to be fully supported on any of
the three colored boundaries. For example the blue boundary, left in the pictures of Fig-
ure 1.4, can be seen as a red string from the bottom red boundary meeting green and
blue strings only at the very top vertex.

Color codes can also be constructed in higher dimensions. In dimension D , one
should tile a D-manifold with D-simplices (D-dimensional convex hull of D+1 vertices)
such that the vertices are (D +1)-colorable. Then qubits are placed on the D-simplices
and X -stabilizers and Z -stabilizers are defined using x-simplices and z-simplices for
some integers x and z with x + z = D − 2. In Chapter 5, we present a generalization of
color codes and go over this construction in more detail.

GENERAL MULTI-MODE GKP CODES

As a last example we show here how the stabilizer formalism can be used similarly for
codes based on oscillators instead of qubits. We provide a mathematical summary of
the formalism of continuous-variable stabilizer codes, as introduced by Gottesman, Ki-
taev and Preskill (GKP) [41]. We show that these codes contain three main classes, lin-
ear oscillator codes, encoding continuous-variable information, proper GKP codes, en-
coding discrete information and not fully constrained GKP codes, encoding continuous-
variable information.

Recall that we write a displacement operator on a n-oscillator Hilbert space as fol-
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lows

U (e) ≡
n∏

k=1
ei uk p̂k+i vk q̂k , e ≡ (u, v ) ∈R2n . (1.68)

We also denote by Ô(e) the Hermitian operator in the exponent of U (e),

Ô(e) ≡ u · p̂ +v · q̂ =
n∑

k=1
uk p̂k +

n∑
k=1

vk q̂k , U (e) = exp
(
iÔ(e)

)
. (1.69)

These operators, U (e), follow the product rule

U (e)U (e ′) =U (e +e ′)eiω(e,e ′), (1.70)

with the standard symplectic form ω(e,e ′) = u ·v ′−v ·u′.
Take S ⊂ Hn an Abelian subgroup of the displacement operators with no element

proportional to the identity with a non-trivial phase, stabilizing some code space, Q.
One can simply characterise the structure of such a subgroup. Each element S ∈ S can
be uniquely written as

S = eiθU (e), (1.71)

for some real vector e ∈ R2n , and some phase θ ∈ [0,2π). Each vector e can only appear
with a unique phase θ in S , otherwise an element proportional to the identity with a
non-trivial phase would also be in S . Hence we have an isomorphism between S and
the additive subgroup G ⊂ R2n , given by all the vectors, e, obtained from the decompo-
sition in Eq. (1.71). We can then use the following theorem to characterize the structure
of S .

Theorem ([42]). Let G be a closed additive subgroup of R2n , G can be decomposed in the
direct sum of a linear subspace, G0 ⊂ R2n , and a discrete lattice, L, generated by some
vectors orthogonal to G0, u1, . . . ,um ∈G⊥

0 :

G =G0 ⊕L, L =
{

m∑
j=1

k j u j

∣∣∣ k1, . . . ,km ∈Z

}
.

The linear subspace G0 is the largest linear subspace contained in G.

The condition for G to be closed is without consequences in our case as an open set
and its closure would stabilize the same space. If G is open then we can replace it by
its closure and appropriately complete S . The limiting case when G = G0 corresponds
to the continuous case whereas G = L corresponds to the discrete case. Denote ℓ as the
dimension of G0, one can choose some basis vectors, G0 = 〈g 1, . . . , g ℓ〉. Consider one of
the generators of G0, w.l.o.g. g 1, for this generator, given a scalar factor λ ∈ R, there is
some angle function θ1(λ) such that

eiθ1(λ)U
(
λg 1

) ∈S .

It is easy to check that θ1 obeys Cauchy’s functional equation and as such θ1 is automat-
ically Q-linear: In equations this gives

∀(λ,µ) ∈R2, θ1(λ+µ) = θ1(λ)+θ1(µ) ⇒ ∀r ∈Q, θ1(r ) = rθ1(1) ≡ rθ1.
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Hence, for any code state, |Ψ〉 ∈Q, and rational r ∈Q, we can write down

ei rθ1U
(
r g 1

) |Ψ〉 = exp
(
i r

(
θ1 +Ô(g 1)

)) |Ψ〉 = |Ψ〉 . (1.72)

The previous equation means that code states are eigenstates of the operator Ô(g 1) with
eigenvalue O(g 1) which satisfies

∀r ∈Q, O(g 1)+θ1 = 0 mod 2π/r

⇔ O(g 1) =−θ1.

Usually, S will be chosen such that θ1 = 0, and Ô(g 1) will be called a nullifier as it only
takes eigenvalue 0 on the code space. Choosing some non-trivial θ1 just corresponds to
shifting the whole code space by U (θ1d 1), with d 1 describing the conjugated pair to g 1,
i.e. such that [Ô(g 1),Ô(d 1)] = i . Similarly, each generator g j is a nullifier on the code
space (up to some possible shift U (θ j d j )).

At this point, if G = G0 (L = ;), then we have described a linear oscillator code. It
is defined by the ℓ nullifiers, Ô(g j ), which each remove a single continuous degree of
freedom from the system, leaving k ≡ n−ℓ logical oscillator modes. The logical operators
can be found by completing the g j into a full symplectic basis. For the stabilized code
space to be non-trivial we therefore require that ℓ< n.

Consider now that L is non-trivial, then it will constrain the code space as described
in Ref. [41, Sec.VI] on the remaining k = n−ℓ modes available. Take one of the generators
of L, w.l.o.g. u1. The difference with elements of G0 is that it occurs in S only with integer
multiples. Similarly as previously, given a code state, |Ψ〉 ∈Q, and an integer k ∈Z there
will be some angle, ϑ1, such that,

ei kϑ1U (ku1) |Ψ〉 = exp
(
i k

(
ϑ1 +Ô(u1)

)) |Ψ〉 = |Ψ〉 . (1.73)

This means that on the code states, the operator Ô(u1) can take now several values, given
by

∀k ∈Z, O(u1)+ϑ1 = 0 mod 2π/k

⇔ O(u1) =−ϑ1 mod 2π.

The effect is to discretize this mode. As explained in Ref. [41], one then needs m = 2k
lattice generators to fully discretize the remaining k modes.

Using these discrete stabilizers it is also possible to completely freeze some of the
modes in a so-called comb state. Hence, one can freeze like this n − k of the modes
leaving room for k continuous-variable degrees of freedom.

Summing up, the case where G =G0 and ℓ< n (m = 0) corresponds to linear oscilla-
tor codes defined by ℓ nullifiers, encoding k = n −ℓ oscillators. On the other hand, the
case G = L and m = 2n (ℓ= 0) correspond to proper GKP codes described in [41]. Finally
there is the case where G = L with m < 2n and all the modes acted on by L are completely
frozen. The first two cases are investigated in Chapter 3, the third case was investigated
in [43].
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1.3. FAULT-TOLERANCE AND UNIVERSALITY

1.3.1. FAULT-TOLERANCE
The principle of fault-tolerance is to design specific protocols to realize the detection
and correction of errors according to a quantum error correcting code in such a way
that they can work even when their own components are noisy. The notion of fault-
tolerance is crucial since encoding quantum information in a quantum error correcting
code and frequently performing error correction increases the size of the total system
and the number of operations realized on it. When considering every element to be
noisy, this increase in size, a priori, increases the number of places where errors can
occur and it is therefore non-trivial to design protocols which overall have a net decrease
of the error rate when comparing bare, un-encoded systems, and logical encoded ones.

Consider, for example, the process of measuring the syndrome of an error correcting
code. In order to measure one of the stabilizer generators, one needs to couple an auxil-
iary system with all the qubits involved in the measured stabilizer and then measure the
auxiliary system. All these interactions can potentially spread errors. It can potentially
affect the readout of the syndrome as well as growing the size of the error on the data
qubits, which is potentially dangerous. This is why the design of syndrome extraction
circuits has to be carefully done with fault-tolerance in mind. Several techniques have
been designed to do this for any stabilizer code, see for instance [32, 44–46].

This issue is also crucial when considering that we not only want to store quantum
information but also process it. In other words, we want to apply transformations to the
physical system which act within the code space as some desired unitary transforma-
tions. Of course, any desired transformation of the encoded information can be realized
in some way without a guarantee of fault-tolerance. For example, it could be a large cir-
cuit which spreads errors substantially or does not tolerate errors on its components.
The task is thus to design a set of fault-tolerant gates forming a universal gate set on the
encoded level.

One useful concept to realize fault-tolerant logical gates is that of transversality. The
idea is that it is sometimes possible to realize logical operations on a code by acting sep-
arately on each physical qubit: logical Pauli operators of stabilizer codes are an example.
Such gate is automatically fault-tolerant as by acting separately on each qubit, the er-
rors stay localized. There exists a no-go theorem stating that universality through only
transversal gates is impossible [47, 48]. Moreover it was shown that topological codes in
D spatial dimensions can only implement logical gates from the Dth level of the Clifford
hierarchy (see Eq. (1.39)) when using constant-depth geometrically local circuits [49].
Hence researchers have had to find workarounds to these theorems to make universal
schemes.

A fault-tolerant scheme for quantum computation should therefore comprise a fam-
ily of quantum error correcting codes with growing distance, fault-tolerant procedures
for state preparation, syndrome extraction, a universal set of logical gates, measure-
ments and an efficient and accurate decoder. Then the ultimate test for the scheme is to
exhibit a threshold for a given model of noise. This means that there should be a value of
the strength of the noise below which it is possible to reduce the noise on the encoded
level to arbitrarily small values by choosing the correct code of the family (the one with
large enough distance).
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The evaluation of a fault-tolerant scheme then involves a consideration of the over-
head in space and time it imposes as compared to the ideal circuit. This overhead will
depend on the desired logical accuracy and the model and strength of the noise. The
value of the threshold is also very important: To be able to profit from the scheme, one
has to be able to build components in the lab with less noise than the threshold which is
daunting if the threshold is low.

1.3.2. MAGIC STATES AND THEIR DISTILLATION
It is in general fairly easy to realize fault-tolerantly logical Clifford gates on stabilizer
codes. This comes from the fact that Pauli stabilizers interact straightforwardly with Clif-
ford operations. So for many stabilizer codes, a way to implement the full Clifford group
fault-tolerantly is known. Then the main difficulty to get to universality is to find a way
to implement for example a T gate or a CCZ gate from the third level of the Clifford hier-
archy. The concept of magic states and magic state distillation has been devised to fulfill
exactly this.

A magic state is a quantum state which can be used to implement a gate on an oth-
erwise unknown state. This can be explained by examining one of the so-called one-bit
teleportation circuits [50], represented in Figure 1.5. Consider a unitary gate U which

|+〉 • X m |ψ〉
|ψ〉  m ∈ {0,1}

(a)

|+〉⊗n / • P (m,0) / |Ψ〉
|Ψ〉 /  m ∈ {0,1}n

(b)

Figure 1.5: (a) One of the circuit called one bit teleportation. Using a CNOT and a measurement one exactly
transfers the unknown single-qubit state |ψ〉 from the bottom wire to the top one. One needs to use the single-
bit outcome of the measurement, m, to apply or not a Pauli X correction to the top wire. (b) The same circuit
applied in parallel on a n-qubit state |Ψ〉. The n-bit outcome, m, is used to determine the n-qubit Pauli X
correction, P (m,0), see Eq. (1.15).

|+〉⊗n / • P (m,0) U / U |Ψ〉
|Ψ〉 /  m

(a)

=
U |+〉⊗n / • U †P (m,0)U / U |Ψ〉

|Ψ〉 /  m

(b)

Figure 1.6: (a) Applying the gate U after the one-bit teleportation circuit, evidently produce the state U |Ψ〉.
(b) If the gate U is diagonal in the computational basis, it can be commuted through the CNOTs. The task of
implementing U then amounts to preparing the state U |+〉⊗n and applying the correction U †P (m,0)U . If U is
in the kth level of the Clifford hierarchy then by definition the correction is in the (k −1)th level, see Eq. (1.39).

is diagonal in the computational basis and belongs to the kth level of the Clifford hier-
archy, see Eq. (1.39). Examining the circuit shown in Fig. 1.5b followed by the gate U ,
one can see that applying U on |Ψ〉 can be reduced to preparing a specific state U |+〉⊗n

and applying a correction in the (k −1)th level of the Clifford hierarchy, see Figure 1.6.
In particular if U is in the third level of the Clifford hierarchy, e.g. the T gate, this shows
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that one can implement universal quantum computation using only Clifford gates and
a supply of T |+〉 states, which are referred to as magic states. The same is true of states
like CCZ |+〉⊗3 since CCZ also promotes the Clifford gates to universality.

Considering having access to fault-tolerant constructions for all the Clifford gates
with a given code, the problem is now reduced to creating encoded magic states such as

|A〉 = T |+〉 , (1.74)

to get access to universal and fault-tolerant quantum computation. As mentioned ear-
lier, it is always possible to find some non-fault-tolerant way to implement any gate and
so it is easy to obtain noisy encoded magic states, e.g. by running the encoding circuit
of the code on an un-encoded magic state. Strikingly starting from noisy encoded magic
state and using only fault-tolerant Clifford gates it is possible to distill better and better
encoded magic states. This is called magic state distillation and several protocols have
been devised [51–57].

One type of magic state distillation protocols involves finding a code exhibiting a
transversal gate in the third level of the Clifford hierarchy. Consider having a [[n,k,d ]]
code, Cdist., such that applying transversally the T ⊗n gate on its n physical qubits realizes
the gate T ⊗k on its k logical qubits. The general idea to use such a code in a distillation
protocols is as follows:

1. Collect n logical qubits encoded each in a base code, Cbase, with which one can
realize all Clifford operations fault-tolerantly.

2. Using Clifford operations concatenate these n logical qubits into the code Cdist. in
the |+〉⊗k logical state.

3. Collects n noisy encoded magic states |A〉 (see Eq. (1.74)).

4. Using the one-qubit version of the circuit shown in Fig. 1.6b use the n noisy magic
states to apply with some noise the transversal T gate at the level of Cdist..

5. Using Clifford operations extract the syndrome of Cdist. and post-select on the triv-
ial syndrome.

6. Decode Cdist. to obtain k magic states encoded in Cbase whose noise was reduced
from some p roughly to pd .

Provided that the quality of the initial magic states is not too low, repeating suffi-
ciently many times the protocol will reach any desired accuracy. Then the amount of
resources spent will directly depend on the parameters of the distillation code [[n,k,d ]].
The efficiency of the protocol is often summarized in just one quantity:

γ= log(n/k)

log(d)
, (1.75)

since the average number of output distilled magic states at a desired accuracy, ϵout, per
initial noisy magic state is given by 1/O

(
log(ϵ−1

out

)γ
). So the smaller γ is, the more efficient

the protocol is. Previously conjectured to be at least 1, it has recently been shown that
γ< 1 is achievable [57]. In Chapter 5, Section 1.3.2 we devise a few such protocols.
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1.3.3. TECHNIQUES TO GET TO FAULT-TOLERANT UNIVERSALITY
Different techniques have been devised to reach fault-tolerant universal quantum com-
putation. We mention a few here, see also [7, 58–60].

CONCATENATION SCHEMES

The first proofs of the existence of fault-tolerant thresholds were using the principle of
code concatenation to build code families and hierarchies of fault-tolerant circuits [61–
63]. The noise models considered are independent on each qubit in space and time (or
very weakly correlated). The idea of concatenation is to recursively encode the informa-
tion on several levels of encoding. Then by carefully designing the circuits for the first
level, the circuits for the higher levels are directly recursively defined. The thresholds
for concatenated schemes are typically fairly low. The overhead they require is poly-
logarithmic in the size, N , of the ideal circuit to be implemented (multiplied by logc (N )).

TOPOLOGICAL SCHEMES

The most popular fault-tolerant schemes are based on 2D topological codes, in particu-
lar the one based on the toric code [34, 64]. Their popularity comes from the compara-
tively high threshold that they offer and the natural geometrical locality that they have.
This make them the first candidates in line for implementation. The overheads of these
schemes are also poly-logarithmic. For 2D topological codes which have the highest
thresholds it is reasonably easy to implement Clifford gates fault-tolerantly, using a mix
of transversal gates and code deformation techniques (more about code deformation in
Chapter 4). The main difficulty comes from the T gate or CCZ gate from the third level
of the Clifford hierarchy for which magic state distillation is used, see Sec.1.3.2.

Another technique for topological codes is to leverage the fact that some 3D topologi-
cal codes can have transversal gates in the third level of the hierarchy. For example, some
3D color codes with the right boundaries can have a transversal T gate. These 3D codes
can for example replace the magic state distillation part of the computation to provide
magic states to an otherwise 2D Clifford computation. Comparisons of overheads with
magic state distillation are still underway. Some of the disadvantages of 3D codes are the
overhead coming with 3D geometry and their generally lower thresholds.

These 3D codes could also be used for the whole architecture since it is possible to
get a universal set of gates on them using a trick called gauge fixing [65]. Interestingly it is
also possible by using the measurement based quantum computing approach to realize
these 3D schemes in a quasi-2D manner where it is sufficient to only have a quasi-2D
layer of the 3D code alive at any given time [66, 67]. The thresholds of such schemes are
still to be precisely determined but likely to be on the lower sides.

SCHEMES WITH CONSTANT OVERHEAD

All the previous schemes have a poly-logarithmic overhead. The possibility of fault-
tolerant schemes with constant overheads has been posed in [68] and recently realized
in [69]. One of the main features of these schemes is that they leverage error correcting
codes with a constant encoding rate, meaning that k/n goes to a constant with growing
n and not to 0. Hence with constant rate codes, increasing the distance of the code also
yields more logical qubits which participate in a wholesale effect with reduced cost. The
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thresholds of these schemes are also currently under investigation. One of the difficul-
ties with these schemes is the realization of logical gates within the same block of code.
They currently use several sub-linear sized blocks and perform gates on one logical qubit
of each block at a time. In particular, one desirable feature that this is missing so far is
the possibility to realize gates in parallel within a block and therefore also keep the depth
of the original circuit. Understanding the fault-tolerant ways to perform gates within a
code block is ongoing research.

1.4. ORGANIZATION OF THE THESIS
The rest of this thesis consists in four chapters followed by a conclusion. The chapters
cover diverse topics and are organized such that we start closest to the hardware and
move gradually up the quantum computing stack.

Chapter 2 presents an experiment realized on a quantum chip whose access was pro-
vided by IBM. It is one of the first experiments testing in a real setting the principles of
fault-tolerant quantum computation, using the full computational capabilities of a four
qubit detecting code. The experimental results are one of the first validations of fault-
tolerant designs of circuits as they show an improvement on average over the circuits
tested.

Chapter 3 presents a theoretical study of fault-tolerance with quantum oscillators
as building blocks. The idea is to consider starting from oscillators in the lab, encod-
ing qubits into them using a first layer of error correction and then using these encoded
qubits in a larger qubit error correcting code. Interestingly, we show a numerical thresh-
old in the fault-tolerant regime, which can be interpreted on the level of the qubit code
as an error model including leakage errors. We also present a no-go theorem for certain
types of oscillator codes which we call linear oscillator codes showing that they cannot
protect information.

Chapter 4 presents a theoretical study of code deformation techniques. We present
a formalism to easily analyze their fault-tolerance properties and give a prescription
about how to perform decoding during the procedure. We illustrate it on known and
new code deformation techniques, which have the potential to improve the reliability of
these techniques. We also use the new techniques to investigate a curious hybrid scheme
mixing topological codes and concatenation.

Chapter 5 presents a new construction of CSS codes, which we call quantum pin
codes, providing a generalization of color codes. This code family has the potential to
host some codes with constant encoding rate and transversal non-Clifford gates. We de-
fine them, present some practical constructions and examples and study their transver-
sality properties. Using these constructions and properties of pin codes, we are able to
derive some efficient distillation protocols.
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[36] S. B. Bravyi and A. Y. Kitaev, Quantum codes on a lattice with boundary, (1998).

[37] N. Delfosse, P. Iyer, and D. Poulin, Generalized surface codes and packing of logical
qubits, arXiv:1606.07116 [quant-ph] (2016), arXiv: 1606.07116.

[38] H. Bombin and M. A. Martin-Delgado, Topological Quantum Distillation, Physical
Review Letters 97, 180501 (2006).

[39] H. Bombin and M. A. Martin-Delgado, Exact topological quantum order in D = 3
and beyond: Branyons and brane-net condensates, Physical Review B 75, 075103
(2007).

[40] A. Kubica and M. E. Beverland, Universal transversal gates with color codes: A sim-
plified approach, Phys. Rev. A 91, 032330 (2015).

[41] D. Gottesman, A. Kitaev, and J. Preskill, Encoding a qubit in an oscillator, Phys. Rev.
A 64, 012310 (2001).

[42] N. Bourbaki, Éléments de mathématique. III. Topologie générale. Groupes additifs de
Rn . (Hermann, 1960).

[43] K. Noh, S. M. Girvin, and L. Jiang, Encoding an oscillator into many oscillators,
arXiv:1903.12615 [quant-ph] (2019), arXiv: 1903.12615.

[44] D. P. DiVincenzo and P. W. Shor, Fault-Tolerant Error Correction with Efficient Quan-
tum Codes, Physical Review Letters 77, 3260 (1996).

[45] A. M. Steane, Active stabilization, quantum computation, and quantum state syn-
thesis, Phys. Rev. Lett. 78, 2252 (1997).

[46] E. Knill, Quantum computing with realistically noisy devices, Nature 434, 39 (2005).

[47] B. Eastin and E. Knill, Restrictions on transversal encoded quantum gate sets, Phys.
Rev. Lett. 102, 110502 (2009).

[48] B. Zeng, A. W. Cross, and I. L. Chuang, Transversality Versus Universality for Additive
Quantum Codes, IEEE Transactions on Information Theory 57, 6272 (2011).

[49] S. Bravyi and R. König, Classification of Topologically Protected Gates for Local Sta-
bilizer Codes, Phys. Rev. Lett. 110, 170503 (2013).

[50] X. Zhou, D. W. Leung, and I. L. Chuang, Methodology for quantum logic gate con-
struction, Phys. Rev. A 62, 052316 (2000).

http://stacks.iop.org/1367-2630/12/i=8/a=083039
http://stacks.iop.org/1367-2630/12/i=8/a=083039
http://dx.doi.org/10.1007/s102080010013
http://arxiv.org/abs/quant-ph/9811052
http://arxiv.org/abs/1606.07116
http://dx.doi.org/ 10.1103/PhysRevLett.97.180501
http://dx.doi.org/ 10.1103/PhysRevLett.97.180501
http://dx.doi.org/10.1103/PhysRevB.75.075103
http://dx.doi.org/10.1103/PhysRevB.75.075103
http://dx.doi.org/10.1103/PhysRevA.91.032330
http://dx.doi.org/10.1103/PhysRevA.64.012310
http://dx.doi.org/10.1103/PhysRevA.64.012310
http://arxiv.org/abs/1903.12615
http://dx.doi.org/ 10.1103/PhysRevLett.77.3260
http://dx.doi.org/10.1103/PhysRevLett.78.2252
http://dx.doi.org/10.1038/nature03350
http://dx.doi.org/ 10.1103/PhysRevLett.102.110502
http://dx.doi.org/ 10.1103/PhysRevLett.102.110502
http://dx.doi.org/ 10.1109/TIT.2011.2161917
http://dx.doi.org/10.1103/PhysRevLett.110.170503
http://dx.doi.org/10.1103/PhysRevA.62.052316


REFERENCES

1

33

[51] S. Bravyi and A. Kitaev, Universal quantum computation with ideal Clifford gates
and noisy ancillas, Physical Review A 71, 022316 (2005).

[52] S. Bravyi and J. Haah, Magic-state distillation with low overhead, Physical Review A
86, 052329 (2012).

[53] C. Jones, Multilevel distillation of magic states for quantum computing, Phys. Rev. A
87, 042305 (2013).

[54] E. T. Campbell and M. Howard, Unified framework for magic state distillation and
multiqubit gate synthesis with reduced resource cost, Physical Review A 95, 022316
(2017).

[55] E. T. Campbell and M. Howard, Unifying Gate Synthesis and Magic State Distillation,
Physical Review Letters 118, 060501 (2017).

[56] J. Haah and M. B. Hastings, Codes and Protocols for Distilling T , controlled-S, and
Toffoli Gates, Quantum 2, 71 (2018).

[57] M. B. Hastings and J. Haah, Distillation with Sublogarithmic Overhead, Physical Re-
view Letters 120, 050504 (2018).

[58] J. Preskill, Reliable quantum computers, Proceedings of the Royal Society of London.
Series A: Mathematical, Physical and Engineering Sciences 454, 385 (1998).

[59] D. Aharonov, Noisy quantum computation, Ph.D. thesis, The Hebrew University,
Jerusalem (1999).

[60] E. T. Campbell, B. M. Terhal, and C. Vuillot, Roads towards fault-tolerant universal
quantum computation, Nature 549, 172 (2017).

[61] D. Aharonov and M. Ben-Or, Fault-tolerant Quantum Computation with Constant
Error, in Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of
Computing, STOC ’97 (ACM, New York, NY, USA, 1997) pp. 176–188, event-place:
El Paso, Texas, USA.

[62] E. Knill, R. Laflamme, and W. H. Zurek, Resilient quantum computation: error mod-
els and thresholds, Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences 454, 365 (1998).

[63] P. Aliferis, D. Gottesman, and J. Preskill, Quantum Accuracy Threshold for Concate-
nated Distance-3 Codes, Quantum Info. Comput. 6, 97 (2006).

[64] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topological quantum memory, Jour-
nal of Mathematical Physics 43, 4452 (2002).

[65] H. Bombín, Gauge color codes: optimal transversal gates and gauge fixing in topo-
logical stabilizer codes, New Journal of Physics 17, 083002 (2015).

[66] H. Bombin, 2d quantum computation with 3d topological codes, arXiv:1810.09571
[quant-ph] (2018), arXiv: 1810.09571.

http://dx.doi.org/10.1103/PhysRevA.71.022316
http://dx.doi.org/10.1103/PhysRevA.86.052329
http://dx.doi.org/10.1103/PhysRevA.86.052329
http://dx.doi.org/10.1103/PhysRevA.95.022316
http://dx.doi.org/10.1103/PhysRevA.95.022316
http://dx.doi.org/ 10.1103/PhysRevLett.118.060501
http://dx.doi.org/10.22331/q-2018-06-07-71
http://dx.doi.org/ 10.1103/PhysRevLett.120.050504
http://dx.doi.org/ 10.1103/PhysRevLett.120.050504
http://dx.doi.org/10.1098/rspa.1998.0167
http://dx.doi.org/10.1098/rspa.1998.0167
http://dx.doi.org/ 10.1038/nature23460
http://dx.doi.org/ 10.1145/258533.258579
http://dx.doi.org/ 10.1145/258533.258579
http://dx.doi.org/ 10.1098/rspa.1998.0166
http://dx.doi.org/ 10.1098/rspa.1998.0166
http://dx.doi.org/10.1088/1367-2630/17/8/083002
http://arxiv.org/abs/1810.09571
http://arxiv.org/abs/1810.09571


1

34 REFERENCES

[67] B. J. Brown, A fault-tolerant non-Clifford gate for the surface code in two dimensions,
arXiv:1903.11634 [cond-mat, physics:quant-ph] (2019), arXiv: 1903.11634.

[68] D. Gottesman, Fault-Tolerant Quantum Computation with Constant Overhead,
Quant. Information and Computation 14, 1338 (2014).

[69] O. Fawzi, A. Grospellier, and A. Leverrier, Constant Overhead Quantum Fault-
Tolerance with Quantum Expander Codes, in 2018 IEEE 59th Annual Symposium
on Foundations of Computer Science (FOCS) (2018) pp. 743–754.

http://arxiv.org/abs/1903.11634
http://www.rintonpress.com/journals/qicabstracts/qicabstracts14-1516.html
http://dx.doi.org/10.1109/FOCS.2018.00076
http://dx.doi.org/10.1109/FOCS.2018.00076


2
TESTING QUANTUM

FAULT-TOLERANCE

This chapter reports on experiments realized on several IBM 5Q chips which show evidence
for the advantage of using error detection and fault-tolerant design of quantum circuits.
An average improvement of the task of sampling from states that can be fault-tolerantly
prepared in the [[4,2,2]] code is shown, when using a fault-tolerant technique well suited
to the layout of the chip.

This chapter has been published in Quantum Information & Computation 18, 11&12, 0949-0964 (2018), [1].
The paper received the IBM Q Best Paper Award 1st place, 2018.
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2.1. INTRODUCTION

Q UANTUM systems in laboratories around the world are reaching unprecedented level
of control and precision for a variety of devices aiming at implementing reliable

qubits. Yet, due to the very nature of those devices, errors are still notably present. In
order to be able to execute long quantum algorithms, improvements should be made
using quantum error correction and fault-tolerant schemes. So-called threshold theo-
rems [2, 3] prove that there exist error rates below which this approach is guaranteed
to improve the device performance. However, between those theorems and real exper-
iments there remains a fog of technical details which clouds the actual practicality of
error correcting codes.

Already some experiments which demonstrate the usefulness of quantum error cor-
recting codes to protect a quantum memory have been done, e.g. [4–8], but a demon-
stration of protected computation is still missing.

Inspired by a recent proposal by D. Gottesman [9], we use an IBM 5Q chip to show
that error detection can improve some simple sampling tasks, thus turning a tiny portion
of fog into blue sky. Closely related to this work, [7] and [8] present experiments based on
the same error detecting code, on trapped-ion qubits and on a similar superconducting
chip, respectively. Both those works focus on the preparation of few states and only one
of the two encoded qubits is handled fault-tolerantly. In the present work an extensive
set of fault-tolerant circuits is studied and both logical qubits are protected. Moreover
[7] and [8] introduce artificial Pauli errors to study the robustness of their preparation
whereas this work takes a higher level approach, treating the experimental set-up as a
black box, probing only the intrinsic errors in the system. These considerations make the
present work closer to the spirit of [9]. This work is, to the author’s knowledge, the first
experimental demonstration of error detection and fault-tolerance improving a quan-
tum computation.

The chapter is organized as follows. In Section 2.2 we present the principle of the ap-
proach and its specialization to the IBM 5Q chip. In Section 2.3 the experimental results
are shown and analyzed.

2.2. DEMONSTRATING FAULT-TOLERANCE

The idea behind fault-tolerance is to devise error correcting codes and the correspond-
ing processes of encoding, correcting, computing or measuring with encoded informa-
tion such that more errors are corrected than introduced [10]. The difficulty in devising
such processes is that they are built out of components that are all faulty, so adding some
might do more harm than it can help. Devising, proving and simulating fault-tolerant
schemes has been pursued for the last 20 years, e.g. [2, 10–16], but improving and find-
ing better schemes is still important and a subject of ongoing research, e.g. [17–21].

Taking one of these schemes and experimentally demonstrating its fault-tolerance,
i.e finding an improvement of performance going from bare to encoded implementa-
tion, provides the ultimate validation of the scheme.
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2.2.1. GENERAL APPROACH

A description of a general approach to demonstrate fault-tolerant quantum computa-
tion is given in [9]; we just briefly recall it here. The idea is to choose a quantum error
correcting code C , admitting fault-tolerant circuits for the preparation of some logical
states, denoted as |s1〉 , . . . , |sm〉 ∈ SC

FT, as well as for some logical quantum gates, denoted

as U1, . . . ,Un ∈ GC
FT. Using these as building blocks one can then randomly draw a state

preparation from SC
FT, then draw a sequence of gates from GC

FT to obtain an encoded
fault-tolerant circuit.

More precisely, following the formalism of rectangles and extended rectangles intro-
duced in [11], one interleaves the logical units (gates in GC

FT, or preparation of states in

SC
FT) with a fault-tolerant circuit for error correction. Rectangles designate circuits com-

prising one logical unit preceded by a round of error correction, extended rectangles des-
ignate circuits comprising one logical unit preceded and followed by a round of error
correction. The precise conditions to satisfy in order to be fault-tolerant for distance 3
codes are stated in [11]. This ensures that the whole computation is error free if there is
at most one fault per extended rectangle.

The error model considered in this paper is that the failure of any component can
introduce any Pauli error on the qubits acted on by the component. In our case, we
cannot repeat fault-tolerant detection of errors, so our circuits will only tolerate a single
fault in total.

The encoded circuits then have to be compared to a bare implementation on the
physical qubits. Sampling from the final state produced by the circuit in the computa-
tional basis and comparing the probability distribution obtained with the expected one
gives a simple comparison metric. Note that this supposes that the circuits are small
enough or simple enough so that one can classically simulate sampling from the fi-
nal state efficiently. A successful demonstration of fault-tolerant quantum computation
happens if the encoded circuits show better performance than the bare circuits. To be
the most convincing, one needs to use the best of the physical qubits as well as the most
efficient implementation for the bare circuits.

2.2.2. THE IBM 5Q CHIP AND [[4,2,2]]

In 2016 IBM released a quantum chip with fixed-frequency superconducting transmon
qubits, named IBM 5Q. They provide worldwide cloud access to the chip under an ini-
tiative called the “IBM Quantum Experience” [22]. The current iteration on which the
experiments were done is nicknamed Raven. The appendix also presents and compares
preliminary results obtained with a previous iteration, Sparrow. The chip has five qubits,
natively named q0 to q4. It features single-qubit Clifford gates, the T gate (diag(1,eiπ/4))
as well as some two-qubit CNOTs with a certain layout represented in Figure 2.1a. This
many qubits is the right number to use for a demonstration using the [[4,2,2]] code as
discussed in [9].

The [[4,2,2]] code encodes two qubits into four physical qubits. Its code space is
stabilized by the all-X and all-Z Pauli operators (SX = X ⊗X ⊗X ⊗X , SZ = Z ⊗Z ⊗Z ⊗Z ),
together with the logical Pauli operators, they are represented in Figure 2.1b. The logical
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q2

4

q1 1q32

q43 q0 A

(a) Layout

1 2

3 4
SX ,SZ

Z2, X1

Z1, X2

(b) [[4,2,2]] Code

Figure 2.1: (a) The connectivity between the qubits in the IBM 5Q Raven chip. Arrows indicate CNOT capabili-
ties where the arrow points towards the target of the CNOT. Red labels indicate our choice of qubit numbering.
A is an ancillary qubit used in verification of state preparation. (b) The usual representation layout for the
[[4,2,2]] code. The numbered circles represent the qubits and the rectangular boxes represent the support of
different Pauli operators: logical Pauli operators Z1, X2 are highlighted in blue, logical Pauli operators Z2, X1
in green and stabilizers SX , SZ in black.

code states are

|00〉L = 1p
2

(|0000〉+ |1111〉) (2.1)

|01〉L = 1p
2

(|1100〉+ |0011〉) (2.2)

|10〉L = 1p
2

(|1010〉+ |0101〉) (2.3)

|11〉L = 1p
2

(|1001〉+ |0110〉) . (2.4)

The code also admits transversal implementations of two Clifford gates, namely H ⊗H ·
SWAP, where H is the Hadamard gate, see Figure 2.2a, and the controlled phase or CZ
gate, see Figure 2.2b. Moreover, if the five qubits have the right connectivity then there

q1 H

H ×
≡

q2 H

H × q3 H

q4 H

(a)

q1 S

•
≡

q2 S†

H H q3 S†

q4 S

(b)

Figure 2.2: (a) Bare and encoded versions of H⊗H ·SWAP, where H is the Hadamard gate. In practice the SWAP
gate is not done physically on the bare version but just in software, by renumbering the two qubits. (b) Bare
and encoded versions of the CZ gate, where S = diag(1, i ).

are fault-tolerant circuits preparing the logical states |00〉L, |0+〉L and (|00〉L +|11〉L)/
p

2.
For the cat state |00〉L, see Equation (2.1), there exists fault-tolerant preparations includ-
ing one ancillary qubit to check the preparation. One post-selects on a successful prepa-
ration. The logical states |0+〉L and |00〉L+|11〉L are both two Bell pairs but with different
pairings. They both also have fault-tolerant preparation circuits. In [9], some circuits are
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proposed, they can be adapted to the layout of the chip. We tested another preparation
for |00〉L inspired by [17], which is substantially shorter so more relevant to this layout.

q0 →|0〉 
q1 →|0〉
q2 →|0〉 H • • H H • •
q3 →|0〉 H • H
q4 →|0〉

(a) FTv1

|0〉 

|0〉 •
|0〉 H • × •
|0〉 H • H •
|0〉 ×

(b) FTv2

Figure 2.3: The two different implementations for preparing the state |00〉L: (a) Based on a flagging technique
with 5 CNOTs, (b) based on the circular connectivity circuit with 8 CNOTs. In both circuits if the ancillary qubit
q0 is measured as 1, we reject the preparation.

q0 →|0〉
q1 →|0〉
q2 →|0〉 •
q3 →|0〉 H • •
q4 →|0〉

Figure 2.4: A short but non-fault-tolerant circuit to prepare |00〉L.

The flagging technique in [17] for the preparation of |00〉L can be implemented with
the given CNOT connectivity, see Figure 2.3a. We call this the fault-tolerant version
one (FTv1). The technique based on a circular layout proposed by [9] cannot be imple-
mented directly due to the connectivity. A clever introduction of one SWAP gate permits
to implement it still fault-tolerantly at the cost of 8 CNOT gates in total, see Figure 2.3b.
We call this the fault-tolerant version two (FTv2). We present below, the results for FTv1,
which is more appropriate for the layout. For both those circuits one can check that
every possible single fault leads to a detectable error, or an error that stabilizes the pre-
pared state. We also tried a non-fault-tolerant one that has the advantage of being short,
involving only 3 CNOTs, see Figure 2.4. We call this the non-fault-tolerant version (NFT).
For the preparation of |0+〉L, we want to create a Bell pair between q1 and q3 and be-
tween q2 and q4. There is a missing connection between q1 and q3, but we can do a sim-
ilar SWAP trick, see the resulting circuit in Figure 2.6a. This circuit is not fault-tolerant
as an undetected logical Z1 ⊗ Z2 = Z ⊗1⊗1⊗ Z can occur if the SWAP gate fails. This
is the only possible harmful logical error for this circuit. We’ll see below that we only
use this circuit in cases were the possible undetected Z1 ⊗ Z2 error does not change the
outcome of the sampling test. The preparation for |00〉L +|11〉L can itself be straightfor-
wardly implemented fault-tolerantly, see Figure 2.6b. To summarize, our sets of initial
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logical states and gates are

SFT =
{
|00〉 , |0+〉 ,

|00〉+ |11〉p
2

}
,

GFT = {X1, X2, Z1, Z2, H ⊗H ·SWAP,CZ } .

The [[4,2,2]] code is only an error detecting code, that is, it can detect one Pauli error
but cannot correct it. This means that in place of error correction we have to rely on
post-selection to remove errors. In other words, we throw away runs where we detect
that an error occurred, either from the ancilla measurement checking state preparation,
or from the final measurement which indicates, when the parity of the outcomes is odd,
that SZ has value −1.

As mentioned before, we cannot interleave rounds of error detection between state
preparation and the gates. That means that the final circuit can only be tolerant to a sin-
gle fault during the whole computation, except for the specific undetectable Z1⊗Z2 fail-
ure mentioned above and when we use the non-fault-tolerant version to prepare |00〉L.

×
=

• H • H •
× H H

Figure 2.5: Implementation of the SWAP gate.

q1 →|0〉 H ×
q2 →|0〉 × •
q3 →|0〉 H •
q4 →|0〉

(a)

|0〉
|0〉 H •
|0〉 H •
|0〉

(b)

Figure 2.6: (a) Preparation circuits of the logical state |0+〉L, with 5 CNOTs. (b) Preparation circuits of the logical
Bell state

(|00〉L +|11〉L
)

/
p

2 with 2 CNOTs.

2.2.3. COMMENTS ON THE TESTED CIRCUITS
Since we work with such a small system, we can exhaustively find and try all the logically
equivalent circuits and optimize the bare version for each one. Essentially, we are mak-
ing it most likely for the bare version of the task to prevail. From the set of states SFT, and
the set of gates GFT, one can obtain 20 different stabilizer states. All the states with their
most efficient bare preparation circuit, using the native set of gates provided by IBM, are
listed in Table 2.1. A brute force approach was used to find them.

Note that adding more gates in the sequence would test states that are already tested
with shorter circuits. Therefore those would certainly give worse results as we cannot
interleave error detections between gates. Hence we kept only these 20 different prepa-
rations. This still extensively probes the computational capabilities of the [[4,2,2]] code.
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Initial state Unitary Final state # Instructions

|00〉 1⊗1 |00〉 5

|0+〉 1⊗1 |00〉+|01〉p
2

6

|00〉 1⊗X |01〉 6

|00〉 X ⊗1 |10〉 6

|00〉+|11〉p
2

1⊗1 |00〉+|11〉p
2

7

|0+〉 1⊗Z |00〉−|01〉p
2

7

|00〉 H ⊗H ·SWAP |00〉+|01〉+|10〉+|11〉
2 7

|0+〉 X ⊗1 |10〉+|11〉p
2

7

|00〉 X ⊗X |11〉 7

|00〉+|11〉p
2

1⊗Z |00〉−|11〉p
2

8

|00〉+|11〉p
2

X ⊗1 |10〉+|01〉p
2

8

|00〉 1⊗Z ·H ⊗H ·SWAP |00〉−|01〉+|10〉−|11〉
2 8

|00〉 Z ⊗1 ·H ⊗H ·SWAP |00〉+|01〉−|10〉−|11〉
2 8

|0+〉 X ⊗Z |10〉−|11〉p
2

8

|00〉+|11〉p
2

1⊗Z X |10〉−|01〉p
2

9

|00〉 Z ⊗Z ·H ⊗H ·SWAP |00〉−|01〉−|10〉+|11〉
2 9

|00〉 CZ ·H ⊗H ·SWAP |00〉+|01〉+|10〉−|11〉
2 10

|00〉 CZ ·1⊗Z ·H ⊗H ·SWAP |00〉−|01〉+|10〉+|11〉
2 11

|00〉 CZ ·Z ⊗1 ·H ⊗H ·SWAP |00〉+|01〉−|10〉+|11〉
2 11

|00〉 1⊗X ·CZ ·H ⊗H ·SWAP ·X ⊗1 |00〉−|01〉−|10〉−|11〉
2 12

Table 2.1: The list of initial states and unitary circuits and the number of QASM instructions in the bare circuit
(including final measurements). The final states are written exclusively in the computational basis since that
is how they are measured.
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2.3. EXPERIMENTAL RESULTS
The code and data can be found on GitHub [23]: it uses the Python SDK that can be
found at [24].

2.3.1. PARAMETERS AND RUNS
Using the IBM chip one can run circuits in batches. For each individual run, 8192 shots
are done right one after another in a short time, where each shot outputs 5 bits as mea-
surement outcomes. We consider that the chip is exactly in the same conditions during
each run. We consider all the runs to be independent of one another but each to be done
in different conditions, so sampling from different output distributions.

For each run, IBM also provides calibration data describing the state of the chip such
as: gate error rates, readout error rates, T1, T2 and fridge temperature. We give the aver-
age values that we observed for our runs in the appendix.

2.3.2. PERFORMANCE METRIC
For each circuit run we want to compare the observed outcome distribution with the
ideal one. The ideal distribution is 8192 independent samples from a distribution with
four possible outcomes occurring with probabilities p00, p01, p10 and p11. The values for
pi j can be read from Table 2.1. Since we assume that the conditions stay identical during
one run and that the 8192 shots are independent, we observe independent samples from
a four-outcome distribution with some different probabilities p̃00, p̃01, p̃10 and p̃11.

We then use the statistical distance as a metric:

D = 1

2

(
|p00 − p̃00|+ |p01 − p̃01|+ |p10 − p̃10|+ |p11 − p̃11|

)
.

This quantity is estimated for each run by

D̂ = 1

2

(∣∣∣∣p00 − n00

nvalid

∣∣∣∣+ ∣∣∣∣p01 − n01

nvalid

∣∣∣∣+ ∣∣∣∣p10 − n10

nvalid

∣∣∣∣+ ∣∣∣∣p11 − n11

nvalid

∣∣∣∣) ,

where ni j is the number of observation of outcome i j after post-selection and nvalid

is the number of shots kept after post-selection. This estimator for D is slightly biased
except for the case where only one of the pi j is non-zero (because in this case it becomes
linear). We use this estimator to keep the analysis simple.

Each of the runs has some different p̃i j and we have no information about how the
p̃i j s vary. Therefore we will assume that there are fluctuations around the mean of D̂
following some unknown normal distribution and use this model to compute confidence
intervals [25]. This means that the final data points and their confidence intervals don’t
exactly reflect knowledge of D but only of D̂ which we believe is still a valid quantity to
characterize the performance of the circuits.

2.3.3. COMPARISONS
We first need to decide on what pair of bare qubits is the best to be compared to the en-
coded qubits. It is not immediately clear how to choose this given only the calibration
numbers. Thus we tried out the six different connected pairs and we found the perfor-
mance shown in Figure 2.7. There is no clear “best pair” but one can see that the pairs
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Figure 2.7: Comparison of the different pairs of qubits to implement the bare circuits together with the number
of instructions for each circuit.
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Figure 2.8: Comparing encoded performance with bare qubit pair [2−0]. The performance is defined as the
statistical distance to the ideal outcome distribution. The figure shows the difference between encoded and
bare performance. The error bars show confidence intervals at 99%.
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[2−0] or [3−2] seem to be slightly better. Since we don’t have a systematic method for
predicting the best pair given the calibration data and the circuit, we will look at average
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Implementation Avg.Perf.(×10−2) Post-selection ratio

Bare[1-0] 6.72 1.00
Bare[2-0] 5.50 1.00
Bare[2-1] 6.49 1.00
Bare[2-4] 6.98 1.00
Bare[3-2] 6.27 1.00
Bare[3-4] 7.73 1.00

FTv1 4.51 0.65
NFT 6.05 0.71

Table 2.2: Average performance for the different bare and encoded possible implementations with the post-
selection ratio (ratio of data kept). The encoded implementations only differ in how they prepare the state
|00〉L.

performance for each pair over all the circuits. When averaging, we find the pair [2−0] to
be the best, see Table 2.2. The second observation that we can make based on Figure 2.7
is that the number of instructions does not explain the performance. It seems that the
type of state sampled from is more important. Roughly it is easier to sample from equal
superposition of the four computational basis states, than from equal superposition of
two, than from just one. This can be understood with the fact that with more states in
equal superposition there are less Pauli errors or readout errors that can affect the out-
come distribution.

We then go on, comparing the encoded versions of the circuits to the elected best
pair in Figure 2.8. The encoded circuits using the preparations |0+〉L and |00〉L + |11〉L

are short and fault-tolerant and indeed show better performance than the bare ones.
For the different preparations for |00〉L, the fault-tolerant version FTv1 is, except in a
few cases, better than the non-fault-tolerant one despite being substantially longer. This
shows that fault-tolerant design of circuits can be useful. Although they both compare
unfavourably to the bare version, except for 4 circuits for FTv1 and only 1 circuit for NFT.

We cannot make an absolute statement as for some circuits the bare version is always
better. We also don’t want to cherry pick the best version for each circuit since we don’t
have a systematic way of predicting the best version. The average performance when
fixing a preparation for |00〉L is shown in Table 2.2. One can see that FTv1, with 4.51×
10−2, is better than the best bare implementation with 5.5×10−2, whereas NFT (6.05×
10−2) is worse.

2.4. CALIBRATION DATA AND ADDITIONAL EXPERIMENT
This section presents the calibration data for the experiments, averaged over all the dif-
ferent runs as well as the observed standard deviation. It also shows previous runs on
a previous iteration of the chip, called Sparrow, which was showing better performance
but has been taken down by IBM. The current iteration is named Raven: the more ex-
tensive runs presented in this paper were done on this chip. Note that for the runs on
Sparrow, there were only 4 different calibrations and 36 runs for each circuit. For Raven
we have more than 100 runs for each circuit and almost a new calibration per run.
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chip Temperature (mK)

Raven 21
Sparrow 19

Table 2.3: Average fridge temperatures for the two chips at the time of the runs in mK.

qubit T1(ţs) σ[T1] T2(ţs) σ[T2]

Q0 46 6.5 40 7.3
Q1 57 6.8 45 6.3
Q2 39 5.1 40 3.2
Q3 40 4.8 57 12.5
Q4 54 9.1 21 1.3

(a) Raven

qubit T1(ţs) σ[T1] T2(ţs) σ[T2]

Q0 49 8.9 39 4.5
Q1 46 11.0 39 13.3
Q2 56 1.7 91 9.9
Q3 47 4.9 62 12.0
Q4 55 6.0 81 13.2

(b) Sparrow

Table 2.4: Average T1 and T2 parameters for the runs together with their standard deviation all in ţs.

The two chips are similar, the gate and readout error rates have been slightly im-
proved with Raven but the fridge temperature as well as T1 and T2 times became a bit
worse. The layout differs only in the orientation of the CNOTs, see Figure 2.9. The cir-
cuits run on Sparrow are shown in Figure 2.10a and Figure 2.10. Comparison of the bare
and encoded performance between Raven and Sparrow are presented in Figure 2.11 and
Figure 2.12. One can see that the previous iteration was performing better.

qubit gate error (%) σ[gate error] readout error (%) σ[readout error]

Q0 0.1 0.021 4.1 0.63
Q1 0.08 0.035 4.7 0.96
Q2 0.15 0.024 2.7 0.36
Q3 0.15 0.016 6.2 1.11
Q4 0.19 0.026 5.1 1.1

(a) Raven

qubit gate error (%) σ[gate error] readout error (%) σ[readout error]

Q0 0.23 0.009 1.9 0.22
Q1 0.30 0.099 8.3 2.19
Q2 0.42 0.085 1.5 0.29
Q3 0.52 0.213 12.3 3.60
Q4 0.33 0.027 6.6 0.83

(b) Sparrow

Table 2.5: Average single-qubit gate and readout error rates for the runs together with their standard deviation,
all in percent.
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pair gate error (%) σ[gate error]

1-0 2.2 0.32
2-0 2.3 0.25
2-1 2.7 0.36
2-4 3.9 0.78
3-2 2.2 0.30
3-4 2.7 0.38

(a) Raven

pair CNOT error (%) σ[CNOT error]

1-0 4.0 0.74
2-0 3.0 0.24
2-1 4.6 0.86
2-4 3.7 0.34
3-2 6.2 0.90
3-4 5.8 2.05

(b) Sparrow

Table 2.6: Average CNOT gate error rates and their standard deviation for the runs, all in percent.

q2

4

q1 1q32

q43 q0 A

Figure 2.9: Layout of the Sparrow chip.

q0 →|0〉 H • • H 

q1 →|0〉 × H H

q2 →|0〉 × H H

q3 →|0〉 H • •
q4 →|0〉 •

(a)

|0〉 ×
|0〉 ×
|0〉 H •
|0〉 H •

(b)

|0〉 H •
|0〉
|0〉 H •
|0〉

(c)

Figure 2.10: (a)The circuit previously implemented on the IBM 5Q Sparrow chip preparing the logical state
|00〉L. The SWAP gate is implemented via the circuit in Figure 2.5. If the SWAP gate fails, it can introduce
Pauli X errors on q1 and q2, which would not be detected and which constitute a logical X1 ⊗ X2 error. (b)
Preparation circuits of the logical state |0+〉L, with 5 CNOTs. If the SWAP gate fails, it can introduce Pauli X
errors on q1 and q2, which would not be detected and which constitute a logical X1 ⊗X2 error. (c) Preparation
circuits of the logical Bell state

(|00〉L +|11〉L
)

/
p

2 with 2 CNOTs.

2.5. CONCLUSION
In conclusion, we have shown that already on the IBM 5Q chip one can improve some
quantum computation task, namely sampling from a class of states, by using error de-
tection and fault-tolerant design of circuits. This improvement is only on average over
20 different states that the [[4,2,2]] code can fault-tolerantly prepare. We also can see
that shorter but non fault-tolerant circuits can be bested by longer but fault-tolerant
circuits, showing the usefulness of these. As better and better hardware is developed,
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Figure 2.11: Comparison of the performances of the bare circuits between the Raven and Sparrow chips. Except
for the four circuits involving a two-qubit gate, Sparrow was showing better performance. This is probably due
to improvement of the two-qubit gates but shorter T1 and T2 times on Raven, see Table 2.4 and Table 2.6.
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Figure 2.12: Comparing encoded versions on Raven and Sparrow. The |00〉L and |0+〉L preparations were suf-
fering from possible X1 X2 logical errors.
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with more physical qubits, more connectivity and smaller error rates, demonstrations
of fault-tolerance will become easier to produce and become more convincing. The set
of gates shown to be fault-tolerant in this chapter is very restricted. For the [[4,2,2]]
code a few more qubits and connections would be needed to realize fully fault-tolerant
circuits with error detection in between logical units. Being able to demonstrate the
fault-tolerance of larger gate sets, for example the whole Clifford group for several log-
ical qubits, would be an important milestone towards harnessing universal quantum
computation.
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3
QUANTUM ERROR CORRECTION

WITH THE TORIC-GKP CODE

This chapter examines the performance of the single-mode Gottesman-Kitaev-Preskill (GKP)
code and its concatenation with the toric code for a noise model of Gaussian shifts, or dis-
placement errors. It is shown how one can optimize the tracking of errors in repeated noisy
error correction for the GKP code. This is done by examining the maximum-likelihood
problem for this setting and its mapping onto a 1D Euclidean path-integral modeling a
particle in a random cosine potential. The efficiency of a minimum-energy decoding strat-
egy as a proxy for the path integral evaluation is demonstrated. In the second part of this
chapter, the concatenation of the GKP code with the toric code is analyzed and numer-
ically assessed. When toric code measurements and GKP error correction measurements
are perfect, using GKP error information the toric code threshold improves from 10% to
14%. When only the GKP error correction measurements are perfect a threshold at 6% is
observed.

In the more realistic setting when all error information is noisy, it is shown how to rep-
resent the maximum likelihood decoding problem for the toric-GKP code as a 3D com-
pact QED model in the presence of a quenched random gauge field, an extension of the
random-plaquette gauge model for the toric code. A new decoder for this problem is pre-
sented which shows the existence of a noise threshold at shift-error standard deviation
σ0 ≈ 0.243 for toric code measurements, data errors and GKP ancilla errors. If the errors
only come from having imperfect GKP states, this corresponds to states with just 4 photons
or more.

As a last result, a no-go result for linear oscillator codes encoding oscillators into oscilla-
tors is shown. For the Gaussian displacement error model, this proves that encoding cor-
responds to squeezing the shift errors. This shows that linear oscillator codes are useless
for quantum information protection against Gaussian shift errors.

This chapter has been published in Physical Review A 99, 032344 (2019), [1].
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3.1. INTRODUCTION

W ITHIN the framework of oscillator or continuous-variable (CV) error correcting codes,
one can distinguish mainly two classes of codes. One class generalizes qudit stabi-

lizer codes to encode continuous degrees of freedom into a (larger) CV system [2, 3]. We
refer to these codes as linear oscillator codes. The other class, first introduced by Gottes-
man, Preskill and Kitaev (GKP) in Ref. [4], and recently expanded to include many more
codes [5, 6], encodes a discrete (finite-dimensional) system into a CV system. Encoding
and decoding for the first class of codes falls within the framework of Gaussian quantum
information [7], while the second class of codes requires using non-Gaussian states.

In this chapter we propose and analyze a scalable use of the GKP code [4] which
encodes a single qubit into an oscillator. An example of such an oscillator is a mode
in a high-Q microwave superconducting cavity coupled to superconducting qubits in
a circuit-QED set-up. Proposals for preparing a GKP code state in such systems exist
[8]. The CNOT gate between two GKP qubits requires about 4 dB of squeezing in both
modes and a beam-splitter (see, e.g., Ref. [8]). Such a beam-splitter has been recently
implemented between high-Q microwave cavity modes in Ref. [9]. Other possible physi-
cal implementations for the GKP code are the motional mode of a trapped-ion qubit [10]
or atomic ensembles [11] for measurement-based CV cluster computation [12].

A bosonic code such as the GKP code or the recently-implemented cat code [13]
might be used to get a high-quality qubit, but the code does not provide a means to
drive error rates down arbitrarily. A scalable fault-tolerant architecture can possibly be
obtained by concatenating the GKP code with a qubit stabilizer code such as the toric
or surface code. A theoretic goal is then to understand how to decode such a toric-GKP
code and what is the error threshold of the architecture. Some results on using “analog"
error information in concatenating the GKP code with a stabilizer code were obtained
in Refs. [14–16]. A concatenation of the GKP code with the surface code was analyzed in
Ref. [17] in the channel setting for 2D and 3D surface codes by message-passing (perfect)
GKP error information to the surface code decoder. However, this study did not look at
error correction when the GKP syndrome is measured inaccurately. Previous work has
also studied the performance of the GKP code in comparison with other bosonic codes
in a photon loss channel setting, not taking into account the imperfections or processing
of repeated rounds of error correction [6]. Other work focused on the effect of photon
loss and other sources of error on the preparation of code states [18]. Besides its good
performance compared to other bosonic codes, the GKP code is appealing since Clifford
gates on the code states use only linear optical elements (including squeezing) [4].

In this chapter we first analyze repeated fault-tolerant quantum error correction for
a single GKP qubit, see Section 3.3. Our noise model in this analysis includes errors
both on the GKP qubit as well as on the GKP ancilla qubit used in the error correction.
We show how decoding this continuous error information in discrete time steps maps
onto the evaluation of a stochastic discrete-time Euclidean path integral. We present an
efficient minimum-energy decoder which chooses the path which approximately corre-
sponds to a classical trajectory in a disordered potential.

Second, we consider the toric-GKP code in Section 3.4. Assuming that both GKP error
correction and toric code correction are noiseless, we show how the use of continuous
GKP error information improves the error correction for the toric code (Section 3.4.2).
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These results are in correspondence with the previous results in Ref. [17] although our
likelihood function is not identical to the one in Ref. [17].

In Section 3.5 we formulate the decoding problem of repeated quantum error cor-
rection with the toric-GKP code where both the GKP syndrome and the toric code syn-
drome contain errors. Since errors on the GKP qubits are intrinsic (getting perfect code
states with infinite numbers of photons is unphysical), this is the physically relevant set-
ting. The maximum-likelihood formulation is in terms of a 3D gauge field model with
quenched randomness determined by the errors (Section 3.5.2). Then in Section 3.5.3,
we show how to re-express this model as a random plaquette gauge model (RPGM) with
a Z2-field coupled to an auxiliary U (1)-gauge field. We then use this model to design a
computationally-efficient decoder and present numerical results.

Finally, in Section 3.6, we present our general no-go result for the first class of codes,
namely the linear oscillator codes. This no-go result is presented as the calculation of
the probability distribution of logical errors on the encoded information after perfect
maximum-likelihood decoding. The result is in accordance with, but does not directly
follow from previous no-go results on Gaussian quantum information in Ref. [19]. The
theorem explicitly shows that there are no linear oscillator code families of interest: there
is no threshold in σ0 below which protection of the encoded oscillators against shift er-
rors gets better with increasing code size and the logical noise model is still Gaussian
with the same σ0, and possibly some squeezing of the logical quadratures.

The no-go result also shows that the existence of a threshold for the toric-GKP code is
non-trivial. A sufficiently large departure from Gaussian quantum information is neces-
sary to stabilize quantum information. In circuit-QED this departure comes exclusively
from the use of the non-linear Josephson junction element.

3.2. GENERAL CONSIDERATIONS

3.2.1. DEFINITIONS AND NOTATIONS
We consider n-mode oscillator codes, which are subspaces in the n-mode Hilbert space
L2(Rn). Such a Hilbert space can be constructed as a tensor product of n single-particle
Hilbert spaces L2(R) of complex square-integrable functions. It supports n pairs of canon-
ically conjugated coordinate and momentum operators, p̂k and q̂k , such that [q̂k , p̂l ] =
iδkl . These operators are used to define the multi-mode exponential shift operators,

U (e) ≡
n∏

k=1
e i uk p̂k+i vk q̂k , e ≡ (u, v ), (3.1)

where u, v ∈Rn are n-component real vectors. It is easy to check that the product of two
such operators satisfies

U (e)U (e ′) =U (e +e ′)e iω(e,e ′), (3.2)

with the phase given by the symplectic product ω(e,e ′) = u · v ′ − v ·u′. The set Hn of
all such operators with arbitrary phases is closed under multiplication, it forms an ir-
reducible representation of the Heisenberg group Hn acting on L2(Rn). Just as for the
n-qubit Hilbert space and the Pauli group Pn , any operator acting on L2(Rn) can be rep-
resented as a linear combination of elements of Hn . Furthermore, the product (3.2) of
two exponential operators, up to a phase, can be represented in terms of the sum of the
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corresponding vectors, e ′′ = e + e ′. This map to R2n is an analogue of the symplectic
representation of Pn used in the theory of quantum codes.

An n-mode GKP code, Q, is a CV stabilizer code defined in terms of an Abelian sta-
bilizer group S ⊂ Hn with elements in the form (3.1), such that U (0) ≡ 1 is the only
element in S proportional to the identity. Namely, the code Q ⊆ L2(Rn) is the common
+1-eigenspace of all elements of S ,

Q = {|ψ〉 ∈ L2(Rn) | S |ψ〉 = |ψ〉 , ∀S ∈S }. (3.3)

The structure of such Abelian subgroups and the implications for Q are described in
Appendix 1.2.3. In the following, we will assume the representation of such a group in
terms of some number r of its members chosen as generators, S = 〈S1, . . . ,Sr 〉, S j ∈Hn .

The formalism of qubit stabilizer codes [20, 21] carries over entirely to such CV sta-
bilizer codes and errors from Hn play the special role played by Pauli errors in the qubit
case. Given an error E ∈ Hn , one can compute its syndrome, q ≡ q(E), whose com-
ponents are given by the extra phases in the commutation relations with the stabilizer
generators, ES j = S j Ee i q j . The set of errors which commute with all elements of the sta-
bilizer group is called the centralizer C(S ); these errors have a trivial syndrome, q = 0. Of
these, any error that is a member of the stabilizer group acts trivially on code states, while
the remaining errors L ∈ C(S ) \S act non-trivially within the code, they are called logi-
cal operators. An error E ∈Hn that does not commute with all stabilizer generators has a
non-trivial syndrome and it takes Q into an orthogonal subspace EQ ≡ {E |ψ〉 | |ψ〉 ∈Q}.
Two errors that differ by an element of the stabilizer group, E ′ = ES, S ∈ S , have the
same syndrome, and as such, are called mutually degenerate. They act identically on the
code and are also called equivalent. Two errors that differ by a logical operator, E ′ = EL,
L ∈ C(S ) \ S , also have the same syndrome but they act differently on the code. The
set of inequivalent logical operators L(S ) is formed by the cosets of S in the centralizer
C(S ). If we ignore the phases, the set of cosets L(S ) actually forms a group, the group
of logical operators.

By a slight abuse of notation, and when the global phase is irrelevant, we will often
refer to an operator U (e) ∈Hn directly by its symplectic vector component, e ∈R2n . For
example, we can refer to a logical operator c ∈ L(S ) when we ought to write U (c) ∈ L(S ).
In accordance with classical codes terminology, we also refer to c ∈ L(S ) as a codeword.
Furthermore, for two equivalent errors, e and e ′ = e + s, where s ∈ S , we use e ′ ' e to
denote their equivalence, and [e] to denote the entire equivalence class,

[e] = {e + s : ∀s ∈S } . (3.4)

Throughout this work we consider the independent Gaussian displacement channel
N (ρ) with standard deviation σ0:

N (ρ) =
∫ ∞

−∞
du

∫ ∞

−∞
dv Pσ0 (u)Pσ0 (v)e i up̂+i v q̂ρ e−i up̂−i v q̂ , (3.5)

where ρ is a single-mode density matrix and Pσ0 (x) the Gaussian probability density

function with mean zero and variance σ2
0, i.e. Pσ0 (x) = (2πσ2

0)−1/2e−x2/2σ2
0 . We will refer

to σ0 as the bare standard deviation, this is because we will often consider scaled observ-
ables, e.g. P̂ = 2αp̂ for which the corresponding effective rescaled standard deviation is
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σ = 2ασ0. Even though this channel may not necessarily be the one which is physi-
cally most relevant, it is, like the Pauli error model, a convenient model which allows us
to numerically and analytically model approximate GKP code states with finite levels of
squeezing, see further motivation in Section 3.3.1.

As a convention we use bold italic symbols, such as u, to denote row vectors. We
use hatted symbols, such as P̂ ,Q̂, for quantum observables and un-hatted symbols for
the corresponding eigenvalues, such as P and Q. We will consider modulo values for
real numbers quite often where, for convention, we choose the remainder to be in a
symmetrical interval around 0. For example, given ϕ ∈ R, writing q = ϕ cmod 2π means
that q ∈ [−π,π) andϕ= q+2πk for some k ∈N. In conventional notation q := (ϕ+π) mod
2π−π and k := b(ϕ+π)/2πc. We also denote a range of integers as [n] ≡ {1, . . . ,n}. We will
refer to single-mode q-type errors as displacements of the form exp(iηq̂) for some η.
Such errors induce shifts in p and are alternatively called shift-in-p errors. Similarly, for
p-type errors which induce shifts in q .

3.2.2. MAXIMUM-LIKELIHOOD VS. MINIMUM-ENERGY DECODING

A (classical) binary linear code [22] of length n encoding k bits is a linear space of dimen-
sion k formed by binary strings of length n, C ⊆ Fn

2 . For such a code, maximum likeli-
hood (ML) syndrome-based decoding amounts to finding the most likely error which
results in the given syndrome. Generally, there are 2n−k distinct syndromes and |C | = 2k

codewords. It is not hard to find a vector e which produces the correct syndrome; ML de-
coding can then be done by comparing the probabilities of errors P(e + c), where c ∈ C

goes over all the codewords. In the simplest case of the binary symmetric channel, the
probabilities scale exponentially with error weight which can be thought of as the “en-
ergy” associated with the error. Thus, for linear binary codes under the binary symmetric
channel, ML decoding is the same as the minimum-weight, or minimum-energy (ME)
decoding.

Syndrome-based ML decoding for a qubit stabilizer code can be done similarly. The
main difference here is the degeneracy: errors that differ by an element of the stabilizer
group are equivalent, they can not and need not be distinguished. As a result, the prob-
ability P(E) of an n-qubit Pauli error E ∈Pn needs to be replaced by the total probability
to have any error equivalent to E . In the case of Pauli errors which are independent be-
tween different qubits, quite generally, this probability can be interpreted as a partition
function of certain random-bond Ising model [23, 24]. Exactly which statistical model
one gets, depends on the code. For a qubit square-lattice toric code with perfect stabi-
lizer measurements the partition functions are those of 2D Random-Bond Ising model
(RBIM). Similarly, for the toric code with repeated noisy measurements, the partition
function is that of a random-plaquette gauge model (RPGM) in three dimensions [23],
where the “time” dimension enumerates syndrome measurement cycles. More general
models are discussed, e.g. in Refs. [24, 25].

Instead of computing the partition functions proportional to the total probabilities
of errors in different sectors, one could try finding a single most-likely error compatible
with the syndrome. It is the latter method that is usually called the ME decoding for a
quantum code. Indeed, in terms of the statistical-mechanical analogy, for ML decoding
one needs to minimize the free energy, minus the logarithm of the partition function. In



3

56 3. QUANTUM ERROR CORRECTION WITH THE TORIC-GKP CODE

comparison, for ME decoding, one only looks at a minimum-energy configuration (not
necessarily unique); this ignores any entropy associated with degenerate configurations.
While the ME technique is strictly less accurate than ML decoding, in practice the differ-
ence can be small.

The two approaches are readily extended to GKP codes, both in the channel model
where perfect stabilizer measurement is assumed, and in the more general fault-tolerant
(FT) case where repeated measurements are used to offset the stabilizer measurement
errors. The latter case can be interpreted in terms of a larger space-time code dealing
with both the usual quantum errors and the measurement errors [23, 25, 26]. One im-
portant aspect is that the quantum errors accumulate over time, while measurement
errors in different measurement rounds are independent from each other. This leads to
an extended equivalence between combined data-syndrome errors which is similar to
degeneracy. The corresponding generators can be constructed, e.g., by starting with a
single-oscillator error, followed by measurement errors on all adjacent stabilizer checks
that result in zero syndrome, followed by the error which exactly cancels the original
error. Because of this cancellation, such an invisible error has no effect and should be
counted as a part of the degeneracy group of the larger space-time code.

The following discussion applies to a GKP code in either the channel model or the
fault-tolerant model. In both cases we denote as S ⊆ Hn the degeneracy group of the
code. In the channel model, S is exactly the stabilizer group, acting on the data oscilla-
tors. In the fault-tolerant case, S is the degeneracy group of the space-time code, acting
on both data oscillators as well as ancillary oscillators used to measure the syndrome.
Consider a multi-oscillator error, e ∈ R2n , see Eq. (3.1), and the corresponding probabil-
ity density P(e). The probability is assumed to have a sharp [exponential or Gaussian, cf.
Eq. (3.5)] dependence on the components of e; for this reason we can also write

P(e) = exp
(−H(e)

)
, (3.6)

where H(e) is the dimensionless energy associated with the error operator U (e). Syndrome-
based ML decoding can be formulated as follows. The error e yields the syndrome q(e).
Given a logical operator c ∈ L(S ), write as P([e+c]|q) the probability for any error in the
class [e+c], see (3.4), conditioned on the syndrome q . This probability can be written as

P([e +c]|q) =
∫

s∈S
ds P(e +c + s|q)

= 1

P(q)

∫
s∈S

ds P(e + s +c)

= 1

P(q)

∫
s∈S

ds e−H(e+s+c) ≡ 1

P(q)
Zc (e), (3.7)

where an appropriate integration measure should be used, and P(q) is the net probabil-
ity density to obtain the syndrome q = q(e). Among all inequivalent codewords c ∈ L(S ),
we select the most likely, i.e., with the largest Zc (e). The probability of leaving a logical
error c after ML decoding is the net probability of all the errors e for which the sector
[e −c] is the most likely, so

P(ML)(c) =
∫

e: ∀b 6'(−c), Z−c (e)>Zb (e)
de P(e), (3.8)
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[here we disregarded the contribution from sectors b 6' (−c) equiprobable with (−c),
Z−c (e) = Zb (e)]. The probability of success of ML decoding can then be expressed as
P

(ML)
succ = P(ML)(0). It is easy to see that any other decoding algorithm gives success prob-

ability that is not higher than that of ML decoding. Indeed, a different algorithm would
swap some errors e for e+c , which may reduce the measure in the corresponding analog
of Eq. (3.8).

Furthermore, given an error e, the probability P(q) to obtain the syndrome q = q(e)
can be written as P(q) = ∫

b∈L(S ) db Zb (e), using the appropriate integration measure for
the logical operators b. For this error e we write c max(e) for its corresponding most likely
sector,

c max(e) = argmax
c∈L(S )

Zc (e). (3.9)

The probability of a logical error c after ML decoding (3.8) can then be rewritten as an
expectation by multiplying and dividing by P(q), changing variables, and re-summing,
resulting in

P(ML)(c) = 〈
P
(
[e +c max +c]|q(e)

)〉= ∫
de P(e)

Zc max+c (e)

P(q)
=

∫
de P(e)

Zc max+c (e)∫
db Zb (e)

.

(3.10)
ML decoding is successful if the most likely error is actually the one that happened,
which corresponds to the trivial sector c ' 0 being dominant over all other sectors 0 6'
c ∈ L(S ). Given the error probability distribution P(e), we say that a sequence of discrete
GKP codes of increasing length n is in the decodable phase if P(ML)

succ ≡ P(ML)(0) → 1 with
n →∞.

With the definitions (3.6) and (3.7), Zc max (e), can be interpreted as a partition func-
tion of a classical model in the presence of quenched randomness determined by the
actual error e. The partition function Zc max+c (e) differs by an addition of a defect, e.g.
a homologically non-trivial domain wall at the locations specified by non-zero compo-
nents of the codeword c . Having already c max(e) 6' 0 means that the disorder, e, energet-
ically favors the domain wall c max. In the following, we will also consider the free energy,
Fc (e),

Fc (e) ≡− ln Zc max+c (e), (3.11)

as well as the corresponding average 〈Fc 〉 ≡
∫

de P(e)Fc (e). It follows from the Gibbs
inequality that below the error-correction threshold for the noise parameters in P(e), the
free energy increment ∆Fc ≡ Fc (e)−F0(e) associated with a logically-distinct “incorrect”
class (c 6' 0) necessarily diverges with n for any error, e, likely to happen [24]. More
precisely, if ML decoding is asymptotically successful with probability one, P(ML)

succ → 1,
the average free energy increment, 〈∆Fc 〉 associated with any non-trivial codeword c 6'
0 must diverge for n → ∞. Such a divergence can be seen as a signature of a phase
transition in the corresponding model.

As is the case for the surface codes [23], the partition functions Zc (e) are evaluated at
a temperature that is not a free parameter but depends on the distribution P(e). For the
sake of understanding the physics of the corresponding models, we could relax this, e.g.
by additionally rescaling the energy H(e) → βH(e), cf. Eq. (3.6), in the definition (3.7) of
the partition function Zc (e), while keeping the original error probability distribution in
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the average (3.10). This amounts to using ML decoder with incorrect input information,
thus the corresponding success probability is not expected to increase,

P(ML)
succ (β) ≤P(ML)

succ (β= 1) ≡P(ML)
succ , (3.12)

similar to decoding away from the Nishimori line in the case of qubit stabilizer code [23,
24]. In particular, the limit β→∞ corresponds to ME decoding, where we are choosing
the codeword c to minimize the function

Hc (e) ≡ min
s∈S

H(e +c + s). (3.13)

3.3. PROTECTING A SINGLE GKP QUBIT

3.3.1. SET-UP
The single-mode GKP code [4] is a prescription to encode a qubit —a two-dimensional
Hilbert space— into the Hilbert space of an oscillator using a discrete subgroup of dis-
placement operators H1 as the stabilizer group. One chooses the two commuting dis-
placement operators, Sp = e2iαp̂ and Sq = e i 2πq̂/α, where α 6= 0 is any real number.

For this encoded qubit the (logical) Pauli operators are Z = e iπq̂/α (with Z 2 = Sq ) and
X = e iαp̂ (with X 2 = Sp ). One can verify that X Z = −Z X . The oscillator observables,
P̂ = 2αp̂ and Q̂ = 2πq̂/α, can both take any value 2πk for k ∈Z on ideal codewords. The
codeword |0〉 (respectively |1〉) is distinguished by k being even (respectively odd). The
action of phase space translations Sp (respectively Sq ) on the eigenvalues of Q̂ (respec-
tively P̂ ) is Q → Q + 4π (respectively P → P + 4π). The action of X (respectively Z ) is
Q →Q +2π (respectively P → P +2π).

A visual representation can be obtained by imagining the variables Q and P as a sin-
gle torus in phase space with both handles of circumference 2π. In this representation Sp

lets Q wind around the handle exactly twice, while X lets Q go around the handle exactly
once. A correctable error constitutes a shift in Q by less than half the circumference. In
this convenient representation, a logical error thus occurs when the winding number is
odd, and no error occurs when the winding number is even. The shifts in P correspond
to windings around the other handle of the torus.

We will assume that the oscillator undergoes noise modelled as a Gaussian displace-
ment channel with bare standard deviation σ0, see Eq. (3.5). The effect on the scaled
observables P̂ and Q̂ is to map P → P + ϵp and Q → Q + ϵq where ϵp and ϵq are drawn
from Gaussian distributions with rescaled variances

σ2
P = 4α2σ2

0 and σ2
Q = 4π2σ2

0

α2 . (3.14)

For symmetry reasons, α is chosen to be
p
π and we write σ = σP = σQ . Given perfect

measurements of Sp , the error ϵq can be corrected if
∣∣ϵq cmod 4π

∣∣<π.
In order to measure stabilizer generators Sp and Sq we consider the fault-tolerant

Steane measurement circuits [4] in Fig. 3.1, where encoded |+〉 or |0〉 ancillas, CNOTs
and q̂ or p̂ measurements are used.

For simplicity, we consider the ancilla preparations, the CNOT and the q̂ and p̂ mea-
surements to be perfect and only add Gaussian displacement channels on the data qubit
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N ECGKP (NM) ≡
N •

|+〉 NM q̂ |0〉 • NM p̂

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�

�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Figure 3.1: A single round of fault-tolerant GKP syndrome measurement for both q and p shifts. Here |+〉 is
the +1 eigenstate of Sq and X , and |0〉 is the +1 eigenstate of Sp and Z . The CNOT gate is the logical CNOT
for the GKP code which induces the transformation qtarget → qcontrol + qtarget (while pcontrol → pcontrol −
ptarget, qcontrol → qcontrol, ptarget → ptarget). Each measurement is a perfect homodyne measurement of q̂ or
p̂. N are NM are Gaussian displacement channels in Eq. (3.5) which model shift errors on the encoded state
in each round of error correction, respectively shift errors in the homodyne measurement.

and on the ancilla qubit right before its measurement. Doing this ignores the back prop-
agation of q-type errors to the data due to an imperfect ancilla [27], but if we treat p-type
and q-type error correction independently, then this back-propagation does not funda-
mentally alter the noise model. We will keep the freedom of choosing different standard
deviations for the data and the ancilla errors and denote as σM the scaled standard devi-
ation for the ancilla errors.

What is important is that our error model covers dominant sources of imperfections
stochastically. Any physically-realistic GKP code state has finite photon number n and
one reasonable model of such finite-photon GKP state is a coherent superposition of
Gaussian displacement errors on a perfect code state, see Eqs. (40),(41) in Ref. [4]. The
quality of such an approximate GKP state can be given by an effective squeezing param-
eter ∆ with n ∼ 1

2∆2 − 1
2 . Assuming a coherent superposition of Gaussian displacements

can be replaced by a Gaussian mixture of displacements on a perfect state we can iden-
tify ∆2 = 2σ2

0. If errors are dominated by such a finite squeezing/finite photon number,
we could use σ0 ∼ 1p

2(2n+1)
to interpret our numerical data. For example, n = 4 gives

σ0 ≈ 0.236.

Besides this, photon loss is usually the main source of imperfection and it has been
shown that photon loss with rate γ followed by an amplification or pumping step pro-
duces the Gaussian displacement channel with σ2

0 = γ
1−γ [6]. For example, the rate γ =

0.02 corresponds to σ0 = 0.14. Such an amplification step on the GKP data qubit could
be added in each step of error correction.

Since the measurement outcomes in Fig. 3.1 are inaccurate, they cannot be used to
infer a correction which maps the state back to the code space. In order to perform error
correction one has to measure frequently and try to use the record of measurements to
stay as close as possible to the code space without incurring logical errors to preserve
the codeword. Figure 3.2 shows this repeated measurement protocol for p-type errors
(or shift-in-q errors).

|Ψ〉 N • N • · · · N • N q̂

|+〉 NM q̂ |+〉 NM q̂ · · · |+〉 NM q̂

Figure 3.2: Repeated rounds of error correction for the GKP code to detect and keep track of error shifts in q̂
followed by a final destructive measurement of the data (modeled as N followed by a perfect measurement of
q̂). No explicit corrections based on the measured values are shown.
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We will analyse only p-type data errors with scaled standard deviation σ and mea-
surement errors with scaled standard deviation σM, cf. Eq. (3.14). The analysis for q-
type errors would be similar. When considering the realization of a particular shift error
we will use the following notation: ϵt ∈ R is the shift error occurring on the data before
the t th measurement, δt ∈ R is the measurement error occuring at the t th step. Fur-
thermore, qt ∈ [−π,π) is the t th measurement outcome for the rescaled variable Q̂ and
ϕt = ϵ1+·· ·+ϵt is the cumulative shift on the data. The relations between these quantities
are

qt =ϕt +δt cmod 2π, ϕt −ϕt−1 = ϵt , ϕ0 ≡ 0. (3.15)

We consider a total of M rounds of GKP measurements indexed by t ∈ [M ]. Of these,
the last measurement is assumed perfect, incorporating any measurement error into the
corresponding shift error. Specifically, we write ϕM = ϕM−1 + ϵM , qM = ϕM cmod 2π, so
that δM = 0. This last measurement can be thought of as a destructive measurement
performed directly on the data without the use of an ancilla, as one would do to retrieve
the encoded information. As such, the last data error ϵM can equivalently be thought of
as the last measurement error on the destructive measurement of the data. Having this
last perfect measurement permits to map back to the code space and easily define suc-
cessful or failed error correction. Specifically, we are trying to determine the parity of kM

in the relation qM =ϕM +2πkM ; error correction is successful as long as we determined
the parity correctly. We denote the set of M measurements as q and M cumulative shift
errors as ϕ.

To get some intuition, imagine that we apply a single round of error correction of
Fig. 3.2 and NM is the identity channel. The ancilla qubit |+〉 is a uniform sum of delta
functions with Q = q = 0 cmod 2π, hence we represent the measurement outcome com-
pactly as q ∈ [−π,π). An incoming logical X on the data qubit is pushed (through the
CNOT) onto the ancilla qubit where it translates q by a full 2π-period, hence logical in-
formation is not observed. One corrects a shift of up to π (at most half-a-logical) by
shifting Q back by the least amount to make it again equal to 0 cmod 2π.

3.3.2. DECODING STRATEGIES
We start by describing the maximum-likelihood strategy. Given the measurement record,
one would like to compute the conditional probabilities for different classes of errors
which are distinguished by their logical action. In this case of correcting a single qubit
against shift errors in q , one has to decide whether there was an X error or there was
none. Knowing the details of the error model, namely σ and σM, one can write down the
probability of these two classes. Formally, they are given by

P(0|q) =
∫

I0

P(ϕ|q)dϕ, P(1|q) =
∫

I1

P(ϕ|q)dϕ, (3.16)

where the integration covers all possible realizations of the shift errors described by ϕ,
and I0 (respectively, I1) limits the integral to realizations leaving no X error (respectively,
leaving an X error). Since the last measurement is assumed perfect, I0 and I1 are char-
acterized by δ

(
ϕM −qM +2πkM

)
, with any even kM in I0 and any odd kM for I1.

In practice, to do decoding for the given measurement history, q , one needs to com-
pare the probabilities (3.16). ML decoding algorithm suggests that a logical X correction
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is needed if P(1|q) >P(0|q). Of course, this does not guarantee success in each particular
trial. If we take just one measurement round, M = 1, which corresponds to measuring
the data directly, we get

PM=1(0|q1) = ∑
k1even

∫ ∞

−∞
dϵ1 P(ϵ1|q1)δ(ϵ1 −q1 +2k1π)

∝ ∑
k1 even

Pσ(q1 −2πk1), (3.17)

and PM=1(1|q1) is given by the complementary sum over odd k1, which makes the nor-
malization the full sum with k1 running over all integer values.

To compute these probabilities in general, we apply Bayes’ rule:

P(ϕ|q) = P(q |ϕ)P(ϕ)

P(q)
. (3.18)

Then the probability for some outcome q given data errors ϕ can be computed from the
measurement error model and the probability for some data error ϕ from the data error
model. The normalization, P(q), can be computed by integrating the numerator over
every ϕ. Using Eq. (3.15), we have from Eq. (3.18)

P(ϕ|q)P(q)

∝ ∑
k∈ZM

[
M−1∏
t=1

exp

(
−

(
qt −ϕt +2πkt

)2

2σ2
M

)
M∏

t=1
exp

(
−

(
ϕt −ϕt−1

)2

2σ2

)
δ(ϕM −qM −2πkM )

]
.

(3.19)

Recalling Eq. (3.7), we write the corresponding complementary probabilities (3.16) in
terms of partition functions,

P(0|q) = Z0(q)

P(q)
, P(1|q) = Z1(q)

P(q)
, (3.20)

Zc (q) = N−1
∫

dϕ
∑

k∈ZM−1

exp

(
−

M−1∑
t=1

(
qt −ϕt +2πkt

)2

2σ2
M

)
exp

(
−

M∑
t=1

(
ϕt −ϕt−1

)2

2σ2

)
× ∑

kM∈Z
δ(ϕM −qM −2πc −4πkM ), c = 0,1, (3.21)

with N a normalization constant 1. In this special case picking e = q , for a candidate
error is always a valid choice, that is why we can write directly Zc (q).

To compute it, denote as B the symmetric matrix with the components

Bi j ≡ 1

2

∂2

∂ϕi∂ϕ j
R(ϕ,0), i , j ∈ [M −1], (3.22)

associated with the first M −1 variables ϕt in the quadratic form

R(ϕ, q) = 1

σ2
M

M−1∑
t=1

(
qt −ϕt

)2 + 1

σ2

M∑
t=1

(
ϕt −ϕt−1

)2
∣∣∣
ϕM=qM

1Strictly speaking the normalization constant, N , diverges due to P(q) being an infinite sum of delta peaks. In
practice we always compute the quantities Zc (q) with a cutoff and can adjust N such that 1 = Z0(q)+Z1(q).
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in the exponent in the integrand of Eq. (3.21). Collecting the remaining terms and com-
pleting the square we obtain an M-variable quadratic form q Aq T with the block matrix

A =
(

Ã c T

c b

)
, (3.23)

expressed in terms of the (M −1)× (M −1) matrix Ã, row vector c , and a scalar b:

Ã = 1

σ2
M

1− 1

σ4
M

B−1, c i =− 1

σ2σ2
M

[
B−1]

M−1,i , b = 1

σ2 − 1

σ4
M

[
B−1]

M−1,M−1 . (3.24)

The evaluation of the Gaussian integrals in Eq. (3.21) therefore gives

Zc (q) = (2π)(M−1)/2

N (detB)1/2

∑
k=(k̃ ,c+2m) : k̃∈ZM−1, m∈Z

exp

(
−1

2

(
q +2πk

)
A

(
q +2πk

)T
)

, (3.25)

where B and A are the symmetric positive-definite matrices given explicitly by Eqs. (3.22)
and (3.23). The sums with c ∈ {0,1} can be numerically computed by setting a cut-off K ,
restricting every kt to the interval −K ≤ kt ≤ K . The number of terms then still exponen-
tially increases with the number of rounds. We used Eq. (3.25) with a cut-off K = 2 for
up to M = 7 rounds for the results shown in Fig. 3.5 and Fig. 3.6. Intuitively, this cut-off
corresponds to only considering events where the measurement shift errors let one wind
around the torus at most twice in each round. This is pretty reasonable since these errors
follow a Gaussian distribution with small variance.

Generally, a more clever way to calculate the sum in Eq. (3.25) is to express it in terms
of a genus-M Riemann theta function [28], and then transform the matrix so that the
summation terms can be rearranged in decreasing order, stopping at a desired precision.
However, this requires solving a shortest vector problem with the eigenvectors of A and
is therefore also conjectured to be computationally difficult [29, 30].

In addition to the formally exact but hard to calculate expressions (3.21), (3.25) for the
conditional probabilities, we would like to consider a class of approximate minimum-
energy solutions of the corresponding optimization problem. To this end, we define a
2π-periodic potential, Vσ(x) =Vσ(x +2π),

exp
(−Vσ(x)

)≡ ∑
k∈Z

e−(x+2πk)2/2σ2
. (3.26)

The periodicity of the sum of the Gaussians implies that one should be able to ap-
proximate Vσ(x) by its principal Fourier harmonic,

Vσ(x) ≈ A0 −βV (σ)cos x, (3.27)

where βV is Villain’s effective inverse temperature parameter, and the overall shift A0 is
irrelevant. Such a simplified form is exactly the approximation used by Villain [31], but
“in reverse.” Indeed, for large β, one has [32]

eβcos x ≈ eβ
∑

k∈Z
exp

(
−β(x +2πk)2

2

)
, (3.28)



3.3. PROTECTING A SINGLE GKP QUBIT

3

63

which gives βV (σ) = 1/σ2, σ¿ 1.
With the defined periodic potential, the logarithm of the non-singular part of Eq. (3.19)

acquires a form of a discrete-time Euclidean action, cf. Eq. (3.6),

H(ϕ; q) ≡− log[P(q |ϕ)P(ϕ)] =
M∑

t=1

(ϕt −ϕt−1)2

2σ2 +
M−1∑
t=1

VσM (qt −ϕt )+const. (3.29)

With the given values ϕ0 = 0 and ϕM , the corresponding extremum can be found by
solving the equations

ϕt+1 −2ϕt +ϕt−1 +σ2V ′
σM

(qt −ϕt ) = 0, t ∈ [M −1], (3.30)

where V ′
σM

(x) denotes the derivative of the potential in Eq. (3.26). These equations can
be readily solved one-by-one, starting with ϕ0 = 0 and some ϕ1 ≡ ϕ; the boundary con-
dition ϕM = qM +2πkM can be satisfied by scanning over different values of ϕ1 in a rel-
atively small range around zero, with the global minimum subsequently found by com-
paring the resulting values of the sum in Eq. (3.29). Then, any even value of kM corre-
sponds to no logical error, while an odd kM indicates an X error to be corrected. While
such a minimization technique gives the exact ME solution, in practice it is rather slow.
Namely, with increasing non-linearity σ2/σ2

M and increasing length M of the chain, a
small change in ϕ1 may strongly affect the configuration of the entire chain. Respec-
tively, it is easy to miss an extremum corresponding to the global minimum. This numer-
ical complexity of minimizing Eq. (3.29) is a manifestation of chaotic behavior inherent
in the equations (3.30).

Indeed, the problem of minimizing the energy (3.29) can be interpreted as a dis-
ordered version of a generalized Frenkel-Kontorova (FK) model [33], where a chain of
masses coupled by springs lies in a periodic potential. In our setup, random shifts qt can
be traded for randomness in the initial (unstretched) lengths of the springs, qt − qt−1.
The original FK model, with Vσ(x) replaced by a harmonic function, is obtained if one
uses the Villain approximation “in reverse”, see Eq. (3.27). Even in the absence of dis-
order, the FK model is an example of a minimization problem with multiple competing
minima which can be extremely close in energy. The corresponding equations (3.30),
viewed as a two-dimensional map (ϕt−1,ϕt ) → (ϕt ,ϕt+1), are a version of the Chirikov-
Taylor area-preserving map from a square of size 2π to itself [34], one of the canonical
examples of emergent chaos.

For this reason, and also in an attempt to come up with a numerically efficient de-
coding algorithm, we have designed the following approximate forward-minimization
technique. For each t < M , starting from t = 1, given the present value ϕt−1, one deter-
mines the next value ϕt such that ∂H

∂ϕt

∣∣
ϕt+1=ϕt

= 0. Given the syndrome qt , this implies

ϕt = argmin
ϕ

[(
ϕ−ϕt−1

)2

2
−σ2VσM (qt −ϕ)

]
⇒ ϕt =σ2V ′

σM
(qt −ϕt )+ϕt−1. (3.31)

At the end, after one obtains ϕM−1, one chooses a kM such that qM +2πkM is the closest
to ϕM−1. The parity of thus chosen kM then tells if a logical error happened. This strategy
is illustrated in Fig. 3.3.
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Figure 3.3: (Color online) Sketch of GKP decoding problem and its solution strategy. For each round of error
correction t ∈ [M ] one has a Villain potential VσM (qt −ϕt ), depicted in blue, with the minimum centered at
the measured value qt . Green and red intervals along the horizontal axis denote the sets I0 and I1 in Eq. (3.16),
they correspond to realizations leaving no error or an X error, respectively. In a memoryless decoding strategy
one decides how to shift the code state after each measurement based on the value of qt . In a maximum-
likelihood decoding procedure one evaluates the path integral in Eq. (3.25). In a minimum-energy decoder
one determines an optimal path for the sequence ϕt , t ∈ [M ], given the random potential and the quadratic
“kinetic energy” term proportional to (ϕt −ϕt−1)2, see Eq. (3.29). Red and black lines show two decoding
trajectories which start at the same point but have different winding numbers. Upon a final decoding step,
choosing the black trajectory leads to deciding that no logical X error has taken place, since the final value ϕM
lies in the green region. Choosing the red trajectory leads to deciding that a logical X has taken place since the
final value ϕM lies in the red region. Examples of actual trajectories are shown in Fig. 3.4.

These equations are certainly different from the exact extremum equations (3.30),
and the configuration found by this forward minimization technique necessarily has the
energy higher than the exact minimum. On the other hand, empirically, the correspond-
ing energy difference is typically small, much smaller what one gets, if the correct min-
imum is missed by the formally exact technique based on Eqs. (3.30). Even though this
technique is only an approximation, it is fast and is accurate enough in practice. To
ensure that the approximation does not hurt the performance of our decoder we can
compare it to a rigorous dynamic programming approach.

DYNAMIC PROGRAMMING FOR THE MINIMUM-ENERGY DECODER

We can express the minimum-energy decoder for one GKP qubit as a dynamic program-
ming problem. This allows us to check how well the forward-minimization technique
performs. The goal is to minimize the energy from Eq. (3.29), which we write using the
Villain approximation in reverse,

H
[
ϕ1, . . . ,ϕM

]= M∑
t=1

(
ϕt −ϕt−1

)2

2σ2 −
M−1∑
t=1

cos(qt −ϕt )

σ2
M

, ϕ0 ≡ 0.

We define the partial energy, Hk
[
ϕ1, . . . ,ϕk

]
as the contribution from the first k terms

from each sum,

Hk
[
ϕ1, . . . ,ϕk

]= k∑
t=1

(
ϕt −ϕt−1

)2

2σ2 − cos(qt −ϕt )

σ2
M

,
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Figure 3.4: (Color online) Two examples of 11 rounds of error correction with data and measurement errors
sampled from Gaussian distributions with σ0 = 0.4. In the example on the left, forward-minimization and dy-
namic programming reach the same conclusion, whereas on the right forward-minimization reaches a wrong
conclusion. One can compare this data with the sketched trajectories in Fig. 3.3.

and a single-variable function of ϕk as

Mk (ϕk ) = min
ϕ1,...,ϕk−1

{
Hk

[
ϕ1, . . . ,ϕk

]}
.

Then Mk , k < M , can be defined recursively by

M1(ϕ1) = ϕ2
1

2σ2 − cos(q1 −ϕ1)

σ2
M

,

Mk (ϕk ) = min
ϕ

(
Mk−1

(
ϕ

)+ (
ϕk −ϕ

)2

2σ2

)
− cos(qk −ϕk )

σ2
M

.

If one discretizes the values of ϕk to a desired precision and restricts them to lie in a
reasonable interval, the minimization with M time steps amounts to computing M lists
of values of discrete functions Mk (ϕk ). Unlike the minimization technique based on
solving Eq. (3.30), there is no accuracy loss at larger M , and much less danger of missing
the desired minimum with the present dynamic programming method.

We have compared our forward minimization technique with dynamic programming
with a discretization of 200 points per period in a 4-periods window around the last
measurement result. The statistics of success or failure of both decoders agree pretty
closely while the forward minimization is much faster. In Fig. 3.4 we show two of the ob-
tained realizations for illustration purposes. This comparison shows that the dynamic
programming approach has very little advantage while it is substantially slower in its
execution.

A very simple decoding strategy that one might also try is to trust every measurement
outcome and immediately correct each round. This does not require any memory so we
refer to it as the memoryless decoder. Intuitively, this method is risky as every round
transfers the measurement errors to the data, increasing the variance of the effective
error model acting on the data.
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3.3.3. NUMERICAL RESULTS
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Figure 3.5: (Color online) Some of the numerical results for the forward-minimization and maximum-
likelihood decoders (with cut-off K = 2). To observe the exponential decay towards 1/2 we plot 1− 2Perr on
a log scale for different number of rounds and different bare standard deviation σ0. Low hundred thousands
of trials are performed for each data point and the confidence intervals at 95% are shown. For each σ0 we fit
an exponential decay, the slope gives us an effective logical error rate per round. On both plots the value for σ0
varies between .1 and .9, on the left by .05 increments, on the right by .1 increments. All effective logical error
rates are plotted in Fig. 3.6.
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Figure 3.6: (Color online) Plots of the observed effective logical error rate per round for different decoding
techniques. In the left plot we have taken the same standard deviation for measurement and data errors.
On the right we have taken the measurement standard deviation equal to half that of the data errors. The
horizontal axis shows the bare standard deviation σ0.

We have numerically simulated these different decoders: maximum likelihood with
a cut-off, forward-minimization, and memoryless decoding. We have also compared
them to the scenario where the measurements are perfect, as well as to the completely
passive decoder where one lets shift errors happen without performing error correction
measurements. For each scenario we considered up to 11 rounds of measurements (M=7
for the maximum likelihood decoder), sampled errors, applied the decoder and gathered
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statistics of success or failure of the procedure for different bare standard deviations for
the errors σ0 ∈ [0.1,1].

In every scenario we observe an exponential decay toward 1/2 of the probability of
logical error as seen in Fig. 3.5. Thus, as expected, there is an eventual loss of logical
information for any values of σ and σM. The decay can be fitted in order to extract an
effective logical error rate per round which we then plotted in Fig. 3.6.

One striking observation is that above a certain bare standard deviation, the mea-
surement outcomes are simply not reliable enough, so that one cannot do substantially
better than throwing away the measurements and passively letting errors accumulate.
Roughly speaking, this occurs for σ0 ≥ 0.5 when σM =σ and for σ0 ≥ 0.7 when σM =σ/2.
Another observation for σM =σ is that the memoryless technique actually quickly does
more harm than the passive approach which forgoes error correction altogether. Finally,
we observe that in the range of parameters studied, the forward-minimization technique
performs almost as well as the maximum-likelihood decoding, while having the advan-
tage of being much simpler computationally.

3.4. CONCATENATION: TORIC-GKP CODE

3.4.1. SETUP
We consider the following set-up shown in Figure 3.7. We have a 2D lattice of oscillators
such that each oscillator encodes a single GKP qubit. In order to error correct these GKP
qubits by the repeated application of the circuits in Fig. 3.1, a GKP ancilla qubit oscillator
is placed next to each data oscillator, allowing for the execution of these circuits. After
each step of GKP error correction, we measure the checks of a surface or toric code: a
single error correction cycle for one of the toric-code checks is shown in Fig. 3.8. Note
firstly that we omit GKP error correction after each gate in the circuit in Fig. 3.8: the
reason is that we assume that these components are noiseless in this set-up so noth-
ing would be gained by adding this. Secondly, the check operators of the toric code are
those of the continuous-variable toric code [35] which are commuting operators on the
whole oscillator space, see Appendix 3.8. The reason for using these checks is that for the
displacements X and Z of a GKP qubit, it only holds that X = X −1 and Z = Z−1 on the
code space. Expressed as displacement operators on two oscillators 1 and 2, it holds that
[X1X2, Z1Z−1

2 ] = 0. The upshot is that one has to use some inverse CNOTs in the circuit
in Fig. 3.8.

In the following, we will denote vertices of the square lattice with letters i , j ,k, l , and
the directed edges with the corresponding vertex pairs, e.g., e = (i j ). Quantities defined
on the edges will be considered as vector quantities, e.g. p̂i j =−p̂ j i for the momentum
operator. The preferred orientation is given by the direction of the coordinate axis. For
such a lattice vector field, say some field f , defined on edges, with components fi j =
− f j i , we will denote the sum of the vectors from a vertex j as

(∇· f ) j ≡
∑
k∼ j

f j k , (3.32)

where the summation is over all vertices k that are neighboring with j . Note that this
choice recovers the ± signs for a X -check (red) in Fig. 3.7, when the quantities f j k are
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Figure 3.7: (Color online) The two-dimensional lay-out of oscillators, e.g. high-Q cavities, for the toric-GKP
code. Shown is a fragment of a surface or toric code lattice. The different ± signs are defined by the orientations
as explained in the main text.

1 N ECGKP (NM) •
2 N ECGKP (NM) •
3 N ECGKP (NM) •
4 N ECGKP (NM) •

|0〉 NT q̂

Figure 3.8: A single round of error correction for a Z -check for the toric-GKP code in Fig. 3.7, on oscillators
numbered 1 to 4. The GKP error correction unit is given in Fig. 3.1, |0〉 is a +1 eigenstate of Z and Sp . The
inverse CNOT which induces the transformation qtarget → qtarget−qcontrol (while pcontrol → pcontrol+ptarget)
is denoted using a ª at the target qubit instead of a ⊕. A parallel execution of the CNOTs for the X-checks is
possible in the toric code.

written in their preferred orientation. The circulation of a vector around a (square) pla-
quette p ≡ (i j kl ) is denoted as

(∇× f )p ≡ fi j + f j k + fkl + fl i . (3.33)

The preferred orientation for a plaquette, p = (i j kl ), is the one for which the closed path
i → j → k → l → i turns counter-clockwise. With this choice Eq. (3.33) recovers ± signs
for a Z -check (green) in Fig. 3.7, when the quantities f j k are written in their preferred
orientation. With these notations, the vertex A j (X -type) and the plaquette Bp (Z -type)
operators of the toric code in Fig. 3.7 can be denoted as,

A j ≡ e i
p
π(∇·p̂) j and Bp ≡ e i

p
π(∇×q̂)p . (3.34)

3.4.2. NOISELESS MEASUREMENTS & NUMERICAL RESULTS
We first examine the operation of the toric-GKP code in the channel setting. This simpli-
fied error model is based on the assumption that there are no measurement errors, i.e.
NM = 1 and NT = 1 in Fig. 3.8, or equivalently, σM = 0 and σT = 0. In other words, the
assumption is that both the GKP syndrome and the toric code syndrome are measured
perfectly at every round.

Generally, when two codes are concatenated, it is possible to pass error information
of the lower-level code (in this case, the GKP code) to the decoder for the top-level code
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(here the toric code). The information that can be passed on is an estimation of the
error rate on the underlying GKP qubits based on the outcome of the GKP error correc-
tion measurement. Intuitively, if the GKP measurement gives a q ∈ [−π,π] which lies at
the boundaries of the interval, say, beyond −π/2 or π/2, we are less sure that we have
corrected this shift correctly 2. In other words, the logical error rate depends on the
measured value of the GKP syndrome, and this conditional error rate can be used in
the standard minimum-weight matching decoder for the toric code. If the conditional
single-qubit error rate fluctuates throughout the lattice, then one can expect that using
this information will substantially benefit the toric code decoder.

We numerically demonstrate that this is the case for the toric-GKP code, reproducing
some of the results in Ref. [17]. The threshold of the toric code against independent X
and Z errors and without measurement error is about 11% [23]. If we are not using any
GKP error information in the toric code decoding, then the threshold for σ0 is set by
the value for which P(X ) = 11% with P(X ) shown as the green line in Fig. 3.6. We can
run a standard minimum-weight matching toric code decoder where qubit X -errors are
generated by sampling Gaussian noise with standard deviation σ followed by perfect
GKP error correction on every GKP qubit. The left plot in Fig. 3.9 presents our numerical
data in this scenario, showing a crossing point at σc

0 ≈ 0.54.
In order to use the GKP error information, we use Eq. (3.17) for the probability of an X

error conditioned on the outcome q ∈ [−π,π). Including normalization, this probability
reads 3

P(1|q) =
∑

k∈ZPσ(−2π+q +4πk)∑
k∈ZPσ(q +2πk)

. (3.35)

To use these expressions we replace k ∈Z by the corresponding sum with a cut-off K , re-
stricting the summation to the interval −K ≤ k ≤ K . This is warranted since the Gaussian
weight for large k is small. In the numerics we used the cut-off K = 3.

We numerically simulate the following process. For each toric code qubit, (i j ), we
first generate a shift error ϵi j according to the Gaussian distribution which leads to a GKP
syndrome value qi j ∈ [−π,π). Given qi j , we infer a correction which may give rise to an
X error on qubit (i j ). We evaluate the Z -checks of the toric code given this collection
of errors and perform a minimum-weight matching algoritm to pair up the toric code
defects. Logical failure is determined when the toric decoder makes a logical X error on
any of the two logical qubits of the toric code. To use the information about the logical
error rates P(1|qi j ), for each qubit (i j ), we define a weight:

wi j = log

[
1−P(1|qi j )

P(1|qi j )

]
. (3.36)

Then, we define a new weighted graph G = (V ,E), whose vertices, p ∈V , are plaquette de-
fects from the toric code graph and whose edges constitute the complete graph. Given an
edge, (p, p ′) ∈ E , its weight ωp,p ′ is the minimum weight of a path on the dual of the toric
code graph connecting the defect plaquettes p and p ′. Here, the path weight, ωp,p ′ , is the

2In fact, when one has approximate GKP states with finite photon number for ancilla and data oscillator, there
is slightly more information in q than in q cmod 2π but we neglect this extra information here.

3Note that this conditional probability distribution is not identical to the likelihood function used in [17]. This
might be why [17] does not observe a single cross-over point in their threshold plots.
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Figure 3.9: (Color online) Threshold comparison between decoding with or without GKP error information. On
the left, the simulation only takes the average error rate into account and one obtains a threshold between σ0 ≈
0.54 and σ0 ≈ 0.55 corresponding to P (X ) ≈ 10% and P (X ) ≈ 10.7%, respectively. On the right, the simulation
takes the GKP error information into account. In this case, the crossing point is around σc

0 ≈ 0.6 corresponding
to P (X ) ≈ 14%. The data are labeled by the distance of the toric code. “Bare GKP” is the logical error rate for a
single GKP qubit whose errors are processed perfectly without measurement errors (green line in Fig. 3.6).

sum of the weights, wi j , of all edges crossed by the path. Minimum-weight-matching
(Blossom) algorithm is then run on this ω-weighted graph G , leading to a matching of
defects and thus an inferred X error.

Specifically, we used Dijkstra’s algorithm for finding a minimum-weight path in a
weighted graph as provided by the Python library Graph-tools [36], and the minimum-
weight matching algorithm from the C++ library BlossomV [37]. The process of sampling
from shift errors is repeated many times; the logical error rate plotted in Fig. 3.9 is given
by the fraction of runs which result in logical failure over the total number of runs.

3.5. NOISY MEASUREMENTS: 3D SPACE-TIME DECODING

3.5.1. ERROR MODEL
In this section we consider how to use both GKP and toric code error information when
both error correction steps are noisy, using repeated syndrome measurements. This is
the full error model in Fig. 3.8, which represents one complete QEC cycle. We only con-
sider p-type shift errors (inducing shifts in q), the initial state at t = 0 is assumed to be
perfect, and the last of M rounds of measurements noise-free, both for the GKP and the
toric code ancillas. We will address the question of whether or not there is a decodable
phase in the space of parameters, such that by increasing the size of the code and the
number of measurement cycles, the probability of a logical error can be made arbitrarily
small.

To visualize errors of different origin, for the M-times repeated measurement of the
toric code on an L × L square lattice, it is convenient to consider a three-dimensional
cubic lattice, with periodic boundary conditions along x and y directions, separated into
horizontal layers. Each layer corresponds to a measurement round t ∈ [M ], see Fig. 3.10.
In each time layer t , we use the same notations and conventions of directed edges and
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Figure 3.10: Notations for repeated toric-GKP errors. Data oscillators are located on the bonds of the square
lattice. A GKP measurement error for the bond b ≡ (i j , t ) in the measurement cycle t is denoted as δi j (t ) ≡ δb ,
while the corresponding measurement error for the toric code generator on horizontal plaquette p ≡ (h, t ) is
denoted as ξh (t ) ≡ ξp . A data qubit error ϵkl (t ) ≡ ϵp is associated with the vertical plaquette p directly below
the bond kl in the layer t .

vector quantities as in Section 3.4.1. Hence we associate a GKP data qubit oscillator with
each edge (i j ) of the square lattice.

We thus denote the shift occurring on a data oscillator just before the measurement
at time t as the shift ϵi j (t ) (induced by channel N ). Since the shifts accumulate, the net
shift on the oscillator at bond i j just before the measurement at time t is [cf. Eq. (3.15)]

ϕi j (t ) ≡
t∑

t ′=1

ϵi j (t ′). (3.37)

Furthermore, we denote the GKP measurement error of this oscillator at time t as δi j (t ).
This is the shift error on the ancilla inside the corresponding ECGKP unit (induced by
channel NM). With these notations, we can write for the GKP syndrome qGKP

i j (t ) at time
t ,

qGKP
i j (t ) = δi j (t )+ϕi j (t ) cmod 2π. (3.38)

In addition, we have the toric code syndrome. Specifically, we consider the toric code
plaquette operators, see Fig. 3.7 and Eq. (3.34). The result of the toric code syndrome
measurement on the plaquette h ≡ (i j kl ) at time t is

q tor
h (t ) = ξh(t )+ (∇×ϕ)h(t ) cmod 4π, (3.39)

where the bond vectors ϕi j (t ) are the accumulated errors in Eq. (3.37), and ξh(t ) is the
plaquette measurement error (induced by channel NT). Note that, unlike for the GKP
measurements, the syndrome q tor is measured modulo 4π, since the ancilla starts in the
state |0〉.

Since we assume that the measurement errors in the last layer, t = M , are absent, we
have ξh(M) = δi j (M) = 0. Writing the product of the corresponding probability densities,
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we obtain an analog of Eq. (3.29) for the effective energy

H(ϕ; q) =
M∑

t=1

∑
〈i j 〉

(
ϕi j (t )−ϕi j (t −1)

)2

2σ2

+
M−1∑
t=1

∑
〈i j 〉

VσM

(
qGKP

i j (t )−ϕi j (t )
)

+
M−1∑
t=1

∑
h

VσT/2

(
q tor

h (t )− (∇×ϕ)h(t )

2

)
, (3.40)

which depends on the accumulated field ϕ with components ϕi j (t ) and on the total
measured syndrome q ≡ {q GKP, q tor}. Here,

∑
〈i j 〉 indicates a summation over all bonds

of the square lattice, the summation over h runs over all square-lattice faces (horizon-
tal), and the structure of the last term accounts for the 4π-periodicity of toric syndrome
measurements, see Eq. (3.39).

The energy in Eq. (3.40) defines the conditional probability P(ϕ|q) ∝ exp(−H(ϕ; q)),
up to a normalization factor. The measurements in the last time-layer, t = M , constrain
the values ϕi j (M) as follows. From the GKP syndrome we have, as in Sec. 3.3,

ϕi j (M) = qGKP
i j (M)−2πki j , (3.41)

while the toric syndrome for each square-lattice face h = (i j kl ) gives

(∇×ϕ)h(M) ≡ϕi j (M)+ϕ j k (M)+ϕkl (M)+ϕl i (M) = q tor
h (M)−4πkh . (3.42)

These equations can be solved to find a last-layer binary candidate error vector b ∈ F2L2

2 ,
whose components bi j ≡ ki j mod 2 give the parity of the integer shifts ki j in Eq. (3.41).
Just as for the usual toric code, Eqs. (3.41), (3.42) determine b up to arbitrary cycles on the
dual lattice, i.e. X -stabilizers (homologically trivial) and X logical errors (homologically
non-trivial) of the toric code. Adding trivial cycles to b gives another equivalent last-
layer candidate which should be summed as part of the same sector. A trivial cycle can
be written as the gradient of a binary field, btriv

i j = n j −ni , with ni ∈ F2. To turn b into
an inequivalent last-layer candidate error, one should add a homologically non-trivial

cycle, c ∈ F2L2

2 .
We can now write explicitly the partition function Zc (b|q), equivalent to Eq. (3.7),

which determines the conditional probability, given the measurement outcomes q of
the equivalence class of last-layer candidate error [b +c],

Zc (b|q) = N ′−1
∫

dϕe−H(ϕ;q)
∏
〈i j 〉

∑
{ni∈F2}

∑
mi j ∈Z

δ
(
ϕi j (M)−qGKP

i j (M)

+2π[bi j + ci j −n j +ni +2mi j ]
)
. (3.43)

For ML decoding, given a b which satisfies Eqs. (3.41) and (3.42), one needs to compare

Zc (b|q) for different c ∈ F2L2

2 which are inequivalent binary codewords of the toric code,
i.e. the three homologically non-trivial domain walls on the square lattice or the trivial
vector. ML decoding then prescribes that we choose the error b + c as the correction
where c has the largest partition function Zc (b|q).
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3.5.2. EQUIVALENT FORMULATION WITH U (1) SYMMETRY
The partition function in Eq. (3.43) with the Hamiltonian in Eq. (3.40), as a statistical-
mechanical model, is not so convenient to analyze, since the components of the syn-
drome are not independent of each other. So, we will consider an equivalent form of the
partition function, that explicitly depends on the data errors ϵi j (t ) ≡ ϵp , the measure-
ment errors δi j (t ) ≡ δb , and the toric code measurement errors ξh(t ) ≡ ξp . We group
all these errors into one error record e = {ϵ,δ,ξ}. Any error e ′ that is equivalent to e can
be obtained by adding, so to say, stabilizer generators of the space-time code. This can
be expressed using a 2π-periodic vector field A whose components are real-valued on
horizontal bonds in layers t ∈ [M −1], and {0,π}-valued on the vertical bonds connecting
layers t −1 and t for all t ∈ [M ]. For horizontal bonds b in layers t = 0 and t = M , Ab = 0.
With these notations, we can express the partition function in Eq. (3.7) as

H(A;e) = ∑
b‖x y

VσM

(
δb −2Ab

)+ ∑
p‖x y

VσT/2

(
ξp

2
− (∇× A)p

)
+ ∑

p⊥x y
Vσ/2

(ϵp

2
+ (∇× A)p

)
,

(3.44)

Z0(e) = N ′′−1 ∑
Ab∈{0,π}:b⊥x y

∏
b‖x y

∫ π

−π
dAb e−H(A;e). (3.45)

with some normalization N ′′. To derive these equations, we determine the shift errors
that leave the syndrome record {q GKP, q tor} unchanged without inducing a logical er-
ror. These are called the gauge degrees of freedom and form the stabilizer group for
the space-time code. In our case there are five types of gauge degrees of freedom, four
discrete and one continuous. The discrete ones are genuine symmetries of the quantum
states involved in the code or measurement circuits. Namely, the input state of an ancilla
in the GKP measurement circuit in Fig. 3.2 is stabilized by an X operator, whose action is
equivalent to a 2π-shift of the corresponding GKP measurement error δi j (t ). Similarly,
application of an X 2 = Sp GKP stabilizer generator to a data qubit or a toric-code ancilla
in Fig. 3.8 is equivalent to a 4π-shift of the corresponding error, ϵi j (t ) or ξh(t ), respec-
tively. We also have toric code vertex operators A j [Eq. (3.34)] whose action corresponds
to simultaneous 2π-shifts on the four adjacent qubits, ϵi j (t ) → ϵi j (t )+2π. This discrete
gauge freedom will be captured by the two-valued field Ab on the vertical bonds.

The only continuous degree of freedom is a space-time one: it corresponds to adding
a continuous shift a on a data oscillator at some time step and then canceling it at the
next time step, while hiding the shift from the adjacent GKP and toric syndrome mea-
surements by adding the shifts ±a as necessary on the corresponding ancillas.

When applied to the Gaussian distribution, the discrete local shifts are responsible
for forming the Villain potentials (3.26) in the effective Hamiltonian (3.44), where ad-
ditional rescaling in the last two terms was necessary to account for the 4π-periodicity.
The remaining two degrees of freedom are represented by the vertical (discrete) and hor-
izontal (continuous) components of the doubled vector potential 2A. The scale of the
vector potential A was chosen to make easier contact with previous literature on related
models. With this choice, adding a π-shift to a component of A correspond to a GKP
X -logical, which was a 2π-shift in the previous sections.

Equations (3.44), (3.45) have to be supplemented with the appropriate boundary
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conditions to be used in decoding. Given the toric-code codeword c , in order to cal-
culate Zc (e), corresponding to the sector [e +c], one can add 2πc to the data error in the
top layer, t = M . This can be achieved by introducing a fixed non-zero vector potential
in this layer, namely Ab = πci j for all top-layer horizontal bonds b = (i j , t = M), instead
of zero for the trivial sector.

Equations (3.44), (3.45) look very different from the equivalent form that we first de-
rived, i.e. Eqs. (3.40) and (3.43). A map between these two formulations is given in the
next Section.

ALTERNATIVE DERIVATION OF THE U (1)-SYMMETRIC MODEL

Here we derive Eqs. (3.44) and (3.45) directly from Eqs. (3.40) and (3.43). First, note that
the integration over components of the field ϕ in Eq. (3.43) is done in an infinite interval,
while the two last terms in the bulk Hamiltonian (3.40) are 2π- and 4π-periodic, respec-
tively. In addition, the background fluxes (∇×ϕ)h(t ) in the last term of Eq. (3.40) are
explicitly symmetric with respect to the gauge transformation

ϕi j (t ) →ϕi j (t )+α j (t )−αi (t ), (3.46)

where α j (t ) =αv is a real-valued scalar field associated with the vertices v = (i , t ) of the
cubic lattice. While these are not the symmetries of the full Hamiltonian (3.40), we can
now render it in a more familiar U (1)-symmetric form with a simple change of variables.

For a fixed error e ≡ {ϵ,δ,ξ} which corresponds to the syndrome q , let us denote the
corresponding accumulated error, see (3.37), as ϕ(0). We can make a change of integra-
tion variables in Eq. (3.43), for all bonds (i j ) and layers 1 ≤ t ≤ M , following

ϕi j (t ) =ϕ(0)
i j (t )+2Ai j (t )+4πmi j (t )±2π

t∑
t ′=1

(
s j (t ′)− si (t ′)

)
, −π< Ai j (t ) ≤π, (3.47)

where the field Ai j (t ) is continuous, mi j (t ) ∈ Z is integer-valued, and an additional 2π-
shift is proportional to the lattice gradient of the binary field si (t ) ∈ F2 accumulated over
time. Strictly speaking, the last term is unnecessary as it causes some double counting
in the measure. However, the corresponding factor is a constant that is finite on a finite
lattice, so it does not cause any trouble. On the other hand, these binary charges simplify
the boundary conditions, since we can simply write si (t )+ . . .+si (M) = ni , see Eq. (3.43),
and thus trade the summation over the boundary field ni for the binary field si (t ) in the
bulk. To complete the derivation, also define Ai j (t = 0) = 0, and take Ab = πsi (t ) for the
vertical bond b at the square-lattice vertex i , between layers t − 1 and t for all t ∈ [M ].
This gives for the vertical plaquette p at the bond (i j ), between the same two layers,

ϕi j (t )−ϕi j (t −1) →ϕ(0)
i j (t )−ϕ(0)

i j (t −1)+2(∇× A)p ≡ ϵp +2(∇× A)p ,

where the appropriate sign in Eq. (3.47) needs to be chosen to recover the part of the flux
that is missing in the first term of Eq. (3.40), and we absorbed the summation over the
integer-valued mi j (t ) into the definition of the Villain potential Vσ/2

(
ϵp /2+(∇×A)p

)
, an

even 2π-periodic function of the argument, see Eq. (3.26). In the remaining two terms
we use Eqs. (3.38) and (3.39), to recover Eq. (3.44) exactly 4. Comparing with Eqs. (3.41),

4Strictly speaking we get−(∇×A)p for a vertical p along y . But we can push this sign to the disorder component
using the parity of Vσ/2 and use the symmetry of our noise model to ignore this sign.
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(3.42), it is also easy to check that for this particular error e, one can simply take the
vector potential Ab = 0 for the top-layer in-plane bonds, b = (i j , M). Similarly, for the
three sectors where the error in the top layer is shifted by a non-trivial toric codeword

0 6' c ∈ F2L2

2 , we can take Ai j (M) =πci j .

3.5.3. DECODER AND NUMERICAL RESULTS
Maximum likelihood decoding can be done by comparing conditional probabilities in
different sectors, see Eq. (3.7). Just as in the case of a single GKP qubit, Gaussian in-
tegrations in the relevant partition functions, Zc (b|q), in Eq. (3.43), or its equivalent
form Zc (e), in Eq. (3.45), can be carried through exactly. This would leave expressions
similar to Eq. (3.25), with an additional summation over 2L2 binary spins. In principle,
such expressions can be evaluated using Monte Carlo sampling techniques. In practice,
the complexity of such a calculation is expected to be high, because the corresponding
coupling matrix is not sparse, just as the matrix A in Eq. (3.25) is not sparse, see Ap-
pendix 3.2.2. For this reason, we have not attempted ML decoding for toric-GKP codes.

We have constructed several decoders which approximate ME decoding. The idea is
to find a configuration of the field A minimizing the Wilson version of the Hamiltonian
(3.44), i.e. with Villain potentials replaced by cosines, by decomposing it into a contin-
uous part (to be guessed or found using a local minimization algorithm), and a binary
field which represents frustration, to be found using minimum weight matching. This
decomposition relies on the analysis of the Hamiltonian (3.44) in the limit of perfect
GKP measurements, σM → 0.

ME DECODING IN THE LIMIT OF PERFECT GKP MEASUREMENTS

Let us consider what happens with our model (3.44), (3.45) in the limit σM → 0. First, in
this limit all GKP measurement errors δb vanish with probability one. Second, the first
term in Eq. (3.44) forces Ab ∈ {0,π} for all horizontal bonds, the same as we already had
for vertical bonds. This forces all plaquette fluxes to take integer values times π. We show
here that in this limit we recover a version of the random-plaquette gauge model (RPGM)
associated with decoding the usual qubit toric code in the presence of (toric) syndrome
measurement errors [38].

Since the limit σM → 0 makes the vector potential Ab ∈ {0,π}, and in turn the plaque-
tte flux Bp ≡ (∇× A)p , discrete, one can interpret it as a spin degree of freedom, using
the fact that the Villain potential is 2π-periodic as well as even. Indeed, considering for
example a vertical plaquette, p ⊥ x y , in Eq. (3.44), one can write,

Vσ/2

(ϵp

2
+Bp

)
=−τp (e)ei Bp +const,

p ⊥ x y, τp (e) ≡ 1

2

[
Vσ/2

(ϵp

2
−π

)
−Vσ/2

(ϵp

2

)]
≈ 4

σ2 cos
(ϵp

2

)
. (3.48)

The additive constant has no effect and can be ignored. Similarly for horizontal plaque-
ttes, p ∥ x y , where one obtains the weights,

p ∥ x y, τp (e) ≡ 1

2

[
VσT/2

(
ξp

2
−π

)
−VσT/2

(
ξp

2

)]
≈ 4

σ2
T

cos

(
ξp

2

)
. (3.49)
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Then, if one defines from A some Ising spins, s, using for each bond, sb ≡ ei Ab ∈ {−1,1},
one obtains, in place of Eq. (3.44), a RPGM very similar to that in Ref. [38],

H(s;e) =−∑
p
τp (e)up , up ≡ ∏

b∈p
sb . (3.50)

Unlike in the usual RBGM obtained for the qubit toric code [38] where plaquette weights
can take only two values, τp = ±J , here quenched randomness leads to a continuous
distribution of the weights. This model is similar to the 2D random-bond Ising model
constructed in Sec. 3.4.2 for decoding a toric-GKP code in the channel setting, also in
the limit σM = 0. In fact, the weights concerning data errors in Eq. (3.48) (without the
cosine approximation), are equivalent to those given by Eqs. (3.35), (3.36). Similar to its
counterpart with sign disorder, the phase-diagram of the RPGM with the Hamiltonian
(3.50) will show a transition from an ordered to disordered phase as the temperature β−1

or the strength of the quenched disorder is increased. If we increase the disorder σ along
a line with any fixed ratio r = σT/σ, a version of the standard argument [39] shows that
no ordered phase can exist beyond the critical value of σ reached along the “Nishimori
line,” β = 1 [cf. Eq. (3.12)]. We expect that it is this critical value of σ that is associated
with the memory phase transition.

An important quantity that governs the structure of the minimum of the RPGM Hamil-
tonian (3.50) is frustration. We call a cube frustrated when it has an odd number of its
boundary plaquettes p with τp (e) < 0. Since every spin, sb , affects the sign of two pla-
quettes in a cube, for a frustrated cube, no spin configuration on the edges can simulta-
neously satisfy all the plaquette terms. For the usual toric codes, frustrated cubes can be
readily identified by stabilizer defects without referring to a candidate error. For toric-
GKP codes one has to be more careful. In the limit σM → 0, the frustration cannot be
read directly from the value of the toric code syndromes but all candidate errors exhibit
the same frustration. So picking any candidate error, e, finds it. When σM 6= 0, this is no
longer the case, the frustration can change between different candidate errors.

We examine the problem of finding the optimum spin configuration, s, which min-
imizes the RPGM Hamiltonian (3.50), given the weights τp (e). For a given s, we call a
plaquette term, τp (e)up , satisfied when τp (e)up > 0 and unsatisfied when τp (e)up < 0.
Necessarily, a frustrated cube is incident to an odd number of unsatisfied plaquettes, in
this sense frustrated cubes are the source of unsatisfied plaquettes. Let S be any set of
plaquettes such that the frustrated cubes are incident to an odd number of plaquettes in
S and the unfrustrated cubes are incident to an even number of plaquettes in S. One has

min
s

H(s;e) =−∑
p
|τp (e)|+2min

S

∑
p∈S

|τp (e)|.

Hence minimum-weight matching on a 3D lattice with vertices representing the frus-
trated cubes determines the optimal set of unsatisfied plaquettes Smin. Given a candi-
date error e let Scand be the set of plaquettes with τp (e) < 0. The candidate error e is now
modified using the minimum-weight matching by adding 2π for all plaquettes in Smin as
well as adding 2π on all plaquettes in Scand (remember that 4π-shifts are elements of the
stabilizer group). This corresponds to an addition of a stabilizer or logical operator to
the candidate error e, leaving the syndrome unchanged. This modified candidate error
is the proposed correction for this decoder.
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Figure 3.11: (Color online) Numerical results for perfect GKP measurements, with σ = σT and σM = 0. The
logical error rate as a function of the bare standard deviationσ0, see Eq. (3.14), is shown for toric code distances
d = L as indicated in the caption. The vertical dotted line indicates the position of the crossing point in the
data, a threshold at σ0 ≈ .47, which corresponds to a logical error probability p = 6% for single-qubit GKP code
with σM = 0. The latter value is recovered as the vertical position on the dash-dotted line which reproduces the
green line σM = 0 from Fig. 3.6 (left). The observed threshold is well above σ0 = 0.41 which can be superficially
expected from the p = 2.9% threshold for the 2D toric code under phenomenological error model.

We implemented the described decoder to minimize the energy (3.50), with Villain
potentials replaced with cosines, see Eqs. (3.48),(3.49). A very simple estimate of the ex-
pected performance of the toric-GKP code in this setting is the following. It is known that
the threshold for the toric code is about 2.9% under phenomenological noise with inde-
pendent X and Z errors [38]. If we assume that all errors are due to the logical error on
the underlying GKP qubits, see Fig. 3.6, then one can ask what σ0 leads to a probability
for an X error (or equivalently Z ) equal to 2.9%. This of course depends on the measure-
ment error σM as well as the decoding method for the GKP qubit. In case of no mea-
surement error (σM = 0), the error probability can be found by averaging PM=1(1|q1), see
Eq. (3.17), over the Gaussian error distribution, it is plotted as the green line in Fig. 3.6.
An error probability of 2.9% corresponds to σ0 ≈ 0.41. Our numerical results are shown
in Fig. 3.11. One can see a crossing point around σ0 = .47 which can be converted to
around 6% error rate per round for a GKP qubit with σM = 0, see Fig. 3.6. We can con-
clude that, similarly to the results in Sec. 3.4.2, the continuous-valued weights τp (e),
constitute valuable information to the decoder about the likelihood of errors and permit
to surpass decoders which do not have access to such information.

DEALING WITH MULTIPLE COMPETING MINIMA

A difficulty in minimizing the Hamiltonian (3.44) is the existence of a large number of
competing local minima. This was already the case for a single GKP qubit, which we
considered in Sec. 3.3. We saw in the previous section that in the case of perfect GKP
measurements, the solution can be found efficiently because the problem is equivalent
to a minimum weight matching on a graph. Our approach to minimizing Eq. (3.44) in the
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general case will be to decompose the vector potential Ab ∈ [−π,π) for horizontal bonds
b = (i j , t ) into a discrete field A(0)

b ∈ {0,π}, and an auxiliary continuous field ab ∈ [−π
2 , π2

)
,

Ab = A(0)
b +ab +δb/2. (3.51)

For vertical bonds there is no need of such a substitution since the corresponding field is
already discrete, see Eq. (3.45) so we set ab = 0 for all b ⊥ x y . The discrete part of the field,

A(0), can be used to define Ising spins, s, similarily as before, sb ≡ ei A(0)
b . The definition of

the weigths, τp (e), has to be extended since now they depend also on δb 6= 0 and ab 6= 0,
or more precisely the residual fluxes bp ≡ (∇×a)p . Adding these dependencies, the new
weights, τp (a;e), given only in their cosine approximation, read

τp (a;e) = 4

σ2
T

cos

(
ξp

2
− 1

2
(∇×δ)p −bp

)
, p‖x y, (3.52)

τp (a;e) = 4

σ2 cos

(
ϵp

2
− 1

2

(
δi j (t )−δi j (t −1)

)+bp

)
, p ≡ (i j , t ) ⊥ x y. (3.53)

Rewriting the Hamiltonian (3.44), using the substitution (3.51) and using the cosine ap-
proximation of the Villain potentials gives,

H(a, s;e) =− 1

σ2
M

∑
b‖x y

cos(2ab)−∑
p
τp (a;e)up . (3.54)

Then, the minimization over the gauge field A, or equivalently over {a, s}, factors out
into minimizing the RPGM similar to Eq. (3.50), and a minimization over the continuous
field a.

In addition to the candidate error e, the RPGM weights now also depend on a via the
flux field b. Moreover, even with the restriction on the auxiliary vector potentials, |ab | ≤
π/2, the corresponding fluxes are not so restricted; in particular, both for horizontal and
vertical plaquettes one may have |bp | =π, sufficient to flip the sign of the RPGM weight,
τp (a;e), and flip the frustration of the two adjacent cubes.

Nevertheless, even though frustration depends on configuration of both the spins
and the residual fluxes bp , increasing the number of variables by the substitution (3.51)
does simplify the minimization problem. First the fields ab are uniquely defined by the
fluxes bp . Indeed, since the gauge fields ab are only non-zero on the horizontal bonds,
and are zero at the bottom layer, t = 0, the gauge is fixed. Furthermore, the GKP terms
tend to suppress order-reducing fluctuations by favoring small |ab |. Thus, with σM small
compared to σ and σT, we can hope to find a reasonably good solution just by setting
ab = 0.

ACTUAL DECODER ALGORITHMS AND THEIR PERFORMANCE

In order to design a syndrome-based decoder with the starting point ab = 0, we first need
to come up with a candidate error e ≡ e(q). Since we are not doing the full minimization
of the corresponding energy, the method to find e will necessarily affect the performance
of the resulting decoder.
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ALGORITHM 1:

1. For each plaquette h, starting from t = M − 1 down to t = 1, set the toric code
measurement error ξh(t ) = q tor

h (t )− q tor
h (t +1), to suppress the increments of the

toric syndrome. This leaves non-zero toric code syndromes only in the first layer,
q tor

h (t = 1).

2. Set data errors in the first layer, ϵi j (t = 1), to move non-zero toric code syndromes
to the left (with i j‖y), then down along the leftmost column. Due to the boundary
conditions, the sum of all toric code syndromes is 0, meaning that after this pro-
cedure, all toric code syndromes are removed including the one in the left-bottom
plaquette.

3. For each square lattice bond (i j ), starting with t = 1 up to t = M −1, use Eq. (3.38)
to set GKP errors δi j (t ) to suppress the GKP syndromes qGKP

i j (t ) (without changing

ϕi j (t )). This leaves non-zero GKP syndromes only in the top layer, t = M , with
toric syndromes all zero.

4. Make a gauge transformation on the top layer data errors, ϵi j (t = M) → ϵi j (t =
M)+χ j −χi to move non-zero GKP syndromes to the left (to x = 0) and then down
(to y = 0). The last step works because equations (3.41), (3.42) are satisfied for the
updated syndrome; with q tor

h (t = M) = 0 these guarantee that the GKP syndrome
is a gradient.

Having determined the candidate error e, we calculate the RPGM weights (3.52),
(3.53) with bp = 0, and continue with minimum-weight matching decoding described
in Sec. 3.5.3.

The numerical results obtained with the described decoder atσ=σM =σT are shown
in Fig. 3.12 (left). Despite the fact that this decoder does not make a particularly good
use of the GKP syndrome information, q GKP, and does not even try to find a good can-
didate error, the logical error rate rapidly goes down with increasing code distance and
decreasing σ0 below the crossing point at σ0 ≈ 0.243. With the forward-minimization
decoder on a single GKP qubit with σ=σM, this would correspond to a logical error rate
of p ≈ 1.3%. If the errors only come from having imperfect GKP states, then this also can
be translated to having states with at least 4 photons.

It seems possible that, by making a better use of the GKP syndrome, one should be
able to improve this decoder while preserving its computational efficiency. To this end,
we tried a preprocessing algorithm. The basic idea is, given the syndrome q GKP, to find
an initial approximation, e0, for the data errors which would bring back the GKP qubits
closer to their code space. Given e0, Algorithm 1 can be used to find an error e1 match-
ing the updated syndrome, after which the RPGM weights can be computed using the
full candidate error e0 + e1. The hope is then that the candidate error found is one for
which the first term of the Hamiltonian in Eq (3.54) does not need to be minimized any-
more. In particular, we tried using our single-oscillator forward-minimization decoder
from Sec. 3.3 as the preprocessing step. Using it directly produced a degradation of per-
formance, seemingly resulting from the fact that the minimization of the RPGM Hamil-
tonian also tries to optimize the GKP measurement errors δb . Our solution was to drop
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Figure 3.12: (Color online) For both plots the dash-dotted line shows the logical error rate per round for a
single GKP qubit corrected with the forward-minimization decoder, with σ = σT = σM, as a function of the
bare standard deviation σ0 = σ/2

p
π. (Left) Numerical results for ALGORITHM 1 without preprocessing of the

GKP syndrome information (see text). We observe a crossing point at σ0 ≈ 0.243 which can be translated to
p = 1.3%. (Right) Numerical results for the ALGORITHM 2 with preprocessing of GKP syndrome information
(see text). We observe that this decoder improves the logical error rates. On the other hand, the improvement
being greater for smaller distances, the crossing point moves left to σ0 ≈ 0.235 which corresponds to an error
rate p = 1%.

the measurement errors from the decomposition of the field in (3.51), which results in
RPGM weights identical to those in Sec. 3.5.3. Our second decoder can then be summa-
rized as follows.

ALGORITHM 2:

1. For each bond (i j ), use the forward-minimization decoder from t = 1 up to M −1
to calculate the accumulated data error ϕi j (t ), calculate the corresponding ϕi j (t =
M), and then go back from t = M to t = 1 with a version of the same algorithm,
but using previously found values for a more accurate minimization. This gives
the data errors ϵi j (t ) = ϕi j (t )−ϕi j (t −1), which we use to define the error vector
e0 = {0,ϵ,0}.

2. Calculate the residual syndrome, and run the entire ALGORITHM 1, to calculate the
corresponding error e1.

3. Calculate RPGM weights τp (e) using Eqs. (3.52), (3.53) with the combined error
e = e0 +e1 and δ set to zero.

4. Use minimum-weight matching to minimize the RPGM Hamiltonian, and update
the error e, with the result being the output of the decoder.

The results are shown in Fig. 3.12 (right). One can observe that for each distance,
there is an improvement in the encoded logical error rate, compared to the results from
Algorithm 1 on the left of Fig. 3.12. One can see, for each curve, a higher pseudo-threshold,
i.e. the point below which the logical error rate becomes smaller than the physical one,
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determined using the logical error rate for a single GKP qubit given by the forward-
minimization decoder. However, this improvement is greater for smaller distances, so
the overall crossing point is shifted to the left, indicating a smaller threshold. Specifi-
cally, the crossing point is at σ0 ≈ 0.235 which corresponds to p = 1% for the single GKP
qubit with the forward-minimization decoder.

We should note that even though both simple decoders we tried result in finite thresh-
olds, with substantial reduction of the logical error rates with increasing distance be-
low the crossing points, one could expect better performance. Indeed, the toric code
with a phenomenological error model shows a threshold at p = 2.9%. The forward-
minimization decoder with σ=σM in Sec. 3.3 reaches this error rate at σ0 ≈ 0.28.

Of course, a direct comparison is technically incorrect: forward-minimization or any
other single-oscillator GKP decoder would return highly correlated errors and one can-
not expect that the toric code would achieve the same performance. Nevertheless, we
expect that adding a minimization step for the continuous part of the potential a in
Eq. (3.51) would significantly improve the performance.

3.6. NO-GO RESULT FOR LINEAR OSCILLATOR CODES

We turn to the class of codes defined by continuous subgroups of displacement oper-
ators. One can think of linear combinations of position and momentum operators as
nullifiers for the code space, i.e. any code state is annihilated by these nullifiers, see
Appendix 1.2.3.

It is known that one cannot distill entanglement from Gaussian states by means of
purely Gaussian local operations and classical communication [40], [41]. In addition,
the authors of Ref. [19] defined a quantity, “entanglement degradation", for any single-
mode Gaussian channel, such as the Gaussian displacement channel, and showed that it
cannot decrease under Gaussian encoding and decoding. In the setting here we consider
any input state which is perfectly encoded into a linear oscillator code. This encoding
map, E , is a Gaussian operation as it is a linear transformation of the p̂ and q̂ variables.
After this encoding, the modes go through the Gaussian displacement channel N , see
Eq. (3.5). After this, linear combinations of p̂ and q̂ are measured to give rise to a syn-
drome q . Again, this operation is Gaussian. Our results thus follow the model considered
in [19]. However, our results do not require the definition of a new quantity but rather
give a description of the logical noise model of Eq. (3.10). Namely, we show in the fol-
lowing theorem, that it can only lead to an effective squeezing of the original Gaussian
displacement channel. Hence, whatever protection is gained in one quadrature, is lost in
the other quadrature. This is a property of all linear oscillator codes, CSS or non-CSS, i.e.
mixing p̂ and q̂ quadratures or not, with respect to the Gaussian displacement channel.
Since the result is a detailed expression of the logical Gaussian displacement channel, it
does not immediately follow from earlier no-go results.

Theorem (No-Go). Let C be a linear oscillator code on n physical oscillators defined by
a set of n −k independent nullifiers, thus encoding k logical oscillators. Let this code un-
dergo independent Gaussian shifts in p̂ and q̂ of variance σ2

0 on each of its physical os-
cillators, followed by a perfect (maximum-likelihood) decoding step. Then the remaining



3

82 3. QUANTUM ERROR CORRECTION WITH THE TORIC-GKP CODE

logical displacement noise model, Eq. (3.10), for logical shift errors ϵ ∈R2k is

P(ML)(ϵ) = (2πσ2
0)−2k exp

(
− 1

2σ2
0

ϵΣ−1ϵT

)
,

and the eigenvalues of the covariance matrix, Σ−1, are paired by conjugated logical oper-
ators, (λp

j ,λq
j ) j∈[k], such that

∀ j ∈ [k], λp
j λ

q
j = 1.

In particular one has detΣ−1 = 1.

The proof of this theorem, which is rather lengthy, can be found in Section 3.7. The
remaining logical displacement noise is obtained by working out Eq. (3.10), using general
properties of linear oscillator codes. The theorem says that for each logical mode, in the
basis given by the eigenvectors of Σ, the only effect of the encoding is to squeeze the
displacement noise model between the conjugated operators of the mode. The amount
of squeezing can depend on code size but it is impossible to reduce the noise in both
quadratures.

As a concrete example, we consider the linear oscillator code version of the 2D toric
code in Section 3.8 and show that the squeezing depends simply on the ratio Lx /Ly for a
Lx ×Ly toric lattice.

3.7. PROOF OF NO-GO THEOREM
For convenience, we rename the p̂ j and q̂ j operators of the oscillators as r̂k , i.e.

∀k ∈ [2n], r̂k =
{

p̂k when k ≤ n
q̂k−n when k > n.

Let g j be the real vector corresponding to the j th nullifier Ô(g j ) = g j · r̂ of the code, see
Appendix 1.2.3. One can extend the set of nullifiers to a full canonical linear transforma-
tion given by a real 2n ×2n matrix A defining new variables R̂k , as follows

R̂ = Ar̂ T, i.e. R̂k =
2n∑
j=1

Ak j r̂ j .

In order to preserve the commutation relation the condition on the matrix A is that it
preserves the symplectic form S. This can be expressed in two ways:

AS AT = S or ATS A = S with S =
(

0 1n×n

−1n×n 0

)
. (3.55)

The matrix A can be decomposed in blocks

A =


← 2n →

n −k l G
k l P

n −k l D
k l Q

=


← n → ← n →

Gp Gq

Pp Pq

Dp Dq

Qp Qq

,



3.7. PROOF OF NO-GO THEOREM

3

83

where the rows of G are the nullifiers. The rows of D represent the corresponding con-
jugated variables which will be called pure errors (they are sometimes referred to as de-
stabilizers). These pure errors give a convenient basis for expressing an error which is
compatible with a given syndrome which will be used below. The rows of P resp. Q rep-
resent the logical p̂ (resp. q̂) operators of the code as linear combinations of the original
p̂i and q̂ j . The subscript p (respectively q) indicates the p̂ part (respectively q̂ part) of

the operators. Inside the code space the operators Ô
(

g j

)
only take the value 0. Let’s as-

sume that a displacement happens along a pure error direction d j , say U
(−λd j

)
. Then,

measuring Ô(g j ) (equivalently U
(
ηg j

)
for all η ∈R) would give outcome λ ∈R called the

syndrome, since

U (ηg j )
[
U (−λd j ) |Ψ〉]= eiληU (−λd j )U (ηg j ) |Ψ〉 = eiλη [

U (−λd j ) |Ψ〉] .

Note that the logical operators Ô(pk ) or Ô(qℓ), or nullifiers, act on the code space with-
out affecting the measurement of Ô(g j ) since they commute with it.

We can express the constraints on the matrix A in Eq. (3.55) in terms of the matrices
G ,D,P and Q. The blocks which should be equal to zero are shown in blue and the blocks
proportional to the identity are shown in green. The first condition gives

AS AT =



GSGT GSP T GSDT GSQT

PSGT PSP T PSDT PSQT

DSGT DSP T DSDT DSQT

QSGT QSP T QSDT QSQT

=


0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

= S, (3.56)

while the second implies

1= ATS AST =

 DT
qGp +QT

q Pp −GT
q Dp −P T

q Qp DT
qGq +QT

q Pq −GT
q Dq −P T

q Qq

−DT
pGp −QT

p Pp +GT
p Dp +P T

pQp −DT
pGq −QT

p Pq +GT
p Dq +P T

pQq .


(3.57)

3.7.1. LOGICAL ERROR MODEL UNDER DISPLACEMENT ERRORS
We consider the Gaussian displacement noise model on every oscillator as in Eq. (3.5).
Given a realization of the displacement error as a vector of real amplitudes, e ′ ∈R2n , one
can compute the vector of syndromes q ∈ Rn−k , and given q , a candidate error with the
same syndrome, e ∈R2n ,

q = e ′SGT, e =−qD.

In addition, when any two errors e and e ′ have the same syndrome q , then they can
only differ by a stabilizer and a logical operator and one has

∃uc , v c ∈Rk ,∃a ∈Rn−k , e ′ = e +uc P +v cQ +aG = e +cC +aG .

where we have used the notation

C :=
(

P
Q

)
, c = (

uc v c
)

.



3

84 3. QUANTUM ERROR CORRECTION WITH THE TORIC-GKP CODE

We can compute the associated partition function, Zc (e) from Eq. (3.7), for the error
e and the sector equivalent to c ,

Zc (e) =

 1√
2πσ2

0


n ∫ n−k−1∏

j=0
da j exp

(
− (cC +aG +e) (cC +aG +e)T

2σ2
0

)
. (3.58)

This integral can be evaluated since it is Gaussian, resulting, after some manipulations,
in

Zc (e) =C (e)exp

(
− 1

2σ2
0

(
c −µ(e)

)
Σ−1

(
c −µ(e)

)T
)

, (3.59)

where C (e) only depends on e. The covariance matrix Σ and the off-set vector, µ(e), are
defined as

Σ−1 =C ′C ′T, and µ(e) =−ΣC ′eT (3.60)

where

C ′ =CΠG⊥ , and ΠG⊥ =1−GT (GGT )−1G . (3.61)

Remark that ΠG⊥ is the projector onto ker(G) along im(GT) 5. Indeed it is easy to check
that: Π2

G⊥ =ΠG⊥ , ker(G) ⊂ im(ΠG⊥ ), im(GT) ⊂ ker(ΠG⊥ ), and the dimensions coincide.

One can see that Eq. (3.59) describes a multivariate Gaussian distribution over the
logical variable c , hence its maximum is readily given by the mean value,µ(e), see Eq. (3.60).
This means that given the error e, one can directly express its most likely error class: it
is [e +µ(e)]. Using this, one can directly compute the probability density of a remaining
logical error after ML decoding as given by Eq. (3.10):

P(ML)(c) =
∫

de P(e)
Zµ(e)+c (e)∫

db Zb (e)
= 1

N
exp

(
− 1

2σ2
0

cΣ−1c T

)
, (3.62)

where N is a normalization constant. All possible dependence on the choice and size
of the code is contained in the covariance matrix Σ, leading to some rescaled displace-
ment noise model. Recall that the logical variable vector c ∈ R2k represents all k pairs
of conjugated logical operators. We will prove in Section 3.7.2 below that for any linear
oscillator code, the eigenvalues of Σ−1 can be paired between corresponding conjugated
logical operators, denoted (λp

j ,λq
j ) j∈[n], and are such that

∀ j ∈ [n], λp
j λ

q
j = 1. (3.63)

This means that the noise remaining after ML decoding on the logical variables is iden-
tical to the original physical noise except for a possible squeezing between each logical
operator and its conjugated pair.

5This is not an orthogonal projection as ker(G) and im(GT) are not orthogonal to one another.
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3.7.2. EIGENVALUES OF THE COVARIANCE MATRIX

First we remark that C ′, appearing in Σ−1 = C ′C ′T in Eq. (3.60), corresponds to a valid
basis for the logical operators; we call this the spread-out logical basis. This basis is
obtained by adding linear combination of stabilizer generators to C . Such addition can
be summarized, using Eq. (3.61), by the matrix equation,

C ′ =C −CGT (
GGT)−1

G =C +ΛG ,

where Λ is a 2k × (n −k) matrix defining the linear combination of stabilizer generators
added to the logical operators. One can verify that one can replace C by C ′ and still satisfy
the constraints of Eq. (3.55), if one appropriately redefines the pure errors to be

D ′ = D +ΛTST
2kC ,

where S2k is the symplectic form of size 2k ×2k. One can also check that this choice of
basis is the only choice which enforces the following constraint

C ′GT = (C +ΛG)GT = 0. (3.64)

Indeed, solving for Λ, using the fact that G is full rank and therefore GGT is invertible,
gives

C ′ =C −CGT (
GGT)−1

G . (3.65)

Now we use this spread-out logical basis to prove Eq. (3.63). We thus consider that we
already have chosen the spread-out logical basis, so C ′ =C , and want to get information
about the eigenvalues of Σ−1 =CC T.

We use the diagonal block of Eq. (3.57) as well as the block only about logical opera-
tors in Eq. (3.56): 

−DT
pGq −QT

p Pq +GT
p Dq +P T

pQq =1

DT
qGp +QT

q Pp −GT
q Dp −P T

q Qp =1

PSQT = PpQT
q −PqQT

p =1,

(3.66)

(3.67)

(3.68)

We multiply Eq. (3.66) on the left by Pp and on the right by QT
q . We also multiply Eq. (3.67)

on the left by Pq and on the right by QT
p . Then we take the difference, i.e. we consider

Pp (3.66)QT
q −Pq (3.67)QT

p .

By Eq. (3.68), the right hand-side is still the identity, so we have

1= PpGT
p DqQT

q + PqGT
q DpQT

p

− Pq DT
qGpQT

p − Pp DT
pGqQT

q

+ Pp P T
pQqQT

q + Pq P T
q QpQT

p

− PpQT
p PqQT

q − PqQT
q PpQT

p

.
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Since the logical operators are in their spread-out basis we have the corresponding equa-
tions 

PpGT
p +PqGT

q = 0

GpQT
p +GqQT

q = 0,

and can write

1= Pq

(
DT

qGq −GT
q Dq

)
QT

q

+Pp

(
DT

pGp −GT
p Dp

)
QT

p

+Pp

(
P T

pQq −QT
p Pq

)
QT

q

+Pq

(
P T

q Qp −QT
q Pp

)
QT

p .

One can now recognize that the off-diagonal terms in Eq. (3.57) can be used to make an
equation only about logical variables, usingDT

qGq −GT
q Dq = P T

q Qq −QT
q Pq

DT
pGp −GT

p Dp = P T
pQp −QT

p Pp .

Hence we have the following matrix identity

1= PP TQQT −PQTPQT (3.69)

In the next section, 3.7.3, we show that there always exists a logical basis which is
both spread-out as well as orthogonal. Hence for this new basis, Eq. (3.64) is satisfied, as
well as

P̃ P̃ T = Diag
(
λ

p
j

)
, Q̃Q̃T = Diag

(
λ

q
j

)
, and P̃Q̃T = 0. (3.70)

Therefore deriving Eq. (3.69) in this basis yields

1= P̃ P̃ TQ̃Q̃T = Diag
(
λ

p
j λ

q
j

)
, (3.71)

and therefore

∀ j ∈ [k], λp
j λ

q
j = 1. (3.72)

Lastly recall that starting with this choice of basis, one has

Σ−1 = C̃C̃ T =
(

P̃ P̃ T P̃Q̃T

Q̃P̃ T Q̃Q̃T

)
=

Diag
(
λ

p
j

)
0

0 Diag
(
λ

q
j

)
 . (3.73)
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3.7.3. EXISTENCE OF A SPREAD-OUT & ORTHOGONAL LOGICAL OPERATOR

BASIS

We start from a given stabilizer matrix G and denote the rows by
{

g 1, . . . , g n−k

}
. We

showed above that one can always find a logical basis, P and Q with rows {p1, . . . , pk }
and {q 1, . . . , q k }, which is orthogonal to the stabilizer generators, i.e

Lk = Span
{

p1, . . . , pk , q 1, . . . , q k

}⊥G = Span
{

g 1, . . . , g n−k

}
.

We want to construct a new symplectic and orthogonal basis,
{

p̃1, . . . , p̃k , q̃ 1, . . . , q̃ k

}
, for

the 2k-dimensional space Lk . One can first find an orthogonal basis for Lk by the
Gram-Schmidt process for the regular inner product, denote it {c k

1 , . . . ,c k
2k }. We will now

construct a new basis pair by pair, decreasing at each step the dimension of the space
Lk by 2. We can choose

p̃1 = c k
1 .

There has to exist a conjugated pair, q̃ 1, in the space spanned by
{

c k
2 , . . . ,c k

2k

}
. Indeed, all

stabilizer generators, pure errors as well as c k
1 have a trivial symplectic product with p̃1,

hence any conjugated q̃ 1 ∈ Span
{

c k
2 , . . . ,c k

2k

}
. So the following equation

λOk Sp̃T
1 =−1,

where Ok are the basis vectors
{

c k
2 , . . . ,c k

2k

}
stacked in rows, has a solution for λ. Then

we can choose
q̃ 1 =λOk .

Note that the created pair is indeed conjugated for the symplectic inner product as well
as orthogonal. Moreover they are composed only of linear combinations of the original
p i s and q j s, so they do have trivial symplectic product with stabilizer generators and
pure errors and they are orthogonal to the stabilizer generators. Now we define the 2(k−
1)-dimensional subspace Lk−1, as

Lk−1 = Span
{

c k
2

(
1−Πq̃1

)
, . . . ,c k

2k

(
1−Πq̃1

)}
= Span

{
c k−1

1 , . . . ,c k−1
2(k−1)

}
,

where Πq̃1
is the orthogonal projector onto q̃ 1, and the c k−1

j form a new orthogonal basis

for this space. We can then repeat the procedure until we reach L0 = {0}. To summarize

we have constructed a new symplectic and orthogonal basis C̃ =
(

P̃
Q̃

)
obeying Eq. (3.70).

3.8. CONTINUOUS-VARIABLE TORIC-CODE
In this section we examine the continuous-variable toric code [35, 42] as an example of
a continuous-variable topological code. Since the toric code is a homological code, it
is easy to convert it from a Z2-code to an R-code using orientation to add appropriate
minus signs to the stabilizer checks.

The stabilizer checks are shown on the left in Fig. 3.13. Since the toric code is a CSS
code we will always have the orthogonality condition PQT = 0. The vectors p1 and p2
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Figure 3.13: In both figures periodic boundary conditions are assumed. (Left) Example of stabilizer checks and
logical operators for the distance-5 continuous-variable toric-code. The stabilizer checks are also shown in
Fig. 3.8. The support of the logical p1 (in dark blue) and q1 (in dark purple) of one of the encoded oscillators
is depicted. Shifts of strength v on the support of p1 is a logical p-shift of strength v of the first oscillator.
(Right) The support of the spread-out version of the logical operators p1 and q1. Both operators have the
same support (in light blue and light purple) and one can verify that these logical operators are orthogonal
to the stabilizer checks as well as commuting with them. A logical p-shift of strength v on the first oscillator
is now realized by applying v/5 on the support of the spread-out p1. In general, if the torus had dimension
Lx × Ly , the spread-out p1 would have a shift rescaling of 1

Lx
over the whole lattice while q1 would a shift

rescaling of 1
Ly

. At the same time p2 (resp. q2) would have rescaling 1
Ly

(resp. 1
Lx

).

are the two rows of P while the vectors q 1 and q 2 are the two rows of Q. On the left, one
sees the usual string-like p1 and q 1. The spread-out basis for the code can be computed
and is shown on the right of Fig. 3.13. The name spread-out basis comes from the fact
that these logical operators have support over the full lattice: the continuous-variable
stabilizer checks have been used to spread out or distribute their support over the lattice.

Computing CC T , Eq. (3.73), with C being the spread-out logical operators in the gen-
eral case of different dimensions Lx and Ly gives directly a diagonal matrix:

CC T = diag
(
λ

p
1 ,λp

2 ,λq
1 ,λq

2

)= diag
(
p2

1, p2
2, q 2

1, q 2
2

)
, (3.74)

with

λ
p
1 = p2

1 =
∑
ex

1

L2
y
= Lx Ly

L2
y

= Lx

Ly
, λ

p
2 = p2

2 =
∑
ey

1

L2
x
= Lx Ly

L2
x

= Ly

Lx
,

λ
q
1 = q 2

1 =
∑
ex

1

L2
x
= Lx Ly

L2
x

= Ly

Lx
, λ

q
2 = q 2

2 =
∑
ey

1

L2
y
= Lx Ly

L2
y

= Lx

Ly
.

One sees that it is possible to choose the squeezing amount by choosing the ratio of the
dimensions Lx /Ly . In particular, with Eq. (3.62), one sees that the first encoded oscillator

experiences a Gaussian displacement noise model with variance σ2
p = Ly

Lx
σ2

0 for p̂ and

variance σ2
q = Lx

Ly
σ2

0 for q̂ . For the second oscillator the quadrature squeezing goes in the

other direction.
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3.9. DISCUSSION
In this chapter we have presented the first strides in tackling the problem of error cor-
rection and decoding for the toric-GKP code. Interestingly, the decoding problem maps
onto a new class of physical continuous-variable models with quenched-disorder, go-
ing beyond the random plaquette gauge model corresponding to toric code decoding
[38]. We have presented an efficient minimum-energy decoding method for a single
GKP oscillator and an efficient decoder for the toric-GKP code. We have also presented a
combination of these two decoders for the toric-GKP code which improves the achieved
logical error rates but in greater proportion for the small distances, hence achieving bet-
ter pseudo-thresholds but a slightly worse threshold. It would be interesting to design a
better decoder to improve this threshold.

An interesting open problem is to study the phase diagram of the toric-GKP code
numerically. An example of such a numerical study for 3D color codes is [43].

Future studies could look at the question of decoding coherent errors and/or cor-
recting both p and q-shifts simultaneously. Another question is whether it is possible to
handle more realistic noise models, e.g. consider a model of repeated photon loss [6] for
a single GKP oscillator. All such different error models will have a particular path integral
representation and the idea of choosing an energy-minimizing path can be examined.

A variant of the toric-GKP code is the toric-rotor code. This is the concatenation of a
rotor space with integer n̂ and 2π-periodic φ̂ with a rotor toric code whose nullifiers are
linear combinations of n̂s and φ̂s of four rotors [44]. When one uses a two-dimensional
rotor subspace such as a cat code [13] or just a transmon qubit, one could still express the
proper toric code checks in the entire rotor space and examine when a memory phase is
present. Note that the difference in such analysis versus the usual toric code analysis is
that in this model the effect of leakage errors is automatically included.

A possible realization of a surface code variant of the toric-GKP code is an array of
superconducting 2D or 3D resonators. For a code such as Surface-17, this would require
2× 17 = 34 (coplanar) microwave resonators. One can compare this to the transmon
+ resonators lay-out for the regular surface code [45], [46] in which each CNOT gate is
mediated via a coupling bus, hence one uses 8×4 = 32 such bus resonators for Surface-
17.
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4
CODE DEFORMATION TECHNIQUES

The large-scale execution of quantum algorithms requires basic quantum operations to
be implemented fault-tolerantly. The most popular technique for accomplishing this, us-
ing the devices that can be realised in the near term, uses stabilizer codes which can be
embedded in a planar layout. The set of fault-tolerant operations which can be executed
in these systems using unitary gates is typically very limited. This has driven the devel-
opment of measurement-based schemes for performing logical operations in these codes,
known as lattice surgery and code deformation. In parallel, gauge fixing has emerged
as a measurement-based method for performing universal gate sets in subsystem stabi-
lizer codes. In this chapter, it is shown that lattice surgery and code deformation can be
expressed as special cases of gauge fixing, permitting a simple and rigorous test for fault-
tolerance together with simple guiding principles for the implementation of these opera-
tions. The accuracy of this method is demonstrated with examples based on the surface
code and color code, some of which are novel.

Lingling Lao, developed the rotation procedure presented in Figure 4.1. Christophe Vuillot and supervisor,
Barbara Terhal, developed all the rest of the material for this chapter. Parts of it are published in the New
Journal of Physics 21, 033028 (2019) [1], and were written with Lingling Lao and Ben Criger.
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4.1. INTRODUCTION

Q UANTUM computers can implement algorithms which are much faster than their
classical counterparts, with exponential speedup for problems such as prime fac-

torisation [2], and polynomial speedup for many others [3]. The main obstacle to con-
structing a large-scale quantum computer is decoherence, which partially randomizes
quantum states and operations. Although state-of-the-art coherence times are now ap-
preciably longer than gate times [4, 5], they remain too short for useful quantum com-
putation.

To counter the effect of decoherence on quantum states which are stored or ma-
nipulated imperfectly, we can encode logical qubit states into several physical qubits,
and perform non-destructive multi-qubit measurements of the resulting system to ex-
tract information about which errors have occurred, called the syndrome. The spaces of
multi-qubit states used to encode these logical states are called quantum error-correcting
codes, and their ability to correct errors is measured by the distance d , which is the num-
ber of independent errors (or error weight) necessary to alter the state of the logical
qubits without being detected. In order to use one of these codes in practice, it is also
necessary to account for the effect of decoherence on operations. For example, a syn-
drome measurement may involve a sequence of entangling gates, and the error caused
by a faulty gate on a small set of qubits in the beginning of the circuit may propagate onto
many qubits, producing a high-weight error, increasing the likelihood of a logical error.
Measurement results can also be corrupted by decoherence, so syndrome extraction of-
ten has to be repeated. In order to prevent error propagation during repeated measure-
ment, syndrome extraction circuits must be designed such that a small number of faults
(from imperfect gates or memory errors on data qubits) will result in a small number of
errors on the physical qubits, which can be corrected using noisy syndromes. Given a
family of codes of different distances, we can determine a threshold error rate, the rate
beneath which codes with higher distance produce lower logical error probabilities.

Several such families of quantum error-correcting codes have been developed, in-
cluding concatenated codes [6, 7], subsystem codes such as Bacon-Shor codes [8], and
2D topological codes. The most prominent 2D topological codes are surface codes [9]
derived from Kitaev’s toric code [10]. Another notable example of topological code is
the color code [11]. 2D topological codes can be implemented using entangling gates
which are local in two dimensions, allowing fault-tolerance in near-term devices which
have limited connectivity. In addition, 2D topological codes generally have high fault-
tolerant memory thresholds, with the surface code having the highest known at ∼ 1%
[12].

These advantages come at a cost, however. While 2D color codes permit certain
single-qubit logical operations to be implemented transversally, the surface code does
not have any. In addition, the constraint that computation be carried out in a single
plane does not permit two-qubit physical gates to be carried out between physical qubits
in different code blocks, precluding the two-qubit gates which, in principle, can be car-
ried out transversally.

These two restrictions have led to the design of measurement-based protocols for
performing single- and two-qubit logical gates by making gradual changes to the under-
lying stabilizer code. Measurement-based protocols that implement single-qubit gates
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are typically called code deformation [13], and protocols that involve multiple logical
qubits are usually called lattice surgery [14]. A separate measurement-based technique,
called gauge fixing [15], can be applied to subsystem codes, which have operators which
can be added to or removed from the stabilizer group as desired, the so-called gauge
operators. During gauge fixing, the stabilizer generators of the subsystem code remain
unchanged, and can be used to detect and correct errors; so decoding is unaffected by
gauge fixing. This is in contrast to code deformation and lattice surgery, where it is not a
priori clear which measurement results to incorporate into decoding, or how to process
them. Recently, many different code deformation and lattice surgery techniques have
been devised, most of which use tailor-made analysis or decoding techniques, see e.g.
[16–23].

In this chapter, we phrase existing lattice surgery and code deformation protocols
as special cases of gauge fixing, showing that the underlying subsystem code dictates
the fault-tolerance properties of the protocol. This perspective can simplify the analysis
of new measurement-based protocols, provided that they are based on stabilizer codes
whose distances can be easily calculated. Also, knowing the stabilizer of the underlying
subsystem code results in clear guidelines for decoding using the measurement results
produced by such a protocol.

The remainder of this chapter is organised as follows. In Section 4.2, we review the
ideas behind code deformation and lattice surgery. In Section 4.3, we review the formal-
ism of gauge fixing. Following this, in Section 4.4, we formulate lattice surgery and code
deformation operations as gauge fixing, demonstrating that fault-tolerant code defor-
mation protocols are in fact based on high-distance subsystem codes. We also show this
explicitly using both well-known and novel protocols. We conclude and discuss poten-
tial future research in Section 4.6.

In all figures in this chapter, qubits are located on the vertices of the drawn lat-
tice. We refer to the local generators of the stabilizer group of the codes as stabilizers
or checks. In surface code figures, black regions signify X -stabilizers and light grey re-
gions Z -stabilizers, with no stabilizers measured on white plaquettes. In color code fig-
ures, colored faces signify both X - and Z -stabilizers unless otherwise specified. Shaded
regions are a visual aid to identify colored boundaries.

4.2. CODE DEFORMATION AND LATTICE SURGERY

4.2.1. CODE DEFORMATION

Code deformation is a technique to convert one code into another by making a series of
changes to the set of stabilizer generators to be measured in each round of error correc-
tion.

Typically, these protocols use ancillae prepared in entangled and/or encoded states
as a resource. Also, a typical code deformation sequence proceeds gradually, first ex-
panding the code into a large intermediate code by entangling the original code block
with the ancillae, then disentangling some of the qubits (which may include some or all
of the original data qubits), producing a final code which can then be used for further
computation. The initial and final code may differ in their logical operators, in which
case the deformation may perform a logical operation. Also, the initial and final code
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(a) (b) (c)

(d) (e)

d× d

(f)

Figure 4.1: Fault-tolerant procedure for rotating a surface code by 90◦ and reflecting it about the x axis (see
[14, Figure 10] for the corresponding protocol using smooth/rough boundaries). (a) Initial layout where the
5×5 lattice is to be rotated, the three 3×4 patches are ancillas in fixed states, fully specified by the stabilizers
shown. (b) Intermediate lattice, this step is required to expand the lattice fault-tolerantly. (c) Fully expanded
lattice. (d) and (e) Splitting operations performed to shrink the lattice. (f) By using the two steps from (a) to
(c) at the same time on all corners, one can grow a lattice from distance d to 3d −4. The surrounding ancillary
patches have (d −2)× (d −1) qubits each.

may differ in their position or orientation within a larger quantum computer.

For example, consider the proposed fault-tolerant procedure for lattice rotation of
surface codes shown in Figure 4.1, similar to the one presented in [24]. One can see five
steps which gradually modify the surface code patch starting at the bottom right of Fig-
ure 4.1a and ending at the top left of Figure 4.1e in a different orientation. First, three
ancillary patches are prepared in fixed states, and placed near the upper left corner of
the target patch. Then, the patch undergoes a two-step growing operation, followed by
a two-step shrinking operation. Advancing one step is done by measuring the operators
corresponding to the new stabilizers, some of which anti-commute with the old ones.
Measurement of these new stabilizers will return ±1 values at random. This means that
additional corrections, unrelated to errors that may have occurred, are needed in order
to enter the new code space (the mutual +1-eigenspace of all new stabilizers). Moreover,
to account for noisy operations, one must simultaneously perform error correction. Af-
ter one is confident that the encoded state is in the new code space, one can proceed to
the next step.
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(a) (b) (c)

Figure 4.2: A procedure to flip a lattice using code deformation. (a) The lattice to be flipped, and the physical
qubits prepared in |+〉 states. (b) The flip operation is realised by merging the original lattice with the phys-
ical qubits below. (c) Subsequently measuring the physical qubits at the top in the X basis finishes the flip
operation.

In Section 4.4, we will demonstrate that, following these five steps, one can fault-
tolerantly protect the logical information at all times with a distance-5 code. We also
show that the distance would be reduced to 3 if one were to omit step (b), going directly
from (a) to (c), as one would do when directly adapting the established surface code
rotation method from [14] to rotated surface codes.

This lattice rotation followed by the lattice flip in Figure 4.2 is useful for performing
a transversal Hadamard gate. The transversal Hadamard gate on a surface code patch,
performed by applying a Hadamard gate on each qubit, interchanges X and Z plaque-
ttes. This code transformation can be undone by a lattice rotation, followed by a lattice
flip. Moreover, part of this rotation procedure can be used to grow a code with distance
d to a code with distance (3d −4) in two steps by simultaneously growing all corners, see
Figure 4.1f.

This type of code deformation does not, in itself, perform logical operations, but can
be used to move patches of code or to convert between codes where different gates are
transversal [18]. Other code deformation procedures such as moving holes or twists do
perform unitary logical Clifford operations [20, 25, 26]. In the next section, we present
another similar procedure which executes a logical measurement.

4.2.2. LATTICE SURGERY
Lattice surgery is a particular measurement-based procedure that acts non-trivially on
logical information. By going through two steps of deformation, it implements a joint
measurement of logical operators, typically X 1X 2 or Z 1Z 2, where X j and Z j denote the

logical operators of the logical qubit j . We will focus on the Z 1Z 2 measurement and
review the protocol used for the surface code [14, 17].

Consider two patches of L ×L rotated surface code, as in Figure 4.3a. Each has a Z
along the boundary which faces the other patch. In the merge step, one measures the
intermediary Z -plaquettes (in pink in Figure 4.3b). These plaquettes are such that the
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(a)

Merge−−−−→

(b)

Split−−−→

(c)

Figure 4.3: Lattice surgery for the rotated surface code. Grey plaquettes show Z -stabilizers, black plaquettes
represent X -stabilizers. A ‘±’ label indicates a random sign for the corresponding plaquette in the stabilizer
group. (a) Initial layout, two rotated surface codes. (b) The merged lattice, which is a surface code with random
± signs on the newly-measured (red) plaquettes. (c) The split lattices, in which the original stabilizers are
measured again. Random ± signs are produced on the boundary X -stabilizers.

product of all outcomes is the outcome of the Z 1Z 2 measurement, but any subset of
these outcomes produces a random result when multiplied together. This ensures that
the only non-stabilizer operator whose eigenvalue can be inferred from these measure-
ments is Z 1Z 2. These measurements do not commute with the weight-2 X stabilizers at
the joint boundary (in Figure 4.3a). The Gottesman-Knill theorem [27] prescribes how
to update the stabilizer after such measurements, namely we only retain elements in
the original stabilizer group which do commute with the newly measured stabilizers.
This implies that the code becomes a 2L × L patch of surface code, apart from some
minus signs on the newly-measured Z -checks. This merge step is very similar to the ro-
tation presented before, except that some logical information is gained in the process
and the additional corrections which fix the state into the new code space may involve
one of the original logical operators (when the number of intermediary plaquettes with
−1 eigenvalues is odd). To finish the protocol, the original code space must be restored
by performing a splitting operation, measuring the original stabilizers of the two sep-
arate patches instead of the intermediary Z -plaquettes. Those Z -plaquettes, as in the
merge step, anticommute with the boundary X -stabilizers, and will be removed from
the stabilizer group. Their product, equal to Z 1Z 2, does commute, and will remain as
a stabilizer of the final state. In addition, the boundary X -plaquettes will have random
± signs which are perfectly correlated between facing pairs. Therefore, one can elimi-
nate these ± signs by applying some of the former stabilizers (those supported on the
intermediary Z -plaquettes).

One can check (see the algebraic proof in Section 4.5) that depending on the outcome
(±1) of the logical Z 1Z 2 measurement, the merge and split operations, respectively M±
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and S± can be expressed as

M+ = |0〉〈00|+ |1〉〈11| , S+ = |00〉〈0|+ |11〉〈1| , (4.1)

M− = |0〉〈01|+ |1〉〈10| , S− = |01〉〈0|+ |10〉〈1| . (4.2)

They are related to the projections, P±, onto the ±1 eigenspace of Z 1Z 2 by composition:

P+ = S+ ◦M+, P− = S− ◦M−.

|C〉

|0〉

|T 〉

(−1)a

MXX

(−1)b

MZZ
(−1)c
MX

Za+c

Zc

Xb

(a)

|C〉

|+〉

|T 〉

(−1)a

MZZ (−1)b

MXX

(−1)c
MZ

Zb

Xc

Xa+c

(b)

C

A T

(c)

Figure 4.4: (a) & (b) Two equivalent measurement-based circuits for the CNOT gate. (c) The qubit layout for
a CNOT gate between two surface-code qubits. C is the control qubit, T is the target qubit, and A is a logical
ancilla.

In particular, lattice surgery allows us to implement the measurement-based CNOT gate
[28] in a 2D layout with only local operations as shown in Figure 4.4. We note that a
more general set of operations which can be implemented by lattice surgery can be con-
structed using the relation between the merge and split operations considered here and
the three-legged nodes of the ZX-calculus [29]. For the purposes of this chapter, however,
we will limit our discussion to CNOT gates.

4.3. GAUGE FIXING
Gauge fixing [15] is an approach which has been used to implement universal fault-
tolerant gate sets in subsystem codes [30]. A subsystem code is equivalent to a stabilizer
code in which some of the logical qubits are not used to carry any logical information.
These logical qubits are called gauge qubits and they can be acted on or measured with-
out disturbing the states of the other logical qubits, which are used to store and process
quantum information. Then, one way to formally define a subsystem code, C , is to de-
fine a subgroup of the Pauli group, called the gauge group G , containing all the Pauli sta-
bilizers as well as the Pauli operators defining the gauge qubits. This subgroup is non-
Abelian as it contains anti-commuting Pauli operator pairs which represent the gauge
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qubit logical operators. The stabilizer group, S , can be derived from G as its center,
denoted Z(·), i.e. containing all elements in G which mutually commute

S = Z(G ) =C (G )∩G , (4.3)

where C (G ) denotes the centralizer of G in the Pauli group, i.e. all elements in the Pauli
group with commute with all elements in G . Elements in G which are not in S are the
Pauli operators acting non-trivially on the gauge qubits: this is the set of gauge operators
Lg

Lg =G \S . (4.4)

The codespace C is defined by the stabilizer group S , with an additional equivalence
between code states if they differ only by a gauge operator

C = {|ψ〉 | ∀S ∈S S |ψ〉 = |ψ〉} , |ψ1〉 ∼ |ψ2〉⇔∃G ∈Lg , |ψ1〉 =G |ψ2〉 . (4.5)

Following this, one can define operators for the actual logical qubits which by definition
are elements in C (S ) \ S . If these operators act trivially on the gauge qubits, we call
these bare logical operators. Bare logical operators can be multiplied by elements in Lg

to become dressed logical operators which also act on the gauge qubits. We can write

Lbare =C (G ) \G , Ldressed =C (S ) \G . (4.6)

Note that with this definition we have, Lbare ⊂ Ldressed. The distance of the subsystem
code C is the smallest weight of any of its logical operators,

dC = min
ℓ∈Ldressed

wt(ℓ). (4.7)

One advantage of subsystem codes is that to measure stabilizers, one is free to mea-
sure any set of checks in the gauge group as long as this set generates the stabilizer group.
By measuring elements in the full gauge group, one can put the gauge qubits in specific
states, permitting different sets of transversal logical gates. This act of putting the gauge
qubits in a specific state is called gauge fixing. The idea is to measure a commuting
subset of gauge operators (all the Z -type gauge operators, for example), obtaining ±1
outcomes and applying the anticommuting, or conjugate partner operator (an X -type
gauge operator in the example), wherever a −1 outcome has been obtained. In the ex-
ample, this would fix all gauge qubits to the |0〉 state. While the gauge is fixed in this way,
the Z -type gauge operators become elements of the stabilizer group, so S is augmented
to some larger Abelian subgroup of G .

4.4. FAULT-TOLERANCE ANALYSIS WITH GAUGE FIXING
In this section, we show how both code deformation and lattice surgery can be viewed
as gauge fixing operations and therefore, one can use gauge fixing to analyze the fault-
tolerance of these operations.

We consider the QEC codes before and after a deformation step, denoted as Cold and
Cnew, with stabilizer groups Sold and Snew, respectively. Both codes are fully defined on
the same set of qubits. The logical operators of each code are defined as

Lold =C (Sold) \Sold , Lnew =C (Snew) \Snew.
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(a) (b)

Figure 4.5: Venn diagrams depicting the relations between the different sets of Pauli operators concerning the
gauge group G of interest, see main text. (a) For one step, the yellow-green set represents the old stabilizer
group, Sold, and the blue-green set the new group, Snew. Both are surrounded by the logical operators, Lold
and Lnew respectively. The gauge group generated by both, G̃ = 〈

Sold,Snew
〉

, has S̃ as its center, shown by
the down-left-dashed region. The gauge group of interest, G , is outlined in purple and has S , in the down-
right-dashed region as its center. The set of gauge operators defining the gauge qubits, Lg , is the dotted
region. When switching from Sold to Snew one fixes the gauge for the elements in the blue-green dotted
region Mfix = G̃ \ Sold. (b) One possible scenario for two successive steps of deformation. Doing it in two
steps, i.e. from S0 → S1, and then from S1 → S2 permits to use successively the stabilizer groups S01 and
then S12 for error correction. Skipping the intermediary steps, one can only use S02 which might offer less
protection.

The intuition we follow is to see the two stabilizer codes as two different gauges of the
same subsystem code. The first step, then, is to define a joint subsystem code, C̃ , whose
gauge group, G̃ , is generated by both Sold and Snew,

G̃ = 〈Sold,Snew〉.

The generated group, G̃ , is not necessarily Abelian, since it contains elements of Sold

which may anti-commute with some elements of Snew.
The stabilizer group, S̃ , defined as in Eq. (4.3), can be characterised as follows: Ele-

ments in the center of G̃ also have to be in the centralisers of Sold and Snew. Moreover,
being in both centralisers and in G̃ is sufficient to be in the center, or

S̃ =C (Sold)∩C (Snew)∩ G̃ .

See Figure 4.5a for a representation of S̃ as a Venn diagram. Note that, in addition to
containing Sold ∩Snew, S̃ can also contain some logical operators from either Lold or
Lnew. This is the case for the merge operation of lattice surgery where the logical Z 1Z 2 ∈
Lold but also Z 1Z 2 ∈ Snew and therefore Z 1Z 2 ∈ S̃ . Similarly, for the split operation
Z 1Z 2 ∈Lnew but also in Sold and therefore in S̃ .

As defined above, this subsystem code C̃ indeed admits Sold and Snew as two dis-
tinct Abelian subgroups of G̃ . Therefore the codes Sold and Snew correspond to fixing
two different sets of states for the gauge qubits of G̃ . However, for this to function as a
subsystem code, one would have to be stabilized at all times by S̃ and thus be able to
measure all values of the stabilizers of S̃ .
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This is not the necessarily the case when S̃ contains some elements of Lold or Lnew,
and we have to further modify G̃ to a gauge group G whose center is solely

Z(G ) =S =Sold ∩Snew.

How do we obtain G from G̃ ? This new gauge group, G will be generated by Sold

and Snew in addition to (anti-commuting) conjugate partners of elements in the sets
Mprep = Sold ∩Lnew and Mmeas = Snew ∩Lold. More precisely, one views Mprep as a
subset of Lnew, and for each independent logical operator contained in Mprep adds a
chosen conjugated partner within Lnew. One operates similarly for Mmeas by viewing it
as a subset of Lold. If we then consider the center of G , we see that all elements in Mprep

and Mmeas are excluded from it since they anti-commute with some elements in G . This
means that the center of G is reduced to Z(G ) =Sold ∩Snew as desired.

The names Mprep and Mmeas are chosen to represent their respective roles in the
deformation procedure. In such a procedure one starts from a system encoded in Cold,
i.e. stabilized by Sold, and then one measures the new stabilizers, Snew. When Snew

contains some elements of Lold, then in general these elements will not stabilize the
state of the system, since it can be in any logical state at the beginning of the procedure.
Measuring these operators will return information about the logical state and cannot
return information about errors. Thus, by switching to Snew one also performs a logical
measurement of the elements in Mmeas.

It is also possible for Sold to contain some elements of Lnew. In that case, the state of
the system is initially stabilized by these elements, and remains so, since we only mea-
sure operators commuting with them. In this sense, the deformation procedure will pre-
pare the logical +1 state of elements in Mprep.

We denote the code underlying the code deformation step as C . Its gauge group, G ,
is represented as a Venn diagram in Figure 4.5a. Thus the deformation operation that
transforms Cold into Cnew is realized by switching what gauge to fix of the code C : in one
gauge one obtains Cold, the other gauge gives Cnew. Since the deformation step can also
transform logical information, what gauge elements are fixed is subtle. Namely, note that
in this gauge fixing of C to either code Cold or Cnew the gauge elements in G \G̃ will never
be fixed. Said differently, only the elements of Lg which are in the blue-green dotted
region in Fig. 4.5 will be fixed, one can also view these as elements of Mfix ≡ G̃ \Sold.

4.4.1. FAULT-TOLERANCE OF CODE DEFORMATION
Given an underlying subsystem deformation code C , one can ensure the fault-tolerance
of a code deformation operation by checking three criteria:

1. Code distance: The distance of the subsystem code, C , must be large enough for
the desired protection. Ideally it matches the distances of Cold and Cnew so the
degree of protection is not reduced during the deformation step.

2. Error correction: The error correction procedure follows that of the subsystem
code C through the code deformation step.

3. Gauge fixing: To fix the gauge, one has to use operators exclusively from Lg =
G\S .
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More specifically, criterion 2 means that to perform error correction, one has to re-
construct from the measurements of Snew the syndrome given by S . Importantly, cri-
teria 2 and 3 demonstrate that the processes of error correction and that of gauge fix-
ing are two separate processes with different functionality. Both processes require the
application of Pauli operators (in hardware or in software) to make sure that stabilizer
measurements are corrected to have outcome +1. The error correction process does this
to correct for errors, while the gauge-fixing process does this to move from Cold to Cnew.

This description holds for one step of deformation, so that for each step in a se-
quence of deformations one has to examine the corresponding subsystem code C and its
distance. Depending on the sequence, Figure 4.5b illustrates why skipping steps could
lead to poor distance and poor protection against errors. This discussion also assumes
that stabilizer measurements are perfect; the effect of noisy stabilizer measurements is
considered in the following section.

NOISY MEASUREMENTS

When one considers noisy syndrome measurements, one needs to ensure that both the
stabilizer outcomes and the state of the gauge qubits can be learned reliably. For 2D
stabilizer codes such as the surface code this is simply done by repeating the measure-
ments. To process this repeated measurement information for the surface code, one
no longer uses the syndrome but the difference syndrome: the difference syndrome is
marked as non-trivial (we say that a defect is present) only when the syndrome value
changes from the previous round of measurement. This difference syndrome or defect
gives information about both qubit errors as well as measurement errors. Switching to
the difference syndrome point of view can be understood algebraically as follows:

Ge0 +d 0 = s0 Ge0 +d 0 = s0 =∆s0

G (e0 +e1)+d 1 = s1 Ge1 +d 1 −d 0 = s1 − s0 =∆s1

...
...

G

(
T∑

t=0
e t

)
+d T = sT GeT +d T −d T−1 = sT − sT−1 =∆sT (4.8)

where G is the stabilizer generating matrix of the code, e t is the vector of errors occurring
at time t on data qubits, d t the vector of errors on the syndrome readout at time t , s t

the vector of syndrome values observed at time t and ∆s t the difference syndrome at
time t . The left column in (4.8) describes the physical evolution of the system where in
every round the syndrome measurement gives information about the cumulative errors
in time. The right column in (4.8) describes rewriting the same information in terms of
the difference syndrome, which yields equations that are local in both space and time.
It can therefore be reinterpreted as a space-time error correcting code and the decoding
procedure is more easily understood in this picture.

We can see how this picture changes when doing a code deformation at time Td . At
Td one obtains the syndrome for the code Snew. For those elements in Snew which are in
S , we know what this syndrome should have been if no measurement or data errors had
occurred since the previous QEC round which measured the stabilizers of Sold. There-
fore, we can place defects when the found syndrome changes from what it was expected
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Figure 4.6: Schematic drawing of a code deformation procedure with repeated noisy measurements, with time
increasing upwards. Td designates the time step at which the code deformation (the switch from measuring
the checks of Sold to those of Snew) is performed. Tg is the time at which one is confident enough about
the state of the gauge qubits, taking into account errors, to fix their states. This means that, after Tg , another
logical computation can be performed. (Right) The first round of measurement of Snew at time Td does not
have a previous value to compare to in order to construct a difference syndrome, i.e. one can only construct
defects for S . Immediately after this step, one can derive the difference syndrome of the full Snew, placing
defects accordingly. Using defects before and after Td , one processes error information to infer the value of
the gauge operators in Mfix at time Tg , thus fixing the gauge at Tg .

to be based on the last round of measurements with Sold. Snew also contains a subset of
elements in Lg , namely the blue-green dotted region Mfix in Fig. 4.5a. Some of these el-
ements are also contained in Lold (down-right-dashed area in Fig. 4.5a), i.e. they are ele-
ments of Mmeas. The eigenvalues of these elements in Mmeas depend on the logical state
and are therefore not a proper syndrome for Sold. So only after one more round of QEC
with Snew, one can mark whether the syndrome for these elements in Mmeas changes,
and either place a defect or not. In addition, the eigenvalues of the gauge operators in
the remaining blue-green dotted region take random ±1 eigenvalues (since they anti-
commute with some elements in Sold): for these checks, like for the elements in Mmeas,
there is no previous record to construct a difference syndrome right away. Again, only
after one round of QEC with Snew one can again mark whether the syndrome changed,
placing a defect for an element or not. In processing these new syndromes of Snew to
do error correction, we should also allow them to be matched with virtual defects placed
beyond the past-time boundary Td . For example, a measurement error in the first step
when the syndrome is randomly +1 or −1, followed by many rounds without measure-
ment error, produces a single defect and should be interpreted as the first measurement
being incorrect.

This can be summarized algebraically as follows. We denote as Gold the generating
matrix for the stabilizer before the code deformation, Gnew for after, as well as G the
generating matrix for the stabilizer of the associated subsystem code. By definition of G ,
there exist two matrices, Λold and Λnew obeying

G =ΛoldGold =ΛnewGnew. (4.9)

Using this identity we can construct the local space-time code across the code deforma-
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tion time step at time Td as follows

...
...

Gold

(
Td−1∑
t=0

e t

)
+d Td−1 = sTd−1 GoldeTd−1 +d Td−1 −d Td−2 = sTd−1 − sTd−2 =∆sTd−1

Gnew

(
Td∑
t=0

e t

)
+d Td = sTd GeTd +Λnewd Td −Λoldd Td−1 =ΛnewsTd −ΛoldsTd−1 = ∆̃sTd

Gnew

(
Td+1∑
t=0

e t

)
+d Td+1 = sTd+1 GneweTd+1 +d Td+1 −d Td = sTd+1 − sTd =∆sTd+1

...
... (4.10)

Given the syndromes ∆s t of the constructed local space time code, any suitable de-
coder, minimum-weight matching for the surface code for example, can be used to de-
code (see Fig. 4.6), to infer some errors as they have occurred in a window of time before
and after Tg and Td (one may use a sliding window as in [24]). Let us then imagine that
by matching defects in a window which goes beyond a so-called gauge-fixing time Tg ,
one infers a set of measurement and data errors. These errors are projected forwards to
the time-slice Tg and they are used to do three things. The first two concern correctly in-
terpreting the measured syndrome sTd at the time of the deformation. In more detail the
first one is to correct the value of elements in Mmeas (if any), so that the logical measure-
ment has been completed and properly interpreted. The second is to determine or fix
the gauge, i.e. determine the outcome of elements Mfix in the blue-green dotted region
of Fig. 4.5. As we have argued, these gauge values may be ±1 at random and hence Pauli
gauge-fixing corrections can be added in software to make the outcomes all +1 if one
wishes to work with the frame where all elements in Snew have +1 eigenvalue. These
Pauli gauge-fixing corrections are not error corrections and any set of Pauli operators
can be chosen as long as they solely fix the values of the elements in Mfix. Thirdly, the
projected errors provide the usual update of the Pauli frame for the code S , so together
with the gauge-fixing corrections, for the code Snew. The whole procedure is represented
schematically in Fig. 4.6; at time Tg , the code deformation step is finished.

Note that, after Td , the elements in Mprep are no longer measured, but their fixed
values before the code deformation now represent logical states prepared by code defor-
mation.

Typically, for 2D stabilizer codes, the time window between Tg and Td needs be of
size O(d) in order to fix the gauge, where d is the distance of code C . In some cases,
the measurements contain enough redundant information about the gauge operators
so that Tg can be equal to Td . For example, this is the case when performing the log-
ical measurement of a patch of code by measuring every single qubit in the Z basis.
This is also the case for the logical measurement step of the plain surgery technique ex-
plained below. Such measurement procedures, where a single-round of measurements
is enough to gather enough information about the syndrome are called single-shot. This
concept exists already for regular error correction, outside of a code deformation proce-
dure. If one can perform error correction reliably given a single round syndrome mea-
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surements, this is called single-shot error correction. In the context of a code defor-
mation procedure, one needs to be able to learn the gauge information reliably to be
single-shot.

In the remainder of this section, we apply this formalism to the code deformation
and lattice surgery operations discussed earlier.

4.4.2. CODE DEFORMATION EXAMPLES

GROW OPERATIONS

(a)
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X ′
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X ′
3 X ′
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Z ′
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Z ′
3 Z ′

4

X
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(b)

Figure 4.7: Description of the subsystem code, C , which holds during the first step of the grow operation de-
picted in 4.1a, 4.1b. (a) Generators for the stabilizer group, S , of C . (b) Generators for the whole gauge group
G of C . Highlighted in red and blue, respectively, are gauge operators, elements of Lg , of Z -type and X -type,

respectively. The logical operators, X , Z ∈Lbare, are also represented in brighter colours.

Gauge fixing, when applied to the growing operations of Figure 4.1 and Figure 4.2,
reveals an underlying subsystem code with a small number of widely-spaced holes and
large boundaries, resulting in a high distance. The stabilizer group, S , as well as the
gauge operators, Lg , for the subsystem code C which governs the deformation from
Figure 4.1a to Figure 4.1b, are shown in Figure 4.7.

In all figures of this chapter, light blue and light red patches individually represent
X -type and Z -type gauge operators, and bright blue and bright red qubit chains are X
and Z operators respectively. The grow operation is changing the gauge from one in
which the gauge operators not overlapping between the initially separate patches are
fixed, denoted as

{
X ′

1, X ′
2, Z ′

3, Z ′
4

}
in Figure 4.7b, to one in which the overlapping ones

are fixed, denoted as
{

Z ′
1, Z ′

2, X ′
3, X ′

4

}
in Figure 4.7b. The distance of C is still 5, matching

the distance of the initial code.
Now consider what happens if we would go directly from Figure 4.1a to Figure 4.1c.

The stabilizers and the gauge operators for this operation are shown in Figure 4.8. Sim-
ilarly, one fixes the gauge going from separate patches to a single patch. The distance
of the subsystem code for this operation is only 3. Indeed one of the minimum-weight
dressed logical operators is the Z on the qubits in the green box in Figure 4.8b. That
means that, in order to preserve the code distance, one should perform the intermedi-
ary step.
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Figure 4.8: The operators of the subsystem code for the one-step grow operation from Fig. 1a to Fig. 1c,
skipping Fig. 1b: (a) The stabilizers which generate S and (b) the whole gauge group, G , with highlighted
gauge operators and logical operators.
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Figure 4.9: The operators of the subsystem code, C , for the joint measurement Z Z . (a) The generators of
stabilizer group S . (b) The highlighted operators are either gauge operators in Lg or logical operators in
Lbare. We start in the gauge where the products X ′

1 X ′
2 and X ′

2 X ′
3 are fixed, and end in the gauge where Z ′

1, Z ′
2,

and Z ′
3 are fixed. The distance of the subsystem code is 5, since one can construct a logical X with this weight

by multiplying it with X gauge operators. (c) & (d) Two different scenarios with errors of weight d/2 with the
same observed measurements.

THE MERGING AND SPLITTING OPERATIONS

In this section, we interpret the joint measurement of Z Z by lattice surgery in Figure 4.3b
as gauge fixing. The stabilizer group S is generated by all the stabilizers in Figure 4.9a.
The gauge operators, Lg , of the gauge group are given by three representatives of the
logical X of the top patch and the intermediary Z plaquettes that anti-commute with
them. They are denoted as

〈
X ′

1, Z ′
1, X ′

2, Z ′
2, X ′

3, Z ′
3

〉
in Figure 4.9b. Representatives of the

bare logical operators, X , Z ∈Lbare, are the logical Z of the bottom patch and the logical
X of the merged patch (joining the very top to the very bottom), see Figure 4.9b. The
merge and split operations are realised by fixing some gauge operators of Lg , resulting

in new codes Cmerged or Csplit, respectively. Note that the weight of X of the subsystem
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code, C , is only d and not 2d which is the distance for X of the merged code. Indeed, by
using the gauge operators like X ′

1 and stabilizers, one can construct a dressed logical X of
weight d . Another way of seeing this is by realizing that one cannot distinguish between
two errors of weight d/2 depicted in Figures 4.9c and 4.9d. In the first one, the logical
measurement outcome is −1 and there is a string of d/2 X -errors from the bottom to
the middle of the bottom patch. In the second one the logical measurement outcome
is +1 and there is a string of d/2 X -errors from the middle of the bottom patch and the
middle (changing the observed logical measurement outcome to −1). Note also that
when performing the splitting operation, one wants to correct the −1 outcomes for some
of the intermediary X stabilizers. They are gauge operators equivalent to, say X ′

1X ′
2. They

have to be corrected using the Z gauge operators, say Z ′
1 in this case. Otherwise one

would introduce a logical Z error.
An almost identical analysis can be done for the color code version of lattice surgery

[17], as well as hybrid between a surface code patch and a color code patch [19]. The idea
is very similar since color codes also have logical operators along their colored bound-
aries, see the presentation of color codes in Section 1.2.3 of Chapter 1. Figure 4.10 shows
the different stabilizer and gauge operators involved in color code surgery, when mea-
suring Z1 ⊗ Z2. One can observe a very similar structure of the gauge operators where
the logical X operator of one of the two patches is added to the gauge group of the de-
formation.

(a) Initial layout (b) Z -stab. after merging (c) X -stab. after merging (d) X (blue) and Z (red)
gauge operators

Figure 4.10: (a) Two patches of color codes with facing red boundaries ready for the merging phase of lattice
surgery to measure say Z ⊗ Z . Qubits are located at the vertices and each colored face hosts both a X and
Z stabilizer. (b) The Z stabilizers after the merging step on each colored face. (c) The X stabilizers after the
merging step on each colored face. (d) Highlighted in red (Z ) and blue (X ) are the gauge operators of the code
deformation procedure not in the stabilizer. The X logical operator of the top patch has to be added to the
gauge group. The distance is still that of a single patch because of this.

Interfacing triangular 2D color codes and tetrahedral 3D color codes using these
techniques is also very similar. This is interesting since a tetrahedral 3D color code sup-
ports a transversal T gate which, once added to Clifford gates, forms a universal set. For
this we consider 3D tetrahedral color codes with a string-like Z logical and a membrane
like X logical. The main feature to notice is that the four faces of a tetrahedral 3D color
code have the same structure as that of a triangular 2D color code. This permits to either
perform surgery along an edge or along a face, see Figure 4.11. The (Z ) surgery along an
edge has again the same protocol and characteristics. For doing surgery along one face,
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it is simpler to have the 2D patch to match exactly one face of the 3D patch and then
perform joint Z ⊗Z measurements on pairs of matching qubits. One difference with the
edge surgery is that now learning the result of the logical Z1 ⊗ Z2 measurement can be
done in a single-shot way similar as reading out a single 2D patch. Note that another way
of transferring a logical state between a 3D and 2D color code is to perform a so-called
“dimensional jump” [31]. The rough idea behind this is to measure everything except
one of the four faces of the tetrahedron hosting the code.

But all of these techniques are made less interesting by the fact that one can perform
a CNOT directly transversally between the 3D and 2D patches. In the same configuration
as for the face surgery, with a 2D patch matching one of the faces of the 3D patch, per-
forming CNOTs between pairs of matching qubits, the control on the 3D side and target
on the 2D side realize a logical CNOT in the same direction.

|0〉 Z |ψ〉
|ψ〉 • H 

(a) (b) (c)

Figure 4.11: (a) One of the “one bit teleportation” circuits that can be used to teleport a magic state from a 3D
color code to a 2D one. Realizing the CNOT via measurements requires to do a Z ⊗ Z measurement. Several
configurations are possible to do the measurement between a triangular 2D color code with a tetrahedral 3D
color code. (b) Interfacing them via an edge, the procedure is that of lattice surgery. (c) Interfacing them via a
face, one can either jointly measure pairs of qubits to perform a similar operation to lattice surgery or actually
directly perform transversal CNOTs between the two faces.

PLAIN SURGERY

We now introduce a new technique with the same goal as lattice surgery, namely per-
forming joint measurements of logical operators, but following a different procedure.
One of the less elegant parts of jointly measuring logical operators using lattice surgery
(including when measuring jointly more than two logical qubits such as in [21, 22]) is
that the outcome of the measurement is learned without any redundancy, imposing a
repetition in time for the measurement to be reliable. The difference between lattice
surgery and the new procedure, plain surgery, will be that the logical measurement is
performed with redundancy, so that this part of the protocol can be made more robust
to noise.

The idea is to separate the merging and logical measurement of lattice surgery into
two distinct steps. The first step deforms the two separated blocks into a single code
block where the joint logical operators can be measured redundantly. Possible configu-
rations for surface codes and color codes with the possibility of a joint measurement of
two logical qubits with redundancy are shown in Figure 4.12. Since this first step merges
the codes, but leaves the logical information unchanged, we call it a plain merge. In the
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(a)
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X2
 Z2
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Z⊗Z1
 

(b)

Figure 4.12: (a) The boundary configuration for a hexagonal surface code encoding two qubits. Access to the
joint logical Paulis is possible by measuring near the corresponding boundary (but away from the complemen-
tary joint logical boundary in order to not also measure single logical Paulis). (b) The boundary configuration
of a rectangular color code suited for a joint measurement of X1 ⊗ X2 or Z1 ⊗ Z2. The two logical qubits are
associated with string nets either attached to the left or right red boundary. Red strings going from the left
boundary to the right boundary are the support for the logical Z1⊗Z2 and X1⊗X2. So measuring all red edges
in the X or Z basis permits a joint measurement of the two logical qubits.

(a) (b) (c) (d)

Figure 4.13: (a) & (b) The qubit layouts before and after the plain merge operation. The two patches are offset
by a fraction α ∈ [0,1] of their distance, represented by the double arrow. The number of logical qubits is kept
constant during this merge operation. (c) The stabilizers of the subsystem code. (d) The gauge operators and
logical operators of the subsystem code. One can see that the distance is guaranteed by the offset between the
two blocks. The distance of the separate surface codes is 11, and the distance of the subsystem code is 4.

second step, for the surface code version, we measure the desired logical operator simi-
lar to the standard logical measurement of a surface code block. The standard logical Z
measurement goes as follows: measure each qubit in the Z basis. Use this information
to reconstruct the Z -stabilizer outcomes and correct the X errors using this syndrome.
Then reconstruct any Z logical measurement from the single-qubit measurements to
give the logical measurement outcome. At this last step since the X errors have been
corrected, all the reconstructed Z logical measurment will give the same answer. The
same principle can be applied when measuring each qubit in a large region which con-
tains several representatives of a logical operator but not necessarily extending to the
full patch. For the color code version a joint measurement of all the red edges is what
permits to measure the joint logical. A final deformation step can be used to return to
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the original code space.
Looking at each step in more details we can apply the prescription of Section 4.4.

The layout for the plain merge operation for the surface code is shown in Figure 4.13a.
The patches are placed with an overlap of (1−α)d , the X -boundary of one facing the
Z -boundary of the other. Then they are merged into a single patch with 3 X -boundaries
and 3 Z -boundaries, so two logical qubits, see Figure 4.12a. Logical operators far away
from the interface are left unchanged, and the logical information is untouched. When
looking at the subsystem code for this deformation, shown in Figure 4.13d, one can see
that the distance is guaranteed by the offset αd between the two patches.

(a) (b) (c)

Figure 4.14: (a) The layout where each qubit in the region highlighted are to be measured in the X basis. (b) The
stabilizers of the underlying subsystem code C . (c) The gauge operators (in pink) and logical operators of the
code. One can see that the distance is guaranteed by the amount of overlap between the two blocks. The
distance of the subsystem code is 4.

Then, in this new code, the logical operator X 1 ⊗X 2 is given by a string starting from
the top boundary of the top patch and ending on the right boundary of the bottom patch.
So, by measuring qubits in the X basis in a region away from the third X -boundary, one
can learn X 1 ⊗ X 2 but not X 1 or X 2. This measurement procedure is depicted in Fig-
ure 4.14. One can check that the associated subsystem code has a distance of at least half
the overlap between the patches, (1−α)d/2. The amount of redundancy in the measure-
ment is also (1−α)d/2, which makes this procedure costly in qubit overhead but as we
show in [1], it offers a better threshold than the standard lattice surgery technique.

This plain surgery technique is actually more suited to color code patches. This
comes from the fact that on rectangular patches of color code with the correct colored
boundaries, the joint logical operators, X1⊗X2 or Z1⊗Z2, can be measured redundantly
using all the qubits of the patch without destroying the encoded state. This is in contrast
with the technique presented above for the surface code where the logical measurement
can only involve a subset of the qubits in order to not learn too much logical informa-
tion. The correct boundary configuration is represented in Figure 4.12b. It consist in
two opposite boundaries of the same color (here red) and one of each of the two other
colors (here blue and green). In this configuration, the two logical qubits can be asso-
ciated with string nets attached to either the left or the right red boundary. In this con-
figuration, all red strings joining the left and right boundaries support the joint logical
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operators X1⊗X2 or Z1⊗Z2. Hence measuring all red edges in the X basis allows to learn
the logical X1⊗X2 without learning any more logical information. Here measuring a red
edge in the X basis means measuring the X ⊗ X operator of the two qubits forming the
edge. Similarly, measuring the red edges in the Z basis allows to learn Z1 ⊗Z2.

(a) (b) (c) (d)

Figure 4.15: (a) & (b) Layout before and after the plain merge of two triangular 2D color code patches. They
are offset by a fraction α ∈ [0,1] of their distance, represented by the double arrow. Each red blue and green
face hosts both a Z and a X stabilizer. The distance in both configurations is 7. (c) The stabilizer generators
of the subsystem code associated with the deformation. (d) The purely gauge operators of the subsystem code
are represented by the colored faces. They host both Z and X gauge operators. The logical operators are
unchanged but can be dressed so that the distance of the subsystem code is reduced to 5.

(a) (b)

Figure 4.16: Performing a X ⊗ X measurement on a retangular color code patch. (a) The Z -stabilizers during
the measurement process are only the blue and green faces, while the X -stabilizers are still the same red, green
and blue faces (see Fig. 4.15b). (b) The gauge operators with the color convention of light red for Z and light
blue for X . With the original color code colors they correspond to red edges for the X gauge operators and red
faces for the Z gauge operators with the addition of the all Z on one of the red boundaries (e.g. the rightmost
one).

Similarly to the surface code case, it is possible get to the correct boundary condi-
tions starting from disjoint patches of triangular color code using a plain merge. The
plain merge procedure is described in Figure 4.15. The two patches of color codes are
placed in a slightly crooked bow-tie pattern. The mismatch of the two patches guar-
antees a distance for the merging procedure while the size of the overlap dictates the
amount of redundancy in the measurement afterwards and the protection during the
measurement. One can remark that applying the unfolding procedure [32] of the color
code to Figure 4.15a readily yields a configuration similar to Figure 4.13a; although it is
not as straightforward between Figure 4.15b and Figure 4.13b. Once merged, the joint
logical operator X1 ⊗ X2 can be measured by measuring each red edge in the X basis.
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Analyzing this with our prescription we can see that the distance is guaranteed by size of
the overlap, i.e. (1−α)d , since now a string of X s from the blue to the green boundary
represent a dressed logical. Figure 4.16 shows the Z -stabilizers and the gauge operators
of the relevant subsystem code.

TOPOLOGICAL CONCATENATION

(a) (b)

Figure 4.17: (a) Layout for topological concatenation of the surface code. Grayed out surfaces represent surface
code bulk. X -type and Z -type holes, represented by trails of parallel segments and solid lines respectively, are
placed at the vertices of two square lattices (slightly rotated in the picture) dual to one another. The logical
basis is chosen to be geometrically local and two logical qubits are highlighted by their X (blue trails of parallel
segments) and Z (pink solid lines) logical operators. This basis is such that measuring every qubits in the X
basis around a X -type hole (blue region) measures jointly the logical X1 X2 X3 X4 of the four adjacent logical
qubits. Similarly for the Z basis around a Z -type hole (pink region). This allows to measure in a single-shot
way the stabilizers of a higher level of concatenated surface code. (b) Interpretation of the chosen logical basis
as the plain merge of many single logical qubit surface code patches, i.e. performing a plain merge of these
patches yields (a). The logical operators of the same two logical qubits are highlighted.

Using the insight of the possible single-shot measurement within the 2D plane of
joint logical operators of several surface code or color code patches, it is possible to
imagine realizing something curious which could be called topological concatenation.
The idea is to concatenate the surface code with the surface code, or the color code with
the color code, while staying in the 2D plane by using the type of single-shot logical mea-
surement presented above for the checks of the higher level code.

This mixes two approaches usually made distinct: concatenated codes and topolog-
ical codes. On the one hand, the idea of concatenated codes is to start with some small
code and obtain larger codes with larger distances by successive concatenations of the
original code with itself. With this technique the distance grows exponentially with the
number of concatenation levels which is very efficient but so does the number of qubits
and the size of the stabilizer checks. On the other hand, toplogical codes are codes where
the qubits are placed on some geometrical object, e.g. a 2D surface, and the stabilizer
checks act only locally with respect to the metric of the surface. Then growing the sur-
face is what increases the distance, but enlarging the surface does not change the local
checks so they stay the same size. For topological codes on Euclidean lattices a bound is
known, relating the number of physical qubits the dimension and the distance [33], for
2D it says

d ≤ r n
1
2 , (4.11)
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where d is the distance of the code, n the number of physical qubits and r is such that
every stabilizer generator can be enclosed in an area of size r 2. This directly bounds the
overhead of any topological code in 2D, which we are going to denote as c and define as
follows

c = n

d 2 . (4.12)

Consider a code with parameters [[cd 2,1,d ]], concatenated k times with itself. It
yields a code with parameters [[ck+1d 2(k+1),1,d k+1]]. So this means that if the initial
constant, c, was smaller than 1, then further concatenations exponentially decrease the
overhead. This seems at first to break the bound in Eq. (4.11) but of course the size of
some of the checks also increases exponentially and there is no a priori guarantee that
the resulting code can be made local in 2D even if the original code was. This has been
explored for example in [34] where the authors proved a threshold for a 2D local imple-
mentation of the concatenation of Steane’s [[7,1,3]] code (the smallest triangular color
code). To achieve this, some circuits, involving moving qubits around with SWAP gates,
are carefully designed to perform error correction. Using the techniques developed for
plain surgery above we try to get a different approach to realize a similar concatenation
scheme where the error correction procedure resembles more that of topological codes.

Consider first the surface code. Figure 4.17 presents a possible layout to concate-
nate it once with itself using plain surgery. The idea is to start from several patches as
in Figure 4.17b and plain merge them together (never plit them back again) to obtain
Figure 4.17a. Some holes of X -type and Z -type are formed by this procedure. Then any
X -logical going around a X -type hole represent the joint X -logical operator of the four
patches around the hole. In other words, if one fills the holes with large stabilizers, one
obtains the concatenated code. The rotated surface code, that we used in this chapter,
has a constant c = 1 so that no real benefit is gained from this. However, an extension of
the bound in Eq. (4.11) involving the number of encoded qubits was also found, [35]. It
says that

kd 2 ≤ n/c̃, (4.13)

where k is the number of logical qubits, d the distance of the code, n the number of
physical qubits and c̃ some constant. When considering puncturing holes in a big sheet
of surface code the best known configuration has c̃ = 1. It uses mixed X -type and Z -type
boundaries and was proposed in [36]. Figure 4.17 shows an alternative configuration of
holes without mixed boundaries (but still both types) also achieving c̃ = 1. Note that in
order to maintain the distance after the plain merge of all the patches the offset between
the patches needs to be at least α ≥ 1/4 in order for the holes to not introduce lower
distance logical operators.

For color codes the constant c can be smaller than 1. For example, multiple copies
of 2D triangular color codes based on the 4.8.8 lattice (as in Fig. 4.10) have c = 1/2 and
the hexagonal lattice (as in Fig. 4.15) have c = 3/4 [37]. The setup for the hexagonal color
code version is represented in Figure 4.18. The principle is the same as for the surface
code version. Some triangular color code patches are disposed as in Figure 4.18b and
plain merged together once to obtain Figure 4.18a. Then the colored holes formed can be
seen as higher level stabilizers for the concatenated code. We first consider the stabilizer
code obtained when these holes are directly included as stabilizers. In order to see if
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(a) (b)

Figure 4.18: (a) Layout for topological concatenation of the 2D color code. Grayed out surfaces represent color
code bulk. Red, green and blue holes are placed on the faces of a (tri-colored) hexagonal lattice. The logical
basis is chosen to be geometrically local and two logical qubits are highlighted by their string net. This basis is
such that measuring every red edge in the X (or Z ) basis around a blue hole (red region) measures jointly the
logical X1 X2 X3 X4 X5 X6 (or Z1 Z2 Z3 Z4 Z5 Z6) of the six adjacent logical qubits. Similarly for blue edges around
a green hole (blue region) or green edges around a red hole (green region). This allows one to measure, in a
single shot way, the stabilizers of a higher level of concatenated color code. (b) Interpretation of the chosen
logical basis as the plain merge of many single logical qubit color code patches. The two string nets of the same
logical qubits are highlighted.

one can benefit from the overhead reduction of the concatenation one has to be careful
to evaluate the distance of the code obtained. In the limit of full offset of the triangular
patches, i.e α= 1 from Figure 4.15a, the scheme correspond exactly to the concatenation
of the codes. The perimeter of each hole is of length 6d where d is the distance of one
triangular patch. This shows that it is possible to obtain the reduced overhead in a planar
layout but with large stabilizers. Decreasing the offset α shrinks the holes. In the other
limit of zero offset, i.e. α= 0 from Figure 4.15a, the higher level checks actually become
of the same size of the lower level ones, but the overall distance is reduced by a factor
2. An easy way to see this is to see that a red edge in the higher level of concatenation
corresponds to two triangular patches. When two triangular patches are plain merged
with zero offset (α = 0), the distance of the joint logical operators is the same as that of
a single one. So forming the logical operator with red edges in the higher level will have
a weight divided by two compared to the actual concatenated code. In general with an
offset of α ∈ [0,1], the overall distance is multiplied by a factor (1+α)/2. This gives the
following parameters for the code concatenated k times with an offset of α

[[N ,K ,D]] =
[[

ck+1d 2(k+1),1,

(
1+α

2

)k

d k+1

]]
. (4.14)

These parameters are that of the stabilizer code with stabilizers where the holes are.
The biggest ones, from the higher level of concatenation have a perimeter of 6(αd)k .
Hence in the bound (4.11), one should have r ∝ (αd)k .

Measuring stabilizers with very large weight is not realistic, so we would like to use
the measurement techniques of plain surgery to measure these high weight stabilizers
using only small weight measurements. We know it is not possible to find a way to mea-
sure all the checks of the concatenated code in Eq. (4.14) by doing only local measure-
ments on the scale of the lowest level triangles as this would violate the bound (4.11).
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Figure 4.19: Zero, one and two levels of concatenation (before plain merge) with the d = 9 hexagonal color
code with an offset of 5. Details of the lowest level are grayed out and not shown in level one and two.
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And indeed the measurement scheme we find is such that the measurements of the
checks of different levels of concatenation cannot be conducted at the same time.

The first thing to note is that with full offset, α = 1, the distance is the best possible
but it is not possible to use the measuring technique of plain surgery. Indeed there is
no region with constant width around the holes to measure colored edges in, see Fig-
ure 4.18a. On the opposite case, with zero offset, α = 0, the holes can be measured di-
rectly as stabilizers but the distance is reduced so that there is no longer an advantage
for the concatenation. So α needs to be chosen the largest possible for better overhead
advantage, and smallest possible for better measurement reliability. The overhead of the
overall scheme, C = N /D2 is given by

C =
(

4c

(1+α)2

)k+1

. (4.15)

For the overhead to decrease with the number of concatenations, we have to choose

α> 2
p

c −1, (4.16)

For the 4.8.8 color code, which has c = 1/2, this implies a choice of α>p
2−1 ' 0.414. For

the hexagonal color code, which has c = 3/4, this implies a choice of α>p
3−1 ' 0.732.

Figure 4.19 represents level zero one and two (before plain merge) of the concatenation
of the distance 9 hexagonal color code with an offset of 5 (this is not within the prescribed
value for α but was easier to draw).

The idea of the scheme is then to perform error correction of the lowest level, as one
would with standard color code patches, on a short time scale. Then on larger and larger
time scales one would perform a measurement of the higher level stabilizers by mea-
suring colored edges in full regions around holes. The reliability of these measurements
depends on the size of the region in which edges are measured.

How this scheme performs in practice is still an open question. In particular it would
be interesting to compare, for a target logical error rate, its overhead with that of a stan-
dard triangular color code. It would also be particularly interesting to study its threshold
to prove that it is non-zero and compare it to schemes such as [34].

4.5. LOGICAL OPERATION OF A CODE DEFORMATION
In this section we show how to look at what logical operation is realized by a code defor-
mation. We take the example of lattice surgery with the surface code and prove that it
indeed realizes the desired operation at the logical level. In this section, we denote the
set of physical qubits as Q. For any subset of k qubits, s = { j1, . . . , jk } ⊂ Q, we denote the
operator composed of a Pauli Z resp. X on each qubit in s as Z (s), resp. X (s), i.e.

Z (s) = Z j1 ⊗·· ·⊗Z jk , X (s) = X j1 ⊗·· ·⊗X jk .

4.5.1. MERGE OPERATION
The setting for the merge operation is drawn in Figure 4.3a. The starting code, Csplit,
with stabilizer Ssplit, consists of two adjacent L ×L patches of rotated surface code with
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the opposite boundaries being supports for their Z operators. We label the upper logi-
cal qubit as 1 and the lower qubit as 2. The new code, Cmerged, with stabilizer Smerged,
consists of only one 2L×L patch of rotated surface code.

We define the subsystem code, C , and its gauge group, G , as specified in Section 4.4,
see Figure 4.9. Notably, we exclude from the center of G̃ the logical operator Z 1Z 2 ∈
Smerged. We therefore add X 1 to G̃ to form G , and so have X 1 ∈ Lg . Call I the set of
intermediary plaquettes (red plaquettes in Figure 4.3a) to be measured to perform the
merge operation. For p ∈ I we have Z (p) ∈ Lg , these are the gauge operators to be
fixed by the merge operation. For each p ∈ I , one measures the operator Z (p) and let
its outcome be mp .

To explain the action of the merge operation at the logical level, we first prove that
this operation transforms code states of the two original L ×L patches of surface code
into code states of the 2L×L patch surface code with some X errors. To accomplish this,
we use the standard prescription from the Gottesman-Knill theorem [27]. It is straight-
forward to see that the original Z checks stay unchanged, and the newly-measured checks,
the p ∈I , are added, with sign mp . The original X checks all commute with the new in-
termediary Z checks except for the two-body boundary checks between the two patches,
which are also part of Lg . Those boundary checks can be merged in pairs in order to
commute with the new Z checks. The situation is then the same as depicted in Fig-
ure 4.3b.

The product of all measurement outcomes gives the desired outcome for the Z 1Z 2

measurement, we denote it as

mL = ∏
p∈I

mp .

Then one fixes the gauge by applying the conjugate X -gauge operators to the Z (p) with
mp =−1. Let’s call cmL the set of qubits involved in this fixing operation. Note that when
mL =+1 then the correction is equivalent to a stabilizer in Ssplit whereas when mL =−1,

the correction is equivalent to X 1. Then, the full merge operation at the physical qubit
level is easily written as

X (cmL ) ·
( ∏

p∈I

1+ (−1)mp Z (p)

2

)
=

( ∏
p∈I

1+Z (p)

2

)
·X (cmL ).

Due to the definition of X (cmL ), commuting it through the Z projections eliminates the
(−1)mp terms.

To determine the logical operation realised by this procedure, we use encoding isome-
tries of Csplit and Cmerged, called Esplit and Emerged, respectively. These isometries map
unencoded logical states to code states in the full physical Hilbert space. Since Csplit

contains two logical qubits and Cmerged contains only one, the isometries have the fol-
lowing signatures:

Esplit : C2 ⊗C2 →C2Q, Emerged : C2 →C2Q.



4.5. LOGICAL OPERATION OF A CODE DEFORMATION

4

119

Let M̃mL be the operation on the logical level, which can be expressed as

M̃mL : C2 ⊗C2 →C2,

M̃mL = (
Emerged

)† ·
( ∏

p∈I

1+Z (p)

2

)
·X (cmL ) ·Esplit. (4.17)

An important fact about encoding isometries E is that, if S is a stabilizer of the code
and L a representative for the logical operator L, then

S ·E = E , (4.18)

L ·E = E ·L, (4.19)

where L is the corresponding physical operator. This means that M̃mL , defined in Eq. (4.17),
simplifies to

M̃mL = (
Emerged

)† ·Esplit ·X (1−mL )/2
1 . (4.20)

To show this, we use the fact that for all p ∈ I , Z (p) is a stabilizer of Cmerged and the

correction X (c+) is in Ssplit whereas X (c−) is a representative of X 1 in Csplit.
To show that the operation M̃mL is equal to MmL , as defined in Eq. (4.1) and Eq. (4.2),

one can analyse how M̃mL acts on the computational basis, i.e. we track how it trans-
forms the stabilizers of those states. For example, the state |00〉 is stabilized by Z1 and
Z2, this means that

M̃+ |00〉 = (
Emerged

)† ·Esplit |00〉
= (

Emerged
)† ·Esplit ·Z1 |00〉

= (
Emerged

)† ·Z 1 ·Esplit |00〉
= Z · (Emerged

)† ·Esplit |00〉
= Z · M̃+ |00〉 ,

and therefore M̃+ |00〉 is stabilized by Z . Here, we have used the properties of the en-
coding isometries and the fact that a representative Z 1 for Csplit is also a representative

Z for Cmerged. Doing the same with the other stabilizer, Z2, also yields Z as a stabilizer
(so Z1Z2 yields the identity). One can also verify that M̃+ |00〉 is not stabilized by −Z by
reversing the previous equalities and therefore 〈Z 〉 is the full stabilizer group of M̃+ |00〉.
Looking now at M̃− |00〉 one can see that Z2 also yields Z but Z1 will yield −Z , indeed

M̃− |00〉 = (
Emerged

)† ·Esplit ·X1 |00〉
= (

Emerged
)† ·Esplit ·X1 ·Z1 |00〉

=−(
Emerged

)† ·Z 1 ·Esplit ·X1 |00〉
=−Z · (Emerged

)† ·Esplit ·X1 |00〉
=−Z · M̃− |00〉 .

Hence, M̃− |00〉 is both stabilized by Z and −Z , and is therefore the null vector. In other
words, the state |00〉 will never give an outcome −1 for mL , which is what we expect. The
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M̃+ M̃−
S State S State S State

〈Z1, Z2〉 |00〉 〈Z 〉 |0〉 〈Z ,−Z 〉 0
〈Z1,−Z2〉 |01〉 〈Z ,−Z 〉 0 〈Z 〉 |0〉
〈−Z1, Z2〉 |10〉 〈−Z , Z 〉 0 〈−Z 〉 |1〉
〈−Z1,−Z2〉 |11〉 〈−Z 〉 |1〉 〈−Z , Z 〉 0

Table 4.1: How M̃± transforms the computational basis states characterised by their stabilizer group.

full results (shown in Table 4.1) indicate that

M̃+ =α+ |0〉〈00|+β+ |1〉〈11|
M̃− =α− |0〉〈01|+β− |1〉〈10| ,

for some non-zero complex numbers α± and β±. To complete the proof, we verify that
there are no relative phases or amplitude differences between α± and β±. To see that,
one can look at the action of M̃mL on the Bell states. For M̃+ we look at the Bell state
(|00〉+ |11〉)/

p
2, stabilized by 〈X1X2, Z1Z2〉 and for M̃− the Bell state (|01〉+ |10〉)/

p
2 sta-

bilized by 〈X1X2,−Z1Z2〉. The important fact is that a representative X 1X 2 for Csplit is

also a representative of X for Cmerged. That is to say

M̃+
|00〉+ |11〉p

2
= γ+

|0〉+ |1〉p
2

M̃−
|01〉+ |10〉p

2
= γ−

|0〉+ |1〉p
2

,

for some non-zero complex numbers γ±. By linearity of M̃mL we can conclude that
α+ = β+ = γ+ and that α− = β− = γ−. In conclusion, we have shown that M̃mL ∝ MmL ,
meaning that it performs the desired logical operation.

4.5.2. SPLIT OPERATION
For the Z -split operation one reverses the roles of Csplit and Cmerged. The starting point
is the same as shown in Figure 4.3b, without ± terms in the middle. Then, in order to
split the patch, one has to split each four-body X stabilizer in the middle row into a
pair of two-body X stabilizers. Those stabilizers are shown with ± signs on Figure 4.3c.
They commute with everything except for the central row of Z -plaquettes. One can see
that measuring them will remove those Z -plaquettes from the stabilizer group, but keep
the product of all those plaquettes, the logical Z 1Z 2 of the two separate patches. Note
that it is sufficient to measure only the top (or bottom) row of two-body X -checks as the
bottom (or top) one is then the product of those and the previous four-body X -checks.
This also means that the outcomes of those two-body checks are perfectly correlated
between facing pairs. Letting I be the set of the top row of those checks and mp = ±1
the measurement outcome of the two-body plaquette p, the operation performed is then

∏
p∈I

1+ (−1)mp X (p)

2
.
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Then, to correct to standard surface codes with no remaining minus signs, one has to
apply some of the previous Z -plaquettes that were removed from the stabilizer, correct-
ing the correlated facing X -checks. Labeling the set of qubits affected by the correction
c, one has

Z (c) · ∏
p∈I

1+ (−1)mp X (p)

2
= ∏

p∈I

1+X (p)

2
·Z (c).

This operation corresponds to S+, defined in Eq. (4.1). If one wants to implement S−,
defined in Eq. (4.2), then one has to additionally apply a logical representative of X on
the first patch, X 1. The choice of one or the other version is conditioned by the previous
mL outcome that we received during the merging step. Then, to show that this performs
the correct logical operation, we analyse

S̃mL = (
Esplit

)† ·X
1−mL

2
1 · ∏

p∈I

1+X (p)

2
·Z (c) ·Emerged,

which, using the properties of the encoding isometries, S̃mL simplifies to

S̃mL = X
1−mL

2
1 · (Esplit

)† ·Emerged. (4.21)

At this point, recalling Eq. (4.20), we can see that

S̃± = (
M̃±

)† = (M±)† = S±,

which concludes the proof of correctness for the split operation. Note that it was cru-
cial to apply the intermediary Z -plaquettes (in Lg ) as the correction. If we had instead
applied a string of Z -flips between the faulty X -plaquettes, the correction would not be
absorbed in the encoding map of Cmerged and moreover would anti-commute with any

representative X of Cmerged or X 1X 2 of Csplit and therefore flip the phase between the |0〉
and |1〉 states.

4.5.3. GENERAL CODE DEFORMATION OPERATION
Having analyzed the merge and the split of lattice surgery we can see that the overall
structure will always be the same for any code deformation: the operation on the logical
level is given by

Lprep · (Enew)† ·Eold ·Lmeas(m),

where Eold and Enew are the encoding isometries of the codes before and after the defor-
mation, Lprep is a conjugate Pauli operator to some elements in Mprep (see Section 4.4)
depending on what preparation one wants to achieve and Lmeas(m) is a conjugate Pauli
operator to some elements in Mmeas (see Section 4.4) depending on what measurement
outcomes where observed (denoted m). Overall the operation will always directly de-
pend on the relation between the logical operators of the old versus the new code. Note
that it can be that one step of deformation seems trivial on the logical level if it just de-
forms the logical operators. But several such steps can gradually deform operators in an
overall non-trivial way. This is the case for example when braiding holes around one an-
other in the surface code. One needs to analyze several steps together to see that overall
the logical operators have been deformed in a non trivial way.
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4.6. DISCUSSION
We have illustrated how to describe current measurement-based operations in 2D topo-
logical quantum computing using the gauge fixing technique. We have shown that, by
using the formalism of gauge fixing, the fault tolerance analysis of these code deforma-
tion and lattice surgery protocols is considerably simplified, their error correction and
gauge fixing schemes also become clear. We have also presented a new code deforma-
tion technique, plain surgery, and showed potential applications for it. Although this
gauge fixing formalism does not provide direct guidelines on how to design code defor-
mation protocols for a desired logical operation, it does provide an easy way to check the
fault-tolerance of protocols and search for new ones via iterations of trial and error.

Moreover, this formalism applies not only to 2D topological codes, but more gener-
ally to any stabilizer code. In the general case (non-topological codes), the analysis of
fault-tolerance in the presence of measurement errors becomes more involved, in par-
ticular with respect to how much repetition is really needed, see for example [38, 39]. We
leave for future work how to obtain general and simple criteria for fault-tolerance.
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5
QUANTUM PIN CODES

A class of quantum CSS codes, quantum pin codes, are introduced. Quantum pin codes
are a generalization of quantum color codes and Reed-Muller codes. A lot of the structure
and properties of color codes carries over to pin codes. Pin codes have gauge operators, an
unfolding procedure and their stabilizers form multi-orthogonal spaces. This last feature
makes them interesting for devising magic-state distillation protocols. Examples of these
codes and their properties are studied.

At the time of submission of this thesis the following chapter is under review by IEEE Transactions on Infor-
mation Theory. The preprint can be found on the arXiv:1906.11394 [1]
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5.1. INTRODUCTION

T HE REALIZATION of a fault-tolerant universal quantum computer is a tremendous
challenge. At each level of the architecture, from the hardware implementation up to

the quantum software, there are difficult problems that need to be overcome. Hovering
in the middle of the stack, quantum error correcting codes influence both hardware de-
sign and software compilation. They play a major role not only in mitigating noise and
faulty operations but also in devising protocols to distill the necessary resources grant-
ing universality to an error corrected quantum computer [2]. The study and design of
quantum error correcting codes is therefore one of the major tasks to be undertaken on
the way to universal quantum computation.

A well-studied class of quantum error correcting codes are Calderbank-Shor-Steane
codes (CSS codes) [3, 4], which are a kind of stabilizer quantum codes [5, 6]. The advan-
tage of CSS codes is their close connection to linear codes which have been studied in
classical coding theory. A CSS code can be constructed by combining two binary linear
codes. Roughly speaking, one code performs parity checks in the Pauli X -basis and the
other performs parity checks in the Pauli Z -basis. Not any two binary linear codes can
be used: it is necessary that any two pairs of code words from each code space have to
have even overlap. Common classical linear code constructions, e.g. random construc-
tions, do not sit well with this restriction and can therefore not be applied to construct
CSS codes. Several families of CSS codes have been devised based on geometrical, ho-
mological or algebraic constructions [7–18], however, it is still open which parameters
can be achieved.

Besides being able to protect quantum information, quantum error correcting codes
must also allow for some mechanism to process the encoded information without lifting
the protection. It is always possible to find some operations realizing a desired action
on the encoded information but these operations may spread errors in the system. One
should restrict oneself to fault-tolerant operations which do not spread errors. For in-
stance, acting separately on each qubit of a code cannot spread single qubit errors to
multi-qubit errors. This is called a transversal gate, but not any code admits such gates.
More generally, for many codes in the CSS code family it is possible to fault-tolerantly
implement Clifford operations, which are all unitary operations preserving Pauli opera-
tors under conjugation. Clifford operations by themselves do not form a universal gate
set. Several techniques to obtain a universal gate set, by supplementing the non-Clifford
T gate to Cliffords for example, have been devised [19, 20], among which magic state
distillation is currently the most promising candidate.

In this work we introduce a new class of CSS codes, which we call quantum pin codes.
These codes form a large family while at the same time having structured stabilizer gen-
erators, namely they form multi-orthogonal spaces. This structure is necessary for codes
to admit transversal phase gates and it can be leveraged to obtain codes that can be used
within magic state distillation protocols. Moreover the construction of pin codes differs
substantially from previous approaches making it an interesting space to explore further.

In Section 5.2, after introducing some notations and terminology, we define quan-
tum pin codes, explain their relation to quantum color codes and give some concrete
approaches to construct them. In Section 5.3, we discuss the conditions for transversal
implementation of phase gates on a CSS code. In Section 5.4, we investigate the prop-
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erties of pin codes. Finally in Section 5.5, we study concrete examples of pin codes ob-
tained from Coxeter groups and chain complexes as well as applications for magic state
distillation.

5.2. PIN CODES

5.2.1. TERMINOLOGY AND FORMALISM
Consider D+1 finite, disjoint sets, (C0, . . . ,CD ) which we call levels. The elements in each
of the levels are called pins. If a pin c is contained in a level C j then j is called the rank
of c. Since all the C j are disjoint each pin has a unique rank.

Consider a (D +1)-ary relation on the D +1 levels C0, . . . ,CD , that is to say a subset of
their Cartesian product F ⊂C0 ×·· ·×CD . The tuples in the relation F will be called flags.

A subset of the ranks, t ⊂ {0, . . . ,D}, is called a type. We will consider tuples of pins
coming from a subset of the levels selected by a type t and call them collections of pins of
type t . A collection of pins of type t = { j1, . . . , jk }, is therefore an element s ∈C j1 ×·· ·×C jk .
Note that we can interchangeably view a collection of pins as a tuple or a set as long as
no two pins come from the same level in the set.

We now define specific subsets of flags, called pinned sets, using projections.

Definition 1 (Projection of type t ). Given a set of flags F and a type t = { j1, . . . , jk }, the
projection, Πt , is defined as the natural Cartesian product projection acting on the flags,
F

Πt : F → C j1 ×·· ·×C jk

(c0, . . . ,cD ) 7→ (c j1 , . . . ,c jk ).

Note that the projection of empty type, Π;, is also well defined: for any f ∈ F we have
Π;( f ) = ().

Definition 2 (Pinned set). Let F be a set of flags, s be a collection of pins of type t and Πt

be the corresponding projection as defined above. We define the pinned set of type t and
collection of pins s, Pt (s), as the preimage of s under the projection Πt ,

Pt (s) =Π−1
t (s) ⊂ F.

In words: a pinned set is the set of flags whose projection of a given type t yields a
given collection of pins, s. A definition of a pinned set which is equivalent to the one
given above is

Pt (c j1 , . . . ,c jk ) = F ∩C0 ×·· ·×{
c j1

}×·· ·×{
c jk

}×·· ·×CD , (5.1)

where {c ji } denotes the set containing the single element c ji . The pinned set with respect
to the empty type is none other than the full set of flags, F . For convenience, we will refer
to a pinned set defined by a collection with k pins as a k-pinned set.

If one wants to form a mental image one can imagine a pin-board with pins of differ-
ent colors on it with one color for each level. Then the flags can be represented by cords
each attached to one pin of each level, see Fig. 5.1 as an example.

The structure of pinned sets layed out above is such that they intersect and decom-
pose nicely. This is captured by the following two propositions.
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Figure 5.1: Illustration of three levels (red, green and blue) each containing two pins and a relation containing
three flags ( f0, f1 and f2) symbolized by cords attached to the pins. The pinned set Pgreen(b) is composed of
the flags f1 and f2. The pinned set P(red,blue)(1,α) only contains the flag f0.

Proposition 1 (Intersection of pinned sets). Let s1 and s2 be two collections of pins of
types t1 and t2 respectively. Then the intersection of the two pinned sets Pt1 (s1) and Pt2 (s2)
is either empty or a pinned set of type t1 ∪ t2 characterized by the collection of pins s1 ∪ s2,

Pt1 (s1)∩Pt2 (s2) =
{

Pt1∪t2 (s1 ∪ s2) if |s1 ∪ s2| = |t1 ∪ t2|
; otherwise.

Proof. The proof follows directly from the alternative characterization of pinned sets
given in Eq. (5.1).

Proposition 2 (Pinned set decomposition). Let s be a type-t collection of pins and let t ′
be a type containing t , i.e. t ′ ⊃ t . The pinned set Pt (s) is partitioned into some number,
say m, of pinned sets, each characterized by a type-t ′ collection of pins containing s, i.e.
s′j ⊃ s,

Pt (s) =
m⊔

j=1
Pt ′ (s′j ).

Proof. Let s be a type-t collection of pins and let t ′ be a type such that t ′ ⊃ t . Define the
following set of collections of pins

S =Πt ′ (Pt (s)) ,

then it is the case that
Pt (s) = ⊔

s′∈S
Pt ′ (s′).

Indeed, since t ′ ⊃ t and ∀s′ ∈ S, s′ ⊃ s we have that ∀s′ ∈ S, Pt ′ (s′) ⊂ Pt (s) showing the
right to left inclusion. The left to right inclusion follows from the definition of S. Finally
the fact that the union is disjoint follows from Prop. 1.

5.2.2. DEFINITION OF AN (x, z)-PIN CODE
Equipped with the notions presented in the previous section, we now construct quan-
tum codes. They are defined by a choice of flags F and two natural integers x and z
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which fulfill the condition x + z ≤ D . The flags are identified with qubits, so that n = |F |.
The X -stabilizer generators are defined by all the x-pinned sets and the Z -stabilizer gen-
erators by the z-pinned sets in the following way. For each x-pinned set we define the
Pauli operator acting as the Pauli-X operator on the qubits corresponding to the flags
in the pinned set and as the identity on the rest; we then add it to the generating set of
the X -stabilizers. We do similarly for the z-pinned sets to form the generating set of the
Z -stabilizers. In order to ensure the correct commutation relations between the X - and
Z -stabilizers it is sufficient to enforce the following condition on the relation F .

Definition 3 (Pin code relation). A (D + 1)-ary relation, F , is a pin code relation if all
D-pinned sets have even cardinality.

This property is sufficient for the overlap between two pinned sets to be even ev-
ery time they are pinned by a small enough number of pins. This is summarized in the
following proposition.

Proposition 3 (Even overlap). Let F be a (D +1)-ary pin code relation as per Definition 3.
Let x and z be two natural integers such that,

x + z ≤ D.

Then, the intersection between any x-pinned set and any z-pinned set has even cardinal-
ity.

Proof. By Proposition 1, the intersection of a x-pinned set and a z-pinned set is either
empty or a pinned set with at most x + z ≤ D pins. In turn by Proposition 2, the inter-
section can be partitionned into D-pinned sets which all have even cardinality since the
relation F is a pin code relation.

Using a pin code relation we can therefore define a CSS code as follows.

Definition 4 ((x, z)-pin code). Given a pin code relation, F , on (D + 1) levels and two
natural integers (x, z) ∈ N2, such that x + z ≤ D, we define the corresponding (x, z)-pin
code by associating the elements of F with qubits, all the x-pinned sets with X -stabilizer
generators and all the z-pinned sets with Z -stabilizer generators. The defined code is a
valid CSS code.

A first remark is that the choice of x = 0 (or z = 0) is not particularly interesting since
in this case there is a single X -stabilizer (or Z -stabilizer) acting on all the qubits.

A second remark is that in the strict case, where x + z < D , the code will contain
many small logical operators which are naturally identified as gauge operators. This is
explained in details in Sec. 5.4.3.

Before explaining how to construct pin code relations we show that quantum color
codes are a subclass of pin codes.

5.2.3. RELATION TO QUANTUM COLOR CODES
The formalism and definitions above can be viewed as a generalization of quantum color
codes without boundaries [12, 21, 22]. However it is also possible to integrate the notion
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of boundaries into the general framework of pin codes but we delay these considerations
to Sec. 5.4.5. A D-dimensional color code is defined by a homogeneous, D-dimensional,
simplicial complex, triangulating a D-manifold, whose vertices are (D +1)-colorable. A
D-dimensional, simplicial complex is called homogeneous if every simplex of dimen-
sion less than D is a face of some D-simplex. The (Poincaré) dual of a simplicial complex
as defined above is sometimes called a colex [21], it consists in a tessellation where the
vertices are (D +1)-valent and the D-cells are (D +1)-colorable. In the original simpli-
cial complex, the qubits are identified with the D-simplices and one chooses two nat-
ural integers, (x̃, z̃) ∈ N2 with x̃ + z̃ ≤ D −2, to define the X - and Z -checks using the x̃-
and z̃-simplices in the following way. Each X -stabilizer generator is identified with a
x̃-simplex which acts as Pauli-X on all D-simplices in which it is contained. Similarly,
each Z -stabilizer generator operate on all the D-simplices as Pauli-Z in which the cor-
responding z̃-simplex is contained, respectively.

This definition can be restated in the language of pin codes: the D+1 levels, C0, . . . ,CD ,
are indexed by the D +1 colors and each level contains the vertices of a given color. The
flags, F , are defined using the D-simplices (each containing D+1 vertices); this defines a
relation, F ⊂C0×·· ·×CD thanks to the colorability condition as each D-simplex will not
contain two vertices of the same color. One can further check that the relation F is a pin
code relation as stated in Def. 3. Indeed, D-pinned sets correspond to (D −1)-simplices
which are contained in exactly two D-simplices since the simplicial-complex triangu-
lates a D-manifold without boundaries. This shows that it is a pin code relation. Then
subsets of the (D+1) colors correspond to types and any k-simplex corresponds directly
to a collection of pins of type given by the (k +1) different colors of the (k +1) vertices of
the k-simplex. The corresponding (k +1)-pinned set contains all the D-simplices con-
taining the original k-simplex. As such all the non-empty (k +1)-pinned sets are given
by all the collection of pins and type corresponding to all the k-simplices. With these
consideration, we see that choosing x = x̃ +1 and z = z̃ +1, the corresponding (x, z)-pin
code is the same as the original color code.

An example for D = 2, based on the hexagonal color code, is shown in figure 5.2a. To
summarize: to go from color codes to pin codes one just forgets the geometry, keeping
only the (D +1)-ary relation given by the (D +1)-colored D-simplices.

Importantly, pin codes are more general, as there are pin code relations which are
not derived from these specific simplicial complexes. In the next section after recalling
a concrete color code construction we give two more general constructions of pin code
relations.

5.2.4. CONSTRUCTING PIN CODES

COLOR CODES FROM TILINGS

In [21], the authors explain how to obtain a colex from any tiled D-manifold. The idea
is to successively inflate the (D −1)-cells, (D −2)-cells, . . . , 0-cells into D-cells. The dual
of the tiling obtained is then a (D + 1)-colorable triangulation of the D-manifold, see
Appendix A of [21]. This can also be understood directly, without inflating the cells, as
follows: Separate all the cells into (D+1) levels, C0, . . . ,CD , according to their dimensions,
i.e. C j contains all the j -cells. We can now define a (D +1)-ary relation on the cells via
the incidence relation. Two cells of different dimension are incident if and only if one
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(a) (b)

Figure 5.2: (a) An example of a set of flags based on the triangular lattice: F = {
f0, . . . , f23

}
from D + 1 = 3

levels: C0 = {
c0

0 , . . . ,c3
0

}
in red, C1 = {

c0
1 , . . . ,c3

1

}
in blue, C2 = {

c0
2 , . . . ,c3

2

}
in green. The figure wraps around itself

according to the arrows so that there are no boundaries, and the surface obtained is a torus. (b) Schematic
representation of the flags of the square lattice and the corresponding pins. Each triple of incident vertex
(green pin), edge (red pin) and face (blue pin) is a flag. They are symbolized in the picture as actual flags put
closest to the elements in the triple (vertex, edge, face) they stand for. The corresponding color code is the well
known 4.8.8 color code: there are eight flags around each vertex, four around each edge and eight around each
face.

(a) (b) (c)

Figure 5.3: (a) The fundamental triangle of the Wythoff construction. A vertex (white cirlce) is placed in the
middle and three edges are drawn to the boundary. The three regions are colored red, green and blue. (b) Re-
flecting the fundamental triangle along its sides creates a three colored lattice. In this case the 4.6.12 lattice.
Note that we can obtain the red/blue/green shrunk lattice by moving the vertex into the red/blue/green cor-
ner, see Sec. 5.4.2. (c) The Wythoff construction can be generalized to higher dimensions as well. This example
shows the vertex put into the middle of a 3D simplex, a tetrahedron, and one of the four corner cells colored in
red (see main text for more information).

is a sub-cell of the other. An element of this relation, i.e. a (D + 1)-tuple containing a
0-cell (a vertex), a 1-cell (an edge), etc. . . up to a D-cell, is called a flag. See for example
Fig. 5.2b for a representation of the flags of the square lattice. The flag relation obtained
this way is the same as the one after going through the inflating procedure and it is a pin
code relation.

A similar way to construct (D +1)-colorable tessellations in D dimensions directly is
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to use the Wythoff construction. The construction is quite general, but for simplicity, let
us start on the 2D Euclidean plane. Consider a right-angled triangle and draw a point
into its interior. From this point we draw three lines, each intersecting a boundary edge
at a right angle (see Fig. 5.3a). This creates three regions in the triangle which we assign
three different colors. We can now reflect the triangle along its boundary edges. The in-
ternal points of the original and the reflected triangles become the vertices of a uniform
tiling. The faces of the tiling are colored by the three colors and by construction no two
faces of the same color are adjacent (see Fig. 5.3b). If the angles of the triangle are 2π/r ,
2π/s and 2π/l then the result will be a r .s.l -tiling, meaning that the three faces around a
vertex will have r , s and l number of sides.

This idea readily generalizes to higher dimensions by placing a vertex into a D-dimen-
sional simplex and drawing lines to the mid-point of the D −1-dimensional faces of the
simplex (see Fig. 5.3c for the case D = 3). The faces of the simplex are simplices them-
selves, so this process can be iterated until D = 2. Reflecting along the faces of the D-
simplex gives rise to a uniform tiling of the D-dimensional space with D-cells being col-
ored by D+1 colors and no two cells of the same color sharing a D−1-dimensional face.
The number of vertices of the D-cells is then determined by the orbit of the reflections
along all but one of the sides.

The color codes from regular tilings can be obtained this way, for example, in 2D
Euclidean space, the hexagonal, 4.8.8. or 4.6.12. color codes or more generally both
Euclidean and hyperbolic tilings in any dimension.

The classification of what initial simplex can be used, also called fundamental do-
main, in order to tile the spherical, Euclidean or hyperbolic spaces amounts to studying
the groups of symmetries of the tilings. These groups of symmetries are also called Cox-
eter groups.

COXETER GROUP APPROACH

In this section we present how to obtain pin code relations directly from Coxeter groups
[23, 24], or more generally from finite groups which are generated by elements with even
order. A Coxeter group is a finitely presented group with reflections as generators, de-
noted as

G = 〈a0, . . . , aD |a2
0 = ·· · = a2

D = (
ai a j

)ki j = rk = ·· · = 1〉,
where the ki j define the relations between the generators and rk are some optional ad-
ditional relations between generators and 1 is the trivial element. Define the subgroups,
H j for j ∈ {0, . . . ,D}, as

H j =
〈

{a0, . . . , aD } \ {a j }
〉

.

Define the levels, C j , as the sets of left cosets for each H j , i.e.

C j =
{

g H j | g ∈G
}

.

The cosets of a subgroup always form a partition of the full group. So for every j ∈
{0, . . . ,D}, a group element g ∈G uniquely defines a coset c j ∈C j such that g ∈ c j . Hence,
each group element defines a (D +1)-tuple of cosets, (c0, . . . ,cD ) ∈ C0 × ·· ·×CD . Taking
the set of all such tuples defines a (D + 1)-ary relation on the cosets, F ⊂ C0 × ·· · ×CD ,
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which is a pin code relation. The fact that this F is a pin code relation can be verified by
the following argument. A k-pinned set here corresponds to the intersection of k differ-
ent cosets with respect to k different subgroups H j . It always holds that the intersection
of several cosets is either empty or is a coset with respect to the intersection of the sub-
groups of the original cosets. Hence non-empty k-pinned sets are cosets with respect to
a subgroup, H j1,..., jk ,

H j1,..., jk =
k⋂

i=1
H ji .

Each subgroup H ji is generated by all generators of G except one, this means that H j1,..., jk

contains at least a subgroup generated by D −k +1 of the generators,

H j1,..., jk ⊇ 〈
{a0, . . . , aD } \ {a j1 , . . . , a jk }

〉
. (5.2)

In particular the D-pinned sets are cosets with respect to a subgroup which contains
〈a j 〉 for some j , which has even order since a j is a reflection. Therefore D-pinned sets
have even order. In well behaved cases the containment in Eq. (5.2) will actually be an
equality but this is not guaranteed depending on the relations between generators.

In the case where the Coxeter group describes the symmetries of a tiling this is equiv-
alent to the Wythoff construction described above. But one also obtains more general
pin codes when considering Coxeter groups not defining tilings or more general finite
groups with generators of even order.

In Sec. 5.5.1 we explore in more details the construction of pin codes from 3D hyper-
bolic Coxeter groups and give some explicit examples.

CHAIN COMPLEX APPROACH

Another way of obtaining a pin code relation is from F2 chain complexes of length D +1.
These algebraic objects are composed of (D + 1) vector spaces over F2, say C0, . . . ,CD ,
together with D linear maps called boundary maps, ∂ j : C j →C j−1, which are such that

∀ j ∈ {0, . . . ,D −1}, ∂ j ◦∂ j+1 = 0. (5.3)

For example the tiling of a D-manifold can be seen as a chain complex, taking the j -cells
as a basis for the C j vector space and the natural boundary map. We have shown how to
get a pin code relation from such a tiling by taking its flags, but it can as well be obtained
from any F2 chain complex.

The construction works as follows: choose a basis set C j for each vector space C j .
The C j basis sets are the levels and the basis elements the pins. Then use the bound-
ary map, ∂, to define binary relations, R j , j+1 ⊂ C j ×C j+1, where (c j ,c j+1) ∈ R j , j+1 if
c j appears in the decomposition of ∂

(
c j+1

)
over the basis set C j . Then the relation

F ⊂C0 ×·· ·×CD is defined as follows

F = {
(c0, . . . ,cD ) | ∀ j ,

(
c j ,c j+1

) ∈ R j , j+1
}

.

The relation F obtained like this is almost a pin code relation. All the pinned sets of
type t = {0, . . . ,D} \ { j } with 0 < j < D have even cardinality since their size is given by
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the number of paths between the pin c j+1 and the pin c j−1 which has to be even by the
property of the boundary map ∂ given in Eq. (5.3). For pinned sets of type t = {1, . . . ,D} or
t = {0, . . . ,D −1} it is not generally the case that they have even cardinality. However, this
can be easily fixed by adding at most two pins: the idea is then to add one rank-0 pin, b0,
in the level C0 and add all pairs (b0,c⋆) such that∣∣{c0 | (c0,c⋆) ∈ R0,1}

∣∣= 1 (mod 2),

to the new relation R0,1. Then do the same for the level D , adding bD in CD . After this
modification the resulting flag relation F is a pin code relation.

Note that this way of obtaining a quantum code from any F2 chain complex is fun-
damentally different from the usual homological code construction. In the homological
code construction one chooses one of the levels, say C j , and identifies its elements with
qubits. Then the Z -stabilizer generators are given by the boundary of the elements in
C j+1 and the X -stabilizer generators by the coboundary of the elements in C j−1. These
are different from the flags and pinned sets used to define a pin code.

In Sec. 5.5.2 we give some explicit pin codes constructed from chain complexes.

5.2.5. REMARKS
While some flag relations F obtained from Coxeter groups can be equivalently viewed
as coming from some F2 chain complex, the converse does not necessarily hold. Indeed
not every multi-ary relation can be decomposed into a sequence of binary relations, the
hexagonal lattice depicted in Fig. 5.2a is an example of such a relation which cannot be
decomposed this way. The other way around, not all flag relations obtained from an F2

chain complex can be seen as coming from a Coxeter group as in general they would lack
the regular structure required.

Depending on the pin code relation, F , it can happen that some pinned sets can in
fact be safely split when defining the stabilizers. That is to say, one can separate them
into several disjoint sets of flags defining each an independent stabilizer still commuting
with the rest of the stabilizers. For example this is the case for Coxeter groups for which
(5.2) is strict, i.e. 〈{

ai1 , . . . , ais

}〉∩〈{
a j1 , . . . , a jt

}〉
⊋〈{

ai1 , . . . , ais

}∩{
a j1 , . . . , a jt

}〉
. (5.4)

In this case the cosets with respect to the first group can be further split into cosets with
respect to the second one without harming the commutation relations. Groups gener-
ated by reflections for which (5.2) is always an equality are called C-groups [25]. If the
stabilizers are still defined as whole pinned sets, in cases where they could be split, then
these smaller sets of qubits would be logical operators which would be detrimental to
the overall distance of the code.

REED-MULLER CODE-WORDS AS PINNED SETS

Reed-Muller codes can be simply expressed using specific pin code relations. One can
define the Reed-Muller code, RM (r,m) ⊂ Fm

2 , as follows. Define

k =
r∑

j=0

(
m

j

)
,
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k gives the number of multilinear monomials of degree at most r over m variables. So
given k coefficients, c ∈ Fk

2 , we can define a binary polynomial over m variables, pc ∈
F2 [x1, . . . , xm], as

pc =
∑

S⊂{1,...,m}
|S|≤r

cS
∏
j∈S

x j .

Such a polynomial, when evaluated, gives binary numbers and that for each 2m possible
assignments of the variables. So we associate to any polynomial a binary vector of length
2m . Then the code RM (r,m) is generated by all the binary vectors associated with the
polynomials of degree at most r over m variables:

RM (r,m) =
{(

pc (x)
)

x∈Fm
2

: c ∈ Fk
2

}
.

We now show that RM (r,m) is generated by the pinned sets with r pins of a certain
pin code relation F . Consider m levels, each containing two pins,

∀ j ∈ {0, . . . ,m −1}, C j = {0,1},

and the complete m-ary relation, F =C0×·· ·×Cm−1, see also the left of figure 5.10. Con-
sider now a r -pinned set defined, with type t = { j1, . . . , jr }, and pins b = (b j1 , . . . ,b jr ). One
can check that a flag, f ∈ F = Fm

2 , belongs to Pt (b) if and only if the following degree r
polynomial, pt ,b , evaluates to 1,

pt ,b = ∏
j∈t

b j =1

x j
∏
k∈t

bk=0

(1−xk ) .

So the pinned sets with r pins generate the following code,

P (r,m) =〈
(pt ,b(x))x∈Fm

2
: t ⊂ {0, . . . ,m −1}, |t | = r, b ∈ Fm

2

〉
.

Then we just have to check that these generate all polynomials of degree at most r . By
definition they generate polynomials constituted of a product of r elements being either
x j or (1− x j ). Let us suppose, for some ℓ ≤ r , they can generate all such product with
only ℓ terms. Then we can contruct all product with only ℓ−1 terms, q , as follows

q = q · (1−x j )+q · x j ,

where x j is a variable that does not appear in q . It follows by induction that they generate
all degree at most r polynomials and so

RM (r,m) =P (r,m).

Another way to see this is to use the decomposition property of pinned sets (Proposi-
tion 2) and generate the lower-degree monomials directly with pinned sets with less pins
and decompose these pinned sets into disjoint unions of r -pinned sets.
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5.3. TRANSVERSAL GATES AND MAGIC STATE DISTILLATION
In this section we discuss what structure is desirable for CSS codes to admit transversal
phase gates of different levels of the Clifford hierarchy. The presentation here is close in
spirit to that of [26, 27]. It is included here to set terminology and for self-containment
purposes.

Given ℓ binary row vectors, v 1, . . . , vℓ ∈ Fn
2 , we denote their element-wise product as

v 1 ∧·· ·∧vℓ. Its j th entry is given by[
ℓ∧

m=1
v m

]
j

=
[

v 1 ∧v 2 ∧·· ·∧vℓ
]

j
= v1

j v2
j · · ·vℓ

j .

The Hamming weight of a binary vector v is denoted as |v |, it is given by the sum of its
entries. We also define the notions of multi-even and multi-orthogonal spaces:

Definition 5 (Multi-even space). Given an integer, ℓ ∈ N, a subspace C ⊂ Fn
2 , is called

ℓ-even if all vectors in C have Hamming weight divisible by 2ℓ:

∀v ∈C , |v | = 0 (mod 2ℓ).

An equivalent characterization is that for any integer s ∈ {1, . . . ,ℓ} and any s-tuple of vec-
tors, (v 1, . . . , v s ) ∈C s , it holds that∣∣v 1 ∧·· ·∧v s ∣∣= 0 (mod 2ℓ−s+1).

Definition 6 (Multi-orthogonal space). Given an integer, ℓ ∈ N, a subspace C ⊂ Fn
2 , is

called ℓ-orthogonal if for any ℓ-tuple of vectors,
(
v 1, . . . , vℓ

) ∈C ℓ,∣∣∣v 1 ∧·· ·∧vℓ
∣∣∣= 0 (mod 2).

Binary addition is denoted by ⊕, and the following identity can be used to convert
binary addition to regular integer addition

r⊕
m=1

w m =
r∑

s=1
(−2)s−1

∑
1≤m1<···<ms≤r

s∧
i=1

w mi . (5.5)

Using this identity one can show the equivalence of the two characterizations of an ℓ-
even space given in Def. 5, and that it is enough to verify the second characterization on
a generating set of the space. Similarly it is enough to verify that a space is ℓ-orthogonal
on a generating set.

The single-qubit phase gates are denoted as

Rℓ =
(
1 0
0 ωℓ

)
, ωℓ = e

i 2π
2ℓ , (5.6)

where ωℓ is the 2ℓth root of unity. For instance R1 = Z , R2 = S and R3 = T in the usual
notations.
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5.3.1. WEIGHTED POLYNOMIALS AND TRANSVERSAL GATES
Given k qubits and some integer ℓ, we consider quantum gates, UFℓ

, acting diagonally
on the computational basis, such that for x ∈ Fk

2 ,

UFℓ
|x〉 =ω

Fℓ(x)
ℓ

|x〉 ,

where Fℓ is a so-called weighted polynomial of the form

Fℓ(x) =
ℓ∑

s=1
2s−1

∑
m1<···<ms

αm1...ms · xm1 · · ·xms , (5.7)

with coefficients αm1...ms in F2ℓ . Any such gate UFℓ
belongs to the ℓth level of the Clifford

hierarchy [28]. Examples, and generating sets for ℓ= 3, are given in Table 5.1.

Table 5.1: Weighted polynomials corresponding to some well known gates, for ℓ= 3, arranged according num-
ber of qubits involved and level of the Clifford hierarchy.

UF3 ↔ F3(x) 1st level 2nd level 3rd level

1 qubit Z ↔ 4x1 S ↔ 2x1 T ↔ x1

2 qubits - CZ ↔ 4x1x2 CS ↔ 2x1x2

3 qubits - - CCZ ↔ 4x1x2x3

The goal is to implement such a gate on the logical level of a quantum error cor-
recting code by the transversal application of Rℓ gates, defined in Eq. (5.6). Given an
[[n,k,d ]] quantum CSS code, define G as the r ×n matrix whose rows describe a gen-
erating set of the X -stabilizers of the code, and define L as the k ×n matrix whose rows
describe a basis for the X -logical operators. The code state in this basis corresponding
to x ∈ Fk

2 can then be expressed as

|x〉 = 1p
2r

∑
y∈Fr

2

|xL⊕ yG〉 .

Applying transversally the gate Rℓ on this code state, |x〉, yields

R⊗n
ℓ |x〉 = 1p

2r

∑
y∈Fr

2

ω
|xL⊕yG|
ℓ

|xL⊕ yG〉 . (5.8)

Using Eq. (5.5), the power of ωℓ above can be rewritten in three parts as

|xL⊕ yG| = Fℓ(x)+F ′
ℓ(y)+F ′′

ℓ (x , y), (5.9)

where we defined

Fℓ(x) = |xL| (5.10)

F ′
ℓ(y) = ∣∣yG

∣∣ (5.11)

F ′′
ℓ (x , y) =−2

∣∣xL∧ yG
∣∣ (5.12)
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Using again Eq. (5.5), one can express these three parts as weighted polynomials
whose coefficients are given by the different overlap between X -logical operator gen-
erators, between X -stabilizer generators or between both,

Fℓ(x) =
ℓ∑

s=1
(−2)s−1

∑
1≤mi≤k

∣∣∣∣∣ s∧
i=1

Lmi

∣∣∣∣∣ s∏
i=1

xmi , (5.13)

F ′
ℓ(y) =

ℓ∑
t=1

(−2)t−1
∑

1≤n j ≤r

∣∣∣∣∣ t∧
j=1

Gn j

∣∣∣∣∣ t∏
j=1

yn j , (5.14)

F ′′
ℓ (x , y) =

ℓ∑
s+t=2

s≥1, t≥1

(−2)s+t−1
∑

1≤mi≤k
1≤n j ≤r

∣∣∣∣∣ s∧
i=1

Lmi
t∧

j=1
Gn j

∣∣∣∣∣ s∏
i=1

xmi

t∏
j=1

yn j . (5.15)

Provided that it is possible to cancel the action of F ′
ℓ

(y) and F ′′
ℓ

(x , y) then the result-
ing operation would correspond to the gate UFℓ

on the logical qubits of the code. The
following two properties of CSS codes are designed to get rid of these two unwanted
parts.

Proposition 4 (Exact transversality). Let C be a CSS code, given an integer ℓ, the code C

allows for the transversal application of Rℓ if the following conditions hold:

(i) The X -stabilizers form an ℓ-even space.

(ii) Element-wise products of a X -logical operator and a X -stabilizer always have Ham-
ming weight divisible by 2ℓ−1.

The gate performed at the logical level is then given by the weighted polynomial in Eq. (5.10).

Indeed the two conditions above exactly give

F ′
ℓ(y) = F ′′

ℓ (x , y) = 0 (mod 2ℓ),

which precisely enforce that the actions of F ′
ℓ

(y) and F ′′
ℓ

(x , y) are trivial. We can also
settle for a weaker condition under which the unwanted part is not trivial but belongs to
the (ℓ− 1)th level of the Clifford hierarchy. We refer to this weaker condition as quasi-
transversality.

Proposition 5 (Quasi-transversality). Let C be a [[n,k,d ]] CSS code, with r ×n generating
matrix, G, for its X -stabilizers and k ×n generating matrix, L, for its X -logical operators.
Given an integer ℓ, the code C allows for the transversal application of Rℓ up to a (ℓ−1)th-
level Clifford correction if the following conditions hold:

(i) The X -stabilizers form an ℓ-orthogonal space.

(ii) For any choice of s ≥ 1 X -logical operators and t ≥ 1 X -stabilizers with s + t ≤ ℓ∣∣∣∣∣ s∧
i=1

Lmi
t∧

j=1
Gn j

∣∣∣∣∣= 0 (mod 2).
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The gate performed at the logical level after correction is then given by the weighted poly-
nomial in Eq. (5.10).

One can check that under these conditions it follows that,

ω
F ′
ℓ

(y)+F ′′
ℓ

(x ,y)

ℓ
=ω

2F̃ℓ−1(x ,y)
ℓ

=ω
F̃ℓ−1(x ,y)
ℓ−1 , (5.16)

where F̃ℓ−1 is a properly weighted polynomial which defines a (ℓ− 1)th-level Clifford

correction to be applied. Indeed (i ) enforces that all coefficients
∣∣∣∧t

j=1 Gn j

∣∣∣ in Eq. (5.14)

are divisible by 2 and (i i ) that all coefficients
∣∣∣∧s

i=1 Lmi
∧t

j=1 Gn j

∣∣∣ in Eq. (5.15) also are

divisible by 2. Hence we can pull out a factor 2 in front of everything while keeping
the correct prefactor in front of each monomial. The exact correction is given by the
conjugation of UF̃ℓ−1

by a decoding circuit for C , see [26]. Note that we can also define
intermediate conditions so that the correction belongs to the (ℓ−q)th level of the Clifford
hierarchy for some 1 ≤ q ≤ ℓ. Here we have just defined the two extreme ones, for which
the correction belongs either to the 0th level or the (ℓ−1)th level of the Clifford hierarchy.

5.4. PROPERTIES OF QUANTUM PIN CODES

(a) (b) (c)

Figure 5.4: (a) Schematic representation of the different types for the X - and Z -stabilizers in the case of D = 3.
The different types are classified according to their possible intersection with the complementary type to t0.
For some, the intersection, if not empty, is a unique flag, they are labeled by the symbol “!”. For the others, the
intersection, if not empty, is the full pinned set of type t0, they are labeled by the symbol “∀”. (b) The chain
complex corresponding to the pin code, highlighting the intersections between the different sorts of X - and
Z -stabilizers and pinned sets of type t0. (c) The t0-shrunk chain complex derived from the pin code (see main
text).

In this section we examine the properties of pin codes. Since their definition is fairly
general, their properties depend on the precise choice of pin code relations F . We stay as
general as possible and state precisely when the pin code relations need to be restricted.

5.4.1. CODE PARAMETERS AND BASIC PROPERTIES
First we investigate the LDPC (Low Density Parity Check) property. A code family is LDPC
if it has stabilizer checks of constant weight and each of its qubits is acted upon by a
constant number of checks. For pin codes, both properties depend on the relation F ,
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but it is fairly easy to construct LDPC families. For instance, pin codes based on Coxeter
groups with fixed relations between generators and one growing compactifying relation
are LDPC, see Sec. 5.5.1. As another example, pin codes from chain complexes with fixed
length D+1, sparse boundary map and growing dimension of the levels are LDPC as well.

Let us examine a simple example: choose some D ∈N, a set, C , of size 2m for some
m ∈ N and the complete relation on D +1 copies of C: F = C D+1. One can easily verify
that the relation F is a pin code relation as C has even cardinality. The number of flags is
nq = |F | = (2m)D+1 and the number of x- and z-pinned sets are nx = (D+1

x

)× (2m)x and

nz = (D+1
z

)× (2m)z . If one considers growing m, then the code would not be LDPC, but
more strikingly the ratio of number of stabilizer checks to number of qubits would go to
zero. This illustrates that for a fixed D the complete relation is a poor choice, leading to
very high rate and very low distance. To get interesting codes, one either needs to vary
D , or find some other relations with a number of flags growing significantly slower than
the complete relation.

Concerning logical operators, we first note that they have even weight.

Proposition 6 (Logical operators have even weight). Let F be a pin code relation on D+1
levels and let C be the associated (x, z)-pin code for (x, z) ∈ {1, . . . ,D}2 with x+z ≤ D. Then
the X - and Z -logical operators of C have even weight.

Proof. Let the set L ⊂ F represent a X -logical operator, and let t be a type of size z. Con-
sider the set, S, of collections of pins given by the projection of type t of the set L,

S =Πt (L).

For every s ∈ S, the pinned set Pt (s) corresponds to a Z -stabilizer and therefore has an
even intersection with L. Pinned sets of the same type but defined by two different col-
lections of pins are necessarily disjoint. Hence, every element in L appears in exactly
one of the pinned sets Pt (s) for some s ∈ S and so the cardinal of L is even. The proof for
Z -logical operators is the same.

One can also prove the following general lower bound on the distance of pin codes.

Proposition 7 (Distance at least 4). Let F be a pin code relation on D +1 levels and let C

be the associated (x, z)-pin code for (x, z) ∈ {1, . . . ,D}2 with x + z ≤ D. Then the distance of
C is at least 4.

Proof. Using the fact that the distance has to be even from Prop. 6, we just need to verify
that it cannot be 2. Let f1 and f2 be any two flags in F , they must differ on at least one
level j ∈ {0, . . . ,D}. Pick a type tx of size x containing j and define the collection of pins
sx = Πtx ( f1) of type tx . Then the pinned set Ptx (sx ), defining a X -stabilizer, contains
f1 but not f2, hence { f1, f2} cannot define a Z -logical operator. Similarly by defining the
type tz of size z containing j and the collection of pins sz =Πtz ( f1), the pinned set Ptz (sz )
is a witness that { f1, f2} cannot be a X -logical operator.

We conjecture that better lower bounds can be obtained when taking into account
the exact size of the type for the stabilizers as larger types can differentiate more flags.
The proof above is optimal only for x = z = 1. In order to get odd weight logical operators,
one has to introduce free pins, see Sec. 5.4.5. Note that in the presence of free pins, the
proof above does not hold anymore.
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5.4.2. COLORED LOGICALS AND UNFOLDING

(a) (b) (c)

Figure 5.5: (a) Schematic representation of the different types classified according to their possible intersection
with the complementary type to t01. The ones with unique intersection are labeled with “!”, the ones with even
intersection with “E” and the one with full containement with “∀”. (b) The chain complex corresponding to
the pin code, highlighting the intersections between the different sorts of X - and Z -stabilizers and pinned sets
of type t01. (c) The t01-shrunk (co)chain complex derived from the pin code (see main text).

The structure of the logical operators of color codes is understood as colored string-
nets or membrane nets [21] and this structure is directly linked to an unfolding proce-
dure existing for color codes [29, 30]. This structure remains for all pin codes, so we
recast it here as a first step to gain more insight in the structure of the logical operators.

The general idea is to group qubits into sets with even overlap with almost all except
for one sort of stabilizer. The chosen sort of stabilizer which has odd overlap with the
groups of qubits corresponds to the stabilizers defined by pinned sets of a given type.
Logical operators built out of these groups of qubits then only depend on the structure of
the one type of stabilizer selected. Repeating this for different choices of type of stabilizer
fully covers all logical operators in the case of color codes.

Consider a pin code relation, F ⊂ C0 × ·· · ×CD , and the associated (x, z)-pin code.
Define the complement of a type, t , denoted as t :

t = {0, . . . ,D} \ t .

The intersection between a pinned set of type t and a pinned set of type t is either empty
or it contains exactly one flag. Furthermore, for any other type with the same number
of pins as t , the corresponding pinned sets have necessarily even overlap with pinned
sets of type t , see Figs. 5.4a and 5.5a for visual representations of this. This means that
grouping flags according to pinned set of the complementary type t can single out logical
operators only having to ensure commutation with pinned sets of type t . For our code,
X -stabilizers are generated by x-pin sets, which come in

(D+1
x

)
different types. Take one

such type, tx , and group the qubits according to pinned sets of type tx . Now the Z -
stabilizers are generated by z-pinned sets, which come in

(D+1
z

)
different types. Some of

these types, we denote them as t inc.
z , are fully included in t , which means that pinned

sets of such type fully contain any group of qubits they intersect. The other types only
partially intersect with the groups of qubits. The situation is schematized in Fig. 5.4b for
D = 3, x = 1 and z = 2. From these considerations, one can construct a chain complex
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for which the homology gives candidate Z -logical operators. Take the pinned sets of
type tx , for the level 0, the pinned sets of type tx for the level 1, and the pinned sets of
types t inc.

z for level 2 and the boundary map is given by the overlaps of these sets. This
is represented in Fig. 5.4c, we call it the tx -shrunk chain complex. Then one can check
that an element of the homology of this chain complex can be lifted to a potential Z -
logical operator for the pin code. Indeed it would commute with all the X -stabilizer, by
homology for the stabilizers of type tx and by construction for the other X -stabilizers. It
would also not be simply generated by Z -stabilizers of type t inc.

z by homology, and one
would have to check for the other Z types. So it is a valid (potentially trivial) Z -logical
operator.

The same procedure can be done for each of the X types. Symmetrically, the same
can be done for the X -logical with the Z types, and this is represented in Fig. 5.5 in the
case D = 3, x = 1 and z = 2.

Given a type t , the chain complexes constructed like this are called t-shrunk lattices
in the case of color codes [21]. For color codes obtained from the Wythoff construction
described in Sec. 5.2.4, the construction of the t-shrunk lattice is fairly direct. First move
the vertex from the middle of the fundamental simplex to the corner corresponding to
the first rank in the type t , then focus on the opposite face: a simplex of dimension one
less which now looks exactly like the beginning of the procedure but in a lower dimen-
sion. Recursively exhaust all the ranks of t in this way by each time adding a vertex in the
middle of the current simplex and moving it to the corresponding corner.

These shrunk lattices are the basis for the unfolding procedure proved for color codes
in all dimensions in [29]. This procedure establishes a local unitary equivalence between
a color code and the union of the homological codes on the shrunk lattices correspond-
ing to all the different types for X -stabilizers except one. The local unitary acts separately
on groups of qubits defined by the X -stabilizer generators of the type that is not used to
produce one of the shrunk lattices. The proof of the existence of the local unitary re-
lies on the analysis of the so-called overlap groups of stabilizers restricted to the support
of the X -stabilizer generators aforementioned and the corresponding groups of qubits
in the shrunk lattices. The global structure is still present for general pin codes, but for
the proof to hold it suffice to require that the linear dependency between the generators
within the overlap groups in the pin code is such that the number of independent gen-
erators agrees with the number of independent generators in the corresponding shrunk
lattices as an additional assumption.

These shrunk lattices are also the basis for some color code decoders [31–34] but
these decoders rely on a lifting procedure from the shrunk lattices to the color code lat-
tice which seems intrinsically geometric as it consists in finding a surface filling inside a
boundary. So it is at this point unclear how to leverage this structure in order to decode
general pin codes.

5.4.3. GAUGE PIN CODES

In this section we define gauge pin codes from a pin code relation. Gauge pin codes can
also be viewed as a generalization of gauge color codes [20].

A gauge code, or subsystem code, is a code defined by a so-called gauge group in-
stead of a stabilizer group [11, 35]. For stabilizer codes, the code states are eponymously
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stabilized by the stabilizer group which is an Abelian subgroup of the group of Pauli op-
erators. For gauge codes, the gauge group is not Abelian and hence all gauge operators
cannot share a common +1-eigenspace. In this case the code states are stabilized by the
center of the gauge group. Gauge operators not in the center of the gauge group com-
mute with its center. Hence they qualify as logical operators in the case of a stabilizer
code but they are not used to encode information in the case of a gauge code.

Take a pin code relation F and two positive integers x and z such that x + z < D .
The associated pin code has its X -stabilizer generators defined by all the x-pinned sets
and its Z -stabilizers generators defined by all the z-pinned sets. Since the relation F is
a pin code relation, by Prop. 3 any (D − x)-pinned set has an even intersection with any
x-pinned set. So all the (D −x)-pinned sets correspond to some Z -logical operators. On
top of that, they generate all the Z -stabilizers. Indeed using Prop. 2 and the fact that
D −x > z one shows that the z-pinned sets decompose into disjoint (D −x)-pinned sets.
As such (D − x)-pinned set define naturally Z -gauge operators which can be measured
individually and whose outcomes can be recombined to reconstruct the value of the
Z -stabilizers defined by z-pinned sets. Symmetrically, the same happens for (D − z)-
pinned sets which have even overlap with z-pinned sets and generate x-pinned sets and
therefore can be viewed as X -gauge operators.

In conclusion, given a pin code relation F and two natural integers x and z such that
x+z < D ; one defines the corresponding gauge pin code with X -gauge operators defined
by the (D − z)-pinned sets and Z -gauge operators by the (D − x)-pinned sets. One can
check that these operators do not all commute since (D −x)+ (D − z) > D . The center of
this gauge group, i.e. the stabilizer group, is defined by the x-pinned sets as X -stabilizer
generators and z-pinned sets as Z -stabilizer generators. Note that it is not guaranteed
that the number of logical qubits in a (x, z)-gauge pin code is the same as the number of
logical qubits in the (x,D −x)-pin code obtained from the same relation F .

The error correction procedure for a gauge code with only fully X -type or fully Z -
type gauge operators is conveniently performed in two parts. In one part, one measures
the X -gauge operators, reconstructs the syndrome for the X -stabilizers and uses it to
correct Z -errors. In the other part, one measures the Z -gauge operators, reconstructs
the syndrome for the Z -stabilizers and uses it to correct X -errors.

The advantages of this procedure in the case of gauge pin codes are two-fold. First,
the weight of the gauge generators, i.e. the number of qubits involved in each generator,
is reduced compared to the weight of the stabilizer generators making their measure-
ment easier and less error prone. Second, the record of gauge operator measurements
contains the information of the stabilizer measurements with redundancy. To under-
stand this redundancy consider a x-pinned set and define k = (D − z)− x. This is the
number of additional levels to pin in order to decompose the x-pinned set into (D − z)-
pinned sets. There are

(D+1−x
k

)
different ways to choose these additional levels to pin and

therefore that many different ways to reconstruct the x-pinned set. This redundancy
permits a more robust syndrome extraction procedure which can even become in some
cases single-shot, meaning that the syndrome measurements do not have to be repeated
to reliably decode [36].
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5.4.4. TRANSVERSALITY
Here we examine pin codes with regards to the transversality and quasi-transversality of
Prop. 4 and Prop. 5. Nicely, x-pinned sets always have some multi-orthogonality prop-
erty.

Proposition 8 (Multi-orthogonality of pinned sets). Let F be a (D + 1)-ary pin code re-
lation. For any x ∈ {1, . . . ,D}, the x-pinned sets seen as binary vectors in FF

2 generate a
ℓ-orthogonal space with ℓ= bD/xc.

Proof. Given x ∈ {1, . . . ,D}, by Prop. 1, the intersection of bD/xc (or less) x-pinned sets is
either empty or a pinned set with at most D pins, hence it has even weight for a pin code
relation.

Interestingly it is also not too difficult to find pin code relations for which the 1-pin
sets are D-even. For example, using a chain complex whose boundary map have even
row and column weights and is regular enough will typically suffice.

One could also hope for the second part of Proposition 5 to always hold. Unfortu-
nately it holds only partially in general.

Proposition 9 (X -logical intersection with X -stabilizers). Let F be a (D +1)-ary pin code
relation, and consider the associated (x, z)-pin code for x ∈ {1, . . . ,D} and z = D − x. Then
for any one X -logical operator, L, and k X -stabilizer generators, G j , with k ≤ bD/xc−1,∣∣∣L ∧G1 ∧·· ·∧Gk

∣∣∣= 0 (mod 2).

Proof. Indeed, using Prop. 1, the overlap between bD/xc−1 (or less) different x-pinned
sets is either empty or a pinned set with at most D − x = z pins. Hence by Prop. 2, it
can be decomposed into z-pinned sets, i.e. Z -stabilizers which have even overlap with
X -logicals by definition.

Overlaps involving more than one X -logical operator do not have such guarantees in
general. Focusing on the case ℓ= 3, given the two propositions above the only problem-
atic conditions are the ones of type∣∣∣L j ∧Lk ∧Gℓ

∣∣∣= 0 (mod 2). (5.17)

In order for these terms to hold, one has to have that the intersection of two X -logical
operators is always a Z -logical operator. This is the case for example for Euclidean color
codes but it is not the case for every pin code. This means that we have to find subfami-
lies of pin codes in order to get transversal phase gates.

5.4.5. BOUNDARIES AND FREE PINS
The geometrical notion of colored boundaries existing for color codes can also be gen-
eralized to pin codes. The way to do this is to introduce a specific type of pins which will
be called free pins.

Consider the chain complex approach to building pin code relations presented in
Sec. 5.2.4. In this construction, it is sometimes necessary to add a rank-0 pin b0 (in the
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level C0) or a rank-D pin bD (in the level CD ) in order to ensure that the relation F is
a pin code relation. The new pin b0 is linked to all the rank-1 pins which previously
were linked to an odd number of rank-0 pins. So even if the initial boundary relation is
sparse, the number of connections to b0 may be large. As such the 1-pinned set pinned
by this new pin b0 potentially contains a large number of flags. To keep the size of the
1-pinned sets under control it is then preferable to not allow to pin b0 alone. That is why
we then call b0 a free pin. Any of the D+1 levels can contain free pins, the chain complex
construction potentially puts one in C0 and one in CD . The rule for a larger collection of
pins is that if it contains at least one non-free pin then it can define a valid pinned set,
but if it is composed of only free pins then it is disregarded. Finally consider when a flag
is only composed of free pins, in that case this flag will not enter any valid pinned sets.
Hence such flags must also be discarded. This is summarized in the following definition.

Definition 7 (Pin code with free pins). Let F be a pin code relation defined on D+1 levels
of pins. Let some of the pins be labeled as free pins. Let x and z be two natural integers
such that x + z ≤ D. The associated (x, z)-pin code is defined as follows: The elements of
F containing at least one non-free pin are associated with qubits. All the x-pinned sets
defined by a collection of pins containing at least one non-free pin are associated with X -
stabilizer generators. All the z-pinned sets defined by a collection of pins containing at
least one non-free pin are associated with Z -stabilizer generators.

As examples we give a representation of Steane’s [[7,1,3]] code and the [[4,2,2]] code
as (1,1)-pin codes with free pins in Figure 5.6.

Figure 5.6: (Left) Representation of Steane’s [[7,1,3]] code as a (1,1)-pin code from a chain complex with free
pins. There are three levels represented by the colors red green and blue. The free pins are represented between
parentheses. There are 8 flags but one is composed only of free pins hence only 7 qubits. There are three non-
free pins defining three 1-pinned sets for both X - and Z -stabilizers. (Right) Representation of the [[4,2,2]]
code as a (1,1)-pin code with free pins. There are four flags, and a single non-free pin defining the X - and
Z -stabilizer both containing the four flags.

Introducing free pins can allow the code to escape the even-weight logical proposi-
tion, Prop. 6. This can be interesting as then different logical gates could be implemented
which require the logical operators to have odd support. One idea to introduce free pins
in every level could be to consider boundary map matrices which are almost sparse ex-
cept for a small number of row or columns which could be dense. The basis element
corresponding to these would then be labeled as free pins in the construction of the pin
code relation.

Note that in the presence of free pins, the proof of Prop. 6 can only be reproduced
when at least one level selected by the chosen type t does not contain any free pin. So
as long as at least one level does not contain any free pin, it still holds that all logical
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Figure 5.7: (a) [[8,2,2]] color code on the projective plane based on octahedral symmetry, which is topolog-
ically a sphere where opposite points are identified. (b) [[60,2,6]] color code on the projective plane based
dodecahedral symmetry. (c) 3-colored hyperbolic tiling with edges and vertices forming a 3-valent graph.

operators have even weight. When all levels contain at least one free pin then the code
may contain odd weight logical operators.

The notion of free pins carries over straightforwardly to gauge pin codes.

5.5. EXAMPLES AND APPLICATIONS

5.5.1. COXETER GROUPS, HYPERBOLIC COLOR CODES

In Section 5.2.4 we discussed the construction of pin codes from tilings and Coxeter
groups. Well-known examples of such code families are color codes on Euclidean tilings
such as the hexagonal tiling in 2D and the bitruncated cubic honeycomb in 3D. Using the
Wythoff construction we can construct tilings which fulfill the right pin code condition
and therefore have the correct colorability for defining a color code.

Besides the known Euclidean examples we can consider tilings of more exotic spaces.
For the projective plane there exist two tilings based on the Wythoff construction: The
first is based on the symmetry group of an octahedron. It is an [[8,2,2]]-code where the
check generators correspond to one octagon, two red squares and two green squares,
see Figure 5.7a. Note that this code does not quite fit the pin code definition because it
contains distinct qubits which would be described by the same flag, for example (d ,c, a)
on edge 1. This degeneracy explains why it escapes Prop. 7. The second is based on
the icosahedral symmetry group, which gives a a [[60,2,6]]-code with checks given by
6 decagons (blue), 10 hexagons (green) and 15 squares (red), see Figure 5.7b.

Color codes based on two-dimensional hyperbolic tilings were first considered in
[37] where 3-colorability and 3-valence was postulated (see Figure 5.7c for an example).
The Wythoff construction of Section 5.2.4 allows us to obtain color codes from arbitrary
regular tilings of closed hyperbolic surfaces. To define a family of closed surfaces one
needs to compactify the infinite lattice as explained in [38]. There are infinitely many
regular tilings of 2D hyperbolic space. The lowest weight achievable with our construc-
tion is 4.8.10, meaning that checks are squares, octagons and dodecagons. The smallest
code in this family is [[120,10,6]] based on a non-orientable hyperbolic surface (cf. Ta-
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ble 3.1 in [39]). Another small example is a [[160,20,8]] code with stabilizer checks of
weight 4 and 10 based on a 4.10.10 tiling of an orientable hyperbolic surface of genus 10.

Using the construction outlined in Section 5.2.4 we can consider any D-dimensional
hyperbolic reflection group and obtain a tiling which is D +1-colorable and which has
a D +1-valent graph. In particular, we can consider hyperbolic tilings in 3D which are
4-colorable. There exist four regular hyperbolic tilings in 3D of which two are self-dual
tilings and two related by duality. The self-dual ones are a tiling by dodecahedra, de-
noted {5,3,5}, and one by icosahedra, denoted {3,5,3}. The other are a tiling by cubes
{4,3,5} and its dual {5,3,4}. All of these give rise to codes with maximum stabilizer weight
120. Here we will focus on the {5,3,5}-tiling, which is the unique self-dual tiling of space
by dodecahedra where five dodecahedra are placed around an edge. Performing the
Wythoff construction on a family of closed manifolds, all equipped with a {5,3,5}-tiling
yields a code family where checks are of weight 20 and 120. The weight of the stabilizer
is given by the order of the subgroup of the full reflection group which is generated by all
except for one of the generators. The smallest example is a [[7200,5526,4]] code.

5.5.2. PIN CODES FROM CHAIN COMPLEXES
In Sec. 5.2.4 we showed how from any F2 chain complex one can construct a pin code
relation. In this section we explore some specific examples of chain complexes and the
corresponding pin codes.

One way to obtain arbitrary length chain complexes is to repeatedly use the hyper-
graph product with a classical code. The hypergraph product was introduced in [16] as a
way to turn any two classical codes into a quantum code. This product can be viewed as
the tensor product of chain complexes, which takes two length-2 chain complexes to a
length-3 chain complex. More generally the product of a length-k1 and length-k2 chain
complexes yields a length-(k1+k2−1) chain complex. This generalization and its charac-
teristics has been studied in the context of homological codes [17, 40, 41]. We consider
here the approach of [41] but look at the resulting chain complexes from the point of
view of pin codes.

The idea goes as follows: consider A , a F2 chain complex of length k, character-
ized by F2-vector spaces (A j )0≤ j≤k−1 and k −1 boundary maps ∂A

j : A j →A j−1, obeying

Eq. (5.3). We now take the product with a chain complex of length 2. Note that any two
vector spaces, B1 and B0 and any linear map between them ∂B : B1 → B0 defines a
length-2 chain complex. The product, C = A ⊗B, is defined by k +1 vector spaces C j

for 0 ≤ j ≤ k,
C j = (B1 ⊗A j−1)⊕ (B0 ⊗A j ),

with the convention that A−1 and Ak are both the zero vector spaces. And the k bound-
ary maps, ∂C

j : C j →C j−1, are defined as

∀u = v ⊕w ∈ (B1 ⊗A j−1)⊕ (B0 ⊗A j )

∂C
j (u) = (1B1 ⊗∂A

j−1 +∂B ⊗1A j−1 )(v)+ (1B0 ⊗∂A
j )(w).

One straightforwardly checks that the ∂C
j are valid boundary maps, i.e. obeying Eq. (5.3).

Repeatedly taking the product with a length-2 chain complex therefore increases the
length of the resulting chain complex each time by one. Moreover any binary matrix de-
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fines a valid F2 chain complex of length 2 so this approach allows to explore numerically
many pin codes.
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Figure 5.8: Plot of the [[n,k,d ]] parameters of pin codes from chain complexes described in this section. One
application of the hypergraph product on 3×4 binary matrices yields the D = 2 pin codes represented by ‘×’
and two applications the D = 3 pin codes represented by ‘+’. The D = 6 pin codes described in Table. 5.2 are
represented by stars. The colors indicate the distance of the codes. The dashed and dotted lines represent the
rates k/n = 1/2 and k/n = 1/8, respectively.
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Figure 5.9: Plot of the maximum X -stabilizer weight of the pin codes from chain complexes described in this
section.

We have looked at small binary matrices, up to 3×4, and their hypergraph product to
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form pin code relations with D = 2 and D = 3. We plot in Fig. 5.8 the code parameters ob-
tained [[n,k,d ]]. Strinkingly these codes seem to show a general trend of high encoding
rate k/n for a small distance. Indeed most of them are around 1/2 rate but just distance
4 which is the lower bound guaranteed by Prop. 7. A few of them reach distance 6 or 8
but for significantly smaller rates. The codes yielding no logical qubits are not displayed
in this plot. Note that this procedure is far from generating all chain complex of a given
length.

We have also looked at a few pin code relations for D = 6 using small even size levels
and the complete relation for F . Three notable examples are presented in Table. 5.2.
When writing 2×6 ×4 we mean that 6 of the levels contain each 2 pins and the last one
contains 4. Since we use the complete relation, the number of flags and the size of the
pinned sets are easily computed as a product of the size of some levels. The number
of logical qubits is computed numerically and the distance is upper bounded and we
believe it is tight.

Table 5.2: Parameters of some D = 6 pin codes using the complete relation described by the size of the D+1 = 7
levels.

(x, z) 2×6 ×4 2×5 ×4×2 2×4 ×4×3

(2,4) [[256,30,8]] [[512,120,8]] [[1024,358,8]]

(3,3) [[256,40,16]] [[512,160,16]] [[1024,472,16]]

We also represent the maximum weight of the X -stabilizers for these codes in Fig. 5.9.
When checking for transversal phase gates for ℓ= 3, most of the codes examined above
do not satisfy (5.17) and therefore one cannot apply transversal R3 on most of these
codes.

5.5.3. PUNCTURING TRIPLY-EVEN SPACES
If pin codes in general are not guaranteed to fulfill all the requirements of transver-
sality or quasi-transversality of Prop. 4 or Prop. 5, their stabilizers always form multi-
orthogonal spaces, see Prop. 8. This is directly useful as multi-orthogonal spaces to-
gether with puncturing techniques can be used to construct codes fulfilling Prop. 5 (or
Prop. 4 if the space is multi-even), as explained for example in [27]. We focus here on
triply-even spaces and tri-orthogonal spaces. The idea goes as follows: take a binary
matrix, G , whose rows generate a tri-orthogonal space, using Gaussian elimination it is
always possible to put the matrix in the following form:

G =
(← k → ← n →

k l 1 G1

r l 0 G0

)
. (5.18)

To obtain this form one just performs row operations as well as column permutations
and different column permutations will yield different G0 and G1. Then choosing the
rows of G0 as X -stabilizer generators and the rows of G1 as X -logical operators (this fully
specifies the Z -stabilizers and Z -logicals) yields a code fulfilling Prop. 5. Moreover the
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Figure 5.10: Some possible variations on Reed-Muller codes seen as pin codes on a chain complexes, by modi-
fying the ends of the chain complex, the left most chain complex is used to define Reed-Muller codes. Example
of dimension 6 are shown here, making variations on RM (2,7). The number of flags is written above each
chain complex and an identification number is given below.

logical gate obtained is the transversal T † so directly usable in a T -gate distillation proto-
col. It distills n magic states into k ones of better quality which depends on the distance
of the code that has to be computed independently.

In [27], the authors use Reed-Muller codes, RM (r,m), to obtain initial tri-orthogonal
spaces (even triply-even). Viewed as a pin code, RM (r,m) is a very simple chain com-
plex, represented on the left of figure 5.10, see also section 5.2.5. This chain complex can
be modified in several ways to obtain different pin codes. We tried different modifica-
tions in the case D = 6, they are represented in figure 5.10. For all of them the 2-pinned
sets generate a triply-even space.

We tried to randomly puncture the pin codes obtained from these chain complexes;
similarly to [27] but without deploying the more advanced techniques. We were able to
find a few interesting codes this way, see Table 5.3, which can be used to distill T magic
states, see Chapter 1, Section 1.3.2. The obtained parameters γ, see Eq. (1.75), are similar
but do not improve on the small examples found in [27].

Table 5.3: Some triorthogonal codes found by randomly puncturing the pin codes represented in figure 5.10.

code # initial n punctured code: [[n,k,d ]] γ= ln(n/k)
lnd

0 128 [[116,12,4]] 1.64

1 192 [[175,17,4]] 1.68

2 256 [[236,20,4]] 1.78

3 288 [[261,27,4]] 1.64

4 512 [[466,46,4]] 1.67
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Table 5.4: Alternative construction of CSS codes with transversal T implementing some circuit of CCZ gates
on the logical level.

D = 5, x = 2 D = 8, x = 3

[[64,15,4]] [[512,84,8]]

[[96,23,4]] [[768,126,8]]

[[128,31,4]] [[1024,168,8]]

[[144,35,4]] [[1152,188,8]]

[[256,63,4]] [[2048,332,8]]

5.5.4. LOGICAL CIRCUITS OF CCZ S
It is also possible to use the property of multi-orthogonality of pinned sets on a given
pin code relation in a slightly different way. The construction proposed for Reed-Muller
codes in [42] can be directly adapted to general pin code relations. This construction is
the following: given a pin code relation on D +1 levels and a positive integer x, choose
the (x − 1)-pinned sets as X -stabilizer generators and impose the x-pinned sets to be
the X -logical operators. This is enough to completely characterize a CSS code. Then by
choosing carefully the parameters D and x, one can obtain a code guaranteed to satisfy
Prop. 5 where the logical operation realized belongs to some level ℓ of the Clifford hier-
archy. Roughly x has to be small enough so that the conditions in Prop. 5 hold, but large
enough for the logical operation described by the weighted polynomial in Eq. (5.10) to be
in the ℓth level of the Clifford hierarchy. When taken together these constraints become

x = D +1

ℓ
. (5.19)

We can for example adapt the pin code relations presented in Fig. 5.10 to have the cor-
rect dimension D by inserting or removing levels of size 2 in the middle of the chain
complexes and look at what code parameters they give. These parameters are compiled
in Table. 5.4, for D = 5 we remove the middle level and for D = 8 we add two levels of
size 2 compared to Fig. 5.10. All these codes support a transversal T and up to a Clif-
ford correction the logical operation implemented is some circuit of CCZ s characterized
by which triple of X -logical operators have an odd overlap. This could be used in spe-
cific compilation techniques or by converting this resource to some more conventional
T gate resources using results such as [43].

5.6. DISCUSSION
Quantum pin codes form a large family of CSS codes which we have just begun to ex-
plore. These codes can be viewed as a generalization of quantum color codes and the
notions of boundaries, colored logical operators and shrunk lattices all generalize to pin
codes. Pin codes also have a gauge code version with potentially similar advantage as
the gauge color codes. The main property of pin codes is that their X - and Z -stabilizers
form multi-orthogonal spaces. We have presented two concrete ways of constructing
pin codes and numerically explored some examples. Several aspects of pin codes merit
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further studying.
First, it would be interesting to find restricted families with good parameters and

constant-weight stabilizer generators. Exploring other finite groups with even-order
generators, other families of sparse chain complexes or finding other constructions of
pin code relations altogether would help figuring out the achievable parameters for pin
codes.

A second aspect concerns logical operators. Understanding if some conditions on
the pin code relation F can make the logical operators fulfill the second condition of
Prop. 4 or Prop. 5 would help in the design of codes with transversal gates. Also, logi-
cal operators and boundaries of 2D color codes have a richer structure than the colored
logicals and boundaries that we have explored. It would be interesting to generalize the
construction in [44] to pin codes with D = 2, as well as for larger D . Moreover, the struc-
ture of colored logicals plays a key role in decoding color codes [31–34]. Understanding if
it can help in finding efficient decoders for more general pin codes is a natural question.

Finally, more extensively exploring tri-orthogonal spaces obtained from pin code re-
lations and puncturing them to obtain good T distillation protocols as well as using them
as the basis for T -to-CCZ or other protocols seems worth trying as distilling magic states
will constitute a sizable fraction of any fault-tolerant quantum computation.
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6
CONCLUSION

There are still many challenges left in the field of quantum error correction and fault-
tolerant universal quantum computation. They span the whole spectrum from experi-
mental implementations and hardware improvements to theoretical fault-tolerant schemes
for distillation of magic states, better error correcting codes for storing and processing
information. Decisive progress on all these fronts appears to be necessary in order to
reach a point where universal quantum computation becomes feasible. In this thesis we
have presented several results going in this direction.

First we presented an experiment demonstrating a proof of concept for fault-tolerant
quantum computation. The experiment was based on a four qubit error detecting code
with a fairly large set of fault tolerant logical gates. The usage of error detection and
fault-tolerant circuits showed an average improvement of the sampling task tested.

Second, we presented and analyzed a scheme, the toric-GKP code, to use quantum
continuous variable degrees of freedom to encode discrete quantum information in a
scalable way. We show that if one can get enough control to implement a bosonic code
such as the GKP code and then concatenate it with a qubit code, this can significantly
improve the performance of the overall scheme. Remarkably we numerically observe
a threshold even when all syndrome measurements are noisy, which can also be inter-
preted as a threshold against leakage errors. We also exhibited the statistical physics
model representing the behavior of the maximum likelihood decoder for this scheme
which allowed us to design a practical decoder but would also give access to theoreti-
cal bounds on the performance when studied further. We also prove a no-go theorem
for protecting quantum continuous variable degrees of freedom using linear oscillator
codes highlighting the benefits of discretization. This is a first step in the direction of
better integration of hardware and error correcting codes to improve the overall perfor-
mance of error correction.

Third, we presented a formalism to analyze code deformation techniques and illus-
trated it on previously known and new code deformation processes. Code deformation
techniques seem inevitable in most current proposed architectures of quantum com-
puters. This formalism allows to evaluate them, also providing a prescription about how

157



6

158 6. CONCLUSION

decoding should be performed during these procedures. In addition, the new technique
we introduce, namely plain surgery, has the potential to improve the reliability of these
operations. It also allows us to investigate a hybrid scheme between topological codes
and concatenation.

Fourth, we presented a new family of CSS codes exhibiting some multi-orthogonality
properties that we call quantum pin codes. They can be viewed as a generalization
of color codes in which we remove the geometrical and topological structure but keep
the otherwise transversality friendly properties. This is a first step towards codes with
transversal non-Clifford gates and high encoding rates and we are indeed able to present
some small codes with transversal T gates or circuits of CCZ gates.

All these fronts have room for expansion. As control over the hardware becomes
more precise and the number of simultaneously controlled systems grows, test and op-
timization of fault-tolerant circuits should be conducted. Interactions between different
layers in the architecture of a quantum computer should be better understood and taken
advantage of. Questions about the limits of quantum error correcting codes in terms of
encoding rate, distance and fault-tolerant implementation of universal gate sets are still
open and solving them has a great potential. Ultimately, actively error corrected univer-
sal quantum computers constitute some dynamical phases of matter and we would like
to understand what they are made of, how they behave and how they are constructed.



ACKNOWLEDGEMENTS

A large portion of science happens via interactions between people. Exchanging ideas
and learning from people is one of the most rewarding part of research and certainly
drove a lot of the projects for this thesis. It is difficult to be exhaustive when trying to
enumerate all the exchanges and their protagonists but know that I certainly value each
and everyone of them.

I would like to first extend my full gratitude to my supervisor, Barbara Terhal. I feel
particularly fortunate to have met and worked with you. Under your supervision I felt, at
the same time, free to explore my own ideas and guided through challenging and exciting
research. You have never ceased to inspire me and will continue to be a role model for
me for years to come.

I would like to thank warmly Carlo Beenakker, Leo DiCarlo, Robert König, Anthony
Leverrier, Lieven Vandersypen and Ronald de Wolf, for accepting to be my thesis com-
mittee.

I consider myself very lucky to have been able to collaborate during this thesis with
amazing people and hope to continue on many more projects to come. Thank you Niko-
las for teaching me so much and being overall my big brother in PhD. Thank you Leonid
for all the discussions, insights and tenacity to get through this very long paper with Bar-
bara and I. Thank you Lingling for all the Monday meetings. I’m very happy that we
pushed this project to its conclusion. Thank you Ben as much for the physics as for the
political perspectives. Thank you Earl for all the discussions, and all the great confer-
ences I attended that you organized. Thank you Ani for rooting for always more classical
coding theory perspectives. Thank you Victor for teaching me and getting me interested
in bosonic codes.

The time working on this thesis was split in half in two geographical locations, Aachen
and Delft. I would like to thank all my colleagues and friends from both these places.
From Aachen, many thanks to Stefano for being the best roommate I could hope for.
Thank you Kasper for sharing an office with me and for the many interesting discussions
at the whiteboard. Thank you David for having me tutor for the quantum information
course, it was a very formative experience. Thank you Fabian for all the interesting dis-
cussions ranging from physics to politics; lunch is never the same without your inputs
to the conversation. Thanks to everyone that came and participated in the journal club.
Thanks to Alessandro, Ananda, Cica, Joel, Manuel, Suzanne for the good coffee and great
atmosphere at the institute.

From Delft, many thanks to Joel and Radha for all the discussions about science,
philosophy and much more, as well as all the dinners, it was truly lovely. Thank you
Xiaotong for the science, movies and games. Thanks to Yang, Daniel and Jonathan for
the bosonic research. Thank you Francesco for taking on the journal club. Thank you
Jonas and Kenneth for the science and roll-playing action. Thanks to Helen and Jenny
for the expert administrative support in Aachen and Delft.

159



6

160 6. CONCLUSION

Also thanks to the many colleagues and friends met at conferences or workshops, in-
cluding, Aleks, Antoine, Benjamin, Benji, Chris, Daniel, Giacomo, Juani, Markus, Michael
(×2), Narayanan, Nicolas, Niel, Sam, Simon, Vivien.

I would also like to thank the IBM Quantum Experience team for providing, early on,
extensive access to their chips and support on how to interface with them. I should also
mention that the views expressed in this thesis are mine and do not reflect the official
policy or position of IBM or the IBM Quantum Experience team.

During my undergraduate studies I had the great chance of working with many amaz-
ing people who kindly hosted me for research internships which made me discover and
appreciate the field of quantum information. Many thanks to Erwan Faou, Fabio No-
bile, Zhengfeng Ji, Debbie Leung, Christina Kraus, Mikhail Baranov and Thomas Vidick.
I have very fond memories of these internships and I learned a lot from each of you. I
would also like to thank the great teachers who taught me about science and advised me
about academia, notably Iordanis Kerenidis, David Pichardie, Luc Bougé and Dominique
Lavenier.

Thanks to my very good friends from Rennes, Gaspard, Mathias, Olivier, Pierre, Si-
mon, Thibault, Yannick for the good times, discussions, coding contests and much more!

Thanks to my familly for all their support, Maman, Papa, Carole, Olivier, I have been
far away for a few years now and I happily expect to be able to see you much more often
from now on.

Finally thousand thanks to Lisa: Living with you is everything I hoped for and I’m
confident in the future knowing that I’ll be at your side and you at mine. Some extra
thanks to my future daughter for not being too impatient and having waited to be born
after I finish writing these words.



CURRICULUM VITÆ

Christophe VUILLOT

17-11-1990 Born in Clamart, France.

EDUCATION
2005–2008 High School

Lycée Marie Curie, Sceaux, France
Baccalauréat, mention très bien (2008)

2008–2010 Preparatory classes, MPSI/MP*
Lycée Henri IV, Paris, France
Admitted at ENS Rennes through national competitive exam (2010)

2010–2012 Bachelor in Computer Science and Physics
Computer Science, ENS Rennes, Rennes, France (2010–2011)
Physics, Université Rennes 1, Rennes, France (2011–2012)

2011–2015 Master in Computer Science and Physics
1st year in Computer Science, ENS Rennes, Rennes, France (2011–2012)
1st year in Physics, ENS Cachan, Cachan, France (2013–2014)
Master of Computer Science, Université Paris Diderot, Paris, France (2015)

AWARDS
2010–2015 Normalien, ENS Rennes

Four year scholarship awarded through national competitive exams.

2018 IBM Q Best Paper Award, 1st place
Highest-impact scientific papers by a master student, PhD student
or postdoctoral researcher using the IBM Q Experience
and Qiskit as tools to achieve the presented results.

161





LIST OF PUBLICATIONS

JOURNAL ARTICLES
6. C. Vuillot1, L. Lao1, B. Criger, C. G. Almudéver, K. Bertels and B. M. Terhal, Code deformation

and lattice surgery are gauge fixing, New Journal of Physics 21, 033028 (2019).

5. C. Vuillot, H. Asasi, Y. Wang, L. P. Pryadko and B. M. Terhal, Quantum error correction with
the toric Gottesman-Kitaev-Preskill code, Physical Review A 99, 032344 (2019).

4. V. V. Albert, K. Noh, K. Duivenvoorden, D. J. Young, R. T. Brierley, P. Reinhold, C. Vuillot, L.
Li, C. Shen, D. M. Girvin, B. M. Terhal and L. Jiang, Performance and structure of single-mode
bosonic codes, Physical Review A 97, 032346 (2018).

3. C. Vuillot, Is error detection helpful on IBM 5Q chips ?, Quantum Information & Computa-
tion 18, 11&12, 0949-0964 (2018).

2. N. Breuckmann, C. Vuillot, E. Campbell, A. Krishna and B. M. Terhal, Hyperbolic and semi-
hyperbolic surface codes for quantum storage, Quantum Science and Technology 2, 035007
(2017).

1. E. Campbell, B. M. Terhal and C. Vuillot, Roads towards fault-tolerant universal quantum
computation, Nature 549, 172–179 (2017).

PREPRINTS
2. C. Vuillot and N. Breuckmann, Quantum Pin Codes, under review by IEEE Transactions on

Information Theory, arXiv:1906.11394, (2019).

1. E. Faou, F. Nobile and C. Vuillot, Sparse spectral approximations for computing polynomial
functionals, arXiv:1207.3728, (2012).

1Equal contributions

163

https://doi.org/10.1088/1367-2630/ab0199
https://doi.org/10.1103/PhysRevA.99.032344
https://doi.org/10.1103/PhysRevA.97.032346
https://doi.org/10.26421/QIC18.11-12
https://doi.org/10.26421/QIC18.11-12
https://doi.org/10.1088/2058-9565/aa7d3b
https://doi.org/10.1088/2058-9565/aa7d3b
https://doi.org/10.1038/nature23460
https://arxiv.org/abs/1906.11394
https://arxiv.org/abs/1906.11394
https://arxiv.org/abs/1207.3728

	Summary
	Preface
	Introduction
	Introduction to quantum computing
	Quantum mechanics
	Elementary quantum systems
	Quantum computation
	Fragility of quantum information

	Quantum error correction
	Principle of quantum error correction
	Stabilizer formalism
	Notable examples

	Fault-tolerance and universality
	Fault-tolerance
	Magic states and their distillation
	Techniques to get to fault-tolerant universality

	Organization of the thesis
	titleReferences

	Testing Quantum Fault-Tolerance
	Introduction
	Demonstrating fault-tolerance
	General approach
	The IBM 5Q chip and [[4,2,2]]
	Comments on the tested circuits

	Experimental results
	Parameters and runs
	Performance metric
	Comparisons

	Calibration data and additional experiment
	Conclusion
	titleReferences

	Quantum error correction with the toric-GKP code
	Introduction
	General considerations
	Definitions and notations
	Maximum-likelihood vs. minimum-energy decoding

	Protecting a Single GKP Qubit
	Set-up
	Decoding Strategies
	Numerical Results

	Concatenation: Toric-GKP Code
	Setup
	Noiseless Measurements & Numerical Results

	Noisy Measurements: 3D Space-Time Decoding
	Error model
	Equivalent formulation with U(1) symmetry
	Decoder and numerical results

	No-Go Result for Linear Oscillator Codes
	Proof of No-Go Theorem
	Logical Error Model under Displacement Errors
	Eigenvalues of the Covariance Matrix
	Existence of a Spread-out & Orthogonal Logical Operator Basis

	Continuous-Variable Toric-Code
	Discussion
	titleReferences

	Code Deformation Techniques
	Introduction
	Code Deformation and Lattice surgery
	Code Deformation
	Lattice Surgery

	Gauge Fixing
	Fault-Tolerance Analysis with Gauge Fixing
	Fault-Tolerance of Code Deformation
	Code Deformation Examples

	Logical operation of a code deformation
	Merge operation
	Split operation
	General code deformation operation

	Discussion
	titleReferences

	Quantum Pin Codes
	Introduction
	Pin codes
	Terminology and formalism
	Definition of an (x,z)-pin code
	Relation to quantum color codes
	Constructing pin codes
	Remarks

	Transversal gates and magic state distillation
	Weighted polynomials and transversal gates

	Properties of quantum pin codes
	Code parameters and basic properties
	Colored logicals and unfolding
	Gauge pin codes
	Transversality
	Boundaries and free pins

	Examples and applications
	Coxeter groups, hyperbolic color codes
	Pin codes from chain complexes
	Puncturing triply-even spaces
	Logical circuits of CCZs

	Discussion
	titleReferences

	Conclusion
	Acknowledgements
	Curriculum Vitæ
	List of Publications

