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A B S T R A C T

Thermal energy recovery from drinking water has a high potential in the application of sustainable building and
industrial cooling. However, drinking water and biofilm microbial qualities should be concerned because the
elevated water temperature after cold recovery may influence the microbial activities in water and biofilm
phases in drinking water distribution systems (DWDSs). In this study, the effect of cold recovery on microbial
qualities was investigated in a chlorinated DWDS. The chlorine decay was slight (1.1%–15.5%) due to a short
contact time (~60 s) and was not affected by the cold recovery (p > 0.05). The concentrations of cellular ATP
and intact cell numbers in the bulk water were partially inactivated by the residual chlorine, with the removal
rates of 10.1%–16.2% and 22.4%–29.4%, respectively. The chlorine inactivation was probably promoted by heat
exchangers but was not further enhanced by higher temperatures. The higher water temperature (25 °C) en-
hanced the growth of biofilm biomass on pipelines. Principle coordination analysis (PCoA) showed that the
biofilms on the stainless steel plates of HEs and the plastic pipe inner surfaces had totally different community
compositions. Elevated temperatures favored the growth of Pseudomonas spp. and Legionella spp. in the biofilm
after cold recovery. The community functional predictions revealed more abundances of five human diseases
(e.g. Staphylococcis aureus infection) and beta-lactam resistance pathways in the biofilms at higher temperature.
Compared with a previous study with a non-chlorinated DWDS, chlorine dramatically reduced the biofilm
biomass growth but raised the relative abundances of the chlorine-resistant genera (i.e. Pseudomonas and
Sphingomonas) in bacterial communities.

1. Introduction

Fossil fuels have made up the majority part of the energy resources
worldwide in the past decades (Painter, 2020). However, the extensive
use of these traditional energy sources poses lots of environment issues,
such as global warming (Lelieveld et al., 2019). In 2015, the United
Nations Paris Climate Conference reached a consensus that the global
temperature rise should be well below 2 °C and efforts should be pur-
sued to limit it to 1.5 °C (Painter, 2020; Rogelj et al., 2016). Therefore,
in order to achieve this target, the pursuit of new and clean low-carbon
energy resources is necessary (Jiang et al., 2010). Recently energy re-
covery from the water cycle has been suggested, including thermal
energy from surface water, groundwater, wastewater and drinking
water (Mol et al., 2011;van der Hoek, 2012a). With respect to surface

water, energy recovery has already been successfully applied in prac-
tice. In the Netherlands, the water from lake “Ouderkerkerplas” is used
for office building cooling, and a reduction of greenhouse gas emissions
of nearly 20 kton carbon dioxide (CO2)-equivalent/a can be achieved
(van der Hoek et al., 2018). In many European countries, groundwater
plays a role in the underground thermal energy storage systems and is
widely used at full scale (Sanner et al., 2003). In the urban water cycle,
heat recovery from wastewater via heat exchangers has been in-
tensively studied (Elias Maxil, 2015; Elías-Maxil et al., 2014), and
shower water has also been applied for heat recovery from wastewater
in a pilot study (Deng et al., 2016). Recently, the concept of thermal
energy recovery from drinking water has been proposed, and re-
searchers have proven its possibility (Bloemendal et al., 2015) and
explored the potential technologies in practical use (De Pasquale et al.,
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2017; Guo and Hendel, 2018; van der Hoek et al., 2018). However, its
application still has a long way to go due to several risk concerns
(Hofman and van der Wielen, 2015). The most important one is the
microbial risk concern of the water quality. Because of the heat ex-
change, the water temperature in drinking water distribution system
(DWDS) will experience an elevation, which may pose effects on mi-
crobiological growth and activity in both bulk water and biofilms
(Hallam et al., 2001; van der Wielen and van der Kooij, 2010). In our
previous study, such effects were evaluated in a pilot-scale non-
chlorinated DWDS (Ahmad et al., 2020). However, no research has
been conducted in a chlorinated one.

As a key influencing factor in DWDS, temperature can affect both
chemical and biological processes (Li et al., 2019). Chlor(am)ine decay
rate can be accelerated with increasing temperature (Monteiro et al.,
2017; Sathasivan et al., 2009). This can be explained by two major
reasons: (i) chlor(am)ine self-decay is a temperature dependent reac-
tion, and the reaction rate is higher at higher temperature (Monteiro
et al., 2017); (ii) elevated temperature can change the microbial ac-
tivities (Ndiongue et al., 2005). Additionally, the efficiency of chlorine
disinfection is quite sensitive to temperature (Benarde et al., 1967;
Butterfield et al., 1943; Collins, 1955). Collins (1955) studied the
chlorine disinfection on a chlorine-resistant species Pseudomonas fragi,
and found that for equal destruction of P. fragi at 4.4 °C and 21 °C,
approximately twice as much time was required at 4.4 °C. In another
Mycobacteria gordonae inactivation study, the chlorine disinfection ef-
ficiency doubled when reaction temperature rose from 4 °C to 16 °C,
and dramatically increased eight-fold when temperature reached 25 °C
(Le Dantec et al., 2002). The microbial water quality in DWDS can be
affected by water temperature (Blokker et al., 2013; van der Hoek,
2012b). It has been documented that seasonal temperature changes can
result in fluctuations of microbial quantities (e.g. adenosine tripho-
sphate (ATP), heterotrophic plate count, total cell count (TCC) and
coliform) (LeChevallier et al., 1996; Prest et al., 2016; van der Wielen
and van der Kooij, 2010) and changes of bacterial community dynamics
(Pinto et al., 2014) of bulk water. Some researchers have reported that
specific opportunistic pathogens favor to be present at relatively higher
water temperatures (Dai et al., 2018; van der Wielen and van der Kooij,
2013). Apart from microbes in water phase, biofilm growth in DWDS
can also be promoted by high temperatures (Fish et al., 2016).
Tsvetanova and Dimitrov (2012) reported that significant correlations
between biofilm HPC density and water temperature were detected in
plastics pipes. Hallam et al. (2001) found that biofilm activity was
approximately 50% lower at a temperature of 7 °C than at 17 °C. In a
recent study, differences in both bacterial and fungal community
compositions at two different temperatures (16 °C and 24 °C) were
observed at family level (Preciado et al., 2019). In conclusion, tem-
perature can regulate various reactions within DWDS.

In our previous study, the effect of cold recovery (with subsequent
sudden temperature rise in the distributed drinking water) on microbial
characteristics in both water and biofilms were investigated (Ahmad
et al., 2020). However, the results were obtained through a non-
chlorinated pilot DWDS. As chlorine is still widely used in drinking
water disinfection worldwide, a similar study associated with thermal
energy recovery is necessary in a chlorinated DWDS. Therefore, the aim
of this study is to explore the effect of temperature increase on chlorine,
chlorine disinfection and microbial characteristics in a pilot-scale
chlorinated DWDS subjected to cold recovery. Specifically, chlorine
decay, bulk water microbial activity, biofilm community structure
(diversity and composition) and functional profiles of the community
were investigated under the influence of cold recovery. The results
could promote a better understanding of the effect of cold recovery on
microorganisms in chlorinated DWDSs.

2. Materials and methods

2.1. Chemicals

Sodium hypochlorite (NaClO, 60–185 g active chlorine L−1) was
purchased from BOOM Lab, the Netherlands. Sodium acetate (NaAc)
(500 g) was obtained from Honeywell Research Chemicals, USA.
Sodium thiosulfate (Na2S2O3) solution (0.1 N) was from Merck KGaA,
Germany. Phosphate buffer solution (PBS) tablet was purchased from
ThermoFisher Scientific, Sweden.

2.2. Experimental set-up

As displayed in Fig. S1 (Supplementary material), the pilot chlori-
nated system operated in the laboratory of Delft University of Tech-
nology consisted of a chemical dosing subsystem (CDS) and three par-
allel pipelines, which were (i) an experimental pipeline with an
operational heat-exchanger (OHE) (Pipe1), (ii) a reference pipeline
with a non-operational heat-exchanger (NOHE) (Pipe2), and (iii) a re-
ference pipeline without a HE (Pipe3). The detailed information about
the two HEs and the reason of setting two reference pipelines have been
discussed in our previous study (Ahmad et al., 2020). The set-up was
supplied with drinking water from the treatment plant “Kralingen” of
drinking water utility Evides, Rotterdam, the Netherlands, and subse-
quently dosed with NaClO solution and NaAc solution (appropriate
AOC supplement). This was necessary because in the Netherlands hy-
gienically safe and biologically stable drinking water is produced,
without a residual disinfectant and with a very low AOC concentration,
below 10 μg acetate C L−1 (van der Kooij et al., 1995; Smeets et al.,
2009). In the CDS (Fig. S1), NaClO stock solution (80–90 g Cl2 L−1) and
NaAc stock solution (~45 mg acetate C L−1) were separately dosed by
two peristaltic pumps (Watson-Marlow 504U IP55 Washdown Peri-
staltic Pump) at a rate of 12 mL min−1. At the dosing point, the theo-
retical chlorine concentration in the bulk water was 0.1 mg Cl2 L−1,
which is the normal concentration of the residual chlorine in practical
DWDSs. Due to the low AOC concentration (< 2 μg acetate C L−1) in
Dutch drinking water (Ahmad et al., 2019), AOC should be supple-
mented to mimic the production of biological not stable water in order
to avoid limited microbial growth rates on the pipe surface. Thus, ac-
cording to the relationship between chlorine and AOC displayed in a
previous study (Ohkouchi et al., 2013), the AOC concentration in the
experimental bulk water was set 50 μg acetate C L−1 by dosing NaAc. In
order to completely mix the dosed chemicals and feed water, a static
mixer (Stock Schedule 80 Threaded PVC Mixer, Koflo Corporation,
USA) was installed at the main pipe before the three parallel pipelines.
Each parallel pipeline, made of polyvinyl chloride-unplasticised
(PVC–U), had an internal diameter of 25 mm and a length of 10 m. For
this experiment, the flow rate was set at 3.3–3.8 L min−1 (0.11–0.13 m/
s), which is within normal flow velocities in Dutch DWDSs. In Pipe 1,
the water temperature after the OHE was elevated to 25 °C (the max-
imum admissible drinking water temperature as mentioned in the
Dutch drinking water decree (State Journal, 2011)). All the pipelines
were equipped with temperature and flow sensors (Fig. S1), to monitor
the flow and temperature of bulk water. Dasy Lab software (version
13.0.1) was used for system monitoring and data logging.

2.3. Sampling

For water sampling, small PVC-U taps were installed in each pipe-
line (Fig. S1): one was at the front side (P1B, P2B or P3B) and one was
at the back side (P1A, P2A or P3A). The water residence time from the
front to the back sampling points was around 60 s. Feed water and
water samples from six taps were taken every seven days during the
experimental period (2019 March 15th to 2019 August 9th, the data of
6th, 7th, 9th week were missing). At each tap, after flushing the water
for 10 s, 100 mL of water was collected for chlorine determination, and
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1 L of water was collected in a sterile glass bottle containing adequate
Na2S2O3 (quenching residual chlorine) for microbial assay.

For biofilm sampling, 25 cm long PVC-U coupons (pipe sections
with valves on both ends) were designed and inserted at the end part of
each pipeline. At each biofilm sampling time (1st, 2nd, 3rd, 4th, 7th,
13th week), biofilms were sampled backwards from the end (p1A, p2A
and p3A) of each pipeline in duplicate; and at 21st week, biofilms from
both the front sides (p1B, p2B and p3B) and back sides ((p1A, p2A and
p3A) of all pipelines were sampled in duplicate and in quadruplicate
(two for biomass quantification and two for DNA sequencing), respec-
tively. The two HEs were also disassembled for biofilm collection. To
detach the biofilm from the coupons, pipe sections were filled with
sterile PBS, placed in a water bath (Ultrasonic 8800, Branson, USA) and
treated by ultra-sonication at a frequency of 40 kHz for 2 min. The
biofilms grown on the inside plates of each HE were collected in a si-
milar way. The PBS containing detached microbes were subjected to
microbial analysis.

2.4. Chemical and microbial analysis

2.4.1. Aquatic chemical analysis
Free chlorine was determined by a chlorine cuvette test kit (LCK

310, HACH LANGE, Germany) and a photometer (DR 3900, HACH
LANGE, Germany). Total organic carbon (TOC) was analyzed by a TOC
analyzer (TOC-V CPH, SHIMADZU, Japan). pH was determined by a
portable pH meter (Multi 3420, WTW, Germany) with a pH-Electrode
(SenTix® 940).

2.5. Biomass quantification

Bacterial active biomass and cell numbers were quantified by
measuring adenosine triphoshpate (ATP) concentration and cell counts
of both water samples and biofilm samples (through the PBS containing
detached microbes). For water samples, cellular ATP (cATP) con-
centration was determined to reflect the active biomass using a reagent
kit for cATP (QGA™, Luminultra, Canada) and a luminometer
(PhotonMaster™, Luminultra, Canada), while to quantify biofilm active
biomass, total ATP (tATP) was determined using a reagent kit for tATP
(QG21W™, Luminultra, Canada) instead. Cell counts were detected by a
flow cytometer (C6-Flowcytometer, Accuri Cytometers, USA) using the
same protocol that was previously developed and tested for drinking
water samples (Prest et al., 2013). TCC and intact cell counts (ICC) were
simultaneously distinguished by adding two stains (SYBR Green I and
propidium iodide) as described by Prest et al. (2013).

2.6. DNA sequencing and bioinformatics analysis

2.6.1. DNA extraction and 16 S rRNA genes sequencing
Each PBS containing biofilm sample was filtered by a vacuum pump

through a 0.22 μm polycarbonate membrane (25 mm in diameter) to
collect biomass for DNA extraction. The total DNA was extracted from
the membranes with a FastDNA® SPIN Kit for Soil (Mpbio, Santa Ana,
California, USA) according to the manufacturer's protocol. The con-
centration and purity of the total DNA were measured by a NanoDrop
NC2000 spectrophotometry (Thermo Fisher Scientific, Wilmington,
Delaware, USA).

Primers 338F (5′-ACTCCTACGGGAGGCAGCA-3′) and 806R
(5′-GGACTACHVGGGTWTCTAAT-3′) were used to amplify V3 and V4
regions of 16S rRNA gene. PCR amplification was performed using a
ABI 2720 PCR (Applied Biosystems, Foster City, California, USA) with a
total volume of 25 μL containing 5 μL of 5 × reaction buffer, 5 μL of
5 GC buffer, 2 μL of dNTP (2.5 mM), 1 μL of forward primer (10 μM),
1 μL of reverse primer (10 μM), 2 μL of DNA template, 8.75 μL of
ddH2O, 0.25 μL of Q5 DNA polymerase. Thermal cycling conditions
were as follows: an initial denaturation at 98 °C for 2 min, and 25–30
cycles at 98 °C for 15 s, 55 °C for 30 s, and 72 °C for 30 s, with a final

extension at 72 °C for 5 min. Following amplification, PCR products
were purified by VAHTSTM DNA Clean Beads (Vazyme, Nanjing,
China), and then quantified using a microplate reader (BIOTEK-
FLX800, USA). The high-throughput gene sequencing was performed on
the Illumina MiSeq platform by Personal Biotechnology, Co., Ltd.
(Shanghai, China).

2.6.2. Data analysis and functional prediction
Raw sequence data were quality filtered and analyzed using QIIME

2 (version 2019.4). Reads were processed by removing tags and pri-
mers, and the reads with an average quality score< 20 and read
lengths< 150 bp were discarded. After being processed, reads were
assembled by FLASH v 1.2.7 with the overlap between R1 and R2
reads> 10 bp. High-quality representative sequences for each opera-
tional taxonomic units (OTUs) were assigned using UCLUST with 97%
sequence identity. Taxonomic classification was carried out using
Greengenes 16S rRNA gene database Release 13.8 (DeSantis et al.,
2006). Relative abundance (%) of individual taxa within each com-
munity was calculated by comparing the number of sequences of a
specific taxon versus the number of total sequences. Alpha diversity of
each microbial community was estimated based on Chao1 and Simpson
index, respectively. Bray-Curtis dissimilarities were based on individual
OTUs, and they were computed for the principal coordinates analyses
(PCoA) using PAST 3. The functional profiles of microbial communities
were predicted by using PICRUSt2 (Douglas et al., 2019) from the OTUs
of 16S rRNA gene sequences, and the KEGG (Kyoto Encyclopedia of
Genes and Genomes) database was employed to analyze the metabolic
pathway.

2.7. Statistical methodologies

The paired T test was used to determine the significant difference of
chlorine, TCC and ICC from the front and the back sampling point of
each pipeline. The Wilcoxon signed-rank test was performed to de-
termine the significant difference of cATP from the front and the back
sampling point of each pipeline. The Friedmand test was used to de-
termine the significant difference of water quality parameters from
different pipelines. Pearson analysis was used to determine the corre-
lation between cATP reduction and chlorine demand. The significant
level was set as p = 0.05.

3. Results

3.1. Bulk water

3.1.1. Chemical parameters and temperature of feed water
During the experimental period, the pH and TOC of the feed water

were within the normal value ranges (7.6 ± 0.2 and 3.0 ± 0.7 mg/L,
respectively) as displayed in Table S1. As shown in Fig. 1(a), the feed
water temperature was 9.3 °C at the start of the experiment and in-
creased steadily to 21.4 °C at the end of the experiment, resulting in a
temperature difference (ΔT) in Pipe 1 (the system with cold recovery
with a set point of 25 °C after cold recovery) ranging from 3.6 to
15.7 °C. Thus, it can be inferred that the long-term temperature gap in
Pipe1 might cause potential microbial difference of bulk water and
biofilms at P1A.

3.1.2. Free chlorine
As shown in Fig. 1(b), chlorine experienced slight decreases be-

tween two sampling points in all pipelines (1.1%–15.5%). However,
paired T-test showed no significant difference of chlorine concentration
in Pipe1 and Pipe2 with HEs (p > 0.05), and significant difference
(p < 0.05) only in Pipe3 without a HE. Also, the Friedmand test
conducted at the end point of three pipelines showed no significant
difference (p > 0.05), indicating the residual chlorine at P1A, P2A and
P3A were similar. Furthermore, the chlorine demand (chlorine
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concentration difference of two sampling points, PA and PB) did not
display notable regularity with the change of time in both three pipes
(Fig. S2).

3.1.3. Biomass
The microbial activity in the feed water reflected by cATP showed

an increasing trend during the experiment from 3.11 to 6.47 pg mL−1

(Table S1), which was in accordance with the variation patterns of

cATP at three front points P1B, P2B and P3B (Fig. S3). Fig. 1(c) showed
cATP reductions in all three pipes, but only Pipe1 and Pipe2 showed
significant differences (p < 0.05) according to the Wilcoxon signed-
rank test. Additionally, the cATP concentration decrease in Pipe1
(0.63 pg mL−1) and Pipe2 (0.69 pg mL−1) were both higher than that
in Pipe 3 (0.40 pg mL−1). The results showed that the decrease of
microbial activity caused by chlorine was more obvious in the two pipes
with HEs, but no significant difference could be found between Pipe1

Fig. 1. (a) Feed water temperature, (b) free chlorine, (c) cATP and (d) cell counts of bulk water samples.

Fig. 2. Biofilm growth at (a) the back part of three pipelines and (b) comparison of biofilm biomass at week 21 among six sampling points.

X. Zhou, et al. Environmental Research 187 (2020) 109655

4



and Pipe2. Moreover, Pearson correlation analysis did not show posi-
tive correlation between cATP reduction and chlorine demand
(p > 0.05).

As shown in Fig. 1(d), there was no significant difference
(p > 0.05) in TCC among all samples with a narrow average con-
centration range of 5.51–5.81 × 105 cells mL−1. Conversely, ICC
showed significant decreases in all three pipelines (p < 0.05), and the
average reduction rates in Pipe1, Pipe2 and Pipe3 were 29.4%, 24.7%
and 22.4%, respectively. However, the ICC reductions showed no sig-
nificant differences among the three pipes (p > 0.05).

3.2. Biofilm

3.2.1. Biomass growth
The biofilm biomass growth of the back parts of three pipelines was

monitored during the whole experiment. As can be seen from Fig. 2(a),
the biofilm biomass increased slightly to the values of
0.91–2.49 pg cm−2 during the first 7 weeks, and no significant differ-
ence could be found among three pipelines. However, after 7 weeks the
biomass rose dramatically in all biofilms, especially for p1A where the
biofilm developed at a relatively high temperature of 25 °C. At week 21,
the biofilm biomass of p1A, p2A and p3A were 26.5 ± 1.5 ATP pg
cm−2, 14.6 ± 6.6 ATP pg cm−2 and 10.2 ± 1.7 ATP pg cm−2, re-
spectively. Additionally, the final biofilm biomass reflected by both ATP
and TCC (Fig. 2(b)) showed that the obvious difference between the
front and the back biofilm could only be found in Pipe1 (p1B (14.8 ATP
pg cm−2; 6.2 × 104 cells cm−2) vs. p1A (26.5 ± 1.5 ATP pg cm−2;
1.7 × 105 cells cm−2)).

3.2.2. Bacterial community
In order to explore the bacterial community of different biofilm

samples, high-throughput sequencing based on 16S rRNA gens was
used. The results of p1A, p2A and p3A were shown as the average va-
lues of the duplicate samples, while results of OHE and NOHE were
presented as single sample.

Two alpha diversity indices including Chao1 (species richness esti-
mator) and Simpson (species diversity index) were used to analyze the
biodiversity of the bacterial communities (Fig. S4(a)). p3A biofilm had
the highest Chao1 and Simpson indices, indicating the highest com-
munity richness and evenness among all pipeline biofilms. p1A biofilm
showed higher community richness than p2A biofilm, while its com-
munity diversity was lower than the latter one. Regarding HE samples,
the Chao1 index of OHE was less than half of the value of that of NOHE.
However, the Simpson index of OHE was more than twice of that of
NOHE. This indicates, although the OHE biofilm community had a
lower species number compared to NOHE, its species were distributed
more evenly. PCoA on the OTU level were plotted to compare the
bacterial community compositions of different biofilm samples (Fig.
S4(b)). It is clearly shown from the plot that p1A, p2A and p3A biofilms
were clustered in one group while the Bray-Curtis distances of NOHE
and OHE biofilms were both far away from the pipeline group as well as
from each other.

The major bacterial phylum and genus in each biofilm sample are
shown by bar plots in Fig. 3. At the phylum level, Proteobacteria (75.6%-
87.%) were dominant in all samples, followed by Bacteroidetes
(3.6%–15.3%) and Planctomycetes (0.3%–4.8%). At the genus level, the
top three genera in all biofilm communities were Pseudomonas, Sphin-
gomonas and Sphingobium. Regarding the pipe samples, Pseudomonas
and Sphingobium were found to be more abundant in p1A biofilm
(20.2% and 17.4%, respectively) compared to p2A biofilm (2.9% and
5.3%, respectively) and p3A biofilm (2.7% and 12.8%, respectively).
The other major genera with the highest relative abundance in p1A
biofilm were Methyloversatilis (4.4%), Rhizobacter (2.7%), Novo-
sphingobium (2.3%) and Legionella (0.14%). As for the HE samples, OHE
biofilm had more Pseudomonas (17.3%), Ralstonia (7.2%) and Vi-
brionimonas (13.4%) than NOHE biofilm (2.0%, 7.2% and 4.4% for

Pseudomonas, Ralstonia, and Vibrionimonas, respectively).

3.2.3. Functional profiles
The overall functional profiles of the bacterial communities in all

biofilms were investigated based on OTU information using PICURSt2
(Fig. S5). The nearest sequenced taxon index (NSTI) of the samples
were all smaller than 2, which revealed the accuracy of each prediction
by calculating the sum of the phylogenetic distances for each organism
in the OTU table to its nearest relative with a reference genome. A total
of 176 KEGG pathways were identified, and belonged to six level 1
categories including cellular processes, environmental information
processing, genetic information, human diseases, metabolism and or-
ganismal systems.

As the dominant level 1 pathway, metabolism includes several im-
portant level 2 classes associated with microbial cell growth, such as
carbohydrate metabolism, amino acid metabolism and glycan bio-
synthesis and metabolism (Fig. S5(e)). As for the specific pathways,
only three amino acid-related ones including those for tyrosine, argi-
nine and proline, and lysine were found higher in p1A biofilm than the
other two pipe biofilms (Fig. 4(a)). Fig. 4(b) shows the abundance of
several commonly-studied pathways related to biofilm containing
human diseases, antibiotic resistance and oxidative stress resistance. A
total of 14 human diseases-related pathways were discovered and five
of them (hypertrophic cardiomyopathy, epithelial cell signaling in He-
licobacter pylori infection, Staphylococcus aureus infection, African try-
panosomiasis and Alzheimer disease) were found both higher in p1A
(among three pipeline samples) and OHE (between two HE samples).
Six antibiotic biosynthesis-associated pathways and one antibiotic re-
sistance-associated pathway were revealed, but only beta-lactam re-
sistance was present more abundant in biofilms of both p1A and OHE.
As a common oxidative stress resistance pathway, glutathione (GSH)
metabolism was discovered in all biofilm samples with high abundance
(Fig. 4(b)). As shown in Fig. S6, the abundances of three dominant
enzymes in GSH metabolism pathway followed an order of GSH-S-
transferase > GSH-peroxidase > GSH-reductase. However, only
GSH-peroxidase's abundance was slightly higher in p1A and OHE bio-
films.

4. Discussion

4.1. Bulk water

Due to the important role residual chlorine plays in controlling
microbial regrowth in DWDS, its decay should be carefully investigated.
The rate of chlorine decay has been shown to be sensitive to water
temperature. Ndiongue et al. (2005) reported that in a simulated DWDS
reactor, chlorine demand could rise from 0.5 Cl2 mg L−1 to 1.1 Cl2 mg
L−1 when temperature increased from 6 °C to 18 °C. In another study
(Monteiro et al., 2017), authors also proved that the reaction rate
coefficient of chlorine decay increased significantly from a water tem-
perature of 10 °C–30 °C. Additionally, the wall decay coefficient (the
rate of wall chlorine decay in pipeline) showed to be related to the
specific surface area (SSA) of DWDS (i.e. the pipe-wall area per unit of
pipe volume) (Rossman et al., 1994; Vasconcelos and Boulos, 1996),
which reasonably leads to a hypothesis that the increasing SSA brought
by the HE in the two HE-installed pipelines of this study may affect the
reaction rate of chlorine decay. However, the results obtained in this
study showed limited chlorine decay in our set-up, and the difference of
the decay in three pipelines could not be distinguished clearly as well
(Fig. 1(b)). In the previous studies associated with chlorine decay, de-
tectable chlorine concentration reduction was monitored by minutes or
hours, but in our experiments the contact time of chlorine and bulk
water as well as pipe wall was only ~60 s, which resulted in a slight
chlorine decay and insignificant difference among different pipelines.

The detectable decreases of cATP (Fig. 1(c)) and ICC (Fig. 1(d)) in
each pipe demonstrated that the chlorine level (0.1 mg Cl2/L) in this
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study could partially inhibit the microbial activity in the bulk water
within a short contact time. However, such inhibition showed no ob-
vious difference between Pipe1 and Pipe2, indicating limited effect of
sudden temperature increase on the chlorine inactivation. The disin-
fection rate of chlorine is temperature-dependent as discussed above.
Nevertheless, as with the absence of a temperature effect on chlorine
decay, the absence of a temperature effect on microbial inactivation in
this study could also be explained by the short contact time. It should be
noted that the pipelines with HE showed larger microbial reduction
(Fig. 1(c)) than Pipe3 (without HE). It may be hypothesized that a HE
could enhance the disinfection efficiency of chlorine towards microbes,
although this could not be confirmed by a chlorine demand increase in
this study. A possible explanation for the enhanced disinfection effi-
ciency may be that the closely-aligned plates designed for increasing
heat-exchange efficiency in the HE provided several micro-channels for
the water flowing through the HE, which enhanced the mixing effi-
ciency of the potential reactants (Li et al., 2007). This might improve
the contact frequency between chlorine and microorganisms and sub-
sequently result in a promotion of disinfection efficiency. However, the
actual mechanism should be further investigated.

4.2. Biofilm

In this study, each pipeline biofilm underwent a “lag time”, when
biomass increased slowly on the pipe surface. This is consistent with a
previous study, where detectable biomass was present on the 40th day
after the beginning of biofilm formation (Wang et al., 2019). In the lag
time, reversible and irreversible attachment of microbial cells succes-
sively happen on the pipe surface before the cell proliferation (Liu et al.,
2016). Our results showed a much faster biomass growth rate of the
biofilm at a higher constant temperature (25 °C) than the ones in the
lower fluctuating temperatures (13.3–21.3 °C) after the lag time
(Fig. 2(a)). This finding is in accordance with the previously obtained
conclusion that an elevated temperature increases biofilm growth,
especially in the presence of biodegradable organic matter (Hallam
et al., 2001; Tsvetanova and Dimitrov, 2012). Within the common
water temperature range, the increase of temperature can promote the
microbial cell secretion of extracellular polymeric substances (EPS), a
key substance for the microbial early aggregate on the pipe surface
(Herald and Zattola, 1988; Yu et al., 2019), and enhance the activity
and growth rate of the attached cells (Mayo and Noike, 1996). In
contrast, Ndiongue et al. (2005) and Ollos (1998) reported that the
temperature effect on biofilm growth became limited when biofilms
were in a steady state. Therefore, it can be hypothesized that the bio-
film biomass of p2A and p3A might have been closer to that of p1A if

the biofilm growth time was long enough to reach a steady state.
Alpha diversity analysis revealed that due to the higher temperature

(approximate 27 °C) of the OHE's wall surface than that of NOHE's
(Ahmad et al., 2020), the biofilm of OHE had less diverse but more
stable community composition than NOHE, which was rewarding to
maintain the water quality after the cold recovery. PCoA analysis
showed that the community compositions of p1A, p2A and p3A clus-
tered in one group (all on PVC-U surface), compared to OHE and NOHE
(both on 316 stainless steel (SS) surface), indicating surface material
could shape the biofilm community structure. This could be supported
by the former studies which confirmed that pipe materials could affect
the diversity and composition of the biofilm community (Norton and
LeChevallier, 2000; Yu et al., 2010). The investigation of community
composition showed much higher Pseudomonas proportion in the bio-
films developing in the higher temperatures (p1A and OHE). It has been
reported that Pseudomonas spp. favors growing in warmer water under
oligotrophic conditions (Proctor et al., 2017). The temperature gap
between warm samples (p1A and OHE) and cold samples (p2A, p3A,
NOHE) might result in the predominance of Pseudomonas in the warm
samples. Additionally, the relative abundances of other genera like
Sphingobium, Novosphingobium,Methyloversatilis, Ralstonia and Legionella
were also found higher in warmer biofilms (p1A or OHE), and all of
them were previously discovered as major inhabitants in the warm
environments like hot pipes or geothermal springs (Farhat et al., 2018;
Jiang et al., 2016; Mahato et al., 2019; van der Kooij et al., 2017).
Because of the likely pathogenic risks brought by Pseudomonas and
Legionella (Hwang et al., 2007), their higher proportions in the biofilms
during and after the cold recovery should be heeded.

The community functional predictions revealed that five human
diseases-associated pathways were more abundant in warmer biofilms.
Among them, Staphylococcus aureus infection is a common waterborne
infection-related gene function (Li et al., 2020), which could be at-
tributed to the presence of genus Staphylococcus in the biofilms, al-
though it was not abundant in warmer biofilms. Several functional
pathways related to antibiotic resistance and biosynthesis were dis-
covered, however, only the pathway for beta-lactam resistance was
obviously abundant in both P1A and OHE biofilms. The existence of
ARGs were previously found in DWDSs (Xu et al., 2016), and their
concentrations or compositions could be affected by water temperature
(Li et al., 2018; Liu et al., 2018). The high abundance of beta-lactam
resistance in the warmer samples here might be explained by the
dominance of genus Pseudomonas, some species of which were docu-
mented to be the host of beta-lactam resistance genes (Torrens et al.,
2019). The pathway of GSH metabolism, a typical mechanism for
protecting cell from oxidative damage (Douterelo et al., 2018), was

Fig. 3. Bacterial community compositions of biofilm samples at (a) phylum level and (b) genus level.
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discovered abundantly in all samples. This is reasonable because the
residual chlorine in the bulk water could stimulate the synthesis of
GSH: GSH-reductase reduced the disulphide of GSH to sulfhydryl
(Kehrer et al., 2010), which played an important role in resisting oxi-
dative stress of free chlorine. However, the temperature difference did
not significantly affect the abundance of the key enzymes involved in
GSH synthesis.

4.3. Comparison between chlorinated and non-chlorinated cold recovery
DWDSs

In our previous study (Ahmad et al., 2020), the effect of cold re-
covery on the biofilm formation in a non-chlorinated system was in-
vestigated. In that study, after 38 weeks of experimental duration, 5.3

times more biofilm was formed after cold recovery (475 ATP pg cm−2)
compared to biofilm formed without cold recovery (89 ATP pg cm−2).
However, in the present chlorinated DWDSs, the biofilm biomass after
21 weeks with and without cold recovery was only 26.5 ATP pg cm−2

and 14.6 ATP pg cm−2, respectively. This means the biofilm biomass
was much lower in the chlorinated system than the non-chlorinated
system. Although the total biofilm forming time of the previous study
was nearly twice (21 weeks vs. 38 weeks) of that of this study, this
could not explain 6 to 18 times more biomass in the former case than
this one. Therefore, the main reason for this massive difference could be
attributed to the negative effect of chlorine on the biofilm formation.
The presence of chlorine could degrade the bacterial cell-membrane
functional groups to slow down the microbial depositions onto the pipe
wall and, therefore prevented the reversible to irreversible transition of

Fig. 4. Heat map of KEGG pathways for the abundance of (a) metabolism associated with cell growth and (b) other important pathways (”*” refers to the abundance
which is the highest in p1A biofilm compared to other two pipeline biofilms; “**” refers to the abundance which is not only the highest in p1A biofilm among pipeline
biofilms, but also higher in OHE biofilm between HE samples; “slash” represents “0” in abundance).
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cell attachment to surfaces (Xue and Seo, 2013). Furthermore, chlorine
could reduce the microbial growth rate of the attached microbes
(Butterfield et al., 2002). It should be noted that the increase in biomass
(the ratio of the biomass with and without cold recovery) was also
hindered by chlorine in our chlorinated DWDS compared to the pre-
vious non-chlorinated one (1.8 and 5.3 times for chlorinated system and
non-chlorinated system, respectively). In other words, the cold recovery
effect became less obvious in the chlorinated system. This might be due
to the promotion of chlorine inactivation towards biofilm when tem-
perature increased.

Regarding the difference of the biofilm community compositions of
the two studies, the chlorine-resistant bacteria (CRB) genera
Pseudomonas and Sphingomonas (Butterfield et al., 2002) were more
abundant in the chlorinated biofilms (2.7%–20.2% and 5.8%–18.8%,
respectively) than the non-chlorinated ones (0.2%–2.3% and<1.0%,
respectively). This was in accordance with other studies which reported
that the use of chlorination could lead to the selection of CRB, including
several opportunistic pathogens (Ingerson-Mahar and Reid, 2012; Sun
et al., 2013). Moreover, in this study the abundances of Pseudomonas
and Sphingomonas were both higher in plastic pipe biofilms (Pseudo-
monas: 2.8%–20.2% and Sphingomonas: 9.5%–12.3%) than HE biofilms
(Pseudomonas: 2.0%–17.2% and Sphingomonas: 2.5%–6.4%) under the
same temperatures (Fig. 3), suggesting surface materials could also
affect the abundances of CRB in biofilms. Unfortunately, due to the lack
of biomass data of HE biofilm, the CRB densities on plastic pipe inner
surfaces and HE SS plates could not be compared directly. However,
according to a previous biofilm formation study under long-term high
chlorine level (Zhu et al., 2014), the biomass density in the stabilized
biofilm on SS pipe was lower than that on plastic pipes. Thus, in the
consideration of both biomass and CRB abundance, SS pipe material
can be recommended to prevent the proliferation of CRB in DWDSs.

4.4. Outlook for future research

Considering the experimental results obtained in this study, specific
topics should attain attention in future research concerning cold re-
covery from chlorinated DWDSs:

(1) In order to investigate the cold recovery effect on the chlorine
decay and microbial inactivation efficiency, prolonged contact time
should be achieved by using experimental set-ups with longer pi-
pelines. Also, the effect of initial chlorine concentration should be
studied.

(2) The processes that take place between the plates of the HEs should
be fully investigated. The interaction between chlorine and micro-
organisms inside the HE needs to be intensively explored. Chlorine
decay inside the HE is of concern, especially for HEs after prolonged
running times, when biofouling and corrosion are present on the
plate surface (Murthy et al., 2005). Additionally, a proper residual
chlorine level should be determined to balance microbial control
and chlorine-induced corrosion on the HE plate surface (Martins
et al., 2014).

(3) In this work, cATP and ICC showed a decreasing trend in bulk
waters, but no quantification of specific species (e.g. pathogens)
was conducted. The analysis of microbial community composition
and functional prediction showed that there were relatively high
risks of pathogenic, antibiotic resistance and human diseases re-
lated bacteria in the biofilms after cold recovery. As chlorine can
promote the detachment of cells from biofilms (Chen and Stewart,
2000), the potential detachment of the risky bacteria should be
monitored after the cold recovery where chlorine becomes more
active due to the rising temperature.

(4) In this study, chlorine resulted in higher abundances of CRB in
biofilms. To mitigate the risk of CRB, researchers have recently
proposed several combined disinfection processes such as UV/Cl2,
UV/hydrogen peroxide, UV/peroxymonosulfate, etc. (Zhu et al.,

2020; Zeng et al., 2020), although most of these processes were
only explored on lab-scale. Future studies may focus on optimizing
operation parameters to balance continuous disinfection ability and
biofilm CRB control, and large-scale application of these technolo-
gies in the practical field.

5. Conclusions

This study explored the effect of cold recovery on the drinking water
microbial quality (as cATP, TCC and ICC), and biofilm growth and
composition in a chlorinated DWDSs. Slight chlorine decay was de-
tected in all pipelines, but was not affected by the temperature increase.
Chlorine could partially inactivate the microbial activities in bulk
water, and the inactivation efficiency was slightly promoted by the HEs.
The growth rate of biofilm biomass was significantly enhanced by water
temperature. The diversity and composition of biofilm microbial com-
munity were both shaped by cold recovery and surface materials. For
example, Pseudomonas spp. had higher abundances in warm biofilms.
Metagenomics functional prediction by PICRUSt2 revealed more
abundance of several pathways linked to human diseases and beta-
lactam resistance were found in the biofilm after cold recovery.
Compared to the previous results from a non-chlorinated DWDS, the
effect of chlorine in this study led to much lower biomass but higher
abundances of chlorine-resistant bacteria in the biofilms.
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