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Abstract
Current deep neural networks (DNNs) are overparameterized and use most of their neu-
ronal connections during inference for each task. The human brain, however, developed 
specialized regions for different tasks and performs inference with a small fraction of 
its neuronal connections. We propose an iterative pruning strategy introducing a simple 
importance-score metric that deactivates unimportant connections, tackling overparame-
terization in DNNs and modulating the firing patterns. The aim is to find the smallest num-
ber of connections that is still capable of solving a given task with comparable accuracy, 
i.e. a simpler subnetwork. We achieve comparable performance for LeNet architectures on 
MNIST, and significantly higher parameter compression than state-of-the-art algorithms 
for VGG and ResNet architectures on CIFAR-10/100 and Tiny-ImageNet. Our approach 
also performs well for the two different optimizers considered—Adam and SGD. The algo-
rithm is not designed to minimize FLOPs when considering current hardware and software 
implementations, although it performs reasonably when compared to the state of the art.

Keywords Neural network pruning · Iterative pruning · Connection pruning · Sparsity

1 Introduction

Pruning is a common technique for neural network compression (Karnin, 1990), where the 
main goal is to reduce memory and computational costs of inference. Pruning assumes 
particular relevance for deep neural networks because modern architectures involve sev-
eral millions of parameters. Existing pruning methods are based on different strategies, 
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e.g Hessian analysis (LeCun et al., 1990; Hassibi and Stork, 1993), magnitudes of weights 
(Han et al., 2015), data-driven approaches (Hu et al., 2016; Ancona et al., 2020), among 
others (Ullrich et al., 2017; Molchanov et al., 2017). Pruning can be done in one shot (Zhao 
et al., 2019) or in an iterative way (Frankle and Carbin, 2019), and it is possible to prune 
connections (LeCun et al., 1990; Hassibi and Stork, 1993; Dong et al., 2017; Han et al., 
2016), neurons (Molchanov et al., 2019; Louizos et al., 2017; Ancona et al., 2020) or fil-
ters for convolutional layers (He et al., 2017, 2018). The typical pruning pipeline includes 
three stages: training the original network, pruning parameters and fine-tuning. Recently, 
interesting solutions for the third stage have been suggested that involve weight rewinding 
(Frankle and Carbin, 2019) and learning rate rewinding (Renda et al., 2020).

We have developed an algorithm that aims to prune a network without a significant 
decrease in accuracy after every iteration by keeping the signal in the network at some pre-
defined level close to the original one. This contrasts with strategies that use a pre-defined 
ratio of parameters to prune (Hu et  al., 2016; Ancona et  al., 2020; Frankle and Carbin, 
2019) which may lead to a drastic drop in accuracy for relatively high ratios. We look at 
the local behaviour of a particular connection and its contribution to the neuron, but not 
at the output or the loss function. Our aim is to deactivate unimportant connections for a 
given problem in order to free them for other tasks—a crucial step towards novel archi-
tectural continual learning strategies (Mallya and Lazebnik, 2018; Mallya et  al., 2018). 
Sparse architectures are also more robust to noisy data (Ahmad and Scheinkman, 2019) 
and exhibit benefits in the context of adversarial training (Ye et al., 2019; Liao et al., 2022). 
Therefore, we focus on reducing the number of parameters of deep learning models tar-
geting these scenarios, although we expect a reduction of the computational complexity 
(FLOPs) as well.

Our iterative pruning algorithm is based on an importance score metric proposed herein 
that quantifies the relevance of each connection to the local neuron behaviour. We show 
compressions of more than 50 times for VGG (Simonyan and Zisserman, 2015) architec-
tures on CIFAR-10 and Tiny-ImageNet datasets with a marginal drop of accuracy. We also 
apply our method to ResNets (He et al., 2016), achieving better parameter compression than 
state-of-the-art algorithms with a comparable decrease of accuracy on CIFAR-10 dataset. 
In addition, we visualise the effects of our pruning strategy on the information propagation 
through the network, and we observe a significant homogenization of the importance of the 
pruned neurons. We associate this homogenization with the notion of neural network relief: 
using fewer neuronal connections and distributing importance among them.

2  Related work

One of the first works eliminating unimportant connections in relatively small networks 
proposed analyzing the Hessian of the loss function (LeCun et al., 1990; Hassibi and Stork, 
1993) without network retraining. This idea was further developed for convolutional net-
works (Dong et  al., 2017; Lebedev and Lempitsky, 2016). However, computing second-
order derivatives by calculating the Hessian is costly.

The magnitude-based approach (Han et  al., 2015) is simple and fast because it only 
involves pruning the weights with the smallest magnitude. This assumes that parameters 
with small magnitudes do not contribute significantly to the resulting performance. For 
convolutional layers, the sum of kernels’ elements in the filters is considered and filters 
with the smallest sum are pruned (Li et al., 2017). Iterative magnitude pruning is applied 
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for finding winning tickets (Frankle and Carbin, 2019)—the minimal subnetwork that can 
be trained at least as well as the original one with the same hyperparameters.

Other algorithms use input data to reduce the number of parameters. In Hu et al. (2016) 
pruning depends on the ratio of zero activations using ReLU function. So, the neurons that 
do not fire frequently enough are eliminated. A greedy approach is used for ThiNet (Luo 
et al., 2017), where channels that do not affect the resulting sum in convolutional layers 
are removed by solving an optimization problem. A similar algorithm is used in He et al. 
(2017), but the optimization problem is solved with LASSO regression for determining 
ineffective channels. The property of convexity and sparsity that ReLU produces provides 
analytical boundaries for Net-trim (Aghasi et al., 2017) by solving a convex optimization 
problem. The game-theoretic approach with Shapley values (Ancona et al., 2020) demon-
strates good performance in a low-data regime, i.e. one-shot pruning without retraining, 
where neurons within one layer are considered as players in a cooperative game.

NISP (Yu et al., 2018) finds the contribution of neurons to the last layer before classi-
fication, while iSparse framework (Garg and Candan, 2020) trains sparse networks elimi-
nating the connections that do not contribute to the output. A pruning strategy where the 
connections’ contribution is based on computing the loss function derivatives was also sug-
gested in Lee et al. (2019).

Additional methods of interest include Bayesian weight pruning (Molchanov et  al., 
2017) and Bayesian compression (Louizos et al., 2017) to prune neurons and aim at com-
putational efficiency. SSS (Huang and Wang, 2018) introduces a scaling factor and spar-
sity constraints on this factor to scale neurons’ or blocks’ outputs. Similarly, SNLI (Ye 
et al., 2018) uses ISTA (Beck and Teboulle, 2009) to update the scaling parameter in Batch 
Normalization of convolutional layers to obtain a sparse representation. HRank (Lin et al., 
2020) calculates the average rank of feature maps and prunes filters with the lowest ones. 
FSABP (Geng and Niu, 2022) finds filters that extract similar information and prunes 
them. As a result, filters that provide diversity in feature maps are retained. In the same 
way, CHIP (Sui et al., 2021) measures correlations between feature maps truncating feature 
maps with the lowest independence scores.

3  Our pruning approach

Our goal is to eliminate connections in a layer that, on average, provide a weak contribu-
tion to the next layer. We believe that a low magnitude of a weight does not mean that 
information passing through the connection has to have a negligible contribution. The con-
verse is also assumed to be true: if a high weight magnitude is multiplied by a weak signal 
from the neuron (or even zero) then the contribution of that product is relatively insignifi-
cant in comparison with other input signals in the neuron, as long as this holds for most 
data. Therefore, our strategy contrasts significantly with magnitude-based pruning (Han 
et al., 2015).

3.1  Fully connected layers

Assume that we have a pruning set X(l−1) = {x
(l−1)

1
,… , x

(l−1)

N
} with N samples, where each 

datapoint x(l−1)
n

= (x
(l−1)

n1
,… , x(l−1)

nml−1
) ∈ ℝ

ml−1 is the input for layer l − 1 with dimension ml−1 
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and where 1 ≤ l ≤ L . We define the importance of the connection between neuron i of layer 
l − 1 and neuron j of layer l as:

where ���w
(l)

ij
x
(l−1)

i

��� =
1

N

∑N

n=1

���w
(l)

ij
x
(l−1)

ni

��� , and w(l)

ij
 is the corresponding weight between neu-

rons i and j (see Fig. 1) and b(l)
j

 is the bias associated to neuron j. The importance score for 

the bias of neuron j is s(l)
ml−1+1,j

=
��b(l)j ��

∑ml−1
k=1

��w(l)

kj
x
(l−1)

k
��+��b(l)j ��

 . The denominator corresponds to the 

total importance in the neuron j of layer l that we denote as 

S
(l)

j
=
∑ml−1

k=1

���w
(l)

kj
x
(l−1)

k

��� +
���b

(l)

j

���, 1 ≤ j ≤ ml.

Algorithm 1  Fully connected layers pruning

The idea behind our approach is to deactivate the connections i = 1… ,ml−1 that on 
average do not carry important information to the neuron j of layer l in comparison with 
other connections. As a result of Eq. 1, we simplify each neuron by using a smaller number 

(1)s
(l)

ij
=

���w
(l)

ij
x
(l−1)

i

���
∑ml−1

k=1

���w
(l)

kj
x
(l−1)

k

��� +
���b

(l)

j

���

,

Fig. 1  Neural network layers l − 1 and l with ml−1 = 4 and ml = 2 neurons, respectively. The weights asso-
ciated to a connection between neurons i and j in layer l − 1 to l are w(l)

ij
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of input connections, while causing minimal effective changes to the input signal of that 
neuron and subsequent minimal impact on the network.

Figure 2 shows the importance score of every connection in the LeNet-300–100 (LeCun 
et  al., 1998) architecture before and after pruning when applied to the MNIST dataset. 
Connections are represented by thin blue lines when they have the lowest importance score 
s(l)ij  , and go up to red thick lines when they are the most important. The figure demonstrates 
an interesting phenomenon besides the fact that there are much fewer connections after 
applying our pruning strategy: the importance scores of the connections become much 
closer to each other and there are no longer highly important and highly unimportant con-
nections. We eliminate connections (contributors to the neuron’s signal) that on average do 
not contribute in terms of the strength of the signal that they bring to the neuron for a given 
dataset.

3.2  Convolutional layers

Our pruning approach for convolutional layers is similar to the one conducted on fully con-
nected layers. We consider kernels and a bias in a particular filter as contributors to the 
signal produced by this filter.

Algorithm 2  Convolutional layers pruning

Fig. 2  LeNet-300–100 architecture on MNIST before and after pruning, where connections are coloured 
with respect to importance score: blue (least important) → red (most important) (Color figure online)
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Assume we have ml−1-channelled input samples X(l−1) = {x
(l−1)

1
,… , x

(l−1)

N
} , where 

x
(l−1)

k
= (x

(l−1)

k1
,… , x

(l−1)

kml−1
) ∈ ℝ

ml−1×h
1
l−1

×h2
l−1 , where h1

l−1
 and h2

l−1
 are the height and width of 

input images (or feature maps) for convolutional layer l. For every kernel 
K

(l)

1j
,K

(l)

2j
,… ,K

(l)

mlj
, K

(l)

ij
= (k

(l)

ijqt
) ∈ ℝ

rl×rl , 1 ≤ q, t ≤ rl , rl is a kernel size, and a bias b(l)
j

 in 

filter F(l)

j
 , we define �̂�(l)

ij
=

(|||k
(l)

ijqt

|||
)
 as a matrix consisting of the absolute values of the 

matrix K(l)

ij
.

Then we compute importance scores s(l)
ij
, i ∈ {1, 2,… ,ml} of kernels K(l)

ij
 as follows:

where S(l)
j
=
∑ml−1

i=1

�
1

N

∑N

n=1

���
���K̂

(l)

ij
∗
���x

(l−1)

ni

���
���
���F
�
+
���b

(l)

j

���

�
h1
l
h2
l
 is the total importance 

score in filter F(l)

j
 of layer l, and where ∗ indicates a convolution operation, and || ⋅ ||F the 

Frobenius norm.
In Eq. 2, we compute the amount of information that every kernel produces on average, 

analogously to what we do in fully connected layers.

4  Experiments

We test our pruning method for LeNet-300–100 and LeNet-5 (LeCun et  al., 1998) on 
MNIST, VGG-19 (Simonyan and Zisserman, 2015) and VGG-like (Zagoruyko, 2015) on 
CIFAR-10/100 (Krizhevsky et  al., 2009) and Tiny-ImageNet datasets. We evaluate our 
method on classification error, the percentage of pruned parameters 

(
|w=0|
|w| (%)

)
 or the per-

centage of remaining parameters 
(

|w≠0|
|w| (%)

)
 or compression rate 

(
|w|

|w≠0| (%)
)
 and pruned 

FLOPs (floating-point operations), where |w ≠ 0| refers to the number of unpruned connec-
tions. For the details about training and pruning hyperparameters, and FLOPs computation 
see Sections 1 and 2. We use the initialization method introduced in He et al. (2015) to ini-
tialize parameters. We run our experiments multiple times with different random initializa-
tions of the parameters. In our tables and figures, we present mean and standard deviation 
for the results averaged over these random initializations.

4.1  LeNets

We experiment with LeNets on the MNIST dataset. LeNet-300–100 is a fully connected 
network with 300 neurons and 100 neurons in two hidden layers respectively, and LeNet-5 
Caffe, which is a modified version of LeCun et al. (1998), has two convolutional layers fol-
lowed by one hidden layer and an output layer. We perform iterative pruning by retraining 

(2)s
(l)

ij
=

1

N

∑N

n=1

���
����̂�

(l)

ij
∗
���x

(l−1)

ni

���
���
���F

S
(l)

j

,

(3)s
(l)

ml+1,j
=

|||b
(l)

j

|||

√
h1
l
h2
l

S
(l)

j

.
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the network starting from initial random parameters, instead of fine-tuning. Table 1 shows 
that our approach is among the best for both LeNets in terms of pruned parameters.

4.2  VGG

We perform our experiments on VGG-13 and VGG-like (adapted version of VGG-16 for 
CIFAR-10 dataset that has one fully connected layer less) on CIFAR-10, CIFAR-100 and 
Tiny-ImageNet datasets. We also show in this section the effect of two optimizers—Adam 
(Kingma and Ba, 2015) and SGD and two weight decay values on our pruning technique.

CIFAR-10/100 Table  2 shows that after the reduction of the weights to less than 2% 
of the original number, the accuracy only drops by 0.1% , and that our approach outper-
forms others both in terms of pruned parameters and pruned FLOPs. In Fig. 3, we show 
the final architecture after pruning and the level of sparsity by layer. It can be observed that 
NNrelief with Adam optimizer achieves a high level of filter sparsity even though it prunes 
kernels.

We also perform pruning for standard VGG-13 on CIFAR-100 using 5 iterations, and 
considered three randomization seeds to provide reasonable statistical significance. The 
results from the different optimizers are presented in Fig. 4. The results show that Adam 
seems to perform the compression more aggressively, resulting in a higher compression 
rate, and also a slightly lower accuracy. The compression of about 14.5× after the fifth iter-
ation without loss in accuracy is presented for Adam and weight decay 5 ⋅ 10−4 , while SGD 
allows to train a network with higher accuracy, but after 5 iterations we obtain smaller 
compression (about 4.5× ) and the decrease of accuracy by 0.5% with the same weight 
decay. We obtain a lower compression rate for both optimizers when the weight decay is 
lower ( 10−4 ). Figure 5 shows the final architecture and sparsity that we achieve with Adam 
optimizer at the end of the pruning procedure. We observe a high level of filter sparsity 
with Adam, as also reported in Mehta et al. (2019), but good compression is also obtained 
for the SGD optimizer.

Tiny-ImageNet We also apply our approach to Tiny-ImageNet dataset that is a subset 
of the ImageNet dataset with 200 classes and an image spatial resolution of 64×64. Follow-
ing SNIP strategy, we use strides [2, 2] in the first convolutional layer to reduce the size of 

Table 1  Results for LeNet-300–100 and LeNet-5 trained and pruned on MNIST

Bold refers to the best results across all methods under consideration
For pruning, 1000 random training samples are chosen, �

fc
= 0.95, �

conv
= 0.9

Network Method Error (%) Parameters retained (%)

LeNet-300–100 DNS (Guo et al., 2016) 1.99 1.79
L-OBS (Dong et al., 2017) 1.96 1.5
SWS (Ullrich et al., 2017) 1.94 4.3
Sparse VD (Molchanov et al., 2017) 1.92 1.47
NNrelief (ours) 1.98 ± 0.07 1.51 ± 0.07

LeNet-5 DNS (Guo et al., 2016) 0.91 0.93
L-OBS (Dong et al., 2017) 1.66 0.9
SWS (Ullrich et al., 2017) 0.97 0.5
Sparse VD (Molchanov et al., 2017) 0.75 0.36
NNrelief (ours) 0.97 ± 0.05 0.65 ± 0.02
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images. The results are reported in Table 3. We observe a compression by more than 40 
times almost without any loss of accuracy ( −0.03% ) using Adam optimizer.

4.3  ResNets

In addition, we test our approach on ResNet architectures for CIFAR-10/100 and Tiny-
ImageNet datasets. Our main objective is to prune as many parameters as we can without 
significant loss of accuracy. For ResNet-20/56 on CIFAR-10, we perform iterative pruning 
over 10 iterations, training the model with SGD and Adam. In Table 4 we compare our 
results with other approaches, and Fig. 6 displays the pruning history. We achieve a higher 
percentage of pruned parameters for ResNet-20 and ResNet-56, using both optimizers with 
comparable final accuracy.

A notable observation for some seeds when training with SGD is that separate convolu-
tional blocks are pruned and only residual blocks remain, i.e. the signal propagates through 

(a) An architecture before and after
pruning by seed.

(b) Sparsity by layer after pruning using
different seeds.

Fig. 3  Architecture structure for VGG-like on CIFAR-10 with Adam optimizer considering three random 
initializations

(a) SGD, weight decay = 5 · 10−4 (b) SGD, weight decay = 10−4

(c) Adam, weight decay = 5 · 10−4 (d) Adam, weight decay = 10−4

Fig. 4  Results for VGG-13 over three seeds; mean values are used to compute dots and standard deviation 
are shown with error bars. We compare two optimizers, SGD and Adam, and two different values of weight 
decay for evaluation after 5 pruning iterations
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skip connections and not through main convolutional layers since they do not contribute to 
the sum (Fig. 8).

For ResNet-20/56 on CIFAR-100 the results are presented in Table 5 and by iteration in 
Fig. 7.

Tiny-ImageNet Training of a modified ResNet-18 with 16, 32, 64 and 128 output chan-
nels indicates that we can prune more than 50% of the parameters with both optimizers 
(see Fig. 9). Adam, however, maintains a higher level of accuracy during retraining than 
SGD. We use 2000 samples to evaluate importance scores, and weight decay for (re-)train-
ing equal to 5 ⋅ 10−4.

Sparsity In contrast to VGG results, we do not observe a significant difference between 
optimizers in terms of produced sparsity for CIFAR-10/100 and Tiny-ImageNet. In the 
works that explore the question of sparsity (Mehta et al., 2019), ResNet architecture was 
not explored. It seems that the skip connections allow the signal to pass unhindered to the 
next layers, making it harder for the Adam optimizer to find which activations are signifi-
cant, and aggressively prune the less significant connections.

(a) CIFAR-10 (b) CIFAR-100

(c) CIFAR-10 (d) CIFAR-100

Fig. 5  VGG-13 architecture on CIFAR-100 trained with SGD (top) and Adam (bottom), and weight decay 
equal to 5 ⋅ 10−4 (left) and 10−4 (right) and pruned with 5 iterations. The results for three different seeds are 
presented

Table 3  Results for VGG-like trained on Tiny-ImageNet with Adam optimizer.

Bold refers to the best results across all methods under consideration
During retraining 50 epochs are used; the learning rate is decreased by 10 every 20 epochs. For NNrelief 
(ours) �

conv
= �

fc
= 0.95 and 2000 samples are chosen for the importance scores computation

Network Method Acc (%) (baseline) Acc drop (%) Parameters 
retained (%)

FLOPs pruned (%)

VGG-like SNIP (Lee et al., 
2019)

45.14 0.87 5.0 N/A

NNrelief (ours) 45.63 0.03 2.32 ± 0.06 75 ± 0.32
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5  Discussion

To illustrate the meaning of the importance scores we compare our approach with the mag-
nitude-based one. Also, we present error bounds for the difference of a signal in the layer 
before and after pruning.

(a) CIFAR-10 (b) CIFAR-100

(c) CIFAR-10 (d) CIFAR-100

Fig. 6  ResNet-20 on CIFAR-10 and CIFAR-100 by iteration averaged over three random initializations, the 
error bars represent standard deviation for these three runs. The red dot corresponds to the selected best 
iteration

(a) CIFAR-10 (b) CIFAR-100

(c) CIFAR-10 (d) CIFAR-100

Fig. 7  ResNet-56 on CIFAR-10 and CIFAR-100 by iteration averaged over three seeds, the error bars repre-
sent standard deviation for these three runs. The red dot corresponds to the selected best iteration
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5.1  Comparison with magnitude‑based approach

In order to show the difference between our approach and the magnitude-based approach 
(Han et al., 2015), we build the heatmaps with the location of top 15.5% of the most signifi-
cant connections in the LeNet-300–100 pretrained on MINIST for both our proposed method 
and the magnitude-based pruning, since this number corresponds to the percentage of param-
eters that remain after pruning with our proposed rule (importance scores) using � = 0.95 . 
The importance scores (IS) are computed from Eq. 1, while for the magnitude-based rule, we 
consider both structured and unstructured pruning. In the structured case, we select the top 
15.5% in each layer independently, and in the unstructured, the top 15.5% from all layers are 
selected, meaning that some layers may contain more or less than 15.5% of the parameters.

Fig. 8  ResNet-56 architecture on CIFAR-10 by seed with SGD optimizer

Table 5  Results for ResNets trained on CIFAR-100 with SGD and Adam optimizers

During retraining 80 epochs are used; the learning rate is decreased by 10 every 30 epochs. For NNrelief 
(ours) �

conv
= 0.95, �

fc
= 0.99

ResNet Optimizer Acc (%) (baseline) Acc drop (%) Parameters pruned (%) FLOPs pruned (%)

20 SGD 68.75 ± 0.15 1.26 ± 0.33 54.54 ± 0.24 12.49 ± 1.52
Adam 67.34 ± 0.2 0.41 ± 0.23 51.82 ± 0.23 3.42 ± 1.21

56 SGD 71.43 ± 0.16 0.43 ± 0.26 58.62 ± 0.26 31.2 ± 3.09
Adam 71.68 ± 0.09 0.88 ± 0.12 67.72 ± 0.29 13.79 ± 0.94

Fig. 9  ResNet-18 on Tiny-ImageNet trained with SGD and Adam optimizers. The results are averaged over 
three random initializations. The bars represent standard deviations considering three runs
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Figure 10 displays the difference between our approach and the magnitude-based (struc-
tured and unstructured) one when determining the significance of network connections. 
According to the figure, we can see different patterns for the remaining connection, espe-
cially for the unstructured magnitude-based rule, where more connections are retained in 
the last layer compared to the IS rule. Overall, we present the Jaccard index (Jaccard, 1912) 
between IS and both magnitude-based rules in Table 6. The Jaccard index (or Intersection 
over Union, IoU) for two sets A and B is defined as follows: IoU =

|A∩B|
|A∪B|.

Fig. 10  The remaining 15.5% connections according to Importance scores and magnitude-based rule (struc-
tured and unstructured pruning) for trained LeNet-300–100 on MNIST

Table 6  Jaccard index 
(similarity) between IS rule 
( � = 0.95 ) and magnitude-based 
one (structured and unstructured) 
for each layer if 84.5% of 
parameters are pruned in LeNet-
300–100 pretrained on MNIST

Layer Magnitudes 
(structured)

Magnitudes 
(unstruc-
tured)

Importance scores 784 → 300 0.08 0.08
300 → 100 0.11 0.18
100 → 10 0.16 0.66

Table 7  Number of active 
neurons for magnitude-based 
pruning and with importance 
scores one (NNrelief) for LeNet-
300–100 pretrained on MNIST

Method Architecture

Original 784 → 300 → 100 → 10

Importance scores 380 → 131 → 96 → 10

Magnitude-based (unstructured) 530 → 136 → 97 → 10
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Both Fig. 10 and Table 6 demonstrate that the IS rule prunes the network differently from 
both magnitude-based rules. First, the binary heatmap patterns in the figure indicate a clear 
difference between the methods. In addition, the IoU indicators are low for every case, mean-
ing that the IS pruning proposed herein determines the most significant connections differ-
ently to both magnitude-based rules. From empirical results, we observe that IS-based pruning 
deactivates more connections in overparameterized layers. In Table 7, we present the number 
of active neurons by layer after one pruning iteration (15.5% of all parameters are retained). 
As it can be seen, the IS metric deactivates more neurons in every layer compared to unstruc-
tured magnitude pruning (Han et al., 2015; Frankle and Carbin, 2019). This happens because 
some neurons produce a low signal (or zero signal because of the ReLU activation function).

In contrast to magnitude-based pruning, NNrelief automatically determines the number of 
connections to prune when � is given. However, for magnitude-based pruning, the number 
of pruned connections is a hyperparameter which is difficult to set. For example, if we prune 
80% of the remaining parameters at every iteration as discussed in the lottery ticket hypothesis 
work (Frankle and Carbin, 2019), then after 11 iterations magnitude-based pruning retains 
100% ⋅ 0.811 ≈ 8.6% of the parameters, while NNrelief retains 1.51% (see Tables 1 and 10). 
This is achieved due to the usage of the input signal to estimate the importance scores, which 
helps to determine the number of connections to prune.

5.2  Error estimation

To complement the analysis of our approach we derive error bounds by considering the differ-
ence between a signal in the trained neuron and a reduced one without retraining, before and 
after the activation function. This analysis is important to make sure NNrelief does not destroy 
the pretrained structure, and that changes in the output neurons are not dramatic enough to 
prevent successful retraining. To illustrate this, we compare the derived error bounds with the 
observed changes in ResNet-20 pretrained on CIFAR-10 if the fully connected layer is pruned. 
Without loss of generality we may assume the first p connections in the neuron j of layer l are 
kept and that the bias b(l)

j
 as well as weights w(l)

p+1,j
,… ,w

(l)

mlj
 are pruned in a particular neuron j. 
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Therefore, from (5) we see that the sequence of residuals {�p}mp=1 decreases with respect 
to p and increases with � . Also, for any Lipschitz continuous activation function 
𝜑 ∈ Lip(X), X ⊂ ℝ with Lipschitz constant C we obtain:

As a result, from Eqs. (5) and (6):

For the point-wise estimation on set X(l−1) = {x
(l−1)

1
,… , x

(l−1)

N
} ⊂ ℝ

ml−1 , ∀x(l−1)
i

 we obtain:

Since ReLU, ELU, sigmoid and, tanh are Lipschitz continuous functions then (7) and (8) 
hold for them, meaning that the sequence of residuals {Δp}

ml

p=1
 decreases as well with the 

increase of � . Moreover, in the case of ReLU and ELU, the Lipschitz constant is C = 1 . In 
summary, by increasing � we indeed reduce the approximation error of the neuron.

Analogously, for input ml−1-channeled pruning set X(l−1) = {x
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l  is a matrix that 
consists of the same bias value b(l)

j
 at every element we obtain:

Then, by averaging over all pruning samples similarly to the fully connected case we obtain:
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we obtain:
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Inequalities (7), (11) show how the signal in a neuron or filter, respectively, changes after 
the layer is pruned. Let us consider how this change influences the network output. We 
define N(l)

il

(
x;W(1∶l)

)
 as a value in the ith

l
 neuron in layer l, where W(1∶l) = (W(1),… ,W(l)) 

are parameters in layers 1,… , l . The matrix that we obtain after pruning layer l we define 
as Ŵ

(l)
 , and ml is the number of neurons in layer l, 1 ≤ l ≤ L . Then, for 1 ≤ l < L (for l = L 

see (5) in Section 5.2):

Performing similar transformations as in (12) until layer l, we obtain:

Then, averaging (13) over all pruning samples from X and using (7):

Inequality (14) shows the bounds of the network error change after pruning on the pruning 
set X . Fig. 11 shows the absolute changes in output responses for ResNet-20 after pruning 
on CIFAR-10 with �fc = 0.95 . The error bars (in black) show the theoretical bounds of the 
difference estimated in (8) and (13), and the dots demonstrate the actual changes computed 
on the test data. From the figure, one can observe that the theoretical bounds capture the 
signal changes well in most cases, especially, for output neurons 0, 6 and 7.
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6  Conclusion

We propose a new pruning strategy and associated error estimation that is applicable to dif-
ferent neural network architectures. Our algorithm is based on eliminating layers’ kernels 
or connections that do not contribute to the signal in the next layer. In this method, we esti-
mate the average signal strength coming through each connection via proposed importance 
scores and try to keep the signal level in the neurons close to the original level. Thus, the 
number of removed parameters in a layer is selected adaptively, rather than being prede-
termined. As a result, the algorithm obtains a subnetwork capable of propagating most of 
the original signal while using fewer parameters than other reported strategies. We explore 
the effect of Adam and SGD optimizers on our pruning strategy. The results show that for 
VGG architecture Adam optimizer gives much higher compression than SGD, however, 
for ResNet, we do not observe similar behaviour. We observe that the obtained subnetwork 
tends to homogenize connection importance, hinting that every remaining connection is 
approaching similar importance for the dataset on average.

Appendix A: Pruning setups

We implement our approach with PyTorch (Paszke et al., 2019). Table 8 shows the training 
parameters for each network.

Table 9 shows the parameters for retraining on every iteration.
Table 10 shows the pruning parameters and total number of iterations.

Fig. 11  Absolute difference in the neurons’ response at the output layer before and after pruning ResNet-20 
( �

fc
= 0.95 ). The bars represent the theoretical bounds, and dots present empirical observations for 10,000 

images
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Table 8  Training setups

Network Dataset Optimizer Learning rate (by epoch) Weight decay

LeNet-5/300–100 MNIST Adam
{

10−3 1 ≤ epoch ≤ 30

10−4 31 ≤ epoch ≤ 60

5 ⋅ 10−4

VGG-like/13 CIFAR-10/100, 
Tiny-ImageNet

SGD/Adam ⎧
⎪
⎨
⎪
⎩

10−1∕10−3 1 ≤ epoch ≤ 80

10−2∕10−4 81 ≤ epoch ≤ 120

10−3∕10−5 121 ≤ epoch ≤ 150

5 ⋅ 10−4

ResNet-20/56 CIFAR-10/100 SGD ⎧
⎪
⎨
⎪
⎩

0.1 1 ≤ epoch ≤ 80

0.01 81 ≤ epoch ≤ 120

0.001 121 ≤ epoch ≤ 150

5 ⋅ 10−4

Adam ⎧
⎪
⎨
⎪
⎩

10−3 1 ≤ epoch ≤ 120

10−4 121 ≤ epoch ≤ 160

10−5 161 ≤ epoch ≤ 200

5 ⋅ 10−4

Table 9  Retraining parameters

Network Dataset Optimizer Learning rate (by epoch) Weight decay

LeNet-5/300–100 MNIST Adam
{

10−3 1 ≤ epoch ≤ 30

10−4 31 ≤ epoch ≤ 60

5 ⋅ 10−4

VGG-like/13 CIFAR-10/100, 
Tiny-ImageNet

SGD/Adam ⎧
⎪
⎨
⎪
⎩

10−1∕10−3 1 ≤ epoch ≤ 20

10−2∕10−4 21 ≤ epoch ≤ 40

10−3∕10−5 41 ≤ epoch ≤ 60

5 ⋅ 10−4

ResNet-20/56 CIFAR-10 SGD/Adam ⎧
⎪
⎨
⎪
⎩

10−1∕10−3 1 ≤ epoch ≤ 20

10−2∕10−4 21 ≤ epoch ≤ 40

10−3∕10−5 41 ≤ epoch ≤ 60

5 ⋅ 10−4

CIFAR-100 SGD/Adam ⎧
⎪
⎨
⎪
⎩

10−1∕10−3 1 ≤ epoch ≤ 30

10−2∕10−4 21 ≤ epoch ≤ 60

10−3∕10−5 41 ≤ epoch ≤ 80

5 ⋅ 10−4
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Appendix B: FLOPs computation

According to Molchanov et al. (2016), we compute FLOPs as follows:

• for a convolutional layer: FLOPs = 2HW(CinK
2 + 1)Cout where H,  W and Cin are 

height, width and number of channels of the input feature map, K is the kernel width 
(and height due to symmetry), and Cout is the number of output channels.

• for a fully connected layer: FLOPs = (2I − 1)O , where I is the input dimensionality 
and O is the output dimensionality.
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