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Abstract

Ground clutter signal is a kind of unwanted echoes in target detection radar system,
which are normally reflected by ground surface, ground-based objects, and obstacles.
It can be collected and characterized in polar coordinates in terms of range and az-
imuth. By using polarimetric based algorithms, including the single channel detector,
the span detector, the power maximization synthesis (PMS) detector, the identity-
likelihood-ratio-test (ILRT), the polarimetric whitening filter (PWF), and the optimal
polarimetric detector (OPD), the target detection radar system can distinguish the
characteristics and diversity of multiple targets.

In this thesis, a polarimetric radar simulator to generate multi-channel polarimetric
signals with specific statistical characteristics has been developed and validated in the
simulation. In the measurement, a new noise-based equalization for all polarimetric
radar channels has been proposed and tested, which improves the reliability and accu-
racy of the polarimetric information. After noised-based calibration and model-based
decomposition of the polarization covariance matrix, with regenerated measurement
slow-time data, a variety of targets in heavy clutter with signal power comparable
to the target are detected by polarimetric algorithms in the environment of strong
clutters. Starting from numerical simulation and comparison of different detector algo-
rithms, this work has validated the feasibility and accuracy of each detector in realistic
scenario. The measurement result agrees with the simulation result that with the use of
radar polarimetric information as a priori knowledge, target detection can be improved
by polarimetric detectors.
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Introduction 1
1.1 Motivation and goals

Clutter is an ineluctable factor with non-negligible interference in radar detection.
Ground clutter signals are usually reflected by the ground surface, ground-based ob-
jects, and obstacles, while sea clutter signals are usually reflected by the sea surface.
For radar applications in air surveillance and ship navigation, the detection of target
signals in a sea and ground clutter environment may be problematic tasks. In the case
of a stationary target in a heavy ground clutter environment where surrounding objects
scatter comparable to the target amount of sensing signal energy, Doppler information
is not usable for classifying the target signal from clutter. In the case of a small floating
target in the ocean, it has the same low fluctuating speed as the ocean. The target
Doppler also cannot be effectively separated from the sea clutter Doppler. As a result,
the method to extract the target Doppler information based on the time-frequency
distribution, such as the extraction of micro-Doppler characteristics [1], cannot show
impressive performance in the target detection cases mentioned above.

One of the promising technologies in target detection is the use of polarimetric es-
timation of the target and clutter polarimetric parameters. In recent decades, such
detection algorithms were proposed which utilize not only the usual energy feature of
single polarization or multipolarization channels but also single- and joint statistical
polarization characteristics as a priori knowledge depending on the physical charac-
teristics and geometry structures [2] [3] [4]. However, the limitation of those previous
studies is that the detection algorithms were mostly developed and tested for the case
where the clutter is assumed to be spatially homogeneous within the measured range.

In remote sensing of maritime and terrain, one of the main challenges is radar
target detection in heavy clutter, when surrounding objects scatter comparable to the
target amount of sounding signal energy, the desired precise target detection cannot be
achieved. Another challenge in terrain remote sensing is that the spatial homogeneity
of clutter within reasonable intervals of radar ranges and azimuths cannot be observed.
There are many types of surface-based objects, terrain types, and features in real-world
scenarios. In this research, in order to suppress clutter and then detect the target from a
specific area with a low false alarm rate and high detection accuracy, we are interested in
the analysis of the performance of various detection schemes. To perform the detection
process, the three channels of polarimetric data must be reduced to a single decision
criterion. This transformation should be performed in such a way that the target is
more easily discriminated from the clutters [5].

The ultimate objective of this study is to estimate the potential for the use of
polarimetric information for target detection in the cases of inhomogeneous clutter.
During this process, the following sub-goals are required:
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1. Implement polarimetric detectors with polarimetric model data obtained by po-
larimetric signal modeling and feature vectors generation for both target and
clutter;

2. To evaluate the efficiency of polarimetric detectors with polarimetric measurement
model data in simulation;

3. To analyse the spatial statistical characteristics of real ground clutter and observed
object with measurement data of realistic scenario;

4. To evaluate the experimental validation of polarimetric detectors with measure-
ment data, and evaluate the detectability and sensitivity to the difference in terms
of polarization characteristics of the target and clutter.

1.2 Research problem definition

In recent years, most radar systems have the ability to transmit and receive electro-
magnetic waves at orthogonal polarization (i.e. horizontal and vertical). Polarization
information has become an important tool to improve target detection performance
in the background of clutters and jammers [6]. Detection of ground-based stationary
targets such as vehicles and substations by space radar, and detection of low-velocity
sea surface targets such as sailing boats and driftwoods by marine radar are considered
as challenging subjects in both military and civil fields. In such cases, the real targets
may be omitted among strong clutters or the strong clutters may be miscalculated as
targets, resulting in a decrease in detection probability. To address this problem, polar-
ization energy features and polarimetric characteristics can be considered as additional
information to enhance the polarization contrast between clutter and target signals so
as to improve detectability.

This thesis will present an compatitive analysis of the performances of various polari-
metric target detection algorithms: the Optimal Polarimetric Detector (OPD) [2], the
Identity Likelihood Ratio Test (ILRT) [5], the Polarimetric Whitening Filter (PWF) [3],
the single-polarimetric channel detector [5], the span detector [5], and the Power Max-
imum Synthesis (PMS) detector [5], which are proposed in previous research. To study
the efficiency of these algorithms in the condition of homogeneous clutter, a polarimetric
radar simulator is realized for generating feature vectors and applying these polarimet-
ric detection algorithms. In simulation, with polarimetric models of clutter and targets
that were proposed in previous literature [5] [2], the performance of all six detection
algorithms will be compared for multi-scatterer targets and deterministic targets, which
performs the validation of the polarimetric radar simulator used in this research. The
analysis of performances shown in the simulator will give the basic understand of these
polarimetric detection algorithms for further analysis in non-homogeneous cases. Con-
sidering the effect of target mismatch in the ILRT method is not well understood, this
thesis will mainly focus on implementations of other five detection algorithms with mea-
surement data. The empirical Receiver Operating Characteristic (ROC) that enables
one to plot the probability of detection versus the probability of false alarm calculated

2



from the dataset will present the detection performance of these algorithms in simula-
tion. Experimental validations and performances of these detectors with measurement
data will be presented by comparing the detection result maps with a real global map
as a reference.

The results of simulation of model data with known clutter and target covariance
matrices will be presented for both random and deterministic targets in the presence
of complex Gaussian clutter. Then the same detection algorithms will be tested on
the measurement data for target detection in the large-scale realistic scenario which
contains a variety of clutters. The aim of this research is to detect the power line
mast (in Figure. 1.1) in the terrain environment with grasslands, forests, and other
ground-based objects as various types of clutters with homogeneous and inhomogeneous
polarimetric characteristics.

Figure 1.1: Power line mast

The realistic scenario is given in Figure. 1.2. This is a rural/recreation area in
Delft city surroundings. The measured area is within the scope between two red paths
beginning from the PARSAX radar, and the direction of the main beam of the antenna
is denoted by the blue line in the center. As the placemarks on the map, power line
masts are located in a line which are labeled EP1 - EP6. Forests and grasslands marked
on the map in terms of target detection are supposed to be recognized and suppressed
by applying different target detection algorithms. Using various detection algorithms,
the polarization contrast between power line masts and ground-based clutters will be
strengthened, and heavy clutters will be distinguished and filtered, leading to more
precise target detection.
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Figure 1.2: Realistic scenario of measurement data

1.3 Overview of the state-of-the-art

As one of the most significant techniques in modern battlefield reconnaissance, meteo-
rological observation, resource exploration, and environmental monitoring, radar plays
a pivotal role in military and civil fields. Based on fully mining the information con-
tained in space electromagnetic waves, in addition to obtaining the target’s distance,
speed, and orientation, radar can also analyze and distinguish the target’s type, char-
acteristics, and structure information.

Polarization is another important piece of information that radar can use, except for
information in the time domain, frequency domain, and airspace domain. The effort to
apply polarization diversity to improve radar performance dates back to the 1950s [6].
As an inherent property of an electromagnetic wave, polarization reflects the variation
of the electric field vector endpoint in the time domain. According to the shape and
handedness of the space trajectory formed by the polarization, it can be divided into
linear, circular, and elliptic polarization, and left- and right-handedness polarization.
The application of electromagnetic wave polarization in the radar field has excellent
development potential, since the polarization state of the received electromagnetic wave
is related not only to the polarization state of the electromagnetic wave transmitted
from the transmitting antenna, but also affected by the shape, size, attitude, material
composition, and other factors of the target [7].

The polarization radar system has generally experienced variable/double polariza-
tion to full polarization, a long development process. Full polarization measurement
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capabilities developed from multiple pulse intervals measuring to the single pulse inter-
val measuring simultaneously. In addition, in terms of the target of interest, it extended
from the simple stable target (ideal static point scattering target) to a complex non-
stationary target (large complex target or high-speed maneuver target [8], etc.). The
polarization radar system is widely applied and can adapt to a more complex electro-
magnetic environment such as wideband signal, partially polarized wave, all kinds of
noise, clutter, interference, etc.

Polarization, as another dimension of information, in addition to amplitude, phase,
and frequency, also plays an important role in the detection of radar targets. Generally
speaking, target detection methods based on polarization information can be divided
into two main classes: optimal reception detection and polarization statistical detec-
tion. The basic idea of the former is to make the target echo in the received signal
stronger than noise or clutter by controlling the weighting of the polarization channel
in the transmitter/receiver to achieve the target detection purpose [9] [10]. In summary,
optimal reception detection focuses on the use of polarimetric scattering mechanisms to
distinguish the target from clutters [11]. This class of detection method is represented
by a variety of scattering power detectors, for example, the polarimetric span (total
power) detector, the Polarimetric Whitening Filter (PWF), and the Power Maximiza-
tion Synthesis (PMS) detector [5] [3] were developed to fuse multichannel polarimetric
information to discriminate the target from clutter. The latter was supposed to es-
tablish a reliable polarization information model of the target, noise, or clutter, and
to perform target detection based on statistical decision criteria, such as an adaptive
polarization detector based on generalized likelihood ratio test (GLRT) on a Gaussian
clutter background [12] and Constant False Alarm Rate (CFAR) detection [13]. In
the second class of target detection methods, the widely used statistical models that
characterize the statistical properties of the clutter contain K-distribution, Weibull,
Gamma, etc. Liu and Lampropoulos used the multi-CFAR detector to detect the ship
as the target [14]. In the literature, there were also many other ways to use scattering
mechanisms to detect targets on the sea surface, e.g. polarimetric entropy (H) [15], the
symmetry scattering characterization method [16], and the similarity of polarimetric
scattering [17]. Wang and Liu [18] took into account the surrounding region of the
ships, and superpixel technology was adopted to derive new polarimetric scattering
features for ship detection.

Regarding optimal reception detection approaches, although these detectors could
detect most of sea and ground targets with less prior knowledge required and were
easier to implement, they may still lose the weak target whose backscattered intensity
is weak [19]. Recent work in the field of polarization statistical detection has addressed
the design of the optimal detector under the assumption of known target and clutter
scattering parameters [2]. However, this assumption is non-trivial for many radar ap-
plications in practice. It may not be possible to measure the statistics of the target a
priori when the target is covered among strong clutter. Similarly, clutter statistics are
difficult to obtain a priori because they vary spatially with the type of terrain and tem-
porally due to weather and seasonal changes. As a result, different detection algorithms
that used training data were developed subsequently [12]. These data, also known as
secondary data, consist of recorded echoes from range cells adjacent to the cell under
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Figure 1.3: Comparison of target detection techniques

test, assuming that those cells have the same clutter covariance structure and are free
of targets. A comparison of several target detection techniques is shown in Fig. 1.3.
A significant trade-off among these detection algorithms is the amount of statistical
information required by the algorithms versus the performance of the algorithm.

1.4 Research contribution

The main contributions and novelties of this research are the following:

• Based on the S-band polarimetric-Doppler FMCWPARSAX radar high-resolution
range measurements in azimuthal scanning mode
a. the polarimetric detection algorithms’ applicability to the real radar scene with
highly inhomogeneous clutter has been validated;
b. the spatial variability of polarimetric characteristics of the rural/recreation
area in the Delft city surroundings has been studied for the first time;

• The novel usage of the Polarimetric Whitening Filter and the Optimal Polarimet-
ric Detector for the classification of targets and clutter has been demonstrated,
which can be implemented in parallel for different types of clutter within a simple
real-time streaming signal processing algorithm.
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1.5 Thesis structure

This thesis presents an analysis of the spatial statistical characteristics of real ground
clutter and presents comparative analysis and experimental validation for the perfor-
mance of five different types of target detection algorithms with measurement data.
Chapter 1 proposes the motivation and goals of this research, the main focus problem,
and the contribution of this research. Here, it also discusses the study of the rela-
tive literature. Chapter 2 first introduces the PARSAX polarimetric Doppler FMCW
radar system and the noise-based calibration of a polarimetric radar system, and then
discusses the polarimetric signal models of radar return for terrain clutter, and also
discusses the polarimetric target models for multi-scatterer target and deterministic
target depending on various resolution conditions. Chapter 3 gives a description of
the algorithms considered in this research and presents algorithm performance compar-
isons corresponding to the ideal case in which target and clutter statistics are known
exactly in the polarimetric radar simulator. Chapter 4 presents the analysis of the spa-
tial statistical characteristics of the reference target and real spatially inhomogeneous
ground-based clutters, and displays a covariance matrix map for the full area that is
interested in. Chapter 5 presents algorithms performance comparisons and experimen-
tal validation for the performance of target detection algorithms with measurement
data in the real ground clutter. At the end of this thesis, Chapter 6 sheds light on the
conclusions of this research and discusses the limitations of this research and future
work.
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Polarimetric Radar System 2
This chapter mainly describes a new method of noise-based equalization of the polari-
metric radar system’s channels [20], which was for the first time implemented, tested,
and applied within this study as a default tool for the internal calibration of the radar
polarimetric measurements using the PARSAX radar. The theoretical polarimetric
models [5] of clutter and different types of targets in various resolution conditions
which were proposed by previous references are described for further application of
polarimetric radar simulator.

2.1 The PARSAX Polarimetric Doppler FMCW Radar Sys-
tem

2.1.1 Model of the polarimetric radar measurements

The polarization scattering matrix (PSM) can adequately describe the instantaneous
polarimetric properties of any observed object. It illuminates the relation between the
polarization state of the incident electromagnetic signal and the polarization state of
the signal scattered in a specific direction [21] [22]:

ĖR(t) = Ṡ · ĖT(t) =

∥∥∥∥ S11e
jψ11 S12e

jψ12

S21e
jψ21 S22e

jψ22

∥∥∥∥ · ĖT(t) (2.1)

where Ṡ denotes the PSM of an observed object, ĖT(t) =
∥∥∥Ė1T (t), Ė2T (t)

∥∥∥T denotes

the polarization vector of the transmitted radar signal, and ĖR(t) denotes complex
polarization vector of the received radar signal. Polarization vectors and PSM are
expressed on the same polarization basis (PB) {1, 2}. The symbol ⟨·⟩ above the letters
in this thesis means complex values of related variables. As mentioned above, Eq. 2.1
with normalized vectors Ė is able to describe the polarization state of the transmitted
and received signals. In addition, this expression can fully describe signal propagation
within radar channels with information about the amplitudes (power) and phases of
the signal and noise.

In reality, the expression of the polarization state of the received radar signal is
considered to be more complicated than that of Eq. 2.1 in the ideal propagation radar
system. To be more specific, several factors need to be included:

• non-ideality and non-equality of transmission channel chains for transimitted sig-
nals with both orthogonal polarizations, non-equality of the transmit antenna
gains on these polarizations, and non-zero cross-polarization coupling which is
possible to present;
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• possible signal depolarization in the propagation to the target and back to the
radar, for example, in the case of propagation in the ionosphere or in rain;

• the presence of clutter signals;

• interactions between scattered signal (clutter included) and non-ideal receive an-
tenna and non-equal receiver channels chains;

• thermal noise in measurement channels as independent white Gaussian random
signals.

Therefore, at the output ports of the received antenna, the measured signals with
orthogonal polarizations can be given as follows:

ĖR(t) =
A

r2
e−2jkr · Ṙ · ṘA · Ṗ− ·

(
Ṡ0+Ċ

)
· Ṗ+ · ṪA · Ṫ · ĖT+Ṅ (2.2)

with

A =

(
2η0PtGtGrλ

2

(4π)2

)1/2

(2.3)

where Ṡ0 denotes the exact PSM of the observed object in the radar, Ċ denotes the PSM
of clutter, ṪA denotes the distortion matrix of the dual-polarized transmit antenna, Ṫ
denotes the diagonal distortion matrix of the transmitter, ṘA denotes the distortion
matrix of the dual-polarized receiving antenna, Ṙ denotes the diagonal distortion ma-
trix of the output ports of the receiving antenna and input circuits of the receiver. Ṗ+

and Ṗ− denote the distortion matrices of the propagation channel in the propagations
to the target and back to the radar, respectively. ĖT denotes the polarization state of
the transmitted signal without non-ideality, ĖR denotes the polarization state of the
received signal.

In addition, the received signal amplitude A and phase are dependent with the range
r between radar and the target as shown in Eq. 2.2. In Eq. 2.3, the constant A denotes
the amplitude of the initial transmitted signal, Ṅ denotes the thermal noise in every
measurement channel. Pt is transmit power of the transmitted antenna, Gt, Gr are the
gains of the transmitted and received antennas, respectively. λ is known as the radar
wavelength, η0 is the intrinsic impedance of free space, and k denotes the modulus of
the propagation vector.

In the relation (2.2) there are the scalar relations between the total amplitudes,
powers, and phases of the transmitted and received signals, and also the vector/matrix
relations that describe the dependencies between their polarization components. The
normalization of every matrix and vector within Eq. 2.2 for one selected element (e.g.
with indexes 1,1) can be used to separate these scalar and the vector/matrix relations.
Such a separation gives a possibility to process and to analyze the total amplitude
(radar cross section) and Doppler velocity of the target separately from its polarization
characteristics.

For the measurements of all elements of the PSM (in Eq. 2.1), the polarization-
orthogonal waveforms have to be transmitted with the reception of the scattered signal
in polarization-orthogonal receiver channels. To benefit from an independent and pre-
cise estimation of the waveforms in terms of amplitudes and phases, transmitting on
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orthogonal polarizations is a reasonable option. The polarimetric radar is capable of
measuring the PSM of the object using sensing signals with dual orthogonality in polar-
ization and in waveform spaces [23] [24], [25]. Sensing signals with dual orthogonality
can be represented as the sum of two orthogonal polarization components. The polar-
ization basis of the radar measurements is formed by these two orthogonal polarization
components. Then the sensing signals are modulated with some kind of orthogonal
waveforms that can be separated during reception with some type of matched process-
ing.

For received signal processing, the time-multiplexed polarimetric waveform is the
simplest technique in terms of implementation. This means that the transmission and
reception of the orthogonally polarized components are separated in time. However,
using time-multiplexed polarimetric waveform causes non-simultaneous measurement
of the columns of the PSM; this may lead to a decrease of accuracy of the measurements
for fast moving and fast changing targets. Furthermore, the full PSM is measured with
two times reduction of the operational pulse/sweep/waveform repetition frequency, this
can lead to a critical drawback in Doppler velocity estimation of two times reduction
of the ambiguity.

Transmitting polarization components simultaneously is considered as an alterna-
tive [23]. Polarization components are modulated with orthogonal waveforms. These
waveforms satisfy the condition for the polarization components of the transmitted
signal :

UT =

∫
ĖiT (t) · Ė∗

jT (t) · dt ≡ 0, i, j = 1, 2, i ̸= j, (2.4)

To be able for the efficient matching processing of the received signals, a similar condi-
tion has to be satisfied between the polarization-orthogonal components of the received
and transmitted signals. As soon as, in general, the received signal is a copy of the
transmitted signal, which is delayed for the time τ and shifted in frequency with a
Doppler shift ωd, this condition can be written in a form:

Uij(τ, ωd) =

∫
ĖiT (t) · Ė∗

jR(t− τ, ωd) · dt ∼= 0, i, j = 1, 2, i ̸= j, (2.5)

where ĖiT (t) and ĖjR(t − τ, ωd) are polarization orthogonal components of the trans-
mitted and received signals.

By means of joint matching processing, all elements of the PSM are able to be
measured simultaneously. In the research of [23] [24], [25], [26], various types of Linear
Frequency Modulation (LFM)-based polarimetric signals for FMCW radars have been
proposed. The block diagram shown in Figure.2.1 illustrates the implementation of
transmitting simultaneously polarization components that are modulated with orthog-
onal waveforms. Eq. 2.2 defines the output signals on the four polarimetric receiver
channels on the polarimetric FMCW radar.

2.1.2 Noise-Based Polarimetric Channels Equalization

For further analysis it will be suitable to represent the measured 2 × 2 PSM at the
output of polarimetric radar receiver in a 4 × 1 vector form, which better reflects the
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Figure 2.1: Bloc-diagram of the polarimetric FMCW radar with dual-orthogonal sensing
signals

measurement procedure:

Ẋ =

 S11i + j · S11q

S12i + j · S12q

S22i + j · S22q

+

 n11i + j · n11q

n12i + j · n12q

n22i + j · n22q

 =

 Ṡ11

Ṡ12

Ṡ22

+

 ṅ11

ṅ12

ṅ22

 (2.6)

where Sk,li and Sk,lq , k, l = 1, 2 are the in-phase and quadrature components of the
polarization scattering matrix element k, l polarimetric channel, respectively. Similarly,
nk,li and nk,lq are the quadrature components of the thermal white Gaussian noise in
the polarimetric channel k, l.

All elements of the PSM can be obtained by the polarimetric FMCW radar. There-
fore, in every polarimetric channel the range- and the time-dependent received signal
can be defined as a sum of the backscattered from the observed object signal and the
thermal noise:

xi,j(r, t) = Ṡi,j(r, t) + ṅi,j(r, t), (2.7)

where the indices i, j = 1, 2, i ̸= j, refer to the transmitted horizontal and vertical
polarization channels and the received horizontal and vertical polarization channels,
respectively. r stands for the range coordinate after compression of the beat signal
range, t = n× SRI denotes the discrete slow time, which is the integer number of the
sweep repetition intervals (SRI). At the output of four polarimetric receiver channels,
shown in this equation, Ṡi,j are the actual complex scattered signals, which are presented
by the slow-time-dependent range profile. ṅi,j is the complex white Gaussian thermal
noise with zero mean and variance σ2

i,j. As for the relation between Eq. 2.7 and Eq.

2.2, Ṡi,j is the received signal ĖR without taking into account the thermal noise ṅi,j(r, t)

(in Eq. 2.7) or Ṅ (in Eq. 2.2).
Non-ideality and non-equality exist at the received channels due to the independence

of electronic devices. As a result, the actual measured signals at the output of four
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polarimetric receiver channels are rewritten by

Vi,j(r, t) = ai,j(r) · xi,j(r, t) + bi,j(r), (2.8)

where a denotes the amplification in each channel and b denotes the bias of the output
signal in each channel. Normally, the amplification and bias of the output signal are
related to the range and are assumed to be without short-term temporal dependency.

Ideally, the noise signals in all channels are supposed to be the same, since the radar
channels with the same electronic design and the same system temperature are in the
same physical environment. Measurement of noise signals in each polarimetric channel
can be accomplished by blanking the transmitter power amplifier. The noise signals
obtained at the output of four polarimetric receiver channels can be represented as

Ni,j(r) = ai,j(r) · n+ bi,j(r), (2.9)

where n is the actual white Gaussian noise with zero mean and variance σ2
0. Noise is

supposed to be independent in terms of range, time, and channel. And Ni,j(r) is the
noise measured at the output of the receive channel (i, j). Based on these assumptions,
the measured noise signals can be estimated and analyzed by the mean value and
variance, which are defined by

mean(Ni,j(r)) = bi,j(r) ,

var(Ni,j(r)) = [ai,j(r)]
2 · σ2

0 .
(2.10)

One of the calibrations in the polarimetric radar system is equalization for all chan-
nel signals, which is defined by

zi,j(r, t) = Vi,j(r, t)−mean(Ni,j(r))/
√
var(Ni,j(r))

= S ′
i,j(r, t) + n′

i,j(r, t).
(2.11)

By this equalization, the amplitude of S ′
i,j(r, t) is actually the square root of the

signal-to-noise ratio (
√
SNR) in each channel, and n′

i,j(r, t) as the variance of the
equalized noise is 1.

2.1.3 The PARSAX radar data and their noise-based equalization

The polarimetric data that are used in this study have been measured using the
PARSAX S-band polarimetric-Doppler FMCW radar. This radar measures the po-
larization scattering matrix of objects in the linearly-polarized polarization basis H, V .
For this reason in all further chapters, we will use the equivalence of the general in-
dexes i, j, i, j = 1, 2 with the standard notation of the {H,V } polarization basis:
SHH = S11, SHV = S12 and SV V = S22. For covariance matrix indexing in this report,
we used the following notation: index 1 is used for HH, index 2 - for HV , index 3 -
for V V .

It is also necessary to mention that the PARSAX radar measures the PSM elements
HV and V H independently, but as soon as we used in this study the covariance matices
with the size 3×3, for all further analysis we used the averaging of the measured cross-
polarized channels SmHV and SmVH : SHV = (SmHV + SmVH)/2.
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In this research, the mean values of noise signals in full polarimetric channels mea-
sured in 15 bursts are analyzed at each range index. Through this analysis of the
measured noise signals, the non-equality characteristic is found between the polarimet-
ric channels instead of the identical noise signals in all channels. As seen in Figure
2.2, with total range indices of 1200, the mean value of the noise power of the HH
polarization is approximately 97 dB, while the mean value of the noise power of the
HV polarization is 6dB higher than HH, and the V V polarization is 7dB higher than
HH.

Figure 2.2: Noise Power of HH, HV, and VV polarization before system calibration

To solve the non-equality of measured noise signals in the HH, HV , and V V chan-
nels, and minimize the thermal noise influence on the further estimation of the polar-
ization parameters, calibration is carried out with the idea of equalization on the mean
value of noise powers. In the measurement of this research, since the observed objects
are static, long (≈ 0.5 s) Doppler coherent integration of measured signals is used with
the following filtration of stationary signals with zero Doppler velocity. First, after the
Fourier transform for the slow-time measured received signals s(r, t) and the measured
noise signals n(r, t) in polarimetric channels, the zero Doppler data S(R) and N(R)
are collected. Then the amplitude of zero Doppler data corresponding to the received
signals is replaced by

√
SNR:

SNR =
|S(R)|2

|N(R)|2
(2.12)

and the phase of zero Doppler data φs (R) corresponding to the received signals is
preserved. Note that the SNR in Eq. 2.12 in terms of the same range index, which
means that the zero Doppler data of the signals are divided by the zero Doppler data
of the noise measured at the same range index as the received signal. As a result, the
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regenerated zero Doppler data can be represented by:

S
′
(R) =

√
SNR · ejφs(R) (2.13)

Assume that the distortions due to this non-equality of noise powers are similar for both
target signal and clutter signals; the noise-based equalization as the internal calibration
for all channel signals is accomplished on zero Doppler after Fourier transforms on the
measurement slow-time data. The experimental efficiency of such calibration will be
tested and discussed in the performance of detection algorithms used in the real radar
scene (in Chapter 5).

2.2 Model of the Polarimetric Radar Signals

The polarization scattering matrix described above characterizes the instant polarimet-
ric characteristics of the target and is not suitable in case when these characteristics
are changing in time, especially when they are random. At the same time, the ran-
dom variability of the PSM in space is the standard behavior of this characteristic in
real-world scenarios. To study the statistical characteristics of real radar objects, the
covariance matrix is essential in this research.

The covariance matrix as a common way to estimate second-order statistics exploits
the scattering vector [22], its standard expression which is estimated starting from the
Lexicographic basis scattering vector is shown below on H-V polarization basis, where
the random variables have zero mean.

C4L =


〈
|SHH |2

〉
⟨SHHS∗

HV ⟩ ⟨SHHS∗
V H⟩ ⟨SHHS∗

V V ⟩
⟨SHV S∗

HH⟩
〈
|SHV |2

〉
⟨SHV S∗

V H⟩ ⟨SHV S∗
V V ⟩

⟨SV HS∗
HH⟩ ⟨SV HS∗

HV ⟩
〈
|SV H |2

〉
⟨SV HS∗

V V ⟩
⟨SV V S∗

HH⟩ ⟨SV V S∗
HV ⟩ ⟨SV V S∗

V H⟩
〈
|SV V |2

〉
 (2.14)

For a monostatic sensing system, the Sinclair scattering matrix is symmetrical,
which means SV H = SHV . Then the polarimetric covariance matrix can be expressed
as:

C3L =

 〈
|SHH |2

〉
⟨SHHS∗

HV ⟩ ⟨SHHS∗
V V ⟩

⟨SHV S∗
HH⟩

〈
|SHV |2

〉
⟨SHV S∗

V V ⟩
⟨SV V S∗

HH⟩ ⟨SV V S∗
HV ⟩

〈
|SV V |2

〉
 (2.15)

Normally, the scattered polarization signal from an object is received with noise. In
this case, the polarimetric covariance matrix of the received signals is the sum of the
polarimetric covariance matrix of an object and the polarimetric covariance matrix of
noise, which can be expressed by

C = Cob +Cn = Cob + σn
2I (2.16)

where C denotes the covariance matrix of received polarization signals, Cob denotes
the covariance matrix of an object, Cn denotes the covariance matrix of noise. When
the noise is assumed to be white Gaussian noise with zero mean and variance σn

2, its
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covariance matrix is a diagonal matrix with σn
2 on the main diagonal. When the total

power of the full polarization channels of an object is much larger than the total power
of full polarization channels of noise, the covariance matrix of noise can be considered
negligible.

The aim of this chapter is to provide the polarimetric clutter model of radar re-
turn for terrain environment, and the polarimetric target models for multi-scatterer
target and deterministic target depending on various resolution conditions. These sig-
nal models will then be used in the process of deriving the OPD, ILRT, and PWF
detectors.

2.2.1 Polarimetric Clutter Model

This subsection presents a basic explanation of the polarimetric clutter model that is
learned from previously published literature [2] and used further in our study.

The main assumption of this model is that in case of measurements with a coherent
fully polarimetric radar the terrain clutter return can be modeled as a complex Gaussian
random vector (2.6) with zero mean values of all components. The Probability Density
Function (pdf) of this measured vector can be written as

f(X) =
1

π3 |C|
exp{−X†C−1X} (2.17)

where † denotes the complex conjugate transpose and

C = E
{
XX†} (2.18)

is the covariance matrix of the complex polarimetric vector X, and again, the clutter
data is assumed to have zero mean values of the observation vector E

{
X
}
= 0.

The complete statistical characteristics of the jointly Gaussian radar returns HH,
HV, and VV are presented by the covariance matrix. Discussed for the cases where
the electromagnetic wave scattering in the reflection-symmetric medium [22] where the
cross-polarization scattering will not be correlated with the co-polarization, and based
on the Born approximation [27], four of the elements in the covariance matrix reducing
to zero theoretically. On a linear polarization basis (H-V), the corresponding covariance
matrix for complex Gaussian clutter is supposed to be expressed as

C = σ

 1 0 ρ
√
γ

0 ϵ 0
ρ∗
√
γ 0 γ

 (2.19)

where σ denotes the backscattering cross section per unit area of the HH polarimetric
channel,

σ = E
{
|SHH |2

}
; (2.20)

and ϵ denotes the intensity ratio of HV and HH returns,

ϵ =
E
{
|SHV |2

}
E
{
|SHH |2

} ; (2.21)
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while γ denotes the intensity ratio of the returns of V V and HH,

γ =
E
{
|SV V |2

}
E
{
|SHH |2

} ; (2.22)

and ρ denotes the correlation coefficient between the returns of HH and V V .

ρ =
E {SHHS∗

V V }
E
{
|SHH |2

}
E
{
|SV V |2

} (2.23)

This is the ”normalized” form of the covariance matrix where the elements of the matrix
are normalized by C11 as the HH intensity showing as the weight factor in front of the
matrix.

In other words, the clutter covariance is specified by four parameters (σc, ϵc, γc, ρc).
The reason of the four zero elements of the covariance matrix is that the randommedium
model employed is azimuthally isotropic, which straightforwardly indicates that there
is no correlation between the co-polarization (V V and the HH) and cross-polarization
returns (HV ). Therefore, all elements of the covariance matrix can be obtained from
the theoretical model for various terrain covers.

The fully polarimetric Gaussian clutter model that characterizes homogeneous clut-
ter regions is used to derive and analyze the theoretical performance of various po-
larimetric target detection algorithms including the span algorithm, the polarimetric
whitening filter (PWF), the optimal polarimetric detector (OPD) algorithm, and the
identity likelihood ratio test which uses polarimetric information.

2.2.2 Polarimetric Target Models

This subsection describes the theoretical model of the polarimetric characteristics of a
ground-based clutter that are learned from previously published literature [5].

The radar targets can be thought of as consisting of a spatially distributed set of
multiple simple polarized scatterers. For example, dihedral and trihedral reflectors.
Due to the polarimetric radar resolution and the size of the target, these elementary
scattering points may be captured and collected in two different target models. In
case of the measurements with the high-resolution polarimetric radar, these scattering
elements can be captured individually - such a case is called the ”deterministic target”.
The counterparts of deterministic targets are the multi-scatterer targets model in the
case of a medium- or low-resolution polarimetric radar system, where the scattering
points are combined into one scatterer coherently [28], [29]. In this section, both models
are taken into account. To be more specific, the descriptions of the target models for
these two cases are as follows.

2.2.2.1 Multi-scatterer Target

In the case of medium- or low-resolution polarimetric radar systems, the target yields
a multi-scatterer return, which cannot be represented by a single sample acquisition
since any implementation may be different from each other for stochastic processes.
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The multi-scatterer target is assumed to have a jointly complex-Gaussian PDF, which
is independent of the clutter return. It is also called a random target or a partial target.

Basically, the random target-plus-clutter return is expressed as

Xt+c = Xt +Xc (2.24)

This implies that the measured target-plus-clutter return is a zero-mean complex
Gaussian with covariance.

Ct+c = Ct +Cc. (2.25)

In summary, for the multi-scatterer target, the covariance matrix is assumed to
have the same general structure as the covariance of the polarimetric clutter model and
is also specified by the four parameters (σt, ϵt, γt, ρt). To be specific, σt denotes the
backscattering cross section per unit area of the HH polarimetric channel of target,
ϵt denotes the target’s intensity ratio of HV and HH returns, γt denotes the target’s
intensity ratio of the returns of V V and HH, and ρt denotes the correlation coefficient
of target between the returns of HH and V V polarization.

2.2.2.2 Deterministic Target

Each scattering element is captured individually in the case of the high-resolution
polarimetric radar system [30], as a result, the target is modeled as a deterministic
individual resolved scatterer. Algebraically, the scattering matrix, as a transformation
from an incident to a scattered wave, is essential and qualified for the polarimetric
characteristic of deterministic target if and only if the target polarimetric behavior
is polarimetric stationary in time/space. For some typologies of single targets, the
hypothesis of polarized illumination can be relaxed, since the scattered wave is always
completely polarized.

The return reflected from a deterministic target is given below.

X = α

 cosx
ejy sinx

−ej2y cosx

 (2.26)

In the scattering return expression Eq. 2.26, parameter α specifies the amplitude of
the return, x and y are based on the general structure of the scattering matrix of the
deterministic target.

Simple polarized deterministic scatterers that are mostly discussed and widely used
are the trihedral [31] and the dihedral [32] [33] shown in Fig. 2.3 [34] and Fig. 2.4 [34].

For the trihedral reflector, x = 0 and y = π/2 based on the general structure of the
scattering matrix of the trihedral corner reflector as in Eq. 2.27

[S]trihedral = α

(
1 0
0 1

)
(2.27)

where α implies the scale of backscattering intensity of the polarization channels. For
dihedral, x = 2θ, where θ specifies the orientation of the dihedral corner reflector, and
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Figure 2.3: trihedral corner reflector

Figure 2.4: dihedral corner reflector

y = 0 based on the general structure of the scattering matrix of the dihedral corner
reflector as in Eq. 2.28

[S]dihedral = α

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
(2.28)

2.3 Conclusions

This chapter first introduces the PARSAX polarimetric Doppler FMCW radar system,
including the descriptions of polarimetric sensing waveforms and processing algorithms,
measurement setup, and a noise-based calibration method that is proposed in this
research for the measured polarimetric data. Assuming that the distortions for target
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and clutter are similar, this internal calibration compensates for the distortion at the
receiver in the radar system that was not calibrated well. Internal calibration improves
to determine accurate measurements of the returned signals scattered by the objects in
the realistic scenario. One of the important advantages of noise-based calibration is that
the amplitude of calibrated signals in every channel becomes equal to the square root
of the signal-to-noise ratio. It opens the way for the absolute noise-based calibration
of radar signals.

This chapter also describes the polarimetric signal model of clutter with complex
Gaussian probability density function, which will be used to characterize homogeneous
terrain, and the polarimetric signal models of targets, which are classified as multi-
scatterer targets or as deterministic targets. Based on these theoretical models, po-
larimetric detection algorithms based on statistical approaches are able to realize in
a polarimetric radar simulator, and experimental data of the observed targets and
ground-based clutter can be successfully interpreted.
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Target Detection using
Polarimetric Information 3
In this thesis, the target detection algorithms taken into account can be categorized
as polarimetric detectors based on statistical approaches (OPD, ILRT, and PWF de-
tectors) and polarimetric detectors based on physical approaches (single channel, span,
PMS detectors). This chapter provides an overview of six different target detection algo-
rithms which are operated with the polarimetric clutter and targets models as the ideal
case in which target and clutter statistics are known exactly. Then the performance
comparison analysis, which includes target detectability and polarization contrast en-
hancement, is presented for the two target-in-clutter scenarios: multi-scatterer target
(an armored target and truck) in the meadow clutter and deterministic target (dihedral
and trihedral reflector) in the meadow clutter with changing the target-to-clutter ratio.
By comparing the ROC curves results by using the polarimetric radar simulator in this
research with the results of the previous reference using the same type of theoretical
models, the developed polarimetric radar simulator is tested and validated. With the
comparative analysis in terms of the gain of detectability compared with the simplest
single-channel detection method, the improvement of using polarization information is
presented.

3.1 Polarimetric Detection Algorithms

The polarimetric detection algorithms discussed and tested in this research were pro-
posed in the previous studies [5] [35] [3] [3], their performance analysis is to prove the
validation of the proposed, developed, and implemented polarimetric radar simulator,
which can generate feature vectors of radar observations according to the specific co-
variance matrix of object in this research. So that the polarimetric detection algorithms
and the feature vectors generation method will be able to apply to the polarimetric data
based on real radar measurements of the environment with non-homogeneous clutter.

Before introducing the polarimetric detectors based on statistical approaches with
requirements of a priori knowledge, the three polarimetric detectors only based on
physical approaches are interpreted, which are single channel detector, span detector,
and PMS detector, respectively.

3.1.1 Single Channel Detector

The single polarimetric channel is the simplest scattering signal processor. A classical
single-channel detector is supposed to require only the magnitude information of a single
polarimetric channel. For example, the single channel detector HH simply compares
the intensity of theHH polarization of the signal under test with the detection threshold
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T . The single channel detector’s expression is shown below.

|SHH |2 > T (3.1)

|SV V |2 > T (3.2)

|SHV |2 > T (3.3)

A single-channel detector can work impressively with a simple calculation when the
target of interest has a significant cross-section, leading to a magnitude higher than
that of the surrounding clutter. It can be widely used for artificial targets mainly
made up of corner reflectors and mirrors with consequent strong backscattering. One
type of single-channel detector is linear co-polarization, including horizontal or vertical
magnitude information as Eq. 3.1 and Eq. 3.2 [35]. It is the best choice for odd-bounces
and horizontal even-bounces detection if the a priori knowledge is not available and
only one polarization is available. In the cases where the clutter shows particularly high
intensity at linear co-polarization, a single channel HH or V V detector may not be the
ideal choice. With dual-polarimetric scattering data, cross-polarization may address
detection in such a situation. The cross-polarization detector HV can be expressed
as Eq 3.3 [35]. In the case of the detection of ships on a rough sea surface, bright
backscattering occurs in HH and V V but not in HV .

The single channel detector performs target detection with relatively low implemen-
tation complexity of the acquisition system [35]. However, performance may be poor
due to false alarms and missed detections. As we mentioned before, for the target with
relatively low intensity at the only available polarimetric channel, the target may be
missed during such simple detection. Missed detection also appears when the target
under test shows poor linear co-polarization backscattering, and only co-polarization
information is accessible in the current radar acquisition system, such as in the case of
detecting an aloft horizontal wire with a single V V channel detector. The false alarm
occurs when the surrounding area includes many clutters with strong backscattering at
a single polarimetric channel.

The single channel detector can be adopted as a pretest for filtering the clutter with
significant differences from the target on the single polarimetric channel. To improve the
performance of this simple detector, a priori information can be used in the subsequent
statistical step.

3.1.2 Span Detector

Considering the total power of fully polarimetric channels in the scattering matrix can
be a possible solution to reduce the rate of missed detection, in the case where the target
cannot provide significant backscattering at the selected polarization, causing missed
detection by using a single channel detector. The span of the scattering matrix [S] can
provide the total power information by calculating a weighted non-coherent summation
of the three polarimetric channels HH, HV , and V V [36]. The span detector is used
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to compare the span of the signal under test with the detection threshold T , which can
be expressed as Eq. 3.4 [5].

span = |SHH |2 + 2|SHV |2 + |SV V |2 > T (3.4)

The span detector is supposed to display better target detection performance, since
it considers physical knowledge of all three polarimetric channels compared with a single
channel detector, even though it cannot avoid problems with false alarms from natural
targets and missed detection of weak targets.

This detection algorithm is also relatively simple in terms of implementation because
it is not necessary to introduce statistical information as a priori. The same as the single
channel detector mentioned above, the span detector is a useful pre-test filter followed
by a subsequent statistical step to improve detection performance.

3.1.3 Power Maximization Synthesis

The Power Maximization Synthesis (PMS) detector has been proposed as an improve-
ment to the span detector. It is specified as Eq. 3.5 [5], which is a function of the
components of the measurement vector and does not contain a priori statistical knowl-
edge of the target or clutter [5] [35].

0.5

[
|SHH |2 + 2|SHV |2 + |SV V |2 +

√(
|SHH |2 − |SV V |2

)2
+ 4|S∗

HHSHV + SV V S∗
HV |

2

]
>T

(3.5)
Then we pay particular attention to the polarimetric detector algorithms with the

use of polarimetric characteristics as a priori knowledge for developing target detection
with statistical approaches, which are the polarimetric whitening filter (PWF), optimal
polarimetric detector (OPD), and identity likelihood ration test (ILRT), respectively.

3.1.4 Polarimetric Whitening Filter

The Polarimetric Whitening Filter is a widely used technique based on statistical signal
processing of quad-polarimetric data that employs a priori clutter information [37]. It
has been shown to be a processing strategy capable of optimally reducing the speckle
of image target detection of synthetic aperture radar (SAR) [3].

The PWF derivation is given by considering the scattered signal from the object
with three complex measurements, HH, HV, and VV. The Polarimetric Whitening
Filter is represented by the quadratic expression as Eq. 3.6 [3]

X†Cc
−1X > T (3.6)

where Cc denotes the clutter covariance matrix, the subscript c represents clutter. The
mainly theoretical idea of the Polarimetric Whitening Filter can be divided into two
steps:

1. passing the polarimetric measurement vector X through a whitening filter to

obtain Y = C
−1/2
c X, which will have unit covariance if the covariance matrix of
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X satisfies Cc. This is the reason for the name ”Whitening Filter” since this
processing makes clutter look like a ”white”, non-correlated noise. Especially for
the homogeneous clutter region, each pixel of clutter in the scene has the same
averaged polarimetric power and the same covariance between the polarimetric
returns;

2. summing the powers contained in the elements of Y by y = Y† ·Y.

In theory, this filter is supposed to realize the target detection in the homogeneous
clutter environment where the clutters statistical characteristics are the same spatially.

3.1.5 Optimal Polarimetric Detector

The polarimetric whitening filter (PWF) we discussed above only takes into account the
reduction in speckle (or the standard deviation to mean ratio of the clutter background).
If the resolution cell is large enough, targets as well as the ground clutter can be treated
as multi-scatterers. In that case, they can be described by means of a multi-dimensional
complex Gaussian pdf:

f (X) =
1

π3 |C|
exp

{
−X†C−1X

}
(3.7)

In the ideal case, the pdf of clutter and target (plus clutter) is known from previous
experience. In the expression of hypothesis, the subscript C represents the null hypoth-
esis of clutter only, and the subscript T + C represents the alternative hypothesis of
target plus clutter. Then both hypotheses are shown in Eq. 3.9 - H1: target plus clutter
and H0: clutter only - can be separated by means of a simple likelihood ratio test that
considers complete knowledge of the clutter and target statistics. This corresponds to
a quadratic detector for the presence of a target as Eq. 3.10.

H1 : HT+C ; (3.8)

H0 : HC (3.9)

f (X|HT+C)

f (X|HC)
> T (3.10)

The detection threshold is T . The solution to this likelihood ratio is easily shown to
be a quadratic detector of the form [2]

X† (C−1
c −C−1

t+c

)
X+ ln

|Cc|
|Ct+c|

> lnT. (3.11)

where |Cc| denotes the determinant of the clutter covariance matrix and |Ct+c| denotes
the determinant of the total return covariance matrix with the target plus clutter.

Note that the detector requires a priori information on the covariance matrices of
the target and the clutter. These must be adjusted to the different scenarios before any
detection; therefore, this method is difficult in terms of implementation. The optimal
polarimetric detector gives the best performance in most environments, especially in
the low probability of false alarm cases.
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3.1.6 Identity-Likelihood-Ratio-Test

Identity-Likelihood-Ratio-Test (ILRT), as an alternative to OPD, replaces the target
covariance matrix with a scaled identity matrix [5]. Therefore, the ILRT detection
algorithm is shown as Eq. 3.12 [5]

X†

[
C−1

c −
(
1

4
E [span(Xt)] · I+Cc

)−1
]
X > T (3.12)

where I is the 3-by-3 identity matrix, and E {span(Xt)} is the target’s mean value of
the total power in the full polarization channels, which is also defined as the expected
span of the target return.

The algorithm still requires a priori knowledge of the clutter covariance matrix plus
the target-to-clutter ratio, which is contained in the calculation of the expected span
of the target return. The strength of this detector is that the target mean and target
covariance are not necessary.

3.2 Simulation Results on Detection Performance Comparison

This section presents the performance comparison of the detection algorithms intro-
duced above. The results are summarized for both the multi-scatterer (random) target-
in-clutter and the deterministic (dihedral and trihedral) target-in-clutter with changing
target-to-clutter ratio.

3.2.1 Target-to-clutter Ratio Definition

The target-to-clutter ratio is defined as Eq. 3.13 [5] where E {span (Xt)} is the expected
span of the target return, E {span (Xc)} is the expected span of the clutter return, and
the target-to-clutter ratio T/C, which means the total power ratio of target and clutter,
is defined by the ratio of these two expected span values.

T/C =
E {span (Xt)}
E {span (Xc)}

(3.13)

3.2.2 Feature Vectors Generating With Model-based Decomposition

In this research, the main development of the polarimetric radar simulator is that
the feature vectors Xt of the target and Xc of the clutter are generated according to
the polarimetric covariance matrix models of the meadow clutter, different types of
multi-scatterer targets and deterministic targets, this method is known as the name
of model-based decomposition [38]. Firstly, random signals are generated with 10000
complex samples at a slow time with normally distributed real and imaginary parts.
The random signal covariance matrix in all polarization channels (HH, HV , and V V ) is
known as a 3-by-3 identity matrix with ones on the main diagonal and zeros elsewhere.

Then calculate the Cholesky decomposition Cupper of the covariance matrix C using
the diagonal and upper triangle of C, so that C = Cupper

′ · Cupper. It is worth
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ε γ ρ
√
γ

Armored target 0.19 1.0 0.28

Truck target 0.02 1.1 0.83

Meadow clutter 0.18 1.1 0.63

Table 3.1: Polarimetric Parameters of Targets and Clutter

mentioning that the polarimetric covariance matrix can satisfy the requirement to be
positive definite for the Cholesky decomposition [39] [40].

The radar feature vector X consisting of three complex elements, SHH , SHV , and
SV V with the typical polarimetric covariance matrix model is then created by mul-
tiplying random vectors Xrandn with the Cholesky decomposition Cupper of the co-
variance matrix C. The expression of this feature vector generation can be shown by
X = Xrandn ·Cupper.

3.2.3 Algorithms Performance Comparison with Polarimetric Radar Sim-
ulator

3.2.3.1 ROC curves

One of the challenges in interpreting the results of diagnostic tests for target detection
that produce continuous measures is the selection of the threshold to distinguish a
‘positive’ test (radar return with target) from a ‘negative’ test (radar return without
target). The role of the ROC curve is to choose the threshold cut-off points for target
detection. To produce a ROC curve, the sensitivity and specificity of different values
of a continuous test measure are first tabulated [41]. This essentially results in a list
of various test values and the corresponding sensitivity and specificity of the test at
that value. Then the graphical ROC curve is produced by plotting the sensitivity (true
positive rate), which is shown as the probability of detection on the y axis against
1–specificity (false positive rate) which is shown as the probability of false alarm on the
x axis for the various values tabulated.

First, the performance results for the detection of random targets are presented in
Figure. 3.1, 3.2, 3.3, 3.4. For random target-in-clutter scenarios, it is worth mentioning
that the radar returns from the terrain-clutter environment are simulated according to
the polarimetric parameters of the covariance statistics of clutter and various types of
target, which are also employed as a known a priori knowledge of clutter and target for
target detection. The values of the covariance matrix for an armored target (Target
1), truck (Target 2), and meadow clutter are given in Table. 3.1 [5]. Polarization
covariance parameters were obtained empirically.

Figure. 3.1 and Figure. 3.2 display the detection performance for an armored target
in a meadow clutter with a target-to-clutter ratio of 6dB and 10dB, respectively. For
this type of target, the ROC curves of six detectors can be split into three groups.
The OPD, the PWF, and the ILRT which are all based on statistical approaches are
clustered as the first group with impressive performance. The span and PMS detectors
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Figure 3.1: Detection performance for armored target with 6 dB T/C ratio

have degraded performance compared to the first group. Both are based on a physical
approach; it seems that, with a relatively lower probability of false alarms, the PMS
will detect the armored target better than the span detector. However, it is difficult
for the single polarimetric channel detector HH to detect such a target.

In the case of the truck in the meadow, it is similar when the target-to-clutter ratio is
10dB as seen in Figure 3.4. However, it shows an exception for the T/C ratio dropping
to 6 dB, as seen in Figure 3.3 where the ILRT detector gives a worse performance than
OPD and PWF.

Furthermore, it is obvious that the probability of detection can improve as the
target-to-clutter ratio increases to some extent.

Then the performance results are presented in Figures 3.5, 3.6, 3.7, 3.8 for the de-
terministic target-in-clutter case, which employ the detection algorithms for a dihedral
scatterer oriented at 0◦, 22.5◦ and 45◦, respectively, and a trihedral scatterer. The T/C
ratio for each case is 3 dB.

Figures 3.5, 3.6 and 3.7 compare the detectability of the polarimetric detectors for
the dihedral reflector with different dihedral orientation angles. The PWF and ILRT
yield similar detection performances, which is preceded only by the OPD detector,
which achieves the most accurate result in terms of detecting dihedral scatterers. It is
interesting to note that both the PMS and the span detector show performance degra-
dation from the optimal, but it is not significantly influenced by the difference in the
target-oriented angle because of the specific physical structure of the dihedral reflec-
tor. The single-polarimetric-channel HH detector is not effective in detecting dihedral
targets. For the dihedral with 45◦ orientation angle, the probability of detection of
the HH detector is significantly minimized for a constant probability of false alarm.
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This happens because there is no target return in the HH channel, so the probability
of detection always equals the probability of a false alarm.

Figure 3.2: Detection performance for armored target with 10 dB T/C ratio

Figure 3.3: Detection performance for truck target with 6 dB T/C ratio
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Figure 3.4: Detection performance for truck target with 10 dB T/C ratio

Figure 3.5: Detection performance for dihedral reflector oriented at 0° with 3 dB T/C ratio

Figure 3.8 illustrates the detection performance for the trihedral case. When com-
paring the ROC curve of the OPD in Figure 3.8 with Figures 3.5, 3.6 and 3.7, it shows
that the optimal detection of a trihedral scatterer is much more challenging than the op-
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Figure 3.6: Detection performance for dihedral reflector oriented at 22.5° with 3 dB T/C ratio

Figure 3.7: Detection performance for dihedral reflector oriented at 45° with 3 dB T/C ratio

timal detection of a dihedral scatterer. This result illustrates the physical fact that the
clutter is statistically more similar to the trihedral than dihedral reflector. The same
difficulty occurs for the PWF and ILRT, since these detectors aim to discriminate the
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Figure 3.8: Detection performance for trihedral reflector with 3 dB T/C ratio

trihedral target from the clutter based on the statistical characteristics. However, the
detection algorithms based on only physical information of the radar return, such as
the span detector and the PMS, display more similar performances against dihedral
and trihedral.

3.2.3.2 Gain of Detectability

The gain in targets detectability in this thesis is defined by the gain in the probability
of detection, which is equal to the ratio of Pd for the detectors that use the polarization
information to the probability of detection for the single channel detector (for the fixed
value of false alarm rate). This definition is expressed as

Gain =
PD(span, or PMS, or PWF,or OPD, or ILRT)

PD(HH)
(3.14)

With such a definition, when the gain values are positive (when the gain in target
detectability is converted to decibels), it means that compared with the single-channel
detector, the polarimetric detectors can improve the detectability to different extents.

To analyze the results in terms of the gain in targets detectability, for example,
from Fig. 3.9 to 3.12, this gain for multi-scatterer targets detection by OPD and
PWF have impressive detection improvement compared with classical single-channel
detector. For the detection algorithms based on physical approaches (span and PMS
detector), with full polarization channels feature vectors known, the target detection
can be improved. Seen from the gain of detectability analysis for the dihedral target at
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different orientation angles in Fig. 3.13 - 3.15, these detectors are effective to increase
the probability of detection. The reason why the span detector does not help in the
case of 0-degree orientation of the dihedral reflector can be that the HH polarization
channel is dominant for this specific type of target. For the trihedral target, only the
OPD has a great improvement in terms of the gain of detectability. In addition, the
ILRT cannot guarantee to be helpful for all types of targets.

Figure 3.9: Gain of detectability for armored target with 6 dB T/C ratio

Figure 3.10: Gain of detectability for armored target with 10 dB T/C ratio

These simulation results correspond to the ideal situation where the target radar
return vector, target statistical characteristic, and clutter statistical characteristic are
exactly known. However, this essential information about the desired target may not
be easy to measure in practice. The same is also correct for the clutter surrounding the
target to obtain a priori since clutter can vary spatially within the type of terrain and
temporally within the changing of weather and seasonal conditions. Fortunately, clutter
statistics may be estimated at processing time with a considerable computational cost,
such as the adaptive polarimetric whitening filter method.

The results discussed above indicate that a significant improvement in detection
performance can be achieved by using clutter statistics. The target statistic as ad-
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Figure 3.11: Gain of detectability for truck target with 6 dB T/C ratio

Figure 3.12: Gain of detectability for truck target with 10 dB T/C ratio

Figure 3.13: Gain of detectability for dihedral oriented at 0° with 3 dB T/C ratio

ditional knowledge shows a modest improvement in terms of detectability seen from
the performance of ILRT compared with that of PWF, and even worse than that of
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Figure 3.14: Gain of detectability for dihedral oriented at 22.5° with 3 dB T/C ratio

Figure 3.15: Gain of detectability for dihedral oriented at 45° with 3 dB T/C ratio

Figure 3.16: Gain of detectability for trihedral with 3 dB T/C ratio

the PWF in some cases. Optimal performance can typically be obtained by the PWF
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detector, which requires the clutter covariance only. For most cases, detectors based
on only physical approaches to maximize the energy of the target’s signal instead of
taking into account the target and clutter statistics, yield to poorer effectiveness than
the PWF. As a reasonable prediction, considering the trade-off between the amount of
statistical knowledge required and the detection performance, the polarimetric whiten-
ing filter may become the best choice in practical measurement for the homogeneous
clutter case [5].

3.3 Conclusions

This chapter provides brief derivations and descriptions of polarimetric detection al-
gorithms. These algorithms are classified into two main classes. The first set includes
the detectors based on physical approaches (single-channel, span, PMS detectors) by
maximizing the received from the scattered target signal. The second class includes
detectors based on statistical approaches (OPD, ILRT, and PWF detectors), which
use a priori information about targets’ and/or clutter’s polarization characteristics to
maximize the signal-to-clutter ratio.

The way to generate feature vectors according to the covariance matrix with the
values of typical elements has been introduced in this chapter (3.2.2). By applying
the feature vector generation in the polarimetric radar simulator, these algorithms are
tested for various multi-scatterer and deterministic targets in the homogeneous meadow
clutter environment with different target-to-clutter ratio conditions. The performances
of the algorithms are displayed and compared by ROC curve results in simulation. in
this research, the roc curve results show reproduction of previous study in the litera-
ture [5] by using the polarimetric radar simulator, which illustrates the method in the
simulator has been tested and validated successfully. To present the performances of
the detections with full polarization channels’ information in terms of the improvement
of detectability compared with the simplest single channel detector, the definition of
gain of detectability is introduced as a criteria for this analysis.

The analysis of presented results shows that detectors, which are based on physical
approaches only, without the information about expected target and clutter polari-
metric characteristics, have less effect than statistical approaches for most cases. The
performance of the identity likelihood ratio test method is quite irregular due to the
different types of target. Since the effect of target mismatch (substituting information
of target span for target covariance matrix) is not well understood, this method will
not be further discussed in application to real measurements. For targets in a homo-
geneous clutter environment, the Polarimetric Whitening Filter may become the best
choice since this method requires only knowledge of the clutter covariance matrix and
can achieve reliable performance in terms of target detection. In practical measure-
ment, it can be challenging to obtain a priori the polarimetric characteristics of the
target, but the Optimal Polarimetric Detector that requires a priori knowledge of both
the target and the clutter reaches the best performance for all types of targets that
were analyzed within the simulation.
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Statistical Characteristics of
Real Ground Clutter and
Reference Targets 4
Modern radar systems have implemented adaptive processing techniques such as
constant false alarm rate (CFAR) detectors, adaptive arrays, and space-time adaptive
processing (STAP) to mitigate the harmful effects of clutter and jamming [42]. Typi-
cally, in adaptive radars, the disturbance covariance matrix is estimated using training
data collected from the cells surrounding cell under test (CUT). All these estimators
are based on the assumption that the training data vectors do not contain interference
or targets and share the same covariance matrix as the primary data. These techniques
are quite restrictive, as they are based on a stationary and homogeneous environment
during adaptation [43]. Stationarity and homogeneity requirements are rarely met in
practice. In fact, training data vectors are often contaminated by interfering targets,
discrete large clutter, spiky clutter, and other outliers of different types rendering them
non-homogeneous. Another type of non-homogeneity is caused by the non-stationary
nature of the clutter, which also significantly degrades radar performances. Moving
averaging window for the estimation of the polarimetric covariance matrix of the radar
returns is one of the recommended approaches to achieve simplicity and ease of imple-
mentation.

4.1 Moving Spatial Averaging Window in Covariance Matrix
Estimation

In the monostatic radar system, the polarimetric covariance matrix is defined as the
outer product of the feature vector with its conjugate transpose as

C =

 〈
|SHH |2

〉
⟨SHHSHV ∗⟩ ⟨SHHSV V ∗⟩

⟨SHV SHH∗⟩
〈
|SHV |2

〉
⟨SV V SHH∗⟩

⟨SV V SHH∗⟩ ⟨SV V SHV ∗⟩
〈
|SV V |2

〉
 (4.1)

where ⟨...⟩ indicates the averaging of the temporal or spatial ensemble. The covariance
matrix, consisting of three real powers and three complex covariance elements, con-
tains complete information on the amplitude and phase variance and correlation for all
complex elements of [S]. The covariance matrix is a Hermitian positive semi-definite
matrix, which implies that these possess real non-negative eigenvalues and orthogonal
eigenvectors.
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4.1.1 Covariance Matrix Calculation With Moving Spatial Averaging Win-
dow

Covariance estimation is widely used for signal processing and even cryptanalysis [44].
The use of an estimated covariance matrix originated in the area of speech process-
ing [45]. The moving averaging window method is a prominent auto-correlation and
covariance estimator for smoothing measured data by replacing a data point with the
average (or a weighted form of it) of its neighbors. The moving averaging window
for covariance calculation is a biased estimator, and its output is a Hermitian, positive
semi-definite matrix, so it is guaranteed to be non-singular. This is unlike the output of
other methods, such as auto-correlation, and often causes the moving averaging window
method to be preferred. It is an important computational building block to smooth
spatial clutter by averaging over given transposed data or performing a 2D spectral
analysis.

Computation of the estimated covariance matrix essentially entails the averaging
of inner products within a moving window over the input matrix: for each window
position, a vector is formed by column-stacking the column of the window and is then
multiplied by its conjugate transpose. Averaging those results over all possible positions
of the window within the input matrix yields the estimated covariance matrix.

The single-dimension averaging window is moved over the data, shifting it by one
time step after each calculation. Such a moving-window averaged covariance matrix,
which is also called a sample covariance matrix, can be denoted in a more general form
by

C =
1

K

K∑
i=1

XiX
H
i (4.2)

where K denotes the number of data samples of the chosen window size.
In the case of our measurement, to obtain smoothed polarimetric characteristics of

target and clutter, instead of calculating the mean value of observations in the slow-
time domain, the moving averaging window will be applied in the 2D spectral analysis.
As mentioned in Chapter 2, for minimization of the thermal noise influence on the
polarization parameters estimation, the long (0.5 sec) Doppler coherent integration of
measured signals has been used with the following filtration of the stationary signals
with zero Doppler velocity. These signals are used to estimate the polarimetric covari-
ance matrix using the moving spatial averaging window method.

The input zero Doppler matrix (range-by-azimuth) in the entire area is denoted by
A. To estimate the spatial characteristics of objects and clutter, the covariance matrix
is smoothly obtained by employing the moving window in space, including range index
and azimuth index. W nR,nA denotes the moving nR × nA window, which is a block
within A, where the (nR, nA) superscripts denote the position of its lower right corner.
Figure 4.1 is shown as an example of a moving averaging window with window size
nR × nA(nR = 5, nA = 7), which is also the window size chosen applied to the real
measurement. The moving window is also known as a sub-aperture.

In the measurement of this research, the range index has a high range resolution of
around 3.3 meters (each range index represents approximately 3.3 meters in practice),
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and the azimuth index has an azimuth resolution of 0.1 degrees (azimuth varying 0.1
degrees from one azimuth index to the next azimuth index). The width of the moving
averaging window is a small portion of the range index, which is indicated by nR, and
the length of the moving averaging window is a small portion of the azimuth index,
which is indicated by nA.

Figure 4.1: Moving spatial averaging window (window size 5x7)

The position of the center point of the window is represented as (i, j) and will move
slightly as the window moves with i changing from (1 + nR−1

2
) to (NR − nR−1

2
) and j

changing from (1 + nA−1
2

) to (NA − nA−1
2

), i ∈ NR, j ∈ NA.
Each calculation of the covariance matrix by the moving window can be expressed

as

C(i, j) = E
{
X ·X†} =

= 1
nR·nA

nR/2∑
iw=−nR/2

nA/2∑
jw=−nA/2

X(i+ iw, j + jw) ·X†(i+ iw, j + jw)

(4.3)

Note that C is a symmetric positive definite matrix, so only the diagonal and upper
triangle or lower triangle portion of this matrix needs to be computed.

4.1.2 Effect of Window Size in Moving Average

Estimation of the covariance matrix using the moving averaging window aims to im-
prove the similarity of pixels related to the specific type of object and to demonstrate
the differences among different types of object or terrain features. The variabilities
of each covariance component changing with range and azimuth are smoother than in
the original data. Based on this improvement in every component of the covariance
matrix, we can more easily recognize the specific features of the ground. The order of
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the moving average (or, in other words, the window size) determines the smoothness of
the covariance components in space. In terms of the number of observations included
in the moving window, an even-numbered window size with both even-numbered width
and length is preferred, since the estimated covariance matrix will be concluded as the
center-point’s covariance matrix.

The size of the window is supposed to be optimized based on the trade-off between
the minimal degradation in the spatial resolution and the similarity of the pixels related
to the same specific type of observed objects.

In theory, the covariance matrix of the moving averaging window is the mean value
of all samples in the window. In the case that the window is not wide enough, the
contrary appears in the range and azimuth indexes. To smooth the contrary in range
index and azimuth index between two variables, a wider window with more observations
is required. However, in the case of over-smoothed when the window is too wide, serious
degradation in the spatial resolution can lead to the failure to classify two different
objects in terms of polarimetric characteristics.

In this subsection, the results of the elements of the covariance matrix C11, C12, C13,
C22, C23, and C33 obtained by applying different window sizes are shown as comparison.
The expressions of these six elements are as follows:

C11 = E
{
|SHH |2

}
(4.4)

C22 =
E
{
|SHV |2

}
E
{
|SHH |2

} (4.5)

C33 =
E
{
|SV V |2

}
E
{
|SHH |2

} (4.6)

C12 =
E {SHH · S∗

HV }
E
{
|SHH |2

} (4.7)

C13 =
E {SHH · S∗

V V }
E
{
|SHH |2

} (4.8)

C23 =
E {SHV · S∗

V V }
E
{
|SHH |2

} (4.9)

where C11 represents the backscattering cross section per unit area for the HH po-
larization. C22 is the intensity ratio of the polarization of HV and HH, and C33 is
the intensity ratio of the polarization of V V and HH. C12, C13, and C23 illustrate
the correlation between the returns HH and HV , the returns HH and V V , and the
returns HV and V V , respectively, which are normalized by the intensity of the HH
polarization (C11). The elements of the covariance matrix C11, C12, C13, C22, C23, and
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C33 contain all the information in the covariance matrix, as the covariance matrix is
symmetric.

We compared each element of the covariance matrix calculated by moving the av-
erage window with the window size of 3× 3, 5× 7, and 5× 15, which can be found in
Appendix A. When selecting the specific range of 3.42 km (with range index = 1026),
the variables among the azimuth index for each element of the covariance matrix can be
clearly seen. Small window size causes more fluctuations, while the curves of window
size 5 × 7 captures the features more smoothly. This phenomenon is obviously shown
in terms of C11 , C22, C33, C13. Figure 4.2b versus Figure 4.2a are presented below as
an example of this phenomenon.

(a) C11 (window size 5x7) (b) C11 (window size 3x3)

(c) C11 (window size 5x15)

Figure 4.2: Amplitude of the element C11 along the azimuth index for the various sizes of
moving averaging window

A moving averaging window with a window size 5 × 15 averages the polarimetric
characteristics more smoothly. However, this size of window removes most of the fluc-
tuations and peaks within every 20 azimuth indices and only preserves outstanding
peaks, such as in the comparison of Figure. 4.3c versus Figure. 4.3a. In this case, some
variations of each covariance element may be overlooked, which may lead to the risk
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of emitting the information of polarimetric characteristics by the oversmoothed. As a
result, the curves of window size 5×7 seem suitable to capture the impressive variables
among the azimuth index.

Based on the test results with various sizes of moving averaging windows, it can be
concluded that the window size 5× 7 is the optimal window size.

It should be mentioned that the larger the window size, the more gaps we will have
towards the edges of the dataset, since at the edge there will not be enough data points
to make the estimate (with a window size 5× 7 there will be no estimates for the first
and the last two data points in the range and the first and last three data points at the
azimuth in the dataset).

(a) C22 window size 5x7 (b) C22 window size 3x3

(c) C22 window size 5x15

Figure 4.3: Amplitude of the element C22 along the azimuth index for the various sizes of
moving average window
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4.2 Estimation of Covariance Matrix Elements With Moving
Spatial Averaging Window

4.2.1 Maps of the Covariance Matrix Elements

After assigning the result of the covariance matrix of moving the average window to
the center point of the window, each pixel on the map has its own covariance matrix
representing the polarimetric characteristics of every pixel. To extract the covariance
matrix of the reference target and clutter as knowledge of a priori, the element maps
of the covariance matrix, which can be found in Appendix B, will be applied as a
library of polarimetric characteristics.

First, three elements of the covariance matrix related to the intensities of HH, HV ,
V V polarization are discussed together to interpret the power information of different
polarization channels of the backscatterers in the entire scenario.

Figure. 4.4 is the result of the covariance matrix element C11 denoting the intensities
of the HH polarization for the entire area on the map. By overlaying the C11 map
result on the Google Earth satellite map in Figure. 4.5, the measured scenario can
be easily recognized that the blue areas correspond to grasslands with a relatively low
intensity of HH of less than 30 dB, while the forest areas and constructions on the
map correspond to the yellow and red regions with a high intensity of HH greater than
40 dB. It is worth mentioning that the power line masts with strong HH intensities,
which are approximately larger than 45 dB, range in line on the map shown as the red
placemarks named TS1 - TS6 in Figure. 4.5.

The results of the intensity ratio of theHV polarization and theHH polarization for
the entire area show that the grass clutter has a low intensity on the HV polarization.
However, the forest clutter does not show a regional similarity in terms of the intensity
of HV . Also, this covariance matrix element does not help to recognize 6 power line
masts in a line significantly.

In terms of the covariance matrix C33, grasslands have a typical low intensity of V V
polarization. Forests and constructions have higher intensities in V V polarization than
grasses, and in some pixels the intensities of V V are even higher than those of HH.
For power line masts as targets, unfortunately, there is no apparent similarity in terms
of the intensity ratio of the V V and HH polarization.

Furthermore, to interpret the correlation characteristics between different polariza-
tion channels of the backscatterers in the entire scenario, the other three elements of
the covariance matrix related to the correlation between HH and HV , HH and V V ,
and HV and V V are discussed together.

In most pixels on the map that illustrates the correlation between HH and HV
polarization, the element C12 normalized by the intensity of the HH polarization is less
than 0.4, which means that the correlation between HH and HV polarization is weak.
Similar results are obtained for the element of the covariance matrix C23 normalized
by the intensity of the HH polarization,

In Figure. 4.6, the covariance matrix element C13 normalized by the intensity ofHH
polarization of the grass clutter region is obviously lower than that of other regions,
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Figure 4.4: The map of the estimation of the amplitudes of the covariance matrix element
C11 by moving averaging window

which can help recognize grass clutter from other ground-based clutter in terms of
polarimetric characteristics.

As a result, the covariance matrix can be effective in helping to recognize different
ground-based features in terms of polarimetric characteristics by combining the inten-
sity information on each polarization channel and the correlation between the co- and
cross-polarizations.

4.2.2 Covariance Matrices of Target And Clutter

The covariance matrix elements of the target, two different types of clutter forest and
grass are shown in the Figure. 4.7a to Figure. 4.7f. The red curves represent elements of
the covariance matrix of our target, which is a power line mast located on grasslands.
The blue curves represent elements of the forest clutter covariance matrix, and the
orange curves represent elements of the grass clutter covariance matrix.

First, the geo-referenced plan position indicator (PPI) representation of the radar
data is compared with Google Earth satellite images and maps. Based on this interpre-
tation, the reference target (the set of power line masts) and two types of ground-based
clutter - the ”forest” and the ”grassland” are selected. First, the range is set as con-
stant. Then the azimuth cut is set as + / - 45 azimuth indices to the center point of
the target location, forest and grasslands.
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Figure 4.5: Intensity of the HH polarization channel on the geographic map with the set of
geo-located targets

As seen in Figure 4.7a, it is interesting to find the specific covariance patterns of the
target, grasslands, and forests that are achieved by convolution with the antenna pat-
tern, with a relatively clear transition boundary. Apparently, the transition boundaries
of forest and grass are wider than the target’s, and the forest’s polarimetric charac-
teristics vary within the boundary. According to the specific covariance pattern of the
target and the transition boundary, clearly shown by the red curve in the Figure. 4.7a,
it is reasonable to conclude that the target occupies about 30 azimuth indices in the
middle of this chosen azimuth indices scale, and samples beyond this azimuth scale can
be considered to be approaching the clutter, which is the grassland illustrated by the
real global map as a reference. As a result, the result analysis for the target will focus
only on these 30 azimuth indices in the middle (from azimuth index 36 to 66).

In Figure 4.7a the intensity of the HH polarization (covariance matrix element C11)
of the target is approximately 50 dB, and the intensity of the HH polarization of the
forest zone is also competitive, but with more fluctuations between the chosen azimuth
index scale. The intensity of the HH polarization of the grass is about 23 dB, which
is obviously less than those of the target and the forest.

In Figure 4.7b the intensities of HV polarization of the target and grassland are
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Figure 4.6: The map of the estimation of the amplitudes of the covariance matrix element
C13 by moving averaging window

quite low. Since the variability of the forest is large (within -20 dB to 5 dB), this forest
element is difficult to predict.

In Figure 4.7c the intensity ratio of V V polarization and HH polarization (covari-
ance matrix element C33) is about 0 dB, which means that the co-polarization (HH
and V V ) of this target are almost the same intensity. The grass clutter ratio fluctuates
around -10 dB, while the variability of the forest ratio is still large within -7 to 15 dB.

In Figure. 4.7d the correlation between the polarization HH and HV is demon-
strated by the element of the covariance matrix C12. The amplitudes of this element
of the target and grass are about 0.1 and 0.3, respectively, which can be considered
a weak correlation. However, this element of the forest changes within the azimuth
index; in this case, it can be challenging to predict the correlation between HH and
HV for forest clutter.

In Figure. 4.7e the correlation between HH and V V is demonstrated by the covari-
ance matrix C13. For this target, V V and HV are supposed to be highly correlated.
In general, the forest also has a strong correlation between HH and V V polarization,
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while the grass has a weak correlation between HH and V V polarization.

In Figure. 4.7f the correlation between HV and V V is demonstrated by the
covariance matrix element C23. It is difficult to draw a conclusion about the correlation
between HV and V V for the forest zone in this case. The correlation between HV
and V V for the target is weak, and the same is true for grass clutter.

In conclusion, the power line mast (located in the range = 3.42 km, azimuth
= 176.25◦) has strong intensities of co-polarization, and a weak intensity of cross-
polarization that can be negligible compared to the intensity of co-polarization. It
has a weak correlation between cross-polarization (HV ) and co-polarization (HH and
V V ), but it has a strong correlation between HH and V V . The forest clutter shows
a competitive HH polarization intensity compared to that of the target. However, the
polarimetric characteristics of the forest obtained from other elements of the covari-
ance matrix have strong variability. In this case, it may be challenging to summarize a
polarimetric covariance matrix model for the forest, so it is reasonable to regard forest
clutter as non-homogeneous clutter. The polarization power of the grass clutter is much
weaker than that of the forest and target. For grass clutter, the correlations between
HH and V V , HV and HH, HV and V V are weak. Furthermore, the polarimetric
characteristics of grass clutter are much more stable than those of forests. As a result,
polarimetric characteristics can be effective information in terms of recognition and
suppression of clutter and detection of the target.

4.2.3 Covariance Matrix of Reference Target And ground clutter

The covariance matrix of the power line mast, grass, and forest can be easily extracted
from the polarimetric characteristic library and used later in the calculation of the
target detection algorithms.

As seen from the covariance matrix element maps, as mentioned above, grass clutter
has similarity in terms of each covariance matrix element. Unfortunately, although the
power line masts seem quite similar on the global map, they have strong variability in
terms of polarimetric characteristics with each other, which brings challenges to sum-
marize a theoretic covariance matrix model for such a type of object. In addition, forest
clutter will be considered as non-homogeneous clutter in our case, since its covariance
matrix elements also fluctuate intensively.

In this thesis, a list of covariance matrices for each power line mast, grass clutter,
and forest clutter is provided. This information will later be used in the calculation of
detection algorithms as a priori knowledge of the target and clutter. The covariance
matrix list is as follow:

power line mast 1

C = 59.57 dB ·

 1.00 0.25 · ej20.68 0.81 · ej−27.75

0.25 · ej−20.68 0.07 0.21 · ej−50.01

0.81 · ej27.75 0.21 · ej50.01 0.69


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(a) Covariance matrix element C11 (b) Covariance matrix element C22

(c) Covariance matrix element C33 (d) Covariance matrix element C12

(e) Covariance matrix element C13 (f) Covariance matrix element C23

Figure 4.7: Covariance matrix elements of target, forest clutter, and grass clutter

power line mast 2

C = 51.47 dB ·

 1.00 0.65 · ej18.30 0.33 · ej127.15
0.65 · ej−18.30 0.50 0.26 · ej111.66
0.33 · ej−127.15 0.26 · ej−111.66 0.35


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power line mast 3

C = 55.78 dB ·

 1.00 0.19 · ej−2.19 0.39 · ej10.93
0.19 · ej2.19 0.09 0.11 · ej55.53
0.39 · ej−10.93 0.11 · ej−55.53 0.29


power line mast 4

C = 49.24 dB ·

 1.00 0.64 · ej−30.02 0.69 · ej−112.45

0.64 · ej30.02 0.44 0.45 · ej−86.95

0.69 · ej112.45 0.45 · ej86.95 0.61


power line mast 5

C = 51.21 dB ·

 1.00 0.11 · ej0.32 1.00 · ej−38.46

0.11 · ej−0.32 0.02 0.12 · ej−31.61

1.00 · ej38.46 0.12 · ej31.61 1.05


power line mast 6

C = 50.72 dB ·

 1.00 0.09 · ej−1.02 0.73 · ej−22.56

0.09 · ej1.02 0.03 0.10 · ej−29.53

0.73 · ej22.56 0.10 · ej29.53 0.74


Forest

C = 50.29 dB ·

 1.00 0.37 · ej−84.50 0.63 · ej−42.76

0.37 · ej84.50 0.26 0.37 · ej45.94
0.63 · ej42.76 0.37 · ej−45.94 0.94


Grass

C = 39.42 dB ·

 1.00 0.13 · ej77.32 0.57 · ej−76.12

0.13 · ej−77.32 0.07 0.06 · ej−147.83

0.57 · ej76.12 0.06 · ej147.83 0.38


To check the precision of measurement result in terms of the covariance matrix,

the grass covariance matrix obtained by the measurement data is compared with the
theoretical polarimetric clutter model with elements values of meadow clutter given in
Chapter 2 Table. 3.1. Except that the intensity of V V polarization of the result of the
grass measurement is slightly lower than its theoretical value, the grass clutter in the
measurement is strongly similar to its theoretical model with a low intensity of HV
polarization and a weak correlation between HV and HH, HV , and V V .

4.3 Conclusions

This chapter mainly discusses the estimation of the polarimetric covariance matrix with
the moving spatial averaging window method. The size of such a window has been opti-
mized based on the trade-off between the minimal degradation in the spatial resolution
and the similarity of the pixels related to the same specific type of observed objects.
Then the covariance matrix element maps demonstrate the result of the covariance
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matrix estimation that applies the moving spatial averaging window method with the
chosen window size for the entire measured scenario.

The covariance matrix element maps show that the moving spatial averaging window
method improves the smoothness of the covariance matrix components in space, so that
the similarity of the pixels related to the same specific type of ground-based feature
has been improved, and the differences among various objects and terrain features have
been demonstrated. These maps also demonstrate that, in general, the analyzed radar
scene has a high variability of polarization characteristics and can be defined as a case
of heavy inhomogeneous clutter.

A library of polarimetric characteristics of the measured scenario consists of the
covariance matrix estimation results shown in the maps, which can be used as a ref-
erence source to extract the covariance matrices of the reference target and clutter as
knowledge a priori. For such interpretation of radar data, the geo-referenced plan po-
sition indicator (PPI) representation of the radar data is compared with Google Earth
satellite images and maps. Based on this interpretation, the reference target (the set
of power-line mast constructions) and two types of ground-based clutter - the ”forest”
and the ”grassland” were selected.

The covariance matrix estimation result of the power line mast, grass, and forest
clutter shows that the forest and grass clutter are distributed much more widely than
the power line mast as the observed object. Although the power line masts ranging in
line seem similar in their appearances, they are different from each other in terms of
polarimetric characteristics denoted by covariance matrix elements. The elements of
the covariance matrix of forest clutter display larger variabilities compared to those of
grass clutter. As a result, we can draw a conclusion that grass can be regarded as homo-
geneous clutter with relatively stable polarimetric characteristics, while forest should
be categorized as non-homogeneous clutter with polarimetric characteristic variations
in our measurement case.

At the end of this chapter, we provide a list of covariance matrices for each power
line mast, grass clutter, and forest clutter. The accuracy of the estimation of the
covariance matrix is proved by comparing the grass covariance matrix obtained by the
measurement data with the theoretical covariance matrix of the meadow clutter.
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Experimental Validation of
Polarimetric Algorithms for
Targets Detection in Heavy
Inhomogeneous Clutter 5
In Chapter 3, the derivations of a variety of polarimetric detection algorithms are
given and then their performances are compared in simulation, focusing on the trade-
off between the amount of statistical knowledge priori required by an algorithm and
the corresponding performance of the algorithm. In Chapter 4, analysis of the spatial
statistical characteristics of the reference target and different types of ground-based
clutter in terms of polarization covariance matrices is provided.

In this chapter, with a priori knowledge of clutters and the reference target provided
in Chapter 4, the set of polarimetric detection algorithms is implemented based on the
S-band polarimetric-Doppler FMCW PARSAX radar high-resolution range measure-
ments (3.3 m) in azimuthal scanning mode.

5.1 Experimental Validation of the Detection Algorithms

To prove the measurement validation of the polarimetric target detection algorithms
mentioned earlier, this section tests the algorithms using real target and clutter data
collected by the PARSAX polarimetric Doppler FMCW radar system. Full polarimetric
measurements (HH,HV , and V V ) are generated based on the covariance matrix, which
is obtained by zero Doppler measurement data. The performances are displayed by the
detection output maps.

5.1.1 Measurement Setup

The PARSAX radar is mounted at the top of the EEMCS (Faculty of Electrical Engi-
neering, Mathematics and Computer Science) building. It is the S-band polarimetric
Doppler FMCW radar system used to collect the measurements. PARSAX is full po-
larimetric with two independent highly linear polarimetric RF channels in both the
transmitter and receiver. The radar operates on the S-band with carrier frequency
fc = 3.315GHz and bandwidth B = 50MHz. The pulse repetition interval (PRI) is
240 µs.

More specifically, the realistic scenario measurement in this research is set as fol-
lows. The polarization angle of 21.56 degrees occurs due to the inclination axis of the
PARSAX radar, when the radar antennas pointed towards the measured scenario at
elevation angle of -0.85 degrees during the measurement. Measurement of polarization
scattering matrix (PSM) of each point in the realistic scenario has been carried out
with actual rotation angles ranging from 150 to 210 degrees. PARSAX radar data
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are measured with high range resolution (approximately 3.3 meters) in the azimuthal
scanning mode with azimuth resolution of 0.1 degrees per burst. The beam width of
the antenna system in the azimuth direction is 2.8 degrees. The measurement setup
parameters are shown in the list in Fig. 5.1.

Figure 5.1: PARSAX polarimetric Doppler FMCW radar system parameters

It is necessary to mention that the noise-based equalization is applied as an internal
calibration on zero Doppler data in the measurement of this research, which has been
mentioned in Chapter 2.

5.1.2 Generating Feature Vectors As Measurements For Detection Algo-
rithms

Assuming that there are similar distortions for the target and clutter, noise-based
calibration of the radar system is addressed as an internal calibration for the measured
polarimetric data. After noise-based calibration, the zero Doppler data of each pixel
are then utilized to perform spatial averaging in the moving average window for the
calculation of the covariance matrix. In order to operate the target detection algorithms
that are introduced in Chapter 3 for the polarimetric radar data, the measured target
and clutter returns on the slow-time scale need to be generated as measurements. The
method of generating feature vectors with random signals and Cholesky decomposition
of covariance matrix introduced in Chapter 3 for the polarimetric radar simulator can
be used to generate multichannel polarimetric signals in real measurements as well. The
measurements of the full polarimetric channels are obtained according to the estimated
covariance matrix obtained by the moving averaging spatial window of each pixel (from
the polarimetric characteristics library) in the entire measured scenario.

5.1.3 Target-to-clutter Ratio of the measurement data

The target-to-clutter ratio can be obtained by the ratio of the target span and clutter
span. We define the ranges of reference targets that are the radii from PARSAX to
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the power line masts. At the ranges of the reference targets, the powers of clutters
are obtained by the averaged value of the clutters, which are five clutter positions with
relatively strong powers. Figure. 5.2 demonstrates the situation of weak target in heavy
clutter environment in terms of the target-to-clutter ratio. The maximum TC ratio in
these six ranges is 10.35 dB, while the minimum TC ratio is -5.73 dB, which means
that the power of clutter is 5.73 dB stronger than the reference target’s power.

Figure 5.2: Target-to-clutter ratio at the ranges of targets

5.1.4 Results of Target Detection Algorithms Using Physical Method With
Measurement Data

It is necessary to clarify that in this research, the detection performance of different
polarimetric detection algorithms using polarization information is evaluated by com-
paring the map of geo-reference plan position indicator (PPI) result of the detectors’
output to the Google Earth satellite map.

First, methods that use only physical information are addressed without the require-
ment of polarimetric characteristics such as a priori knowledge. The performances of
these detectors are shown below.

5.1.4.1 Single Channel HH Detector

The single-channel HH detector, which considers only the intensity of HH polarization,
is the simplest method in terms of implementation. Seen in Figure. 5.3 the reference
targets have relatively strong HH intensities. However, after applying a single-channel
HH detector, these targets are still hidden among ground-based clutter whose powers

51



of HH polarization are within or even beyond the level of HH intensities of reference
targets. For complex realistic scenarios, single-channel HH detectors cannot effectively
detect targets.

Figure 5.3: Target detection by single channel HH detector

5.1.4.2 Span Detector

The span detector considers the weighted non-coherent sum of all three polarimetric
channels HH, HV , and V V . Considering that the measured scenario covers a large
range scale, one of the drawbacks of the span detector could be that objects closer to
the radar receiver may have stronger total received power, because the radar received
power is proportional to 1

R2 known in the radar range equation Eq. 5.1, where R is the
range from the transmit antenna to the object, Ps is the transmitted power, Pr is the
reflected power, G is the antenna gain, and σ in the radar range equation is the radar
cross section.

In Figure. 5.4, span detector can suppress clutter with relatively low total power,
such as the grass zone. However, the power line mast cannot yet be classified from
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forest clutter or other constructions.

Pr =
Ps

4πR2
G · σ (5.1)

Figure 5.4: Target detection by span detector

5.1.4.3 Power Maximum Synthesis (PMS) Detector

As an improvement of the span detector, the power maximum synthesis detector is a
function of the components of the measurement vectors. It makes no use of a priori
target or clutter statistics. Compare Figure. 5.5 with Figure. 5.4, there are no obvi-
ous differences between the performance of the PMS detector and the span detector.
Therefore, the PMS detector also cannot detect reference targets from the ground-based
clutter environment.

Based on the performance described above, for our complex realistic scenario, de-
tectors with physical approaches cannot effectively detect targets. The results of a
single-channel, span, and PMS detector with measurement data agree with the perfor-
mance of these detection algorithms in simulation.

53



Figure 5.5: Target detection by power maximization synthesis (PMS) detector

In addition, in Appendix C the span detector used without noise-based calibration
is shown as an example of tests on the efficiency of noise-based calibration on the
improvement of polarization information’s accuracy and reliability. It is necessary to
mention that for detection algorithms based on physical approaches, the accuracy of
the total powers of scattered signals is shown with slight improvement with noise-based
calibration.

5.1.5 Results of Target Detection Algorithms Using Statistical Method
With Measurement Data

After the discussion on experimental results of detectors based on physical approaches,
in this part, the methods are tested with the requirement of polarimetric characteristics
such as a priori knowledge with measured data. The performance of these detectors is
shown below.
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5.1.5.1 Optimal Polarimetric Detector (OPD)

The optimal polarimetric detector utilized in our measurement operates as the expres-
sion in Eq. 3.11. Note that in the measurement, Σt+c is replaced by the covariance
matrix on the pixel of the reference target, since we consider all the positions that are
not the reference target as clutter with Σc, and the reference target corresponds to the
covariance matrix Σt. In other words, with an optimal polarimetric detector, every
pixel on the map is supposed to be categorized into two classes: clutter as class 1, and
target as class 2. The expression of OPD in the measurement can be shown in Eq. 5.2.

X† (C−1
c −C−1

t

)
X+ ln

|Cc|
|Ct|

> lnT. (5.2)

In this research, OPD uses the polarimetric covariance matrix of the reference target
and uses the spatial moving window to estimate the clutter’s covariance matrix for
every location. The maximum detector response will be in the location of objects with
polarimetric characteristics that are similar to the ”reference” target.

In order to increase the difference between the output results of the target and
clutter after the optimal polarimetric detector, the output results are addressed by
scaling in a reasonable way. s represents the original OPD output result, and the final
OPD output result is represented by s

′
after scaling as in Eq. 5.3.

s
′
= 10 log10 (10

s) (5.3)

Since power line masts have a large variability in terms of polarimetric characteris-
tics, once OPD is used, it can only be achieved to detect the power line mast at one
specific position from the ground-based clutter. With priori knowledge of the reference
targets at six positions, it is possible to detect all reference targets from grass and forest
clutter. The scaling processing for six targets detection is given as Eq. 5.4, where si is
the output result of each power line mast after OPD.

s
′
= 10 log10

(
6∑
i=1

10si

)
(5.4)

Setting a reasonable threshold T = −10, the performance of the OPD method
output for the detection of the reference target is shown in Figure. 5.6. By modifying
the detector threshold, the number of false alarms and missed detections can be reduced.
When the threshold is set to T = −15, several false alarms appear with a value lower
than the reference targets but can lead to incorrect detection (Figure 5.7). As in the
performance shown in Figure. 5.6 by set threshold T = −10, it successfully detects
reference targets from all ground-based clutter throughout the scenario without false
alarms and without missed detection on the detection map.

As in the conclusion given in Chapter 4, the grass can be regarded as homogeneous
clutter with relatively stable polarimetric characteristics, while the forest’s polarimetric
characteristics have strong variabilities implied by the covariance matrix. To test the
sensitivity of the OPD method, this detection algorithm is also used for the detection
of the grass zone and the detection of the forest zone. In this processing, Σt is assigned
by the reference covariance matrices of grass and forest.
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Figure 5.6: Reference targets detection by optimal polarimetric detector

The grass areas among the realistic scenario are distributed on different azimuth
and range scales. Seen in Figure. 5.8, OPD method for the detection of grasslands
is quite effective, and the grasslands show a scale similar to the detector output with
significantly stronger level than other objects.

The forest areas among the realistic scenario are also distributed on different azimuth
and range scales, and some forests are surrounding constructions. Seen in the Figure.
5.9, OPD method for forest area detection is also effective. Because the polarimetric
characteristics of the forest are not homogeneous, the results of OPD detection have
values on different scales, indicating that OPD is sensitivity with the target covariance
matrix as reference. It is interesting to notice that the forest surrounding constructions
can be recognized quite well, which are displayed as ellipses on the map.

As a result, the OPD method is a promising detection algorithm for target detection
and polarimetric contrast enhancement.

In addition, the efficiency of noise-based calibration in improving polarization infor-
mation’s accuracy and reliability are also tested for the OPD method. Note that the
performance of detection algorithms based on statistical approaches, such as the OPD,
does not perform obvious changes between with and without noise-based calibration.
This is also reasonable because the order of magnitude of noise is at least 20 dB less
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Figure 5.7: Reference targets detection by optimal polarimetric detector

than that of scattered signals from objects.

5.1.5.2 Polarimetric Whitening Filter (PWF)

In theory, the PWF detector is supposed to convert the specified type of clutter return
to white noise. From the result of the simulation of PWF, it is concluded that PWF
is the best choice to suppress clutter and detect the target in a homogeneous clutter
situation. For the complex scenario in the measurement, it is challenging to reduce all
kinds of clutter by applying PWF at one time, especially for non-homogeneous clutter
such as forest area. Therefore, the performance analysis focuses on the ability of the
PWF detector to suppress the specific type of clutter.

Figure 5.10 represents the contrast between the power of HH polarization, the OPD
detection result of the grass area to indicate the positions of the grass area, and the
performance of the PWF method in terms of grass clutter suppression. Grass clutter
can be significantly suppressed by PWF, although other objects such as power line
masts, constructions, and forest zones cannot be easily classified in this way.

Figure 5.11 represents the contrast between the power of HH polarization, the result
of OPD detection of the forest area to indicate the positions of the forest area, and the
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Figure 5.8: Grass area detection by optimal polarimetric detector

performance of the PWF method in terms of forest clutter suppression. It is exciting
to notice that the forest clutter can be excellently filtered by PWF, with only the
power line masts and the constructions surrounded by forest remaining on the map
after processing by the polarimetric whitening filter.

From another point of view, PWF is an excellent processing for classifying whether
the measured signal is the radar return of specific clutter or not. The specific type
of clutter can be effectively suppressed by PWF; the performance of this clutter filter
depends on the variability of the polarimetric characteristics of the clutter.

5.1.6 Recognition Map

To provide an explicit comparison of the detection of terrain features with a realistic
scenario on the global map, it is necessary to create an image with a mixture of the
detection results of the power line masts, the grass area, and the forest area as three
components on the map. In this thesis, these three components detected by an optimal
polarimetric detector are displayed on a recognition map, which is created by making
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Figure 5.9: Forest area detection by optimal polarimetric detector

an image of the 2D mixture of OPD output using RGB pallets for every component.

The recognition map shown in Figure 5.12 is the combination of the output of the
OPD algorithm, which is used to demonstrate the detection results of the reference
targets, the grassland area and the forest area. All output values below the threshold
as suppressed clutter are shown in white. Different targets detected by OPD with an
output value above the threshold are considered as every component of the recognition
map. Three components are shown in different colors: power line masts as reference
targets are represented in red, the forest area is represented in green, and the grass
area is yellow.

In view of the performance comparison of these detection algorithms, there is no
doubt that with a priori knowledge of the reference target, the OPD algorithm exhibits
the best performance in terms of target detection and polarimetric contrast enhance-
ment.
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Figure 5.10: Grass area detection performance of OPD and grass clutter suppression of PWF

Figure 5.11: Forest area detection performance of OPD and forest clutter suppression of PWF

5.2 Conclusions

This chapter describes mainly the analysis and comparison of the polarimetric detection
algorithms performances: three detectors based on physical approaches, which are the
single channel HH detector, the span detector, the Power Maximum Synthesis (PMS)
detector, and two detectors based on statistical approaches, which are the Polarimetric
Whitening Filter (PWF) and the Optimal Polarimetric Detector (OPD). The perfor-
mances of each detector are shown using the 2D maps of the detector outputs, which
can be clearly compared with the observed radar scenario seen from the geo-referenced
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Figure 5.12: Recognition map of reference targets and ground-based clutter

geographical map.

For a complex measured scenario, polarimetric radar detectors, which are based
only on physical approaches for maximization of the received from the target scattered
signal, are not effective for the detection of the reference targets. In the studied cases,
they are the power line masts arranged in a line. These poor performances of the
physical-approches-based detectors applied to the really measured data are in good
agreement with the simulation results.

For the two detectors based on statistical approaches that are performed with mea-
surement data, they have a significant improvement in the abilities of target detection
and clutter suppression compared with detectors that only consider physical informa-
tion.

The Polarimetric Whitening Filter, which uses a priori information about the polar-
ization covariance matrix of the clutter, demonstrates excellent results in the suppres-
sion of this specific type of clutter. It is not sensitive in terms of the similarity between
the ”reference” covariance matrix used in the filter and this matrix in the analyzed
spatial location. With the covariance matrix previously estimated as the average for
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multiple locations of a specific type of clutter, it can impressively suppress this type of
clutter.

In the case where both target and clutter characteristics are a priori known, the
optimal polarimetric detector is the best choice for polarimetric contrast enhancement
and reference target detection, which also confirms the theoretical expectation. With
respect to the gain of detectability, compared with the single channel detector output
map, the Polarimetric Whitening Filter and the Optimal Polarimetric Filter perform
significant improvement, which are also displayed by the interpretation of geo-reference
PPI representaion. In this chapter, experimental results are provided for the detection
of power line masts, grasslands, and forests. The comparison of three different varieties
of targets indicates that the OPD method is sensitive to the variability of the polari-
metric characteristics of the reference target. Furthermore, one of the most important
advantages of OPD is that it can be implemented in parallel for different clutter types
within a simple real-time streaming signal processing algorithm. At the end of this
chapter, a recognition map is created as an image of the mixture of 2D data of OPD
output using RGB pallets for every variety of targets. The recognition map presents
the detection results of power line masts, grasslands, and forests together and provides
an explicit correspondence to the terrain features observed from the realistic scenario
on the global map.
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Conclusion And Future Work 6
6.1 Conclusion

The radar target detection in heavy clutter, when surrounding objects scatter compa-
rable to the target amount of sensing signal energy, is still an acute problem for modern
surveillance radars. One of the possible solutions is to improve the contrast between
the target and the surrounding clutter using the difference in their polarization pa-
rameters. Quite a wide set of detection algorithms that use polarimetric information
have been proposed in previous research. They can mainly be divided into two classes.
The first set tries to detect the target using some physical approaches by maximizing
the received signal from the target scattered. This set includes the single channel de-
tector, the span detector, and the power maximization detector. The second class of
polarimetric detectors uses a priori information about targets’ and/or clutter’s polari-
metric characteristics to maximize the signal-to-clutter ratio. This set consists of two
algorithms - the Polarimetric Whitening Filter and the Optimal Polarimetric Detector.
The main disadvantages of previous studies of such algorithms are that they were de-
veloped and tested mostly for cases where the clutter has been assumed to be spatially
homogeneous within reasonable intervals of radar ranges and azimuths. In real-world
scenarios, such homogeneity cannot be observed in most cases of target detection in
ground-based clutter, which is usually characterized by high spatial variability, follow-
ing the variety of surface-based objects, terrain types, and features. This research aims
to estimate the potential for the use of polarimetric information for target detection in
the cases of spatially inhomogeneous clutter.

The research started with the study of the performance of the polarimetric detection
algorithms mentioned above and with the estimation and analysis of their sensitivity to
the difference in the polarimetric characteristics of the target and clutter. To achieve
this goal, the polarimetric radar simulator that generates multi-channel polarimetric
signals with specified signal-to-clutter ratios and a polarimetric covariance matrix has
been developed. In this research, the gain of detectability is defined, which is the ratio
of the probability of detection of other polarimetric detectors to that of a single channel
detector (HH). The detectors’ performances as a function of the relation between the
target’s and clutter’s polarimetric characteristics were compared in the ROC curves and
also in terms of gain of detectability using the simulated data. Then the analysis of
simulation performances was used further as the background for the estimation of these
algorithms’ performances in the case of application to real experimentally measured
polarimetric data with quite inhomogeneous clutter.

Based on S-band polarimetric Doppler FMCWPARSAX radar high-resolution range
measurements (≈ 3.3 m) in azimuthal scanning mode, the spatial variability of the
polarimetric characteristics of the rural / recreational area in the surroundings of the
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city of Delft was studied for the first time.
To improve the accuracy and reliability of the polarimetric information processing,

the new noise-based method for the equalization/calibration of the polarimetric radar
channels was proposed and tested. One of the important advantages of this method is
that the amplitude of calibrated signals in every channel becomes equal to the square
root of the signal-to-noise ratio. It opens the way for the absolute noise-based calibra-
tion of radar signals.

For further minimization of the influence of thermal noise on the polarization pa-
rameters, the estimation of the long (≈ 0.5 s) Doppler coherent integration of measured
signals has been used with the following filtration of stationary signals with zero Doppler
velocity. These signals were used to estimate the polarimetric covariance matrix with
the moving spatial averaging window method. The size of such a window has been opti-
mized based on the trade-off between the minimal degradation in the spatial resolution
and the similarity of the pixels related to the same specific type of observed objects.
For such interpretation of radar data, the geo-referenced plan position indicator (PPI)
representation of the radar data was compared with Google Earth satellite images and
maps.

Based on this interpretation, the reference target (the set of power-line mast con-
structions) and two types of ground-based clutter - the ”forest” and the ”grassland”
were selected. The resulting polarimetric covariance matrices demonstrate the stable
similarity of the polarimetric characteristics within the same class of clutter and the
differences between different types of objects or terrain features. But in general, the
analyzed radar scene has a high variability of polarimetric characteristics and can be
defined as a case of heavy inhomogeneous clutter. In this thesis, an analysis of the spa-
tial statistical characteristics of the reference target and different types of ground-based
clutter is provided in terms of polarimetric covariance matrices.

The experimental validation of the set of polarimetric detection algorithms, which
has been done using real PARSAX radar data, shows a few interesting results.

• The set of detection algorithms that use some physical approaches for maximiza-
tion of the received from the target scattered signal, which in simulated cases
of homogeneous clutter demonstrate quite reasonable detection performances and
target-to-clutter contrasts, in the analyzed real-world scenario with a huge variety
of clutter types and characteristics becomes completely non-effective. Application
of the single channel detector, the span detector, and the power maximization de-
tector to real data have quite similar results that did not show any improvements
in ”point target - to - distributed clutter” contrast.

• The Polarimetric Whitening Filter, which uses a priori information about the
clutter polarimetric covariance matrix, shows excellent results in suppressing this
specific type of clutter; it was also found within the simulation results. The filter
shows not very high sensitivity in terms of the similarity between the ”reference”
covariance matrix used in the filter and this matrix in the analyzed spatial loca-
tion. It allows the specific type of clutter to be suppressed using the covariance
matrix, which was previously estimated as the average for multiple locations of
this clutter, or has a predefined a priori form.
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When the moving spatial averaging window is used to estimate the covariance
matrix for the current location and use this matrix in the PWF for the next
range or azimuth position, the filter is not efficient for the adaptive estimation
of the polarimetric covariance matrix, due to the large variability of clutter types
and their polarimetric characteristics. The resulting detection map will be very
noisy, reflecting mostly not the detections of expected targets but the variability
of clutter types and characteristics.

• The application of detection algorithms to real radar data confirms the theoretical
expectation that the best target detection performances will be observed in the
cases where both the target and the clutter characteristics are a priori known, and
by algorithms that use both of these characteristics. In our case, it is the Optimal
Polarimetric Detector. The Optimal Polarimetric Detector shows the best result
for the detection of some ”reference” target when it uses the polarimetric covari-
ance matrix of this target and uses the spatial moving window to estimate the
clutter’s covariance matrix for every location. In this case, the maximum detector
response will be in the location of objects with polarimetric characteristics that
are similar to the ”reference” target.

Using this feature of the Optimal Polarimetric Detector, in this study we propose,
test, and validate the new application of this detection algorithm - for the clas-
sification/mapping of inhomogeneous ground-based clutter. After defining a few
observed types of clutter (this can be done by the comparison of geo-referenced
radar signal’s map with a satellite image or geographic map, e.g. in Google Earth),
their polarimetric covariance matrix can be estimated and used in the detection
algorithms as a matrix of ”reference” target. The output signal of the detec-
tor will be proportional to the similarity of the observed radar signals with such
signals for the selected clutter type. To our knowledge, this usage of detection
algorithms for signal classification is novel. It also has an important advantage: it
can be implemented in parallel for different clutter types within a simple real-time
streaming signal processing algorithm.

The gain of detectability has been displayed by the interpretation of the geo-
referenced plan position indicator (PPI) representation. Compared with the single
channel detector output map, the Polarimetric Whitening Filter and the Optimal Po-
larimetric Filter have performed apparent improvement in terms of the gain of de-
tectability.

The research performed in this thesis shows that the polarimetric detection al-
gorithms that use a priori or directly estimated information about targets’ and/or
clutter’s polarimetric characteristics to maximize the signal-to-clutter ratio - the Po-
larimetric Whitening Filter and the Optimal Polarimetric Detector - are promising and
efficient technology for addressing target detection in strong inhomogeneous interfer-
ences from the ground-based clutter. They provide the best detection performance -
the highest probability of detection and the smallest false alarm rate. The novelty of
this study is defined not only by the novel analysis and validation of these algorithms’
applicability to the real high-resolution polarimetric radar observations of the radar
scene with highly inhomogeneous clutter, but also by the demonstration of the novel
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usage of these detection algorithms for targets and clutter classification, which can be
done in real-time, within the signal streaming mode.

6.2 Limitations and Future Work

There are several recommendations for future research that could be addressed.
One of the limitations of this study is that the power line masts, which form the set

of reference targets, show a lot of variability in their averaged covariance matrices. As
a result, every power line mast can be detected using an optimal polarimetric detector
with its own covariance matrix as the reference target. The question of how to average
the individual covariance matrices of the set of similar reference targets (e.g. the set of
power line masts) to achieve their detection within one run of the optional polarimetric
detector can be a topic for further research.

According to the theory of the polarimetric whitening filter, this type of detector is
supposed to reduce the specific type of clutter with a priori known covariance matrix.
As follows from the filter’s name, it is done with the whitening of the input multidi-
mensional signal. In this report, excellent performance of such a whitening filter has
been demonstrated, showing that PWF can work very well for the suppression of ho-
mogeneous clutter. One of the possible recommendations for further research could be
related to the improvement of the effectiveness of this filtration algorithm in the case of
non-homogeneous clutter, whose polarimetric characteristics vary unsteadily in space.
It could also be beneficial to discover the possibility of using the PWF for several types
of clutter at the same time.

In this study, the PARSAX polarimetric data has been used. After noise-based
calibration and Doppler processing, the polarimetric data with zero Doppler velocity
were filtered out and used for the estimation of the covariance matrix range-azimuth
map. This map has been used for the statistical simulation of input polarimetric data
for the detection algorithms. In fact, in this study, the experimentally measured data
were used only for the estimation of the covariance matrix, but not for the signal. One of
the possible future work could be a study of the efficiency of the detection algorithms
implementations that use real measured radar returns as input feature vectors on a
slow-time scale. These data can be the same as for covariance matrix estimation, or
they can be measured independently, during another scan of the radar.
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Appendix A: Effect of the Size
of the Moving Average
Window A
This Appendix illustrates the effects of the size of the moving average window on the
value of averaged elements of the covariance matrix. Plots represent the azimuthal
dependency of the elements, measured at the fixed range.

(a) C11 (window size 5x7) (b) C11 (window size 3x3)

(c) C11 (window size 5x15)

Figure A.1: Amplitude of the element C11 along the azimuth index for the various sizes of
moving average window
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(a) C22 window size 5x7

(b) C22 window size 3x3

(c) C22 window size 5x15

Figure A.2: Amplitude of the element C22 along the azimuth index for the various sizes of
moving average window
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(a) C33 window size 5x7

(b) C33 window size 3x3

(c) C33 window size 5x15

Figure A.3: Amplitude of the element C33 along the azimuth index for the various sizes of
moving average window

69



(a) C12 window size 5x7

(b) C12 window size 3x3

(c) C12 window size 5x15

Figure A.4: Amplitude of the element C12 along the azimuth index for the various sizes of
moving average window
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(a) C13 window size 5x7

(b) C13 window size 3x3

(c) C13 window size 5x15

Figure A.5: Amplitude of the element C13 along the azimuth index for the various sizes of
moving average window
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(a) C23 window size 5x7

(b) C23 window size 3x3

(c) C23 window size 5x15

Figure A.6: Amplitude of the element C23 along the azimuth index for the various sizes of
moving average window
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Appendix B: Maps of the
Covariance Matrix Elements B
This Appendix presents the geo-located maps of the polarization covariance matrix
elements that were estimated using the averaging within the spatial moving window.

Figure B.1: Map of the covariance matrix element C11 that was estimated using moving
average window
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Figure B.2: Map of the covariance matrix element C22 that was estimated using moving
average window
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Figure B.3: Map of the covariance matrix element C33 that was estimated using moving
average window
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Figure B.4: Map of the covariance matrix element C12 that was estimated using moving
average window
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Figure B.5: Map of the covariance matrix element C13 that was estimated using moving
average window
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Figure B.6: Map of the covariance matrix element C23 that was estimated using moving
average window
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Appendix C: Efficiency of
Noise-Based Calibration C
This Appendix illustrates the the efficiency of noise-based calibration on the improve-
ment of accuracy and reliability with using the span detector.

Figure C.1: Span detector without noise-based calibration
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Figure C.2: Span detector with noise-based calibration
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