
Generalized Flight Path
Modeling Based on Key
Airport Parameters
Improving climb and descent phase emission
estimations

Jeltes de Weerd





Generalized Flight Path
Modeling Based on Key
Airport Parameters

Thesis Report

by

Jeltes de Weerd

to obtain the degree of Master of Science

at the Delft University of Technology

to be defended publicly on June 12, 2024 at 09:00

Thesis committee:

Chair: Dr. Junzi Sun

Supervisors: Dr. I.C. Dedoussi

ir. Eneko Rodríguez - To70

External examiner: Dr. Fabrizio Oliviero

Place: Faculty of Aerospace Engineering, Delft

Project Duration: July, 2023 - June, 2024

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Faculty of Aerospace Engineering · Delft University of Technology

http://repository.tudelft.nl/


Copyright © Jeltes de Weerd, 2024

All rights reserved.



Acknowledgements

With this thesis, I am concluding my time as a student after nine years. My journey began with a year in

nursing, followed by four years pursuing a bachelor’s degree in Aeronautical Engineering at the university

of applied sciences. I then completed a pre-master and dedicated three additional years to obtaining my

master’s degree in Aerospace Engineering. I am proud to have reached this milestone in my life, but I

could not have done it without the guidance and support of many people.

Throughout this thesis, my colleagues at To70 have been incredibly helpful, offering their expertise

and engaging in informal conversations, not to mention the amusing table football games after lunch. I

would like to specifically thank Eneko for his guidance during our weekly meetings, offering an objective

view on my work and coming up with valuable suggestions for my thesis work. Additionally, I want to

thank Maarten for his valuable insights into a wide variety of subjects throughout my thesis. Whether

helping me with specific questions or making thought-provoking comments on my methodology, his input

has been invaluable in developing and supporting my reasoning. I also extend my gratitude to my TU

Delft supervisor, Irene, for her input and support during the thesis work. Her valuable feedback greatly

contributed to my research.

I would like to thank my friend Kees, with whom I have been studying since the start of our bachelor’s

program. We have spent countless hours together, both on campus and at home during the COVID-19

lockdowns, which undeniably helped me stay motivated during those challenging times.

There are many others I would like to thank personally, both friends and colleagues alike. However, I

would like to extend my final gratitude to my parents, who have provided me with unwavering comfort and

support throughout this journey. I am incredibly grateful and feel privileged to have received their support.

ii



Contents

List of Figures vi

List of Tables vii

Executive Summary viii

1 Introduction 1

I Thesis 2

2 Methodology 3

2.1 Research objective and question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Data acquisition and preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Airport parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.5 Statistical methods considered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 Sample flight list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.7 Integration into openAVEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Airport Analysis and Statistical Results 15

3.1 Analysis of flight distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Statistical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Regression prediction capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Emission Comparison Results 33

4.1 Emission comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Uncertainty quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Conclusion 43

5.1 Sub-question 1 - Airport parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Sub-question 2 - Quantified relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Sub-question 3 - Comparison and uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Recommendations 47

References 50

II Appendices 51

A Aircraft Categories 52

B Sample List 54

C Additional Results 56

C.1 Regression results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

C.2 Sample tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

C.3 Emission results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

iii



Contents iv

III Literature Review and Research Plan 62

D Literature Review 63

D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

D.2 Research base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

D.3 Aircraft position data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

D.4 Airport parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

D.5 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

D.6 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

E Research Plan 78

E.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

E.2 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

E.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

E.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

E.5 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



Nomenclature

List of Abbreviations

ADS-B Automatic Dependent Surveil-

lance–Broadcast

AIP Aeronautical Information Publication

ANSP Air Navigation Service Providers

ATC Air Traffic Controller

ATM Air Traffic Management

BADA Base of Aircraft Data

BR Bayesian Regression

CAS Calibrated Air Speed

CO Carbon Monoxide

FAA Federal Aviation Administration

FEAT Fuel Estimation in Air Transportation

HC Hydro-Carbons

IATA International Air Trasport Association

ICAO International Civil Aviation Organization

K-S Kolmogorov-Smirnov

KPI Key Performance Indicator

LTO Landing and Take-off

MAE mean Absolute Error

MC Monte Carlo

MLE Maximum Likelihood Estimation

MLR Multiple Linear Regression

MSE Mean Squared Error

NNR Neural Network Regression

nvPM non-volatile Particulate Matter

OLS Ordinary Least Squares

PDF Probability Distribution Function

PLS Partial Least Squares

PRC Performance Review Commission

RMSE Root Mean Squared Error

RoC/D Rate of Climb/Descent

RR Ridge Regression

SE Standard Error

TMA Terminal Maneuvering Area

TOC Top of Climb

TOD Top of Descent

VIF Variance Inflation Factor

v



List of Figures

2.1 Flow chart of thesis work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Verification results of arrivals at Denver and El Dorado airport showing outliers and sample

difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Standard Neural Network architecture with 3:2 node configuration. . . . . . . . . . . . . . . 11

2.4 Percentages of aircraft in actual and sample data . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Percentage of annual flights and Within sample set per Airport . . . . . . . . . . . . . . . . 13

3.1 Arrival and departure distances at Schiphol . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Arrivals Sydney and El Dorado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Departures Madrid and Cape Town . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Arrivals and Departures at Sydney . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Large narrow-body Arrivals and Departures at Sydney . . . . . . . . . . . . . . . . . . . . . 17

3.6 Arrivals and Departures at Miami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.7 Arriving flights at Miami airport. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.8 Estimated values and actual values per airport using MLR . . . . . . . . . . . . . . . . . . . 21

3.9 Training an validation losses for arrivals in Bayesian Regression. . . . . . . . . . . . . . . . 25

3.10 Estimated values and actual values per airport using BR . . . . . . . . . . . . . . . . . . . . 26

3.11 Estimated values and actual values per airport using RR . . . . . . . . . . . . . . . . . . . . 27

4.1 Fuel burn per height - Departures FACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Fuel burn per height - Arrivals FACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Comparison of TOD/TOC approach and flight-path based method - climb phase. . . . . . . 35

4.4 Comparison of TOD/TOC approach and flight-path based method - descent phase. . . . . . 35

4.5 NO2 emissions per height - Departures FACT . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.6 NO2 emissions per kg of fuel burned - Departures FACT . . . . . . . . . . . . . . . . . . . 36

4.7 CO emissions per height - Departures FACT . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.8 Low, Mean and High emission estimate of climb phase. . . . . . . . . . . . . . . . . . . . . 39

4.9 Low, Mean and High emission estimate of descent phase. . . . . . . . . . . . . . . . . . . . 40

C.1 Fuel burn per time - Departures FACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

C.2 Fuel burn per time - arrivals FACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

C.3 NO2 emissions per height - Arrivals FACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

C.4 NO2 emissions per kg of fuel burned - Arrivals FACT . . . . . . . . . . . . . . . . . . . . . . 61

C.5 CO emissions per height - Arrivals FACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

D.1 OpenSky coverage on 06-06-2022 by OpenSky [27] . . . . . . . . . . . . . . . . . . . . . . 66

D.2 ANSP Complexity Scores by EUROCONTROL [6] . . . . . . . . . . . . . . . . . . . . . . . 69

D.3 Standard climb profile by Sun et al. [32] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

D.4 Climb parameters by Sun et al. [32] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vi



List of Tables

2.1 Airport parameter information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Complexity indicators [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Airports with complexity metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Aircraft flights and airlines in 2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Flight directions of arrivals at Miami airport per quadrant . . . . . . . . . . . . . . . . . . . . 18

3.2 Beta coefficients and their confidence intervals for arrivals . . . . . . . . . . . . . . . . . . . 19

3.3 Beta coefficients and their confidence interval for departures . . . . . . . . . . . . . . . . . 20

3.4 T-values and Variance Inflation Factor (VIF) for Arrivals and Departures . . . . . . . . . . . 20

3.5 Effect sizes for variable combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6 Beta coefficients and their confidence intervals of selected airports . . . . . . . . . . . . . . 22

3.7 T-values and Variance Inflation Factor (VIF) of selected airports . . . . . . . . . . . . . . . 22

3.8 Beta coefficients and their confidence intervals of selected airports without runway parameter 22

3.9 T-values and Variance Inflation Factor (VIF) of selected airports without runway parameter 22

3.10 Effect sizes for variable combinations with airspace complexity metrics . . . . . . . . . . . . 23

3.11 Beta coefficients and their confidence intervals for arrivals . . . . . . . . . . . . . . . . . . . 23

3.12 Beta coefficients and their confidence intervals for departures . . . . . . . . . . . . . . . . . 24

3.13 Validation and training loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.14 Model performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.15 Ridge Regression coefficients and their confidence intervals for arrivals . . . . . . . . . . . 26

3.16 Ridge Regression coefficients and their confidence intervals for departures . . . . . . . . . 27

3.17 Neural Network regression results per configuration for arrivals and departures . . . . . . . 28

3.18 Airports within regression test dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.19 Error margins (%) comparison of considered regression methods for arrivals . . . . . . . . 29

3.20 Error margins (%) comparison of considered regression methods for departures . . . . . . 29

4.1 Emissions Results - Climb and Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Emissions Results - Mean Estimate vs. Real Value - Climb Phase . . . . . . . . . . . . . . 38

4.3 Emissions Results - Mean Estimate vs. Real Value - Descent Phase . . . . . . . . . . . . . 38

4.4 Flight-path based - Climb Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Flight-path based - Descent Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

C.1 Estimated Values, Actual Means, Errors, and Error Margins for arrivals . . . . . . . . . . . . 56

C.2 Estimated Values, Actual Means, Errors, and Error Margins for arrivals . . . . . . . . . . . . 57

C.3 Estimated Values, Actual Means, Errors, and Error Margins for arrivals . . . . . . . . . . . . 57

C.4 Aircraft Flights and Adjusted Percentages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

C.5 Percentage of Yearly Flights and Within Sample Set per Airport . . . . . . . . . . . . . . . . 58

C.6 Emissions Results - Climb Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

C.7 Emissions Results - Descent Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

D.1 Complexity indicators [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

D.2 Airport main parameter data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

vii



Executive Summary

This research describes the relationship between airport parameters and aircraft flight path during climb

and descent phases. The study focuses on employing statistical methods on open sourced ADS-B data

to relate airport parameters to flight path, aiming to address uncertainties and assumptions in flight path

specific factors within the research of Quadros et al.[1].

Problem Statement

A thorough literature study preceded the thesis after which a research plan laid the groundwork for the main

research, describing the scope, research questions and research goal. The research focuses specifically on

the non-LTO (Landing and Take-Off) emissions. This encompasses 3000 feet above the airport elevation,

up to the cruise altitude of the aircraft and visa versa. The primary goal is to develop an alternative method

of determining the aircraft position during the climb and descent phase to enhance the model of Quadros.

The goal is as follows:

To develop a method to estimate the global emissions of civil aircraft within the climb and descent

phases, using generalized flight path modeling based on key airport parameters.

Proposed Solution

The proposed solution centers on the application of statistical methods to analyze extensive data sourced

from ADS-B transponders. Through the analysis of climb and descent segments, the research identified

parameters affecting flown distance at airports: flight movements, number of runways, and airport elevation.

These parameters were related to the flown distance during climb and descent using various regression

types, with Multiple Linear Regression (MLR) emerging as the most promising. MLR achieved a Mean

Absolute Error (MAE) of 9.23% on arrival distances and 15.77% on departure distances on unseen data,

and effect sizes of 12.8% and 6% for arrivals and departures, respectively.

Furthermore, the proposed method uses actual flight distances rather than optimal climb or descent

profiles for arriving and departing flights causing a difference in emissions. For the climb, overall NO2

emissions increase from 17.1 to 18.2 g/kg of fuel burned, while CO emissions decrease from 506 to 424

mg/kg. This is due to the constant slope assumption, requiring higher thrust later in the climb. Although

this method provides a better estimation based on flight distance, it lacks the accuracy of a real climb

and descent profile in which there is a steeper climb at the beginning compared to end of climb. The

descent phase shows a similar pattern: increased NO2 emissions from 4.65 to 8.2 g/kg of fuel burned and

decreased CO emissions from 27.9 to 6 g/kg, again due to increased engine thrust during the extended

descent.

The. Although MLR showed about a 10% deviation in its predictions, using the real mean distances

and comparing them with the predicted means indicated almost no difference in the emissions. the 95%

confidence interval for the mean was used to calculate low, mean, and high estimates. In the climb phase,

the differences were negligible, with nearly identical results across the estimates. In the descent phase,

the variations were slightly more significant, with a discrepancy of about 3%. Also note the flight distance

generalization might be well estimated, the estimation does not represent the real world scenario due to

the lack of level flights within the profile. A better estimation would be able to include the level flights at

their respective heights and include the standard climb and descent rate.

Conclusion

This research offers new insights into the position estimation of aircraft in generalized global emission

models by linking flight paths to airport parameters using ADS-B data. This research argues that, within

the boundaries of this research, the suitable method to improve emissions estimation is to use MLR to

relate the distances flown at airports to attributes such as annual flight movements, the number of runways,

and airport elevation. This approach provided a more accurate estimate, bringing it closer to real-world

scenarios. However, there is still room for improvement by incorporating level flight segments at specific

altitudes and considering airspace complexity as an additional airport parameter.
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1
Introduction

Over the last few decades, global emissions have experienced a significant surge, leading to mounting

concerns about their impact on the environment. Academics have dedicated considerable effort to

researching the effects of emissions on the planet, resulting in the development of predictive models for

their transport patterns [1], regional sensitivities [2], and global effects [3]. This research contributes to

understanding the consequences of emissions on both the global climate and the well-being of regional

populations.

This thesis focuses on generalizing flight paths using key airport parameters to enhance global aviation

emissions models. More specifically, it aims to generalize the climb and descent phase as they are, at

least partly, dependent on the airport parameters and airspace around it. By focusing on the specific flight

phases of climb and descent within the emission estimation model created by Quadros et al. [1] and using

Automatic Dependent Surveillance–Broadcast (ADS-B) data, this study aims to enhance the accuracy

of the emission model of Quadros. The existing method relies on great circle distance and Top of Climb

or Descent with an uncertainty factor, leading to potential inaccuracies, especially within the climb and

descent phases.

The report is divided into three parts. Part I - Thesis Work, which includes the methodology, results of

the airport analyses and emissions, conclusion and recommendations. Part II - Appendices, includes the

related appendices, including the sample list and additional results. And finally Part III - Literature Review

and Research Plan, onto which the thesis is build upon.

1



Part I
Thesis
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2
Methodology

This chapter discusses the used methods throughout the thesis. Covering the research objective and

questions, data acquisition and preparation, code definitions, airport parameters, used statistical methods,

sample flight list for the comparison of emission and the integration into the current model of Quadros et al.

[1].

2.1. Research objective and question
A thorough literature study preceded the thesis after which a research plan laid the groundwork for the main

research, describing the scope, research questions and research goal. The research focuses specifically on

the non-LTO (Landing and Take-Off) emissions. This encompasses 3000 feet above the airport elevation,

up to the cruise altitude of the aircraft and visa versa. The primary goal is therefore to develop an alternative

approach of determining the aircraft position during the climb and descent phase. The goal of the thesis is

to develop a specific approach to enhance the model of Quadros. The goal is as follows:

To develop a method to estimate the global emissions of civil aircraft within the climb and descent

phases, using generalized flight path modeling based on key airport parameters.

The intent of this goal is to improve the aircraft position estimation method used by Quadros et al. in

their study, ”Global Civil Aviation Emissions Estimates for 2017–2020 Using ADS-B Data” [1]. A more

precise research question is defined to capture the core objective of this thesis, contributing to the field of

civil aviation emission modeling. The primary research question is as follows:

How can emission estimation during the climb and descent phases in global models using ADS-

B data be enhanced by generalizing the flight path based on key airport parameters, resulting in

a quantifiable improvement in accuracy?

Research Question

This main question is separated into three sub-questions, which are as follows:

• SQ-1: Which airport parameters have an impact on the flight path during climb and descent?

• SQ-2: What is the quantified relation between the airport parameters and flight path and what

are the sensitivities?

• SQ-3: How does the flight path length emission estimation compare to other research in

accuracy and speed?

Figure 2.1 shows the flow chart for the work within this thesis, covering the different sub-questions

in a structured manner. First, literature review and airport analyses using ADS-B data were conducted

to identify key airport parameters and the flight distances flown to various airports. The output of the

airport analyses was then used to quantify the relationship between these parameters and flight distances.

During the statistical analysis, it became evident that incorporating additional parameters could further

strengthen this relationship, making the process iterative between airport analysis and statistics. Finally,

the quantified relationship was integrated into the model, and the resulting emissions were compared with

3



2.2. Data acquisition and preparation 4

those produced by the current method, providing an indicative measurement of the new method’s accuracy

and uncertainty.

Figure 2.1: Flow chart of thesis work

2.2. Data acquisition and preparation
The data used in this project primarily consists of ADS-B data. This data source is particularly advantageous

because of its widespread availability from various channels. The selection of ADS-B data is underpinned

by its precision and prevalence. Notably, all civil aircraft equipped with a transponder actively emit and

receive ADS-B data, facilitating effective communication with other aircraft and ground stations.

2.2.1. Data Acquisition
The ADS-B data utilized in this research is obtained from OpenSky [4], a public database specifically

designed for scientific research. The OpenSky platform has gained popularity due to its open access to

aircraft data, contributed by aviation enthusiasts who share their ADS-B receivers with the network. As the

OpenSky network expands, so does its coverage, offering a comprehensive view of aircraft movements

around the world.

The data set from OpenSky contains a wealth of information about aircraft in flight, provided that they

are within the range of a receiver connected to the network. This data set includes state information such

as aircraft position, velocity, vertical speed, time, and both geometric and barometric altitudes. It also

contains semi-fixed data like callsigns and the unique ICAO24 identification numbers for each aircraft.

These features make OpenSky’s ADS-B data a robust and versatile resource for aviation-related research.

The data set used within this research are the state data of 06-06-2022 and 13-06-2022. State data is

a data which contains the state of an aircraft at a given moment. This includes altitude, velocity, climb

or descent rate, etc. These data sets contain thousands of flights, therefore taking significant time in the

processing of the data. The data used within the research is within the busiest time of the year and could

contain a seasonal offset because of it.

2.2.2. Data cleaning and preparation
The acquired ADS-B data undergoes a cleaning and preparation process to ensure it is suitable for analysis.

It is critical to clearly define each step in the code to accurately extract, process, and interpret the data,

yielding meaningful results.

To identify the flights related to a specific airport, a bounding box is created around the airport’s

coordinates. This box extends 25 km in each direction from the airport’s decimal degree coordinates. Any

data point within this boundary and below 3,000 feet above the airport’s elevation triggers a flag, marking

that particular ICAO24 identification for extraction. This process allows for the isolation of aircraft activity

related to the targeted airport.

The next step is to extract the complete set of data for each identified ICAO24 number, ensuring that

all relevant tracks are retrieved. Since aircraft fly multiple routes, the data require careful segmentation to

distinguish individual flights. This step involves identifying the start and end points of specific flights and

separating them from the larger data set.

Following segmentation, the data undergoes a thorough cleaning process to remove corrupted or

redundant data points. This step is required to maintain data integrity and ensure accurate analysis.
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The final cleaned data set provides a solid foundation for further examination, helping to ensure that the

extracted flights are relevant to the research objectives and that the data is accurate and reliable.

2.3. Definitions
This section discusses the definitions used within the code.

2.3.1. Climb/descent definition
Once the flights are categorized into segments coming to or leaving from the target airport, the data is

broken down into climb and descent phases. This segmentation is performed using a sliding window of 30

data points, typically covering about 300 seconds, and a minimum vertical rate of 2.5 meters per second

(approximately 500 feet per minute). This rate aligns with the minimum required climb/descent rate as

outlined in the FAA Instrument Procedures Handbook [5].

The handbook provides specific guidance on rate of descent: ”ATC may ask the pilot to descend to and

maintain a specific altitude. Generally, this clearance is for en route traffic separation purposes, and pilots

need to respond to it promptly. Descend at the optimum rate for the aircraft being flown until 1,000 feet

above the assigned altitude, then descend at a rate between 500 and 1,500 fpm to the assigned altitude.

If at any time, other than when slowing to 250 KIAS at 10,000 feet MSL, the pilot cannot descend at a rate

of at least 500 fpm, advise ATC.”

Similarly, for climb, the handbook states: ”Climb at an optimum rate consistent with the operating

characteristics of the aircraft to 1,000 feet below the assigned altitude, and then attempt to climb at a rate

of between 500 and 1,500 fpm until the assigned altitude is reached. If at any time the pilot is unable to

climb at a rate of at least 500 fpm, advise ATC. If it is necessary to level off at an intermediate altitude

during climb, advise ATC.”

Thus, the cut-off points for climb and descent segments are determined by these criteria. If the aircraft

maintains a vertical rate of 500 fpm (2.5 m/s) or more within the sliding window, it indicates an active climb

or descent phase. These segments are then isolated from the overall flight data to facilitate further analysis,

allowing for a focused examination of climb and descent behaviors within the defined parameters.

Departures are adjusted for longitude differences based on the absolute latitude of the airport, meaning

that the climb is considered finished if the aircraft has passed certain longitude threshold. This threshold is

variable for the latitude degree of the airport and is introduced to prevent flights with missing data skewing

the data set. Furthermore for analysis, only data points with altitudes below 13,000 meters are considered,

which corresponds to just above the service ceiling of 42,000 feet, thus filtering out potential faulty data.

Tracks with insufficient data points are excluded, with the required data volume depending on the airport’s

elevation. The climb segment starts when the average vertical rate within a 300-second sliding window is

above 2.5 meters per second, provided the altitude has reached at least 75% of the maximum altitude

achieved by the aircraft. The segment ends when the average vertical rate falls below the threshold and

when certain latitude and longitude conditions are met.

For arrivals, longitude differences are adjusted in relation to latitude just as for departures. Tracks

with insufficient data are filtered out. The descent segment begins when the average vertical rate in the

300-second sliding window falls below -2.5 meters per second. This segment concludes when the rate

exceeds the threshold or the altitude drops below 500 meters above the airport’s elevation.

2.3.2. Distance
Flight distances for climb and descent segments are calculated using the longitude and latitude along with

the aircraft’s altitude. The distance measurements starts and end at 3000ft for departures and arrivals

respectively as this research focuses on non-LTO emissions, which occur exclusively above 3,000 feet

above airport elevation.

2.4. Airport parameters
The airport parameters selected for this study are annual flight movements, number of runways and

airport elevation. These parameters were chosen because they are specific enough for each airport and

are publicly available. Earlier suggested parameters, such as distance between airports and regional
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procedures and practices, were not considered because the data is either difficult to obtain, unavailable, or

too vague. Regional procedures and practices are typically not publicly accessible and are challenging to

quantify. The distance between airports parameter is also vague because the effect of nearby airports

depends on their own specific characteristics, making it hard to measure and quantify their impact on the

airport where the estimation is being made.

Selected airports

The airports listed in Table 2.1 were selected to ensure a diverse set of parameters for all airports. Choosing

a dataset with varying airport characteristics allows a regression model to better estimate the individual

and collective effects of these parameters. Additionally, the airports had to be covered by the OpenSky

network to ensure data availability.

Table 2.1: Airport parameter information

Airport ICAO Airport City Flight Movements Runways Airport Elevation

EHAM Schiphol 462600 5 -3

SKBO El Dorado 296777 2 2548

EBBR Brussels 178930 3 56

FACT Cape Town 98666 2 46

YSSY Sydney 177646 3 6

OMDB Dubai 373261 1 19

EGPH Edinburgh 93004 1 41

KDEN Denver 615733 6 1656

VIDP Delhi 429964 4 237

KLAS Las Vegas 581000 4 665

LEMD Madrid 351906 4 609

SBGR São Paulo 242881 2 750

LIRF Rome 113972 3 5

KIAH Houston 399805 5 30

KMCI Kansas 102905 3 313

KMIA Miami 458478 4 3

Complexity metric

In addition to the selected airport parameters, the airspace complexity has a large influence on the flown

distance at airports. Therefore, an attempt at incorporating airspace complexity was made such that the

effect size might increase.

In 2006, the Performance Review Commission (PRC) of EUROCONTROL published a technical report

dedicated to assessing complexity and developing metrics for benchmarking analyses in Air Navigation

Service Providers (ANSP) [6]. The report outlines four complexity indicators, summarized in Table D.1. It’s

important to note that the airspace complexity in this context is assessed based on arrival data only.
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Table 2.2: Complexity indicators [6]

Complexity dimension Indicator Description

Traffic density Adjusted density

A measure of the potential number

of interactions between aircraft in

a given volume of airspace.

Traffic in evolution Potential vertical interactions (VDIF)

Captures the potential interactions

between climbing, cruising and

descending aircraft.

Flow structure Potential horizontal interactions

Provides a measure of the potential

interactions based on the aircraft

headings.

Traffic mix Potential speed interactions

Assesses the potential interactions

based on the aircraft speeds.

To incorporate airspace complexity into the statistical model, it is necessary to establish pre-set variables

to estimate distances for airports not included in the original data. The EUROCONTROL report indicates

that the route structure significantly influences airspace complexity. The route structure is defined as

follows:

• Route structure:

– Influence on productivity and costs: Route structure reflects and organises the underlying

demand of traffic. And the route structure together with the constraints put on its utilisation

(Letters of Agreement, flight level restrictions, bi or uni-directional routes, etc) can contribute to

reducing controller workload and increasing capacity and efficiency.

– Candidate indicators: Number of routes within a given volume of airspace, number of crossing

and merging points within a given volume, direction of flows - uni, or bi-directional.

Within the code a radius of 150 km is drawn around the airport and the number of crossing points,

merging points and the amount of airways are counted. This adheres to the candidate indicators laid out

within the report of the PRC.

Selected airports and complexity metrics

By counting the number of crossing and merging points from the Aeronautical Information Publication (AIP)

of a country within a certain range of the airport, candidate indicators related to the number of routes, and

the number of merging and crossing points within a volume of airspace, are utilized. However, a significant

issue with this method is the limited availability of route structure data from AIPs. Many countries do not

make this information freely accessible and often require monetary compensation for it. Consequently,

only airports from the dataset with accessible AIPs are considered. The list of these airports is provided in

Table 2.3.
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Table 2.3: Airports with complexity metrics

Airport ICAO Flight Movements Runways Airport Elevation Merg./Cross. points Airways

EHAM 462600 5 -3 46 59

SKBO 296777 2 2548 19 43

EBBR 178930 3 56 23 41

FACT 98666 2 46 14 59

EGPH 93004 1 41 25 34

LEMD 351906 4 609 53 42

2.5. Statistical methods considered
Various statistical methods are used to analyze the sample data and to establish relationships between

airport parameters and flight paths. This section provides an overview of the statistical techniques applied

in this study.

2.5.1. Data manipulation
A verification has been done to judge the accuracy of the method used for the analysis and to gain an

initial understanding of the data. Figure 2.2 illustrates the data for arrivals, with Fig. 2.2a representing

Denver Airport and Fig. 2.2b representing El Dorado Airport. This figure shows the results obtained from

that verification.

Trimmed mean

As shown in the data, some airports like Denver in Fig. 2.2a, exhibit skewness. This skewness is due to

outliers in the data, which can arise from lacking or wrong data which the code is not always able to catch

out, leading to incorrect distances being included in the dataset. To address this issue, the data is trimmed

at both ends by 5%, so that 90% of the data is used for analysis. This statistical approach is known as a

”robust method” and is referred to as the ”trimmed mean,” as described by Field[7].
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(b) Arrival distances at El Dorado

Figure 2.2: Verification results of arrivals at Denver and El Dorado airport showing outliers and sample

difference

Sample size

Additionally, there is a difference in the frequency (left axis) between Denver and El Dorado airports. This

poses a problem for regression analysis, as it treats each calculated distance (x axis) as an independent

sample. This can lead to a bias toward airports with more data points, resulting in inaccurate variables for
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estimating distances at various airports. Since the regression analysis is skewed toward airports with more

samples, it fails to accurately account for the characteristics of smaller airports, thereby introducing bias.

To address this issue, each airport’s sample distribution is resampled 5,000 times. This resampling

creates a more balanced distribution, with similar means and standard deviations, and an equal number

of samples for each airport. Although the distributions might differ slightly, the large number of samples

ensures that the means and standard deviations remain closely aligned, reducing the potential for bias in

the regression analysis.

2.5.2. Regression
This subsection discusses the different regression types used in this study and the methods for evaluating

their results. The study applies Multiple Linear Regression (MLR), Bayesian Regression (BR), Ridge

Regression (RR), and Neural Network Regression (NNR).

Multiple Linear Regression

Linear regression, also known as Ordinary Least Squares (OLS), is one of the most widely used methods

for analyzing relationships in data. When there are multiple input variables, the approach is called Multiple

Linear Regression (MLR). In this study, MLR is the initial method used to evaluate the relationship between

airport parameters, such as elevation and the number of runways; and the distance flown during climb and

descent. Even if the relationship might not be strictly linear, MLR is a logical starting point because it is

straightforward to interpret and provides a foundational understanding of how much variance in the data

can be explained through linear relationships.

MLR produces a function that consists of a constant (intercept) and coefficients (Beta values) corre-

sponding to each input variable. When applied to the associated airport parameters, the resulting function

estimates the expected distance for climb or descent. This simplicity allows for a clear view of the impact

each parameter has on the overall outcome, which is helpful when building predictive models or gaining

insights into the factors affecting flight paths.

Assessment of MLR results

To evaluate the regression models’ fit to the sample data, several methods are used to assess the quality

and reliability of the results. The methods are outlined below:

• Confidence interval: This indicates which airport parameters significantly contribute to predicting

flight paths. A 95% confidence interval represents the range where the Beta value is likely to fall. If

zero is not within this interval, the null hypothesis can be discarded. This means that the parameter

is considered statistically significant, suggesting it has a notable effect and does not include the

possibility that it has 0 effect on distance estimation.

• T-value: The T-value is a dimensionless metric that shows the relative strength of a parameter’s

influence on the regression results compared to other parameters. This value can be used to identify

which factors have a significant impact and which have a negligible effect, allowing for the removal of

parameters that contribute little to the overall result.

• Variance Inflation Factor (VIF): The Variance Inflation Factor (VIF) quantifies the level of multi-

collinearity in a regression analysis, indicating how strongly one variable is related to others in the

model. High VIF values can suggest that multicollinearity is affecting the regression results, potentially

leading to misleading conclusions about variable relationships. If the VIF exceeds 5, it signals the

need for further investigation. A VIF value above 10 is a warning of severe multicollinearity, possibly

indicating critical issues with the regression model, as noted by Myers [8] and Bowerman et al. [9].

• Effect size (R2): The effect size represents the proportion of variance in the dependent variable

that is explained by the model. It ranges from 0 to 1, with a higher value indicating a better fit and

a greater ability of the model to explain the data its variance. A value of 1 implies that the model

accounts for all variance, while a value of 0 suggests that the model explains none of the variance.

Alongside the confidence interval and T-value, the effect size helps determine whether a parameter

has a meaningful impact on the outcome.

Bayesian regression

Bayesian regression is a linear regression approach that integrates uncertainty into the modeling process,

providing probability distributions for the parameters to reflect their inherent uncertainty. To build the
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Bayesian regression model, a prior distribution is required. For this work, TensorFlow is used to develop

the Bayesian regression model. TensorFlow is an open-source machine learning framework and is widely

used for developing and training machine learning methods. Initially, the predictors are scaled using a

standard scaler to ensure consistent input across the model. A normal distribution is selected, as it’s one

of the most commonly used distributions, providing a straightforward approach for first estimations and

because it is also representative of the distribution seen in the data.

The Bayesian model undergoes a training process, with the number of epochs, or iterations through

the dataset, set at 50,000. This high number allows the model to properly converge. However, the model

uses a loss function to identify when it has achieved a satisfactory level of accuracy, stopping the training

process when further iterations do not reduce the loss, offering a balance between training and efficiency.

Additionally the data is split into a 4/5 training and 1/5 validation set, as is a common practise data split to

train the model and test the outcome.

Ridge regression

Ridge regression is a regression technique that is particularly useful when dealing with multiple variables.

Frank and Friedman[10] introduced a penalty term into the approach that consists of the sum of the

squares of the regression coefficients, scaled by a constant α. This constant, known as the regularization

parameter, regulates the strength of the penalty term and helps to mitigate overfitting by promoting simpler

models with smaller coefficients. The mathematical formulation of ridge regression is presented in Eq. (2.1),

where yi represents the target variable for the ith observation, xij is the value of the jth feature for the ith

observation, βj denotes the coefficient for the jth feature, α is the regularization parameter, and p is the
total number of features. The first summation term represents the squared differences between the actual

target values and the predicted values, while the second summation term denotes the sum of the squares

of the coefficients, scaled by α.

minimize(

n∑
i=1

(yi −
p∑

j=1

xijβj)
2 + α

p∑
j=1

β2
j ) (2.1)

Ridge regression helps to stabilize the model and reduce the impact of multicollinearity by shrinking

the coefficients towards zero. Unlike lasso regression, which tends to produce sparse models with some

coefficients exactly zero, ridge regression keeps all features in the model but penalizes their magnitude.

Tuning the regularization parameter α is crucial in ridge regression to find the right balance between bias

and variance, where a higher α leads to more regularization, while a lower α reduces the regularization

effect, potentially leading to overfitting.

This method is applied through using RidgeCV within the scikit-learn library. It uses cross validation to

find the best model parameters, in this case alpha. Through bootstrapping it determines the distribution of

the coefficients and calculate confidence intervals.

Neural Network regression

The study conducted byWong et al. [11] compares various regression techniques to evaluate their accuracy

in modeling. The research examines several models, including Artificial Neural Network (ANN), Generalized

Regression Neural Network (GRNN), Support Vector Regression (SVR), Multiple Linear Regression (MLR),

and Response Surface Model (RSM). The models were tested on two distinct non-linear cases. From

these tests, ANN, GRNN, and SVR were found to be reliable, as the other models failed to accept the null

hypothesis in one of the two quadratic scenarios.

Based on Wong et al.’s findings, this thesis employs a Neural Network approach to quantify the

relationship between selected airport parameters and flight distance, aiming to explore its applicability. The

key advantage of a Neural Network is its capacity to model non-linear relationships between input variables

and outputs, potentially leading to a higher explained effect size (R2) or better predictive capabilities for

unseen data. A typical neural network consists of multiple layers: an input layer, one or more hidden layers,

and an output layer. The input layer’s nodes correspond to the number of input variables, the hidden layers

contain a variable number of nodes to model non-linear relationships, and the output layer has a single

node that provides the regression prediction.
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Optimizing the neural network involves adjusting the number of layers and the number of nodes

within each layer. An excessive number of layers or nodes can lead to overfitting, while too few can

result in underfitting. Determining the optimal configuration requires trial and error. In this study, various

configurations are explored, with the number of hidden layers and their respective node counts specified

as follows; layers - (nodes layer 1: nodes layer 2: ...). starting with one-layer models containing 3, 5, and

10 nodes. Double-layered models are also examined with node configurations of 3:2, 3:3, 5:3, 5:5, and

10:5. Finally, triple-layered models with 5:3:2 and 10:5:3 configurations are tested. Figure 2.3 illustrates a

neural network architecture with two hidden layers using a 2-(3:2) configuration.

Figure 2.3: Standard Neural Network architecture with 3:2 node configuration.

Through backpropagation, the neural network aims to minimize the loss function, which, within this

study, is the Mean Squared Error (MSE), as is standard within the scikit-learn module in Python. During

training, the neural network adjusts its weights and biases to minimize the MSE, typically using optimization

algorithms like stochastic gradient descent or its variants. The optimization process involves iteratively

updating the model parameters to move towards the minimum of the loss function, thereby improving the

model’s accuracy on the training data.

To train and test the model, the dataset is split into two parts, with 4/5 allocated for training and 1/5 for

testing. The network uses the relu activation function, which is frequently used in neural networks due to

its computational efficiency and ability to mitigate the vanishing gradient problem. The adam solver, an

adaptive learning rate optimization algorithm, is employed for its robustness and efficiency. Additionally, a

fixed random state of 42 is used to ensure reproducibility of results.

2.5.3. Regression Comparison
The regression models are all evaluated using the training dataset. To identify which regression method is

most effective at predicting unseen data, a separate test dataset consisting of five airports with sufficient

range in the airport parameters is created. This test dataset is used to assess and compare the predictive

capabilities of each regression model to determine which one performs best within the context of this study.

The regression method that demonstrates the highest predictive accuracy on the test dataset is chosen

for the final part of the thesis. This final section, which focuses on integration and comparison, involves

applying the selected regression method to generate emission results using the new approach.

2.6. Sample flight list
A sample flight list is used to compare emissions from the current method with those from the new method

described in this thesis. The list is limited to flights involving the airports assessed in this study, ensuring

more accurate uncertainty quantification because the error margins of the mean values are known. The

type of aircraft used in the analysis is also important. The share of B737 and A320 aircraft is significant,

but to integrate the new method accurately—which is designed for all types of aircraft—a representative

fleet composition is needed within the sample. Data from Cirium1 indicates the percentage of flights flown

by the ten most common aircraft types, as shown in Table 2.4.

1Obtained from: https://simpleflying.com/most-used-commercial-aircraft-types-2022/
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Table 2.4: Aircraft flights and airlines in 2022

Aircraft 2022 Flights % of World’s Flights Top 3 Airlines by Flights

A320ceo 6.35 million 20.5% IndiGo, easyJet, China Eastern

737-800 5.53 million 17.9% Ryanair, Southwest, American

A321ceo 2.12 million 7.0% American, Delta, China Southern

A319ceo 1.42 million 4.6% American, easyJet, United

737-700 1.16 million 3.7% Southwest, United, WestJet

Embraer 175 969,200 3.1% American, United, Delta

ATR-72 909,800 2.9% Wings Air, Binter Canarias, Azul

A320neo 831,500 2.7% Volaris, Frontier, Spirit

737 MAX 8 723,100 2.3% Southwest, Ryanair, Gol

CRJ-900 634,900 2.0% Delta, American, Lufthansa

Considering the requirements for the sample set, the flight list used for comparison is provided in

Appendix B. The flights in this list are chosen to ensure an accurate fleet composition, in accordance with

the percentage distribution of aircraft types shown in Table 2.4. However, these flights only involve routes

between the airports analyzed in the regression study. Note that the ATR-72 and A320neo aircraft are not

included. The A320neo is not available in the used version of BADA, and the ATR-72 encountered issues

with the code. The error indicated stall issues which is expected to be caused by the aircraft descent

speed, taken from the BADA files, which could not match the descent slope for the aircraft.

To create the flight list, the percentages of each aircraft type are multiplied by 10 to estimate the number

of aircraft corresponding to each percentage of all flights. This means there are e.g. 20.5 ∗ 10 = 205
A320 aircraft and 17.9 ∗ 10 = 170 737-800 etc. Additionally, the total number of annual flights (total flight

movements) for each departure airport is taken and multiplied by the number of aircraft, then divided by the

total sum of all flight movements for all considered airports. This yields a scaled flight number associated

with each departure airport. This process is repeated for each aircraft type and each airport, resulting in

the flight list presented in Appendix B. The equation for this calculation is given in Equation 2.2, where

Naircraft represents the number of aircraft of a specific type, FMairport is the total flight movements for

the considered airport, and FMtotal is the total flight movements for all airports in the dataset.

flights =
Naircraft ∗ FMairport∑

FMtotal
(2.2)

The method described above generates a sample dataset for comparing flight emissions. As noted,

certain aircraft types are excluded from the dataset, and a specific route between KDEN (Denver Airport)

and SBGR (São Paulo) was not considered due to code errors. Figure 2.4 presents the aircraft included in

the sample set, along with the respective percentages as given in Table 2.4 in which 61.1% of the total

global flights are represented. The adjusted percentages do not perfectly align with the percentages for

all flights globally, but they are within an acceptable range for the purposes of this research. Appendix B

shows the table related to the aircraft flights within the sample set.
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Figure 2.4: Percentages of aircraft in actual and sample data

The objective is to ensure that the percentages of flights to and from each airport in the sample set

closely mirror the percentages of actual annual flight movements at each airport. Figure 2.5 displays the

percentages relative to the total annual flights for all airports and the corresponding percentages within the

sample data. While these percentages may not perfectly match, they sufficiently represent the real-world

scenario for the purposes of this research, which focuses on comparing two analytical approaches. This

level of representation is adequate given the study’s aim of comparing emission estimates from different

methodologies. The table with exact percentages is given in Appendix C.
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2.7. Integration into openAVEM
The parts requiring modification in the openAVEM code are specifically related to climb and descent. The

code in the model by Quadros et al. separates climb, cruise, and descent, and determines the starting

mass with a 5% extra fuel reserve, additional fuel for diversion (depending on whether it is a long-haul

or short-haul flight), and the estimated payload mass. For each phase of the flight—climb, cruise, and

descent—it adds a lateral inefficiency factor.

After determining the best method to relate the flight path to airport parameters, the method is im-

plemented into the model of Quadros. The developed method specifically replaces the current method

of estimating the aircraft position. By calling the function described in the ’readme’ file, the process is

triggered, loading a CSV document with the sample flight list.

2.7.1. Aircraft position estimation
In the current estimation approach, BADA calculates the Top of Climb/Descent (TOC/TOD). It calculates

fuel flow and aircraft position based on a speed schedule, using the destination elevation and descent

speed schedule, as detailed in the Instrument Procedures Handbook of the FAA [5]. However, descent

from the TOD is typically not followed strictly due to air traffic management or airspace design constraints.

Consequently, the climb and descent calculated by the standard BADA may not be accurate in certain

cases. To adjust the openAVEM model, the code that calculates fuel flow during climb and descent has

been altered to account for additional distance flown. For this, pyBADA is used, which offers a function

called ’constantspeedslope’. This function determines the fuel flow of an aircraft at a constant velocity and

slope. This function is offered within pyBADA which means that it is validated and is not allowed to be

altered. The fuel flow is determined each 1000 feet step, just like with the original method, and the speed

is taken from the ’PTD’ files of the aircraft from BADA.

2.7.2. Emission Comparison
The comparison of emissions between the current approach and the developed approach within this thesis

is a central part of this research. By comparing the emissions from both approaches and providing a

related uncertainty analysis, the applicability of the new approach can be evaluated.

Sample Dataset

The sample dataset described in Section 2.6 is applied to compare the methods. The goal is to achieve a

comparable fleet composition to the real world for each airport, and scale the number of sample flights to

each airport according to the annual flight movements at the airport. This approach ensures a realistic

sample, which minimizes bias in the results.

Emission Comparison

The model is run several times to obtain the emissions for the climb and descent phases separately,

using both the original approach and new, proposed approach. The total fuel consumption is expected to

increase, but because of different operating conditions, the emissions may vary, potentially decreasing for

some specific emissions.

Uncertainty Quantification

To evaluate the accuracy of the new approach, the predicted values are compared to the actual mean

values for each airport. The difference between the estimated mean value and the actual mean value

indicates how far the prediction deviates for the entire sample set. Additionally, upper and lower estimates,

derived from the confidence interval or uncertainty of the flight distance prediction, quantify the uncertainty

in the emissions.



3
Airport Analysis and Statistical Results

This chapter discusses the analyses performed on the airports to identify key parameters and the methods

used to relate these parameters to flight distance. It compares different regression techniques to determine

the most suitable approach for the application within the scope of this thesis.

3.1. Analysis of flight distances
This section presents the outcomes of the analyses and the statistical assessment. It synthesizes the

findings and discusses the subsequent steps that were taken based on these results. It encompasses

focused analyses of the airports to identify patterns in the data which includes analysis of the flown distance,

aircraft type, and flight direction.

3.1.1. Arrivals and departures
Figure 3.1 illustrates the difference in distances between arrivals and departures at Schiphol Airport. The

mean distance for arrivals is approximately 290 kilometers, while for departures it is about 240 kilometers.

This difference could be attributed to aircraft converging as they approach an airport, which requires

additional separation and vectoring, thereby increasing the distance during descent. In contrast, departing

aircraft disperse as they head to various destinations. This natural dispersion reduces the need for vectoring

during ascent, resulting in shorter distances for departures but with a larger spread compared to arrivals.
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(a) Arrival distances at Schiphol
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(b) Departure distances at Schiphol

Figure 3.1: Arrival and departure distances at Schiphol

3.1.2. Airport elevation
The difference in arrivals, as shown in Fig. 3.2, is likely due to the substantial disparity in airport elevation.

Sydney Airport is situated at 6 meters above sea level, while El Dorado Airport is located at 2,548 meters.

15
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This notable difference in elevation affects the total distance flown to and from each airport as there is less

vertical distance between cruise and the airport. While there could be other contributing factors, the large

gap in elevation indicates that airport elevation plays a significant role in flight path distances.
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(a) Arrivals Sydney
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(b) Arrivals El Dorado

Figure 3.2: Arrivals Sydney and El Dorado

In the departures shown in Fig. 3.3, there is a noticeable difference between the flights departing from

Madrid and those departing from Cape Town. This is especially evident at the lower end of the spectrum,

where flights from Cape Town generally cover a greater distance compared to those from Madrid. This

discrepancy could be due to Cape Town’s relatively isolated location, which leads to a greater proportion

of long-range flights. Long-range flights cruise at higher altitudes compared to short-range flights and

therefore the geographic location of an isolated airport contributes to longer distances flown during climb

and descent. This is why Cape Town has a higher mean distance compared to Madrid, which is a network

with a greater proportion of short-range flights.
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(a) Departures Madrid
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(b) Departures Cape Town

Figure 3.3: Departures Madrid and Cape Town

3.1.3. Aircraft type
Sydney Airport exhibits a similar distribution for both its arrivals and departures, though there’s a difference

of about 50 kilometers in the mean distances. The graphs display a slight bimodal distribution in the flown

distances, indicating that there might be two common flight patterns or routing strategies for this airport.
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(a) Arrivals Sydney
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(b) Departures Sydney

Figure 3.4: Arrivals and Departures at Sydney

Figure 3.5 depicts the distances flown by aircraft categorized as large narrow-body. These aircraft

operate both long and short routes, depending on airline practices or airport location. The main peak in the

data is explained by large narrow-body aircraft, but the aircraft categorized as narrow-body and wide-body,

typically used for short-haul and long-haul flights, do not fully explain the rest of the distribution. This

suggests that further investigation may be needed to understand which aircraft types are responsible for

shorter distances, leading to the secondary peak at lower distances. A comprehensive list of wide-body,

large narrow-body, and narrow-body aircraft is provided in Appendix A, obtained from MIT1.
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(a) Large narrow-body arrivals Sydney
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(b) large narrow-body departures Sydney

Figure 3.5: Large narrow-body Arrivals and Departures at Sydney

3.1.4. Flight direction
Figure 3.6 illustrates the distribution of flown distances at Miami Airport. This airport exhibits a slight

deviation from a typical normal distribution, with a small peak observed just before and around the 150-

kilometer mark for both departures and arrivals.

1Obtained from: https://web.mit.edu/airlinedata/www/Aircraft%20Categorization.pdf
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(a) Arrivals Miami
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(b) Departures Miami

Figure 3.6: Arrivals and Departures at Miami

Further analysis of flight directions, by determining which quadrant around the airport the aircraft flew

from or to, revealed a significant drop in flown kilometers in the southeast direction. Quadrants are a

simple way to assess whether there are recognizable deviations in the departure or arrival routes. The

analysis results shown in Table 3.1 indicate that the southeast direction has a significantly lower mean

compared to other flight directions. Upon further investigation, as shown in Fig. 3.7, the cause was found

to be insufficient data. To address this, the code was slightly adjusted by increasing the minimum required

data points to 70 for altitudes above 1,500 meters and to 100 points for altitudes below 1,500 meters. The

graph in Fig. 3.6 and the corresponding table below already reflect this adjustment.

Table 3.1: Flight directions of arrivals at Miami airport per quadrant

Quadrant Sample size Mean (km) Standard deviation (km)

South East 103 155 34

South West 112 277 47

North East 252 287 61

North West 303 284 55

Unclassified 15 247 69

The decision to include only data with a minimum length introduces additional uncertainty, as it leads to

excluding more data points. Despite this precaution, there are still instances where data points exceed the

considered threshold but still terminate at the same coordinates during climb or descent. This indicates

that incorrect data persists despite efforts to minimize it, highlighting the limitations of open-source data in

terms of coverage. These limitations are not only due to the absence of receivers in certain regions but

also because the range of these receivers may not always be sufficient.
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Figure 3.7: Arriving flights at Miami airport.

3.2. Statistical results
Various statistical techniques have been applied to obtain a quantified relationship between the airport

parameters and flight path. The preliminary airport parameters selected for the analysis are total flight

Movements, airport elevation, and number of runways.

3.2.1. Multiple Linear Regression
Three input variables used within the regression analysis include flight movements, the number of runways

and airport elevation. The output variable is the distance flown.

Beta coefficients and their significance

Table 3.2 and Table 3.3 show the values of the Beta coefficients with the related confidence intervals. The

confidence intervals do not include zero which means that the null hypothesis can be discarded and the

Beta coefficients have a statistically significant effect.

Table 3.2: Beta coefficients and their confidence intervals for arrivals

Variable Beta Coefficient 95% Confidence Interval

constant 267.32 (266.12, 268.51)

Flight movements 0.000104 (0.000100, 0.000108)

Runways -1.96 (-2.42, -1.49)

Airport elevation -0.0373 (-0.0378, -0.0368)
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Table 3.3: Beta coefficients and their confidence interval for departures

Variable Beta Coefficient 95% Confidence Interval

constant 247.29 (245.92, 248.66)

Flight movements 0.000117 (0.000113, 0.000122)

Runways -6.55 (-7.09, -6.02)

Airport elevation -0.0264 (-0.0272, -0.0256)

T-values and VIF

Table 3.4 shows that the VIF values are within an acceptable range for all but one of the Beta coefficients.

The constant has a VIF value slightly above 6, which might be due to the low effect size of the statistical

model.

Table 3.4: T-values and Variance Inflation Factor (VIF) for Arrivals and Departures

Variable T-value (Arr) T-value (Dep) VIF

constant 437.55 353.30 6.68

Flight movements 50.84 49.91 2.14

Runways -8.24 -24.06 1.96

Airport elevation -103.08 -63.67 1.13

Additionally, from the T-values it is seen that airport elevation has a larger effect on the flown distance

during descent compared to climb which could be due to vectoring and a higher airport might require less

vectoring as the descent phase is smaller.

Effect size

Effect size, often represented as R2, measures the proportion of the variance in the dependent variable

that is explained by the independent variables in the regression model. It ranges from 0 to 1, where 0

means none of the variance is explained by the model, and 1 indicates that the model explains all variance.

Each parameter was added to the model separately to test its effect size independently. Table 3.5

shows that airport elevation has the most significant effect on the distance flown, explaining 8.5% of the

variance. This is significantly higher than the effect of flight movements and runways, which have effect

sizes of 1.2% and 1.0%, respectively.

Table 3.5: Effect sizes for variable combinations

Variables R2 (Arr) R2 (Dep)

Flight movements 0.0120

Runways 0.0096

Airport elevation 0.0848

Flight movements, Runways 0.0130

Flight movements, Airport elevation 0.1274

Runways, Airport elevation 0.1001

Flight movements, Runways, Airport elevation 0.1282 0.0599

While it’s logical that the combined effects of multiple variables would result in a higher explained

variance in a linear model, the combined effects are not simply the sum of the individual effects. This

discrepancy is likely due to a common underlying factor among the selected variables. For example,
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the combined effect of flight movements and runways is lower than the sum of their individual effects,

accounting for only 1.3% of the explained variance. However, the combined effect of runways and airport

elevation, and especially of flight movements and airport elevation, is higher, with explained variance

percentages of 10% and 12.7%, respectively. These combinations actually increase the explained variance

more than the sum of their individual effects, supporting the hypothesis that an underlying factor influences

both flight movements and runways. These factors are largely unrelated to airport elevation, which is a

static metric independent of, for example, airport capacity.

As the flight movements variable is added to the model, the relevance of the number of runways

diminishes, as it does not significantly explain variance in the model. With a total of 13% explained variance,

it may be worth exploring other related factors to improve the model’s accuracy. One possible area of

investigation could be airspace complexity, which might play a significant role in the large unexplained

variance of the current model.

MLR estimates

Figure 3.8 shows the estimated distances for each airport and compares those to the actual mean of the

airport. The results show that MLR over and under-estimates the actual distances flown. The average

error margin of MLR on the training data set is 8.17%. The exact values and error margins are given in

Appendix C.
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Figure 3.8: Estimated values and actual values per airport using MLR

3.2.2. Multiple Linear Regression with airspace complexity
As explained by Zhu et al. [12], ”Airspace complexity serves as an objective metric for evaluating the

operational condition of the airspace.” This metric is crucial in the design of airspace within Air Traffic Man-

agement (ATM), but its assessment is complex due to non-linear relationships among various independent

factors.

Airport selection

For this analysis only the six airports given in Table 2.3 were taken to evaluate the feasibility of incorporating

airspace complexity into the model due to data availability constraints as explained in Section 2.4. When

another linear regression is applied to just these six airports, using flight movements, runways, and airport
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elevation as parameters, the effect size increases to 38%. This is likely because many of these airports

share similar characteristics. However, some of the tests applied to the MLR show significant differences,

as illustrated in Table 3.6 and Table 3.7.

Table 3.6: Beta coefficients and their confidence intervals of selected airports

Variable Beta Coefficient 95% Confidence Interval

constant 216.20 (214.36, 218.03)

Flight movements -0.000319 (-0.000335, -0.000303)

Runways 46.38 (44.79, 47.97)

Airport elevation -0.0131 (-0.0141, -0.0121)

Table 3.7: T-values and Variance Inflation Factor (VIF) of selected airports

Variable T-value VIF

constant 230.90 8.91

Flight movements -39.39 12.26

Runways 57.09 12.11

Airport elevation -21.22 3.28

The influence of the runway parameter has notably increased in its impact on the results, indicating that

an additional runway would add 46 kilometers of distance. This is a significant deviation from the original

regression results. Moreover, it is surprising to see that more flight movements now have a diminishing

effect on the total distance flown. Additionally, the VIF values for flight movements and runways are very

high. These outcomes are likely due to the limited number of airports considered. However, these values

are not realistic, as more flights should typically increase distance, and runways are expected to decrease

distance, as observed in the regression results from the full dataset.

Removal of runways parameter

Due to the high VIF values and unrealistic beta values associated with the runway parameter, it has been

discarded. This decision is further supported by the fact that this parameter barely contributed to the

variance (0.1%) in the effect size of the full dataset. The revised results are shown in Table 3.8 and

Table 3.9 below.

Table 3.8: Beta coefficients and their confidence intervals of selected airports without runway parameter

Variable Beta Coefficient 95% Confidence Interval

constant 254.43 (253.08, 255.79)

Flight movements 0.000123 (0.000118, 0.000128)

Airport elevation -0.0422 (-0.0430, -0.0415)

Table 3.9: T-values and Variance Inflation Factor (VIF) of selected airports without runway parameter

Variable T-value VIF

constant 369.36 4.35

Flight movements 49.11 1.06

Airport elevation -114.23 1.06
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The results now seem more plausible, aligning closely with the initial linear regression outcomes shown

in Table 3.2 and Table 3.4. The effect size of the model drops to 31.2%.

Regression results with airspace complexity parameters

The additional value of including airspace complexity metrics in the regression is evaluated by individually

examining the effect size of each variable. Table 3.10 illustrates the effect sizes for various combinations

of airport parameters.

Table 3.10: Effect sizes for variable combinations with airspace complexity metrics

Variables R2

Flight movements 0.0124

Airport elevation 0.2565

Merg./cross. points 0.1118

Airways 0.0100

FM, H 0.3118

FM, H, MCP 0.3177

FM, H, A 0.3249

FM, H, MCP, A 0.3249

The results suggest that the chosen complexity parameters contribute little to the explained variance in

the model. Given the minimal additional variance explained, the current approach to defining airspace

complexity seems inadequate. Further analysis and research are needed to effectively incorporate airspace

complexity into the model.

3.2.3. Bayesian Regression
Bayesian Regression (BR) shares similarities with multiple linear regression, but it offers an additional

dimension by quantifying uncertainty. The Bayesian regression used in this study is implemented with

TensorFlow, as described in Section 2.5.

Beta coefficients

Just like in linear regression, beta coefficients in Bayesian regression represent the change in the output

variable for each unit change in the associated input variable. However, in Bayesian regression, these

coefficients come with an uncertainty measure, offering additional insight into their reliability. Table 3.11 and

Table 3.12 show the beta coefficients obtained from the Bayesian regression, along with their associated

uncertainty quantification.

Table 3.11: Beta coefficients and their confidence intervals for arrivals

Variable Beta Coefficient 95% Confidence Interval

constant 295.71 -

Flight movements 0.000104 (0.000102, 0.000107)

Runways -1.96 (-2.43, -1.49)

Airport elevation -0.0373 (-0.0376, -0.0370)
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Table 3.12: Beta coefficients and their confidence intervals for departures

Variable Beta Coefficient 95% Confidence Interval

constant 263.84 -

Flight movements 0.0000209 (0.0000144, 0.0000273)

Runways −0.047 (−5.13, 5.04)

Airport elevation −0.0240 (−0.0369, −0.0112)

Table 3.11 demonstrates that the results of Bayesian regression align with those obtained from multiple

variable linear regression. Table 3.12, on the other hand, shows quite different outcomes compared to

the MLR. The runways parameter in this case has a large confidence interval, ranging from -5 to 5, which

encompasses zero. This suggests that we cannot reject the null hypothesis for this parameter, indicating

that it might not be significant in this context. The reason behind such a wide confidence interval for this

parameter is not entirely clear.

Model performance

Table 3.14 provides metrics related to the performance of the Bayesian regression model. The BR is an

iterative process within which the maximum epoch number was set at 50,000, with a loss function that

would automatically halt the training loop if no significant improvement was observed over 100 epochs.

This setup indicates that the model has achieved convergence in terms of validation loss and training loss.

However, the validation loss (VL) remains relatively high, around 90 thousand, whilst the training loss (TL)

is higher at 360 thousand suggesting that the model might struggle to capture the underlying patterns

in the data and that the way this data is setup, is hard to train to for the model. As shown in Table 3.13

and visually in Fig. 3.9, the training loss starts around 2.6 billion, going down to 360 thousand, whilst the

validation loss goes down from 656 million to 90 thousand. Departures show a similar outcome with the

validation loss ending significantly below the training loss of the model.

Table 3.13: Validation and training loss

Flight type V Lstart V Lend TLstart TLend

Arrivals 656.145.000 89.934 2.624.834.000 359.803

Departures 552.031.800 92.095 2.216.532.700 368.524
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Figure 3.9: Training an validation losses for arrivals in Bayesian Regression.

This is also reflected in the low effect size of 12.6%, which is in the same range as the multiple variable

linear regression conducted earlier, indicating that the Bayesian model does not provide a significant

improvement in performance.

Table 3.14: Model performance

Flight type Early Stopping Epoch Log Standard Deviation Effect size (R2)

Arrivals 42203 4.203 (67 km) 12.60%

Departures 39674 4.339 (76 km) 6.47%

The log standard deviation from the BR model is 4.203, which translates to approximately 67 kilometers.

This suggests that the predicted distances can vary by as much as 67 kilometers above or below the mean

estimate. For departures, the standard deviation is even higher at 76 kilometers, which is considerable

given that departure distances are generally shorter. This higher variation could be attributed to the

significantly lower effect size of the departures model compared to the arrivals model.

Bayesian Regression results

Figure 3.10 presents the estimated distances from the BR model. When comparing these results with

those from the MLR, it becomes evident that the error margins are generally larger with BR, with the

average error margin being up at 11.5% compared to the 8.17% of the MLR. This might indicate that

the Bayesian model has a higher degree of uncertainty or that it’s overfitting certain aspects of the data.

Notably, most error margins from the BR are greater than those from the MLR, although the Bayesian

model does provide a clear estimate of the uncertainty.

This uncertainty, around 67 kilometers, encapsulates almost all of the airport estimations, except for

Miami airport (KMIA), where the estimate appears to be an outlier. It’s also interesting to note that nearly all
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distances in the Bayesian model are overestimated. This tendency towards overestimation could suggest

that the model’s intercept needs adjustment, which might help correct the overall direction of the estimates

and improve accuracy. The exact values and error margins are given in Appendix C. This is further

supported by the similar beta coefficients and shape of the estimation graph of the arrivals compared with

the MLR, which is simply higher due to the constant.
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Figure 3.10: Estimated values and actual values per airport using BR

3.2.4. Ridge Regression
The results of the Ridge Regression for arrivals are presented in Table 3.15. The results indicate that the

beta coefficients from Ridge Regression are very similar to those obtained from MLR, suggesting that

Ridge Regression provides a comparable fit to the data, but with potentially better generalization due

to regularization. The alpha value with the best performance is selected, indicating the optimal level of

regularization. In the given context, an alpha value of 10 was chosen from the range of available alpha

values (0.1, 1, 10, 20, 50, 100) as the best fitting for the model.

Table 3.15: Ridge Regression coefficients and their confidence intervals for arrivals

Variable Beta Coefficient 95% Confidence Interval

constant 281.71 (-)

Flight movements 0.000104 (0.000100, 0.000109)

Runways -1.95 (-2.54, -1.40)

Airport elevation -0.0373 (-0.0378, -0.0368)
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Table 3.16: Ridge Regression coefficients and their confidence intervals for departures

Variable Beta Coefficient 95% Confidence Interval

constant 266.25 (-)

Flight movements 0.000117 (0.000113, 0.000122)

Runways -6.57 (-7.09, -6.06)

Airport elevation -0.0264 (-0.0271, -0.0256)

The results from Fig. 3.11 indicate that RR, while designed to generalize better on unseen data, may

lead to a wider range of error in some cases. This table reveals that underestimation errors have decreased,

suggesting better accuracy for airports initially underestimated by linear regression. However, the same

table shows that overestimation errors have increased, with several airports exhibiting errors above 20%.

RR is designed to generalize better on unseen data, potentially offering improved accuracy over MLR,

however the overall error margin on the training set is 8.21%, which is comparable to the 8.17% of the

MLR. This could mean that Ridge Regression might be more reliable in predicting unknown data, which

is tested within Section 3.3. The effect sizes for the Ridge Regression arrival and departure models are

12.9% and 6%, respectively. The exact values and error margins are given in Appendix C. Similar to the

BR, the RR also reflects the performance of the MLR with regards to the beta coefficients in the arrivals.

The constant is still estimated too high however, and therefore exhibits a greater error on the complete

data set.
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Figure 3.11: Estimated values and actual values per airport using RR

3.2.5. Neural Network Regression
The Neural Network Regression (NNR) was tested with various configurations. In Table 3.17, the configu-

rations are detailed, with the number of hidden layers and their respective node counts specified (e.g.,

layers - (nodes layer 1: nodes layer 2: ...)). The optimal configuration balances accuracy with complexity,

ensuring that the network does not overfit or underperform. By examining the MAE and R² values, the

predictive capabilities of each configuration is assessed to determine the best structure for estimating flight

emissions.



3.3. Regression prediction capabilities 28

Table 3.17: Neural Network regression results per configuration for arrivals and departures

Configuration Effect size (R2
arr) MAE (%) Effect size (R2

dep) MAE (%)

1-(3) 0.127 7.47 0.066 6.49

1-(5) 0.127 7.46 0.066 6.49

1-(10) 0.132 7.15 0.078 5.77

2-(3:2) 0.127 7.46 0.066 6.52

2-(3:3) -8.904 76.54 -5.572 74.25

2-(5:3) 0.158 4.62 0.066 6.41

2-(5:5) 0.143 6.02 0.071 5.97

2-(10:5) 0.192 2.98 0.126 1.84

3-(5:3:2) 0.139 6.18 0.109 3.57

3-(10:5:3) 0.195 2.92 0.126 1.77

The results demonstrate that various neural network configurations yield different performance levels.

Adding a large number of nodes to a single-layer setup doesn’t significantly increase the explained variance.

Similarly, increasing the number of layers, as in the 5:3:2 configuration, does not guarantee improved

outcomes and may lead to overfitting, where the model becomes too specific to the training data, hindering

its generalization to unseen data.

Another observation is that having two layers with the same number of nodes seems to reduce

performance, as seen in the 5:5 configuration and further supported by the poor results from the 3:3

configuration, indicating that the neural network struggled to find discernible patterns.

The best-performing structure seems to be the 5:3 configuration, striking a balance between complexity

and risk of overfitting. Nonetheless, the potential for overfitting remains a concern and requires further

examination. In Section 3.3, a comparison between different neural network configurations and between

various regression methods is conducted to better understand the prediction capabilities of these models.

Because of the high explained variance and low error margin, the 10:5 configuration is also used in the

comparison.

3.3. Regression prediction capabilities
In this section, the focus is on assessing which regression method best predicts data that wasn’t used

during training, which helps determine whether the models can generalize beyond their training data. To

evaluate the predictive capabilities of various regression models, a test dataset of additional airports is

used. This dataset contains airports not included in the initial regression analysis, providing a fresh set of

data points for evaluating the accuracy and robustness of the predictions.

3.3.1. Test dataset
The test dataset includes a selection of airports that vary across the three key parameters: elevation,

number of runways, and flight movements. This variety helps ensure that the regression models do not

overfit on specific patterns from the training dataset and can handle a broader range of input data. The list

of additional test airports is shown in Table 3.18.
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Table 3.18: Airports within regression test dataset

Airport ICAO Airport City Flight Movements Runways Airport elevation

RJTT Tokyo 388100 4 11

EDDB Berlin 164293 2 48

CYYZ Toronto 338577 5 173

EGCC Manchester 151460 2 78

KATL Atlanta 724145 5 313

3.3.2. Regression performances
Table 3.19 and Table 3.20 show the error margins for different regression models applied to a test dataset.

They provide a comparison of how well each model predicts distances for new airports, with separate

results for arrivals and departures. These error margins, given for individual airports and as an overall

mean, offer insights into the accuracy of the models.

Table 3.19: Error margins (%) comparison of considered regression methods for arrivals

Airport ICAO MLR BR RR NNR(5:3) NNR(10:5)

RJTT 13.22 4.95 9.05 16.05 40.17

EDDB 5.63 4.00 0.76 6.67 30.22

CYYZ 10.80 21.85 16.38 10.48 27.44

EGCC 7.75 18.86 13.37 7.24 19.27

KATL 10.75 20.64 15.72 34.04 43.44

Mean error margin 9.23 14.66 11.46 14.70 32.11

Table 3.20: Error margins (%) comparison of considered regression methods for departures

Airport ICAO MLR BR RR NNR(5:3) NNR(10:5)

RJTT 32.45 35.08 41.86 32.16 38.98

EDDB 11.32 17.44 19.67 11.85 10.43

CYYZ 13.90 21.63 22.52 13.21 16.02

EGCC 4.87 11.24 12.81 5.37 6.43

KATL 16.24 8.34 23.79 15.11 8.22

Mean error margin 15.77 18.25 24.53 15.74 16.02

The results indicate that despite the NNR achieving a higher effect size on the training dataset, its

predictive accuracy is significantly lower than that of Multiple Linear Regression when predicting on

unseen arrival data. However, for departures, the Neural Network Regression’s predictive accuracy is

only marginally better than MLR. This suggests that the effectiveness of a neural network in this context

may lie in memorizing specific patterns in the training data rather than generalizing well, an indication for

overfitting.

A neural network might still be useful if additional airport parameters are included in the dataset, which

could improve the ability of the model to generalize by capturing more of the underlying variation. However,

the current results suggest caution when using neural networks, as overfitting could lead to inaccurate

predictions on new data.

The BR, intended to improve generalization, shows some success in reducing errors for underestimated

distances, particularly for the first two arrival airports. However, it struggles with overestimated distances,
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leading to larger error margins. For departures, the Ridge regression generally overestimates but shows

some improvement in accuracy for the last three airports.

The RR results also show considerable variation in predictive accuracy. For example, in the case of

arrivals, the last three airports are significantly overestimated, while the first two are underestimated. For

departures, all predictions show notable error margins, especially for Haneda Airport (RJTT), which has an

error exceeding 40%. Manchester Airport (EGCC) is somewhat of an exception, with a smaller but still

significant error margin of almost 13%.

Among the tested regression methods, MLR seems to offer the best predictive performance, maintaining

a balance between model simplicity and accuracy on unseen data. Although the model’s effect size is low,

indicating that it doesn’t capture all the underlying variation, its generalization capabilities are the most

promising among the regression methods tested. This suggests that when the underlying factors are not

fully understood, simpler models may be more robust for predictive purposes.

3.4. Synthesis
This chapter presents the findings from the data analysis and explores the suitability of various regression

models for understanding the relationship between airport parameters and flight paths. Within this section,

the first and second sub-questions of the thesis are addressed.

3.4.1. Findings of sub-question 1
The first sub-question delves into understanding the factors influencing flight paths during the ascent and

descent phases. The first sub-question asks ”Which airport parameters impact flight paths during climb

and descent?”. By analysing airport data and discerning recurring patterns within flight distances, several

key parameters emerge as influential, including fleet composition, airport elevation, flight direction, flight

movements, runways, and airspace complexity.

Fleet composition

Analysis, as depicted in Figures 3.4 and 3.5, reveals that aircraft type influences flight paths at certain

airports. Notably, at Sydney airport, departures exhibit distinct patterns based on aircraft classification.

Large narrow-body aircraft demonstrate a peak in departure data, suggesting specific flight characteristics

associated with these aircraft types. Conversely, short-haul aircraft show a smaller peak, likely indicative

of their shorter flight distances and lower cruising altitudes during descent.

Airport elevation

Airport elevation significantly impacts the distance flown during descent and climb phases. A comparison

between Sydney and El Dorado airports in Figure 3.2 illustrates this effect. El Dorado, situated over 2500

meters above sea level, requires less distance for descent compared to Sydney, nearly at sea level. This

suggests that higher altitude airports necessitate shorter descent distances due to standard descent rates

and additional level flight segments.

Flight direction

Initial observations suggest a correlation between flight direction and total flight distance, as indicated in

Figure 3.6. However, further analysis reveals that this discrepancy stems from limitations in available data

beyond a certain point. This shortfall may be attributed to data being out of range from receiving stations

or failing to meet accuracy standards for inclusion in the dataset.

Flight movements and runways

Total yearly flight movements and the number of runways at an airport serve as additional indicators for

flight distance. Increased flight movements is associated with longer flight distances owing to heightened

congestion and ATC interventions, whilst increased runway count is associated with lower distances.

However, runway inclusion in the analysis marginally impacts the predictive model, with airport elevation

and flight movements emerging as primary influencing parameters on flight distance.

Airspace complexity

The analysis reveals a low effect size across all models, with only a 13% variance explained by the MLR

for arrivals and about 6% for departures, indicating inadequate predictive capabilities. Consulting with ATM
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experts at To70 suggests that airspace complexity could enhance predictive accuracy due to its influence

on flight distances to airports. However, attempts to integrate airspace complexity into the analysis did not

improve prediction accuracy; instead, they worsened it. Further research is needed to refine methods for

incorporating airspace complexity, potentially leading to significant advancements in predictive modeling

for this thesis.

Conclusion

Given the findings and the focus of the first sub-question, three key parameters are selected for further

analysis: total flight movements, runway quantity, and airport elevation. Fleet composition and flight

direction, though influential, pose challenges in pre-determination for predictive purposes. Additionally,

while airspace complexity remains unexplored in this analysis, its potential contribution to unexplained

variance underscores the need for future research integration into predictive models for improved accuracy

3.4.2. Findings of sub-question 2
The analysis also addresses the second sub-question, which seeks to quantify the relationship between

airport parameters and flight paths. This research inquiry poses the question: ”What is the quantified

relation between airport parameters and flight path, and what are the sensitivities?” A comparison between

regression methods is conducted to identify the most appropriate approach for relating airport parameters

to flight paths.

Multiple Linear Regression

The Multiple Linear Regression yielded results supported by confidence intervals, allowing rejection of the

null hypothesis for all beta coefficients, indicating statistical significance. Comparison between arrivals and

departures reveals differences in coefficients due to the difference in flight movements. Departures exhibit

a lower intercept compared to arrivals, with flight movements showing a higher difference per flight for

departures. Additionally, runway quantity exerts a more substantial influence on departures, while airport

elevation has a lesser impact.

The influence of each parameter, as indicated by the T-value, varies between arrivals and departures.

Flight movements and runway quantity exhibit increased influence relative to other parameters. Conversely,

the constant value and airport elevation demonstrate decreased significance. VIF values remain consistent

between arrivals and departures.

Effect size analysis highlights significant differences between arrivals and departures. The chosen

airport parameters explain approximately 13% of variance in the model for arrivals, compared to only 6%

for departures.

Furthermore, inclusion of the airspace complexity metric does not significantly improve explained

variance on the test set. The original MLR test, explaining 31% of variance, marginally increases to 32%

with airspace complexity metrics. Given the challenges in obtaining and availability of airspace complexity

metrics, they are discarded from the analysis.

Bayesian Regression

The Bayesian regression exhibits similar coefficient results to the MLR for arrivals, albeit with a notably

higher estimated constant. Conversely, for departures, an anomalous value is observed for the runway

parameter, indicating a reduction of flown kilometers by -0.0467 per runway, with a confidence interval

ranging between -5 and 5. Consequently, the null hypothesis cannot be dismissed, meaning the runway

parameters might be statistically insignificant in departure predictions. However, the Bayesian regression

approach provides more insight into data variability, with standard deviations of 67 kilometers for arrivals

and 76 kilometers for departures. Despite departure distances being shorter, the larger standard deviation

can be attributed to the model’s lower effect size of merely 6.89% for departures, compared to 12.8% for

arrivals.

Ridge Regression

The ridge regression yields results closely resembling those of the MLR method for both arrivals and

departures, with the exception of the intercept term, which is higher for both models. Effect sizes for the

arrival and departure models are 12.9% and 6% respectively.



3.4. Synthesis 32

Neural Network Regression

Neural network regression is good in modeling non-linear relationships among variables through the

definition of layers and their constituent nodes. While a single layer fails to outperform the standard linear

model in estimation accuracy, triple layers demonstrate the most precise distance estimations. However,

employing triple layers adds a risk of overfitting due to the limited number of parameters. Therefore, the

double layer configuration emerges as the optimal choice, balancing improved estimations over the single

layer while mitigating the risk of overfitting. Among the tested configurations, the 5:3 configuration is

deemed the most effective option.

Conclusion

The determination of the most suitable method for relating airport parameters to flight path and predicting

distances flown towards different sized airports involves assessing each regression method’s predictive

capability on data outside of the training dataset. In this evaluation, five new airports with diverse parameter

sets are introduced. Error margins, as detailed in Table 3.19 and Table 3.20, underscore the multiple

linear regression’s superior predictive accuracy compared to the other methods.

Notably, departure error margins surpass those of arrivals significantly. This and the lower effect size of

the departure models suggests that parameters such as flight movements and runway quantity may yield

lesser influence on departure outcomes. The influence of flight movements may be mitigated as aircraft

divert towards different routes, thereby experiencing lesser impact from airspace congestion as flights

converge to the airport, as is the case for arrivals. Thus, different parameters are warranted to accurately

define the relationship between airports and departure distances as compared to arrivals.



4
Emission Comparison Results

This chapter compares the results obtained from this thesis to the existing model by Quadros et al. [1].

The sample as described in Section 2.6, is used to address the differences between the two methods

for aircraft position estimation. This chapter discusses the implementation of the quantified relationship

between airports parameters and flight distance into the model and the resulting emission estimations

using the new method.

4.1. Emission comparison
Table 4.1 displays the difference in total emissions between the original approach, which is based on TOC

and TOD, and the approach suggested in this research. The results indicate a total fuel burn difference of

0.3 Gg (109 grams) between the two methods which also includes the cruise phase. This discrepancy is

expected, as the new approach includes additional distance during the climb and descent phases, leading

to greater fuel consumption.

Table 4.1: Emissions Results - Climb and Descent

Species TOD/TOC based(Quadros) Flight-path based

FUELBURN 10.3 Gg 1.00 kg/kg 10.6 Gg 1.00 kg/kg

NO2 116 Mg 11.3 g/kg 121 Mg 11.4 g/kg

HC 659 kg 63.9 mg/kg 616 kg 58.2 mg/kg

CO 21.7 Mg 2.10 g/kg 21.3 Mg 2.01 g/kg

nvPM 55.5 kg 5.38 mg/kg 78.7 kg 7.43 mg/kg

nvPM_N 4.60e+21 4.46e+14 /kg 4.93e+21 4.66e+14 /kg

The fuel burn differs by approximately 3%, which is significant. However, some of this fuel burn

might be overestimated, as the cruise phase has remained unchanged. The uncertainty regarding this

overestimation is discussed in Section 4.2. Figure 4.1 and Figure 4.2 visually shows the increase in fuel

burn for three aircraft, Type1, Type2 and Type3, for both the departure and arrival. Both show an increase

in the fuel burned, but what is important to notice is that the mid-point of the fuel burned in the climb has

shifted up in altitude, indicating an increased fuel burn further in the climb.

33
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Figure 4.1: Fuel burn per height - Departures FACT
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Figure 4.2: Fuel burn per height - Arrivals FACT

As shown in Table 4.1, the impact on total flight emissions is noticeable, but to understand the effect

better, it’s essential to compare emissions for each flight phase separately. Within Appendix C, Table C.6

and Table C.7 provide a detailed comparison of emissions, as seen in Figure 4.3 and Figure 4.4, based on
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the flight path adjustments. The overall emissions of NO2 increased, both in absolute terms and relative

to each kilogram of fuel burned. During the climb phase, NO2 emissions rose from 17.1 to 18.2 g/kg, and

during descent, from 4.65 to 8.2 g/kg.
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Figure 4.3: Comparison of TOD/TOC approach and flight-path based method - climb phase.
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Figure 4.4: Comparison of TOD/TOC approach and flight-path based method - descent phase.

To achieve a constant climb slope at higher altitudes, the aircraft requires increased thrust, causing the

engine to run hotter. This higher operating temperature results in greater NO2 emissions per kilogram

of fuel burned, explaining the increase in the emission index. This trend is illustrated in the total NO2

emissions in Figure 4.5 and in Figure 4.6, which shows the NO2 emissions per kilogram of fuel burned.

The NO2 per kg of fuel burned for the new method is initially lower but surpasses the old method just

beyond the 3000 meter mark. This is also the case for the arrivals of which the figures are included in

Appendix C in Figure C.3 and Figure C.4. Also note that duration for the climb and descent have increased,

as the new method requires additional time for both the climb and descent phases. The time plot for
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departures is shown in Appendix C in Figure C.1, and for arrivals in Figure C.2.
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Figure 4.5: NO2 emissions per height - Departures FACT
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Figure 4.6: NO2 emissions per kg of fuel burned - Departures FACT

Conversely, the emissions of HC (hydrocarbons), which represent un-burned fuel, and CO (carbon



4.2. Uncertainty quantification 37

monoxide) per kilogram of fuel decreased. This can be attributed to steadier engine operation. As the

engine operates closer to its optimal efficiency, typically during cruise, it produces fewer emissions such as

HC and CO. HC emissions tend to be higher in idle continuous descent operations in the TOC/TOD-based

approach, but because the engine generates more thrust in the new approach, overall HC emissions are

reduced. CO emissions decrease when the engine operates at a higher power setting. This is supported

by the research of Turgut et al. [13], which found that higher thrust settings are strongly associated with a

decrease in CO and HC emissions. This trend is also evident in Figure 4.7, where an increased power

setting at the higher altitudes results in lower average CO emissions. Note that the new method for Type3

exhibits higher CO emissions during climb compared to the old method but this is not the case for the

descent as is shown in Figure C.5. In the new method, the CO ratio in the climb phase dropped from 506

to 424 mg/kg and in the descent phase from 27.9 to 6 g/kg.
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Figure 4.7: CO emissions per height - Departures FACT

Emissions of non-volatile particulate matter (nvPM) increased significantly during descent, from 883

μg/kg to 8.54 mg/kg, and in the climb phase, from 31.1 mg/kg to 42.3 mg/kg. The increase during descent is

likely due to greater soot formation in the primary engine zone as the engine operates at a higher thrust level.

The slight increase during the climb phase could be due to reduced diluting effects of high-temperature

regions downstream as argued by Mishra et al. in their study on soot emissions [14]. The creation and

dilution of nvPM are more optimal during cruise, as noted in Table 4.1, where total nvPM creation is just

7.43 mg/kg for the entire flight.

4.2. Uncertainty quantification
The method used in the flight-path-based approach estimates the flown distance by considering the yearly

flight movements, number of runways, and airport elevation. This approach demonstrated a 10% absolute

deviation when tested on a sample set of airports. However, this method is designed to generalize airports

and enhance global emission models, making it suitable for large datasets with diverse airports. As such,

the absolute error might not be critical, since underestimations and overestimations can balance each

other out. Given this context, emissions calculated for the climb and descent are compared using both the

regression-based flight distance estimates and the actual distances, as shown in Table 4.2 and Table 4.3.
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Table 4.2: Emissions Results - Mean Estimate vs. Real Value - Climb Phase

Species Mean Estimate Real Value

FUELBURN 1.03 Gg 1.00 kg/kg 1.03 Gg 1.00 kg/kg

NO2 18.8 Mg 18.2 g/kg 18.8 Mg 18.2 g/kg

HC 33.4 kg 32.4 mg/kg 33.4 kg 32.4 mg/kg

CO 424 kg 412 mg/kg 423 kg 411 mg/kg

nvPM 51.0 kg 49.6 mg/kg 51.0 kg 49.6 mg/kg

nvPM_N 1.08e+21 1.05e+15 /kg 1.08e+21 1.05e+15 /kg

Table 4.3: Emissions Results - Mean Estimate vs. Real Value - Descent Phase

Species Mean Estimate Real Value

FUELBURN 220 Mg 1.00 kg/kg 221 Mg 1.00 kg/kg

NO2 1.81 Mg 8.20 g/kg 1.82 Mg 8.23 g/kg

HC 36.2 kg 164 mg/kg 36.6 kg 165 mg/kg

CO 1.32 Mg 6.00 g/kg 1.33 Mg 6.01 g/kg

nvPM 1.88 kg 8.54 mg/kg 1.97 kg 8.90 mg/kg

nvPM_N 1.43e+20 6.49e+14 /kg 1.45e+20 6.56e+14 /kg

The results from Table 4.2 and Table 4.3 indicate that the impact of error in distance prediction is

minimal when comparing emissions based on actual mean values from the airport analysis. This can be

attributed to the linear regression model’s capacity to generalize across all airports within the dataset. Since

the sample dataset represents all airports, with scaling based on the annual number of flight movements,

the error margins tend to balance out. The slight variations in emissions could be due to the decision to

represent all airports equally by artificially sampling each one an equal number of times, without distributing

flights equally among them. Overall, this result shows that the sample is representative to the data when

using MLR.

The beta values used to estimate the mean have confidence intervals that define the range within which

the true mean is likely to fall with 95% certainty. The low and high estimates account for uncertainty in the

estimated flight distance mean. The beta values used for these low and high estimates are provided in

Table 3.2 and Table 3.3. These low and high estimates for the beta values lead to the results presented in

Table 4.4 and Table 4.5.

Table 4.4: Flight-path based - Climb Phase

Species Low Estimate Mean Estimate High Estimate

FUELBURN 1.03 Gg 1.00 kg/kg 1.03 Gg 1.00 kg/kg 1.03 Gg 1.00 kg/kg

NO2 18.7 Mg 18.3 g/kg 18.8 Mg 18.2 g/kg 18.8 Mg 18.2 g/kg

HC 33.3 kg 32.5 mg/kg 33.4 kg 32.4 mg/kg 33.5 kg 32.4 mg/kg

CO 419 kg 409 mg/kg 424 kg 412 mg/kg 429 kg 415 mg/kg

nvPM 50.8 kg 49.5 mg/kg 51.0 kg 49.6 mg/kg 51.3 kg 49.6 mg/kg

nvPM_N 1.07e+21 1.05e+15 /kg 1.08e+21 1.05e+15 /kg 1.08e+21 1.05e+15 /kg
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Table 4.5: Flight-path based - Descent Phase

Species Low Estimate Mean Estimate High Estimate

FUELBURN 213 Mg 1.00 kg/kg 220 Mg 1.00 kg/kg 227 Mg 1.00 kg/kg

NO2 1.73 Mg 8.11 g/kg 1.81 Mg 8.20 g/kg 1.88 Mg 8.28 g/kg

HC 37.0 kg 174 mg/kg 36.2 kg 164 mg/kg 35.5 kg 156 mg/kg

CO 1.33 Mg 6.24 g/kg 1.32 Mg 6.00 g/kg 1.32 Mg 5.80 g/kg

nvPM 1.75 kg 8.21 mg/kg 1.88 kg 8.54 mg/kg 2.02 kg 8.87 mg/kg

nvPM_N 1.36e+20 6.37e+14 /kg 1.43e+20 6.49e+14 /kg 1.50e+20 6.60e+14 /kg

The impact of the low and high estimates on fuel burn during climb is negligible due to the high initial fuel

consumption. However, slight differences in emissions can be observed. For the descent, the differences

are more noticeable because a larger percentage-wise variation in fuel required for the high and low

distances estimates, although the overall impact remains minor. These differences are shown within

Figure 4.8 and Figure 4.9.
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Figure 4.8: Low, Mean and High emission estimate of climb phase.
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Figure 4.9: Low, Mean and High emission estimate of descent phase.

Not considered within this analysis but also important is uncertainty due to level flights flown in actual

paths during the climb or descent. The level flights would likely add additional fuel due to more variation in

the thrust settings and especially during descent requires extra thrust. Additionally, the height at which

a level flight is conducted affects the amount and type of emissions of the level flight. Therefore, not

incorporating the emissions due to the level flights adds an error to the actual emissions of the aircraft.

The flight-path-based approach focuses solely on the additional distance flown during climb and descent

and replaces the approach of Quadros. This implies that the cruise segment is still defined as the distance

between the end of the TOC and the start of the TOD. This leads to additional distance flown during the

cruise phase, as not all the estimated distance in the new approach occurs before TOC or after TOD. The

climb phase might be longer due to turns around the airport or if it ends beyond the originally designated

TOC. Similarly, the descent is likely to start earlier than the assumed TOD, impacting the emissions and

fuel consumption during these phases.

4.3. Synthesis
The third sub-question in this research aims to compare the developed approach with the existing model

to assess its accuracy and efficiency. This sub-question is stated as: ”How does the flight path length

emission estimation compare to other research in terms of accuracy and speed?”. By comparing the

emissions produced by the original approach with those of the new approach, the impact of the new

method on emissions is quantified. This comparison helps determine whether the new approach yields

more accurate results and if it does so in a timely manner.

Using a sample dataset that includes a representative fleet composition for global civil air traffic and a

proportionate number of sample flights per airport, based on the annual flight movements, the emissions

resulting from the increased fuel burn are compared. While the revised approach is longer flight paths

resulted in higher fuel consumption, it did not necessarily lead to increased emissions for certain gases.

The newly developed and integrated approach is not very efficient, requiring more processing time. Since

the necessary parameters are pre-set and airport data is loaded before analysis, only a few operations

are required to calculate the new flight distances however these operations add about 40-50% to the time

required for the analysis of the sample set.

The use of MLR provides a better estimation of the distance flown during the climb and descent phases,

enhancing the accuracy of global and local emissions predictions in global civil aviation. This method

shows a close correlation with the emissions based on the real mean distances flown at specific airports,

supporting the hypothesis of a more representative approach for modeling the climb and descent phases



4.3. Synthesis 41

within a global emission model. Despite some uncertainty in the data used for distance estimation, the

new approach still outperforms Quadros’ original method.

However, the new approach does not fully represent real-world scenarios, as many level flight segments

occur during the climb and particularly the descent phases, which require varying thrust levels, contributing

to additional emissions. The climb and descent phases have been revised to better align with real-world

operations, while the cruise phase remains unchanged. This suggests that the additional distance flown

using the new approach occurs before the TOC and after the TOD points in the model. Nonetheless, some

of this additional distance might also be flown before reaching the TOC or after the TOD, suggesting that

the cruise phase might be shorter. Further investigation is required to determine the extent to which the

cruise phase is affected.
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5
Conclusion

To reiterate, the primary research question within this thesis is as follows:

How can emission estimation during the climb and descent phases in global models using ADS-

B data be enhanced by generalizing the flight path based on key airport parameters, resulting in

a quantifiable improvement in accuracy?

Research Question

The goal of this thesis can be considered achieved as a new approach has been developed that

links a generalized flight path to airport parameters. As a result, the main research question can also be

addressed. Through several sub-questions, these aspects have been examined and the key insights are

provided in the following section. The addressed sub-questions are:

• SQ-1: Which airport parameters have an impact on the flight path during climb and descent?

• SQ-2: What is the quantified relation between the airport parameters and flight path and what

are the sensitivities?

• SQ-3: How does the flight path length emission estimation compare to other research in

accuracy and speed?

5.1. Sub-question 1 - Airport parameters
The airport attributes, referred to as airport parameters in this thesis, are fixed data points for each airport.

The parameters considered in this study include annual flight movements, the number of runways, and

airport elevation. There was an attempt to include airspace complexity, but due to the challenges in

quantifying it accurately, further work in this area was set aside. However, integrating airspace complexity

has the potential to significantly increase the explained variance in the model, which could lead to better

performance with other regression models like Neural Network Regression (NNR).

5.2. Sub-question 2 - Quantified relationship
Generalizing the flight path can be achieved using a statistical model that relates various airport attributes

to distances flown towards an airport. The model considered most suitable for this purpose is MLR, as

it effectively captures and generalizes trends and due to the relatively low effect size (R2)—12.8% for

arrivals and 6% for departures. Other, more sophisticated models like NNR, did not show improvements

over MLR, whilst NNR exhibiting overfitting.

Using MLR with these airport parameters provides a mean estimate for the flight distances at each

airport. A 95% confidence interval defines the uncertainty of this mean estimation. While some airports fall

outside of this confidence interval, when considering a global scale, overestimations and underestimations

tend to balance each other out. On a local scale, though, such deviations could result in inaccurate metrics

for emissions. When applied to a test dataset of airports not included in the training set, the MLR yielded

an uncertainty in flight distance estimation of 9.2% for arrivals and 15.8% for departures compared to the

actual flown distances from the analyses.
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5.3. Sub-question 3 - Comparison and uncertainty
Addressing the third sub-question; To further investigate the differences between Quadros’ original ap-

proach [1] and the newly developed approach in this thesis, a comparison of emissions was conducted. A

test dataset was used that featured a representative global fleet distribution and was scaled according to

the annual flight movements at all considered airports. The emissions comparison revealed that total fuel

burn increased by about 3%, but non-CO2 emissions did not necessarily follow the same trend. Due to

engine operating conditions, total emissions of hydrocarbons (HC) and carbon monoxide (CO) actually

decreased throughout the entire flight. However, emissions of nitrogen dioxide (NO2) and non-volatile

particulate matter (nvPM) increased, both in total and per unit of fuel burned.

The descent phase showed the highest percentage increase in fuel burned, with a 263% increase in

total fuel burn compared to a 15.6% increase during the climb. This significant increase during descent is

due to the original Top of Descent (TOD) approach, where the engines operate at (or near) idle, whereas

the new approach requires more thrust to cover the additional distance. Emissions in the climb phase

generally increased for all pollutants except for CO, while the descent phase showed increased emissions

except for HC and CO. This is due to the constant glide slope requiring higher thrust as the power required

increases at higher altitudes. A hotter running engine results in higher NO2 emissions and lower CO

emissions as laid out by Turgut et al. [13].

To estimate the range of possible emissions, the 95% confidence interval for the mean was used to

calculate low, mean, and high estimates. In the climb phase, the differences were negligible, with nearly

identical results across the estimates. In the descent phase, the variations were slightly more significant,

with a discrepancy of about 7 megagrams (Mg) in fuel burn (plus or minus) from the mean of 220 Mg for the

low and high estimates. Additionally, the actual mean distances at airports were taken and compared to

the estimated means. Although MLR showed about a 10% deviation in its predictions, using the real mean

distances and comparing them with the predicted means indicated almost no difference in the emissions.

This finding suggests that the new approach closely resembles the real-world scenario, assuming that the

airport analyses are accurate.

The minimal difference in emissions can be attributed to the generalization of airport parameters, where

overestimations tend to counterbalance underestimations, resulting in a representative global emissions

estimate. The slight differences could be due to the MLR treating all airports equally to avoid bias toward

larger airports, while the sample dataset represents the actual flight activity at each airport.

5.4. Synthesis
The goal of the thesis can be considered achieved. A new approach has been developed that uses a

generalized flight path based on airport parameters to estimate the distance flown to an airport. Through

analyses, it was observed that the revised flight paths indicated increased distance during the climb and

descent phases, which was modeled using MLR that takes into account annual flight movements, the

number of runways, and airport elevation. Although the explained variance was relatively low—12.8%

for arrivals and 6% for departures— and the mean error margin was significant—9.2% for arrivals and

15.8% for departures—the estimation approach demonstrated close resemblance to actual flown distances

when tested with a dataset featuring a representative fleet composition and route distribution, indicating an

improvement in accuracy.

Sources of inaccuracy in the estimated emissions lie in defining the climb and descent phases as the

code can not always identify them correctly due to faulty or insufficient data, despite efforts to minimize their

impact. Additionally, level flights within the descent phase contribute to increased emissions because the

engine operates at a higher thrust setting to maintain altitude before further descent. Similar to the original

approach that uses a fixed Top of Descent, this new approach has not accounted for these level flights

during descent. Another factor related to the increased distance is the points at which the cruise phase

starts and ends, which were not explicitly defined in this thesis. This uncertainty can lead to overestimation

of the cruise phase its contribution to overall emissions. Future studies should address these issues to

better determine the beginning and end of the cruise phase to improve the accuracy of emission estimates

using the suggested approach from this thesis.

The new method does not follow a regular climb or descent profile but instead follows a constant

slope. This approach better reflects the actual flown distance during these phases, though it does not
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accurately reflect a typical climb profile. During a standard climb, an aircraft initially follows a steeper

gradient, which gradually decreases as available power diminishes. The constant slope method results in

increased thrust requirements later in the climb, significantly adding to the emissions. This introduces a

source of uncertainty and underscores the necessity for an accurate representation of level flight segments

within the climb and descent phases.
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6
Recommendations

This chapter provides a brief overview of the primary recommendations for the future continuation of this

research project.

Recommendation 1 - Use of ’traffic’ library for track analyses

In this thesis, the flights analyzed were sourced from data files available on the openSKY website, from

which the required flights were extracted and analyzed. This analysis involved developing a code capable

of identifying the climb and descent segments of a flight. To further improve the code’s robustness and

efficiency, the ’traffic’ library could be used. This library is designed to work in conjunction with the openSKY

database and ADS-B data, offering a wide variety of functions for processing airport and flight data. Utilizing

this library could enhance the efficiency of the code and facilitate the integration of new airport parameters,

which could further improve the new approach. Additionally, the library can connect to the openSKY

API, enabling direct and targeted data retrieval, which might reduce the uncertainty arising from limited

data used in the analysis within this thesis, potentially accounting for any seasonal offset in the distance

calculations.

One example of how this library could be used is to quantify air traffic density, which can be modeled

with the ’traffic’ library’s built-in functionalities. This could contribute to the quantification of the airspace

complexity parameter, which has been identified as a potential area for further research and improvement

in the estimation of flight paths and emissions.

Recommendation 2 - Cruise start/end points

As noted in the conclusion, the current start and end points for the cruise phase are still assumed to be

at the Top of Climb (TOC) and Top of Descent (TOD). This assumption does not always reflect reality

and needs correction. To improve the accuracy of the model, further analysis should be conducted using

the same dataset used to determine the distances flown to and from each airport. This analysis should

calculate the direct distance from the first point where an aircraft begins its descent to the last point where

it completes its climb.

By plotting this information similarly to the flight distances, the average direct route distance can be

determined, providing a clearer indication of when the cruise phase should start and end. This would allow

for the adjustment of the cruise phase in the model to represent the actual points where it begins and ends.

Such an adjustment would directly improve the accuracy of emissions estimated by the model, leading to

more reliable and realistic results.

Recommendation 3 - Inclusion of level flight segments

Another step to enhance the model’s accuracy is to include level flight segments in the analysis, and to

create a method to estimate level flights at other airports. Additionally, it is important to find a reliable

way to estimate the altitude of these level flights, as this influences thrust settings and, consequently, the

aircraft’s total emissions.

Integrating the total distance of level flights should be straightforward. However, categorizing them into

different altitude segments and developing a predictive method for other airports is a more challenging

task, yet it could significantly improve the model’s accuracy.
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A
Aircraft Categories

The aircraft categorization list is displayed on the following page.
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BTS Aircraft Type ID Aircraft BTS Aircraft Type ID Aircraft
339 AIRBUS A330-900 614 BOEING 737-800
359 AIRBUS A350-900 622 BOEING 757-200
624 BOEING 767-400/ER 623 BOEING 757-300
625 BOEING 767-200/ER 634 BOEING 737-900
626 BOEING 767-300/ER 694 A320-100/200
627 BOEING 777-200 699 A321
637 BOEING 777-300/ER 721 A321-200N
683 BOEING B777-F 722 A320-200N
687 AIRBUS A330-300 838 B737 MAX 800
690 A300B/C/F-100/200 839 B737 MAX 900
691 A300-600/R/CF/RCF 888 B737-900ER
692 A310-200C/F
696 A330-200/220F
697 A340
730 DOUGLAS DC-10-10
731 DOUGLAS DC-10-20
732 DOUGLAS DC-10-30
733 DOUGLAS DC-10-40
735 DOUGLAS DC-10-30CF
740 MD-11
760 L-1011-1/100/200
765 L-1011-500 TRISTAR
816 BOEING 747-100
817 BOEING 747-200/300
818 BOEING 747C
819 BOEING 747-400
820 BOEING 747-4F
821 BOEING B747-8
822 BOEING 747SP
823 BOEING 747-200F
836 A350-1000
837 B787-10 DREAMLINER
871 A340-300
872 A340-500
873 A340-200
874 A340-600
882 A380-800
887 B787-8 DREAMLINER
889 B787-9 DREAMLINER

Widebody Large Narrow-body

Small Narrow-body
All aircraft types not listed as widebody or 

large narrowbody



B
Sample List

The complete sample flight list is displayed on the following page.
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typecode origin destination count typecode origin destination count

A320 FACT EHAM 4 B738 EGPH KIAH 3

A320 LIRF OMDB 4 B738 OMDB SKBO 13

A320 YSSY OMDB 7 B738 SKBO KLAS 10

A320 EBBR KMIA 7 B738 EBBR KLAS 6

A320 SKBO KMIA 12 B738 KLAS KMCI 20

A320 KIAH OMDB 16 B738 VIDP EHAM 15

A320 KMIA LEMD 18 B738 KIAH KMIA 14

A320 EHAM OMDB 19 B738 FACT KMCI 3

A320 EGPH KDEN 3 B738 YSSY LIRF 6

A320 LEMD OMDB 14 B738 LEMD KMIA 12

A320 KLAS KDEN 23 B738 KMCI KDEN 3

A320 SBGR VIDP 10 B738 EHAM KDEN 16

A320 OMDB KDEN 15 B738 SBGR LIRF 8

A320 KMCI VIDP 4 B738 LIRF KMIA 4

A320 VIDP KDEN 17 B738 KMIA KDEN 16

A321 SBGR FACT 3 B738 SBGR EBBR 1

A321 LEMD YSSY 4 B738 EBBR KMCI 1

A321 KIAH LIRF 5 B738 KMIA KMCI 3

A321 LIRF SKBO 1 B738 OMDB KMCI 2

A321 KLAS KMIA 8 E75L KLAS EGPH 3

A321 EBBR KMCI 2 E75L SBGR LIRF 1

A321 YSSY FACT 2 E75L OMDB VIDP 2

A321 KMCI VIDP 1 E75L LEMD VIDP 2

A321 EGPH VIDP 1 E75L SKBO YSSY 1

A321 VIDP KDEN 6 E75L YSSY EBBR 1

A321 SKBO OMDB 4 E75L VIDP EHAM 2

A321 EHAM OMDB 6 E75L KMIA EGPH 2

A321 FACT KDEN 1 E75L EHAM KMCI 2

A321 OMDB KDEN 5 E75L EBBR LIRF 1

A321 KMIA KDEN 6 E75L KIAH KDEN 2

A319 LIRF KMIA 1 B38M KIAH FACT 1

A319 KMIA LEMD 4 B38M SKBO EBBR 1

A319 YSSY EBBR 1 B38M VIDP LEMD 1

A319 KLAS KMCI 5 B38M KMIA EHAM 2

A319 LEMD VIDP 3 B38M EHAM LEMD 2

A319 OMDB EBBR 3 B38M KLAS FACT 2

A319 KIAH EHAM 3 B38M OMDB FACT 1

A319 EHAM EBBR 4 B38M SBGR EBBR 1

A319 SBGR SKBO 2 B38M LEMD KDEN 1

A319 VIDP EBBR 3 CRJ9 EHAM FACT 1

A319 SKBO KDEN 2 CRJ9 VIDP OMDB 1

A319 EBBR KDEN 1 CRJ9 KIAH KLAS 1

A737 YSSY EGPH 1 CRJ9 SKBO EBBR 1

A737 KIAH EBBR 2 CRJ9 LEMD EBBR 1

A737 KLAS KMIA 4 CRJ9 KMIA KLAS 1

A737 LEMD EHAM 2 CRJ9 OMDB EBBR 1

A737 VIDP EHAM 3 CRJ9 KLAS EBBR 2

A737 SKBO KDEN 2 - - - -



C
Additional Results

C.1. Regression results
C.1.1. MLR airport estimation arrivals

Table C.1: Estimated Values, Actual Means, Errors, and Error Margins for arrivals

Airport ICAO Estimated Value(km) Actual Mean(km) Absolute Error(km) Error Margin(%)

EHAM 305.75 290.80 14.95 5.14

SKBO 199.16 177.92 21.24 11.93

EBBR 277.96 312.39 -34.44 11.02

FACT 271.94 253.74 18.20 7.17

YSSY 279.69 255.79 23.90 9.34

OMDB 303.47 321.82 -18.35 5.70

EGPH 273.50 241.50 32.00 13.25

KDEN 257.79 261.05 -3.26 1.25

VIDP 295.35 305.50 -10.14 3.32

KLAS 295.08 310.66 -15.58 5.01

LEMD 273.35 293.22 -19.88 6.78

SBGR 260.66 289.74 -29.08 10.04

LIRF 273.11 295.49 -22.38 7.57

KIAH 297.98 288.07 9.91 3.44

KMCI 260.46 271.33 10.88 4.01

KMIA 307.05 265.25 41.80 15.76

MAE - - - 8.17
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C.1.2. BR airport estimation arrivals

Table C.2: Estimated Values, Actual Means, Errors, and Error Margins for arrivals

Airport ICAO Estimated Value(km) Actual Mean(km) Absolute Error(km) Error Margin(%)

EHAM 334.33 290.80 43.53 14.97

SKBO 227.74 177.92 49.82 27.10

EBBR 306.43 312.39 -5.96 1.91

FACT 300.38 253.74 46.64 18.38

YSSY 308.16 255.79 52.37 20.47

OMDB 332.01 321.82 10.20 3.17

EGPH 301.93 241.50 60.43 25.02

KDEN 286.48 261.05 25.43 9.74

VIDP 323.93 305.50 18.43 6.03

KLAS 323.73 310.66 13.07 4.21

LEMD 301.90 293.22 8.68 2.96

SBGR 289.18 289.74 -0.56 0.19

LIRF 301.55 295.49 6.06 2.05

KIAH 326.54 288.07 38.47 13.36

KMCI 288.91 271.33 17.57 6.48

KMIA 335.63 265.25 70.38 26.53

MAE - - - 11.5

C.1.3. RR airport estimation arrivals

Table C.3: Estimated Values, Actual Means, Errors, and Error Margins for arrivals

Airport ICAO Estimated Value(km) Actual Mean(km) Absolute Error(km) Error Margin(%)

EHAM 320.16 290.80 29.37 10.10

SKBO 213.55 177.92 35.62 20.02

EBBR 292.37 312.39 -20.03 6.41

FACT 286.34 253.74 32.61 12.85

YSSY 294.10 255.79 38.31 14.98

OMDB 317.86 321.82 -3.95 1.23

EGPH 287.89 241.50 46.39 19.21

KDEN 272.21 261.05 11.15 4.27

VIDP 309.76 305.50 4.27 1.40

KLAS 309.49 310.66 -1.17 0.38

LEMD 287.76 293.22 -5.47 1.86

SBGR 275.06 289.74 -14.68 5.07

LIRF 287.51 295.49 -7.97 2.70

KIAH 312.40 288.07 24.33 8.45

KMCI 274.86 271.33 3.53 1.30

KMIA 321.46 265.25 56.21 21.19

MAE - - - 8.21
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C.2. Sample tables

Table C.4: Aircraft Flights and Adjusted Percentages

Aircraft Non-adjusted Percentage Adjusted Percentage

A320 35.06% 21.40%

B738 33.48% 20.46%

A321 12.36% 7.55%

A319 7.19% 4.39%

B737 3.15% 1.92%

E75L 3.82% 2.33%

B38M 2.92% 1.78%

CRJ9 2.02% 1.23%

Table C.5: Percentage of Yearly Flights and Within Sample Set per Airport

Airport % yearly Flights % sample set

FACT 2.08% 2.41%

EHAM 9.76% 9.64%

LIRF 2.41% 3.56%

OMDB 7.88% 12.98%

YSSY 3.75% 2.64%

EBBR 3.78% 4.59%

KMIA 9.68% 13.09%

SKBO 6.27% 5.63%

KIAH 8.44% 5.40%

LEMD 7.42% 7.35%

EGPH 1.96% 1.49%

KDEN 13.00% 13.67%

KLAS 12.27% 9.76%

SBGR 5.13% 2.98%

VIDP 9.08% 8.16%

KMCI 2.17% 5.28%
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C.3. Emission results
C.3.1. Emission results tables

Table C.6: Emissions Results - Climb Phase

Species TOD/TOC based (Quadros) Flight-path based

FUELBURN 891 Mg 1.00 kg/kg 1.03 Gg 1.00 kg/kg

NO2 15.2 Mg 17.1 g/kg 18.8 Mg 18.2 g/kg

HC 28.9 kg 32.4 mg/kg 33.4 kg 32.4 mg/kg

CO 451 kg 506 mg/kg 424 kg 412 mg/kg

nvPM 29.5 kg 33.2 mg/kg 51.0 kg 49.6 mg/kg

nvPM_N 8.66e+20 9.72e+14 /kg 1.08e+21 1.05e+15 /kg

Table C.7: Emissions Results - Descent Phase

Species TOD/TOC based (Quadros) Flight-path based

FUELBURN 60.6 Mg 1.00 kg/kg 220 Mg 1.00 kg/kg

NO2 281 kg 4.65 g/kg 1.81 Mg 8.20 g/kg

HC 82.5 kg 1.36 g/kg 36.2 kg 164 mg/kg

CO 1.69 Mg 27.9 g/kg 1.32 Mg 6.00 g/kg

nvPM 53.5 g 883 μg/kg 1.88 kg 8.54 mg/kg

nvPM_N 1.22e+19 2.01e+14 /kg 1.43e+20 6.49e+14 /kg

C.3.2. Fuel burn per time
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Figure C.1: Fuel burn per time - Departures FACT
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Figure C.2: Fuel burn per time - arrivals FACT

C.3.3. Other arrival route results
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D
Literature Review

This chapter covers the relevant literature for the thesis. Based on this literature review, the research plan

is setup, forming the basis of the thesis.

*The literature review and research plan have been assessed for the course AE4020 Literature

Study.

D.1. Introduction
This paper outlines the literature review for a thesis focused on developing a generalized Terminal

Maneuvering Area (TMA) operations model to improve the distance estimations of the climb and descent

phases. The TMA operations model is based on key airport parameters for integration into the global

estimation model of Quadros et al. [1].

The study titled ’Global Civil Aviation Emissions Estimates for 2017–2020 Using ADS-B Data’ [1]

considers Landing and Take-Off (LTO) and non-LTO emissions separately. LTO emissions are modeled

based on Stettler et al.[15] for altitudes between ground level and 3000 feet. Non-LTO emissions are

simulated using an aircraft performance model, evaluating climb and descent in 1000-feet increments until

reaching a cruise altitude set at 7000 feet below the aircraft type’s maximum operating altitude. The flight’s

great circle distance, representing the direct route between two locations, is considered. To account for

deviations due to weather, Air Traffic Control (ATC) instructions, or other factors, an uncertainty factor is

applied to the total flight distance, affecting emission estimations’ precision. Most uncertainty arises within

the TMA, making more precise estimations of aircraft descent and climb essential for improving emission

estimations locally and globally.

This document is organized into six chapters, each addressing a distinct aspect of the literature review.

In Chapter D.2, the focus is on the current literature regarding global civil aviation emissions. Subsequently,

Chapter D.3 delves into the literature related to aircraft position data. Chapter D.4 covers literature

concerning the definition of airport parameters, with a particular emphasis on TMA design. In Chapter

D.5, the discussion centers on potential data analysis approaches for identifying patterns. Chapter D.6

explores correlation techniques, establishing connections between flight paths and airport parameters.

Finally, Chapter E sets out the research plan for the thesis, including the objective and research questions.

D.2. Research base
This chapter provides a more in-depth exploration of the research presented in Quadros et al.’s primary

paper and other connected emissions estimation research. It covers the operational procedures of

alternative emission models, drawing comparisons, and explains the methodologies employed in handling

and refining ADS-B data.

D.2.1. Previous work
The research conducted by Seymour et al. [16], titled Fuel Estimation in Air Transportation: Modeling

global fuel consumption for commercial aviation, serves as a precursor to Quadros et al.’s Global Civil

Aviation Emissions Estimates for 2017-2020 [2]. Seymour’s study is integral to the foundation of the

2017-2020 emissions estimates and delineates the creation of an aviation emission model, known as Fuel
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Estimation in Air Transportation (FEAT). This model is designed to minimize the required variable input

data and computational cost while upholding a high level of modeling accuracy.

The approach to estimating emissions in both studies is notably similar, employing the BADA model

and Boeing Fuel Flow Method 2, along with the ICAO database to establish fuel flow and emitted emissions.

The key distinction lies in the method of data acquisition. Both Seymour and Quadros draw upon the

groundwork laid by Wasiuk et al. [17], where the BADA Aircraft Performance Model (APM) and the Boeing

Fuel Flow method, along with the ICAO database, were utilized.

Unlike Wasiuk, who utilized the ’CAPSTATS Database of Commercial Air Traffic Movements, 2005-

2011,’ a commercial database with detailed flight information, Seymour and Quadros opted for ADS-B

data. Seymour purchased data for the fourth weeks of January and August from AirNav Systems to model

emissions, while Quadros utilized full-year coverage from Flightradar24 and OpenSky for its model. This

shift in data sources highlights a significant evolution in methodology, moving towards real-time ADS-B

data for enhanced accuracy and coverage.

D.2.2. Research of Quadros et al.
This section provides a thorough evaluation of the openAVEM software’s functionality. It covers the

trajectory simulation based on an aircraft performance model and proceeds to explain how emissions

are determined from the simulated trajectory. The model’s foundation is comprehensively detailed in the

research by Quadros et al. [1] and is summarized within this section.

Origin-Destination Pairs

The model acquires real flight track data from three primary sources. Schedule data, encompassing both

passenger and cargo flights (excluding those by FedEx, UPS, and some owned by DHL), is obtained

from OAG(a market intelligence company). To eliminate duplicate entries arising from code sharing,

which represents the same aircraft, data is cleaned. The other two sources include ADS-B data from

Flightradar24, a commercial service, and data from OpenSky, a nonprofit organization that manages

tracker data from a collaborative network of volunteers.

For flights concluding at an altitude of 2500 m or lower, trajectories are extrapolated to the ground,

reaching the nearest airport within a 10 km radius. To accommodate flights with only partial recordings,

conditions are relaxed to a 500 km radius from the extrapolated landing location. All flights are assigned

both an origin and destination.

The coordinates and elevation of each airport are determined by referencing either the International Air

Transport Association (IATA) or ICAO code, obtained from the OpenFlights database.

Airport, Aircraft, and Engine Data

Aircraft performance is characterized using the Base of Aircraft Data (BADA) 3.15 [18]. Military aircraft are

excluded from the ADS-B data, aligning with the study’s scope.

The fuel mass flow rates and emission indices (NOx, CO, HC, and nvPM ), along with additional

engine information, is primarily sources from the certification data in the ICAO Engine Emission Databank

[19]. This databank specifically covers turbofans with thrust greater than 26.7 kN. To complement, piston

engine data is sourced from the Swiss Federal Office of Civil Aviation [20], and for some older engines

and turboprops, information is derived from the U.S. Environmental Protection Agency [21] or as used by

Stettler et al. [15].

Due to the inability of ADS-B data to identify engine models, the research manually incorporates

engine types. Data provides each aircraft along with its respective engine models and their market share

percentages. Emissions are calculated for each engine, and a weighted sum, considering each engine’s

market share, is then computed. The lack of precise knowledge about engine versions introduces some

uncertainty. However, for the evaluation of climb and descent phases in the model, the engine assignment

does not impact the results significantly, as the BADA model calculates fuel burn rates based on its Aircraft

Performance Model for non-LTO emissions. The relevance of engine versions might become apparent

during the thesis if it enhances result accuracy. Nevertheless, the supplemental material notes in S8.3 that

for full-flight, fuel burn changes at most by 3.3% [1].
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Flight model

The flight model comprises two distinct components: LTO (Landing and Takeoff) and non-LTO emissions.

LTO encompasses various phases, including taxi-out, taxi-out acceleration, hold, takeoff, initial climb,

climbout, approach, landing, reverse thrust, taxi-in acceleration, and taxi-in, as per the model proposed by

Stettler et al. [15]. Non-LTO emissions, covering climb, cruise, and descent, are simulated above 3000 ft

from the origin and destination airport, utilizing the BADA 3 model. BADA assesses aircraft performance

in terms of total energy, treating the aircraft as a point of varying mass subject to drag, lift, and thrust

[18]. It incorporates aerodynamic coefficients, operational parameters, and other properties necessary

for determining fuel mass flow rates under different flying conditions. Wind speed is applied throughout

non-LTO phases, utilizing year-specific monthly average wind vectors from the MERRA-2 reanalysis

product [22].

Although wind influences each flight by affecting its direction, no flight path optimization is performed.

Climb is evaluated in 1000-feet increments until the most common cruise altitude observed in the first

70 days of 2020 is reached, provided it is at least 200 NM and done in the climb speed schedule of the

aircraft. In cases where ADS-B data is insufficient, cruise altitude is set 7000 feet below the aircraft type’s

maximum operating altitude. For short flights, the average cruise altitude is determined based on flight

length categories (50-100 NM, 100-150 NM, 150-200 NM) for turbojets or turboprops, as reported by Kim

et al. [23]. Cruise is simulated at a constant altitude in steps of 50 NM, while descent is simulated in

1000-feet increments and done according to the descent speed schedule of the aircraft.

Fuel Burn and Emissions Model

Both LTO and non-LTO emissions are simulated, generating flight segments with associated fuel flow

rates and durations. During LTO, the fuel flow rate at a given thrust is interpolated piece-wise linearly from

available engine data. In the non-LTO phases, BADA pre-calculates fuel flow as a function of thrust and

speed, maintaining energy and mass balance as the aircraft adheres to a modeled schedule of speed,

climb, or descent rates [18]. The Boeing Fuel Flow Method 2, as employed by Kim et al. [23] with additional

considerations for edge cases, is then used to calculate emissions.

The initial aircraft mass for each flight follows the method used by Eyers et al., incorporating fuel

for reserve, diversions, and time in a holding pattern based on flight classification (short- or long-haul).

Payload mass is determined as a fraction of the maximum payload capacity, relying on annual weight load

factor statistics [24]. Takeoff mass is the sum of aircraft empty mass, estimated fuel for the entire flight

distance, fuel reserves, and payload.

To adjust for the actual flight distance exceeding the geodesic simplification, emissions for the non-LTO

portion are multiplied by a lateral inefficiency factor derived from a trajectory analysis by Seymour et al.[16]

of ADS-B telemetry data. This scaling factor, equivalent to adding 3.87% plus 40.5 NM to the great circle

distance, is consistent with the findings by Seymour et al.

Model sensitivity, Uncertainty, and Limitations

The primary uncertainty parameter addressed in this thesis is the lateral inefficiency factor. This factor

adjusts emissions to account for variations between the actual flown trajectory and the modeled trajectory,

where the latter assumes a constant cruise altitude for each aircraft type and horizontal trajectories following

the shortest path between origin and destination. It acknowledges that the actual spatial distribution of

emissions may differ from the geodesic trajectory employed in the model. The study does not evaluate the

potential effects of reduced air traffic in 2020 on cruise.

D.3. Aircraft position data
As highlighted in the preceding chapter, the forefront of data employed in the analysis of aircraft movements

is now occupied by ADS-B data. Consequently, this research integrates ADS-B data to contribute further

to the research fields of both ADS-B and emission estimation modeling.

With the growing availability of ADS-B data from an expanding network of ground stations, ADS-B

is emerging as a reliable and widely accessible source for ATM investigations that rely on operational

data and statistics. Sun et al. [25], titled Large-scale Flight Phase Identification from ADS-B Data Using

Machine Learning Methods, underscores this trend.
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D.3.1. ADS-B in research
In recent years, ADS-B has taken a prominent role in academic research utilizing aircraft position data,

surpassing traditional radar-based methods. This shift is attributed to the real-time nature and heightened

accuracy of ADS-B compared to its radar counterparts. As articulated by Gui et al. [26], ”The accuracy

and comprehensiveness of the ADS-B message make it a high-quality data source for air route flow

statistics.” Gui et al. exemplified this by creating an aviation big data platform employing ADS-B data to

map air traffic flow between cities. Furthermore, the study employed two machine learning methods for

predicting such traffic flow, emphasizing the limitations of traditional air traffic surveillance techniques with

their lower tracking accuracy, deemed inadequate for the demands of future congested airspace. This

underscores a pivotal shift in the preference for ADS-B based data, indicating its contemporary status as

the state-of-the-art in positional data for aviation research.

D.3.2. Data Acquisition
The input data comprises information on all aircraft equipped with an ADS-B transponder, within the

coverage of an OpenSky receiver. The coverage, as of the specified date (06-06-2022), is depicted the

Figure D.1. All areas marked red has Open-Sky coverage on this date.

Figure D.1: OpenSky coverage on 06-06-2022 by OpenSky [27]

D.3.3. Data preparation
In order to acquire suitable data for analysis, extensive preprocessing was conducted to generate a dataset

suitable for the research analysis.

Firstly, the airport under analysis needs to be defined. A bounding box of 25 km in each direction around

the airport is established, within which an aircraft must have been below 3000 feet to be considered. If any

data point of an aircraft is detected within this bounding box, all data points for that aircraft are extracted.

Subsequently, the data of an aircraft is cut where the flight concludes and a new flight commences, after

which the individual flights are cut into segments.

The segments are divided into two phases: climb and descent. The climb is identified as the point

where the aircraft has a vertical rate of at least 2.5 m/s, up to the point where the aircraft is at least at

75% of its highest recorded altitude, and the average vertical rate drops below 2.5 m/s over 30 data points

(equivalent to 5 minutes, given a data point recorded every 10 seconds).

The descent is defined in a reversed manner compared to the climb. If the average of 30 data points

drops below -2.5 m/s, the descent segment begins, continuing until landing. In order to be considered a

climb or descent segment the length of the track has to be at least 50 data points.

Both the climb segment end and descent segment initiation occur if the difference between the latitude

of the airport and the current data point is below three degrees, or four degrees longitude when the absolute

airport latitude is below 40 degrees, eight degrees longitude if it is between 40 and 70 degrees, and twenty

degrees longitude if the absolute airport latitude is above 70 degrees. This criterion is established to
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exclude unintended data, such as instances where an aircraft adjusts to a lower cruise altitude midway

during cruise.

If an aircraft is flying at an exact longitudinal degree, the descent is initiated 333 km away from the

airport, a distance more than sufficient to fully encompass the descent. Particularly noteworthy is the

nominal range at which an aircraft begins descent, typically falling within 100-150 NM (185-280 km), known

as the ’3 to 1 formula’ according to the Federal Aviation Administration (FAA) [5]. This formula stipulates

that three NM of travel should be allocated for every 1000 feet of descent, implying that an aircraft flying at

FL350 would require 105 NM of flown distance.

D.4. Airport parameters
To identify which parameters are of relevance, it is important to understand the scope of the research and

the physical and societal factors like ATC, influencing the flight path of an aircraft as laid out within the

reserach plan Appendix E. The climb and descent phases, especially within US airspace, are partially,

and at times entirely, situated within a TMA. Consequently, the design of the TMA becomes a factor

influencing the three-dimensional flight path of an aircraft, potentially offering valuable insights into key

airport parameters. However, this relationship is not always straightforward. Flight physics also contribute

significantly to this thesis, given the three-dimensional nature of the flight path. For instance, a descending

aircraft following a continuous descent trajectory experiences lower fuel burn compared to an aircraft

maintaining level flight at a constant speed. Similarly, an aircraft flying at higher velocities demands

increased fuel flow to generate the necessary thrust, a consideration particularly relevant at airports

situated at higher altitudes.

To comprehend the factors impacting emissions estimation during the specified climb and descent

phases, a comprehensive understanding of the parameters and methods employed by the ’openAVEM’

model developed by Quadros et al. [1] is necessary. This model, which forms the basis of the investigation,

provides a framework for assessing aviation emissions and serves as a valuable reference for aligning the

analysis with established methodologies in the field.

D.4.1. Trajectory prediction studies
Trajectory prediction holds significant relevance to this research as it explores the search for a generalized

flight path based on airport parameters. An insightful study byWang et al. [28] focuses on a 4-D prediction

of the flight trajectory within the Beijing TMA. Their prediction primarily targets estimating the arrival time

using a Neural Network model developed in a previous study by Wang et al. on short-term 4D trajectory

prediction using Machine Learning methods [29]. While such predictions may not be feasible on a global

scale due to vast amounts of data, the concept of generalized flight path lengths becomes imperative.

Nonetheless, the key factors influencing the estimation of arrival time within these studies could potentially

indicate key airport parameters that influence the flight path length.

D.4.2. TMA design
Chandra et al. [30] underscore the significant role of TMA within the air transportation and ATM system,

playing a non-trivial role in determining the throughput and operational efficiency. Their research addresses

this aspect by utilizing accessible data types, such as flight records, to characterize TMA flows through a

simplified approach. Employing four key performance indicators—flight distance, flight time, track distance,

and track time—they analyze and characterize air traffic flows within the TMA. These parameters, defined

by investigating flow counts, operational and performance differences of arrivals and departures in the

TMA, offer insights into the intricacies of TMA dynamics.

In a complementary study by Netjasov et al. [31], a generic metric is developed to measure the

complexity of a given TMA. Six primary factors influencing TMA complexity are identified, including the

number and length of arrival/departure trajectories, airport runway system capacity, air traffic volume,

aircraft fleet mix, spatial distribution of traffic, and air traffic control separation rules. The study reveals that

dynamic complexity exhibits a more than proportional increase with air traffic intensity (demand/capacity

ratio(s)) and slightly increases with the heterogeneity of the aircraft fleet. This highlights non-linear

relationships among parameters influencing airspace complexity.
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TMA design factors

In TMA design, numerous factors impact the layout, shaping the operational characteristics. This section

explores the intricacies of designing a Terminal Maneuvering Area, required for comprehending the

research environment and extracting essential airport parameters. The potentially influential factors, drawn

from research such as that by Chandra and Netjasov ([30], [31]), as well as rational considerations, are

outlined below.

• Air traffic volume: the volume of air traffic at an airport influences TMA design. Airports with higher

traffic will often require larger and more complex TMAs to accommodate the flow of arriving and

departing aircraft.

• Obstacle avoidance: the surrounding terrain, obstacles, and geographic features play a significant

role in TMA design. Airspace and flight-procedure designers need to ensure that flight paths are

clear of obstructions and that aircraft can navigate safely in the designated airspace.

• Aircraft types: different aircraft types have varying performance characteristics, such as climb rates,

approach speeds and turn rates. TMAs must be designed to accommodate these differences while

maintaining safe separation.

• Air traffic control procedures: TMAs are designed to facilitate air traffic control operations. Pro-

cedures for managing aircraft during the approach, landing, departure, and climb-out phases are

established to ensure safe and orderly traffic flow.

• Noise abatement: TMA design may also consider noise abatement measures, such as minimizing

aircraft overflight of populated areas during critical phases of flight.

• Airspace classifications: different segments of the TMA may have different airspace classifications

(e.g., Class B, C, or D airspace) based on the level of control required.

• Air traffic flow management: modern TMA design incorporates air traffic flow management tech-

niques to optimize the sequencing and spacing of arriving and departing aircraft, reducing congestion

and delays.

• Communication and navigation aids: TMAs are equipped with communication and navigation aids

to assist pilots and air traffic controllers in maintaining safe and precise operations. This includes

designated instrument approach procedures that guide aircraft safely from the en-route phase to the

final approach and landing.

• Route separation: route separation is another key factor in TMA design. Aircraft are required to

maintain a horizontal distance of 5 nautical miles or a vertical distance of a 1000 feet.

The airspace around airports including the TMA are designed to accommodate air traffic as efficiently

as possible for their descent towards, or arrival at, an airport. This generally means that as airports grow

bigger and the air traffic towards the airports increases, the airspace has to be designed such that the traffic

can be sequenced with minimal delay and maximum capacity, whilst adhering to the safety requirements.

Airspace complexity

As articulated by Zhu et al. [12], ”Airspace complexity serves as an objective metric for evaluating the

operational condition of the airspace.” This metric plays a pivotal role in the design of airspace within Air

Traffic Management (ATM), yet its assessment is intricate due to the non-linear correlations among various

independent factors. Zhu et al. introduce a learning model aimed at measuring air traffic complexity within

a sector, particularly when dealing with limited samples. This approach aligns with the broader literature in

the field, where research on airspace complexity predominantly focuses on evaluating specific sectors,

driven by the inherent challenges in precisely quantifying the complexity of an entire airspace.

In 2006, the Performance Review Commission (PRC) of EUROCONTROL published a technical report

dedicated to assessing complexity and developing metrics applicable for benchmarking analyses in Air

Navigation Service Providers (ANSP) [6]. The report outlines four complexity indicators, as illustrated in

Table D.1.
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Table D.1: Complexity indicators [6]

Complexity dimension Indicator Description

Traffic density Adjusted density

A measure of the potential number

of interactions between aircraft in

a given volume of airspace.

Traffic in evolution Potential vertical interactions (VDIF)

Captures the potential interactions

between climbing, cruising and

descending aircraft.

Flow structure Potential horizontal interactions

Provides a measure of the potential

interactions based on the aircraft

headings.

Traffic mix Potential speed interactions

Assesses the potential interactions

based on the aircraft speeds.

The analysis utilizes data from a two-week period in 2003, enabling a comparative evaluation of 67

Area Control Centers (ACCs) and 34 ANSPs. The findings, illustrated in Figure D.2, present a unified

metric termed ’complexity score,’ amalgamating the individual indicators. It is essential to acknowledge

that the chosen indicators are specifically tailored for calculating en-route complexity and may not be

universally applicable to terminal areas. Nevertheless, within the scope of this study, these indicators may

exert a noteworthy influence on assessing distances for climb and descent.

Figure D.2: ANSP Complexity Scores by EUROCONTROL [6]

Incorporating elements from the EUROCONTROL report, the thesis stands to gain valuable insights by

integrating selected indicators to evaluate airspace complexity into the airport parameters. Notably, the

complexity dimension related to airspace, as outlined by EUROCONTROL, could significantly enhance

the thesis. While the parameters considered in the thesis may not precisely capture airspace complexity,
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their inclusion could contribute to a more comprehensive understanding of the variance within the applied

statistical model. The supplementary parameters extracted from the EUROCONTROL report for assessing

airspace complexity are enumerated as follows:

• Sector:

– Influence on productivity and costs: For a given volume of airspace, the higher the number

of sectors, the more resources are needed and the higher the costs. This should be related to

the traffic density.

– Candidate indicators: Number of sectors, characteristics/dimensions (shape and size)

• Route structure:

– Influence on productivity and costs: Route structure reflects and organises the underlying

demand of traffic. And the route structure together with the constraints put on its utilisation

(Letters of Agreement, flight level restrictions, bi or uni-directional routes, etc) can contribute to

reducing controller workload and increasing capacity and efficiency.

– Candidate indicators: Nb of routes within a given volume of airspace, Nb of crossing and

merging points within a given volume, Direction of flows - uni, or bi directional.

D.4.3. Preliminary airport selection
This section describes the criteria for airport selection based on the considered airport parameters: Total

flight movements at an airport (FM ), the number of runways (R), the height of the airport (H), distance

within ’X’ of another airport (AtoA), and regional procedures and practices (RPP ).

Key Performance Indicators rationale

Considering the aspects related to TMA design, the preliminary parameters are the following:

• Total flight movements (FM ): the total flight movements is related to the traffic volume at an airport.

More flights is partly an indicator for elevated procedural airspace and possibility of conflicts and

therefore causing more ATC instructions and consequently more distance flown.

• Number of runways (R): more runways could be an indicator for an increased required capacity,

more routes and flights and therefore a increase in ATC interference.

• Distance within ’X’ of another airport (AtoA): interference with surrounding airports or airways

could lead to an increase in ATC instructions to prevent conflict with crossing traffic.

• Regional procedures and practices (RPP ): a more arbitrary parameter, but difference in traffic

handling around the world might cause difference in flown distance from the top of descent point of

aircraft or show a difference in level flight flown during the climb or descent at specific heights, also

influencing the emissions.

• Airport elevation (H): airport elevation is a slightly more significant factor and easy to define. An

airport at significant elevation would intuitively mean a shorter flown distance as less horizontal

distance is required during its descent to an airport at 8000 feet compared to an airport at 0 feet

elevation.

Airspace complexity, potentially coupled with ATC interference, may serve as the root cause for certain

selected airport parameters. This aspect requires thorough investigation during the thesis work. Moreover,

it is probable that some airport parameters influencing the distance covered by aircraft cannot be pre-

identified. As flights at various airports are analyzed, patterns may emerge that are not directly attributable

to or explicable by the predetermined parameters. These effects are subsequently analysed and, where

feasible, incorporated into the model through the relevant airport parameter

Selected airports

The primary Key Performance Indicators (KPIs) selected for their significant influence on the flight path are

utilized in the initial airport selection for the preliminary Terminal Maneuvering Area (TMA) analysis. The

chosen airports are required to exhibit both comparable and distinct values for these KPIs. Geographical

diversity is considered to account for local variations, and initially, six airports are selected. As differences

are identified and necessitate quantification, additional airports within similar regions may be added to

comprehensively capture local variations or practices. The initially selected airports are the following:
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Table D.2: Airport main parameter data

Airport Altitude (m) Runways Flight Movements Closest Airport (km)

Schiphol A -3 5(6) 462,600 (2022) 158 (Brussels)

El Dorado IA 2548 2 296,777 (2022) 216 (Medellin)

Brussels A 56 3 178,930 (2022) 158 (Schiphol)

Cape Town IA 46 2 98,666 (2022-23) 1257 (Johannesburg)

Sydney A 6 3 177,646 (2022-23) 180 (New castle A)

Dubai IA 19 1 373,261(2021) 17 (Sharjah IA)

Edinburgh A 41 1 93,004 (2022) 79 (Glasgow)

Denver IA 1656 6 615,733 (2022) 853 (Salt lake city IA)

D.5. Data analysis
This chapter discussed various techniques for the analysis of the sample data. To identify patterns within the

sample data, various techniques and analyses are discussed to obtain them. Additionally, key performance

indicators which fundamentally differentiate the the different airports are defined within this section.

D.5.1. ADS-B data
Researched performed by Sun et al. [25], titled Large-scale Flight Phase Identification from ADS-B Data

Using Machine Learning Methods, highlights the growing effectiveness of ADS-B within ATM investigations,

whilst primarily developing Machine Learning Methods based on fuzzy logic.

In a subsequent study in 2017, Sun et al. [32], in Modeling Aircraft Performance Parameters with Open

ADS-B Data, delves further into the utilization of ADS-B data for generating parametric models describing

flight phases. Approximately 3000 flights were analyzed for each assessed aircraft, using ADS-B data

from Flightradar24, a commercial ADS-B network known for its extensive coverage.

The study employs Maximum Likelihood Estimation (MLE) to derive the best unbiased values of

parameters based on observations. Three continuous Probability Distribution Functions (PDF) – Normal,

Gamma, and Beta distributions – are assumed for each performance parameter, and MLE is applied

to obtain the best estimates for each PDF from sample data. In addition, Rudnyk et al. [33] employed

a similar technique of using MLE with PDFs to get a distribution which fit the data well. Their research

focused on trajectory prediction using Monte Carlo simulations. Employing the same method within this

research should help in performing a good analysis on the data.

The research identifies seven flight phases: takeoff, initial climb, climb, cruise, descent, final approach,

and landing. Of particular interest for this research are the climb and descent phases, which are comparable.

The climb segment initiates when the aircraft reaches a clean configuration and continues until it reaches

the designated cruise altitude. Typically, aircraft accelerate to a target Calibrated Airspeed (CAS) and then

maintain a constant CAS during the climb. As altitude increases, the speed of sound decreases, leading to

an increasing Mach number. Upon reaching a specific Mach number, the aircraft transitions to flying at a

constant Mach number until it reaches cruising altitude. The Mach climb segment results in a decreasing

CAS due to decreasing air density. The climb CAS profile is illustrated in Figure D.3. The descent phase

essentially mirrors the climb phase.
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Figure D.3: Standard climb profile by Sun et al. [32]

The outcomes are presented in the form of mean, gamma, or beta distributions, from which the optimal

estimate is derived. These estimations depict a parameter distribution specific to the aircraft, featuring a

central tendency and mean variance. Illustrated parameters are speed in both CAS and Mach, Transition

altitude at constant CAS and Mach, mean Rate of Climb (RoC, or RoD for descent) at pre-CAS, constant

CAS, and constant Mach. Additionally, the climb range, representing the total distance covered by the

aircraft during its ascent, is included in the analysis. Exemplifying this methodology, the results for the

Airbus A320 are delineated in Figure D.4.

Figure D.4: Climb parameters by Sun et al. [32]

These findings hold significant relevance for this thesis, which aims to evaluate the impact of airport

parameters on an aircraft’s flight path. Employing a methodology comparable to that of Sun et al. [32],

a robust distinction can be established concerning the mean value and variance of various parameters

influencing the flight performance during the climb and descent phases. This approach proves versatile

for the examination of diverse aircraft types, mirroring the methodology applied by Sun et al. in their

comprehensive study. The discerned variations among the considered aircraft in their study serve as a

valuable tool to mitigate the uncertainties associated with aircraft-specific factors in flight paths, facilitating

a more precise analysis of the airport-related effects.

Within the validation segment of the paper, the researchers conduct a comparative analysis with the

BADA3 model, clarifying disparities observed between the two. While potential contributors to these
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variations include differences in transition altitude, flight strategy, and aircraft weight, it is important to

recognize the broader relevance of these uncertainties to the present research. The applicability lies in the

fact that similar uncertainties may influence this study due to shared considerations in assessing the impact

of airport parameters on climb and descent phases. By acknowledging and addressing these uncertainties,

the research aims to enhance the robustness of its findings and ensure a more accurate evaluation of

airport-related effects on flight paths.

D.5.2. Statistics related to data analysis
This section discusses some statistical methods to for assessment and analysis of the data. These include

the maximum likelihood estimation together with probability density function, and a K-S test to assess the

correctness of the estimation. Additionally to remove outliers, a trimmed mean is discussed.

Maximum Likelihood Estimation

The MLE, as described by Aldrich [34], is a statistical method for estimating the parameters of an assumed

probability distribution. By maximizing a likelihood function, under an assumed model, the most probable

solution can be found for the observed data. The MLE can be used along the regression model as assumed

model to obtain the most likely estimate rather than one which minimizes the sum of squares.

As described by Rudnyk et al. [33], first N observations are taken from an unknown probability

distribution f(·), like distance flown during climb from a specific airport, and denoted as X : {x1, ..., xn}.
Defined as a vector of parameters θ, f(X|θ). Under the assumption that the observations are independent

and identically distributed, their joint distribution can be expressed as:

f(X|θ) = f(x1, ..., xn|θ) = Πn
i=1f(xi|θ) (D.1)

The likelihood L is a probability of obtaining observed values given certain values of parameters:

L(θ|X) = Πn
i=1f(xi|θ) (D.2)

This can be simplified to:

logL(θ|X) = logΠn
i=1f(xi|θ) =

n∑
i=1

logf(xi|θ) (D.3)

Consequently, the MLE of θ (θMLE) is the value of θ maximizing L:

θMLE = argmaxθlogL(θ|X) = argmaxθ

n∑
i=1

logf(xi|θ) (D.4)

Kolmogorov–Smirnov test and significance testing

These tests are utilized to assess the fit of a distribution to the data, determining if a data sample corresponds

to a specific population distribution. In this thesis, they may be applied to examine whether airport distances

exhibit a normal distribution. The K-S test, as employed by Rudnyk et al. [33], is also used to select the

most suitable fit for the probability distribution function obtained through MLE.

Trimmed mean

An effective method under consideration is the ’trimmed mean’ procedure. Essentially, a trimmed mean

is the average of a distribution where a specified percentage of data is excluded from both ends. For

instance, a trimmed mean of 10% involves removing 5% from each side of the distribution, effectively

eliminating outliers within the dataset.

D.5.3. Airport analysis
This section describes what type of analyses could be performed on the sample data to identify patterns.

Additionally, key performance indicators for the comparison of airports are defined within this section.

Short, long and medium haul flights

In the analysis of descent and climb distances in aviation, it is crucial to distinguish between short-haul and

long-haul flights due to the inherent differences in their operational characteristics. Combining these two
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categories can lead to a distorted representation, resulting in a bimodal distribution rather than a unimodal

one. Additionally, ’medium’ haul flights would be the most common and/or modern aircraft types which fly

both short and long haul flights.

Short-haul flights typically involve lower cruising altitudes whilst long-haul flights involve higher cruising

altitudes. When these two types of flights are combined, the resultant graph may exhibit two distinct

peaks, reflecting the dissimilarity in operational patterns. The consequences of such a bimodal distribution

extend to the calculation of statistical measures, particularly the mean and standard deviation. A bimodal

distribution violates the assumption of normality required for the accuracy of the normal distribution,

rendering them unreliable for drawing meaningful conclusions. The mean value, in particular, loses its

interpretative significance as it fails to capture the central tendency of the data in the presence of multiple

modes.

To mitigate these challenges and ensure a more accurate representation, it is imperative to analyze

short-haul and long-haul flights separately. By doing so, the resulting graphs are more likely to exhibit

a unimodal distribution, allowing for a valid application of statistical measures like mean and standard

deviation. This separation enhances the precision and reliability of the analysis, providing a clearer insight

into the descent and climb distances specific to each flight category.

Key Performance Indicators within flight path

Effective analysis of the flight performance relevant within this study requires consideration of KPIs

associated with flight path. The selected KPIs—distance during climb/descent, vertical rate during climb

and descent, and the amount of level flights—have been chosen to provide a comprehensive understanding

of the aircraft’s behavior during the climb/descent phases. Each KPI offers unique insights into the overall

quality of flight trajectories associated with the airport.

Distance during climb and descent The distance covered during climb and descent serves as a

straightforward metric to evaluate aircraft performance at a specific airport. Understanding the distance

traversed during the climb and descent phases allows the model to account for variations in operational

profiles across different airports.

During the data preparation phase, the climb and descent segments are extracted. Subsequently, the

distance is computed by taking the difference between two data points. The cutoff for both the climb and

descent distance is set at 3000 feet above the airport. Beyond this altitude, the flight is deemed to be in

the LTO phase, falling outside the scope of this study.

Vertical rate during climb and descent The vertical rate during climb and descent is an additional

easily quantifiable metric for performance assessment. Using basic trigonometry, one can anticipate that

as the distance during climb or descent increases, the vertical rate decreases. While these parameters

can be viewed as comparable metrics, this specific metric provides additional information on the influence

of airport parameters, particularly when considering the presence or absence of level flights.

Level flights The quantity of level flights is a key performance indicator directly influencing emission

estimation. For instance, during descent, a level flight at a lower altitude implies that the aircraft must

increase its power output, elevating fuel flow and, consequently, emissions. Since the type of emissions is

dependent on atmospheric conditions, it becomes crucial to identify the atmospheric layer within which the

aircraft is flying at a constant altitude.

D.6. Statistics
This chapter focuses on statistical methods, specifically regression and Monte Carlo Simulation, applied

within the thesis. It touches upon aspects related to regression like predictors, residuals, and errors, with

an emphasis on assessing the statistical significance of the beta coefficient with the confidence interval

and effect size for the statistical significance of the model. The Monte Carlo Simulation is introduced as a

valuable tool for estimating flight distances at airports.
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D.6.1. Quantifying relationship techniques
There are many different techniques to quantify a relationship between variables. The most commonly

known is the linear regression technique, also known as ordinary least squares (OLS). This technique is a

well proven way of quantifying the linear relationship between two, or more, variables.

The study of Wong et al. [11] compares different regression techniques in terms of modeling accuracy.

The research compares Artificial Neural Network (ANN), Generalised Regression Neural Network (GRNN),

Support Vector Regression (SVR), Multiple Linear Regression (MLR), and Response surface Model (RSM).

The models were tested on two different non-linear cases. From this the ANN, GRNN and SVR were

deemed reliable as the other models did not accept the null-hypothesis in one of the two complex models.

This study showed that ANN and GRNNmethods were more reliable than SVR, although their modelling

abilities were comparable. A NN regression type could therefore possibly prove valuable compared to

MLR. However, as a first iteration MLR would provide a good indicative benchmark of the percentage of

explained variance due to solely linear relationships. Just as was done within the research of Wong et al.

[11].

D.6.2. Regression
Understanding regression analysis is essential, given the nature of predictive challenges. This analytical

approach relies on several key predictors, encompassing both continuous and potentially categorical

variables. The difficulty lies in selecting the most appropriate model from a spectrum of available options.

Field [7] offers an in-depth explanation of the procedures involved in regression analyses, detailing the

required tests and steps to assess the statistical outcomes.

Regression types

An array of regression types caters to various applications, with linear regression, often referred to as

ordinary least squares (OLS), standing out as the most commonly used method. While linear regression

exclusively deals with continuous variables, several other techniques accommodate regression involv-

ing categorical variables or a combination of both. The following overview outlines various continuous

regression methods, specifically relevant to the envisaged airport parameters.

• Linear Regression (OLS): Most common for continuous variables. Gives the mean change for a

one-unit change in the independent variable.

• Advanced Types of Linear Regression: Ridge regression, Lasso regression, Partial Least Squares

(PLS) regression to address issues like multicollinearity and overfitting.

• Nonlinear Regression: Greater flexibility for fitting curves, recommended if linear regression doesn’t

provide a good fit.

Within advanced linear regression methods, Ridge regression primarily addresses multicollinearity and

prevents overfitting by introducing a penalty term, thereby enhancing the stability of variables. Similarly,

Lasso regression employs a penalty term, but it possesses the capability to eliminate variables in the

presence of high multicollinearity. PLS regression, while serving the same purpose, proves particularly

valuable when there are more predictors than observations, a condition not applicable to this research.

Non-linear regression models, such as polynomial regression and exponential regression, also merit

consideration. Polynomial regression introduces polynomial terms to predictors, facilitating improved curve

fitting. However, it is sensitive to outliers and may be prone to overfitting, rendering it accurate for test

data but less reliable for unseen data. On the other hand, exponential regression is especially suited for

data exhibiting an exponential function. Nonetheless, if the underlying relationship is not exponential, this

method may yield inaccurate predictions, and its sensitivity to initial values must be noted.

Predictors

Adopting a hierarchical entry approach proves advantageous for theory testing. Initiating the model with

the most impactful predictor and progressively introducing other relevant variables ensures a methodical

exploration of potential relationships.

Predictors vary in type, including continuous variables and dichotomous/categorical factors. It’s im-

portant to evaluate and address issues of multicollinearity, aiming for predictors with Variance Inflation

Factors (VIF) below 10 and steering clear of predictors with zero variance. VIF is useful in assessing how

strong the relationship between two independent variables is.



D.6. Statistics 76

Residuals and Cook’s Distance

Beyond predictor selection, a robust regression analysis necessitates a thorough examination of residuals.

The standard residuals’ distribution should ideally see 95% falling within ±1.96 in an average sample, with

99% residing within ±2.5. Outliers, characterized by a residual of 3 or more, demand careful consideration

as potential influential data points.

Cook’s distance measures the impact of individual cases on the overall model. A value surpassing

1 raises concern, signifying that a particular outlier significantly shapes the beta coefficients, potentially

impacting the validity of the regression model.

Errors

Uncorrelated errors are fundamental for a reliable regression analysis. The assumption of independent and

normally distributed errors ensures the robustness of the statistical inferences drawn from the regression

model.

As a sampling set gets large (usually above 30 samples), the sampling distribution has a normal

distribution with a mean equal to the population mean, and a standard deviation of:

σX̄ =
s√
M

(D.5)

In which σX̄ is the standard error of the mean, s the standard deviation of the sample data, and N the

sample size.

Confidence intervals

Confidence intervals are to quantify the uncertainty of an estimate, providing a range within which the

results parameters are likely to fall. within regression analysis, confidence intervals help in the assessment

of the precision and reliability of the coefficients.

Confidence intervals help in assessing multiple aspects within a regression analysis. For example:

• Precision of estimates: Estimates are prone to sampling variability. Confidence intervals give a

range around the point estimate, indicating how precise the estimate is and how much it might vary.

• Statistical significance: If the confidence interval does not include 0, the coefficient is considered

statistically significant at the chosen confidence level. This means that it is likely that the coefficient

has a non-zero effect on the outcome.

• Direction and magnitude: The sign of the coefficient indicates the direction of the relationship,

while the width of the confidence interval indicates the precision. A narrow interval suggests more

precise estimation, while a wide interval suggests greater uncertainty.

Within the context of this thesis, the confidence interval indicates which airport parameters describe the

flight path of an aircraft within the climb or descent phase.

To calculate the confidence interval, the limits at which 95% of the means fall are necessary. The limits

are therefore -1.96 and 1.96 for z-scores, determined by using D.6.

z =
X − X̄

s
(D.6)

In which z is the z-score, X the boundary limit, X̄ the mean and s the standard deviation. The equation

can be rearranged and is easily calculated as follows:

X = (±1.96× s) + X̄ (D.7)

However, for smaller sample sizes the distribution might not be normal and therefore requires a different

technique for calculating the confidence interval. The confidence interval is then as follows:

X = X̄ ± (tn−1 × SE) (D.8)

In this equation X is the lower/upper boundary, X̄ the mean, SE the standard error, and n − 1 the

equations degrees of freedom, telling which t-distribution to use. The degrees of freedom is the amount of

observations minus one.
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D.6.3. Monte-Carlo simulation
The Monte Carlo Simulation is a method that helps anticipate a range of possible outcomes for an uncertain

event by analyzing past or similar data. This technique allows for factoring in uncertainty when making

predictions, offering amore realistic view compared to fixed predictions without any variation. The simulation

runs multiple iterations, producing random outcomes that together form a probability distribution. While

conducting more simulations yields a more accurate distribution, it requires increased computational power

and time.

Rudnyk et al. [33] described how a Monte Carlo Simulation is used to perform a Global Sensitivity

Analysis. It explains how there are three steps involved with applying it: 1) sample inputs from the

distribution functions; 2) compose input vectors containing sampled inputs; 3) run a model for all input

vectors. Using chosen metrics for a model output evaluation, an uncertainty analysis can be performed by

computing output distribution and statistics. Then, scatter plots can be used to inspect the sensitivity of

output to each input and a sensitivity measure can be obtained by computing a correlation coefficient.

In the context of this study, the Monte Carlo Simulation can be applied to estimate the distribution of

flight distances at an airport using results from regression analysis. The goal is to use the simulation to

project an expected range of distances at an airport based on selected parameters. The average flight

distance should fall within the predicted range suggested by the Monte Carlo simulation, verifying the

findings of the regression analysis.



E
Research Plan

*The literature review and research plan have been assessed for the course AE4020 Literature

Study.

E.1. Introduction
This chapter aims to outline the research plan for a thesis focused on developing a generalized Terminal

Maneuvering Area (TMA) operations model to improve the distance estimations of the climb and descent

phases. The TMA operations model is based on key airport parameters for integration into global emission

models.

E.1.1. Problem statement
The study titled ’Global Civil Aviation Emissions Estimates for 2017–2020 Using ADS-B Data’ [1] considers

Landing and Take-Off (LTO) and non-LTO emissions separately. LTO emissions are modeled based on

Stettler et al.[15] for altitudes between ground level and 3000 feet. Non-LTO emissions are simulated

using an aircraft performance model, evaluating climb and descent in 1000-feet increments until reaching a

cruise altitude set at 7000 feet below the aircraft type’s maximum operating altitude. The flight’s great circle

distance, representing the direct route between two locations, is considered. To account for deviations

due to weather, Air Traffic Control (ATC) instructions, or other factors, an uncertainty factor is applied to

the total flight distance, affecting emission estimations’ precision. As such the position estimation within

the research of Quadros et al. contains key assumptions which add considerable uncertainties for the

emission estimation. Especially within the climb and descent these assumptions model the aircraft in an

ideal path which deviates significantly from the actual flown path.

E.1.2. Relevance
The research presented in this thesis addresses critical gaps in the scientific understanding of global civil

aviation emissions estimation. By focusing on the specific flight phases of climb and descent within the

emission estimation model produced by Quadros et al. [1] using Automatic Dependent Surveillance–Broad-

cast (ADS-B) data, this study aims to enhance the accuracy of current emission estimation models. The

existing model relies on great circle distance with an uncertainty factor, leading to potential inaccuracies,

especially within the TMA.

This research seeks to establish a quantifiable relationship between key airport parameters and flight

path during climb and descent using ADS-B data. By doing so, it bridges the gap in knowledge regarding

the impact of airport-specific factors on the flown distance of aircraft. The proposed model offers a more

precise estimation, particularly in the TMA, where significant uncertainty lies.

This research falls within the context of the broader research area of global emission estimation models.

It aims to improve the estimation of aircraft emissions during specific flight phases within the TMA by

considering key airport parameters. By doing so, the study contributes to the advancement of accurate

and comprehensive global emission estimation methodologies, aligning with the overhanging objective of

understanding and mitigating the environmental impact of aviation emissions on a local and global scale.

78
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E.1.3. Scope
This study focuses on the climb and descent phases within the study of Quadros et al. [1]. The climb and

descent phases are defined within the non-LTO emissions, enclosed between 3000 feet above airport

elevation and cruise altitude.

Within this research, it is important to note that the intended goal is to improve the emissions estimation

within the climb and descent phases. A 2D/3D flight path should be considered due to the impact of altitude

and distance flown on the total emissions. Air Traffic Control (ATC) instructions or Air Traffic Management

(ATM) considerations are of primary influence on that flight path. This is because the engine produces the

emissions based on its engine settings, which differ per height and flight operation. Considering these

aspects, this research focuses primarily on developing an alternative approach of estimating the position

of the aircraft during the climb and descent phases which should be implemented into the existing model

of Quadros et al. [1] for comparison purposes.

E.2. Research Objective
The main goal of this research is to enhance current civil aviation emission estimation models that use

ADS-B data. Currently, these models rely on great circle distance and incorporate an uncertainty factor

to account for estimation variations. However, the primary source of uncertainty lies within the TMA of

airports, specifically during the climb and descent phases of aircraft. As each airport exhibits unique

characteristics due to terrain and air traffic density, a more accurate estimation approach is necessary

for the estimation of these flight phases within the TMA. Improving these estimates will lead to enhanced

global emission models.

Therefore, the primary objective of this research is:

To construct a model to estimate the global emissions of civil aircraft within the climb and descent

phases, using generalized flight path modeling based on key airport parameters.

E.3. Research Questions
With the research objective defined, a research framework is determined to assist the formulation of the

main and sub research questions. This results in the following main research question:

How can emission estimation during the climb and descent phases in global models using ADS-B

data be enhanced by generalizing the flight path based on key airport parameters, resulting in a

quantifiable improvement in accuracy?

Multiple steps are required to answer this in structured manner. The sub-questions are setup with their

associated tasks. The sub-questions which help answer the main research question are as follows:

• SQ-1: Which airport parameters have an impact on the flight path during climb and descent?

– SQ-1.1: Acquiring and preparing ADS-B data for analysing airports.

– SQ-1.2: Analysing airport specific distances of incoming and outgoing flights in various configu-

rations.

– SQ-1.3: Defining preliminary airport parameters of influence for flown distance during climb and

descent.

• SQ-2: What is the quantified relation between the airport parameters and flight path and what

are the sensitivities?

– SQ-2.1: Defining different methods to quantify a relationship between airport parameters and

flight path.

– SQ-2.2: Apply most promising method in accordance with scope and goal thesis.

– SQ-2.3: Reiterate influential airport parameters.

– SQ-2.4: Defining metrics for assessing accurateness and correctness of relationship analysis.

– SQ-2.5: Testing relationship on data outside the data-set.

– SQ-2.6: Quantify deviation from actual flown path and assess the sensitivities.
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• SQ-3: How does the flight path length emission estimation compare to other research in

accuracy and speed?

– SQ-3.1: Understand code of current model and define dataset for comparison.

– SQ-3.2: Integration into existing emission model of Quadros et al. [1].

– SQ-3.3: Comparison of emission estimation of existing model and with the implemented rela-

tionship of flight path and airport parameters.

E.4. Methodology
This section describes the technical framework and methodology followed throughout the research. As

previously mentioned in Section 3, the sub-questions are divided into tasks. Each task is described, and

additional information on the methodology and methods is provided.

E.4.1. SQ-1: Data Collection and preliminary analysis
Sub-Question 1: Which airport parameters have an impact on the flight path during climb and descent?

This part aims to understand and describe the airport parameters impacting the flight path of an aircraft

by acquiring data and performing airport specific analyses. In order to achieve this, ADS-B data needs to

be obtained which has a sufficient enough resolution for the purpose within this research. Sources logging

ADS-B data such as Flightradar24 and OpenSky or To70’s own ADS-B data are qualifying resources,

depending on how freely available the data is, the resolution and the amount of available data within the

dataset. The data also needs to be cleaned and prepared for the analyses within the thesis, which is

expected to be time consuming. Preparing the data includes correctly cutting flights, and defining the

cut-off for the climb and descent.

The data is used to determine the distance flown from and to different airports. A comparison will

who the difference between airports and by relating the differences to airport specific factors by finding

additional airports or creating sub-sets within the data will consequently show what kind of factors influence

the distance flown. From this preliminary parameters can be selected. These parameters could include

runway amount or length, airport elevation, weather conditions, air traffic control constraints, and regional

aspects. The determination of these parameters entails a literature review, and additional factors may be

identified during the course of the research from the analyses, further extending this phase. Notably, the

consideration of Air Traffic Management (ATM) design is crucial, as it aims to optimize trajectories, and the

design parameters within TMA design might align with those influencing increased flight path length. Also

ADS-B based research as done by Junzi Sun would be very useful during the data cleaning, preparing and

analyses. An example is his paper on modeling aircraft performance parameters with open ADS-B data

[32]. In this paper open sourced ADS-B data is used to determine the performance parameters of different

types of aircraft during different flight phases. Employing a similar analysis on the range of the climb and

descent phase.

E.4.2. SQ-2: Data Analysis and Interpretation
Sub-Question 2: What is the quantified relation between the airport parameters and flight path and what

are the sensitivities?

This part aims to answer what the quantified relationship is between the airport parameters and flight

path by employing a to-be-determined statistical method for obtaining a quantification of the influence of

the selected parameters from the previous part, SQ-1. After relating the airport parameters to flight path it

will become clear whether the relationship is strong and how much of the variance can be explained by the

method. This will indicate how much the chosen airport parameters actually influence the flight path and

whether additional parameters should be added to get a more accurate result. A quantified relationship is

the output of this part of the thesis.

Employing the Spearman Rank Correlation is one approach, adjusting the data to highlight variations in

a specific airport parameter to deduce correlations with path length. Other statistical techniques, including

regression analysis and correlation tests, may also be utilized. A regression analysis is a well established

technique, especially the linear regression is a proven method, but requires a somewhat linear relationship.

However a linear regression is often a good way to start to get an indication of the variance and accuracy

of the linear model. This could then be enhanced by employing a more sophisticated regression technique.



E.5. Hypotheses 81

For each type of regression type there are different ways of determining whether the results from the

analyses are (statistically) significant. For determining the variance in the prediction coefficients, called the

Beta values, confidence intervals give a distribution within which the Beta values are predicted to lie. If

these values fall outside of the 0, the null hypothesis can be discarded as the predictors have a statistically

significant effect on the output with a 95 percent accuracy. Other test could include the T-test, which test

how much effect each Beta has and the effect size (R-squared) which explains how much of the variance

is explained by the model.

E.4.3. SQ-3: Emission Estimation and Comparison
Sub-Question 3: How does the flight path length emission estimation compare to other research in

accuracy and speed?

This part will apply the relationship found to the already existing model of Quadros et al.[1] to find

whether the relationship is a promising method to determine the emissions during the climb and descent

phase and how accurate it is compared to the current method of determining the emissions. This requires

a good understanding of the exact code used within the paper before integration of the method from this

research can be implemented. After implementation a comparison of a sample dataset will be performed

to measure the differences in the estimation and argue whether the new method is a promising alternative

way of determining the emissions during climb and descent.

The comparison process includes various methods such as cross-validation. Cross-validation partitions

the data into multiple subsets, trains the model on different subsets, and then validates it on the remaining

subsets. This helps in evaluating the model’s robustness and ability to generalize to new data. Berrar

introduced the most common cross-validation techniques and discussed the applicability of them in various

scenarios [35]. The uncertainty of the model can be assessed by performing a Monte Carlo Simulation.

This simulation generates random samples from probability distributions of input parameters, such that the

range of possible outcomes and uncertainties can be established, as was used in the research of Rudnyk

et al. [33], in which this method was used for a trajectory prediction Sensitivity Analysis.

Moreover, error metric such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), or

Percentage Error to quantify the accuracy of the emission estimation compared to ground truth or reference

data could be performed to further validate the model.

E.5. Hypotheses
The central hypothesis tested in this thesis proposes that generalized path lengths derived from key airport

parameters will enhance the accuracy of global emission calculations. This hypothesis was formulated

based on prior research indicating strong associations between delays and TMA density, as evidenced by

Dhief et al. [36].

SQ-1 Hypothesis

Although relating airport parameters to flight path could prove to be arbitrary, it is expected that there

will be about three to six parameters required for the estimation of the distance flown during the climb or

descent. Less parameters risks insufficient variables to accurately estimate the distances, whilst too many

variables might not be feasible as more data for each airport is required and a the intent of the thesis for a

simple distance indication might be compromised.

SQ-2 Hypothesis

Quantifying the relationship between the airport parameters and flight path done by regression would

satisfy the intent for a simplistic well proven method for relating the parameters to flight path. Regression

outputs weights for each of the variables considered within the analysis. These weights multiple with airport

parameters of an arbitrary airport form a formula for the distance flown during climb or descent. Statistical

test will indicate whether the estimation is accurate in terms of assumptions and errors and whether the

statistical model explains the variance in the data. It is expected that this is an iterative process with SQ-1

as within this part it becomes clear how much of the variance is explained by the model and therefore

whether the chosen airport parameters are significant or not.
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SQ-3 Hypothesis

The aim of the thesis is to provide a new and more accurate method to estimate the location of the aircraft

during the climb and descent phases. However, it is expected that this thesis lays the ground work for the

new method and that the chosen airport parameters could possibly not explain enough of the variance and

inaccuracies in the result and the analysis make it less accurate than the existing model.
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