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Interplay between quantum confinement and dielectric mismatch for ultrashallow dopants
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Understanding the electronic properties of dopants near an interface is a critical challenge for nanoscale
devices. We have determined the effect of dielectric mismatch and quantum confinement on the ionization
energy of individual acceptors beneath a hydrogen passivated silicon (100) surface. While dielectric mismatch
between the vacuum and the silicon at the interface results in an image charge which enhances the binding
energy of subsurface acceptors, quantum confinement is shown to reduce the binding energy. Using scanning
tunneling spectroscopy we measure resonant transport through the localized states of individual acceptors.
Thermal broadening of the conductance peaks provides a direct measure for the absolute energy scale. Our data
unambiguously demonstrates that these two independent effects compete with the result that the ionization energy
is less than 5 meV lower than the bulk value for acceptors less than a Bohr radius from the interface.
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I. INTRODUCTION

The operation of semiconductor devices is based on the
possibility to locally change the electron properties of the host
material by means of doping. As device dimensions continue
to decrease, the surface-to-volume ratio of active channels
increases and the effect of the semiconductor-insulator inter-
face on local doping starts to dominate device properties.1

Previous studies have suggested that dielectric mismatch at
the semiconductor-insulator interface leads to an increase in
ionization energy of dopants near the interface.2,3 In silicon
nanowires this leads to doping deactivation and consequently
an increase of resistivity with decreasing diameter.2,4 However,
recent transport spectroscopy experiments on single arsenic
donors in gated nanowires did not report an appreciable
increase in ionization energy.5 These results appear contra-
dictory.

The ionization energies of shallow donor and acceptor im-
purities are qualitatively described by effective mass theory,6

which works especially well for light impurity atoms such as
Li and B. Since the Coulomb potential is strongly screened
due to the polarization of the semiconductor, the ionization
energy of dopant impurities is only in the order of tens of
meV. This simple picture breaks down in the presence of
an interface. Dielectric mismatch between the semiconductor
material and its surroundings is predicted to enhance the
ionization energy.4 Moreover, for nanowires it is well known
that when the thickness of the nanowire approaches the Bohr
radius of the impurity the ionization energy increases due to
quantum confinement.7,8 However, in the case of a half-space,
i.e., a flat interface, effective mass theory predicts a decrease
in the ionization energy due to quantum confinement.9,10 As
a result of these two competing effects, dielectric mismatch
and quantum confinement, the ionization energy of the dopant
near a flat interface is expected to be bulklike.9,10

Here, we use low-temperature (4.2 K) scanning tunneling
spectroscopy (STS) to directly measure the ionization energy
of boron acceptors beneath the hydrogen terminated Si(100)
surface (NA ∼ 8 × 1018 cm−3). Experiments were performed
with an ultrahigh vacuum STM at liquid helium temperature
T = 4.2 K; this temperature is measured at the sample

stage. A hydrogenated Si(100):H surface was prepared by
flash annealing the sample to 1200 ◦C three times for an
integrated anneal time of 30 s followed by slow cool down
from 850 ◦C to 350 ◦C. The sample was then exposed to
6 Langmuir of atomic hydrogen in order to hydrogen passivate
the surface. Previous studies on GaAs(110),11–15 InAs(110),16

and ZnO(0001)17 surfaces have proven that STS is a powerful
tool to study subsurface impurities. Using scanning tunneling
microscopy the surroundings of each individual dopant atom
can be imaged and therefore any effect of dopant clustering
or interface disorder, such as charge traps, on the ionization
energy of the acceptors may be excluded. By analyzing the line
shape of differential conductance within well known single-
electron spectroscopy formalisms, we conclude that transport
is predominantly thermally broadened. Consequently, the hole
reservoir temperature is used as a reference to calibrate the
coupling between the applied bias voltage and the potential
landscape at the semiconductor-vacuum interface. In such a
way we are able to obtain a direct measure for the acceptor
ionization energy. Moreover, STS allows us to determine the
distance of individual acceptors to the interface by measuring
the spectral shift of the valence band due to the negatively
charged acceptor nucleus. Importantly, from the thermally
broadened single-electron transport through the localized
acceptor state, in conjunction with the spectral shift of the
valence band due to the ionized nucleus, the dopant depth can
be directly correlated to its ionization energy.

All parameters for the determination of the depth and
ionization energy of individual subsurface acceptors are
experimentally obtained from STS measurements. The voltage
of ionization is directly determined from the onset of resonant
tunneling through the localized acceptor state, i.e., the ion-
ization voltage coincides with the center of the differential
conductance peak corresponding to this tunnel process. The
tip induced band bending is inferred from the apparent shift
of the onset of the valence and conduction band with respect
to the known onsets in absence of the tip. Using the model of
voltage dependent band bending introduced by Feenstra the tip
voltage for flat-band conditions at the surface can be deduced.
The lever arm between the applied bias voltage and the energy

245417-11098-0121/2013/87(24)/245417(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.87.245417


MOL, SALFI, MIWA, SIMMONS, AND ROGGE PHYSICAL REVIEW B 87, 245417 (2013)

shift of the localized acceptor levels is determined from fitting
the differential conductance peaks, which result from resonant
tunneling through the acceptor states, to a thermally broadened
Lorentzian line shape that is stretched by the lever arm. Finally,
the depth of each acceptor is obtained from a fit of the lateral,
spatial dependence of the valence band onset around the dopant
where the depth and the effective dielectric constant are used
as two, independent, fitting parameters. For five individual
acceptors up to 2 nm below the surface, we find that the
ionization energy decreases less than 5 meV from the known
bulk value of 45 meV.

II. RESULTS AND DISCUSSION

The schematic energy diagrams in Fig. 1 illustrate three
different transport regimes in which we study the subsurface
boron acceptors: (i) charge sensing in the valence band,
(ii) resonant tunneling through the localized acceptor state, and
(iii) charge sensing in the conduction band. When a negative
sample bias voltage is applied, the presence of a subsurface
acceptor results in an increase in the direct tunneling into
the valence band due to an increase in the local density of
states (LDOS) caused by the negatively charged nucleus of
the acceptor. The increase in tunnel current leads to a height
increase in the STM topography, as is shown in Fig. 1(a).
Likewise, when a positive voltage is applied, suppression of
the local density of states by the acceptor potential leads to a
decrease in the direct tunnel current into the conduction band
and resulting in a dip in the STM topography16 [Fig. 1(c)].
However, when a positive voltage is applied such that the
Fermi energy of the tip is close to the conduction band edge,
the transport is no longer dominated by direct tunneling into
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FIG. 1. (Color online) Schematic energy diagram of the tip-
vacuum-sample tunnel junction. (a) When eV < EV < eVFB elec-
trons tunnel from the valence band to the tip and the presence
of a subsurface acceptor is observed as a protrusion in the STM
topography. (b) In case eVFB < eV ∼ EC direct tunneling via the
localized acceptor state leads to a protrusion in the topography.
(c) Suppression of the local density of states by the acceptor potential
reduces the tunnel current when EC < eV , resulting in a depression
in the topography.

the conduction band but by resonant transport through the
localized acceptor state [Fig. 1(b)].

Since the Fermi energy of the heavily B-doped sample is
pinned at the bulk acceptor level Ebulk

A , the voltage at which
the localized acceptor state is equal to the Fermi level Vonset,
with respect to the flat-band voltage VFB , is a direct measure
for the difference in ionization energy �E = EA − Ebulk

A of
the subsurface acceptor with respect to the bulk ionization
energy. The bias dependence of the energy level of the
localized acceptor state EA is described by the lever arm α =
e−1dEA/dV .18,19 Here we present a direct measurement of
the lever arm and measure the shift �E = −αe(Vonset − VFB)
by studying transport through individual subsurface acceptors
where we directly determine: (i) the potential due to the
negatively charged nucleus, (ii) the flat-band voltage and
depth of the acceptors from direct tunneling to/from the
conductance/valence band, and (iii) the ionization voltage and
lever arm from single-electron transport through the localized
acceptor state.

Figure 2(a) shows the normalized conductance GN =
(dI/dV )/(I/V ) measured away from any subsurface acceptor
(dI/dV is deduced numerically). The flat-band voltage VFB

was extracted by comparing the 4.2 K band gap of Si(001):H
with voltages VV and VC for tunneling into the valence and
conductance band edges [dashed lines in Figs. 2(a) and 2(b)].
A first approximation of VFB is made by taking the tip induced
band bending (TIBB) to be linear [dotted line in Fig. 2(b)].
This constraint is subsequently relaxed in order to account
for screening [solid line in Fig. 2(b)]. Finally, the flat-band
condition was independently measured from the apparent
barrier height.

The onset voltage for tunneling from the valence band VV

and tunneling into the conduction band VC is determined by
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FIG. 2. (Color online) (a) Normalized conductance GN measured
on a hydrogen terminated Si(100):H surface away from (solid line)
and above (dashed line) an acceptor. The top of the valence band
VV and bottom of the conduction band VC are determined by the
slopes of GN away from the acceptor (dotted lines). (b) Surface
potential φS assuming linear TIBB (dotted line) and nonlinear TIBB
(solid line) calculated using the code developed by Feenstra.23 The
relevant parameters chosen for these calculations to match the change
in band gap are the tip-sample separation 0.8 nm, the tip radius 8 nm,
and the doping concentration 1 × 1018 cm−3. Note that the doping
concentration is lower than the substrate doping, which is expected
from acceptor out-diffusion during the flash anneal.

245417-2



INTERPLAY BETWEEN QUANTUM CONFINEMENT AND . . . PHYSICAL REVIEW B 87, 245417 (2013)

finding the voltage axis intercept (i.e., GN = 0) of the linear
extrapolation of the GN − V curve at its maximum slope point
[dotted lines in Fig. 2(a)].20 The potential φS(V ) at the interface
as a function of the applied sample voltages is obtained from
the flat-band energies EF − EV = Ebulk

A − EV = 0.045 eV21

and Eg = EC − EV = 1.17 eV at T = 4.2 K22 away from the
acceptor. Assuming a linear relationship between the applied
voltage and the potential at the interface

dφS

dV
= e(VC − VV ) − Eg

VC − VV

(1)

yields an approximated flat-band voltage VFB = 0.5 ± 0.1 V
which is inferred from the condition for tunneling from the
valence band φS(VV ) = eVV

dφS

dV
(VV − VFB) = eVV . (2)

When the flat-band voltage lies within the band gap the
dφS/dV cannot be assumed linear as it is well known that
for V > VFB accumulated carriers at the surface will screen
the electric field from the tip more strongly. In order to
correct for this effect we use the φS(V ) calculated using the
method of Feenstra23 [Fig. 2(b)] and determine a corrected
flat-band voltage VFB = 0.38 ± 0.1 V. This flat-band voltage
is smaller than expected from the difference between the
bulk work function � = 4.55 eV24 of tungsten and sample
electron affinity χ = 4.05 eV.25 The measured flat-band
voltage corresponds to a tip work function �tip = 4.9 ± 0.1 eV
(larger values for the tip work function have been previously
reported). Finally, we independently confirmed the value of the
tip work function by measuring the apparent barrier height14,26

resulting in �tip = 4.8 ± 0.1 eV (see Appendix A).
The distance of the subsurface acceptors to the interface

is measured from the spectral shift of the valence band edge.
Figure 3(a) shows the differential conductance (dI/dV ) map,
as a function of position and sample bias voltage V , measured
simultaneously with the empty state topography at V = 2 V
shown in Fig. 3(a). At the acceptor site the dI/dV map clearly
shows an upward spectral shift of the valence band states
due to the buried acceptor. The spatially resolved shift of the
valence-band edge �EV as shown in Fig. 3(b) is defined from
the slope of GN as before. The first-order perturbation to the
binding energy of the valence band states at the interface ψs ,
and thus the shift of the valence-band edge �EV due to the
potential of the negatively charged acceptor nucleus at position
r0, can be estimated as

�EV = 〈ψs |UA(�r,�r0)|ψs〉, (3)

where UA(�r,�r0) is the acceptor potential at position �r . For an
acceptor in bulk the impurity potential is given by27

U bulk
A (�r,�r0) = e2

0

4πε0εSi

e−k0r

|�r − �r0| , (4)

where e0 is the electron charge and k−1
0 the free-carrier

screening length. When the semiconductor is depleted of
free charge carriers, which is the case for V < VFB , k0 → 0
and Eq. (4) will approach the dielectric-screened Coulomb
potential.28 A finite k0 will result in a shallower acceptor
potential.
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FIG. 3. (Color online) (a) dI/dV map recorded simultaneously
with empty-state topography (+2.2 V, 300 pA). Tunneling from the
valence band to the tip is indicated by VB, tunneling from the tip to
the conduction band is indicated by CB. The dI/dV map is cut at
the acceptor site to show the upward shift of the valence band states.
(b) Schematic potential landscape due to a negatively charged nucleus
below the sample surface and its image charge in the vacuum. The
solid line indicates the potential along the vacuum-semiconductor
interface. (c) Shift in the valence band maximum EV as a function
of lateral tip position. (d) Azimuthal averaged shift in the valence
band maximum EV (filled squares) as a function lateral tip separation
s from the acceptor as indicated in (c). The dopant depth is determined
by fitting EV to a bare Coulomb potential (solid line), taking into
account the image charge due to dielectric mismatch as illustrated in
(b).

The presence of an interface will result in a change in
dielectric screening of the impurity potential. An analytic
solution to the Poisson equation at an interface can be found
using the well-known method of image charges. For a planar
tip-vacuum-silicon interface the potential in the semiconductor
due to the ionized acceptor nucleus is given by9,29

UA(�r,�r0) = e2
0

4πε0εSi

[
1

|�r − �r0| − εv − εSi

εv + εSi

1

|�r − �r1|

+
∞∑

n=0

4εvεSi

(εv + εSi)2

εv − εtip

εv + εtip
ξn 1

|�r − �r−2n−1|
]
, (5)

where

ξ = εv − εSi

εv + εSi

εv − εtip

εv + εtip
, (6)

and the charges are located at a distance

z0 = d, z1 = −d,
(7)

z−2n−1 = −(2n + 1)l − d, n = 0,1,2, . . .

from the vacuum-silicon interface; here d is the distance of
the acceptor nucleus to the interface and l the tip-sample
separation. It is important to note that when l 	 d, or indeed
when εtip = εv , only the first two terms of Eq. (5) remain, that
is the ionized nucleus at z = d and a single image charge at
z = −d. As for free-carrier screening in the substrate, a finite
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tip-sample separation and εtip > εv , the presence of the tip will
lead to a shallower acceptor potential.

In the case of a classical half-space, i.e., in the absence
of screening by free carriers in the tip or the substrate, the
approximation 〈ψs |UA(�r,�r0)|ψs〉 ≈ UA(s,�r0), where s is the
lateral separation with respect to the acceptor nucleus along
the interface as shown in Fig. 3(b), yields

�EV ≈ e2
0

4πε0εeff

1√
s2 + d2

, (8)

where the modified dielectric constant εeff and depth d can
be independently determined from a fit.15,30 The modified
dielectric constant at the interface εeff = (εv + εSi)/2 is due
to the mismatch between the dielectric constants εv and
εSi = 11.431 of the vacuum and silicon, respectively, which
leads to a single image charge at −d as shown in Fig. 3(c).
Figure 3(d) shows measured (filled squares) and fitted (solid
line) spectral shift of the valence-band edge �EV as function
of lateral tip separation s from the dopant. Following Refs. 15
and 30 we fit the spectral shift of the valence-band edge as
a function of position to Eq. (8) [Fig. 3(d)] using the depth
d of individual acceptors and the modified dielectric constant
εeff as two, independent, fitting parameters. Importantly, any
screening either by carriers in the tip or in the substrate would
result in a shallower potential and thus lead to an increase of
the modified dielectric constant from εeff = (εv + εSi)/2. The
obtained modified dielectric constant for all five measured
acceptors agrees within experimental error with the expected
value εeff = 6 following the classical half-space approach and
experimental values that have previously been reported for
STM experiments.15,30

The lever arm α, i.e., the shift of the acceptor energy levels
�E due to the applied bias voltage, depends on the screening of
the electric field in the semiconductor and the overlap between
the acceptor wave function and the tip induced potential
[Fig. 4(a)]. Rather than trying to estimate the lever arm by
solving the Poisson equation,13,19,23,26 we fit the differential
conductance peaks to a thermally broadened Lorentzian line
shape32 [shown in Fig. 4(b)]:

dI/dV ∝
∫ +∞

−∞
cosh−2(E/2kBT )

×
1
2h�(

1
2h�

)2 + (αe[V − Vonset] − E)2
dE, (9)

where � = �in + �out is the sum of the tunnel-in and tunnel-
out rates. This line shape describes resonant tunneling via a
single, lifetime broadened, localized state into a continuum
of states that are thermally occupied according to the Fermi-
Dirac distribution.32–34 We observe two distinct differential
conductance peaks within the band gap, due to the ground state
and an excited state coming into resonance with the Fermi level
of the substrate. Additional differential conductance peaks due
to excited states are well understood within the framework of
single-electron transport. Although we fit both the differential
conductance peaks we will limit the discussion here to the
energy level of the ground state, i.e., the binding energy
of the acceptor. Charge noise can be excluded as dominant
sources of conductance peak broadening as it does not have
the appropriate line shape of the conductance peaks (see
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FIG. 4. (Color online) (a) Schematic energy diagram. Local tip
induced band bending brings the acceptor level EA into resonance
with the Fermi energy. The voltage Vonset at which this occurs depends
on the acceptor depth, ionization energy, and the screening length.
(b) The lever arm α and the onset voltage Vonset are determined
fitting the two conductance peaks in the band gap to the sum of
two thermally broadened Lorentzian line shapes (relevant fitting
parameters are listed in Appendix C). (c) Measured (squares) and
calculated (line) onset voltage for resonant tunneling as a function of
acceptor depth. (d) Measured (squares) and calculated (line) lever arm
as a function of acceptor depth. (e) The shift in ionization energy �E

with respect to the bulk ionization energy inferred from the measured
onset voltage and the lever arm (squares). The onset voltage and lever
arm are calculated for �E = −2.5 meV, line in (c), and an overlap
between the acceptor wave function and the tip induced band bending
�E = −0.06 × TIBB, where TIBB is the tip induced band bending
at the acceptor site as illustrated in (a).

Appendix B). The lever arm α was allowed to vary linear in
with V in our fit by defining α = a + bV and making a and b

independent fitting parameters. We observe that bV is smaller
than the confidence bounds on a for all measured acceptors and
thus that the measured values for α do not depend on the bias
voltage V . Consequently, we can conclude that Stark shifts
of the localized states due to the electric field are negligible
in our measurement geometry. The squares in Figs. 4(c)–4(e)
indicate the measured voltage of ionization Vonset, lever arm α,
and extracted shift in binding energy with respect to the bulk
binding energy �E as a function of depth for five different
acceptors. The binding energy of all five acceptors is less than
5 meV smaller than the bulk binding energy.

For consistency we compare our method with the previously
described method13,18,19,23,26 based on an electrostatic model.
The method based on the electrostatic model consists of
two steps: (i) first the voltage dependent potential near the
interface is calculated using a 3D Poison model,23 and (ii) then
the shift of the dopant energy levels is estimated from the
overlap between the dopant wave function and the potential
near the interface (first-order correction using perturbation
theory).18 The result can be expressed as S × TIBB, where
S is the overlap integral and TIBB the potential at the dopant
nucleus.13,18,19 The two methods are compared by assuming
�E = 2.5 meV [solid line in Fig. 4(e)] independent of depth
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and calculating back the corresponding Vonset and α using the
electrostatic model. The calculated values for Vonset and α

[solid lines in Figs. 4(c) and 4(d)] are then compared to the
experimental values determined using our method [squares
in Figs. 4(c) and 4(d)]. We have used the overlap between
the impurity wave function and the TIBB as a free parameter
to match the calculated values for Vonset and α [solid lines
in Figs. 4(c)–4(e)] to the experimental results [squares in
Figs. 4(c)–4(e)]. We find that for �E = −0.06 × TIBB the
Poisson model matches our results. Importantly, the 0.06
overlap is a factor ∼4 smaller the 0.27 overlap estimated in
previous studies.13,19 This factor of 4 is consistent with the
predicted uncertainty for the Poisson model.13

Summarizing the main results, the squares in Fig. 4(c)
indicate the onset voltage Vonset of resonant tunneling as a
function of dopant depth for five different acceptors measured
from the center of the first differential conductance peaks.
The measured lever arm α of the five acceptors, determined
from the width of the differential conductance peaks, are
indicated by the squares in Fig. 4(d). The shift in ionization
energy �E = −αe(Vonset − VFB) is smaller than zero for all
measured acceptors, as indicated by the squares in Fig. 4(e).
Since the measured value of εeff corresponds to the expected
value following the classical half-space approach we can
conclude that two opposing effects influence the ionization
energy of near-interface dopant atoms: (i) dielectric mismatch;
the dopant potential, which is screened by charge polarization
in the semiconductor, becomes more attractive when its envi-
ronment becomes less polarizable, i.e., has a lower dielectric
constant, which leads to an increase of the ionization energy;
(ii) quantum confinement; exclusion of the dopant wave
function from the region outside the semiconductor results in
a decrease of the ionization energy.9,10 The observed bulklike
ionization energies for acceptors less than an effective Bohr
radius from the interface are strong evidence that the effect of
dielectric mismatch at the interface is mitigated by quantum
confinement. Our transport data unambiguously demonstrates
that acceptors within an effective Bohr radius from the
interface of a silicon half-space geometry are not deactivated.
We would like to point out that atomistic differences from the
bulk may lead to an alteration of the binding energy such as
the enhancement observed in the same geometry in Ref. 18,
but this effect is unrelated to dielectric mismatch.

III. CONCLUSION

In conclusion, we have determined the ionization energy
of individual subsurface acceptors below the Si(100):H sur-
face by means of low-temperature scanning tunneling spec-
troscopy. Calibration of the local lever arm using the thermal
broadening of the conductance peaks removes the necessity
of modeling the tip induced electrostatic potential below the
semiconductor surface, providing a direct measure for the
ionization energy. We believe that this method provides a valu-
able parallel between extensively studied electron transport
in mesoscopic devices and scanning tunneling spectroscopy.
Moreover, this experiment demonstrates bulklike ionization
energies for acceptors less than a Bohr radius away from the
interface. The fact that subsurface acceptors are not deactivated
is of great importance for the doping of nanoscale devices.
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APPENDIX A: FLAT-BAND VOLTAGE AND APPARENT
BARRIER HEIGHT

In the main text the flat-band voltage is inferred from the
position of the band edges after references.20,23 Here we verify
the flat-band voltage from an independent measure of the
apparent barrier height after Refs. 14 and 26.

Figure 5(a) shows the measured barrier height �B as a
function of bias voltage V and relative tip-sample separation
�z. In approximation the tunnel current depends exponentially
on the tip-sample separation z, I ∝ exp(−2κz),14,26,35 so that
the inverse decay length can be determine by numerically
differentiating the logarithmic current:

κ = −1

2

∂ ln I

∂z
. (A1)

The apparent barrier height is determined from the inverse
decay length using κ = √

2m0�B/h̄. From geometrical argu-
ments it follows that14,26,35

eV < Eg : �B = �tip + χ + Eg + eV − |T IBB|
2

, (A2)

eV > Eg : �B = �tip + χ + Eg − eV + T IBB

2
, (A3)

where �tip is the tip work function and χ and Eg the electron
affinity and band gap of the sample, respectively. We fit the
measured barrier height for eV < Eg to this relation to extract
the apparent barrier height at zero bias, as is shown in Fig. 5(b).
At eV > Eg the tunnel current contains a contribution of tun-
neling from the tip into the conduction band as well as a contri-
bution from tunneling from the accumulation layer. As a conse-
quence we can only extract the zero bias apparent barrier height
from the tunnel current from the valence band, i.e., eV < Eg .

The extracted apparent barrier height clearly decreases for
smaller tip-sample separations as expected from the effect of
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FIG. 5. (Color online) (a) Measured barrier height as a function of
voltage and relative tip position �z. The imaging condition �z = 0
corresponds to a tunnel current I = 300 pA and bias voltage V =
−0.6 V. (b) Extracted effective barrier height at V = 0.
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TABLE I. Fitting parameters for the five measured subsurface acceptors presented in Fig. 4. α′ was measured on the same acceptors for a
different tip-sample separation, resulting in a factor ∼2 increase in resonant tunneling current.

# d (nm) εeff V 0
onset (V) α × 103 α′ × 103 1

2h̄�/3.5kBT R2

1 0.5 ± 0.01 6 ± 0.1 0.50 ± 0.01 14.1 ± 1.5 1.4 ± 0.2 0.99
2 1.3 ± 0.3 6 ± 1 0.51 ± 0.01 8.1 ± 0.4 0.06 ± 0.04 0.96
3 1.5 ± 0.4 8 ± 2 0.51 ± 0.01 9.6 ± 0.5 8.9 ± 0.2 0.52 ± 0.08 0.98
4 1.9 ± 0.9 7 ± 2 0.65 ± 0.01 8.4 ± 1.0 8.5 ± 0.3 0.55 ± 0.26 0.95
5 2.0 ± 0.2 6 ± 1 0.62 ± 0.01 6.1 ± 0.3 6.6 ± 0.1 0.17 ± 0.02 0.98

image charges.14,35,36 For �z > 0.2 nm the apparent barrier
height appears constant. Taking the value of this plateau �B =
5.0 ± 0.1 eV to be the true trapezoidal barrier, i.e., assuming
that image charge effects no longer play a role for �z > 0.2 nm
and assuming the TIBB goes to zero, we obtain a tip work
function �tip = 4.8 ± 0.1 eV and a flat-band voltage VFB =
0.4 ± 0.1 V.

APPENDIX B: PEAK BROADENING
AND CHARGE FLUCTUATIONS

The energy level E of the localized impurity state, and
therefore the conductance through the localized state, depends
on its electrostatic environment. The charging/discharging of
a site near the localized impurity state will result in a shift
�E of the energy level and a change in differential con-
ductance g(V ) → g(V + �V ), where �V = �E/αe. Since
not all charge is stationary, the conductance is expected to
fluctuate in time, producing noise. When several fluctuators
are acting simultaneously this will result in low-frequency
(1/f ) noise.37,38 It is well known that for a pure 1/f noise
signal the variance grows logarithmically with sampling time
ts .39–41 Consequently, the conductance peaks are expected to
broaden with increasing sampling time.

If there is a cutoff time lower than 20 ms we would not
observe a dependence of the peak width on integration time,

but rather a dependence on tunneling current. We have found
no significant dependence of the peak width on the tunneling
current for different tip heights for three out of five acceptors
(see α′ in Table I in Appendix C) and can conclude that hopping
of injected charge between impurities does not dominate to the
width of the differential conductance peaks.

This is consistent with the fact that: (i) We see no
discrepancy between the slope of the tail of the differential
conductance peaks on a log scale (slope = 1/kBT ) and the
full width at half maximum of the differential conductance
peaks (FWHM = 3.5kBT ). Appreciable fast fluctuation would
result in a FWHM > 3.5kBT inconsistent with the fit shown
in Fig. 4(b). (ii) The near-surface (<2–3 nm depth) dopants
we observe are typically twenty or more nm apart, making it
difficult for them to be brought into bias conditions of charge
fluctuation.

APPENDIX C: FITTING PARAMETERS

The relevant fitting parameters and errors, including the
depth and modified dielectric constant, are presented in
Table I. Horizontal error bars in Fig. 4, which are uncertainties
in depth ud , are directly obtained from the fitting of the valence
band edge. Vertical error bars in Fig. 4, u�E , are obtained
from the standard method of propagation of errors and are
dominated by the uncertainty in the flat-band voltage.

1M. F. Bukhori, S. Roy, and A. Asenov, IEEE Trans. Electron
Devices 57, 795 (2010).

2M. T. Björk, H. Schmid, J. Knoch, H. Riel, and W. Riess, Nat.
Nanotechnol. 4, 103 (2009).

3M. Pierre, R. Wacquez, X. Jehl, M. Sanquer, M. Vinet, and O. Cueto,
Nat. Nanotechnol. 5, 133 (2009).

4M. Diarra, Y.-M. Niquet, C. Delerue, and G. Allan, Phys. Rev. B
75, 045301 (2007).

5H. Sellier, G. P. Lansbergen, J. Caro, S. Rogge, N. Collaert,
I. Ferain, M. Jurczak, and S. Biesemans, Phys. Rev. Lett. 97, 206805
(2006).

6J. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
7R. Loudon, Am. J. Phys. 27, 649 (1959).
8G.W. Bryant, Phys. Rev. B 29, 6632 (1984).
9Y. L. Hao, A. P. Djotyan, A. A. Avetisyan, and F. M. Peeters, Phys.
Rev. B 80, 035329 (2009).

10M. J. Calderon, J. Verduijn, G. P. Lansbergen, G. C. Tettamanzi,
S. Rogge, and B. Koiller, Phys. Rev. B 82, 075317 (2010).

11A. M. Yakunin, A. Y. Silov, P. M. Koenraad, J.-M. Tang, M. E.
Flatte, J. L. Primus, W. van Roy, J. de Boeck, A. M. Monakhov,
K. S. Romanov, I. E. Panaiotti, and N. S. Averkiev, Nat. Mater. 6,
512 (2007).

12S. Loth, M. Wenderoth, and R. G. Ulbrich, Phys. Rev. B 77, 115344
(2008).

13J. K. Garleff, A. P. Wijnheijmer, A. Y. Silov, J. van Bree, W. Van
Roy, J.-M. Tang, M. E. Flatte, and P. M. Koenraad, Phys. Rev. B
82, 035303 (2010).

14A. P. Wijnheijmer, J. K. Garleff, M. A. von d Heijden,
and P. M. Koenraad, J. Vac. Sci. Technol. B 28, 1086
(2010).

15D. H. Lee and J. A. Gupta, Science 330, 1807 (2010).
16F. Marczinowski, J. Wiebe, J.-M. Tang, M. E. Flatte, F. Meier,

M. Morgenstern, and R. Wiesendanger, Phys. Rev. Lett. 99, 157202
(2007).
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