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Review of Packaging Schemes for Power Module
Fengze Hou , Wenbo Wang, Liqiang Cao, Jun Li, Meiying Su, Tingyu Lin, Guoqi Zhang, Fellow, IEEE,

and Braham Ferreira, Fellow, IEEE

Abstract— SiC devices are promising for outperforming Si
counterparts in high-frequency applications due to its superior
material properties. Conventional wirebonded packaging scheme
has been one of the most preferred package structures for power
modules. However, the technique limits the performance of a SiC
power module due to parasitic inductance and heat dissipation
issues that are inherent with aluminum wires. In this article, low
parasitic inductance and high-efficient cooling interconnection
techniques for Si power modules, which are the foundation of
packaging methods of SiC ones, are reviewed first. Then, attempts
on developing packaging techniques for SiC power modules
are thoroughly overviewed. Finally, scientific challenges in the
packaging of SiC power module are summarized.

Index Terms— High-efficient cooling, low parasitic inductance,
packaging schemes, scientific challenges, SiC power module.

I. INTRODUCTION

S ILICON carbide (SiC) is a promising semiconductor mate-
rial in high operating temperature, high blocking voltage,

and high switching frequency applications due to its excellent
electrical and thermal properties [1]–[4]. Compared with Si
counterparts, SiC devices are cable of switching at higher
speed and thus enable increased operation frequency of SiC
power modules [5]. However, these features pose substantial
challenges to packaging of a SiC power module.

Aluminum (Al) wirebonded packaging scheme has been the
most preferred package structure for power module up to now.
Fig. 1 shows a power module with a conventional packaging
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Fig. 1. Conventional packaging scheme for a power module.

scheme. The bottom side of a power semiconductor device is
attached to a ceramic substrate [direct-bonded copper (DBC)],
usually using solder, while the top side is connected using
wirebonds. DBC is basically a ceramic tile with two lay-
ers of copper (Cu), with one of them patterned to form
an electrical circuit [6]. The conventional package provides
electrical interconnects (via Al wirebonds and upper Cu tracks
of DBC ceramic substrate), electrical insulation (using the
DBC ceramic substrate), device protection (by encapsulation
material), and thermal management (through bottom side).
This typical package structure is used in the vast majority
of the power modules that are currently manufactured [7].

The conventional wirebonded interconnection solution,
however, limits the performance of a SiC power module. Wire-
bonds have inherent parasitic inductance that could exceed 10
nH. High di/dt at turn-off transient would easily lead to voltage
overshoot, increasing switching loss of power devices, caus-
ing electromagnetic interferences (EMIs), limiting switching
frequency, and affecting switching waveforms [7]–[9]. From a
heat dissipation point of view, heat generated by power devices
is dissipated through its bottom side only, which affects the
thermal performance of the power module. Moreover, as power
loss increases with switching frequency, a cooling system that
could remove heat through both sides of the die in a power
module would be much more efficient for high-frequency
operation of a power module [7]. Therefore, new low par-
asitic inductance and high-efficiency cooling interconnection
solutions need to be developed to push the development of a
power module.

In Section II, SiC material properties and SiC device poten-
tials are introduced. In Section III, a comprehensive review
of packaging schemes for Si power module is performed.
In Section IV, packaging techniques for SiC power module
are thoroughly overviewed. In Section V, scientific challenges
in the packaging of SiC power module are summarized.

II. SiC MATERIAL PROPERTIES AND

DEVICE POTENTIALS

Fundamental properties of several different semiconduc-
tor materials are listed in Table I [3]. Compared with Si

2168-6777 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 24,2020 at 08:14:44 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-4029-5750


224 IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, VOL. 8, NO. 1, MARCH 2020

TABLE I

FUNDAMENTAL PROPERTIES OF VARIOUS
SEMICONDUCTOR MATERIALS

material, the bandgap of 4H-SiC is about three times higher
and the intrinsic carrier concentration of 4H-SiC is much
smaller. The wide bandgap energy and low intrinsic carrier
concentration allow SiC devices to operate at much higher
temperature (approximately five times higher than Si devices).
The breakdown electric field of 4H-SiC is an order magnitude
higher than Si, making SiC devices capable of sustaining
higher voltage. Moreover, a SiC device can switch at higher
speed because saturation drift velocity of such device is twice
of Si and thus enable at least 5–10 times higher switching
frequency [3], [10], [11].

Up until now, SiC devices, such as SiC MOSFET, Schot-
tky diode, junction gate field-effect transistor (JFET), and
insulated-gate bipolar transistor (IGBT), have been produced
or demonstrated. Among these devices, SiC MOSFET has
received most of the attention due to its promising capabilities
of replacing Si IGBT in power electronics systems [11], [12].

A SiC MOSFET is comprised of more than 10 000 small
parallel-connected n-channel enhancement mode MOSFET
cells. A cross section of a SiC DMOSFET half-unit cell
is shown in Fig. 2 [13]. A SiC MOSFET is fabricated by
beginning with an n-drift layer grown on a heavy-doped n+
substrate. In order to attain high breakdown voltage, the drift
layer is lightly doped. The breakdown voltage VBR of SiC
MOSFET is influenced by the doping concentration of n-drift
layer ND and the thickness of n-drift layer wB . The relation-
ships can be expressed as follows, respectively [14]–[16]:

ND =
(

4.45×1013

1.25VBR

)4/3

(1)

wB =
√

2εsicVBR

q ND
(2)

where εSiC is the buck electron mobility of SiC and q is the
electron charge. The drift layer resistance Rdrift is given in
[16], which is expressed as

Rdrift = w

εSiC · q·AGD · N D
(3)

w = wB − wDSJ (4)

where AGD is the gate–drain overlap area, w is the drain–
source undepleted drift width, and wDSJ is the drain–source

Fig. 2. Typical structure of a SiC DMOSFET half-unit cell.

Fig. 3. Application range of Si, GaN, and SiC power devices.

depletion width. According to (1) and (2), the thicker the
drift layer and the lower its doping level, the higher the
breakdown voltage. On the contrary, in accordance with (3)
and (4), the thinner the layer and the higher the doping
level, the lower the drift layer resistance. Thus, a tradeoff
exists between breakdown voltage and drift layer resistance.
Moreover, the high breakdown electric field of SiC allows SiC
power MOSFET with thinner and more highly doped drift
layer. The more highly doped drift layer (more than ten times
higher) provides lower drift layer resistance for SiC MOSFET.
The thinner drift layer of SiC devices (1/10 that of Si devices)
also contributes to the lowering of the drift layer resistance
by a factor of 10. The combination of 1/10 the drift layer
thickness with ten times the doping concentration can yield
a SiC device with a factor of 100 advantages in resistance
compared to that of a Si device [13], [14].

Fig. 3 shows the application range of Si, GaN, and SiC
devices [17]–[20]. Switching loss of a unipolar device, such as
SiC MOSFET, is relatively low as its switching speed is faster,
so it can be used in high-frequency conditions. In comparison,
switching loss of IGBT is higher due to its inherent slower
switching speed attributed to its bipolar nature [17]. Compared
with Si IGBT, the conduction loss of SiC MOSFET is lower
because of its higher doping concentration in the drift region.
The smaller depletion width reduces the ON-state resistance
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Fig. 4. Cross section of power module with planar interconnects.

of SiC MOSFET, resulting in less conduction loss. Besides,
SiC MOSFET has much lower output capacitances and gate
charge, and they can switch at much higher dv/dt and di/dt.
High switching speed enables low switching loss and high
switching frequency, which can improve the power density
and efficiency of power module [18]. Moreover, switching loss
of Si IGBT will increase significantly in higher operational
temperature, while switching loss of SiC MOSFET has little
variation over temperature [19]. Therefore, SiC MOSFET pos-
sesses definite advantages in middle-high voltage applications
over competing Si counterparts.

III. PACKAGING SCHEMES FOR Si POWER MODULE

Packaging techniques of Si power modules, which are the
foundation of packaging methods of SiC ones, are reviewed
first. Various packaging schemes for Si power module have
been developed, such as planar interconnection, press pack,
chip embedded package, 3-D interconnection, and hybrid
package.

A. Planar Interconnect Scheme

1) Siemens Planar Interconnect Technology: Siemens intro-
duced a novel packaging technique for power modules based
on a planar interconnect technology (SiPLIT), as shown
in Fig. 4. The SiPLIT featured thick Cu interconnects on a
high-reliable insulating film for top contacts of power chip.
Due to the conductor structure and contact technology, ON-
resistance and parasitic inductances of the power module were
very low in comparison to state-of-the-art Al wirebonded inter-
connection. In addition, the large area contacting improved
power cycling capability and surge current robustness signifi-
cantly. Through electrical and thermal characterization, it was
found that up to 50% reduction in parasitic inductances of
the interconnects and a remarkable 20% decrease in thermal
resistance were achieved [21].

2) Transfer-Molded Power Module Package: Mitsubishi
reported a simple, compact, robust, and high-performance
transfer-molded power module (T-PM) with direct lead bond-
ing (DLB) technology, as shown in Fig. 5. Cu lead was directly
bonded on the emitter and cathode electrodes by a Pb-free
solder, and Al conventional wire was bonded on the gate
electrode. In order to improve the thermal performance of
the T-PM, a high thermally conductive electrically insulated
layer (TCIL) was applied to the module. Compared with
conventional wirebonded power module, the TPM showed
43% and 50% reduction in parasitic inductance and parasitic
resistance, respectively [22].

Fig. 5. Structure diagram of DLB package.

Fig. 6. Multilayer planar interconnection package structure.

3) Multilayer Planar Interconnection Package: Liang et al.
[23] proposed a multilayer planar interconnection package
structure for a 200-A/1200-V IGBT phase-leg power module,
as shown in Fig. 6. The switching dies were sandwiched
between two symmetric substrates, providing planar electrical
interconnections and insulation. Two minicoolers were directly
bonded to outside of these substrates, allowing double-side
integrated cooling. The upper switch pair and lower switch
pair in the phase-leg were oriented in a face-up/face-down
configuration. The bonding areas between the dies and the
substrates, as well as the substrates and coolers, were designed
to use identical materials and were formed in one heating
process. Compared with wirebonded power module, total
inductance and resistance of the planar bonded power module
decreased by 62% and 90.6%, respectively. Besides, voltage
overshoot reduced by 54%, and the total loss of the planar
bond package was less than 10% of that of the wirebonded
package. The double-sided cooling of the planar module
reduced the specified thermal resistance to 0.33 cm2·◦C/W,
which was 38% lower than that of the wirebonded power
module.

4) Cu Clip Bonding Technology: The concept of Cu clip
bonding technology is shown in Fig. 7. Conventional Al
wirebonds were replaced with a flat Cu clip. Due to the high
electrical conductivity and high thermal conductivity of Cu,
the clip could not only improve the switching characteristics
of the power module through reduction of parasitic inductance
but also provide an additional heat conduction path from the
top surface of the die [24], [25]. Compared with conventional
wirebonded counterpart, up to 23% reduction in junction to
case thermal resistance for one individual die and around 18%
decrease for the parallel operation of two dies were observed
in the single-sided cooling tests, while in the double-sided
cooling experiments, an additional average of 18% thermal
improvement was achieved due to the addition of a top fan-
cooled heatsink mounted onto the Cu clip [25].
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Fig. 7. Structure diagram of Cu clip bonding package.

Fig. 8. Schematic of spacer-based sandwich structure.

5) Spacer-Based Sandwich Structure: Fig. 8 shows a
schematic of spacer-based sandwich structure for power mod-
ule. Cu spacers with different thicknesses were used to accom-
modate height differences between IGBT and diode in a power
module [26], [27]. SAC305 solder sheet was selected as a die-
attach material. To build solder bump on the IGBT and diode,
an additional metallization layer was needed to be sputtered on
the front-side source and gate pads to increase the wettability
of solder. For this purpose, the original Al metallization of
emitter, anode, and gate contact was modified by sputtering
of Ti/Ni/Ag (60/500/800 nm) layers [26]. Compared with
conventional IGBT module, 55.1% and 13.2% reduction in
parasitic inductance and resistance and a 47.5% decrease in
thermal resistance were achieved.

B. Press-Pack Packaging Scheme

Press pack is a packaging approach that uses pressure
contact instead of wire bonding and soldering in conventional
power modules. Press-pack packaging has been developed
for high-voltage and high-current applications. Fig. 9 shows
the internal construction of a rigid press pack IGBT from
Westcode [28], [29]. This package employs a hermetically
sealed ceramic housing, with connections to the chips made by
physical contact pressure via external clamping between rigid
electrodes and strain buffers. In order to ease the stress of the
package induced in the operating condition, molybdenum (Mo)
plates are usually used.

Fig. 10 shows a construction of a compliant press-pack
power module. Compliant press-pack devices are currently
available, such as those manufactured by ABB, which employ
a nonhermetic plastic housing, and the actual contact pressure
made to the individual chip surfaces is controlled locally by
disk spring assemblies inside the package [30].

C. Chip Embedded Packaging Scheme

1) Ceramic Embedded Power Module: Fig. 11 shows a
structure schematic of a ceramic embedded power mod-
ule [31]. Multiple power chips, such as IGBT, MOSFET,

Fig. 9. Internal construction of a press pack IGBT from Westcode.

Fig. 10. Construction of a compliant press-pack IGBT. (a) Before compres-
sion. (b) After compression.

and diode, were embedded in a ceramic frame and covered
by a dielectric layer with via holes on the Al pads of the
chips. Then, metallization multilayers were deposited on the
whole surface which formed contacts with the Al pads on
the chips through via holes in the interlayer. Conventional
sputtering was employed to deposit thin-film Ti and Cu layers.
Electroplating was used to form thicker Cu deposition. Finally,
the metallization layer was patterned to form both power and
control circuits as well as their I/O terminals. Compared with
conventional wirebonded package, a 75% reduction in para-
sitic inductance and a 44% improvement thermal dissipation
performance were achieved.

2) PCB Embedded Power Module: Printed circuit
board (PCB) embedded package, also called “chip in
polymer” technology, was first introduced by Fraunhofer
IZM and TU Berlin. The ultrathin semiconductor chips were
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Fig. 11. Structure schematic of a ceramic embedded power module.

Fig. 12. Process flow of PCB embedded package developed by Fraunhofer
IZM and TU Berlin.

embedded into the build-up layers of PCB together with
integrated passive components. Electrical interconnection
between chip and outer layer footprints were realized by
laser-drilled and metallized microvias [32]–[34]. The detailed
packaging process is shown in Fig. 12 [33].

In 2013, Fraunhofer IZM and TU Berlin developed a
PCB embedded packaging scheme for IGBT power module.
In order to be compatible with laser drilling and Cu plat-
ing, a thin electroless Ni/Pd layer was added on IGBT and
diodes [34]. The process flow is shown in Fig. 13. At first,
a base substrate was manufactured by lamination of thick Cu
and a thermally conductive prepreg layer. The top Cu layer
was structured and selectively metalized by immersion Ag.
Then, Ag sinter paste was printed to Ag areas and IGBTs and
diodes were placed and sintered into the substrate at 200 ◦C
with a relatively low pressure of 2 MPa. Third, IGBTs and
diodes were embedded into a prepreg layer with 105-μm Cu
foil through vacuum lamination. Vias to chip pads and thick
Cu were drilled by laser. Finally, the vias were filled with Cu
by electroplating and the Cu was structured by etching [35].

PCB embedded packaging technologies for power modules
mainly include two process flows: face-up and face-down,
as shown in Fig. 14 [36]. Die-attach material used in the
face-down process is nonconductive adhesive, while for face-

Fig. 13. Process flow of PCB embedded IGBT module developed by
Fraunhofer IZM and TU Berlin.

Fig. 14. PCB embedding process flows: face-up (left) and face-down (right).

up technology, die-attach material can be nonconductive adhe-
sive, solder, sintered Cu/Ag, and so on. The face-up technology
is more suitable for high power-density vertical dies, such as
MOSFET, IGBT, and diode.

Pascal et al. [37] proposed an innovative PCB embedded
manufacturing process, as shown in Fig. 15. They used a piece
of nickel foam to create a pressed contact between the top side
of a PCB embedded power die and the rest of the circuit. The
average pore diameter of the nickel foam was about 350 μm,
and there were 57–63 pores/in. The detailed packaging process
flow is as follows. First, as shown in Fig. 15(a), the bottom
side of the diode is soldered onto a bottom PCB. Then, a piece
of nickel foam, four layers of prepregs, and a top PCB are
positioned above the bottom PCB, as shown in Fig. 15(b).
Third, as shown in Fig. 15(c), the stack is laminated through
high-temperature and high-pressure process, and the epoxy
resin polymerizes and floods the foam. Compared with other
PCB integration techniques, the proposed process is simple
and cost-effective.

Munding et al. [38] reported a new lead frame-based
laminate chip embedding technology. The packaging process
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Fig. 15. Steps of packaging process using metal foam.

Fig. 16. Process flow of lead frame-based laminate chip technology.

flow is shown in Fig. 16 in detail. For power dies with
vertical current flow, diffusion solder was adopted as die-attach
layer, while for gate driver, insulating glue was also used.
They presented a study on the laminate material choice and
found that prepreg material with highly filled glass fibers and
high Tg (glass transition temperature) was more robust than
resin-coated copper (RCC) material. Then, they proposed a
novel approach to avoid lamination voids, validated lamination
process simulation based on the Monte Carlo method, and
could predict process stability for a specific set of parameters
and parameter variations. Third, they systematically analyzed
the physics mechanism of laser-induced chip metallization
damages and define countermeasures to avoid such damages.

Kearney et al. [39] developed a 1200-V PCB embedded
three-phase IGBT inverter module, as shown in Fig. 17.

Fig. 17. PCB embedded three-phase inverter module.

The PCB embedded technology requires Cu metallization of
the chips. The original Al metallization of emitter, gate, and
anode contact was modified by sputtering Cr/Cu (5 nm/8 μm)
layers, while a portion of the individual chip was protected
with a shadow mask. Then, six pairs of IGBT and diodes
were sintered into a Cu lead frame with premachined cavities.
Cu vias from outer Cu traces to chip pads were formed by laser
drilling, electroplating, and so on. Comparing the switching
performance, thermal resistance, breakdown insulation, partial
discharge, and long-term aging with Semikron MiniSKiiP
23AC126V1 that used a traditional DBC sandwich structure,
the PCB embedded module improved thermal management,
reliability, and insulation.

Chang et al. [40] presented an IGBT power module package
by a chip embedding technology. The package process flow
is shown in Fig. 18. Because the size and thickness of IGBT
and diode adopted in the module are different from each other,
a half-etched Cu lead frame was designed and fabricated. The
IGBTs were attached to the lead frame by SAC305 solder
paste, whereas the thicker diodes were sintered onto the half-
etched Cu lead frame. Then, an ABF lamination process was
conducted to form a built-up dielectric layer on the Cu lead
frame. Next, the blind vias and circuits were formed on the
built-up dielectric layer by a UV laser and were metalized
with sputtered seed layer and electroplating. To form a circuit
pattern, an additional 1-μm-thick Sn layer was subsequently
plated as a patterning mask, and a laser skiving process was
conducted to remove Sn above the Cu layer. Thereafter, the
etching of Cu, Sn, and Ti processes was performed to remove
the metal on the dielectric layer, thus forming the required
circuit pattern. Finally, a layer of solder mask was printed to
prevent electric shock on the surface layer.

AT&S developed a panel-level PCB embedded lateral device
package technology, known as embedded component packag-
ing (ECP). The packaging process flow is shown in Fig. 19
[41]. The micro-vias were used as electrical interconnections
and thermal conduction between the chip and Cu layers on the
top and bottom surfaces [42], [43].

D. 3-D Interconnect Scheme

1) Power Chip-on-Chip Package: In order to reduce par-
asitic inductances, Marchesini et al. [44] presented a power
chip-on-chip (PCoC) packaging technology for IGBT power
module, as shown in Fig. 20. Electrical interconnection of
the switching cell was realized through two DBC substrates
and a four-layer PCB. DC link and decoupling capacitors
were integrated directly on the PCB. The experimental results
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Fig. 18. Process flow of IGBT power module by chip embedding technology.

Fig. 19. AT&S ECP process flow.

showed that the parasitic inductance of the PCoC module
was drastically reduced compared with planar ones, especially
when internal decoupling capacitors were integrated in the
assembly.

2) Power Chip-on-Inductor Package: In [45], a power
chip-on-inductor (PCoI) packaging technique with double-
sided cooling was presented. The structure diagram of PCoI
package is shown in Fig. 21. A fan-out panel-level PCB
embedded packaging technique for power MOSFETs and
low-temperature co-fired ceramic (LTCC) inductor in a
synchronous converter was proposed. The power MOSFETs
and LTCC inductor were embedded in the top and the bottom
PCB, respectively. A stacking of the top PCB and the bottom

Fig. 20. PCoC package. (a) Electric circuit. (b) Structure diagram.

PCB was implemented to form a 3-D integrated power supply
module. The MOSFETs, gate driver, and passive components
were interconnected by the redistribution layer (RDL) and
PCB vias. According to thermal simulation results, PCB vias
could improve the thermal performance of the 3-D module
with cap heat spreader, which could effectively dissipate heat
of the PCB embedded 3-D power supply module.

3) Micro-Post-Based Sandwich Structure: Micro-post-based
sandwich structure is one of the 3-D interconnection configu-
rations with double-sided cooling capability. Fig. 22 shows
the schematic of Cu micro-post interconnection for power
module. The Cu micro-posts were electroplated on topside of
the die. The die with its micro-posts was then attached to a
top DBC substrate using a Cu/Sn transient liquid phase (TLP)
technique. An assembly of backside of the die to a bottom
DBC substrate was processed concurrently using the same
TLP technique [47]. In this bonding technique, a layer of Sn
(0.5 μm) was deposited on top of the posts, which was used as
a solder between the posts and the Cu of the DBC substrate.
Another bonding solution, Cu–Cu bonding, does not need any
additional materials between micro-posts and the Cu of the
DBC substrate [7].

The micro-post-based sandwich structure allows for cooling
from two sides. The Cu posts provide spacing between the die
and the top substrate. They are also useful to accommodate
height differences between the dies in a multichip power
module. Different types of dies (such as IGBT and diode),
which are commonly used in a single module, do not always
have the same thickness. The Cu micro-posts can compensate
for thickness differences between the dies [6].

4) Solderless Lead Frame-Assisted Wafer-Level Packaging:
In [46], a wafer-level packaging technique for power module
was presented. Fig. 23 shows the schematic of the assembly
with two Si wafers covered with Cu layer and the pat-
terned and perforated Cu lead frame. A metallic lead frame
was bonded between two wafers of semiconductor devices.
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Fig. 21. Structure diagram of PCoI package.

Fig. 22. Schematic of Cu micro-post interconnection for power module.

Fig. 23. Schematic of the assembly with two Si wafers covered with Cu
layer and the patterned and perforated Cu lead frame.

The 3-D assembly of the power devices and the metallic
lead frame was realized by a solderless, thermocompression
bonding.

5) Hybrid Packaging Scheme: Since high-power devices are
usually metallized by Al on the top pads to be suitable for
Al bonding wires, almost all wirebondless package structures
require that the top electrode pads of power devices are
remetallized, while in some hybrid packages, remetallization
process is not needed and wire bonding techniques are still
suitable.

Switching Cell-Based Package: In [48], a switching
cell-based IGBT phase-leg module was proposed.
Fig. 24(a) and (b) shows the conventional module and
p-cell and n-cell-based module, respectively. Compared with
the conventional module, two devices in the commutation
loop of the p-cell and n-cell module were placed at the same
side, and thus, the physical length of the commutation loop
was reduced. The parasitic inductance reduction of the layout
design was in the range of 5–10 nH.

Table II presents a summary of different packaging schemes
for Si power module.

IV. PACKAGING TECHNIQUES FOR SiC
POWER MODULE

Up to now, attempts for packaging SiC power module,
e.g., planar packaging, press pack, 3-D packaging, and hybrid
packaging techniques, have been performed.

Fig. 24. Phage-leg package layout. (a) Conventional module. (b) p-cell and
n-cell-based module.

A. Planar Packaging Technique

1) Miniaturized Double-Side Cooling: Rhee et al. [49]
developed a miniaturized double-sided cooling packaging for
SiC high-power inverter module using new materials to with-
stand high temperature over 220 ◦C, as shown in Fig. 25. The
flip-chip bonding for source and gate interconnections was
developed, and Bi–Ag solder paste was adopted. Its solidus
temperature is around 260 ◦C and liquidus temperature is
around 360 ◦C, which has much high thermal stability than
conventional lead-free solder. In order to increase the wet-
tability of solder paste, an electroless nickel immersion gold
process on the Al bonding pads on the DMOSFET surface was
performed. For drain interconnection, Cu clips were attached
using Ag sintering materials. Through thermal modeling and
characterization, thermal dissipation performance of power
module was found to be enhanced by twice compared with
the conventional single-side cooling-type power module.

2) Power Overlay Interconnect Packaging: General Electric
developed a power overlay (POL) interconnect technology for
SiC MOSFET packaging. The sources and gates of MOS-
FETs were interconnected by a flexible substrate, as shown
in Fig. 26. Because the parasitic inductances of the package
were greatly decreased, the POL showed low-voltage over-
shoot, which is the product of parasitic inductance and di/dt.
When the drain–source voltage was 540 V and drain current
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TABLE II

COMPARISON AMONG DIFFERENT PACKAGING SCHEMES FOR
Si POWER MODULE

was 300 A, the voltage rise time was 11.2 ns, and voltage
overshoot was below 28% [50].

In 2018, they presented a power overlay kiloWatt (PO-kW)
for SiC power module. The schematic of a typical POL-kW
module structure is shown in Fig. 27. Cu vias were used
as interconnects between dies (Al pads) and routings on
the polyimide film surface. The adhesive layer was used to
attach dies to the polyimide film. Cu vias were formed by
laser drilling and subsequently filled by electroplating. DBC
substrate (Ni/Au finish) was soldered to the die backside
metallization (Ag finish). An underfill was applied for
electrical isolation and mechanical strengthening. Compared
with conventional wirebonded package, the utilization of
polyimide-based Cu via interconnections resulted in much

Fig. 25. Double-side cooling packaging for SiC high-power inverter module.

Fig. 26. Schematic of POL interconnect package for SiC MOSFETs.

Fig. 27. Schematic of a typical POL-kW module structure.

reduced parasitic inductance, contributing to significantly
lower switching loss and less voltage overshoot [51].

3) LTCC-Based Double-Sided Cooling Module: Zhang
et al. [52] proposed a wirebondless SiC power module with
a double-sided cooling capability. In this module, an LTCC
substrate was used as a dielectric and chip carrier. Nano Ag
paste was used to attach power devices to top and bottom
DBC substrates as well as to pattern the gate connection. The
top and bottom sides of DBC were plated with Ag on top
of the 8-mil-thick Cu, and the subsequent layers of Cr/Ni/Ag
were deposited on top of the anode of the diode, the source,
and gate of the MOSFET through a liftoff process. To protect
the power devices from electrical breakdown during operation,
a high-temperature dielectric material was used to fill the gaps
between the LTCC substrate carrier and the power devices. The
cross section of the power module with double-sided cooling
is shown in Fig. 28. Simulation results showed that the LTCC-
based double-sided cooling module had the lowest junction to
ambient thermal resistance compared to the embedded power
and PBGA modules under similar operating conditions.

4) 6-in-1 Power Module: In order to reduce the induc-
tance of wiring, magnetic cancellation effect was used.
Fig. 29 shows the cross section of a 6-in-1 SiC power module
with double-sided cooling. Heat spreader was utilized as
magnetic cancellation. Laminated busbar had an insulation
film between positive and negative terminals, in which current
paths were in the opposite directions. Current paths between
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Fig. 28. Cross section of LTCC-based double-sided cooling for SiC module.

Fig. 29. Current path and structure view of 6-in-1 power module.

Fig. 30. Structural view of PCoB power module.

the chips were also configured to be in opposite directions. A
parasitic inductance of 7.5 nH was obtained [53].

5) Power Chip-on-Bus Structure: In [54], a double-sided
air-cooled power chip-on-bus (PCoB) power module was
proposed. Fig. 30 shows the structural view of PCoB power
module. Thick finned Cu acted as both heatsink and busbar.
Power dies were electrically attached to two busbarlike power
substrates directly. Mo spacers were used as CTE buffer
between the die and bottom substrate for reducing thermome-
chanical stress caused by CTE mismatch. Through extensive
multiphysics simulation and verification, 0.5 ◦C/W thermal
resistance and 8-nH power loop parasitic inductance were
achieved.

B. Press-Pack Packaging Technique
1) Press-Pack Packaging Solution Based on LTCC Inter-

poser: Zhu et al. [55] proposed a press-pack packaging
solution for SiC MOSFETs, as shown in Fig. 31. A pressure
contact solution for SiC MOSFET die was developed using
miniature and flexible press pins called “fuzz buttons” in a
low-profile LTCC interposer. To minimize the loop parasitic
inductance, ultrathin microchannel heatsinks were designed
based on the LTCC technology. A phase-leg stack prototype
with two press packs and three heatsinks was developed.
According to the simulation results, the internal parasitic
inductances of the press pack were less than 550 pH, and
the parasitic inductance of a phase-leg stack formed by two
press packs and three microchannel heatsinks was 4.3 nH at
a frequency of 100 kHz.

Fig. 31. Press-pack packaging solution for SiC MOSFETs.

Fig. 32. Diagram of 3-D wirebondless switching cells.

C. 3-D Packaging Technique

1) Chip Scale, Flip-Chip Capable Package: Seal et al. [56],
[57] and Mantooth and Ang [58] developed a chip-scale
wirebondless packaging technology for a SiC Schottky diode
that led to lower parasitics, higher reliability, lower costs, and
lower losses. The approach used a flip-chip solder ball array to
make connections to the anode. A Cu connector was used to
make contact with the bottom cathode, thus reconfiguring the
bare die into a chip-scale, flip-chip capable device. Compared
with conventional wirebonded package, a 24% reduction in
ON-state resistance was observed in the wirebondless package.
In 2018, they presented a 3-D wirebondless switching cell
using SiC power devices, as shown in Fig. 32. In order to
obtain a solderable finish, a very thin zinc seed layer was
deposited on the top Al pads, followed by the electroless
plating of a thick nickel layer. Double-pulse tests showed
that over three times reduction in the parasitic inductance
of the 3-D cell compared with a conventional wirebonded
module [59].

2) Cu Pin Connection Technology: Fuji Electric developed
a Cu pin interconnection structure for SiC power module,
as shown in Fig. 33. Conventional Al wirebonds, solder joints,
and silicone gel encapsulating structures were replaced with
Cu pin connections, Ag sintering joints, and epoxy resin
molding structures, respectively. In order to further reduce
thermal resistance, a much thicker Cu block was bonded to
the silicon nitride (Si3N4) ceramic substrate. Compared with
conventional alumina ceramic structure, the Cu pin structure
enabled a 50% reduction in the thermal resistance of the
overall structure. Compared with the conventional Si-based
wirebonded package, the loss reduction with SiC devices was
57%–87% using the Cu pin structure [60], [61].

3) SKiN Interconnect Technology: SKiN technology com-
prises sintering of power chips to a DBC substrate, a top
side sintering of the power chips to a flexible printed cir-
cuit (FPC), and sintering of the substrate to a pin-fin heat
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Fig. 33. Package structure schematic of SiC power module with Cu pin.

Fig. 34. SKiN double-side sintering package.

sink, as shown in Fig. 34. This technology was first introduced
in 2011 in [62]. Now, it has been used in a 1200-V, 400-A
phase-leg SiC power module. The phase-leg power module
with 8 × 50 A SiC MOSFET chips in parallel had a total
commutation parasitic inductance of less than 1.4 nH [63].

D. Hybrid Packaging Technique

1) DBC and PCB Hybrid Structure: In [64], a DBC and
PCB hybrid structure for SiC power module was developed,
as shown in Fig. 35. A multilayer PCB with grooves was
attached on the DBC substrate. SiC devices were fit in the
grooves and attached on the DBC substrate. Bonding wires
were then used to connect the top electrodes of the device to
top Cu trace on the PCB.

2) DBC and FPC Hybrid Structure: In [65], a 1200-V,
120-A SiC phase-leg power module based on DBC and FPC
hybrid structure was proposed. Fig. 36 shows the DBC and
FPC hybrid structure and the commutation loop associated
with MOSFET (Q1) and diode (D2). Since the opposite
currents flowed through the thin FPC board, the cancellation of
the magnetic coupling effect was strong. The parasitic induc-
tance of the power module could be significantly minimized to
only 0.79 nH by using the thin FPC and proper layout design.
Compared with the commercial module, voltage overshoot of
the hybrid structure module was decreased by about 50%,
and switching energies were only one-third of the commercial
module under the same decoupling capacitors and driving
conditions.

Up to date, several packaging technologies for SiC
power module have been developed. Although some similar
packaging schemes for Si-based power module has also been
explored, requirements on parasitic inductance and heat dis-
sipation for SiC power module package are more stringent.
There exist challenges in the packaging of SiC power modules

Fig. 35. Cross-sectional view of DBC and PCB hybrid structure.

Fig. 36. DBC and FPC hybrid structure.

due to unique features of the newly developed modules, e.g.,
high-speed and high-frequency switching. Comparison among
these packaging schemes for SiC power module is listed
in Table III.

V. CHALLENGES OF PACKAGING TECHNIQUES

FOR SIC POWER MODULE

Compared with Si counterparts, SiC MOSFETs have faster
switching speed, smaller form factor, and lower switching
loss and can realize higher switching frequency and effi-
ciency. In the same power module package, however, superior
properties of a SiC MOSFET cannot be exploited if it is
used simply as a direct replacement of Si device [64]–[66].
These features of SiC MOSFETs pose substantial challenges
to packaging of SiC power module, e.g., fast switching speed
and heat dissipation. Developing novel packaging technique
needs to face several challenges, e.g., material selection and
packaging process. Once a new package is developed, module
characterization is also a challenge. These issues must be
handled more carefully in the SiC MOSFET power module
packaging design.

A. Fast Switching Speed

A comprehensive comparison between Si IGBT and
SiC MOSFET with the same power rating was performed
in [67]. The selective devices are from Infineon’s third-
generation Si IGBT IKW15N120H3 and Cree’s SiC MOSFET
C2M0080120D. The quantitative dv/dt and di/dt values of the
two devices are shown in Table IV. As seen in Table IV,
SiC MOSFET switches much faster than Si IGBT. Due to
fast switching speed capability, switching characteristics of
SiC MOSFET are more susceptible to parasitic elements,
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TABLE III

COMPARISON AMONG THE EXISTING PACKAGING SCHEMES FOR SiC
POWER MODULE

TABLE IV

SWITCHING SPEED EVALUATION OF SiC MOSFET AND IGBT [67]

i.e., parasitic inductances of interconnections and parasitic
capacitances [68].

In the phase-leg configuration, crosstalk, which refers to
the spurious triggering of the low-side SiC MOSFET during
the turn-on transition of the high-side SiC MOSFET and vice

Fig. 37. Illustration of voltage overshoot caused by parasitic inductance.

versa, is one of the failure mechanisms of power module. Due
to high dv/dt at turn-on transient of one MOSFET, parasitic
capacitance of the other MOSFET easily causes a gate voltage
spike that could result in spurious turn-on if the induced gate
voltage exceeds the threshold voltage of SiC MOSFET. The
undesired power losses are then generated in both high- and
low-side MOSFETs, leading to an increase in their junction
temperature and decrease in efficiency [69]. SiC MOSFET is
more vulnerable to false triggering due to its low threshold
voltage compared with Si counterpart [69], [70]. For instance,
threshold voltage of IGBT 5SMY 12K1280 from ABB is
5–7 V [71], while for SiC MOSFET CPM2-1200-0025B from
CREE, the value is only 2.6 V [72].

The high di/dt at turn-off transient easily leads to volt-
age overshoot, generates circulating energy loss, and also
causes EMI and compatibility problems due to the par-
asitic inductances [73], [74]. Fig. 37 shows the voltage
overshoot caused by parasitic inductance. In order to avoid
the large overshoot, much smaller parasitic inductance is
required for fully utilizing the fast switching characteristics of
SiC MOSFET [75]–[77].

B. Heat Dissipation
The switching frequency of Si IGBT-based converters is

normally limited to 20 kHz, but the switching frequency of
SiC MOSFETs can reach 100 kHz in a hard-switching con-
verter [78]. With soft switching, the switching frequency can
be even higher [79]. However, increasing switching frequency
is also increasingly inflicted with higher switching loss that can
considerably compromise efficiency [80]. In addition, with the
small form factor, power-loss density of SiC MOSFET will be
larger in the high frequency. As a consequence, thermal man-
agement of SiC power module is more challenging, especially
in high frequency. Conventional single-sided cooling schemes
are not capable of meeting heat dissipation of SiC power
module in such applications. Novel double-sided or multisided
liquid or two-phase flow boiling cooling has great potentials
to solve its heat dissipation issue while maintaining the chip
junction temperature at a low temperature.

C. Material Selection
Limited by available packaging materials, junction temper-

atures of SiC power modules are subjected to ∼175 ◦C, even
though SiC devices are, in theory, capable of operating at high
temperature up to 600 ◦C [3], [81]. Most packaging materials
adopted in the Si-based power modules, e.g., die attach and
encapsulant, cannot survive temperatures over 175 ◦C for a
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long time, prohibiting application of the SiC power modules in
a high-temperature environment. High-temperature die-attach
alternatives, such as organic die attach, high-temperature lead-
free solders, and sintering of micro- and nano-Ag powders,
seem to be potential candidates [3]. These high-temperature
die-attach alternatives, however, need higher processing tem-
perature, which could easily cause larger residue stress and
strain in the power module. For encapsulant, it has not only
thermal stability but also dielectric breakdown strength issues
in the SiC power modules.

With the same breakdown voltage, commercially available
SiC MOSFET bare die has smaller chip area and thinner
thickness compared with Si counterparts, and thus, package
materials in a SiC power module will sustain higher electric
field strength than that in a Si power module [18].

Besides, SiC power modules are often used in harsh envi-
ronments. Under high ambient temperature and operational
temperature, CTE mismatch among the package materials
could induce excessive warpage, stress, and strain, leading to
SiC die crack, interface delamination, and so on.

Therefore, package materials with high-temperature stabil-
ity, high dielectric strength, and CTE matching with SiC
should be selected for SiC power module.

D. Packaging Process

In pursuit of low parasitic inductances and high-efficiency
cooling of SiC power module, novel wirebondless packages or
topology structures are proposed. However, developing novel
packaging techniques will face some process challenges. New
failure mode could occur during the packaging process.

At present, commercially available SiC power devices are
designed for Al wirebonding. The front-side pads metallization
of these devices are Al, which is not compatible with wire-
bondless packaging techniques and an additional metallization
layer is required on the front-side source and gate pads [36],
[49]. Therefore, the remetallization of Al pad on the power
devices is a key process for the development of wirebondless
packages. Wafer- or chip-level sputtering process is usually
performed to deposit a layer or multilayer metallization layer
on the original Al pads using physical vapor deposition (PVD)
equipment. However, for SiC power MOSFET, the cost and
risk of pad remetallization at wafer level are very high. It is
difficult to realize the pad remetallization at chip level due to a
relatively small die size. Besides, sputtering condition must be
well controlled; otherwise, pad remetallization quality is not
well, and it could result in worse interconnection between the
pads and outer layers and lead to the final failure. Therefore,
remetallization of Al pad on the SiC devices is a challenge.

Bonding process is also a challenge. In order to improve
the thermal dissipation performance of SiC power module,
soldering or sintering material is usually adopted. However,
their bonding conditions are difficult to control, especially
for multidie bonding. If not well controlled, many voids at
the interface could be generated, leading to poor thermal
dissipation performance.

Furthermore, some special package structures are designed,
it is difficult to achieve through conventional packaging

processes. Some new packaging process and equipments are
needed, which increases the cost of the package.

Besides, some new package materials may be used, which
indicates that new process condition needs to be explored and
thus increases the cost of the package. Interface delamination
or stress concentration could occur due to CTE mismatch
between the new materials and the others.

Therefore, new package development will face many new
process challenges.

E. Module Characterization

In general, measurement instrument is developed and
equipped with some fixtures for conventional discrete devices,
e.g., TO247 and TO220 packages. However, once a novel
power module package is developed, in order to thoroughly
characterize the performance of the module, custom clamps
must be designed and fabricated. How to design clamps and
accurately evaluate the performance via custom clamps are
also challenges for the characterization of new power module
package.

VI. CONCLUSION

In order to address parasitic inductances, heat dissipation,
and reliability issues that are inherent with Al wires used
in a conventional packaging scheme, many power module
packaging schemes with low parasitic inductance and high-
efficiency cooling, e.g., planar packaging, 3-D packaging, and
PCB embedded packaging, have been developed. As a poten-
tial semiconductor material in high operating temperature,
high blocking voltage, and high switching frequency appli-
cations, SiC material properties and SiC device potentials are
introduced in this article. In order to comprehensively inves-
tigate the packaging techniques for power module, prior to
review of packaging techniques for SiC power module, review
of packaging schemes for Si-based power modules, which
are representative and widely used power devices, is first
performed. These packaging schemes are the foundation of
packaging schemes of SiC power module. Then, low inductive
and high-efficiency cooling interconnection technologies for
SiC power module are thoroughly overviewed. Although some
similar packaging schemes for Si-based power module have
also been explored, requirements of parasitic inductance and
heat dissipation for SiC power module package are demanding.
Finally, the challenges of packaging techniques for SiC power
module are summarized. With the advent of new SiC devices,
the features of SiC MOSFETs pose substantial challenges to
packaging of SiC power module, e.g., fast switching speed
and heat dissipation. The development of novel packaging
technique needs to overcome new challenges, e.g., material
selection and packaging process. Once a new package is
developed, module characterization is also a challenge. These
issues must be addressed more carefully in the SiC MOSFET
power module packaging design.
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