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Preface

�������
Gakumon ni chikamichi nashi

There is no royal road to learning

When I entered Delft University of Technology eight years ago, I did not have the

slightest idea about quantum dots, Aharonov-Bohm rings or the Kondo effect.

My first acquaintance with the field of mesoscopic physics was through the series

of lectures on this topic in my third year. I decided to join QT, the Quantum

Transport Group of Hans Mooij, in 1997 and I have been a group member ever

since. First as an undergraduate student with Luuk Mur and Kees Harmans, later

as a graduate student in the quantum dot section of Leo Kouwenhoven. In this

period, little by little, I have become a young citizen of Mesoscopolis. Although

I have been learning a lot in this time, many of the phenomena occurring in our

experiments do still astonish me as much as they did when I first heard about

them. I cherish this astonishment as my traveling-companion on my continuing

road to learning.

This thesis forms a result of four years of experimental research on semicon-

ductor quantum dots and rings. The experiments have mainly been performed

in our laboratory in Delft, whereas most of the devices have been fabricated at

NTT Basic Research Laboratories in Atsugi, Japan. I feel privileged to have had

the chance to work in a stimulating and dynamic environment both in Delft and

Japan. The way research is organized and performed in QT and the Butsuden

Group of Dr. Hirayama at NTT clearly shows that the commonplace of the lonely

scientist behind a computer screen in a dark, dusty room is far from true. If any-

thing, the work described in this thesis is a group effort and the result of intense

collaboration. Let me therefore express my sincere thanks to everyone at Delft

University of Technology, NTT Basic Research Laboratories, Tokyo University

and Hokkaido University who have contributed to the realization of this thesis.

v
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Although thanking people (read: ‘forgetting to thank people’) is a risky enter-

prise, there are some persons I would like to mention in particular.

First of all, I thank my Ph.D. advisor Leo Kouwenhoven for not only being

a great guide into the realm of quantum dots, but also for being a chief advisor

on Japanese nightlife. Leo’s ‘Fingerspitzengefühl’ has often given momentum to

the successful completion of experiments. I also thank Tjerk Oosterkamp for

introducing me thoroughly into quantum dot experiments. Of course, I have to

mention the other members of the quantum dot team with whom I worked closely:

Silvano De Franceschi, Jeroen Elzerman (also known as ‘Jero de la Ramblas’),

Ronald Hanson and Joris Wijpkema, and more recently, Laurens Willems van

Beveren, Jacob Greidanus and Lieven Vandersypen. Silvano, grazie per tutto!

You are a wonderful and sparkling colleague. Our visit to ‘la Mamma’ in Mi-

lan was certainly one of the highlights we experienced together. The way your

mother welcomed me as ‘William, il principe d’Inghilterra’ still gives me a warm

feeling. Jero, your dedication and imitation of people’s silly walks are admirable.

Ronnie and Laurens, I am sure I will meet you in Japan. Lieven, ’t amusement!

I am thankful for the nice time I have spent with my students Michael Janus,

Jero, Frank Mallens, Elvira Huizeling and Joris, and for the hard work they did.

Michael has made data analysis a lot more enjoyable thanks to his ‘Mick’s Ad-

vanced Peakfinder’. Joris’ work on Labview measurement software has marked

the beginning of the end for our DOS-driven measurement system.

Besides my close collaborators in the quantum dot section, there are certainly

some other people in QT who deserve some words. Hans Mooij has managed to

build up a community where high-quality research has become the standard. It

has been a pleasure working in his flourishing group. The technical support of

Raymond Schouten, Bram van der Enden, Leo Dam, Bram Huis, Leo Lander,

Mascha van Oossanen, Willem den Braver, Wim Schot and Etienne Swinkels has

been of great value. Raymond, you are a real ‘electronics guru’, which is illus-

trated by the fact that even the Japanese import your products. Thanks to Bram

van der Enden, I know how to bond a sample and how to deal with ‘langharig

werkschuw tuig’. I would like to thank Peter Hadley for his valuable advice on

the issue of electrochemical potential and energy diagrams. I wish him good luck

in his continuing war against the confusion between them. Although not directly

involved in my work anymore, Kees Harmans kept on following me in the group

and I like to thank him for interesting discussions. Herre van der Zant I thank for

the goals he scored in the ‘Wallast League’, that is when I joined his team. I need

to thank Ria van Heeren for all the work she did, especially for convincing me it

is better not to book my own flight tickets. It has also been a real pleasure to

work with Yuki French. Yuki, doumo arigatou gozaimashita! I know you are very
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happy that I decided to go and work in Japan and I am looking forward to seeing

you there every now and then. I am very thankful to Yasunobu Nakamura, who

invested a lot of time in translating the summary of this thesis into Japanese.

Of course, I also like to pay homage to Jorg Janssen and Henk Postma, my

comrades of the ‘OiO Liberation Army’ (OLA). We fought a tough battle, but

the victory was sweet. Besides Jorg, I shared my room through the last four

years with Liesbeth Venema (‘Fryslân boppe’), Luca Canali (‘l’italiano di Bali’),

Alexander ter Haar and Adrian Lupascu. I thank them for providing a pleasant

base camp. Hannes Majer, ‘der schwytzerische Alpengeier’, was an enjoyable dis-

cussion partner on topics like female suffrage and gold reserves in Switzerland. In

addition, he encouraged me to start writing a series of ‘The not-so-lonely Planet’

travel guides, which I see as my main task after finishing this thesis. Pablo

Jarillo-Herrero, gracias por las clases de español. I would further like to thank

Cees Dekker (‘Carbo Cees’), Alberto ‘Stromboli’ Morpurgo, Leonid Gurevich,

Pieter Heij, Caspar van der Wal, Yann Kervennic (‘héros de la République’),

Eugen Onac, Nathan Kemeling, Ewout Eijkelenboom, Hon Tin Man and Dionne

Klein for the enjoyable time spent together.

Concerning the ‘theorists above’, I would like to express my special thanks

to Yuli Nazarov, who has always been very much interested in what we, exper-

imentalists from ‘down below’, showed him. Working with him has been most

enjoyable and fruitful. I would also like to thank Maarten Wegewijs, Miriam

Blaauboer, Daniel Huertas Hernando and Siggi Erlingsson for their theoretical

input. Walter Hofstetter from the Universität Augsburg, now at Harvard Uni-

versity, I thank for his great contribution to the work on the two-stage Kondo

effect. I am also grateful to Markus Büttiker who gave me the chance to join his

group in Geneva for a short time.

An important part of my time as a Ph.D. student, I spent at NTT Basic

Research Laboratories in Atsugi, Japan. I have not only been given the opportu-

nity to learn how to fabricate devices, but also to learn the Japanese society from

inside. I am very thankful to Toshimasa Fujisawa, who has invested a lot of time

in teaching me the art of fabrication. He was also the one who taught me my first

Japanese word: ‘komattana’, which means as much as ‘I am puzzled’ and which

turned out to be a very useful phrase. I would like to thank Yoshiro Hirayama for

his great hospitality and giving me a lot of freedom while working in his group.

Kotaro Tsubaki, Guy Austing, Katsushi Hashimoto, Satoshi Sasaki, Toshiaki

Hayashi, Hiroshi Yamaguchi, Yasuhiro Tokura, Tadashi Saku, Akihito Taguchi,

Kiyoshi Kanisawa, Kyoichi Suzuki, Koji Muraki, Sen Miyashita, Sachiko Yoshida

and Atsushi Kawaharazuka, doumo arigatou for all your help and making me feel

at home in the Butsuden Group. In particular I like to thank Hashi for the many



viii Preface

enjoyable activities he organized and Hayashi-kun for teaching me the subtleties

of Osaka dialect. I am very grateful to Seigo Tarucha, who played an important

role in much of the work presented in this thesis. I am looking forward to joining

his group at Tokyo University. Junichi Motohisa and Fumito Nakajima I thank

for the very nice collaboration and the enjoyable time spent in both Delft and

Hokkaido.

Finally, I would like to thank my family and friends, who closely followed and

supported me. My parents, Arie and Joke, have always provided me with a warm

‘home port’ where I could drop my anchor. Yuko, thank you for everything. Al-

though there may not be such a thing as a ‘royal’ road to learning, the constant

support from all of you has made it at least a passable one. Let me finish with

these three lines I found nearly ten years ago on the playground of the Störck

Gymnasium in Saulgau, southern Germany:

Wissen ist Macht

Wir wissen nichts

Macht nichts.

Wilfred van der Wiel

Delft, November 2001
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Chapter 1

Introduction

‘Le macchine, diceva, sono effetto dell’arte, che è scimmia della

natura, e di essa riproducono non le forme ma la stessa operazione.’ 1

A bit more than one century ago, the young German Max Planck was strongly

discouraged to study physics. Except for a few unsolved problems, physical

knowledge was believed to be complete. Why should he waste his capabilities

in a field that was going to be dead soon? Ironically, Planck became one of the

pioneering contributors to a revolutionary new theory that has become known as

quantum mechanics.

The optimism at the end of the nineteenth century was caused by the great

success of Newton’s laws governing classical mechanics and Maxwell’s equations

describing electromagnetism. Virtually all physical processes in our everyday

macroscopic world can be described by these classical laws. It was in this period

that one started to realize that classical theory was not applicable at the atomic

scale. Whereas macroscopic phenomena are governed by the laws of classical

mechanics, the microscopic world of electrons, nuclei, atoms and molecules can

only be understood in terms of quantum mechanics.

To describe the behavior of electrons, for instance, quantum mechanics makes

use of wave functions. A direct consequence of this approach is that there exists

a fundamental uncertainty as to where to find an electron and with what velocity

at a certain moment. Also it is possible that an electron interferes with itself

when it can travel between two points in space along different trajectories. In

some respects an electron thus behaves like a wave, whereas in other situations

1 ‘Machines, zei hij, zijn een voortbrengsel van de kunst, welke de natuur nabootst, en
zij nemen van haar niet de vormen over, maar de werking zelve.’ (‘Machines, he said, are
a product of art, which imitates nature, from which they borrow not the shapes, but its very
functioning.’ ) [1]

1



2 Chapter 1. Introduction

it exhibits particle-like behavior. This ambivalent nature is referred to as the

particle-wave duality. Quantum mechanics has turned out to be one of the most

successful physical theories in history and its predictions – how exotic they may

be – are experimentally reproduced with high accuracy.

In the relatively young field of mesoscopic physics, the spheres of influence of

the macroscopic world and microscopic world meet. Mesoscopic physics forms a

part of solid state physics that explores semiconducting, metallic and supercon-

ducting systems with typical dimensions in the range 0.01 - 10 µm. Thanks to

the great advances in lithographic technology – driven by the computer industry

– fabrication of such structures has come within reach.

This thesis describes a series of experiments in mesoscopic semiconductor

structures. For the greater part (chapters 2 to 8), electron transport through

quantum dots is explored. Quantum dots are man-made sub-micron structures

in a solid, typically consisting of 103-109 atoms and a comparable number of

electrons [2]. In semiconductor quantum dots all electrons are tightly bound,

except for a small number of free electrons, which can range from zero to several

thousands. The free electrons are confined in all three dimensions leading to

quantum effects that strongly influence electronic transport at low temperatures.

In particular, confinement leads to the formation of a discrete energy spectrum,

resembling that of atoms. This and other similarities have therefore led to the

name ‘artificial atoms’ for quantum dots [3]. In section 1.1 quantum dots are dis-

cussed in more detail. Chapters 2 and 3 discuss the behavior of spin-singlet and

spin-triplet states in vertical quantum dots and the analogy to Hund’s rule from

atomic physics. The experiments in chapters 4 to 6 focus on the Kondo effect in

quantum dots. The Kondo effect is a widely studied phenomenon in condensed

matter physics arising from the coherent interaction between a localized impurity

spin and surrounding electrons. As explained in section 1.2, quantum dots offer

unprecedented opportunities for studying and tuning the Kondo effect. Double

lateral quantum dots coupled in series form the subject of chapters 7 and 8. By

coupling two quantum dots in series, a system is obtained with fundamentally

different behavior and possibilities in comparison to a single dot. The exper-

iment described in chapter 9 deals with the quantum interference of electron

waves in a semiconductor Aharonov-Bohm ring interrupted by tunnel barriers.

This geometry allows for studying the electron interference not only as function

of magnetic field, but also as function of an electrostatic voltage. An introduction

to the Aharonov-Bohm effect is given in section 1.3. In the last two sections of

this introductory chapter, a brief overview is given of the fabrication process and

measurement technique, respectively.
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1.1 Quantum dots

Quantum dots are suitable devices to study the interplay of classical charging

effects and quantum confinement. The quantum dots discussed in this thesis are

defined in a 2-dimensional electron gas (2DEG) formed within a heterostructure

of semiconductor materials. The 2DEG has a high electron mobility and low

electron density (typically 105 − 106 cm2/Vs and ∼1015 m−2, respectively). The

low electron density results in a large Fermi wave length, and a large screening

length, enabling to vary the 2DEG density with an electric field. Lithographically

defined semiconductor quantum dots have the shape of a disk with a diameter

as small as 50-100 nm, becoming of the same order of magnitude as the Fermi

wavelength.

Figure 1.1: Schematic diagram of a quantum dot in a lateral geometry (a) and a
vertical geometry (b). The quantum dot is represented by a disk, connected to source
and drain contacts by tunnel junctions. For the lateral geometry the gate electrode is
indicated, as well as the external voltage sources supplying the source drain voltage,
V , and the gate voltage, Vg.

By attaching current and voltage probes to a quantum dot, it is possible to

measure its electronic properties. In Fig. 1.1 two quantum dot geometries are

shown schematically. The lateral dot in Fig. 1.1a is coupled to three terminals.

Particle exchange can only occur with two of the terminals, as indicated by the

arrows. These source and drain contacts connect the dot to the macroscopic

world. The third terminal serves as a gate electrode and is used to change the

dot’s electrostatic energy. Whereas in the lateral geometry transport takes place

in the plane of the 2DEG, in the vertical geometry of Fig. 1.1b transport occurs

perpendicularly to that plane.

In the following discussion, two important assumptions are made. First, the

Coulomb interactions among electrons in the dot, and between electrons in the
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dot and those in the environment, are parameterized by a single, constant capac-

itance, C. This capacitance can be thought of as the sum of the capacitances

between the dot and the left lead (source), CL, the right lead (drain), CR, and

the gate, Cg: C = CL + CR + Cg. Second, the discrete energy spectrum can be

described independently of the number of electrons on the dot.

Using these assumptions, known as the constant interaction (CI) model, the

total energy of an N -electron dot with the source-drain voltage, V , applied to

the left lead (and the right lead grounded), is given by (see Appendix A)

U(N) =
[−|e|(N −N0) + CLV + CgVg]

2

2C
+

N∑
n=1

En(B) (1.1)

where −|e| is the electron charge and N0 the number of electrons in the dot at

zero gate voltage, which compensates the positive background charge originating

from the donors in the heterostructure. The terms CLV and CgVg can change

continuously and represent the charge on the dot that is induced by the bias

voltage through the capacitance CL and by the gate voltage, Vg, through the

capacitance Cg. The last term of Eq. 1.1 is a sum over the occupied single-particle

energy levels En(B), which are separated by an energy ∆En = En − En−1. The

energy levels En(B) are measured from the bottom of the conduction band and

depend on the characteristics of the confinement potential. Note that, within the

CI model, only these single-particle states depend on magnetic field, B.

The minimum energy for adding the Nth electron to the dot is by definition

the electrochemical potential of the dot:

µdot(N) ≡ U(N)− U(N − 1) =
= (N −N0 − 1

2
)EC − EC

|e| (CLVL + CgVg) + EN (1.2)

where EC = e2/C is the charging energy. The first two terms describe the

electrostatic contribution −|e|ϕN with ϕN the electrostatic potential of the N -

electron dot. The last term, EN , represents the chemical contribution µch(N).

Hence, µdot(N) = −|e|ϕN+µch(N). Electron transport through the dot is possible
when µdot lies between µL and µR of the leads, i.e. µL ≥ µdot ≥ µR with −|e|V =
µL−µR (see Fig. 1.2). In the linear transport regime (V ≈ 0), the Nth Coulomb
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Figure 1.2: Schematic diagrams of the potential landscape of a quantum dot. The
minimum energy needed to add an electron to the left (right) lead equals the electro-
chemical potential µL(R). The electrochemical potentials of the leads are related to the
bias voltage, V , by −|e|V = µL−µR. (a) The electrochemical potential for adding the
Nth electron to the dot, µdot(N), lies below the lowest electrochemical potential of the
leads (i.c. µR). The electrochemical potential for adding the next electron, µdot(N+1),
is separated from µdot(N) by the addition energy, EC + ∆E, which is higher than µL
so that the (N+1)th electron cannot enter the dot. In this configuration the number
of electrons on the dot, N , is fixed and transport through the dot is blocked (Coulomb
blockade). The electrostatic potential of the dot is −|e|ϕN . (b) The addition of the
(N + 1)th electron is allowed, since µdot(N + 1) lies within the applied bias window. In
this configuration the number of electrons on the dot alternates between N and N + 1,
resulting in electron transport through the dot.

peak is a direct measure of the lowest possible energy state of the N -electron dot,

i.e. the ground state electrochemical potential. The change in electrochemical

potential when at fixed voltages an electron is added to the dot, is called the

addition energy and is given by

∆µdot(N) = µdot(N + 1)− µdot(N) = U(N + 1)− 2U(N) + U(N − 1)
= EC +∆E. (1.3)

The addition energy consists of a purely electrostatic part, the charging energy

EC , and the energy spacing between two discrete quantum levels, ∆E. Note

that in the case that two electrons are added to the same (spin-)degenerate level,
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∆E can be zero. Atomic energies related to the addition energy are defined by

A = U(N) − U(N + 1) for the electron affinity and I = U(N − 1) − U(N) for
ionization energy [4], so that ∆µ(N) = I − A.

An electron tunneling onto the dot leads to an increase of the electrostatic en-

ergy by the charging energy EC = e
2/C. The charging energy becomes important

when it exceeds the thermal energy, kBT , and when the barriers are sufficiently

opaque such that the electrons are located either in the reservoirs or in the dot.

The latter condition implies that quantum fluctuations in the number of electrons

on the dot must be sufficiently small. A lower bound for the tunnel resistances

Rt of the barriers can be found from the Heisenberg uncertainty principle. The

typical time ∆t to charge or discharge the dot is given by the RC-time. This

yields ∆E∆t = (e2/C)RtC > h. Hence, Rt should be much larger than the

quantum resistance h/e2 to sufficiently reduce the uncertainty in the energy. In

the next section the Kondo effect in quantum dots is discussed, a phenomenon

that occurs when the tunnel barriers are made rather transparent.

1.2 Kondo effect

Normally, the electrical resistance of a pure metal decreases as its temperature is

lowered (Fig. 1.3). The electrons can travel through a metallic crystal more easily

when the vibrations of the atoms are small. The resistance typically saturates

around 10 K, due to static effects in the metal. The value of the low-temperature

resistance depends on the number of defects in the material. However, the tem-

perature dependence changes considerably when a small concentration of mag-

netic atoms, such as cobalt, is added to the metal. Rather than saturating at

low temperature, the resistance increases as the temperature is lowered further

(see dashed curve in Fig. 1.3). Since the early 1930s there have been many ob-

servations of this anomalous temperature dependence of the resistance of metals

[5]. This behavior, however, was not explained earlier than in 1964, when the

Japanese theorist Jun Kondo provided an explanation [6, 7]. Since then, the

phenomenon has been referred to as the Kondo effect.

The Kondo effect in metals occurs because below a certain temperature, which

is called the Kondo temperature, TK , the mobile electrons in the host metal tend

to screen the non-zero total spin of the electrons in the magnetic impurity atom.

In the simplest model of a magnetic impurity, introduced by Anderson in 1961

[8], there is only one electron level with energy ε0 and the impurity spin is 1/2.

The z-component is fixed as either ‘spin up’ or ‘spin down’. However, so-called

exchange processes can effectively flip the impurity spin, while simultaneously
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temperature

re
s
is

ta
n

c
e

T ~ 10 KK

Figure 1.3: (a) Schematic temperature dependence of the resistance of pure metals
(solid curve) and metals with a small concentration of magnetic impurity atoms (dashed
curve). The latter curve shows a minimum around the Kondo temperature, TK . (b)
Jun Kondo, picture Asahi Shimbun.

creating a spin excitation in the Fermi sea. This spin exchange changes the en-

ergy spectrum of the system. When many such processes are added coherently,

a new state – the Kondo resonance – is generated with the same energy as the

Fermi level. Such a resonance is very effective at scattering electrons with en-

ergies close to the Fermi level. Since the same electrons are responsible for the

low-temperature conductivity of a metal, the strong scattering contributes greatly

to the resistance. As many electrons need to be involved, the Kondo effect is a

many-body phenomenon. The whole system – that is, the magnetic impurity

atom plus its surrounding electrons – forms a spin singlet. The energy scale for

this singlet state is the Kondo temperature.

A quantum dot connected to source and drain leads, can nicely mimic the

above situation of a localized spin impurity in a Fermi sea. Therefore, the Kondo

effect was expected to occur in quantum dot systems as well [9, 10]. However,

there is an important difference between metal and quantum dot systems. In

a metal, electrons are described by plane wave functions. Scattering from im-

purities mixes electron waves with different momenta. This momentum transfer

increases the resistance. In a quantum dot, on the contrary, all the electrons

have to travel through the device, as there is no electrical path around it. In

this case, the Kondo resonance makes it easier for states belonging to the two

opposite leads to mix. This mixing process increases the conductance, that is the
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Figure 1.4: The Anderson model of a magnetic impurity applied to a single level
quantum dot connected to source and drain leads. The level has an energy −|ε0|
(µL − µR ≈ 0). By going through the different states, the dot spin can effectively be
flipped, as explained in the text.

Kondo effect produces the opposite behavior in a quantum dot to that of a bulk

metal. Figure 1.4 shows the Anderson model of a magnetic impurity, applied to

a single level quantum dot connected to source and drain leads. The level has

an energy ε0 below the Fermi energy of the leads and is initially occupied by one

spin-up electron (see leftmost diagram of Fig. 1.4). Adding another electron is

prohibited by the charging energy, EC , while it would at least cost |ε0| to re-
move the electron. By virtue of quantum uncertainty, the spin-up electron can

momentarily tunnel out of the dot, leaving the dot-lead system in a classically

forbidden virtual state (see middle diagram of Fig. 1.4). If the spin-up electron

is replaced by a spin-down electron from the leads, as in the rightmost diagram

of Fig. 1.4, the dot spin has effectively been flipped. Many such events combine

to produce the Kondo effect in quantum dots, which leads to the formation of

an extra resonance at the Fermi level of the leads. The above spin-flip processes,

and hence the Kondo effect, are favored by a strong coupling between the dot and

the leads. The Kondo temperature is related to the parameters of the Anderson

model by

TK =

√
ΓEC

2
eπε0(ε0+EC)/ΓEC (1.4)

where Γ is the width of the dot level, which is broadened by electrons tunneling

to and from it. So the parameters that characterize the single-level dot system –

EC , ε0 and Γ – can be replaced by a single energy scale, TK . The advantage of

quantum dots in studying the Kondo effect is that the parameters that determine

the Kondo temperature, can be easily changed by adjusting the voltages on the
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Figure 1.5: Schematic representation of the main characteristics of electron transport
through a quantum dot strongly coupled to the leads, showing the Kondo effect. (a)
Linear conductance, G, versus gate voltage, Vg. The solid curve is for T 	 TK , the dot-
ted curve for T � TK and the dashed curve for T 
 TK . The Kondo effect only occurs
for odd electron number, resulting in the odd-even asymmetry between the different
Coulomb valleys. (b) In the Kondo valleys the conductance increases logarithmically
with lowering temperature, saturating at 2e2/h. (c) The Kondo resonance leads to a
zero-bias resonance in the differential conductance, dI/dV , versus bias voltage, V .

gates.

The main characteristics of electron transport through a quantum dot with

spin-degenerate levels, coupled strongly to the leads, are schematically depicted

in Fig. 1.5. For an odd number of electrons on the dot, the total spin of the

dot, S, is necessarily non-zero and in the simplest case S = 1/2, like in Fig. 1.4.

However, for an even electron number on the dot – again in the simplest scenario

– the upper level is occupied by one spin-up electron and one spin-down electron.

A dot with an even number of electrons therefore has S = 0 and the Kondo effect
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is not expected to occur. This ‘even-odd-asymmetry’ results in the temperature

dependence of the linear conductance, G, as shown in Fig. 1.5a. In the ‘odd’ or

‘Kondo’ Coulomb valleys the conductance increases as the temperature is lowered,

due to the Kondo effect. In the ‘even’ valleys, on the contrary, the conductance

decreases, due to a decrease of thermally excited transport through the dot. The

temperature dependence of the conductance in the Kondo valleys is shown in Fig.

1.5b. The conductance increases logarithmically with decreasing temperature [9],

and saturates at a value 2e2/h at the lowest temperatures [10, 11]. Although the

dot has two tunnel barriers and the charging energy tends to block electrons from

tunneling into or out of it, the Kondo effect makes that electrons are transmitted

perfectly through the dot. This complete transparency of the dot has led to the

name ‘unitary limit’ of conductance. The first experimental observation of this

limit in quantum dots is reported in chapter 4. The Kondo resonance at the

Fermi level of the leads manifests itself as a zero-bias resonance in the differential

conductance, dI/dV , versus V , as shown in Fig. 1.5c. The full width at half

maximum of this resonance gives an estimate for the Kondo temperature.

Chapter 4 shows that a quantum dot having an odd number of electrons

and a spin S = 1/2, can be well described in terms of the Anderson impurity

model. However, in chapters 5 and 6 it is found that quantum dots can also push

research into the Kondo effect in new directions, where artificial structures can

be exploited in regimes that are inaccessible with magnetic impurities in metals.

1.3 Aharonov-Bohm effect

In their paper ‘Significance of Electromagnetic Potentials in the Quantum The-

ory’, Aharonov and Bohm predicted in 1959 that if a quantum-mechanical wave,

such as a single-electron wave, is split into two partial waves enclosing a region

of magnetic field, there will be a phase shift between the two waves [13]. Hence,

if they later recombine, the interference between them depends on the amount

of enclosed magnetic flux. Precisely speaking, it is not the magnetic field, B,

that is important, but the magnetic vector potential, A. The effect also occurs

if the particle wave travels in a region of zero magnetic field, as long as within

the path there is a region containing magnetic flux. Similarly, an electrostatic

potential, V , contributes to the phase even in absence of an electric field, E. The

Aharonov-Bohm effect can be measured in electron transport through a meso-

scopic metal or semiconducting ring (see Fig. 1.6a). The phase, φ, accumulated
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(a) (c)(b)

B

�

�

1

2

Figure 1.6: (a) Schematic picture of an Aharonov-Bohm ring. A single-electron wave
splits and recombines, enclosing a magnetic flux. The accumulated phase along the
upper (lower) arm, φ1 (φ2), is affected by the electrostatic potential, V , and the vector
potential, A. (b) Yakir Aharonov (1932), picture University of South Carolina. (c)
David Joseph Bohm (1917-1992), picture MUC.DE-Verein München.

by the the electron wave, is given by

φ =
2π

h

∫
(mv + |e|A) · ds = 2π |e|

h

∫ (∫
∇V dt+A

)
· ds

= 2π
|e|
h

[∫
V dt+

∫
A · ds

]
(1.5)

with E = −∇V , B = ∇ × A, and m and v the electron mass and velocity,

respectively. The phase difference between the trajectories through the two arms

of the ring is (see Fig. 1.6a)

∆φ = φ1 − φ2 = 2π
|e|
h

[∫ t0

0

∆V dt+

∮
A · dl

]

= 2π
|e|
h
∆V t0 + 2π

|e|
h
BS (1.6)

where ∆V is the difference in electrostatic potential between the upper and lower

arm, t0 the time between splitting and recombination of the single-electron wave,

and S the enclosed area of the ring. The first experimental observation of the

Aharonov-Bohm effect in a single diffusive metal ring was made by Webb et

al. in 1985 [14]. In this and later experiments, oscillations of the conductance

as a function of B were observed with a period h/(eS). The Aharonov-Bohm
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experiments prove that electron waves preserve their phase coherence in these

mesoscopic rings. In chapter 9, an experiment is presented in which both the

magnetic and electrostatic contribution to the Aharonov-Bohm effect are con-

trolled. In particular, electron dephasing at finite voltage and magnetic field is

discussed.

1.4 Fabrication process

For the devices discussed in this thesis use is made of GaAs/AlGaAs heterostruc-

tures. A typical example of such a heterostructure is shown in Fig. 1.7. The

2-dimensional electron gas is situated at the interface of GaAs and AlGaAs, typ-

ically 100 nm below the surface. The electron density of the 2DEG is determined

by the n-type doping (Si) in the n-AlGaAs layer. In order to confine electrons

laterally, the 2DEG can be locally depleted, using metal gate electrodes on top

of the heterostructure or using etched trenches.

Figure 1.7: Schematic picture of a GaAs/AlGaAs heterostructure (not on scale). The
position of the 2-dimensional electron gas (2DEG) is indicated by the dashed line.

The fabrication procedure for evaporating metal gates is schematically de-

picted in Fig. 1.8a-d. First, a layer of organic resist (poly-methyl-methacrylate,

PMMA) is spun on top of the heterostructure. The gate pattern is defined by

electron beam writing in the electron-sensitive resist (Fig. 1.8a). At the places

where the resist is exposed, the polymers are broken. The exposed parts are re-

moved by a developer (solution of methyl isobutyl ketone, MIBK, and iso-propyl

alcohol, IPA), as shown in Fig. 1.8b. Note that there is some undercut of the

PMMA layer. This undercut is caused by the significant electron scattering at

the interface between GaAs and PMMA during the electron beam exposure. In

the next step, metal is evaporated, which only makes contact to the heterostruc-

ture at the places where the resist has been exposed and removed (Fig. 1.8c). In

our devices, the metal gates are fabricated by evaporating a layer of Ti and a
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Figure 1.8: Schematic pictures showing the fabrication procedure for evaporating
metal gate electrodes (a-d) and dry etching (e-h).

layer of Au consecutively. The Ti layer serves as a ‘sticking’ layer. The last step

is the removal of the remaining resist by acetone. Thus the metal on top of the

resist is removed as well, the so-called ‘lift-off’ (Fig. 1.8d). The lift-off process is

facilitated by the undercut in the resist layer.

The first two fabrication steps for defining an etched pattern are identical to

the first two steps of the metal evaporation (Fig. 1.8e,f). In Fig. 1.8g dry etching

is illustrated. The dry etching of the devices discussed in this thesis, is done by

focused ion beam (FIB) and electron cyclotron resonance (ECR) etching. The
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last step is again the removal of the remaining resist by acetone (Fig. 1.8h).

For measuring electron transport through the 2DEG, ohmic contacts are con-

nected to it by evaporating AuGeNi and annealing at ∼ 400 degrees Celsius for

60 seconds.

1.5 Measurement technique

In order to observe quantum-mechanical phenomena like discrete level spectra,

the Kondo effect and the Aharonov-Bohm effect, and to observe the effect of the

charging energy on electron transport, it is necessary to perform our experiments

at low temperature. We make use of a dilution refrigerator with a base tem-

perature of 10 mK. However, the effective electron temperature in our devices is

higher, but typically below 50 mK, because of various heating mechanisms, as

briefly discussed below.

The noise introduced by the measurement electronics forms one source of heat-

ing. Copper powder filters are an important means to attenuate the noise. They

consist of a long, thin resistive metal wound within a tube with copper powder.

The filters are installed at low temperature to minimize the thermal noise of the

resistors contained in them. The filters are integrated with the sample holder

such that all sample wires are shielded once they are filtered.

Another source of heating is the interference picked up by the wires connect-

ing the measurement electronics to the device. In order to reduce sources of

interference, loops in the wiring are avoided to minimize magnetic pick-up, and

the wires are shielded and well fastened to prevent them from acting as antennas

and from vibrating, respectively. In addition, it is important that the circuit is

grounded at only one place and that all shields are connected to this reference

point by a low impedance.

For the microwave experiments we make use of a coaxial cable to transport

power from a microwave source, outside the fridge, to the sample. From room

temperature to the 1K-pot, a 0.085 inch semi-rigid Be-Cu (inner and outer con-

ductor) coaxial cable is used. From the 1K-pot to the mixing chamber, we use

a 0.085 inch semi-rigid stainless steel (inner and outer conductor) coax. From

the mixing chamber to the sample, various types of low attenuation semi-rigid

or flexible coaxial cable can be used, since here the thermal conductivity is no

longer a constraint. Finally, the coaxial cable is capacitively coupled (typically

through a 10 pF capacitor) to one of the gate electrodes of the device.
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Chapter 2

Singlet-triplet transitions in a

few-electron quantum dot

W.G. van der Wiel, T.H. Oosterkamp, J.W. Janssen,
L.P. Kouwenhoven, D.G. Austing, T. Honda and S. Tarucha

We have measured spin-singlet – spin-triplet (ST) transitions in a vertical quan-

tum dot containing up to four electrons. Current through the dot is measured

as a function of gate voltage and magnetic field (0-9 Tesla) at both small and

large source drain voltages. The ST transitions cannot be explained within the

framework of single-particle states in combination with a constant Coulomb inter-

action. Taking into account exchange interaction and a magnetic field dependent

direct Coulomb interaction is essential for describing the observed ST transitions.

This chapter has been published in Physica B 256-258, 173 (1998).
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Quantum dots are often referred to as artificial atoms, because of the many

similarities with real atoms [1]. The relatively large dimensions of quantum dots

(∼ 100 nm) make that experimentally accessible magnetic field regimes (up to

∼20 Tesla) correspond to regimes of the order 106 Tesla for real atoms. The con-

stant interaction (CI) model has been successful in describing transport through

quantum dots [2, 3]. The CI model assumes that the Coulomb interactions be-

tween electrons are independent of, for instance, the magnetic field, B, so that

changes in the observed ground state energies are fully ascribed to changes in

the single-particle energies. While the CI model is very useful at small magnetic

fields (B � 1 T) [2], at larger B it is essential to include a varying Coulomb

interaction [4]. Here, we discuss this non-constant interaction regime for dots

with one to four electrons and B between 0 and 9 T. In particular, we describe

the singlet-triplet (ST) transition induced by a magnetic field for a dot with two

electrons.

Our vertical quantum dot consists of a sub-micrometer pillar fabricated in

an In/Al/GaAs double barrier heterostructure and is described in Refs. [5, 6].

Source and drain wires are connected to the doped top and substrate contacts.

Previous measurements have shown that the lateral confinement potential has

the form of a circular-symmetric, harmonic potential [4, 5]. The diameter of the

dot can be reduced by a gate voltage, Vg, from a few hundred nanometers to zero,

thereby decreasing the electron number, N , from ∼70 to zero. The measurements
have been performed in a dilution refrigerator at 100 mK.

We first discuss the energy spectrum of a few-electron quantum dot. The

Darwin-Fock (DF) energy spectrum for non-interacting electrons in a quantum

dot with a parabolic confinement potential V (r) = 1
2
m∗ω2

0r
2 is given by [7]

En,l = (2n+ |l|+ 1)�
√
1

4
ω2
c + ω

2
0 −

1

2
l�ωc (2.1)

with m∗ = 0.06m0 is the effective mass in GaAs, ω0 the harmonic oscillator

frequency, ωc = eB/m
∗ the cyclotron frequency, n the radial quantum number,

and l the angular momentum number. For a two-electron dot, we only consider

the two lowest single-electron states, E0,0 and E0,1, which are relevant to the

discussion here. For any value of B, E0,0 < E0,1 and hence the two electrons both

occupy the state E0,0 with opposite spin; i.e. a singlet, S = 0 state. Including

the Zeeman energy, we obtain

E0,0 = �

√
1

4
ω2
c + ω

2
0 ±

1

2
g∗µBB

E0,1 = 2�

√
1

4
ω2
c + ω

2
0 −

1

2
�ωc ± 1

2
g∗µBB (2.2)
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with g∗ = -0.44 the effective Landé factor in GaAs and µB the Bohr magneton.

Due to the Zeeman terms, we expect a crossing between E0,0,↑ and E0,1,↓ beyond
which the two electrons are spin-polarized, i.e. an ST transition. Note that we

use the symbol ‘↑’ (‘↓’) for the spin state in which the z-component of the spin
is aligned with (opposite to) the direction of B. For �ω0 = 5.6 meV, we predict

an ST transition driven by the Zeeman energy at B = 25 T. Note that for this
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Figure 2.1: (a) Calculated spatial distribution functions |ψn,l(r, ϕ)|2 for (n, l) = (0, 0)
and (0,±1). (b) Magnetic field (B)dependence of the distribution functions of (a)
(�ω0 = 3 meV). The vertical axes are normalized by l20 = �/m∗√ω2

0 + ω2
c/4. (c)

Electrochemical potential µ(2) of a two-electron dot versus B (�ω0 = 5.6 meV, charging
energy, EC(B = 0) = 5 meV). The lower solid curve represents the CI ground-state
electrochemical potential µ↑↓(2) = E0,0 + EC (spins indicated by arrows), whereas the
upper solid curve corresponds to the excited state, µ↑↓,ES(2) = E0,1 + EC . The dashed
lines schematically represent the situation of B-dependent Coulomb interaction. The
dashed lines grow faster than the solid ones. The rise of the lower dashed line is faster,
due to the larger overlap of states when both electrons are in the ground-state. The
upper dashed curve with subtraction of a constant exchange energy, Eex, results in the
dotted curve µ↓↓(2) = E0,1 + EC(B) − Eex. µ↑↓(2) and µ↓↓(2) cross at B � 4.5 T.
The ground state before and after the singlet-triplet (ST) transition is indicated by a
dashed-dotted line.
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estimate electron-electron interactions are not taken into account. As we will

argue below, the Coulomb interactions between the two electrons drive the ST

transition to much lower B.

The interdependence of electron-electron interactions and single-particle states

becomes important when a magnetic field changes the size of the electron states.

For instance, the size of the DF-states shrinks in the radial direction at larger B.

To illustrate this, we first show the probability functions |ψn,l(r, ϕ)|2 for the E0,0

and E0,±1 states at B = 0 in Fig. 2.1a [3]. Figure 2.1b shows cross sections of

|ψn,l(r, ϕ)|2 versus B. Increasing B, the distribution function shrinks in the radial
direction. When two electrons both occupy the E0,0 state, the average distance

between them decreases with B and hence the Coulomb interaction increases. At

some magnetic field it is energetically favorable if one of the two electrons makes

a transition to a state with a larger radius (i.e. from l = 0 to l = 1), thereby

increasing the average distance between the two electrons. This transition occurs

when the gain in Coulomb energy exceeds the costs in single-particle energy. So,

beside the Zeeman energy, the shrinking of wavefunctions favors a transition in

angular momentum.

Numerical calculations by Wagner et al. [8] have predicted these ST transi-

tions. In our discussion here, we generalize the CI model in order to keep track

of the physics that gives rise to the ST transition. The electrochemical potential

of a dot containing N electrons is defined as µ(N) ≡ U(N) − U(N − 1) where

U(N) is the total energy of the dot. For an N = 1 dot, U↑(1) = E0,0 is the exact

ground state energy. In the CI model, U↑↓(2) = 2E0,0 + EC , so that the ground-

state electrochemical potential is µ↑↓(2) = E0,0 + EC . Note that the Coulomb

interactions are assumed to be described by a constant charging energy, EC . The

first excited state is U↑↓,ES(2) = E0,0 + E0,1 + EC and µ
↑↓,ES(2) = E0,1 + EC .

The solid lines in Fig. 2.1c show µ↑↓(2) and µ↑↓,ES(2), where we neglect the small
contribution of the Zeeman energy.

The next level of approximation is to include the magnetic field dependence

of the charging energy to account for the shrinking wavefunctions. The dashed

curves in Fig. 2.1c rise somewhat faster than the solid curves, reflecting the B-

dependence of the charging energy, EC(B). These dashed lines are schematic

curves and do not result from calculations.

When both electrons occupy the E0,0 state their spins must be anti-parallel.

However, if one electron occupies E0,0 and the other E0,1, the two electrons can

also take on parallel spins; i.e. total spin S = 1. In this case, the Coulomb

interaction is reduced by an exchange energy, Eex, and the corresponding elec-

trochemical potential becomes µ↓↓(2) = E0,1 + EC(B)−Eex; see the dotted line

in Fig. 2.1c. The exchange energy is due to a deformation of the distribution
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functions of Fig. 2.1a for electrons with parallel spin, which yields a reduction of

the Coulomb repulsion. Importantly, µ↑↓(2) and µ↓↓(2) cross at B � 4.5 T for the

parameters chosen in Fig. 2.1c. So, while for B < 4.5 T the ground state energy

corresponds to two electrons with anti-parallel spins in the lowest single-particle

state, for B > 4.5 T the ground state has contributions from two single-particle

states and has total spin S = 1 (the two-electron ground state is indicated by a

dashed-dotted line in Fig. 2.1c). Thus, while the Zeeman-driven transition would

occur at 25 T, the electron-electron interactions push the ST transition to 4.5 T

[9].
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Figure 2.2: (a) Current measurement as function of gate voltage and magnetic field
(0 - 9 T in steps of 25 mT) for N = 1 to 4 and Vsd = 30 µV. The indicated transitions
are discussed in the text. (b) Peak positions extracted from the data in (a) and shifted
towards each other. Gate voltage is converted to electrochemical potential. (c) Gray-
scale plot of I(Vg, B) for Vsd = 4 mV. The stripe for the second electron entering the dot
is shown. The ground state and first excited state are accentuated by dashed curves.
The crossing indicated by an arrow, corresponds to the ST transition.

Capacitance [10] and tunneling [11, 12] spectroscopy have provided evidence

for ST transitions in the two-electron ground state energy. Here, we report the

evolution of the ground state as well as the first excited state versus B. Figure
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2.2a shows the linear response Coulomb blockade peaks for N = 0 to 4. The four

curves reflect how the ground-state electrochemical potentials µ(N) forN = 1 to 4

evolve with B. We emphasize that, based on the DF-spectrum for non-interacting

electrons, one does not expect transitions or kinks in the B-dependence of µ(N)

for N = 1 to 4. The peak for N = 1 indeed has a smooth B-dependence. For N

= 2, 3, and 4, however, we observe kinks, which are indicated by arrows. These

kinks must arise from interactions not included in the CI model. The left arrow

in the N = 4 trace is due to the destruction of a Hund’s rule state, which has

been discussed previously [4, 5]. To blow up the different kinks, we extracted

the peak positions and converted their values from gate voltage to energy [3].

The plotted curves in Fig. 2.2b are shifted towards each other and represent the

variation of the electrochemical potential with B. The lowest curve for N = 1

shows a smooth [13] increase in energy in accordance with the expected solid

curve for E0,0 in Fig. 2.1c. The next curve for N = 2 rises faster with B than the

N = 1 curve, which reflects the magnetic field dependent interaction EC(B) (see

lower dashed curve in Fig. 2.1c). At 4.5 T, indicated by ‘a’, we observe a kink

in the N = 2 curve, which is the expected ST transition. Our choice of shifting

the peak position curves for N = 1 and 2 to zero at B = 0 in Fig. 2.2b, allows

a direct comparison, and shows a good agreement with the lower solid curve and

the dashed-dotted curve in Fig. 2.1c.

For larger source-drain voltage, Vsd, the current peaks become stripes with

a width equal to Vsd [4]. In Fig. 2.2c an I(Vg, B) gray-scale plot is given of the

N = 2 stripe measured for Vsd = 4 mV. The edges of the stripe represent the

ground-state electrochemical potential µ(2), which clearly contain the ST transi-

tion at ∼ 4.5 T. Within the stripe, we clearly observe the first excited state. The

down-going B-dependence of the first excited state is similar to µ↓↓(2) (dotted
curve in Fig. 2.1c). The crossing of the dashed curves in Fig. 2.2c is a direct

observation of a crossing between the first excited state and ground state, which

is in close agreement with Fig. 2.1c.

We briefly discuss the N = 3 and 4 curves in Fig. 2.2a, which both contain two

kinks. The left kink (labeled ‘b’) in µ(3) = U(3) - U(2) is not due to a transition

in the energy U(3) of the three electron system, but is a remnant of the two-

electron ST transition in U(2). The right kink (labeled ‘c’) corresponds to the

transition from U(3) = E0,0(↑) + E0,0(↓) + E0,1(↓) + 2EC to the spin-polarized

case U(3) = E0,0(↓) + E0,1(↓) + E0,2(↓) + 2EC . Detailed analysis shows that

also this transition to increasing total angular momentum and total spin is driven

largely by interactions. Similar transitions occur for the N = 4 system where on

the right of the last kink (labeled ‘e’) the system is again in a polarized state with

sequential filling of the angular momentum states: U(4) = E0,0(↓) + E0,1(↓) +
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E0,2(↓) + E0,3(↓) + 3EC .
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Chapter 3

Direct Coulomb and exchange

interaction in artificial atoms

S. Tarucha, D.G. Austing, Y. Tokura,
W.G. van der Wiel and L.P. Kouwenhoven

We determine the contributions from the direct Coulomb and exchange inter-

actions to the total interaction in semiconductor artificial atoms. We tune the

relative strengths of the two interactions and measure them as a function of the

number of confined electrons. We find that electrons tend to have parallel spins

when they occupy nearly degenerate single-particle states. We use a magnetic

field to adjust the single-particle state degeneracy, and find that the spin configu-

rations in an arbitrary magnetic field are well explained in terms of two-electron

singlet and triplet states.

This chapter has been published in Physical Review Letters 84, 2485 (2000).
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The addition of a single electron charge to a quantum box costs a certain

energy, which is responsible for Coulomb blockade in electron transport [1]. Also

a change in spin is associated with a certain change in energy, e.g. exchange energy

is gained when electrons are added with parallel spins as compared to anti-parallel

spins. Depending on the system, a large total spin (ferromagnetic filling) or a

minimum total spin value (anti-ferromagnetic filling) is favored. In semiconductor

quantum dots alternate spin filling [2] as well as spin-polarized filling [3] have

been reported. Here, we study vertical quantum dots which have well-defined

single-particle states. When these states are separated by a large energy, ∆E,

an anti-ferromagnetic filling is favored. For small ∆E, a ferromagnetic filling is

observed, which is in line with Hund’s first rule from atomic physics. We use a

magnetic field, B, to tune ∆E(B) allowing us to alter the spin filling.

We first discuss a simple model that describes filling of two single-particle

states with two interacting electrons. Figure 3.1b shows two, spin-degenerate

single-particle states with energies Ea and Eb crossing each other at B = B0. The

ground-state (GS) energy, U(1), for one electron occupying these states, equals

Ea for B < B0 and Eb for B > B0 (thick line in Fig. 3.1b). For two electrons we

can distinguish four possible configurations with either total spin S = 0 (spin-

singlet) or S = 1 (spin-triplet). (We neglect the Zeeman energy difference between

Sz = −1, 0 and 1.) The corresponding energies, Ui (2, S) for i = 1 to 4, are given
by: U1(2, 0) = 2Ea +Caa, U2(2, 0) = 2Eb +Cbb, U3(2, 1) = Ea +Eb +Cab − |Kab|,
U4(2, 0) = Ea +Eb + Cab. Here, Cij (i, j = a, b) is the direct Coulomb (DC)

energy between two electrons occupying states with energies Ei and Ej, and Kab

is the exchange (EX) energy (Kab < 0) between two electrons occupying Ea and

Eb with parallel spins [4].

The experiments below measure the electrochemical potential defined for a

two-electron system as µ(2) ≡ U(2)−U(1). For each Ui(2) we obtain the poten-
tials: µi(2) = Ui(2)−Ea for B < B0 and µi(2) = Ui(2)−Eb for B > B0 (see Fig.

3.1c). The GS has S = 0 away from B0. Near B0, the lowest energy is µ3(2), such

that here S = 1. The downward cusp in the thick line identifies this spin-triplet

region. The transition in the GS from S = 0 to 1 and S = 1 to 0, respectively,

occurs when µ1 = µ3 for B < B0 and when µ2 = µ3 for B > B0. We define two

energies, ∆1 and ∆2, to characterize the size of the downward cusp in the GS at

B = B0: ∆1 = µ1 − µ3 = Caa − Cab + |Kab|, ∆2 = µ2 − µ3 = Cbb − Cab + |Kab|,
∆1 −∆2 = Caa − Cbb.

Our semiconductor quantum dot (see Fig. 3.1a) has the shape of a two-

dimensional disk [5]. For detecting the GSs, we set the source-drain voltage,

V , to a small value. The GSs and excited states (ESs) are both measured when

V is set to a value sufficiently greater than the excitation energy [6]. For small V ,
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a series of current peaks results from changing the number of electrons in the dot,

N , one-by-one [1]. The position of a current peak for the transition from N−1 to
N measures the GS electrochemical potential µ(N). The sample is cooled down

to about 100 mK.
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Figure 3.1: (a) Scanning electron micrograph of the semiconductor quantum dot
device. The quantum dot is located inside the 0.5 µm-diameter pillar. The top and
bottom contacts serve as source and drain electrodes. A Schottky gate is wrapped
around the pillar. The current, I, flowing through the dot is measured as a function
of gate voltage, Vg, in response to a dc voltage, V , applied between the source and
drain. (b) Schematic diagram of two single-particle states with energies Ea and Eb

crossing each other at a magnetic field B = B0. (c) Electrochemical potential, µi(2) =
Ui(2) − U(1), for two interacting electrons. The thick line depicts the ground-state
energy, whereas the thin lines show the excited states.
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Figure 3.2a shows the evolution of current peaks with magnetic field for N = 7

to 16. Features associated with a parabolic confining potential are all observed

such as a shell structure [2]. The large spacing for N = 12 at B = 0 T can be

seen in Fig. 3.2a (see double arrow) and marks the complete filling of the first

three shells. The pairing between neighboring peaks indicates anti-parallel spin

filling of a single orbital state by two electrons. Modifications to this pairing are

observed for the peaks labeled by ‘�’ at 0 T, and in each of the dashed ovals con-
necting pairs of peaks at non-zero field. These are all signatures of Hund’s first

rule; i.e. spin-polarized filling. Note that the Zeeman effect is negligible in this

experiment [7]. We show expansions of the evolution of the N = 8 and N = 24

peaks in Fig. 2b. The downward cusps are clearly seen. The dashed lines form a

parallelogram, from which we obtain parameters ∆1 and ∆2.

To compare the two-electron model with larger electron numbers, we assume

that other states are far away in energy so that they can be neglected. Then,

the downward cusps should occur for higher even electron numbers, whereas they

should be absent for odd electron numbers. This is clearly observed in the ovals in

Fig. 3.2a. For instance, the B-field dependence of the 9th peak compares well to

the thick line in Fig. 3.1b and the B-field dependence of the 10th peak compares

well to the thick line in Fig. 3.1c. Other pairs of even and odd numbered peaks

show the same behavior. This justifies our assumption so that we can simplify

the many-electron system to just one or two electrons.

More detailed agreement is obtained by measuring the excitation spectrum

[6]. Figure 3.3 shows a dI/dVg plot, taken for V = 2 mV. This larger voltage

opens a sufficiently wide transport window between the Fermi levels of the source

and drain, that both the GS and first few ESs can be detected. The GS and ESs

for N = 7 to 9 can be assigned from the magnetic field dependence of the dark

gray lines. Solid white lines highlight the GSs whereas the ESs are indicated by

dashed white lines. The set of GS and ES lines for N = 7 shows a single crossing

similar to that in Fig. 3.1b. The spectrum for N = 8 compares well to Fig. 3.1c

and we can clearly distinguish the parallelogram formed by the GS and first ES.

The downward cusp in the GS for N = 8 (labeled ‘�’) is at a slightly higher B-
field than the upward cusp in the first ES (labeled ‘�’). This asymmetry implies
that ∆1 > ∆2, i.e. Caa > Cbb. The same type of asymmetry is always observed

along the dashed line in Fig. 3.2a, implying that Caa > Cbb for all N . Note that

the GS for N = 9 shows an upward cusp (labeled by ‘�’) quite similar in form to

the first ES in the spectrum for N = 8. This implies that the filling of the ninth

electron is closely linked to the configuration of the N = 8 first ES [3].

As illustrated in Fig. 3.2b, we can derive the experimental values for ∆1 and

∆2 for different N . These values are plotted in Fig. 3.4. We find that ∆1 is larger
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Figure 3.2: (a) Evolution of the ground state energies from N = 7 to 16 as measured
from the current peaks versus magnetic field at V = 120 µV. The bars along the gate
voltage axis show 1 meV energy scales calibrated at -1.26 and -0.85 V. The dotted curve
indicates the last crossing between single-particle states. Dashed ovals correlate pairs
of ground states for odd and even electron numbers. Spin transitions in the ground
states are indicated by ‘�’ at B = 0 T and occur in the ovals for B �= 0 T. (b) Magnified
plots of the N = 8 and 24 current peaks vs. magnetic field. The dashed lines illustrate
how the interaction-energy parameters, ∆1 and ∆2 are determined. (c) Fock-Darwin
single-particle states calculated for ω0 = 2 meV.

than ∆2 for all N , again implying that Caa > Cbb. As N increases from 6 to 12,

∆1 first increases and then slowly decreases, whilst ∆2 slightly decreases.

To calculate DC and EX energies [4] we now need to specify the confining

potential of the disk. In earlier work it was shown that the lateral confinement is

well described by a parabolic potential with cylindrical symmetry [2]. The eigen-

functions with eigenenergies, En,l, in this potential are known as Fock-Darwin
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Figure 3.3: dI/dVg in the plane of Vg and B for N = 7 to 9 measured for V = 2
mV. dI/dVg > 0 for dark gray, dI/dVg < 0 for white and dI/dVg ≈ 0 for light gray.
The solid white lines indicate the evolution of the GSs with magnetic field whereas the
dashed white lines show the ESs. The two arrows indicate singlet-triplet (S-T) and
triplet-singlet (T-S) transitions in the GS for N = 8.

(FD) states [8]:

En,l = − l
2
�ωc + (n+

1

2
+
1

2
|l|)�

√
4ω2

0 + ω
2
c (3.1)

where n = 0, 1, 2, ... is the radial quantum number and l = 0,±1,±2, ... is the
quantum number for angular momentum. �ω0 is the lateral confining energy and

�ωc = eB/m∗ is the cyclotron energy. Each FD-state is spin degenerate. At
B = 0 T the FD-spectrum has sets of states with increasing degeneracy (see Fig.

3.2c). This degeneracy is lifted on increasing B, but as B is increased further

new crossings can occur. The last crossing is always a crossing between just two
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FD-states. The up-going state is always (n, l) = (0,−1), whereas the down-going
state, (0, l > 1), has an increasing angular momentum for states with increasing

energy. (The relation with Fig. 3.1 is: Ea = E0,−1 and Eb = E0,l>1.) Note that

the last crossings also correspond to the dashed line in Fig. 3.2a.

From the electron distributions of the FD-states we calculate the DC and

EX energies for two electrons occupying two degenerate states. We take �ω0 = 2

meV as deduced from earlier experiments [2,6] and obtain ∆1 and ∆2. The dashed
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Figure 3.4: Experimental values for the energy parameters ∆1 (•) and ∆2 (�), on
a log scale, versus electron number derived from data as shown in Fig. 3.2a. The
uncertainty in the determination of the experimental values is ±10% or less. The
dashed and solid curves are calculated from the FD wave functions at 2 T, for an
unscreened (unscr) and screened (scr) Coulomb interaction. The calculated exchange
energy |Kab| between states with energies Ea = E0,−1 and Eb = E0,N/2−1 decreases
quickly with N . Next to the main figure the absolute squares of the wave functions are
shown for the relevant quantum numbers n = 0 and l = 0,±1,±2,±3. As the angular
momentum quantum number l increases, the average radius increases.
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curves in Fig. 3.4 show ∆1 and ∆2 when we neglect screening of the interactions

within the dot by electrons in the leads and in the gate. In this case the Coulomb

potential falls off as 1/r, where r is the distance between the electrons [4]. For the

solid curves we have approximated the screening effects by replacing the Coulomb

potential by exp(−r/d)/r. We have taken d = 10 nm which is roughly the thick-

ness of the tunnel barriers. Figure 3.4 shows that screening considerably reduces

Figure 3.5: Exchange energy |Kab|, on a log scale, associated with spin-triplets formed
when each new shell is filled by just two electrons at B = 0 T. The solid circles are
the experimental values whose uncertainty in the determination is ±10% or less. The
inset shows an expansion for the filling of the first two electrons into the third shell
(i.e. N = 7 and 8). The vertical double-arrow represents |Kab| in units of gate voltage
which is then converted to energy. The calculated curves in the main figure are for the
unscreened (dashed) and screened (solid) cases.
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∆1 to values much closer to the experimental values. Screening also removes the

minimum in ∆2, which is also in better agreement with the experiment. Since

the average radius of the wave functions increases with angular momentum, two

electrons are closer together when they both occupy (0,-1) compared to when they

both occupy (0, l = N/2− 1) for even N > 4 (or l > 1), so the DC interaction is

stronger in the former. This explains our observation (∆1 > ∆2) Caa > Cbb for

all N . The overlap between different wave functions, (0,-1) and (0, l = N/2− 1),
decreases for even N > 4 (or l > 1). This results in a decrease in both Cab and

|Kab| with N . It then follows that ∆1 increases until it saturates at a value equal

to Caa. The gradual decrease of experimental ∆1 for N > 12 is probably related

to the decrease in the lateral confinement with N [2] and thus the decrease in

Caa.

We finally discuss the interaction effects for the N = 4, 8 and 14 peaks near B

= 0 T (the N = 8 and 14 peaks are labeled ‘�’ in Fig. 3.2a). These correspond to
the GS electrochemical potentials for adding the second electron to the second,

third and fourth shells, respectively. The inset to Fig. 3.5 demonstrates the

resemblance to the model of Fig. 3.1c for N = 8 near B = 0 T. Comparing these

data to the FD-spectrum, we assign the states such that: Ea = E0,−2 and Eb

= E0,2. Likewise, for N = 4 we have Ea = E0,−1 and Eb = E0,1 [2] and for N =

14 we have Ea = E0,−3 and Eb = E0,3 [9]. Note that these states correspond to

wave functions with a complete overlap. Also, for B = B0 = 0 T the two crossing

states have the same orbital symmetry implying ∆1 = ∆2 = |Kab|, i.e. only EX
effects contribute to the downward cusp [10].

We derive |Kab| as illustrated in the inset to Fig. 3.5. The obtained EX energy
quickly becomes smaller for higher lying shells. For comparison, we also show

the calculated screened and unscreened values. The screened case provides the

best quantitative agreement for our realistic choices of the confining energy and

the screening distance.

Our general model provides a clear identification of effects due to EX and DC

interactions. More advanced calculations support our analysis [11]. An important

simplification is the reduction of a many-electron system to just two interacting

electrons. The type of spin filling in many nearly degenerate levels near B = 0

T in larger electron boxes remains an interesting open issue.
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Chapter 4

The Kondo effect in the unitary limit

W.G. van der Wiel, S. De Franceschi, T. Fujisawa,
J.M. Elzerman, S. Tarucha and L.P. Kouwenhoven

We observe a strong Kondo effect in a semiconductor quantum dot when a small

magnetic field is applied. The Coulomb blockade for electron tunneling is over-

come completely by the Kondo effect and the conductance reaches the unitary-

limit value. We compare the experimental Kondo temperature with the theoret-

ical predictions for the spin-1/2 Anderson impurity model. Excellent agreement

is found throughout the Kondo regime. Phase coherence is preserved when a

Kondo quantum dot is included in one of the arms of an Aharonov-Bohm ring

structure and the phase behavior differs from previous results on a non-Kondo

dot.

This chapter has been published in Science 289, 2105 (2000).
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The Kondo theory explains the increased resistivity of a metal with magnetic

impurities at low temperatures [1]. Predictions from 1988 indicate that quantum

dots could also exhibit the Kondo effect [2-7], but now as an increased conduc-

tance, G, which can reach the unitary limit (G = 2e2/h) at low temperature.

Recent experiments have confirmed the presence of the Kondo effect in quantum

dots, however not reaching the unitary limit [8-12]. We demonstrate the unitary

limit Kondo effect in a semiconductor quantum dot. Our quantum dot is em-

bedded in one of the arms of an Aharonov-Bohm (AB) ring, which enables us

to show that electron transport through the many-body Kondo state is at least

partly phase-coherent. The Kondo effect arises from the coupling between a local-

ized electron spin to a sea of conduction electrons. The strength is characterized

by the Kondo temperature, TK [13]

TK =

√
ΓU

2
eπε0(ε0+U)/ΓU (4.1)

U is the on-site electron repulsion energy, or charging energy, ε0 the energy of the

single-particle state, and Γ reflects its width, due to a finite lifetime from tunnel-

ing to the leads (see left inset to Fig. 4.2a). In quantum dots these parameters

can be controlled experimentally, resulting in a ‘tunable Kondo effect’ [8-12].

Our device (Fig. 4.1a) consists of an AB ring defined in a 2-dimensional elec-

tron gas (2DEG) [14]. The conductance of the ring without applying gate voltages

is ∼ 10e2/h, implying that the current is carried by several modes in each arm.

In our experiment, a quantum dot has only been formed in the lower arm. One

gate in the upper arm is used to pinch off the upper arm. All measurements

are performed in a dilution refrigerator with a base temperature of 15 mK, using

a standard lock-in technique with an ac voltage excitation between source and

drain contacts of 3 µV.

The linear-response conductance, G, through the lower dot versus gate volt-

age, Vgl, and magnetic field, B, is shown in a color scale plot (Fig. 4.1b). Here,

the left and right parts of the lower arm serve as leads to the dot. In Fig. 4.1c

two G(Vgl) curves are extracted from Fig. 4.1b for B = 0 and 0.4 T. At B = 0,

regular Coulomb oscillations are observed with low valley conductance. In some

magnetic field ranges, however, the valley conductance increases considerably and

can even reach 2e2/h, for instance for B = 0.4 T. We will discuss Fig. 4.1b in

more detail below, but first focus on the large conductance values observed at B

= 0.4 T.

Figure 4.2a shows Coulomb oscillations for different temperatures. At base

temperature, the valleys around Vgl = -413 mV and -372 mV reach the maximum
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Figure 4.1: (a) Atomic force microscope image of the device. An Aharonov-Bohm
(AB) ring is defined in a 2DEG by dry etching of the dark regions (depth is 75 nm).
The 2DEG with electron density, nS = 2.6 × 1015 m−2, is situated 100 nm below the
surface of an AlGaAs/GaAs heterostructure. In both arms of the ring (lithographic
width 0.5 µm, inner perimeter 6.6 µm) a quantum dot can be defined by applying
negative voltages to gate electrodes. The gates at the entry and exit of the ring are not
used. A quantum dot of size ∼200 nm × 200 nm, containing ∼100 electrons, is formed
in the lower arm using gate voltages, Vgl and Vgr (the central plunger gate was not
working). The average energy spacing between single-particle states is 100 µeV. The
conductance of the upper arm, set by Vgu, is kept zero except for AB measurements.
(b) Color scale plot of the conductance, G, as function of Vgl and B for Vgr = -448 mV
and T = 15 mK. The upper arm of the AB ring is pinched off by Vgu = -1.0 V. Red
(blue) corresponds to high (low) conductance. (c) Two selected traces G(Vgl) for B = 0
and B = 0.4 T. The Coulomb oscillations at B = 0 correspond to the oscillating color
in (b). For some ranges of B, the valley conductance increases considerably, reaching
values close to 2e2/h, i.e. the unitary limit, e.g. along the yellow dashed line at 0.4 T.
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possible conductance value of 2e2/h. In fact, the valleys tend to disappear. When

the temperature is increased, two separate Coulomb peaks develop with growing

peak spacing. The conductance in the center of the valley has a logarithmic T -

dependence with a saturation at 2e2/h for low T , which is not due to electronic

noise (right inset to Fig. 4.2a). The adjacent Coulomb valleys show an opposite

T -dependence. This even-odd asymmetry indicates an unpaired spin in a valley

with an odd electron number, where we observe the Kondo anomaly, and a spin

singlet for an even electron number [8, 9]. Figure 4.2b shows the differential

conductance for different T in the middle of the Kondo plateau at 2e2/h. The

pronounced peak around VSD = 0 reflects the Kondo resonance at the Fermi

energy. The peak height has the same T -dependence as shown in the right inset

to Fig. 4.2a. The width of the peak increases linear with temperature (inset to

Fig. 4.2b).

These measurements are taken after optimizing the two barrier gate voltages,

Vgl and Vgr, in order to obtain nearly equal tunnel barriers. However, sweeping

Vgl, as in Fig. 4.2a, changes the left barrier much more effectively than the right

tunnel barrier and hence the barriers cannot be symmetric over the whole Vgl-

range. For a quantitative comparison to theory, we therefore optimize Vgr by

fixing it at a value chosen such that, upon sweeping Vgl, we obtain a flat plateau

close to 2e2/h (Fig. 4.3a) [15]. The two discernable Coulomb oscillations at higher

temperatures have completely merged together at low temperature. This unitary

limit was predicted [3, 4], but not observed before. The unitary limit implies that

the transmission probability through the quantum dot is equal to one. This is

a remarkable phenomenon since the quantum dot contains two tunnel barriers,

each with a transmission probability much less than one. In addition, the on-

site Coulomb energy, U , tends to block the state with an extra electron on the

dot. Despite U being an order of magnitude larger than the characteristic energy

scale, kBTK , the Kondo effect completely determines electron tunneling at low

energies (i.e. low T and VSD). Note that in the absence of the Kondo effect

(e.g. for electron number N = even), the system consists of two separated Fermi

seas. In contrast, for N = odd the screening of the local spin creates a single,

extended many-body system with a single, well-defined Fermi surface extending

throughout the whole system. The quasi-particles at this Fermi surface no longer

experience the repulsive barrier potentials, nor the on-site Coulomb repulsion.

Also note that since the local spin for N = odd is completely screened and since

the dot has zero spin for N = even, the whole system of leads and dot is in a

singlet state over a wide gate voltage range (between -430 mV and -350 mV in

Fig. 4.2a), although the nature of the ground state in the even and odd valleys

is very different.
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Figure 4.2: (a) Coulomb oscillations in G versus Vgl at B = 0.4 T for different
temperatures. T = 15 mK (thick black trace) up to 800 mK (thick red trace). Vgr
is fixed at -448 mV. The lower-right inset highlights the logarithmic T -dependence
between 90 and 500 mK for Vgl = -413 mV. The upper-left inset explains the symbols
used in the text with Γ = ΓL + ΓR. Note that ε0 is negative and measured from the
Fermi level in the leads at equilibrium. (b) Differential conductance, dI/dVSD, versus
dc bias voltage between source and drain contacts, VSD, for T = 15 mK (thick black
trace) up to 900 mK (thick red trace), also at Vgl = -413 mV and B = 0.4 T. The
left inset shows that the width of the zero-bias peak, measured from the full-width-at-
half-maximum (FWHM) increases linearly with T . The red line indicates a slope of
1.7 kB/e, where kB is the Boltzmann constant. At 15 mK the FWHM = 64 µV and it
starts to saturate around 300 mK.
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For a quantitative analysis we rewrite Eq. 4.1 as ln(TK) = πε0(ε0+U)/ΓU +

constant, indicating a quadratic dependence for ln(TK) on gate voltage, Vgl [16].

Following the work in [17], we fit G versus T for different gate voltages (see Fig.

4.3c) to the empirical function

G(T ) = G0

(
T ′2
K

T 2 + T ′2
K

)s

(4.2)

with T ′
K = TK/

√
21/s − 1 where the fit parameter s ≈ 0.2 for a spin-1/2 system

[17, 18]. Figure 4.3b shows the obtained Kondo temperatures, TK versus Vgl.

The red parabola demonstrates that the obtained values for TK are in excellent

agreement with Eq. 4.1 [19].

The Kondo temperature as derived above, is obtained from the linear response

conductance. In earlier works [8-12] estimates for TK were obtained from mea-

surements of dI/dVSD versus VSD (I is the current between source and drain).

In that case, the full width at half maximum (FWHM) was set equal to kBTK/e.

However, applying a finite VSD introduces dephasing even at T = 0 [6,20]. To

compare these two methods, we also plot in Fig. 4.3b (FWHM/kB) measured

for different gate voltages at base temperature. Also now we find a parabolic

dependence, but the values are larger than TK obtained from linear-response

measurements. The difference may indicate the amount of dephasing due to a

non-zero VSD.

The normalized conductance, G/(2e2/h), is expected to be a universal func-

tion of the normalized temperature, T/TK , independent of the other energy scales,

U , ε0 and Γ. Over a range of ∆ε0 = 225 µeV corresponding to 2.6 Kelvin, which

is several times larger than TK , this expected one-parameter scaling is indeed

observed in the inset to Fig. 4.3c.

We now return to the significance of the applied magnetic field. Near B =

0 we observe in Fig. 4.1c regular Coulomb oscillations. Here, we find that the

Kondo effect typically changes the valley conductance by only 20% [9]. In Fig.

4.1b a big change occurs at B ∼ 0.1 T, reflecting the onset of a different transport

regime, an observation that seems common for half-open quantum dots [21,22].

The magnetic field scale corresponds to adding a flux quantum to the area of the

dot, implying, for instance, that time-reversal symmetry is broken. At B = 0.4

T, where we observe the unitary limit, the Zeeman spin splitting is much smaller

than kBTK and so it can safely be ignored. This magnetic field scale is also too

small for the formation of Landau levels, which can introduce additional spin

physics [22,23].
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Figure 4.3: Quantitative analysis in the case of optimized symmetric tunnel barriers.
(a) G(Vgl) for T = 15 mK (thick black trace) up to 900 mK (thick red trace) and
Vgr = -448 mV, B = 0.4 T. (b) TK versus Vgl (•) as obtained from many fits as in
(c). In addition, we plot the peak width (FWHM/kB) versus Vgl (�) as deduced from
dI/dVSD(VSD) measurements at base temperature (see, e.g., black trace in Fig. 4.2b).
Both data sets are fitted to Eq. 4.1, resulting in the red and blue parabolas, respectively.
(c) G(T ) at fixed gate voltage as extracted from (a) for Vgl = -411 (�), -414 (◦) and
-418 (�) mV (labels are also indicated in (a)). The red curves are fits to Eq. 4.2. The
inset shows that G versus normalized temperature T/TK scales to a single curve for
different gate voltages, Vgl = -411 (�), -412 (�), -413 (×), -414 (◦) -415 (+), -416 (�)
mV. The blue curve is a fit to Eq. 4.2 with fixed TK = 1 and G0 = 2e2/h; s = 0.29 is
the only fit parameter.
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Recent calculations [24] indicate a spin polarization near B = 0 to enhanced

values in line with earlier observations [25,26]. A small magnetic field reduces

the spin values to 1
2
for N = odd and 0 for N = even. Since higher spin states

-420 -410 -400
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Figure 4.4: AB oscillations in the conductance through the ring containing the unitary
Kondo quantum dot. In this measurement the conductance through the upper arm is
set close to 2e2/h in order to have approximately equal transmissions through both
arms. (a) Gray-scale plot of the conductance, G, as function of Vgl and magnetic field
B at 15 mK. Light (dark) corresponds to high (low) conductance. AB oscillations
are observed over the whole gate voltage range. The red curve highlights the AB
oscillations in the middle of the Kondo plateau (Vgl = -412 mV). The period of 0.87
mT corresponds well to a flux quantum, h/e, through the area enclosed by the ring.
The modulation is 2-3% of the total conductance through the ring. (b) Same gray-
scale plot with the AB conductance maxima indicated by white diamond symbols. A
π phase flip is observed when stepping through the left Coulomb peak (e.g. along the
red dashed lines). No phase change is observed in the Kondo valley or at the right
Coulomb peak.

generally lead to a lower Kondo temperature, the Kondo effect can become much

stronger by applying a magnetic field [27]. We believe this to be the origin for the
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transition in transport regimes near B = 0.1 T in Fig. 4.1b, although a thorough

theoretical analysis would be desirable.

So far, the upper arm of the ring was pinched off. To study how electron

interference is affected by a Kondo quantum dot in the lower arm, we adjust the

upper arm conductance to ∼ 2e2/h. In the gray-scale plot of Fig. 4.4a clear AB

oscillations around B = 0.4 T are visible in the Kondo valley and the neighboring

valleys. The period agrees well with a flux quantum, h/e, applied through the

area enclosed by the ring. The AB oscillations demonstrate that at least part of

the tunnel processes through the Kondo quantum dot is phase coherent. Our 2-

terminal geometry only allows phase changes by multiples of π, due to symmetry

reasons [28]. We observe a π phase flip at the left Coulomb peak, but no phase

change is observed in the Kondo valley or at the right Coulomb peak (Fig. 4.4b).

This behavior is different from the phase evolution described in [14]. A further

study in a 4-terminal geometry should allow us to determine arbitrary phase

shifts in the transmission through a Kondo dot, as proposed in [29].
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[28] M. Büttiker, Phys. Rev. Lett. 57, 176 (1986).

[29] U. Gerland, J. von Delft, T. Costi and Y. Oreg, Phys. Rev. Lett. 84, 3710

(2000).



48 Chapter 4. The Kondo effect in the unitary limit



Chapter 5

Kondo effect in an integer-spin

quantum dot

S. Sasaki, S. De Franceschi, J.M. Elzerman,
W.G. van der Wiel, M. Eto, S. Tarucha and L.P. Kouwenhoven

The Kondo effect is a key many-body phenomenon in condensed matter physics.

It concerns the interaction between a localized spin and free electrons. Discov-

ered in metals containing small amounts of magnetic impurities, it is now a fun-

damental mechanism in a wide class of correlated electron systems [1,2]. Control

over single, localized spins has become relevant also in fabricated structures due

to the rapid developments in nano-electronics [3,4]. Experiments have already

demonstrated artificial realizations of isolated magnetic impurities at metallic

surfaces [5,6], nanometer-scale magnets [7], controlled transitions between two-

electron singlet and triplet states [8], and a tunable Kondo effect in semiconductor

quantum dots [9-12]. Here, we report an unexpected Kondo effect realized in a

few-electron quantum dot containing singlet and triplet spin states whose en-

ergy difference can be tuned with a magnetic field. This effect occurs for an

even number of electrons at the degeneracy between singlet and triplet states.

The characteristic energy scale is found to be much larger than for the ordinary

spin-1/2 case.

This chapter has been published in Nature 405, 764 (2000).

49
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Quantum dots are small electronic devices [13], which confine a well-defined

number of electrons, N . The total spin is zero or an integer for N = even and

half-integer for N = odd. The latter case constitutes the canonical example for

the Kondo effect [14,15] when all electrons can be ignored, except for the one

with the highest energy; i.e. the case of a single, isolated spin, S = 1/2 (see Fig.

5.1a). Although the energy level ε0 is well below the Fermi energies of the two

leads, Heisenberg uncertainty allows the electron on the dot to tunnel to one of

the leads when it is replaced quickly by another electron. The time scale for such

a co-tunneling process [16] is ∼ �/U , where h = 2π� is Planck’s constant and

U is the on-site Coulomb energy. Figure 5.1a illustrates that particle exchange

by co-tunneling can effectively flip the spin on the dot. At low temperature, the

coherent superposition of all possible co-tunneling processes involving spin flip

can result in a time-averaged spin equal to zero. The whole system, i.e. quantum

dot plus electrodes, forms a spin singlet. The energy scale for this singlet state is

the Kondo temperature, TK . In terms of density of states, a narrow peak with a

width ∼ kBTK develops at the Fermi energy (kB is Boltzmann’s constant). Note

that for N = even and S = 0, co-tunneling gives rise to a lifetime broadening

of the confined state, without producing any Kondo resonance. Such even/odd

behavior corresponding to no-Kondo/Kondo has been observed in recent experi-

ments [9,10].

It is also possible that a quantum dot with N = even has a total spin S = 1;

e.g. when the last two electrons have parallel spins. If the remaining N − 2 elec-
trons can be ignored, this corresponds to a triplet state. Parallel spin filling is a

consequence of Hund’s rule occurring when the gain in exchange energy exceeds

the spacing between single-particle states [8]. The spin of the triplet state can also

be screened by co-tunneling events. These are illustrated in the center-left side of

Fig. 5.1b. In contrast to single-particle states that are considered in the spin-1/2

Kondo problem, the spin triplet consists of three degenerate two-particle states.

Co-tunneling exchanges only one of the two electrons with an electron from the

leads. The total spin of the many-body Kondo state depends on how many modes

in the leads couple effectively to the dot [17,18]. If there is only one mode, the

screening is not complete and the whole system does not reach a singlet state. In

this case the Kondo effect is called ‘underscreened’. Calculations show that also

for S = 1 a narrow Kondo resonance arises at the Fermi energy, however, the

corresponding TK is typically lower than in the case of S = 1/2 [19,20]. Some

experiments have reported the absence of even/odd behavior [21,22], which may

be related to the formation of higher spin states.

Here, we investigate a quantum dot with N = even where the last two elec-

trons occupy a degenerate state of a spin singlet and a spin triplet. Figure 5.1b
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Figure 5.1: Spin-flip processes leading to ordinary and singlet-triplet Kondo effect in
a quantum dot. (a) Co-tunneling event in a spin-1/2 quantum dot for N = odd. Only
the highest-energy electron is shown, occupying a single spin-degenerate level, ε0. (The
case of two, or more, closely spaced levels has also been considered theoretically within
the context of the spin-1/2 Kondo effect [30].) The green panels refer to Sz = 1/2
and -1/2 ground states, which are coupled by a co-tunneling event. The two tunnel
barriers have tunneling rates ΓR and ΓL. In the Coulomb blockade regime (|ε0| ∼ U)
adding or subtracting an electron from the dot implies an energy cost ∼ U . Hence
the intermediate step (orange panel) is a high-energy, virtual state. The spin-flip event
depicted here is representative of a large number of higher-order processes which add up
coherently such that the local spin is screened. This Kondo effect leads to an enhanced
linear-response conductance at temperatures T � TK . (b) Co-tunneling in an integer-
spin quantum dot for N = even at a singlet-triplet degeneracy. Two electrons can
share the same orbital with opposite spins (singlet state in the blue panel) or occupy
two distinct orbitals in one of the three spin-triplet configurations (green panels). The
different spin states are coupled by virtual states (orange panels). Similar to the spin-
1/2 case, spin-flip events can screen the local magnetic moment. Note that an S = 1
Kondo effect only involves |1,+1〉, |1, 0〉 and |1,−1〉.
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illustrates the different co-tunneling processes occurring in this special circum-

stance. Starting from |S = 1, Sz = 1〉, where Sz is the z-component of the total
spin on the dot, co-tunneling via a virtual state |1/2, 1/2〉, can lead either to the
triplet state |1, 0〉, or to the singlet state |0, 0〉. Via a second co-tunneling event
the state |1,−1〉 can be reached. As for the S = 1 case, the local spin can fluc-

tuate by co-tunneling events. By coupling to all triplet states, the singlet state

enhances the spin exchange interaction between the dot and the leads, resulting

in a higher rate for spin fluctuations. This particular situation yields a strong

Kondo effect, which is characterized by an enhanced TK . This type of Kondo

effect has not been considered before, probably because a singlet-triplet degen-

eracy does not occur in magnetic elements. Recent scaling calculations indeed

indicate a strong enhancement of TK at the singlet-triplet degeneracy [23]. These

workers also argue that the total spin of the many-body Kondo state behaves as

in the case of S = 1.

Our quantum dot has the external shape of a rectangular pillar (see Fig.

5.2a,b) and an internal confinement potential close to a two-dimensional ellipse

[24]. The tunnel barriers between the quantum dot and the source and drain

electrodes are thinner than in our previous devices [8,24] such that co-tunneling

processes are enhanced. Figure 2d shows the linear response conductance (dc

bias voltage Vsd = 0) versus gate voltage, Vg, and magnetic field, B. Dark blue

regions have low conductance and correspond to the regimes of Coulomb blockade

for N = 3 to 10. In contrast to previous experiments [9-12] on the Kondo effect,

all performed on lateral quantum dots with unknown electron number, here the

number of confined electrons is precisely known. Red stripes represent Coulomb

peaks as high as ∼ e2/h. The B-dependence of the first two lower stripes reflects
the ground-state evolution for N = 3 and 4. Their similar B-evolution indicates

that the 3rd and 4th electron occupy the same orbital state with opposite spin,

which is observed also for N = 1 and 2 (not shown). This is not the case for N

= 5 and 6. The N = 5 state has S = 1/2, and the corresponding stripe shows a

smooth evolution with B. Instead, the stripe for N = 6 has a kink at B ≈ 0.22

T. From earlier analyses [24] and from measurements of the excitation spectrum

at finite Vsd (discussed below) we can identify this kink with a transition in the

ground state from a spin triplet to a spin singlet. Strikingly, at the triplet-singlet

transition (at B = B0 in Fig. 5.2c) we observe a strong enhancement of the con-

ductance. In fact, over a narrow range around 0.22 T, the Coulomb gap for N =

6 has disappeared completely.

To explore this conductance anomaly, we show in Fig. 5.3a differential con-

ductance measurements, dI/dVsd vs Vsd, taken at B = B0 and Vg corresponding

to the dotted line in Fig. 5.2d. At T = 14 mK the narrow resonance around
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Figure 5.2: Sample description, energy spectrum and magnetic-field evolution of the
ground state. (a) Cross-section of our rectangular quantum dot. The semiconductor
material consists of an undoped AlGaAs(7nm)/InGaAs(12nm)/AlGaAs(7nm) double
barrier structure sandwiched between n-doped GaAs source and drain electrodes. A
gate electrode surrounds the pillar and is used to control the electrostatic confinement
in the quantum dot. A dc bias voltage, Vsd, is applied between source and drain and
current, I, flows vertically through the pillar. In addition to Vsd, we apply a modulation
with rms amplitude Vac = 3 µV at 17.7 Hz for lock-in detection. The gate voltage, Vg,
can change the number of confined electrons, N , one-by-one from ∼ 10 at Vg = 0 to 0
at Vg = -1.8 V. A magnetic field, B, is applied along the vertical axis. Temperature, T ,
is varied between 14 mK and 1 K. Our lowest effective electron temperature is 25 ± 5
mK. (b) Scanning electron micrograph of a quantum dot with dimensions 0.45 × 0.6
µm2 and height of ∼ 0.5 µm. (c) Schematic energy spectrum. Solid lines represent the
B-evolution of the first four orbital levels in a single-particle model. The dashed line
is obtained by subtracting the two-electron exchange coupling from the fourth level.
At the crossing between this dashed line and the third orbital level at B = B0 the
ground state for N = 6 undergoes a triplet-to-singlet transition. B0 ≈ 0.22 T with
a slight dependence on Vg. We define ∆ as the energy difference between the triplet
and the singlet states. (d) Color-scale representation of the linear conductance versus
Vg and B. Red stripes denote conductance peaks of height ∼ e2/h. Blue regions of
low conductance indicate Coulomb blockade. The Vg-position of the stripes reflects the
ground state evolution with B, for N = 3 to 10. The N = 6 ground state undergoes
a triplet-to-singlet transition at B0 ≈ 0.22 T, which results in a conductance anomaly
inside the corresponding Coulomb gap.
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zero bias has a full-width-at-half-maximum, FWHM ≈ 30 µV. This is several

times smaller than the lifetime broadening, Γ = ΓR+ΓL ≈ 150 µV, as estimated

from the FWHM of the Coulomb peaks. The height of the zero-bias resonance

decreases logarithmically with T (see Fig. 5.3b). These are typical fingerprints

of the Kondo effect. From FWHM ≈ kBTK , we estimate TK ≈ 350 mK. We
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Figure 5.3: Zero-bias resonance and T -dependence of the conductance at the singlet-
triplet degeneracy. (a) Kondo resonance at the singlet-triplet transition. The dI/dVsd
vs Vsd curves are taken at Vg = -0.72 V, B = 0.21 T and for T = 14, 65, 100, 200,
350, 520, and 810 mK. Insets to (a): Kondo resonances for N = 5 (left inset) and N

= 7 (right inset), measured at Vg = -0.835 V and Vg = -0.625 V, respectively, and for
B = 0.11 T and T = 14 mK. (b) Peak height of zero-bias Kondo resonance vs T as
obtained from a (solid diamonds). The line demonstrates a logarithmic T -dependence,
which is characteristic for the Kondo effect. The saturation at low T is probably due
to electronic noise. (c) T -dependence of the linear conductance versus Vg for B = 0.12
T (spin-triplet ground state), B = 0.22 T (singlet-triplet degeneracy), and B = 0.32
T (spin-singlet ground state). Each panel shows 7 traces at T = 20 (dot-dashed line),
35, 70, 120, 260, 490 (solid lines), 1050 (dashed line) mK. The arrows emphasize the
temperature dependence in the valley for N = 6.
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note that we can safely neglect the Zeeman spin splitting since gµBB0 ≈ 5 µV

	 kBTK , implying that the spin triplet is in fact three-fold degenerate at B = B0.

This condition is essential to the Kondo effect illustrated in Fig. 5.1b. Alternative

schemes have recently been proposed for a Kondo effect where the degeneracy of

the triplet state is lifted by a large magnetic field [25,26].

For N = 6 we find markedly anomalous T -dependence only at the singlet-

triplet degeneracy. Figure 5.3c shows the conductance versus Vg for different

T . The upper panel is at B = 0.12 T. The two Coulomb peaks correspond to

the transition from N = 5 to 6 and from N = 6 to 7. The small, short-period

modulations superimposed on the Coulomb peaks are due to a weak charging

effect in the upper part of GaAs pillar above the dot [27]. We will ignore this

fine structure and focus on the general T -dependence. Upon increasing T , the

valley conductance for N = 6 goes up due to thermally activated transport. A

similar behavior is seen in the lower graph for B = 0.32 T. In contrast, at the

singlet-triplet transition for B = 0.22 T we find an opposite T -dependence, again

indicating the formation of a Kondo resonance. At the lowest T , the valley con-

ductance is as high as 0.7 e2/h, which is close to the height of the Coulomb peaks.

The T -dependence for N = 5 and 7 is visibly different than in the non-Kondo

valley for N = 6 (lower panel). Such a difference is a manifestation of the or-

dinary spin-1/2 Kondo effect expected for N = odd. Indeed the corresponding

zero-bias resonances are clearly observed (see insets to Fig. 5.3a). Their height,

however, is much smaller than for the singlet-triplet Kondo effect. There is also

some indication for a triplet Kondo effect in the T -dependence for N = 6 at B

= 0.12 T, although the associated zero-bias anomaly is not as apparent.

We now investigate the effect of lifting the singlet-triplet degeneracy by chang-

ing B at a fixed Vg corresponding to the dotted line in Fig. 5.2d. Near the edges

of this line, i.e. away from B0, the Coulomb gap is well developed as denoted

by the dark colors. The dI/dVsd vs Vsd traces still exhibit anomalies, however,

now at finite Vsd (see Fig. 5.4a). For B = 0.21 T we observe the singlet-triplet

Kondo resonance at Vsd = 0. At higher B this resonance splits apart showing

two peaks at finite Vsd. It is important to note that these peaks occur inside

the Coulomb gap. They result from ‘inelastic’ co-tunneling events [16,28] where

‘inelastic’ refers to exchanging energy between quantum dot and electrodes (see

right drawing in Fig. 5.4d). The upper traces in Fig. 5.4a, for B < 0.21 T, also

show peak structures, although less pronounced.

In Fig. 5.4b we plot the positions of the dI/dVsd peaks in the plane of Vsd and

B. The symbols refer to different gate voltages indicating that these positions

do not depend on Vg. The solid lines are obtained from the excitation spectrum

measured (see Fig. 5.4c) in direct tunneling (explained on the left in Fig. 5.4d).
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Figure 5.4: Singlet-triplet energy separation tuned by a magnetic field. (a) dI/dVsd
vs Vsd characteristics taken along the dotted line in Fig. 5.2d (Vg = -0.72 V) at equally
spaced magnetic fields B = 0.11,0.13,...,0.39 T. Curves are offset by 0.25 e2/h. (b)
Extracted peak positions from dI/dVsd curves in (a) versus B. Each symbol refers to a
gate voltage taken between -0.72 and -0.70 V. (c) Gray-scale plot of dI/dVsd measured
at Vsd = 0.67 mV as a function of B and Vg. The solid line identifies the ground state,
whereas the dashed line indicates the first excited state [8] for N = 6. From their
difference we extract the singlet-triplet energy splitting, ∆(B), using a proportionality
factor α = 6.7 meV/V to convert gate voltage into energy. The two solid lines in
(b) represent ±∆(B) with a horizontal shift of 0.08 T to compensate for the shift of
the singlet-triplet transition to a higher magnetic field in a high-bias measurement.
(d) Energy diagrams for two different transport regimes, both with eVsd = ∆. Left:
both ground and excited state lie between the two Fermi energies, so two channels
are available for direct tunneling. The excitation spectrum in (c) is measured in this
regime. Right: both ground and excited state lie below the Fermi levels of the leads
(Coulomb blockade regime). Inelastic co-tunneling is illustrated, where one electron
tunnels out of the lower energy state and another tunnels into the higher energy state.
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They represent the measured B-dependence of the singlet-triplet energy differ-

ence, ∆. The fact that these independent measurements coincide implies that

inelastic co-tunneling occurs when eVsd = ±∆. Note that this condition is in-
dependent of Vg, consistently with our observation. We believe that for small ∆

(� kBTK) the split resonance reflects the singlet-triplet Kondo anomaly shifted

to finite bias. This resembles the splitting of the Kondo resonance by the Zee-

man effect [9,10,29], although on a very different B-scale. In the present case, the

splitting occurs between two different multi-particle states and originates from

the B-dependence of the orbital motion. For increasing ∆, the shift to larger Vsd
induces spin-decoherence processes, which broaden and suppress the finite-bias

peaks [29]. For B ≈ 0.39 T the peaks have evolved into steps [28] which may

indicate that the spin coherence associated with the Kondo effect has completely

vanished.
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Chapter 6

Two-stage Kondo effect in a quantum

dot at high magnetic field

W.G. van der Wiel, S. De Franceschi, J.M. Elzerman,
S. Tarucha and L.P. Kouwenhoven

J. Motohisa, F. Nakajima and T. Fukui

We report a strong Kondo effect (Kondo temperature ∼ 4K) at high magnetic

field in a selective area growth semiconductor quantum dot. The Kondo effect

is ascribed to a singlet-triplet transition in the ground state of the dot. At the

transition, the low-temperature conductance approaches the unitary limit. Away

from the transition, for low bias voltages and temperatures, the conductance is

sharply reduced. The observed behavior is compared to predictions for a two-

stage Kondo effect in quantum dots coupled to single-channel leads.

This chapter has been submitted to Physical Review Letters.
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The observation of the Kondo effect in quantum dots [1-3] has lead to an

increased experimental and theoretical interest in this many-body phenomenon.

Unlike the conventional case of bulk metals containing magnetic impurities [4],

quantum dots [5] offer the possibility to study the Kondo effect at the level of

a single artificial magnetic impurity [6], allowing to tune different parameters.

Experiments on quantum dots have also revealed novel Kondo phenomena that

have no analog in bulk-metal systems. In particular, multi-level Kondo effects

have been studied both theoretically [7-12] and experimentally [13-15] that differ

substantially from the ordinary case of a spin-1/2 Anderson impurity.

In this chapter, we present results on a strong Kondo effect in a lateral quan-

tum dot at high magnetic field. We associate the Kondo effect with a magnetically

induced crossing between a spin-singlet and a spin-triplet ground state [9-14]. In

contrast to the results for a vertical semiconductor quantum dot [13] and for a

carbon nanotube dot [14], we find a sharp reduction of the conductance at low

bias voltage, VSD, and temperature, T . We ascribe the different behavior to the

number of channels in the leads which couple to the states in the dot. In lateral

dots, tunnel barriers are obtained by successively pinching off the propagating

channels. Coulomb blockade develops when the last channel is nearly pinched off.

Therefore, only one channel in each lead is coupled to the dot [16]. In vertical

dots however, the tunnel barrier characteristics are determined by the growth

parameters, i.e. by the thickness of the different semiconductor materials forming

the heterostructure and their relative conduction band offsets. In this case, more

than one conducting channel can effectively couple to the dot states. The same is

true for carbon nanotubes connected to metal leads. Our results, in combination

with previous findings [13, 14], show that screening of higher spin states (S ≥ 1)

depends strongly on the number of channels coupled to the (artificial) magnetic

impurity. Comparison is made to recent theoretical studies on quantum dots in

Refs. [16, 17], which are partly inspired on the experimental work presented here.

Our device (Fig. 6.1a,b) consists of a lateral quantum dot [18] with a nominal

diameter ∼300 nm that is further decreased by application of a negative voltage

to the top gate electrode (Fig. 6.1a). The top gate is also used to tune the tunnel

barriers between the dot and the source and drain leads. A side gate electrode

is used to change the electrostatic potential on the dot, although an effect on

the dot shape and tunnel barrier characteristics is unavoidable. Basic character-

istics of the device are reported in Refs. [19, 20]. All measurements have been

performed in a dilution refrigerator with a base temperature of 15 mK, using a

standard lock-in technique with an ac voltage between source and drain of 5 µV.

Figure 6.1c shows the linear conductance, G, through the dot versus side gate

voltage, Vsg, and perpendicular magnetic field, B. The B-dependence of the
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Figure 6.1: (a) Scanning electron micrograph. The device consists of a dual-gated
single-electron transistor fabricated by selective area growth using metal-organic va-
por phase epitaxy. (b) Schematic picture of the quantum dot (QD). An n-doped Al-
GaAs/GaAs heterostructure is selectively grown using a SiON mask, determining the
dot shape. The crystal axes are indicated. The GaAs quantum well is 15 nm thick, lies
60 nm below the surface and has an electron density of 8.7× 1015 m−2. (c) Gray-scale
plot of the linear conductance, G, versus side gate voltage, Vsg, and magnetic field, B.
The top gate voltage is fixed at -266 mV. Light gray lines indicate Coulomb peaks. The
dark regions correspond to Coulomb blockade. The white window encloses a region of
enhanced valley conductance, which is the focus of the present study. (inset) G versus
B in the middle of the Coulomb valley within the white window.
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Coulomb peaks (light gray lines) is rather complicated and non-monotonic. In

some regions an enhanced valley conductance is observed. We will focus on the

region within the white window. Moving from right to left in this window, two

Coulomb peaks approach each other and the valley conductance increases. The

inset to Fig. 6.1c shows G versus B in the middle of the Coulomb valley. The

highest conductance is achieved around B = 4.6 T and Vsg = -625 mV (indi-

cated by a ‘•’ in Fig. 6.1c). This local enhancement of the valley conductance is
ascribed to a singlet-triplet (S-T) Kondo effect, as we substantiate below.

Figure 6.2: G-Vsg traces taken at B = 4.6 T and different temperatures, T , between
15 mK (thick solid line) and 6 K (thick dashed line). At the lowest T , G approaches
the unitary limit at 2e2/h. (inset) G versus T in the middle of the Coulomb valley (Vsg
= -625 mV) for different B (� at 4.4 T, • at 4.6 T, � at 4.8 T, � at 5.0 T, � at 5.2 T).
At the degeneracy field B = B0 = 4.6 T, G decreases logarithmically between 0.1 and
2 K. The curves for other B show a clear bump that shifts to higher T with increasing
distance to B = B0.

To illustrate the Kondo character of the enhanced valley conductance, we

show in Fig. 6.2 the T -dependence of G at B = 4.6 T (which we will call B0). At

low T , G at Vsg = -625 mV approaches the unitary limit at 2e
2/h [21-23]. Around

this side gate voltage, G decreases with increasing T . The upper curve in the inset
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to Fig. 6.2 shows the T -dependence of G in the middle of the Coulomb valley.

The observed behavior is a typical signature of Kondo correlations. Up to our

highest T of 6 K, the Kondo valley conductance keeps on decreasing, indicating

an unusually strong Kondo effect. This is quite remarkable, considering the large

magnetic field.

In Fig. 6.3a we show the T -dependence of the differential conductance, dI/dVSD,

versus source-drain voltage, VSD measured at B0 and Vsg = -625 mV. In the or-

dinary, spin-1/2 Kondo effect, the Kondo resonance in the dI/dVSD-VSD charac-

teristics should split by 2|g|µBB [24], where g is the Landé factor and µB the

Bohr magneton. Assuming g = −0.44, as in bulk GaAs, this splitting is 230
µeV at B0. However, this is not observed in the dI/dVSD-VSD curve at B0 (thick

solid line in Fig. 6.3a). Instead, we measure a single zero-bias resonance with

a full width at half maximum (FWHM) of about 300 µeV, corresponding to a

Kondo temperature TK ∼ FWHM/kB ≈ 4 K in the center of the Coulomb valley.

This Kondo temperature is considerably larger than the values found in earlier

experiments [1-3,13,14,23].

Based on the above considerations, we believe that the explanation for the

enhanced G is an S-T transition around B0, assuming an even number of confined

electrons. As a result of the generalized Hund’s rule [25], the nature of the

ground state near a level crossing can change from a singlet to a triplet, or vice

versa. An S-T degeneracy leads to an enhanced low-temperature conductance

as shown experimentally in Ref. [13, 14] and theoretically in Refs. [9, 10]. The

local conductance enhancement at B0 in the present study suggests a similar S-

T Kondo effect. In the vertical quantum dot studied in Ref. [13], it is possible

to determine the number of electrons in the dot and to identify the singlet and

triplet states. The present data do not allow us to unambiguously identify the

spin character of the states on both sides of B0.

An interesting and unexpected feature is observed when moving away from

B0. A sharp dip develops around VSD = 0 within a broader Kondo resonance.

The dip vanishes upon increasing T , restoring the broad Kondo resonance. This

is shown in Figs. 3b-d for the representative fields B = 4.4 T, 4.8 T and 5.0 T. The

broad Kondo resonance disappears at a much slower rate with T than the sharp

dip, leading to the non-monotonic behavior in the corresponding G-T curves in

the inset to Fig. 6.2. Moving away from B0, the position of the maximum in G

shifts to higher T and the low-T conductance decreases.

Increasing B from B0, we find that the dip width grows up to ∼250 µV (see

Figs. 6.4a,b). In Fig. 6.4c we compare the position of the Coulomb peaks (con-

verted from Vsg to energy [26]) to the positions of the dip edges. We expect the

on-site Coulomb interaction energy to be essentially constant within the window
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Figure 6.3: (a)-(d) T -dependence (between 15 mK, solid line, and 800 mK) of the
differential conductance, dI/dVSD, versus source drain voltage, VSD, in the middle of
the Coulomb valley for different B.

in Fig. 6.1c. Hence, we believe that the B-evolution of the Coulomb peak spacing

reflects the B-dependence of the energy difference between two consecutive levels

of the dot, i.e. the S-T energy spacing. The dip width shows qualitatively the

same B-dependence as the spacing between the Coulomb peaks, and thus the

same as that of the S-T energy spacing. The dip width at fixed B is indepen-

dent of Vsg within the Coulomb valley where the dI/dVSD-VSD characteristics are

measured (see Fig. 6.4c). This observation is in line with a relation between the

dip width and the level spacing, irrespective of the absolute level energies.

For 3.8 < B < B0 we find a dip whose width does not vary significantly with

B (see Figs. 6.4a,b). From Fig. 6.1c we note that, in the same B-range, the
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Coulomb peaks are closely and constantly spaced, denoting a virtually constant

∆. This may explain why there is no clear B-dependence of the dip width for

B < B0.

In summary, on both sides of B0 we observe a non-monotonic T -dependence

of G and a narrow anti-resonance superimposed on a broader Kondo resonance.

The widths of these resonances correspond to two clearly distinct energy scales.

Our observations are in qualitative agreement with recent theoretical predictions
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Figure 6.4: (a) dI/dVSD versus VSD between 3.8 and 4.6 T (bottom to top, left), and
between 4.6 and 5.2 T (top to bottom, right). (b) Gray-scale plot of dI/dVSD versus B
and VSD. The edges of the zero bias dip are indicated by white dots. (c) Comparison
between the B-evolution of the dip edges (different symbols correspond to different
Vsg-values within the Coulomb valley) and that of the Coulomb peaks (◦). Note that
the distance between the Coulomb peaks includes a (constant) charging energy.
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for quantum dots coupled to single-channel leads [16, 17]. The single-channel

character of the leads results in both studies, but under different conditions, to

a two-stage Kondo effect. Two-stage Kondo phenomena have been theoretically

studied also in other systems, such as coupled magnetic impurities in metals [27].

However, no experimental observation has been reported so far.

Figure 6.5: Schematics of a two-stage Kondo effect. (a) Two single-particle states
with total spin S = 1 coupled to single channel leads. (b) T -dependence of G showing
the different regimes characterized by the energy scales TK1 and TK2. The dashed line
corresponds to the case of a finite electron temperature and/or Zeeman energy. (c)
dI/dVSD-VSD showing a dip with a width ∼kBTK2 within a Kondo resonance with
width ∼kBTK1.

For a two-stage Kondo effect to occur in quantum dots, it is necessary that the

dot has a spin state S ≥ 1 coupled to single-channel leads, as illustrated in Fig.

6.5a for S = 1. Instead of one low-energy scale, TK , a two-stage Kondo effect is

characterized by two separate energy scales TK1 and TK2 (TK2 < TK1). The first-

stage screening process with characteristic energy scale TK1 is an underscreened

Kondo effect, reducing the net spin from S = 1 to S = 1/2. The second stage

of the Kondo effect, with a smaller energy scale TK2, reduces the spin to S = 0,
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forming a spin singlet. For TK2 < (T, VSD) < TK1, the first-stage Kondo screening

overcomes the Coulomb blockade and G is expected to reach the unitary limit.

For (T, VSD) < TK2, the second stage of the Kondo effect quenches the first one,

resulting in a suppression of G, ideally to zero. A finite electron temperature

or Zeeman energy may reduce the effect of the second screening process. The

signatures of a two-stage Kondo effect are a non-monotonic T -dependence of G

and a sharp dip superimposed on the usual zero-bias resonance in the dI/dVSD,

as schematically depicted in Figs. 6.5b and 6.5c, respectively.

Our results are very similar to the schematic graphs in Fig. 6.5b,c, support-

ing an interpretation in terms of a two-stage Kondo effect. As the character of

the ground state on both sides of B0 may differ, the mechanism underlying the

two-stage Kondo effect need not be the same though. Hofstetter and Schoeller

find a two-stage Kondo effect for a singlet ground state with a nearby triplet ex-

cited state [17]. Pustilnik and Glazman predict a two-stage Kondo effect for an

S ≥ 1 ground state when there is significant asymmetry in the dot-lead coupling

[16]. The latter model, however, does not include dot excitations, which can be

important in proximity of an S-T transition.

For B > B0, we can tune the S-T spacing, ∆, between ∼0 and a few hundred
µeV (see open white circles in Fig. 6.4c). Due to the high Kondo temperature

(kBTK1 ∼ 300µeV), we cover the range from ∆ 	 kBTK1 to ∆ ≈ kBTK1. Over

a B-range of about 0.5 T we observe that the dip width scales linearly with ∆.

From the observed dip width (Fig. 6.4c) we can estimate TK2 � 1 K. The ob-

served behavior for B > B0 is in line with the results of Ref. [17] for the case of a

singlet ground state with a nearby triplet. There the energy scale TK2 increases

linearly with ∆ for ∆ ∼ kBTK1. We also note that the absence of a triplet Kondo

resonance for B > B0 favors the interpretation of a singlet ground state here.

For B < B0 there is no clear B-dependence of the conductance dip. Possibly,

a singlet ground state is close to a triplet excited state over a relatively wide

B-range. In this case an explanation as for B > B0 applies. This interpretation

requires a transition from a singlet ground state (B < B0) to a region of S-T

degeneracy (B ∼ B0) to again a singlet ground state (B > B0). Alternatively,

the ground state for B < B0 could also be a triplet, in which case the mechanism

proposed in Ref. [16] may be responsible for the dip.

We conclude that, irrespective of the precise model, our results can be inter-

preted in terms of a two-stage Kondo effect, characterized by two well-separated

energy scales.
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Chapter 7

Double Quantum Dots in Series

W.G. van der Wiel, S. De Franceschi, J.M. Elzerman
T. Fujisawa, S. Tarucha and L.P. Kouwenhoven

We review electron transport experiments on two lateral quantum dots coupled

in series. We give an introduction to the charge stability diagram in terms of the

electrochemical potentials of both dots. Resonant tunneling experiments show

that the double dot geometry allows for an accurate determination of the intrin-

sic lifetime of discrete energy states in quantum dots. The evolution of discrete

energy levels in magnetic field is studied. The resolution allows to resolve avoided

crossings in the spectrum of a quantum dot. With microwave spectroscopy it is

possible to probe the transition from ionic bonding (for weak inter-dot tunnel

coupling) to covalent bonding (for strong inter-dot tunnel coupling) in a double

dot artificial molecule. This review on the present experimental status of dou-

ble quantum dot studies is motivated by their relevance for realizing solid state

quantum bits.

73
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7.1 Introduction

Quantum dots are man-made sub-micron structures in a solid, typically consist-

ing of 103-109 atoms and a comparable number of electrons [1]. In semiconductor

quantum dots all electrons are tightly bound, except for a small number of free

electrons, which can range from zero to several thousands. For the quantum dot

devices considered in this review, the starting point for fabrication is formed by a

heterostructure consisting of different semiconductor materials (GaAs/AlGaAs).

The free electrons are strongly confined to the interface between GaAs and Al-

GaAs, forming a 2-dimensional electron gas (2DEG). Confinement in the other

two dimensions is accomplished by locally depleting the 2DEG, via etching tech-

niques or metal gate electrodes. The resulting structure is weakly coupled to

source and drain electrical contacts by tunnel barriers, connecting it to the out-

side world.

An important element of electronic transport through quantum dots is Cou-

lomb blockade [1-3]. An extra electron can only be added to the dot, if enough

energy is provided to overcome the Coulomb repulsion between the electrons.

Next to this purely classical effect, the confinement in all three directions leads

to quantum effects that strongly influence electronic transport at low tempera-

ture. In particular it leads to the formation of a discrete (0D) energy spectrum,

resembling that of an atom. This and other similarities have therefore lead to

the name artificial atoms for quantum dots [4].

The next logical step after studying individual quantum dots is to study sys-

tems of more than one dot. Where single quantum dots are regarded as ‘artificial

atoms’, two quantum dots can be coupled to form an ‘artificial molecule’. De-

pending on the strength of the inter-dot coupling, the two dots can form ionic-like

(weak tunnel coupling) or covalent-like bonds (strong tunnel coupling). In the

case of ionic bonding the electrons are localized on the individual dots. The

binding occurs, because a static redistribution of electrons leads to an attractive

Coulomb interaction. Weakly, electrostatically coupled quantum dots with neg-

ligible inter-dot tunnel conductance are covered by orthodox Coulomb blockade

theory [3]. In the case of covalent bonding, two electron states are quantum-

mechanically coupled. The main requirement for covalent binding is that an

electron can tunnel many times between the two dots in a phase-coherent way.

Here the electron cannot be regarded as a particle that resides in one particular

dot, but it must be thought of as a coherent wave that is delocalized over the

two dots. The bonding state of a strongly coupled artificial molecule has a lower

energy than the energies of the original states of the individual dots. This energy

gain forms the binding force between the two dots.
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The theoretical possibility to perform certain tasks in a much more efficient

way using a ‘quantum computer’ instead of a ‘classical computer’, has stimulated

the search for physical realizations of the basic building block of such a computer:

the quantum bit. In principle, any quantum two-level system can be used as such

a qubit. In particular, recent studies have put forward double quantum dots as

interesting candidates for realizing qubits [5]. The possible application of double

quantum dot devices in quantum logic forms an important motivation for this

work.

In this review we concentrate on electron transport through lateral double

quantum dots coupled in series. All devices have been fabricated and all exper-

iments have been performed at Delft University of Technology and NTT Basic

Research Laboratories. Experimental studies of electron transport through dou-

ble lateral quantum dots coupled in series, are described in Refs. [6-23] and in lat-

eral double dots coupled in parallel in Refs. [22,24-26]. Vertical double quantum

dot structures [27-34] fall outside the focus of this review. In vertical structures,

the characteristics of the tunnel barriers are set by the growth parameters of

the heterostructure, limiting the experimental tunability. Besides that, the gate

geometry used in these devices, makes it difficult to address dots independently.

As a first step to understanding double dot systems we introduce the stability

diagram [35], or honeycomb diagram, in section 7.2. It is a convenient tool in

the analysis of double dot transport properties. Resonant tunneling experiments

discussed in section 7.3, show that the resonant widths are only determined by

the lifetime of the discrete energy states, independent of the electron tempera-

ture. In section 7.4 we discuss level spectroscopy in a magnetic field. The double

dot geometry offers sufficient energy resolution to probe intra-dot level repulsion.

In section 7.5 we present microwave spectroscopy measurements on a quantum

dot molecule. We illustrate the transition from a weakly coupled double dot to

a strongly coupled double dot, by discussing a two-level system in section 7.5.1.

Although being a clear simplification, the mapping of the double dot on a two-

level system grasps much of the physics of the experiments presented in section

7.5. Irradiation with microwaves leads to photon assisted tunneling (PAT) (sec-

tions 7.5.2 and 7.5.3), which turns out to be a powerful tool not only to reveal

the character of the inter-dot coupling, but also to quantitatively determine the

bonding strength.
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7.2 Stability diagram

In this section we introduce the stability – or honeycomb – diagram that visualizes

the equilibrium charge states of two serially coupled dots.

7.2.1 Linear transport regime

Classical theory

We start with a purely classical description in which the influence of discrete

quantum states is not taken into account yet [22, 35, 36]. The double dot is

modeled as a network of resistors and capacitors (Fig. 7.1). The number of

electrons on dot 1(2) is N1(2). Each dot is capacitively coupled to a gate voltage

Figure 7.1: Network of resistors and capacitors representing two quantum dots cou-
pled in series. The different elements are explained in the text. Note that tunnel
barriers are characterized by a resistor and a capacitor, as indicated in the inset.

Vg1(2) through a capacitor Cg1(2) and to the source (S) or drain (D) contact through

a tunnel barrier represented by a resistor RL(R) and a capacitor CL(R) connected

in parallel. The dots are coupled to each other by a tunnel barrier represented

by a resistor Rm and a capacitor Cm in parallel. The bias voltage, V , is applied

to the source contact with the drain contact grounded (asymmetric bias). In this

section we consider the linear transport regime, i.e. V ≈ 0. If cross-capacitances

(such as between Vg1 and dot 2), other voltage sources and stray capacitances are

negligible, the double dot electrostatic energy reads (a full derivation is given in

Appendix A)
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U(N1, N2) =
1

2
N2

1EC1 +
1

2
N2

2EC2 +N1N2ECm + f(Vg1, Vg2) (7.1)

f(Vg1, Vg2) =
1

−|e|{Cg1Vg1(N1EC1 +N2ECm) + Cg2Vg2(N1ECm +N2EC2)}

+
1

e2
{1
2
C2
g1V

2
g1EC1 +

1

2
C2
g2V

2
g2EC2 + Cg1Vg1Cg2Vg2ECm}

where EC1(2) is the charging energy of the individual dot 1(2) and ECm is the

electrostatic coupling energy. The coupling energy ECm is the change in the

energy of one dot when an electron is added to the other dot. These energies can

be expressed in terms of the capacitances as follows

EC1 =
e2

C1

(
1

1− C2
m

C1C2

)
; EC2 =

e2

C2

(
1

1− C2
m

C1C2

)
; ECm =

e2

Cm

(
1

C1C2

C2
m

− 1
)
(7.2)

Here C1(2) is the sum of all capacitances attached to dot 1(2) including Cm:

C1(2) = CL(R) +Cg1(2) +Cm. Note that EC1(2) can be interpreted as the charging

energy of the single, uncoupled dot 1(2) multiplied by a correction factor that

accounts for the coupling. When Cm = 0, and hence ECm = 0, Eq. 7.1 reduces

to

U(N1, N2) =
(−N1|e|+ Cg1Vg1)2

2C1

+
(−N2|e|+ Cg2Vg2)2

2C2

(7.3)

This is the sum of the energies of two independent dots. In the case when Cm
becomes the dominant capacitance (Cm/C1(2) → 1), the electrostatic energy is

given by

U(N1, N2) =
[−(N1 +N2)|e|+ Cg1Vg1 + Cg2Vg2]2

2(C̃1 + C̃2)
(7.4)

This is the energy of a single dot with a charge N1 + N2 and a capacitance of

C̃1 + C̃2, where C̃1(2) = C1(2) − Cm is the capacitance of dot 1(2) to the outside
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world. Thus, a large inter-dot capacitance Cm effectively leads to one big dot.

The electrochemical potential µ1(2)(N1, N2) of dot 1(2) is defined as the energy

needed to add the N1(2)th electron to dot 1(2), while having N2(1) electrons on

dot 2(1). Using the expression for the total energy Eq. 7.1, the electrochemical

potentials of the two dots are

µ1(N1, N2) ≡ U(N1, N2)− U(N1 − 1, N2)

= (N1 − 1

2
)EC1 +N2ECm − 1

|e| (Cg1Vg1EC1 + Cg2Vg2ECm)

(7.5)

µ2(N1, N2) ≡ U(N1, N2)− U(N1, N2 − 1)
= (N2 − 1

2
)EC2 +N1ECm − 1

|e| (Cg1Vg1ECm + Cg2Vg2EC2)

(7.6)

The change in µ1(N1, N2) if, at fixed gate voltages, N1 is changed by one, µ1(N1+

1, N2)− µ1(N1, N2) = EC1, is called the addition energy of dot 1 and equals the

charging energy of dot 1 in this classical regime. Similarly, the addition energy of

dot 2 equals EC2, and µ1(N1, N2+1)−µ1(N1, N2) = µ2(N1+1, N2)−µ2(N1, N2) =

ECm. In the next section we will discuss the addition energy in the quantum

regime, where also the spacing between discrete energy levels plays a role.

From the electrochemical potentials in Eqs. 7.5 and 7.6 we construct a charge

stability diagram, giving the equilibrium electron numbers N1 and N2 as a func-

tion of Vg1 and Vg2. We define the electrochemical potentials of the left and right

leads to be zero if no bias voltage is applied, µL = µR = 0. Hence, the equilibrium

charges on the dots are the largest values of N1 and N2 for which both µ1(N1, N2)

and µ2(N1, N2) are less than zero. If either is larger than zero, electrons escape to

the leads. This constraint, plus the fact that N1 and N2 must be integers, creates

hexagonal domains in the (Vg1, Vg2)-phase space in which the charge configuration

is stable.

For completely decoupled dots (Cm = 0) the diagram looks as in Fig. 7.2a.

The gate voltage Vg1(2) changes the charge on dot 1(2), without affecting the

charge on the other. If the coupling is increased, the domains become hexagonal

(Fig. 7.2b). The vertices of the square domains have separated into ‘triple-points’.

When Cm becomes the dominant capacitance (Cm/C1(2) → 1), the triple-point

separation reaches its maximum (see Fig. 7.2c). The double dot behaves like one
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Figure 7.2: Schematic stability diagram of the double-dot system for (a) small, (b)
intermediate, and (c) large inter-dot coupling. The equilibrium charge on each dot in
each domain is denoted by (N1, N2). The two kinds of triple-points corresponding with
the electron transfer process (•) and the hole transfer process (◦) are illustrated in
(d). The region in the dotted square in (b) is depicted in more detail in Fig. 7.5.

dot with charge N1 +N2, as seen from Eq. 7.4.

We are considering the linear regime of conductance, implying µL − µR =

−|e|V ≈ 0. In order to obtain a measurable current, the tunnel barriers need to

be sufficiently transparent. At the same time, however, the tunnel barriers need

to be sufficiently opaque to ensure a well-defined electron number on each dot, as

explained in chapter 1. For double dots coupled in series, a conductance resonance

is found when electrons can tunnel through both dots. This condition is met
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whenever three charge states become degenerate, i.e. whenever three boundaries

in the honeycomb diagram meet in one point. In Fig. 7.2d two kinds of such

triple-points are distinguished, (•) and (◦), corresponding to different charge
transfer processes. At the triple point (•), the dots cycle through the sequence
(N1, N2)→ (N1 + 1, N2)→ (N1, N2 + 1)→ (N1, N2), which shuttles one electron

through the system. This process is illustrated by the counterclockwise path e

and the diagram of an electron sequentially tunneling from the left lead to the

right in Fig. 7.2d. At the other triple-point (◦), the sequence is (N1+1, N2+1)→
(N1 + 1, N2)→ (N1, N2 + 1)→ (N1 + 1, N2 + 1), corresponding to the clockwise

path h in Fig. 7.2d. This can be interpreted as the sequential tunneling of a hole

in the direction opposite to the electron. The energy difference between both

processes determines the separation between the triple-points (•) and (◦), and
is given by ECm, as defined in Eq. 7.2.

Figure 7.3: Schematic stability diagram showing the Coulomb peak spacings given in
Eqs. 7.8 and 7.10. These spacings can be determined experimentally by connecting the
triple-points.

The dimensions of the honeycomb cell (see Fig. 7.3) can be related to the

capacitances using Eqs. 7.5 and 7.6. From

µ1(N1, N2;Vg1, Vg2) = µ1(N1 + 1, N2;Vg1 +∆Vg1, Vg2) (7.7)



7.2 Stability diagram 81

we obtain

∆Vg1 =
|e|
Cg1

(7.8)

and similarly we can derive

∆Vg2 =
|e|
Cg2

(7.8′)

From

µ1(N1, N2;Vg1, Vg2) = µ1(N1, N2 + 1;Vg1 + ∆V m
g1 , Vg2) (7.9)

we obtain

∆V m
g1 =

|e|Cm

Cg1C2

= ∆Vg1
Cm

C2

(7.10)

and similarly we can derive

∆V m
g2 =

|e|Cm

Cg2C1

= ∆Vg2
Cm

C1

(7.10′)

However, for a full characterization of all capacitances in the system an analysis

in the non-linear transport regime is required, as is discussed in section 7.2.2.

Above we assumed that Vg1 and Vg2 only couple directly to the respective

dots. In practice, however, there is a finite cross-capacitance from one gate to

the other. The respective cross-capacitances result in a change of the slope of

the charge domain boundaries in the honeycomb diagram. From Figs. 7.2b and

7.3 it is clear that both kinds of triple points (• and ◦) form a square lattice.

However, with finite cross-capacitances the positions of the triple points move to

lower Vg1(2) for increasing Vg2(1) (at constant V ).

Quantized states

The discussion of the stability diagram so far has been completely classical. How-

ever, the strong confinement of electrons in the dots can lead to the formation

of a discrete energy spectrum. To account for the quantized energy states in the

dot, we need to incorporate their energies in the electrochemical potential. The

electrochemical potential for adding an electron into energy level n of dot i is

denoted by µi,n. Within the constant interaction model (see chapter 1), µi,n is

the sum of the classical electrochemical potential µclass
i and the single-particle
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Figure 7.4: Schematic diagram of the electrochemical potentials µi,n(N1, N2) in dots
and leads in the linear regime. The first subscript indicates either the lead (L,R) or the
dot (1,2). The second subscript refers to the nature of the dot energy state (ground
state, n = 0 or nth excited state.

energy En: µi,n = µclass
i + En. In the classical regime we found that the addition

energy (the change in electrochemical potential needed to add an extra electron)

equals the charging energy EC1 (for dot 1) or EC2 (for dot 2). In the quantum

regime, the addition energy for the (N1 + 1)th electron occupying discrete level

m, with the N1th electron occupying discrete level n, becomes

µ1,m(N1 + 1, N2) − µ1,n(N1, N2) = EC1 + (Em − En)

= EC1 + ∆E. (7.11)

Similarly, we find EC2 + ∆E for the addition energy of dot 2. Note that for a

(spin-)degenerate level ∆E can be zero. The dimensions of the honeycomb cell

as given in Eqs. 7.8 and 7.10, and depicted in Fig. 7.3 for the classical regime,

change as follows
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∆Vg1(2) =
|e|

Cg1(2)

(
1 +

∆E

EC1(2)

)
(7.12)

∆V m
g1(2) =

|e|Cm

Cg1(2)C2(1)

(
1 +

∆E

ECm

)
(7.13)

The electronic configuration that gives the lowest possible total energy in dot

1(2), is referred to as the dot 1(2) ground state. Any configuration with a higher

total energy is referred to as an excited state. The electrochemical potential for

adding the N1(2)th electron to the lowest unfilled energy level of the (N1(2) − 1)-

electron ground state is labeled µ1,0(N1, N2) {µ2,0(N1, N2)}. The electrochemical

potential for adding the N1(2)th electron to a higher unfilled level of the (N1(2)−1)-

electron ground state – or to any unfilled level of an (N1(2) − 1)-electron excited

state – is labeled µ1,1(N1, N2), µ1,2(N1, N2), ... {µ2,1(N1, N2), µ2,2(N1, N2), ...}.

In Fig. 7.4 a schematic diagram is given, showing the electrochemical poten-

tials in the leads and dots in the linear regime (µL − µR = −|e|V ≈ 0). The

ground state electrochemical potentials µ1,0(1, 0) and µ2,0(0, 1) align within the

small bias window, allowing an electron to tunnel from left to right. This is

an example of an electron transfer process as depicted in Fig. 7.2d. Note that

an alignment of an arbitrary combination of electrochemical potentials in dot 1

and dot 2 does not necessarily lead to a current. For example, the alignment of

µ1,0(1, 0) and µ2,0(1, 1) does not result in current through the double dot. In the

linear regime electron transport occurs via ground states, whereas the excited

states start to play a role in non-linear transport, as will be discussed in section

7.2.2. In the following discussion of the linear regime the ground state of dot 1(2)

is denoted by µ1(2)(N1, N2) (without the discrete level index).

A more detailed picture of a honeycomb cell in the linear regime, marked by

the dashed square in Fig. 7.2b, is given in Fig. 7.5. The configuration of the

ground-state electrochemical potentials is given in schematic diagrams on some

places in the stability diagram. The dashed lines, which are extensions of the

solid lines forming the honeycomb cells, help to find the position of both electro-

chemical potentials on a certain place. A crossing of dashed lines (as in the charge

domains (0,1) and (1,0)) indicates that two electrochemical potentials align, but

does not result in a current through the double dot.
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Figure 7.5: Region within the dotted square of Fig. 7.2b, corresponding with the
‘unit cell’ of the double-dot stability diagram. Four different charge states can be
distinguished, separated by solid lines. At the solid line connecting the two triple
points, the charge states (0,1) and (1,0) are degenerate. At the other solid lines the
electrochemical potential of at least one dot is zero and thus equals the electrochemical
potential of the leads. The dashed lines are the extensions of the solid lines within the
honeycomb cells. The triple-points lie on the crossing points between the solid lines.
The schematic diagrams show the configuration of the ground-state electrochemical
potentials on the corresponding place in the honeycomb diagram.
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Experimental stability diagrams

Before discussing some experimental stability diagrams, we introduce the two

kinds of lateral double dot devices being studied in this review. For the first

type, only metal gate electrodes are used to confine the electrons in the 2DEG

beneath. For the second type we use a combination of metal gates and dry etching

to realize confinement.

F

1 3
I 2 II

(a) (b)

D1
D2

Figure 7.6: Double quantum dot devices. (a) SEM micrograph of a double dot defined
by metallic gates (light gray areas). The ungated 2DEG (100 nm below the surface)
has a mobility of 2.3 × 106 cm2/(Vs) and an electron density of 1.9 × 1015 m−2 at
4.2 K. The dimensions of the dots defined by the gate pattern are 320 × 320 nm2

(dot 1, left) and 280 × 280 nm2 (dot 2, right) (b) Schematic diagram of a double dot
defined by a combination of dry etching and metallic gates. The carrier concentration
and mobility of the ungated 2DEG (100 nm below the surface) at 1.6 K and in the
dark are 3 × 1011 cm−2 and 8 × 105 cm2/(Vs), respectively. The lithographic distance
between the ethched trenches (black lines), w, is typically 0.5 µm. The effective width
of the channel, wch, can be tuned by voltages on the in-plane gates (IPGs). The gate
electrodes are ∼40 nm wide (lg) and are separated by lLC = 160 nm and lCR = 220
nm. A double quantum dot (dot 1, D1; dot 2, D2) can be formed by applying negative
gate voltages to gates GL, GC and GR. A microwave field can be applied to the center
gate GC.

A scanning electron microscope (SEM) image of the first device is shown in

Fig. 7.6a. Metal gates are deposited on top of a GaAs/AlGaAs heterostructure

with a 2DEG 100 nm below the surface [7]. Applying a negative voltage to all

gates depletes the 2DEG underneath them and forms two quantum dots. Current

can flow from the large electron reservoir on the left via the three tunnel barriers

induced by the gate pairs 1-F, 2-F, and 3-F to the reservoir on the right. The

transmission of each tunnel barrier can be controlled individually by the voltage
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on gates 1, 2 or 3. A single quantum dot can be defined in the 2DEG by applying

only a voltage to gates 1, 2, I and F (dot 1) or to gates 2, 3, II and F (dot 2). In

this way, the individual dots can be characterized and their properties compared

to those of the double dot.

The second device is schematically shown in Fig. 7.6b. First a channel is

defined in the 2DEG by focused-ion-beam (FIB) or electron-cyclotron-resonance

(ECR) etching of an Al0.3Ga0.7As/GaAs modulation-doped heterostructure [10].

A double quantum dot can be formed by applying negative voltages to gates GL,

GC and GR.

All experiments have been performed in a dilution refrigerator with a base

temperature of 10 mK. The effective electron temperature in the leads is higher

and can vary between ∼40 and ∼100 mK. A significant source of heating is the

noise coming from the measurement electronics. The filters, used to attenuate

the noise, have to be effective over a very large band width. They consist of a

distributed RC network, usually a thin resistive wire going through a conducting

medium such as copper powder or silver epoxy. The filters are installed at low

temperature to minimize the thermal noise of the resistors inside. The filters

are integrated with the sample holder in such a way that all sample wires are

carefully shielded once they are filtered.

To effectively create a double quantum dot, all gate voltages need to be tuned

properly. The cross capacitances between the various gate electrodes, make it

difficult to vary just a single parameter without affecting the others. The stability

diagram is of great value in setting up and characterizing a double quantum dot.

Figure 7.7 illustrates the process of the creation of a double dot in a device similar

to the one in Fig. 7.6b. Starting point is the creation of a single large dot formed

by the outer tunnel barriers, GL and GR. The measured stability diagram (Fig.

7.7a) resembles Fig. 7.2c. The successive stability diagrams are measured for

increasingly negative voltages on the middle gate electrode, GC, thus reducing

the coupling between the dots. It is clearly seen that going from Fig. 7.7a to Fig.

7.7f, the stability diagram gradually evolves into the characteristic honeycomb

structure. The edges of the honeycomb cells are visible due to off-resonance

current. At the edges of a honeycomb cell, the electrochemical potential of one

of the dots aligns with its neighboring lead (see Fig. 7.5). By a process called co-

tunneling [37], transport can still take place via an intermediate virtual state. Co-

tunneling processes are suppressed by increasing the tunnel barriers (i.e. making

the gate voltages more negative), as can be seen from Fig. 7.7.

Figure 7.8a shows a detail of a stability diagram obtained in the device shown

in Fig. 7.6a. The edges of the honeycomb cells are indicated by dashed lines. The

triple points within the black square are well separated, whereas the other ones
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Figure 7.7: Experimental gray-scale plots of stability diagrams in a device similar
to that shown in Fig. 7.6b for increasingly negative gate voltage on the middle gate
electrode, GC. Dark (light) gray-scale corresponds to large (small) current through the
double dot. GL is swept between -500 mV and -530 mV, GR between -840 mV and
-900 mV, GC = -660 mV (a), -670 mV (b), -690 mV (c), -700 mV (d), -710 mV (e)
and -720 mV (f).

are still grown together. To separate also those points outside, the gate voltage

on the middle barrier has to be tuned towards more negative values.

7.2.2 Non-linear transport regime

Classical theory

We assume that the bias voltage is applied to the left lead (µL = −|e|V ) and

that the right lead is grounded (µR = 0). The bias voltage is coupled to the

double dot through the capacitance of the left lead, CL, and hence also affects

the electrostatic energy of the system. The bias dependence can be accounted

for by replacing Cg1(2)Vg1(2) with Cg1(2)Vg1(2) +CL1(2)V in Eq. 7.1, where CL1(2) is

the capacitance of the left lead to dot 1 (see Appendix A).
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Figure 7.8: (a) Experimental gray-scale plot of a stability diagram in the device of
Fig. 7.6a at small bias voltage, V = 15 µeV. Dark (light) gray-scale corresponds to large
(small) current through the double dot. The dashed lines indicate the honeycomb cells.
(b) Region within the black rectangle of (a) at large bias voltage, V = 120 µeV. The
triple points have grown into triangles and show clear resonant tunneling lines (black
stripes), as discussed in section 7.2.2. The shape of the triangles is accentuated by
dashed lines.

The conductance regions at finite bias change from triple-points to triangu-

larly shaped regions (Fig. 7.9). The conditions −|e|V = µL ≥ µ1, µ1 ≥ µ2, and

µ2 ≥ µR = 0 determine the boundaries of the triangular regions. The dimensions

of the triangles δVg1 and δVg2 (see Fig. 7.9) are related to the applied bias voltage

as follows

α1δVg1 =
Cg1

C1

|e|δVg1 = |eV |

α2δVg1 =
Cg2

C2

|e|δVg2 = |eV | (7.14)

where α1 and α2 are the conversion factors between gate voltage and energy.

Combining Eqs. 7.8, 7.10 and 7.14, we can calculate the values of the total ca-

pacitances C1,2 and mutual capacitance Cm.

Quantized states

For sufficiently large bias voltages, multiple discrete energy levels can enter the

bias window. In this case, not only ground states, but also excited states con-
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Figure 7.9: Region within the dotted square of Fig. 7.2a, corresponding to the ‘unit
cell’ of the double-dot stability diagram, at finite bias voltage. The solid lines separate
the charge domains. Classically, the regions of the stability diagram where current
flows, are given by the gray triangles. In the case of one discrete level per dot, as in the
schematic pictures, resonant tunneling is only possible along the side of the triangle
that coincides with the dashed line connecting the original triple-points (• and ◦).
However, also in this case inelastic tunneling and co-tunneling still contribute to a
finite current within the gray triangles.
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Figure 7.10: Schematic diagrams showing the possible alignments of the electrochem-
ical potentials in the case of two levels per dot. (a) The first electrochemical potentials
to align correspond to the ground states of both dots, G1 and G2. (b) When moving
down the levels in the right dot, the next states to align are the ground state of the
left dot, G1, and the first excited state of the right dot, X2. (c) Shifting the levels of
the right dot further down, results in transport through the first exited state of the left
dot, X1 and the right dot ground state, G2. (d) Finally, the excited states, X1 and X2

align.

tribute to the conductance. For the illustrative case of two levels per dot, the

four possible alignments of the electrochemical potentials are shown in Fig. 7.10.

Note that the electrochemical potentials are drawn for the situation where one

electron is on the double dot and a second one is tunneling on to it. Due to

Coulomb blockade, not less than one and not more than a total of two electrons

is allowed on the double dot. The labeling of the electrochemical potentials, using

the notation introduced in section 7.2.1 is straightforward, except for tunneling
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through the excited state of dot 1 in Figs. 7.10c,d. Although the second electron

is tunneling into the lowest level available in dot 1, this level is only accessi-

ble because dot 1 is in an excited state. For that reason, we choose the label

µ1,1(2, 0) (instead of µ1,0(2, 0)). The successive alignment of ground and excited

states leads to resonances within the conductance triangles, as shown in Fig. 7.11.

The off-resonance conductance in the grey triangles is due to inelastic processes

[7, 20] and co-tunneling [37]. Note that V is so large that the two triangles partly

overlap.

Figure 7.8b shows the triple points within the black rectangle of Fig. 7.8a at

finite bias. The triangular regions are clearly visible as well as the resonances

within the triangles. The growth of the triangular regions with increasing bias

voltage is illustrated in Fig. 7.12. Whereas only the ground state resonance is

observed in Fig. 7.12a, multiple resonances appear within the triangles of Fig.

7.12b.

Figure 7.11: Schematic stability diagram corresponding to the finite-bias diagrams of
Fig. 7.10. The black solid lines within the gray triangles correspond, from bottom to
top, to the level alignments shown in Fig. 7.10(a)-(d), respectively.
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Figure 7.12: Experimental gray-scale plots of stability diagrams in the non-linear
regime, obtained in the device of Fig. 7.6a. Dark (light) gray-scale corresponds to large
(small) current through the double dot. The bias voltage between source and drain
contacts is 200 µV (a) and 1 mV (b).

7.3 Resonant tunneling

In this section we discuss resonant tunneling experiments through the double

dot of Fig. 7.6a with discrete energy levels [7]. We show that, under appropri-

ate conditions, the resonance widths are only determined by the lifetime of the

discrete energy states, independent of the electron temperature in the leads. A

small asymmetric deviation from the Lorentzian resonance shape is attributed to

inelastic tunnel processes.

The current-voltage (I-V ) curves of the single quantum dots in Fig. 7.13 pro-

vide two clear signatures for the presence of both Coulomb blockade effects and

discrete levels. At low bias voltages, the current through the dot is suppressed

by the Coulomb blockade [1]. Increasing the bias voltage lifts the blockade. The

current shows a stepwise increase: each time when an additional level enters the

bias window −|e|V , an extra transport channel is opened and the current in-

creases [38-40]. Hence, the voltage spacing of the current steps directly reflects

the energy spacing of the levels. For the average level spacing, δ, we obtain δ1 =

125 µeV for dot 1 (upper inset) and δ2 = 225 µeV for dot 2 (lower inset). The

difference in these two energies reflects the different lithographic sizes of the two

dots (see Fig. 7.6a). Accounting for the depletion areas, we estimate that dot 1
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has an effective diameter of 240 nm and contains about N1 = 90 electrons, while

dot 2 has an effective diameter of 200 nm and contains roughly N2 = 60 electrons.

Using the Fermi energy, EF , at bulk density, we estimate δ1 ≈ 2EF/N1 = 150

µeV and δ2 ≈ 2EF/N2 = 230 µeV. This is in good agreement with the estimates

obtained from the I-V curves. From the dimensions of the Coulomb diamonds

[1, 35] we obtain the charging energies EC for adding an electron to the dot : EC1

= 1.1 meV (dot 1) and EC2 = 1.8 meV (dot 2).

Figure 7.13: I-V curve of the double dot, showing sharp resonances in the current
when two discrete levels align. Upper inset: I-V curve of dot 1. Lower inset: I-V
curve of dot 2. Both insets show a suppression of the current at low voltages due to
the Coulomb blockade and a stepwise increase of the current due to the discrete energy
spectrum of the dot (from Ref. [7]).

We focus on the role of the discrete levels and consider the charging energies

as constant offsets in the transport conditions. Figure 7.13 shows an I-V curve

of the double dot with all three tunnel barriers set in the weak-tunneling regime.

The Coulomb blockade suppresses the current through the double dot at low bias

voltages. At larger bias the current shows sharp resonances. The spacing of the

resonances is about 250 µeV. This is of the same order as the level spacing in the

single dots.

The same resonances are seen when we sweep the gate voltage. Figure 7.14

shows the current through the double dot versus the gate voltage on gate 1, Vg1,

with V = 280 µeV. This corresponds to a vertical cut through a stability diagram

as shown in Fig. 7.12. The current shows three groups of sharp resonances sepa-
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rated by regions of zero current with a period ∆Vg1 = 9 mV in gate voltage Vg1.

With only dot 1 formed, we observe Coulomb oscillations as a function of Vg1 with

the same period ∆Vg1; each period thus corresponds to a change of one electron

in dot 1, while keeping the number of electrons on dot 2, N2, constant. ∆Vg1

corresponds to the horizontal dimension of the honeycomb unit cell, as indicated

in Fig. 7.3 in section 7.2.1.

Figure 7.14: Current through the double dot versus gate voltage Vg1 using a bias
voltage V = 280 µV. Inset: The current through the double dot as a function of Vg3
with V = 1 mV, showing that the number of resonances increases with bias voltage
(from Ref. [7]).

When elastic tunnel processes are the dominant transport mechanism, the

current through the double dot is resonantly enhanced only when two levels in

dot 1 and 2 align, as explained in section 7.2.2. Tuning the level alignment with

V or Vg1 gives rise to the sharp resonances in Figs. 7.13 and 7.14. Resonant tun-

neling through the double dot is illustrated in the schematic potential landscape

of the double dot in Fig. 7.15. This figure shows a few of the levels in dot 1

(levels 1 to 5) and dot 2 (levels α and β). The electrostatic potentials ϕ1 and ϕ2

are tuned in such a way that transport through the double dot is possible only

via the charge states (N1, N2) → (N1 + 1, N2) → (N1, N2 + 1) → (N1, N2). The

finite bias voltage gives an electron from the left reservoir three choices to tunnel

into dot 1: it can tunnel to one of the unoccupied levels 3, 4 or 5. This changes

the electrostatic potential ϕ1 by the charging energy EC1 (the levels are drawn

at the positions applicable after an electron has occupied one of them). When

dot 1 relaxes to the ground state (the incoming electron occupying level 3), the
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electron can tunnel via level α to the right reservoir.

Note that if dot 1 does not immediately relax to the ground state, but remains

in an excited state, with an electron occupying either level 4 or 5, electron trans-

port through the double dot is temporarily blocked. The electron is ‘trapped’

within dot 1. Only after relaxation to the ground state a next tunnel event can

occur. If the relaxation rate is small on the scale of the tunneling rates through

the barriers, the inclusion of levels 4 and 5 within the bias window could therefore

lead to a decrease of the current through the double dot. On the other hand, in

case of fast relaxation, the enhanced tunnel probability when also the levels 4

and 5 lie within the bias window, could lead to an increase in the current. Note

that next to intra-dot relaxation, also inelastic tunneling from level 4 or 5 to

either level α or β can occur. This process is accompanied by emission of a boson

(usually phonons [20]) and contributes to the off-resonance current in Fig. 7.14.

Figure 7.15: Schematic potential landscape of the double quantum dot, where µL
and µR denote the electrochemical potentials of the left and right reservoirs and V the
bias voltage across the double dot. The 0D states in dot 1 are denoted by levels 1 to 5
and in dot 2 by levels α and β (from Ref. [7]).

The resonances in a particular group in Fig. 7.14 can be identified with the

energy diagram of Fig. 7.15. The first resonance occurs when level 3 aligns

with level α (peak 3-α). This corresponds to the rightmost peak in Fig. 7.14.

Increasing −|e|ϕ1 by making Vg1 more negative, brings transport off-resonance

until level 2 aligns with α (peak 2-α) followed by the third peak 3-β. Continuing

to sweep Vg1 increases the energy of level 3 above the electrochemical potential

µL of the left reservoir. This blocks transport and removes an electron from dot

1 permanently. The next group of resonances is observed when Vg1 is changed by

one Coulomb oscillation period ∆Vg1 (see Fig. 7.14). Note that the number of
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resonances decreases in the next two groups. Sweeping Vg1 also shifts the levels

in dot 2, due to a small cross-capacitance between gate 1 and 2. Transport is

possible until level α is shifted above µL (Vg1 < -470 mV).

The level spacing is obtained by converting gate voltage to energy [2] . This

yields an energy separation of resonances 2-α and 3-α by 70 µeV, which is the

energy separation of levels 2 and 3. In the same way we find for levels α and β a

separation of 200 µeV. Both values are in good agreement with the typical values

we found above. On increasing V , we observe that the number of resonances

in a particular group increases. The inset to Fig. 7.14 shows approximately 11

resonances as Vg3 is swept. These observations are in agreement with the resonant

tunneling picture of Fig. 7.15: when V is larger, more levels can align.

Generally, the relaxation rate to the ground state is not necessarily higher

than the tunnel rate through the dot. In Fig. 7.16 the amplitude of the ground

state resonance (see lower curve) clearly decreases with increasing bias voltage.

At the same time new resonances appear, having a larger amplitude than the

ground state resonance. This implies that in general transport through excited

states can play a significant role.

When a discrete level in dot 1 is at a distance much larger than the thermal

energy, kBT , from the electrochemical potential of the left lead, dot 1 acts as

low-temperature-pass filter for dot 2, such that only cold electrons contribute to

the current [41]. If the energy levels in the dots are separated by more than

kBT , the occupation of excited states becomes suppressed. This effectively leaves

the dot at zero temperature. Hence, the double dot geometry allows for an

accurate measurement of the intrinsic line width of the discrete levels, which is

not averaged by the Fermi-Dirac distribution of the electrons in the reservoirs.

In other words, an energy resolution better than kBT can be obtained. The

line shape of a resonance is lorentzian when only elastic tunneling is important

[42, 43]. In our geometry (assuming a bias voltage sufficiently large such that

electrons must tunnel from the left lead to the left dot to enter the system, and

must tunnel from the right dot to the right lead to leave it again) the current is

given by

I(∆E) = e
Γ3|t12|2

(∆E/h)2 +
Γ2

3

4
+ |t12|2

(
2 + Γ3

Γ1

) (7.15)

where ∆E is the energy difference between two discrete energy levels in the two

dots, Γ1 is the tunnel rate from the left lead to dot 1, |t12| is the modulus of the

tunnel coupling between the two dots and Γ3 is the tunnel rate from dot 2 to the
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Figure 7.16: Current through the double dot of Fig. 7.6a versus the voltage on gate
3, Vg3 for bias voltages, V , between 0.2 mV (lower trace) and 1.6 mV (upper trace).
The traces have been given an offset proportional to their bias voltage for clarity.

right lead. Note that for elastic tunneling the resonance width is only determined

by the lifetime of the 0D states and independent of temperature.

Figure 7.17 shows a single resonance (black dots). The right-hand side of

the peak fits very well with the lorentzian line shape of Eq. 7.15 (solid line),

while the left-hand side shows a deviation from the lorentzian fit. The only

free fit parameter is the full width at half maximum, FWHM = 5 µeV. From

the maximum current and the width of the resonance we find with Eq. 7.15 a

tunnel coupling |t12| ≈ 0.2 µeV and a tunneling rate between the right dot and
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Figure 7.17: Enlarged resonance measured in a second device of identical design
using a bias voltage of 400 µeV. The data points (black dots) are fit to a Lorentzian
line shape (solid line). For comparison we plot a thermally broadened resonance with
a fitted temperature T = 34 mK (dashed line) (from Ref. [7]).

the right lead Γ3 ≈ 10µeV. For comparison, we have fitted the resonance with

a thermally broadened resonance I(∆E) ∼ cosh(∆E/2kT )−2 (dashed line) [44].

The top is fit very well for T = 34 mK, but there is a large deviation in both

tails of the resonance. On the right-hand side, the deviation can be accounted

for by the lorentzian broadening. At the left-hand side, the deviation consists

of two components. The first one is the same lorentzian broadening as observed

on the right-hand side. The second one, however, is an asymmetric contribution

only occurring on this side of the resonance. The asymmetric contribution to

the current appears at the side where an electron tunnels from a higher to a

lower electrochemical potential. Upon reversing the sign of V , we find that the

asymmetry appears at the other side of the resonance. As shown in Ref. [20],

this is due to inelastic tunnel processes. In such a process, an electron can tunnel

inelastically and spontaneously emit its energy as a photon or a phonon.
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7.4 Magnetic field spectroscopy

In this section we measure the energy evolution versus magnetic field, B, of en-

ergy states near the Fermi energy, EF , in the double quantum dot shown in Fig.

7.6a. As a function of B and the voltage on gate 3, Vg3, we observe crossings

and anti-crossings between Coulomb peaks. The resolution is high enough that

avoided crossings in the spectrum of a quantum dot can be resolved [18]. To our

knowledge, these are the only existing data revealing intra-dot level repulsion in

a quantum dot system.

The experiments are performed in the weak coupling limit, such that mixing

between quantum states in one dot with states in the other dot or in the leads

is negligible (see section 7.5). We sweep the gate voltages over small ranges and

focus on a particular charging transition; i.c. transitions between (N1+1,N2) and

(N1,N2+1) only. Since we discuss only one transition at a time, we can, for sim-

plicity, leave out the Coulomb energies from the discussion and concentrate on

the alignment of discrete energy levels.

Using the notation introduced in section 7.2.1, we label the accompanying

electrochemical potentials µ1,n(N1, N2) for dot 1 and µ2,n(N1, N2) for dot 2 (or

simply µ1(2),n). The condition for tunneling between the lowest possible states,

i.e. from ground state to ground state, is µ1,0(N1 + 1, N2) = µ2,0(N1, N2 + 1).

To tunnel from the first excited state of dot 1 to the ground state of dot 2, the

condition becomes µ1,1(N1 + 1, N2) = µ2,0(N1, N2 + 1). The changes in the elec-

trochemical potential µ1,n+1−µ1,n and µ2,n+1−µ2,n are typically ∼ 150-200 µeV.

Figure 7.18a shows a typical set of current traces for different magnetic fields

while sweeping Vg3. The bias voltage V = 1.2 mV is such that several discrete lev-

els in each dot are between the electrochemical potentials of the two leads. This is

similar as in the inset to Fig. 7.14, but now measured for different magnetic fields.

The change in Coulomb peak position versus B, ∆V peak
g3 (∆B), is proportional to

the difference in the B-evolution of the electrochemical potentials µ1,n(B) and

µ2,n(B)

∆µ(∆B) = [µ1,n(B + ∆B) − µ1,n(B)] − [µ2,n(B + ∆B) − µ2,n(B)]

= α∆V peak
g3 (∆B) (7.16)

where α is the conversion factor between Vg3 and the electrostatic potential of

dot 2. Note that if the states µ1,n(B) and µ2,n(B) have the same B-dependence,

the Coulomb peak position does not change. The energy resolution of ∆µ(∆B)

is ∼ 5 µeV, corresponding to kBT ∼ 50 mK.

The data in Fig. 7.18a contain several interesting features. First, we observe

crossings between different peaks as well as anti-crossings (two are indicated by
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Figure 7.18: (a) Current through the double dot sweeping the voltage on gate 3, Vg3,
at different magnetic fields, B. The curves have been given an offset for clarity. From
the leftmost to the rightmost curve, B increases from 300 mT to 600 mT in 3 mT
increments. The conversion factor α between Vg3 and the electrostatic potential of dot
2, α = -63 µeV/mV, is determined through independent measurements from which we
deduced the energy scale, indicated by the vertical arrow in the lower left corner (α
does not change in this magnetic field range). (b) The first two diagrams show how
levels may evolve in each of the two dots as a function of B. When these four levels are
scanned along each other by sweeping Vg3, this results in peak positions as sketched in
the rightmost diagram.
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arrows). Second, pairs of peaks exhibit the same B-dependence. These are gen-

eral features that we observe at several charge transitions (that is for several

choices of N1,N2). Independent measurements on one of the individual dots

also show states evolving in pairs below B ∼ 0.5 T. The observed pairing and

(anti-)crossing of the Coulomb peaks in the double dot experiments can then be

explained as shown schematically in Fig. 7.18b. Suppose two levels in one dot

have an anti-crossing in their B-dependence. Then two paired levels in the other

dot, having the same B-dependence, both probe this anti-crossing. At the points

where two Coulomb peaks actually cross, two levels in dot 1 align with two levels

in dot 2 simultaneously (though only one electron can tunnel at a time, due to

Coulomb blockade).

For the interpretation of the data as schematically given in Fig. 7.18b, tun-

neling through the excited state of dot 1 is a key ingredient. If dot 1 would relax

to its ground state much faster than the tunnel rate through the barriers after an

electron has tunneled onto it via µ1,1, we would only observe the two lower traces

in the rightmost diagram of Fig. 7.18b. However, our data suggest a relatively

slow relaxation rate between the excited and ground state of dot 1. Recent exper-

iments on (single) quantum dots have shown that indeed relaxation times can be

of the order of µs or longer when relaxation to the ground state involves electron

spin flips [45]. The condition for the relaxation rate from the excited state to

the ground state in dot 2 is more subtle. The electron can tunnel onto dot 2 via

µ2,1 and leave dot 2 either directly or after a relaxation process from µ2,1 to µ2,0

has occurred (this second possibility requires µ2,0 ≥ µR). For transport through

the double dot, the relaxation rate in dot 2 does not necessarily need to be slow

as well. However, if the relaxation rate would be too high, the anti-crossing as

shown in the middle diagram of Fig. 7.18b would smear out. The constant level

spacing µ1,1 −µ1,0 in dot 1 (see left diagram of Fig. 7.18b) could be explained by

an exchange energy, e.g. when the upper level would correspond to a spin singlet

state and the lower level to a spin triplet [46].

7.5 Microwave spectroscopy

In this section we present microwave (0-50 GHz) spectroscopy experiments [1,

15, 16, 47] on double quantum dots for different coupling and microwave power

regimes [19, 48]. We use photon assisted tunneling (PAT) processes, as described

in sections 7.5.2 and 7.5.3, to measure the energy differences between states in

the two dots of the devices shown in Figs. 7.6a and 7.6b. Depending on the

strength of the inter-dot coupling, the two dots can form ionic-like [7,12,14-16]
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or covalent-like bonds [17, 19, 48]. In the first case, the electrons are localized on

individual dots, while in the second case, the electrons are delocalized over both

dots. The covalent binding leads to a symmetric and anti-symmetric state, whose

energy difference is proportional to the tunneling strength between the dots.

For the microwave experiments we make use of a coaxial cable. From room

temperature to the 1K-pot, a 0.085 inch semi-rigid Be-Cu (inner and outer con-

ductor) coaxial cable is used. From the 1K-pot to the mixing chamber, we use

a 0.085 inch semi-rigid stainless steel (inner and outer conductor) coax. From

the mixing chamber to the sample, various types of low attenuation semi-rigid

or flexible coaxial cable can be used, since here the thermal conductivity is no

longer a constraint. Finally, the coaxial cable is capacitively coupled (typically

through a 10 pF capacitor) to one of the gate electrodes of the sample, usually

the center gate. This gate is capacitively coupled to both dots, and hence part

of the incident power can generate a microwave oscillating potential across the

center barrier.

7.5.1 Two-level systems

So far, we assumed a purely electrostatic coupling between both dots, whereas

tunnel coupling was neglected. However, when electrons can tunnel coherently

from one dot to the other at appreciable rates, the eigenstates become delocalized,

extending over the entire double dot system. In principle, these are quantum-

mechanical many-body states of the two coupled dots. It is very difficult to

give a full description of such a many-body system. Therefore, we discuss here

the elementary case of a quantum-mechanical two-level system, which is quite

adequate in grasping the physics of a tunnel-coupled double dot. Basically, we

only take into account the topmost occupied level in each dot and neglect the

interaction with electrons in lower energy levels.

We consider a double dot consisting of two well-separated dots, described by

a total Hamiltonian H0 [49], with eigenstates |φ1〉 and |φ2〉, and eigenenergies E1

and E2 (Fig. 7.19a)

H0 |φ1〉 = E1 |φ1〉
H0 |φ2〉 = E2 |φ2〉 (7.17)

We introduce a finite tunnel coupling between the levels in both dots described

by the Hermitian matrix T, which for simplicity [49] we assume to be purely
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non-diagonal

T =

(
0 t12
t21 0

)
, t12 = t∗21, t21 = |t21| eiϕ (7.18)

One obtains a new Hamiltonian, H = H0 +T, with delocalized eigenstates |ψS〉
(symmetric state) and |ψA〉 (anti-symmetric state), and eigenvalues ES and EA

H |ψS〉 = ES |ψS〉
H |ψA〉 = EA |ψA〉 . (7.19)

The new eigenvalues can be expressed in terms of the eigenvalues of the uncoupled

double dot and the tunnel matrix elements as follows

ES = EM −
√

1

4
(∆E)2 + |t12|2

EA = EM +

√
1

4
(∆E)2 + |t12|2 (7.20)

where EM = 1
2
(E1 + E2) and ∆E = E1 − E2 and |t12| = |t21|. The eigenstates

|ψS〉 and |ψA〉 in the basis of |φ1〉 and |φ2〉 are written

|ψS〉 = − sin
θ

2
e−iϕ/2 |φ1〉 + cos

θ

2
eiϕ/2 |φ2〉

|ψA〉 = cos
θ

2
e−iϕ/2 |φ1〉 + sin

θ

2
eiϕ/2 |φ2〉 (7.21)

with tan θ = 2|t12|/∆E. Figure 7.19b shows the eigenenergies of the coupled

two-level system as function of ∆E. The renormalized energy difference, ∆E∗, is

given by

∆E∗ = EA − ES =
√

(∆E)2 + (2|t12|)2. (7.22)
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Figure 7.19: Schematic diagrams of a two-level system. (a) Unperturbed energy levels
E1 and E2 (solid lines), and energy levels belonging to the symmetric state, ES , and
the anti-symmetric state, EA. (b) Energies ES and EA versus the energy difference
∆E = E1 − E2. For vanishing coupling (|t12| ≈ 0), the levels cross at the origin
(dashed straight lines). For non-zero coupling, an ‘anti-crossing’ occurs: the curves
belonging to ES and EA as function of ∆E are branches of a hyperbola (solid lines)
whose asymptotes are the unperturbed levels (see also Ref. [49]).

Note that the effect of the coupling is stronger for small ∆E, i.e. close to the

crossing of the unperturbed energies E1 and E2. Where E1 and E2 cross (∆E =

0), we have an anti-crossing of EA and ES, with EA −ES = 2|t12|, the minimum

bonding–anti-bonding energy difference. For large ∆E, the eigenenergies of the

coupled double dot approach the eigenenergies of the uncoupled dots, E1 and E2.

The general solution of the time-dependent Schrödinger equation can be written

in the form

|ψ(t)〉 = λe−iEAt/� |ψA〉 + µe−iESt/� |ψS〉 . (7.23)
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With Eq. 7.21, |ψ(t)〉 can be expressed in terms of |φ1〉 and |φ2〉. Since |φ1〉 and

|φ2〉 are not eigenstates of the total Hamiltonian H, they are no longer stationary

states. If the system is in state |φ1〉 at time t = 0 (|ψ(0)〉 = |φ1〉) the probability

P12(t) of finding it in the state |φ2〉 at time t is

P12(t) = |〈φ2|ψ(t)〉|2 4|t12|2
4|t12|2 + (∆E)2

sin2

[√
(∆E)2 + (2|t12|)2

t

2�

]
. (7.24)

Equation 7.24 describes a coherent charge oscillation in the double dot system.

7.5.2 Photon assisted tunneling in weakly coupled dots

If the inter-dot coupling is weak, electrons are strongly localized on the individual

dots. In section 7.2.1 we saw that we expect a resonant current through the double

dot system if µL ≥ µ1 = µ2 ≥ µR. If we represent a weakly coupled double dot by

a two-level system, we need the discrete energy levels E1 and E2 to align within

the bias window. We will only consider the discrete, quantum contribution to the

electrochemical potentials and therefore simply use the discrete level notation E1

and E2 instead of µ1 and µ2.

An additional time-varying potential Vaccos(2πft) can induce inelastic tunnel

events when electrons exchange photons of energy hf with the oscillating field

(frequency, f , is typically 1-75 GHz in our experiments). This inelastic tunneling

with discrete energy exchange is known as photon assisted tunneling (PAT) [50-

52]. PAT through a single quantum dot with well resolved discrete 0D-states

is reviewed in Ref. [53]. PAT is an invaluable spectroscopic tool for studying

the energy spectra of quantum dots. A theoretical study of PAT in double dots

is given in Refs. [54, 55]. A voltage drop Vaccos(2πft) across a tunnel barrier

modifies the tunnel rate through the barrier as [56]

Γ̃(E) =
∞∑

n=−∞
J2
n(α)Γ(E + nhf) (7.25)

Here n = 0,±1,±2, ..., and Γ̃(E) and Γ(E) are the tunnel rates at energy E

with and without an ac voltage, respectively. J2
n(α) is the square of the nth

order Bessel function of the first kind, evaluated at α = eVac/hf , which describes

the probability that an electron absorbs (n > 0) or emits (n < 0) n photons of
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Figure 7.20: Squared Bessel functions of the first kind, J2
n(α), for n = 0, ± 1, ± 2.

The inset schematically shows the development of sidebands of the original energy as a
consequence of the microwave field. A positive (negative) n corresponds to the absorp-
tion (emission) of n photons during the tunnel process. Elastic tunneling corresponds
to n = 0.

energy hf . Thus, the effect of the interaction between a single-electron state with

a classical, oscillating field is that the energy state E is split in a set of states

E + nhf (see inset to Fig. 7.20). The power of PAT as a spectroscopic tool lies

in the fact that PAT can only take place if the energy difference ∆E equals an

integer number times the photon energy hf : ∆E = nhf , see Fig. 7.21. For the

multiple photon processes (|n| > 1) to take place, the microwave power needs to

be sufficiently large.

To use PAT as a spectroscopic tool, we can make use of the configurations

shown in Fig. 7.21. In the pumping configuration [57, 58], the double dot is

operated at zero bias voltage. Absorption of a photon with energy hf = ∆E

leads to pumping of an electron from left to right (Fig. 7.21a) or vice versa (Fig.

7.21b). The advantage of this configuration is that relaxation due to spontaneous

emission does not contribute to the current. Figure 7.22 schematically shows how

the honeycomb unit cell of Fig. 7.5 changes in the presence of a microwave field.

Alternatively, the double dot can be operated in the large bias regime as

depicted in Fig. 7.21c,d. In this regime, in the case of weak coupling with |t12| �
∆E, hf, �ΓL,R, the dc PAT current is given by [54]
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Figure 7.21: Schematic electrochemical potential diagrams of photon assisted tunnel-
ing (PAT) in a weakly coupled double quantum dot. The upper diagrams (a) and (b)
show absorption of a photon with energy hf = ∆E in the so called pumping configu-
ration. Although V = 0, an electron can tunnel from left to right through the dot (a),
or vice versa (b). The lower diagrams show absorption (c) and (stimulated) emission
(d) of a photon with energy hf = ∆E in the large bias configuration.

IPAT = e|t12|2ΓR

∞∑
n=−∞

J2
n(α)/(1

4
Γ2
R + (n2πf − ∆E/h)2) (7.26)

The current is composed of a number of satellite peaks, separated by the photon

energy hf and all with width ΓR. Note that the satellite peaks can become of

the same order of magnitude as the main resonance, but that they have a smaller

width than the main resonance. The PAT experiment described below, is per-

formed on a weakly coupled dot in the large bias regime.

The double dot, shown in Fig. 7.6a, is tuned such that only one level in each

dot contributes to electron transport. The gate voltages are used to shift the level

in dot 1 and in dot 2. The resonance in the lowest trace in Fig. 7.23a arises from

the alignment of the two levels. The other traces are measured while applying
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Figure 7.22: Schematic of a double quantum dot stability diagram in the weak cou-
pling and linear transport regime irradiated by microwaves with frequency f . Next to
the triple points, finite current is measured along the PAT lines at a distance δPAT from
the line µ1(1, 0) = µ2(0, 1), where ∆E = hf . The various PAT processes are illustrated
by the electrochemical potential diagrams.

a microwave signal. The satellite resonances are due to PAT processes which

involve the emission (left satellite peak) or absorption (right satellite peak) of

one photon. Figure 7.23b shows that the energy separation of the satellite peaks

from the main peak, ∆E, depends linearly on frequency between 1 and 50 GHz.

As we will discuss below, this linearity implies that the tunnel coupling is negli-

gible. The electrons are localized on the individual dots and they have an ionic

bonding. The line proportional to 2hf is taken from data at higher microwave

powers where electrons absorb or emit two photons during tunneling.

As the microwave power is increased, more satellite peaks appear correspond-

ing to the absorption of multiple photons, which are observed up to n = 11 (see

Fig. 7.24). A high power microwave field strongly perturbs tunneling. This is

reflected by the non-linear dependence of the peak heights on microwave power.
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Figure 7.23: Weakly coupled double quantum dot in the low microwave power regime.
(a) The upper schematic pictures illustrate three configurations of the discrete energy
level in the left dot relative to the level in the right dot (thick solid lines). The elec-
trochemical potentials of the leads are indicated by thinner solid lines. The bottom
curve shows the current as a function of the voltage on gate 1, Vg1, (see Fig. 7.6b) for
source-drain voltage, V = 500 µV without applying microwaves. A single resonance
occurs when two levels align. The other curves, which have been offset for clarity, show
the current when microwaves with frequency f from 4 to 10 GHz are applied. Now,
two additional satellite resonances occur when the two levels are exactly a photon en-
ergy apart. The corresponding photon-assisted tunneling processes are illustrated in
the upper diagrams. (b) Distance between main resonance and first two satellites as
a function of the applied frequency from 1 to 50 GHz. The distance is transferred
to energy through ∆E = κ∆Vg1 where κ is the appropriate capacitance ratio for our
device that converts gate voltage to energy. The agreement between data points and
the two solid lines, which have slopes of h and 2h, demonstrates that we observe the
expected linear frequency dependence of the one and two photon processes.
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Figure 7.24: Weakly coupled double quantum dot in the high microwave power
regime. The main graph shows current versus gate voltage. The dashed curve is
without microwaves and contains only the main resonance. The solid curves are taken
at 8 GHz for increasing microwave powers resulting in an increasing number of satellite
peaks. At the right side of the main peak, these correspond to photon absorption. V =
700 µV and the photon energy hf = 32 µeV at 8 GHz. At the highest power we observe
11 satellite peaks, demonstrating multiple photon absorption. (left inset) Schematic
diagram showing multi-photon absorption. (right inset) Height of the first four satellite
peaks as a function of the microwave amplitude. The observed dependence shows the
expected Bessel function behavior given in Fig. 7.20.

In the right inset to Fig. 7.24 the peak heights of the main peak and the first four

photon satellite peaks are shown, which agree well with the expected squared

Bessel function behavior shown in Fig. 7.20.

7.5.3 Photon assisted tunneling in strongly coupled dots

The large bias configuration of Figs. 7.21c,d was successfully employed to study

PAT in a weakly coupled double dot system. For the microwave spectroscopy

of a strongly coupled double dot we will make use of the pumping configuration

shown in Fig. 7.25. With increasing the coupling between the dots, the sponta-
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neous emission rate from the higher level to the lower one increases as well. The

advantage of the pumping configuration is that these processes are ‘filtered out’

and do not contribute to the current.
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Figure 7.25: Schematic electrochemical potential diagrams of PAT in a strongly
coupled double quantum dot in the pumping configuration. The diagrams show the
symmetric state with wave function ψS and energy ES (lower dashed line), and the
anti-symmetric state with wave function ψA and energy EA (upper dashed line) in
combination with the eigenenergies E1 and E2 of the weakly coupled double dot (solid
lines). (a) E1 = E2 = 0, ∆E∗ = EA − ES = 2|t12|. Irradiation with photons with
energy hf = 2|t12| leads to PAT, but the net current through the double dot remains
zero. (b) By lowering −|e|ϕ1 and increasing −|e|ϕ2 the weight of the wave functions is
redistributed such that net electron transport from left to right occurs. (c) By increas-
ing −|e|ϕ1 and lowering −|e|ϕ2 the weight of the wave functions is redistributed such
that net electron transport from right to left occurs.

Figure 7.25a schematically shows the symmetric and anti-symmetric states

in the double dot for ∆E = 0. When microwave radiation is applied with a

frequency such that hf = ∆E∗ = EA − ES = 2|t12|, electrons are pumped from

the left lead to the right lead and vice versa. Since the weight of the symmetric

and anti-symmetric wave function is distributed equally over both dots (see Fig.

7.25a), there is no net current. However, if we detune the levels (|∆E| > 0)

the weight gets distributed asymmetrically as shown in Figs. 7.25b,c and a net

current is generated by applying microwave radiation matching hf = ∆E∗. Note

that for frequencies hf < 2|t12| no PAT is possible.

Multi-photon processes occur if the condition ∆E∗ = nhf (|n| > 1) is met.

Besides allowing for these higher order photon processes, a high power microwave

field also renormalizes the tunnel coupling to a smaller value. The energy splitting



112 Chapter 7. Double Quantum Dots in Series

Figure 7.26: Schematic of a double quantum dot stability diagram in the strong
coupling and linear transport regime irradiated by microwaves with frequency f . The
symmetric and anti-symmetric states are assumed to be singly occupied. At the solid
hyperbolic lines either µS or µA equals zero, marking the separation of charge domains.
At the dashed hyperbolic lines either µS or µA equals zero as well, but electron transport
is blocked. The triple points of the weakly coupled double dot (• and ◦) develop in
to the black and white crescent, respectively. At the position of the black and white
square no current occurs, as explained in the text. At a distance δPAT from the dotted
line connecting the crescents, ∆E∗ = hf and PAT occurs. The various configurations
of the electrochemical potentials are also illustrated.
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∆E∗ now becomes

∆E∗ =
√

(∆E)2 + [2J0(α)|t12|]2. (7.27)

The experiments for strong inter-dot coupling are performed on the device

shown in Fig. 7.6b. To single out the current only due to microwaves, we operate

the device as an electron pump driven by photons [57, 58] (see the diagrams in

Fig. 7.25). An electron is excited from the bonding to the anti-bonding state if

the condition hf = ∆E∗ is fulfilled, or conversely

∆E =
√

(hf)2 − (2J0(α)|t12|)2. (7.28)

Figure 7.26 schematically shows the stability diagram for a strongly coupled

double dot in the presence of a microwave field. Here we assume that the sym-

metric and anti-symmetric states can only be occupied by a single electron. In

other words, we assume spinless electrons. The triple points of the weakly cou-

pled double dot, denoted by • and ◦, develop into a black and a white crescent,

respectively. The length of these crescents increases with |t12|.
Moving along the dotted line connecting the crescents from lower left to upper

right, first the symmetric state aligns with the electrochemical potentials of the

leads (at the black crescent). Current through the double dot is possible via the

electron transfer process of Fig. 7.2d. At the black square, the anti-symmetric

state aligns with the leads. However, current is blocked, since an extra electron is

already added to the double dot and the charging energy ECm is not available yet.

At the white square, the electrochemical potential for adding the second electron

to the symmetric state aligns with the leads. As we assumed single occupation

of the delocalized states, current is blocked here as well. When arriving at the

white crescent, the electrochemical potential for adding the second electron to the

double dot in the (empty) anti-symmetric state becomes available. This enables

the hole transfer process of Fig. 7.2d.

The black bars at a distance δPAT from the dotted line connecting the cres-

cents, denote the places where ∆E∗ = hf and PAT occurs. Note that PAT

is only possible if the photon energy exceeds the coupling energy, hf ≥ 2|t12|.
Depending on the level configuration, pumping results in a negative or positive

contribution to the current, as shown in Fig. 7.27a (here we choose I > 0 for

an electron moving from left to right). Figure 7.27b shows a part of the corre-

sponding stability diagram between two triple points, clearly showing the energy

regions of constant charge and extra transport lines due to PAT.

Figure 7.28 shows measured current traces as a function of the uncoupled

energy splitting ∆E, where from top to bottom the applied microwave frequency
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Figure 7.27: Strongly coupled double dot in the low-power regime. (a) Current
through the double dot as function of the energy difference between the level in the
left and the right dot. The current trace is taken from the stability diagram in (b)
at the position indicated by the arrow. The diagrams depict the discrete levels E1

and E2 in the two dots for the case that the coupling is weak (solid lines) and the
bonding and anti-bonding states in the case of strong coupling (dotted lines). The PAT
processes leading to a negative (left diagram) and a positive current (right diagram)
are indicated. (b) Gray-scale plot of the current through the double dot versus the
energy level difference, ∆E, and the total energy, Et. The bias voltage is 6 µV and
the applied microwave frequency is 16 GHz such that hf = 66 µeV. The dashed lines
divide the stability diagram in 4 regions of stable electron numbers. In between the
two triple points clear features of photon-assisted tunneling are seen. The black arrow
indicates the position of the trace shown in (a).
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is decreased from 17 to 7.5 GHz in 0.5 GHz steps. At the highest frequencies,

the distance between the pumping peaks is close to 2∆E. However, the peak

distance decreases faster than linearly as the frequency is lowered; in fact the

peaks follow the dotted hyperbola rather than the dashed straight lines. The

distance goes to zero when the frequency approaches the minimum energy gap

between bonding and anti-bonding states, hf = 2|t12|. The coupling between the

Figure 7.28: Measured pumped current through the strongly coupled double dot.
Gates 1 and 3 are swept simultaneously in such a way that we vary the energy difference
∆E. The different traces are taken at different microwave frequencies, and are offset
such that the right vertical axis gives the frequency. The main resonance is absent as
we have set V = 0. The satellite peaks typically have an amplitude of 0.5 pA. For
weakly coupled dots the satellite peaks are expected to move linearly with frequency,
thereby following the straight dashed lines. In contrast, we observe that the satellite
peaks follow the fitted dotted hyperbola hf = [∆E2 + (2|t12|)2]1/2 using the coupling
|t12| as a fitting parameter.
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dots can be decreased by changing the gate voltage on the center gate to more

negative values, or by applying a magnetic field perpendicular to the sample. In

Fig. 7.29a we plot half the spacing between the positive and negative satellite

peaks as a function of frequency. The microwave power is kept as low as possible

in order to meet the condition eVac � hf . In that case J2
0(α) ≈ 1 and the general

relation Eq. 7.28 reduces to

∆E =
√

(hf)2 − (2|t12|)2. (7.29)

Different symbols correspond to different center gate voltage settings and mag-

netic fields. The solid lines are fits to Eq. 7.29. The good agreement with Eq.

7.29 demonstrates the control over the formation of a covalent bonding between

the two dots and that the condition eVac � hf is satisfied.

We now discuss the case eVac � hf . As can be seen in Fig. 7.20, J2
0(α) deviates

from 1 in this case and cannot be neglected as before [48]. In Fig. 7.29b we show

the power dependence for the case of a coupling of 60 µeV and a microwave

frequency of 16 GHz, as indicated by the circle in Fig. 7.29a (similar results

have been obtained for other couplings and microwave frequencies). The inset

to Fig. 7.29b shows the measured PAT current as a function of ∆E for different

powers. The absolute value of the microwave power at the position of the double

quantum dot is unknown. Therefore, we use a relative microwave power scale,

which is expressed in terms of the attenuation of the microwave source signal.

The positions of the PAT peaks at the lowest power are indicated with two

dashed lines. Increasing the microwave power from the lowest value, the PAT

peak separation becomes larger, which is in agreement with Eq. 7.28. For higher

powers, multi-photon processes can also take place, which result in extra current

peaks. Figure 7.29b shows half the PAT peak separation energy as function of the

relative microwave power. The solid line is a fit with Eq. 7.28, f = 16 GHz, 2|t12|
= 60 µeV. Because of the relative power scale, the fitting curve has been adjusted

horizontally to give the best fit. We thus see that the microwave power effectively

reduces the coupling between the dots. This is further illustrated by the vertical

dotted line in Fig. 7.29a at f = 16 GHz. At -33 dB the energy separation equals

hf , which implies that the higher microwave power has effectively reduced the

coupling between the dots. We can obtain an estimate of the power by noting

that J2
0(α) has its first zero for α = eVac/hf = 2.4 and hence Vac = 0.16 mV.
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Figure 7.29: (a) Half the spacing in gate voltage between the positive and negative
satellite peaks as a function of frequency for eVac � hf . Gate voltage spacing has
been transferred to energy difference ∆E (see also figure caption Fig. 7.23b). Different
curves correspond to different tunnel couplings |t12|. Solid lines are theoretical fits to
Eq. 7.29. In the limit of weak coupling, this reduces to ∆E = hf , which is indicated
by the dashed line. The resulting values for 2|t12| are given in the figure. The coupling
is varied by applying different voltages to the center gate or by changing the magnetic
field (� B = 3.3 T; � B = 2.2 T; other curves B = 0 T). The circle marks a coupling of
60 µeV and frequency of 16 GHz (dotted line). (b) Strongly coupled double dot (2|t12|
= 60 µeV) in the high microwave power regime for f = 16 GHz (along dotted line
in (a)). The inset shows the measured PAT current as a function of ∆E for different
powers. The positions of the PAT peaks at the lowest power are indicated with two
dashed lines. The PAT peak separation becomes larger for increasing microwave power.
For higher powers, multi-photon processes can also take place, which result in extra
current peaks. In the main part, half the PAT peak separation in energy as function
of the relative microwave power is shown. The solid line is a fit to Eq. 7.28, f = 16
GHz, 2|t12| = 60 µeV. Because of the relative power scale, the fitting curve has been
adjusted horizontally to obtain the best fit.
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7.6 Conclusions

By coupling two quantum dots in series, we obtain a system with fundamentally

different behavior and possibilities in comparison to a single quantum dot. In

this review we have discussed the superiority of a double quantum dot system in

determining the intrinsic lifetime of quantum states and in probing intra-dot level

repulsion. Next to the added value as a spectroscopic instrument, the double dot

manifests itself as an artificial molecule. By changing the inter-dot coupling, we

have been able to tune the double dot from an ionic-like bonded to a covalent-like

bonded molecule.

Now that the ability to create and manipulate double quantum dots has been

shown, the next challenge lies in the study and time-control of coherent phe-

nomena in these systems. Double quantum dots have been suggested as possible

candidates for building blocks of a quantum computer [5]. We have shown that it

is indeed possible to coherently couple dots, and that one can induce transitions

between the extended states. The next crucial step towards quantum logic gates

is to show that the coherence of the superposition is preserved on time scales

much longer than the time needed for manipulating the electron wave functions.

The time-resolved measurement of coherent charge oscillations in double quan-

tum dots using pulsed gate voltages, will be an essential step in determining the

dephasing time in these systems.

In addition, the role of the electron spin and its relaxation and dephasing

times (T1 and T2, respectively) need to be characterized, as they are essential

in the proposed quantum bit schemes based on coupled electron spins in double

dots [5]. The relaxation time T1 in quantum dots has been experimentally shown

to exceed 10 - 100 µs if the relaxation involves a spin-flip [59]. The determination

of the spin dephasing time T2, which is the most relevant timescale for quantum

computing purposes, will be an experimental challenge for the near future. We

conclude that our work on double dots so far, in combination with the results

on the spin relaxation times in this kind of systems, forms a promising point of

departure for further study on the suitability of double quantum dots as quantum

coherent devices.
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Chapter 8

Spontaneous emission spectrum in

double quantum dots

T. Fujisawa, T.H. Oosterkamp, W.G. van der Wiel
B.W. Broer, R. Aguado, S. Tarucha and L.P. Kouwenhoven

A double quantum dot device is a tunable two-level system for electronic energy

states. A dc electron current directly measures the rates for elastic and inelastic

transitions between the two levels. For inelastic transition energy is exchanged

with bosonic degrees of freedom in the environment. The inelastic transition rates

are well described by the Einstein coefficients, relating absorption with stimulated

and spontaneous emission. The most effectively coupled bosons in the specific

environment of our semiconductor device are acoustic phonons. The experiments

demonstrate the importance of vacuum fluctuations in the environment for little

circuits of coherent quantum devices.

This chapter has been published in Science 282, 932 (1998).
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Electronic quantum devices explore quantum mechanical properties of elec-

trons confined to small regions in a solid by means of modern fabrication tech-

niques. Existing devices include semiconductor resonant tunneling diodes [1]

(based on quantum mechanical confinement), superconducting Josephson junc-

tion circuits [2] (based on macroscopic phase coherence), metallic single electron

transistors [3] (based on quantization of charge), and molecular electronic devices

[4]. The principle of operation in circuits of these devices is based on controlling

energy states, for instance, by means of an external (gate) voltage. One source

for unwanted transitions and errors is always the thermal energy from a non-

zero temperature. However, even at zero temperature vacuum fluctuations in

the environment can give rise to transitions between states of non-equal energy

by spontaneous emission of an energy quantum. Such inelastic transitions cause

errors in many proposed schemes for quantum circuits. We have studied inelastic

transitions in a fully-controllable, two-level quantum system realized in a double

quantum dot device. We can relate the transition rates involving emission to

absorption rates by the Einstein coefficients over our full energy and temperature

range. At our lowest temperature we directly measure the energy-dependent rate

for spontaneous emission. In our specific semiconductor device this energy is

emitted into the environment formed by acoustic phonons.

Our double quantum dot (Fig. 8.1a) is fabricated in the two-dimensional elec-

tron gas (2DEG) of an AlGaAs/GaAs semiconductor heterostructure [5]. The

source and drain are large 2DEG regions which serve as leads for contacting cur-

rent and voltage wires. The two dots, L and R, are separated from each other

and from the leads, by potential barriers induced by negative voltages applied to

the three metallic gates. Tunneling between the different regions is sufficiently

strong to detect current, but weak enough such that the number of electrons in

each dot is a well-defined integer. The energy states in such fully confined regions

are discrete, 0D-states; resembling discrete atomic states [6, 7]. The discrete en-

ergies include contributions from single-electron charging energies, arising from

Coulomb interactions, and from quantum-mechanical confinement. The lowest

energy state for one additional electron in the left dot is labelled in Fig. 8.1b-d as

EL and similarly ER for the right dot. Fig. 8.1c illustrates the resonance condi-

tion, EL = ER, in which case an electron can tunnel elastically from an occupied

state in the source via EL and ER to an empty state in the drain. Such tunnel-

ing sequences of single electrons are regulated by the Coulomb charging energies

[3, 7]. When the two states are not aligned, EL �= ER, only inelastic transitions

are allowed for which some energy needs to be exchanged with the environment.

A measured off-resonance current, therefore, directly provides information about

the coupling between electrons on the dots to degrees of freedom in the envi-
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Figure 8.1: (a) Double quantum dot device defined in the 2DEG of a GaAs/AlGaAs
heterostructure by focused ion beam implantation. The narrow channel connects the
large 2D source and drain leads. Negative voltages (VGL, VGC , and VGR) applied to
the metal gates (GL, GC , and GR; widths are 40 nm) induce three tunable tunnel
barriers in the wire. The two quantum dots, L and R, respectively, contain ∼ 15 and
∼ 25 electrons; charging energies are ∼ 4 and ∼ 1 meV; and the measured average
spacing between single-particle states are ∼ 0.5 and ∼ 0.25 meV. (b, c, and d) Energy
diagrams (vertical axis) along the spatial axis through the dots (horizontal axis) for the
tunnel situations: absorption, elastic and emission. Thick vertical lines denote tunnel
barriers. The continuous electron states in the leads are filled up to the Fermi energies
µS and µD. The external voltage VSD between leads opens a transport window of size:
eVSD = µS − µD. The energy, ε ≡ EL − ER, is defined as the difference between the
topmost filled discrete-state of the left dot, EL, and the lowest discrete-state for adding
an extra electron to the right dot, ER. (The inter-dot capacitance prevents that EL and
ER are simultaneously occupied.) An elastic current can flow when ε = 0, otherwise
a non-zero current requires absorption (ε < 0 ) or emission of energy (ε > 0). Tc is
the tunnel coupling and Γi is the inelastic rate between the two dots. ΓL and ΓR are
the tunnel rates across the left and the right barriers. (e) Typical measurement of the
current (solid) versus ε at 23 mK. The measured current is decomposed in an elastic
(dashed) and an inelastic (dotted-dashed) part.
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ronment. The inelastic rates can be analyzed with well-developed methods in

quantum optics [8, 9].

Figure 8.1e shows a typical current spectrum versus ε ≡ EL−ER at our lowest

lattice temperature T = 23 mK [10]. The gate voltages VGR and VGL are swept

simultaneously such that the respective energies are like in Fig. 8.1b-d; that is,

ε = 0 occurs in the middle between the Fermi energies of source and drain, µS

and µD, and |ε| = eVSD is maximal corresponds to having the states EL and

ER aligned to one of the Fermi energies. To analyze the large asymmetry, we

decompose the total current Itot(ε) = Iel(ε) + Iinel(ε > 0) into a symmetric part

Iel(ε) = Iel(−ε) (dashed curve) and the remaining asymmetric part Iinel(ε > 0)

(dotted-dashed curve). At T = 0, Iel(ε) is due to elastic tunneling and has a

lorentzian line shape Iel(ε) = Iel,maxw
2/(w2 + ε2) [11]. The full width at half

maximum (FWHM), 2w, can be tuned by the central gate voltage VGC roughly

from 4 to 20 µeV. From measurements of Iel(ε) at positive and negative VSD it

is possible to extract values for the tunnel couplings ΓL, ΓR and Tc [11, 12].

The remaining current, Iinel(ε > 0), which is non-zero only for ε > 0 (at

T=0), is due to inelastic tunneling. In Fig. 8.1e, Iinel is non-zero over an energy

range of ∼100 µeV; this despite that the thermal energy kBT (23 mK) = 2 µeV

is much smaller. (The irregular fine structure is discussed below.) In general

we find that Iinel vanishes when one of the levels, EL or ER, crosses one of the

two Fermi energies. In the specific case of Fig. 8.1e, EL and ER cross the Fermi

energies simultaneously, implying that Iinel is cut off at ε = eVSD. Below this

cut off, the value of Iinel was not influenced by the value of VSD [13]. For T = 0,

we can write the condition for a non-zero inelastic current as µS > EL > ER >

µD = µS−eVSD. The amount of inelastic current depends on the transition rates

as: Iinel(ε) = e(Γ−1
L + Γ−1

i (ε) + Γ−1
R )−1. When the inelastic rate Γi(ε) from EL

to ER is much smaller than the rates through the outer barriers, this reduces to

Iinel(ε) = eΓi(ε).

The effect of a non-zero temperature on the current is shown in Fig. 8.2a.

A higher temperature T , enhances Itot on both the emission (ε > 0) and the

absorption (ε < 0) side. The absorption spectrum shows an exponential tem-

perature dependence, eε/kT (dashed lines) for absolute energies larger than the

elastic current measured at 23 mK, that is |ε| > w.

To analyze the temperature dependence, we assume boson statistics for the

degrees of freedom in the environment. The average occupation number 〈n〉
of environmental modes at energy ε is given by the Bose-Einstein distribution

function: 〈n〉 = 1/(eε/kT − 1). The rates for absorption, Wa, and emission,

We, can be expressed very generally by Wa = Baρ and We = A + Beρ, where

the Einstein coefficients stand for spontaneous emission (A), stimulated emission
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Figure 8.2: (a) Measured current versus ε for T = 23 to 300 mK. The current is
measured for eVSD = 140 µeV while sweeping VGR and VGL simultaneously in opposite
directions such that we change the energy difference ε. Gate voltage is translated to
energy ε by a calibration better than 10% with photon-assisted tunneling measurements
[16]. Dashed lines indicate exponential dependence, eε/kT , for |ε| � kT . Arrows point
at step-like structure on the emission side (ε > 0) and a shoulder on the absorption side
(ε < 0). From fits [11] to the elastic current part at 23 mK, we obtain hΓR ≈ hTc ≈ 1
µeV and hΓL ≈ 0.1 µeV for this data set. (b) Reconstructed current for different T .
The spontaneous emission spectrum derived from the measured data at 23 mK and
Eqs. 8.1 are used to reconstruct the full temperature and energy dependence. (c) The
absorption rate Wa (open symbols) and emission rate We (closed symbols) normalized
by the spontaneous emission rate A versus kT/|ε|. Circles, squares, upper and lower
triangles, and diamonds are taken at |ε| = 18, 24, 40, 60, and 80 µeV, respectively (see
also symbols in a). The solid line indicates the Bose-Einstein distribution, 〈n〉, whereas
the dashed line shows 〈n〉+ 1.

(Be) and absorption (Ba), and ρ is the energy density [8]. From the Einstein

relations, Ba = Be = A〈n〉/ρ [8], we obtain:

Γi(ε < 0) = Wa(ε) = 〈n〉A(−ε) (8.1)

Γi(ε > 0) = We(ε) = (〈n〉 + 1)A(ε)

To test whether the inelastic current follows emission and absorption statis-

tics, we calculate the full current spectrum from Eqs. 8.1. First, we obtain the

spontaneous emission rate from A(ε) = Iinel(ε > 0, T = 23 mK)/e. The trace
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at 23 mK is effectively at zero temperature for ε � 2 µeV since then 〈n〉 �
1. The emission current at higher temperatures follows from Iinel(ε > 0, T) =

e(〈n〉 + 1)A(ε), whereas the absorption current follows from Iinel(ε < 0, T) =

e〈n〉A(−ε). The reconstructed current spectrum is shown in Fig. 8.2b. The cen-

tral part of the curves (|ε| < 10 µeV) is kept blank since Eq. 8.1 does not include

the T -dependence of Iel. The calculated current reproduces the measured current

well up to 200 mK. Even the small step-like feature seen at ε ∼ 30 µeV is reflected

by a shoulder-like feature at ε ∼ -30 µeV in the measured and in the calculated

absorption spectra (indicated by arrows). For T > 200 mK the measured current

significantly exceeds the calculated current, which is probably due to thermally

excited electrons (Eq. 8.1 only describes the T -dependence of the environment.

The thermal excitations in the electron leads are not included.) Further confir-

mation of the applicability of the Einstein relations to our quantum dot system

follows from the prediction:

Iinel(ε > 0) − Iinel(ε < 0)

eA(|ε|) =
We −Wa

A
= 1

which is valid independent of temperature. Figure 8.2c shows a plot of the

normalized rates, Wa/A and We/A, versus kBT/|ε| for various ε and T up to 200

mK. The measured data closely follow the prediction We−We

A
= 1; that is, the

normalized rates, Wa/A and We/A, differ by one over the temperature range T

< 200 mK without fitting any parameter.

The inelastic rate for a two-level system coupled to a bosonic environment at

T = 0 is expected to have a Tc
2 dependence [14, 15]. Still without identifying the

bosonic environment, we can test this dependence on the elastic tunnel coupling

Tc between the two dots. Figure 8.3a shows that the inelastic current clearly

increases with Tc. For the largest coupling we obtain a saturation where the

elastic current peak can no longer be distinguished. By fitting the elastic current

part to a lorentzian line shape [11] we can obtain rough estimates for Tc as long as

the current is less than the saturation value. We find that with these fitted values,

the inelastic current scales as Tα
c with an exponent α = 2.5 ∼ 3, may be somewhat

larger than expected. Figure 8.3b shows the effect of the increased coupling on the

symmetric part of the current at low temperature. For small tunnel coupling, we

always obtain lorentzian line shapes. For increasing couplings, the data still fits

to a lorentzian tail on the absorption side. However, we generally find significant

deviations for small ε, implying that for large coupling the elastic and inelastic

rates can become of the same order. This may form a significant limitation for

the coherence time in coupled quantum devices [16].

The importance of fluctuations in the environment on electron tunneling
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through quantum devices has been recognized for a long time. Environmental

studies on Coulomb blockade devices have only discussed effects due to absorp-

tion [3, 17]. For emission it is required that electrons are first pumped to a

higher energy state. This has recently been done in a superconducting Cooper

pair transistor under microwave irradiation [18]. In the case of a double dot,

pumping occurs when EL > ER and an electron tunnels in from the left reservoir

to EL. A double dot thus offers a unique two-level system that is pumped by a

dc voltage without inducing heating currents. It is therefore possible to reach an

out-of-equilibrium situation so close to T = 0 that vacuum fluctuations become

the main source for generating electron transport.

To identify whether photons, plasmons, or phonons form the bosonic environ-

ment [19], we measured spontaneous emission spectra while placing the double

dot in different electromagnetic environments. In the regime 10-100 µeV, the typ-

ical wavelengths are 1-10 cm for photons and 0.3 to 30 cm for 2DEG plasmons.

We have tested the coupling to the photonic environment by placing the sample

in microwave cavities of different size [20]. To check the coupling to plasmons,

we have measured different types of devices with largely different dimensions of

the 2DEG leads, gate pads, and bonding wires. Both types of variation had no

effect at all on the emission spectra; even the fine structure was reproduced.

The third option of acoustic phonons is the most likely possibility [?]. Phonon

emission rates have been calculated for single dots [22]. For a double dot system,

we can obtain the general energy dependence [15]. For a deformation potential

we expect a rate dependence of εD−2 (ε for 3D phonons and constant for 2D

phonons) and for piezo-electric interaction of εD−4 (1/ε for 3D phonons and 1/ε2

for 2D surface acoustic waves) [23]. In Fig. 8.3c we compare traces measured on

two different types of devices. Here, the emission current is plotted versus ε on a

log-log scale. Ignoring the bumps, we find an energy dependence between 1/ε and

1/ε2. This implies that the dominant emission mechanism is the piezo-electric

interaction with 2D or 3D acoustic phonons. Note that a 1/ε or 1/ε2 dependence

should be avoided in coherent devices, since the inelastic rate becomes large near

resonance (ε ∼ 0) [16].

The bumps observed in both type of devices, suggest the existence of reso-

nances, for instance, due to a finite size in the phonon environment. The bumps

are particularly clear in the derivative of the current to energy (dotted curves in

Fig. 8.3a). The large bump in Fig. 8.3a at ε = 30 µeV corresponds to a frequency

of f = ε/h = 7.3 GHz. For 3D phonons this yields a wavelength λ3D = s3D/f =

640 nm (s3D = 4800 m/s is the 3D sound velocity), whereas for 2D surface acous-

tic waves λ2D = s2D/f = 380 nm (s2D = 2800 m/s). These wavelengths both,

more or less, fit with the dimensions of the two quantum dot devices. We have
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not yet been able to control these resonance by studying devices with a variety

of gate dimensions. However, we believe that it is possible to gain control over

Figure 8.3: Current spectrum for different coupling energies at 23 mK. (a) The mag-
netic field is 1.6 T for (i) and 2.4 T for the other curves [10]. The curves have an offset,
and curve (i) is multiplied by 5. Rough estimates for the coupling energies are: (i) hTc
(∼0.1 µeV) � hΓR (∼10 µeV), (ii) hTc (∼1 µeV) ≈ hΓR (∼1 µeV), (iii) hTc > hΓR

(∼0.1 µeV), and (iv) hTc � hΓR (∼ 0.01 µeV) and ΓL � ΓR for all curves. The two
dotted curves are the derivatives −dI/dε in arbitrary units for curves (i) and (ii) to
enhance the bump-structure. (b) Logarithmic-linear plots for (i) and (ii). Dashed lines
are lorentzian fits. For (ii) we chose parameters that fit the tail for negative ε. (c)
Logarithmic-logarithmic plots of the emission spectrum for two different samples. The
solid lines are taken on the FIB sample in Fig. 8.1a (upper trace is the same as (ii) in a;
lower trace is for coupling energies between (i) and (ii) in a). The dotted line is taken
on a surface gate sample with a distance between left and right barriers of 600 nm
[12]. The dashed lines indicate a 1/ε and 1/ε2 dependence expected for piezo-electric
interaction with 3D and 2D phonons, respectively.

the phonon environment by making 3D phonon cavities in hanging bridges [24]

or by creating a 2D phonon band gap using a periodic gate geometry [25].
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Chapter 9

Electro-magnetic Aharonov-Bohm effect

in a 2D electron gas ring

W.G. van der Wiel, Yu.V. Nazarov, S. De Franceschi,
T. Fujisawa, J.M. Elzerman, E.W.G.M. Huizeling,

S. Tarucha and L.P. Kouwenhoven

We define a mesoscopic ring in a 2-dimensional electron gas (2DEG) interrupted

by two tunnel barriers, enabling us to apply a well-defined potential difference

between the two halves of the ring. The electron interference in the ring is

modified using a perpendicular magnetic field and a bias voltage. We observe

clear Aharonov-Bohm oscillations up to the quantum Hall regime as a function

of both parameters. The electron travel time between the barriers is found to

increase with the applied magnetic field. Introducing a scattering model, we

develop a new method to measure the non-equilibrium electron dephasing time,

which becomes very short at high voltages and magnetic fields. The relevance of

electron-electron interactions is discussed.

This chapter has been submitted to Physical Review Letters.
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Aharonov and Bohm predicted that the phase of an electron wave is affected

by both magnetic and electric potentials, being observable in an interference

experiment [1]. A magnetic flux, Φ, threading a loop leads to an oscillating

contribution to the conductance with period Φ0 = h/e: the magnetic Aharonov-

Bohm (AB) effect. In a solid state device, AB oscillations are observable at

mesoscopic scale, where quantum coherence is preserved. The effect was first

observed in a metal ring [2] and later in 2DEG rings [3].

In the case of the electrostatic AB effect, as originally suggested, the electron

phase is affected by an electrostatic potential, although the electrons do not

experience an electric field [1]. The required geometry is difficult to realize and

so far only geometries have been investigated where an electric field changes

the interference pattern [4-6]. In Ref. [7] a ring geometry interrupted by tunnel

barriers was suggested, where a bias voltage leads to an electrostatically controlled

AB effect with predictions very similar to the original proposal [1]. This effect

was observed in a disordered metal ring with two tunnel junctions [8].

In this chapter, we report the observation of an electrostatic AB effect in a

quasi-ballistic ring-shaped 2DEG system interrupted by tunnel barriers. There

are two important distinctions from metal systems that play a key role in the

present study. First, only a few electron modes are involved in transport, in

contrast to tens of thousands in a typical metal wire. Second, in a 2DEG we can

enter the quantum Hall regime using a perpendicular magnetic field, B.

We observe both a magnetic and electrostatic AB effect up to the edge chan-

nel regime (filling factor ν = 3). The electron travel time between the barriers

increases with B. We ascribe this to the bending effect of the Lorentz force on the

electron trajectories. Importantly, the electrostatic oscillations form a new tool

to determine the non-equilibrium electron dephasing time, τφ. The possibility to

estimate the electron dephasing time at a controlled, finite energy and magnetic

field distinguishes this method from weak localization experiments used to esti-

mate the (equilibrium) electron dephasing time [9]. We find that τφ decreases as

a function of B and V and reaches τφ|ε| � � at the highest B, with ε the electron

energy measured from the Fermi level. This demonstrates the increasing impor-

tance of many-body effects at quantizing magnetic fields where the Fermi-liquid

picture and the quasi-particle concept are at the edge of applicability.

Our device (Fig. 9.1a) consists of an AB ring defined in a 2DEG [10]. The

gate electrodes Vgu and Vgl define a barrier in each arm of the ring. The effective

width of the arms supports Ntr � 10 transport channels (i.e. the conductance of

the ring without barriers is approximately 10e2/h at B = 0 T). In addition to the

dc bias voltage, V , we apply a relatively small ac voltage (3 to 10 µV) between

source and drain contacts. We measure the differential conductance, G = dI/dV ,
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Figure 9.1: (a) Atomic force microscope image of the device. The AB ring is defined
in a 2DEG by dry etching (dark regions, depth ∼ 75 nm). The 2DEG with electron
density 3.4 × 1015 m−2 is situated 100 nm below the surface of an AlGaAs/GaAs
heterostructure. In both arms of the ring (lithographic width 0.5 µm; perimeter 6.6
µm) a barrier can be defined by applying negative voltages to the gate electrodes Vgu
and Vgl. The other gates are not used. (b) Schematic energy picture at one of the
barriers (see text). (c) Differential AB conductance, GAB, as function of B at 15 mK
for different source drain voltages, V , separated by 5.3 µV. The traces have a vertical
offset. Four values for V are indicated on the right. The dashed line highlights a phase
change by a change in the amplitude and sign of the AB oscillations, indicating an
electrostatic AB effect.
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using a lock-in technique in a dilution refrigerator with a base temperature of 15

mK.

Figure 9.1c shows the differential AB conductance, GAB, versus B and V ,

around 1.9 T. GAB is extracted from the measured G, by fitting a polynomial to

the smoothly varying background in G. Subtraction of this polynomial yields the

oscillating part, GAB. The barriers are tuned such that the conductance through

one arm is 0.2 e2/h. GAB as function of magnetic field exhibits AB oscillations
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Figure 9.2: Gray-scale plots of the AB conductance in the plane of magnetic field
(vertical axis) around different B values and voltage, V (horizontal axis). Light gray
(dark gray) corresponds with maximum (minimum) AB conductance. White corre-
sponds with zero AB conductance. The phase-changes indicate the electrostatic period
which varies from V0 = 225 µV at B = 0.4 T to V0 = 60 µV at B = 4.7 T.
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with a period B0 = 1.0 mT, in good agreement with h/(eS), where S is the area

enclosed by the ring. The effect of the dc bias voltage is schematically shown in

Fig. 9.1b. The transmitted part of the electron wave has an energy εR, whereas

the reflected part has an energy εL with respect to the Fermi level in each half

of the ring (note eV = εR - εL and |εL|,|εR|,|eV | � EF ). The energy difference

leads to a phase difference ∆ΦV = 2πeV t0/h, where t0 is the (B-dependent) time

the reflected and transmitted electron waves spend in their respective parts of

the ring before they interfere [7]. We thus expect electrostatic AB oscillations by

changing V .

The dashed line in Fig. 9.1c highlights the effect of V . The bold curve at V

= 48 µV has a minimum when it crosses the dashed line. By decreasing V , the

amplitude of the AB oscillations decreases. The two bold curves near V = 24 µV

show a case where the amplitudes are small and the sign of the amplitude changes.

At V = 0 µV, the amplitude is maximal. Comparing the 48 and 0 µV traces, the

AB oscillation has acquired a change in phase by π. This continues by another

phase shift of π when V is decreased to -42 µV. Thus, the electrostatic period,

V0, is 90 µV at this magnetic field. This corresponds to an electron travel time t0
= 45 ps. We note that the Onsager-Büttiker symmetry relation G(B) = G(−B)

for a 2-terminal measurement [11] only holds at small bias voltages. Therefore,

the phase of the oscillations at the field of the dashed line is not restricted to 0

or π.

Figure 9.2 shows a gray-scale scale plot of GAB versus B and V for five different

B ranges. The main features of the results are as follows. The amplitude of the

AB oscillations is relatively small ranging from ∼0.01G to ∼0.1G. The period

of the oscillations in GAB(V ) decreases with B, as is clearly seen by comparing

the different panels in Fig. 9.2. For B = 0.4 T, 1.9 T, 3.6 T, and, less clearly,

for B = 4.7 T, the phase of the magnetic oscillations exhibits sharp π-shifts at

lower voltages. At higher voltages, the phase changes more smoothly. At B =

2.5 T, the phase changes smoothly over the entire voltage range. We return to

the phase evolution at different B and V later, when we discuss our scattering

model.

The AB amplitude decreases with V and, the higher B, the faster the de-

crease. The decreasing AB amplitude is clearly seen in Fig. 9.3 where we plot the

normalized AB conductance, GAB(V )/GAB(V = 0), versus V at B = 1.9 T. We

stress that Fig. 9.3 is obtained by taking a single horizontal cut, i.e. for a single

B with no averaging [12], from the B = 1.9 T panel of Fig. 9.2 (but over a larger

voltage range). Note that GAB(V )/GAB(V = 0) can be negative since it only

represents the oscillating part of the total conductance. The curve is approxi-

mately symmetric in V (GAB(V ) ≈ GAB(−V )), indicating that within the range
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of applied voltages the electron travel time, t0, hardly changes with V . Thus, the

electrostatic period does not vary within the applied bias window and we cannot

attribute the decrease with V in Fig. 9.3 to self-averaging of trajectories with

different periods. We therefore believe that the only possible mechanism for the

decrease is electron dephasing due to inelastic processes.

The small relative amplitude of the AB oscillations indicates strong elastic

scattering in the arms, whereas the quickly decreasing AB amplitude with V in-

dicates strong inelastic scattering. Since these scattering mechanisms were not

included in the model of Ref. [7], we introduce a simple interference model in-

cluding dephasing, proceeding along the lines of the general scattering formalism

[13].

Figure 9.3: Normalized AB conductance GAB(V )/GAB(V = 0) versus V at B = 1.9
T. The amplitude decreases rapidly with V and, contrary to the magnetic AB effect,
only a few oscillations can be observed. The solid curve is a fit with Eq. 9.4, α = 0.26,
t0 = 45 ps. The left inset shows the values of the travel time t0 versus B as extracted
from fits with Eq. 9.4, varying from 18 ps at B = 0.4 T to 60 ps at B = 4.7 T (L/vF
= 13 ps, with L the distance between the barriers and vF the Fermi velocity). The
values of t0 in the edge channel regime are fitted to a line with a slope of 6 ps/T. The
right inset shows the extracted values for α = �/2ετφ(ε). The values of α increase with
B, indicating an increasing importance of many-body effects at quantizing magnetic
fields.
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We assume single-channel tunnel junctions with transmission amplitudes t1
and t2, respectively. A small AB amplitude implies that the amplitudes of propa-

gating waves between the junctions, rL12 or rR21 (see Fig. 9.4), are small so that we

only consider scattering processes of first order in r. The oscillating part of the

transmission probability, TAB, is built up from the pairwise interference of the

electron trajectories shown in Fig. 9.4. Collecting the contributions at a given

energy, we obtain

TAB = 2Re(t1t
∗
2e

iΦAB(rL12 + r∗L21 )(rR21 + r∗R12 )) (9.1)

We assume right-left symmetry [14] and specify the energy dependence of the

propagation amplitudes as follows

rL12(21) = r−(+)e
iεLt0/�; rR12(21) = r+(−)e

iεRt0/� (9.2)

where r+(−) correspond to (counter)clockwise propagation of electrons along the

ring (remind that eV = εR - εL). For the differential conductance this yields

(assuming t1 = t2)

GAB(V )/G =|r−|2 cos(eV t0/�) cos(2πΦ/Φ0 + Φa)+

|r+|2 cos(eV t0/�) cos(2πΦ/Φ0 + Φb)+

2|r+r−|[cos(eV t0/� + Φc)+

sin(eV t0/� + Φc)eV t0/�] cos(2πΦ/Φ0 + Φd) (9.3)

where Φa,b,c,d are contributions to the phase that vary slowly with B in compari-

son to Φ/Φ0 (e.g. due to bending of the electron trajectories). At small B time

reversability holds, implying r+ = r− and Φa,b,d = 0. Under these conditions, the

phase of the magnetic oscillations only changes by π as a function of V . Inter-

estingly, the same happens at high B. In this case Lorentz bending suppresses

counterclockwise propagation, so that r+ � r−. The result is then dominated

by the second term in Eq. 9.3. For a B-interval in which Φb can be considered

constant, we find again that the phase of the magnetic oscillations only changes

by π as a function of V . In the intermediate regime r+ � r−, and Φa,b,c,d vary

slowly with B. The phase of the magnetic oscillations in this case continuously

shifts with voltage, saturating at V � �/t0e.

To model electron dephasing due to inelastic processes, we assume that the

electron amplitudes at a given energy are suppressed by a factor exp(−t/2τϕ),

τϕ(ε) being the energy-dependent dephasing time. In analogy with results found

for a disordered electron gas in the quantum Hall regime [15], disordered metal-

like systems [16], composite fermions [17] and a Luttinger liquid [18], we propose a
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dephasing time proportional to energy, �/τϕ(ε) = 2αε. Here α is a dimensionless

factor of the order of the dimensionless 2DEG conductance, G/(e2/h). A small

value for α (α � 1) and large conductances (G � e2/h) correspond to vanishing

electron-electron interactions [16]. On the contrary, α � 1 and G � e2/h signal

the importance of many-body effects. In the limit of r+ � r− our model for the

dephasing gives

GAB(V )/G =|r+|2[cos(eV t0/�)−
α sin(e|V |t0/�)]e−αe|V |/� cos(2πΦ/Φ0 + Φb) (9.4)

Figure 9.4: Schematic diagrams of interfering electron trajectories contributing (in
first order) to the oscillating part of the transmission probability. At B = 0, the pairs
of trajectories shown in (a)-(d) contribute equally, whereas at high magnetic field only
the pair shown in (a) is relevant (B points downwards).

Our scattering model provides an explanation for the observed experimental

results. The model accounts for the abrupt π-phase changes observed in Fig. 9.2

at the lowest (B = 0.4 T and 1.9 T) and highest (B = 3.6 T and 4.7 T) mag-

netic fields (provided V is small). In the intermediate regime (B = 2.5 T) the

model explains also why the phase varies more continuously. The well-defined

period t0 probably indicates the formation of an edge channel connecting the
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junctions. However, the magnitude of the AB oscillations is small. This sig-

nals a strong scattering to and from the edge channel involving almost localized

states at higher magnetic field. One can estimate |r+|2 as a classical probability,

assuming uniform distribution over the transport channels in the ring and 1/3

suppression due to scattering near the openings to the source and drain leads.

This gives |r+|2 � 1/3Ntr = 0.03, which is in agreement with the experimental

value of GAB(V = 0)/G � 0.02 at low B.

We use Eq. 9.4 to fit the experimental V -dependence of the AB amplitude, as

shown in Fig. 9.3 for the particular case B = 1.9 T. The reasonable quality of the

fit supports our model for the dephasing time. From such fits we extract values

for t0 and α at various magnetic fields. The left inset to Fig. 9.3 shows our results

for the B-dependence of t0. The values in the edge channel regime are fitted to

a straight line with a slope of 6 ps/T. The increase of the travel time can be

attributed to the decreasing drift velocity, vdrift = |E|/B, |E| being the modulus

of the confining electric field at the arm edges. An estimate based on parabolic

confinement gives |E| � 1 − 4 105 V/m. This implies a slope dt0/dB between 5

and 20 ps/T, which is in reasonable agreement with the observed value.

In the right inset to Fig. 9.3 we show our results for α = �/2ετφ(ε). The α

values are rather high and increase with B. At ε = 10 µeV, we find τφ = 180

ps at B = 0.4 T and τφ = 65 ps at B = 4.7 T. The usual Fermi-liquid theory

assumes well-defined quasi-particles, corresponding to α � 1. The fact that we

observe α � 1 signals the importance of many-body effects (electron-electron

interactions). The Fermi-liquid theory here is on the edge of applicability. We

attribute this to significant scattering in the arms of the ring. For a clean 2DEG

one expects no significant many-body effects until ν < 1 (Bν=1 = 14 T in our

2DEG). One can consider α as an effective dissipative conductance in units of

e2/h [15, 16]. In our case, the relevant conductance is that of the arms of the

AB ring, which is of the order of e2/h at the highest magnetic fields. This is

consistent with the observed α values.

In conclusion, using an electro-magnetic AB effect, we find a new method to

determine the non-equilibrium electron dephasing time in a 2DEG, which be-

comes very short at high voltages and magnetic field.
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Appendix A

Electrostatic energy of quantum dots

In this appendix we derive the electrostatic energy of a single and double quan-

tum dot system. Before addressing these specific systems, we briefly discuss the

method followed [1].

A.1 Electrostatics of a system of N conductors

Consider a system consisting of N conductors. A capacitance can be defined

between each conductor and every other conductor as well as a capacitance from

each of the N conductors to ground. This results in a total of N(N + 1)/2

capacitors. The capacitor between node j and node k has a capacitance cjk and

stores a charge qjk. The total charge on node j is the sum of the charges on all

of the capacitors connected to node j

Qj =
N∑
k=0

qjk =
N∑
k=0

cjk(Vj − Vk) (A.1)

Here Vj is the electrostatic potential of node j and ground is defined to be at zero

potential, V0 = 0. The charges on the nodes are linear functions of the potentials

of the nodes so this can be expressed more compactly in matrix form

−→
Q = C

−→
V (A.2)

where C is called the capacitance matrix. A diagonal element of the capacitance

matrix, Cjj, is the total capacitance of node j

Cjj =
N∑

k=0,k �=j

cjk (A.3)
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An off-diagonal element of the capacitance matrix is minus the capacitance be-

tween node j and node k, Cjk = Ckj = −cjk. The electrostatic energy of this sys-

tem of conductors is the sum of the electrostatic energy stored on the N(N +1)/2

capacitors and can be conveniently expressed using the capacitance matrix

U =
1

2

−→
V ·C−→V =

1

2

−→
V · −→Q =

1

2

−→
Q ·C−1−→Q (A.4)

Voltage sources can be included in the network by treating them as nodes with

large capacitances to ground and large charges on them such that V = Q/C. In

this case, it is numerically difficult to compute the inverse of the capacitance

matrix since it contains large elements. However, it is not necessary to invert the

entire capacitance matrix since the voltages on the voltage sources are already

known. Only the voltages on the other nodes need to be determined. These

voltages can be determined by writing the relation between the charges and the

voltages as(−→
Q c−→
Q v

)
=

(
Ccc Ccv

Cvc Cvv

) (−→
V c−→
V v

)
(A.5)

Here
−→
Q c and

−→
V c are the charges and the voltages on the charge nodes,

−→
Q v and−→

V v are the charges and the voltages on the voltage sources, and the capacitance

matrix has been expressed in terms of four sub-matrices. The voltages on the

charge nodes are then

−→
V c = C−1

cc (
−→
Q c −Ccv

−→
V v) (A.6)

and the electrostatic energy can be calculated with Eq. A.4.

A.2 Single quantum dot

We write the total charge Q1 on the dot as the sum of the charges on all the

capacitors connected to the dot (see Fig. A.1)

Q1 = CL(V1 − VL) + Cg(V1 − Vg) + CR(V1 − VR) ⇒
Q1 + CLVL + CgVg + CRVR = C1V1 (A.7)

where C1 is the total capacitance coupled to the dot, C1 = CL + Cg + CR. The

capacitance matrix Ccc only has one element. Using Eq. A.4 and substituting

Q1 = −(N1 −N0)|e|, we find

U(N1) =
[−(N1 −N0)|e| + CLVL + CgVg + CRVR]2

2C1

(A.8)
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Figure A.1: Network of capacitors and voltage nodes used to calculate the electro-
static energy of a single quantum dot.

where N0 is the number of electrons on the dot when all voltage sources are zero,

which compensates the positive background charge originating from donors in

the heterostructure.

A.3 Double quantum dot

Figure A.2: Network of capacitors and voltage nodes used to calculate the electro-
static energy of a double quantum dot.

We write the total charge Q1(2) on dot 1(2) as the sum of the charges on all the

capacitors connected to dot 1(2) (see Fig. A.2)

Q1 = CL(V1 − VL) + Cg1(V1 − Vg1) + Cm(V1 − V2)

Q2 = CR(V2 − VR) + Cg2(V2 − Vg2) + Cm(V2 − V1) (A.9)
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We can write this as(
Q1 + CLVL + Cg1Vg1

Q2 + CRVR + Cg2Vg2

)
=

(
C1 −Cm

−Cm C2

)(
V1

V2

)
(A.10)

where C2 = CR + Cg2 + Cm. The above expression in the form of Eq. A.6 reads(
V1

V2

)
=

1

C1C2 − C2
m

(
C2 Cm

Cm C1

)(
Q1 + CLVL + Cg1Vg1

Q2 + CRVR + Cg2Vg2

)
(A.11)

The electrostatic energy of the double dot system can now be calculated using

Eq. A.4. For the case VL = VR = 0 and Q1(2) = −N1(2)|e| this becomes

U(N1, N2) =
1

2
N2

1EC1 +
1

2
N2

2EC2 + N1N2ECm + f(Vg1, Vg2) (A.12)

f(Vg1, Vg2) =
1

−|e|{Cg1Vg1(N1EC1 + N2ECm) + Cg2Vg2(N1ECm + N2EC2)}

+
1

e2
{1

2
C2

g1V
2
g1EC1 +

1

2
C2

g2V
2
g2EC2 + Cg1Vg1Cg2Vg2ECm}

with

EC1 = e2 C2

C1C2 − C2
m

; EC2 = e2 C1

C1C2 − C2
m

; ECm = e2 Cm

C1C2 − C2
m

(A.13)
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Summary

Electron transport and coherence in
semiconductor quantum dots and rings

This thesis describes a number of experiments on electron transport and coher-

ence in semiconductor vertical and lateral quantum dots and semiconductor rings.

The vertical quantum dots are sub-micron pillars fabricated in an In/Al/GaAs

double-barrier heterostructure. A metal gate electrode is deposited around them.

The lateral quantum dot and ring devices are defined in the two-dimensional elec-

tron gas (2DEG) of a GaAs/AlGaAs heterostructure by means of etched trenches

and metal gate electrodes fabricated on top of the heterostructure.

The quantum dots are weakly coupled to source and drain contacts by tunnel

barriers. The addition of a single electron to the dot changes the charge on the

dot by the elementary charge −|e|. The charging energy is given by e2/C, where

C is the total capacitance between the dot and its environment. At low temper-

ature, this charging energy can block electron transport through the quantum

dot, known as ‘Coulomb blockade’. By varying the voltage applied to one or

more of the gate electrodes, the electrostatic potential of the dot can be changed.

For certain gate voltages, two charge states are degenerate and single-electron

tunneling is possible. The alternation of Coulomb blockade and single-electron

tunneling as the gate voltage is varied, leads to so-called ‘Coulomb oscillations’

in the conductance through the dot.

The confinement in all three directions of electrons in a quantum dot leads to

the formation of a discrete energy spectrum, resembling that of atoms. This and

other similarities have therefore led to the name ‘artificial atoms’ for quantum

dots.

An example of this atom-like behavior are the spin-singlet – spin-triplet tran-

sitions observed in quantum dots. These transitions can be explained by taking

into account exchange interaction and a magnetic field dependent direct Coulomb

interaction. The contribution from the direct Coulomb and exchange interactions

is determined and can be measured as a function of the number of confined elec-
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trons. Electrons tend to have parallel spins when they occupy nearly degenerate

single-particle states, in line with Hund’s first rule from atomic physics.

Another spin-related phenomenon that is discussed in this thesis, is the Kondo

effect. The Kondo effect is a many-body phenomenon arising from the interaction

between a localized spin and free electrons. It was originally discovered in metals

containing small amounts of magnetic impurities. Quantum dots connected to

source and drain leads can mimic that system and offer the possibility to measure

and tune the Kondo effect in the case of a single spin impurity. If the dot has

spin-degenerate single-particle levels, which are pairwise filled with ‘spin-up’ and

‘spin-down’ electrons, the dot only has a non-zero spin, S = 1/2, for an odd

electron number. In this case, the Kondo effect is expected to be present for odd

and absent for even electron numbers.

A strong Kondo effect at small magnetic field is observed in a lateral quantum

dot. The Coulomb blockade is overcome completely by the Kondo effect and the

conductance reaches the unitary-limit value at 2 e2/h. The experimental Kondo

temperature shows very good agreement with the spin-1/2 Anderson impurity

model throughout the Kondo regime. It is shown that phase-coherent transport

through a Kondo quantum dot is possible, by measuring electron interference in

an Aharonov-Bohm ring with the dot embedded in one of its arms.

In general, the problem of electron transport through a quantum dot exhibit-

ing the Kondo effect does not map onto the problem of the resistivity in a bulk

metal, as described by the Anderson impurity model. An experiment is presented

in which an unexpected Kondo effect is realized in a vertical few-electron quan-

tum dot. The energy difference between spin-singlet and spin-triplet states is

tuned by a magnetic field. A Kondo effect occurs for an even number of electrons

at the degeneracy of a singlet and triplet state. The characteristic energy scale

is found to be much larger than for the ordinary spin-1/2 case in this system.

This type of Kondo effect has not been considered before, probably because a

singlet-triplet degeneracy does not occur in magnetic elements.

Another Kondo phenomenon without analog in bulk-metal systems is the

multi-level Kondo effect at high magnetic field that has been studied in a selective

area growth lateral quantum dot. This unusually strong Kondo effect is also

ascribed to a singlet-triplet transition in the ground state of the dot. In contrast

to the singlet-triplet Kondo effect observed in the vertical dot, away from the

transition, for low bias voltages and temperatures, the conductance is sharply

reduced. The observed behavior is compared to predictions for a two-stage Kondo

effect in quantum dots coupled to single-channel leads. The different behavior of

this singlet-triplet Kondo effect in a lateral quantum dot in comparison to the

results in a vertical dot is ascribed to a different number of conductance channels



151

in the leads coupled to the dot.

The next logical step after studying individual quantum dots is to study sys-

tems of more than one dot. By coupling two quantum dots in series, a system

is obtained with fundamentally different behavior and possibilities in comparison

to a single quantum dot. Where single quantum dots are regarded as ‘artificial

atoms’, two quantum dots can be coupled to form an ‘artificial molecule’. Moti-

vated by their relevance for realizing solid state quantum bits, electron transport

experiments on two lateral quantum dots coupled in series are reviewed. An

introduction to the charge stability diagram is given. Resonant tunneling exper-

iments show that the double dot geometry allows for an accurate determination

of the intrinsic lifetime of discrete energy states in quantum dots. The evolution

of discrete energy levels in magnetic field is studied. The resolution allows to

resolve avoided crossings in the spectrum of a quantum dot. With microwave

spectroscopy it is possible to probe the transition from ionic bonding (for weak

inter-dot tunnel coupling) to covalent bonding (for strong inter-dot tunnel cou-

pling) in a double dot artificial molecule.

The rates for elastic and inelastic transitions in the two-level system formed

by a double quantum dot are measured by the dc current through the system.

The inelastic transition rates are well described by the Einstein coefficients, re-

lating absorption with stimulated and spontaneous emission. For these inelastic

processes, energy is exchanged most effectively with acoustic phonons. The re-

sults demonstrate the importance of vacuum fluctuations in the environment for

little circuits of coherent quantum devices.

Finally, an electro-magnetic Aharonov-Bohm effect in a 2D electron gas ring

is studied. The mesoscopic 2DEG ring is interrupted by two tunnel barriers,

enabling to apply a well-defined potential difference between the two halves of

the ring. The electron interference in the ring is modified using a perpendicular

magnetic field and a bias voltage, resulting in clear Aharonov-Bohm oscillations

up to the quantum Hall regime as a function of both parameters. Introducing

a scattering model, a new method is developed to measure the non-equilibrium

electron dephasing time, which becomes very short at high voltages and magnetic

fields, with a focus on the role of electron-electron interactions.

Wilfred G. van der Wiel

November 2001
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Samenvatting

Transport en coherentie van elektronen in
halfgeleider quantum dots en ringen

Dit proefschrift beschrijft een aantal experimenten met als onderwerp trans-

port en coherentie van elektronen in vertikale en laterale halfgeleider quantum

dots en ringen. De vertikale quantum dots zijn sub-mikron pilaartjes gefabri-

ceerd in een In/Al/GaAs dubbele-barrière heterostruktuur. Rondom een pi-

laartje wordt er een metalen ‘gate’-elektrode aangebracht. De laterale quantum-

dot- en ringstrukturen zijn gedefinieerd in het 2D elektronengas (2DEG) van een

GaAs/AlGaAs heterostruktuur door middel van geëtste geultjes en metalen elek-

trodes gefabriceerd op het oppervlak van de heterostruktuur.

De quantum dots zijn zwak gekoppeld aan ‘source’- en ‘drain’-kontakten door

middel van tunnelbarrières. De toevoeging van een enkel elektron aan de dot

verandert de lading op de dot met de elementaire lading −|e|. De ladingsenergie

bedraagt e2/C, waar C de totale capaciteit is tussen de dot en zijn omgeving.

Bij lage temperatuur kan deze ladingsenergie het elektrontransport door de quan-

tum dot blokkeren. Dit fenomeen wordt ‘Coulomb-blokkade’ genoemd. Door het

voltage op één of meer van de gate-elektrodes te variëren kan de elektrostatische

potentiaal van de dot veranderd worden. Voor bepaalde gate-voltages zijn twee

ladingstoestanden ontaard en is het één voor één tunnelen van elektronen mo-

gelijk. De afwisseling van Coulomb-blokkade en de mogelijkheid tot het tunnelen

van elektronen door de dot wanneer de spanning op de gate-elektrode wordt ver-

anderd, leidt tot zogenoemde ‘Coulomb-oscillaties’ in de geleiding door de dot.

De opsluiting van de elektronen in alle drie de richtingen in een quantum dot

leidt tot het ontstaan van een diskreet energiespektrum, gelijkend op dat van

atomen. Deze en andere overeenkomsten hebben daarom geleid tot de bijnaam

‘kunstmatige atomen’ voor quantum dots.

Een voorbeeld van dit atoom-achtige gedrag zijn de spin-singlet – spin-triplet-

overgangen waargenomen in quantum dots. Deze overgangen kunnen verklaard

worden als ‘exchange’-interaktie en een magneetveld-afhankelijke direkte Cou-
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lomb-interaktie meegenomen worden in de beschouwing. De bijdrage van direkte

Coulomb- en exchange-interakties is bepaald en kan kan gemeten worden als func-

tie van het aantal elektronen in de dot. Elektronen hebben de neiging parallelle

spins te hebben, wanneer zij bijna-ontaarde enkele-deeltjestoestanden bezetten,

in overeenkomst met de eerste regel van Hund uit de atomaire fysica.

Een ander spin-gerelateerd fenomeen dat behandeld wordt in dit proefschrift,

is het Kondo-effekt. Het Kondo-effekt is een veel-deeltjes-verschijnsel, voortko-

mend uit de interaktie tussen een gelokaliseerde spin en vrije elektronen. Het

is oorspronkelijk ontdekt in metalen met een lichte verontreiniging van magneti-

sche atomen. Quantum dots, verbonden met source- en drain-kontakten kunnen

zo’n systeem nabootsen en bieden de mogelijkheid het Kondo-effekt te meten

en te manipuleren op de schaal van een enkele spin-onzuiverheid. Als de dot

spin-ontaarde enkele-deeltjestoestanden heeft, die paarsgewijs gevuld worden met

‘spin-omhoog’- en ‘spin-omlaag’-elektronen, heeft de dot alleen een totale spin on-

gelijk aan nul voor een oneven aantal elektronen. In dit geval wordt het Kondo-

effekt verwacht op te treden voor een oneven, maar niet voor een even aantal

elektronen.

Een sterk Kondo-effekt is waargenomen bij laag magneetveld in een late-

rale quantum dot. De Coulomb-blokkade wordt volledig overwonnen door het

Kondo-effekt en de geleiding bereikt de unitaire limiet van 2e2/h. De experi-

mentele Kondo-temperatuur vertoont zeer goede overeenkomst met het spin-1/2

Anderson-model voor een magnetische onzuiverheid in het gehele Kondo-regime.

Door middel van het meten van elektroninterferentie in een Aharonov-Bohm-ring,

met de dot opgenomen in een van de armen, wordt aangetoond dat fase-coherent

transport door een Kondo-quantum-dot mogelijk is.

In het algemeen kan het probleem van elektrontransport door een Kondo-

quantum-dot niet één op één vertaald worden in het probleem van de weerstand

in een bulk metaal als beschreven door het Anderson-model voor een magnetische

onzuiverheid. Een experiment wordt beschreven waarin een onverwacht Kondo-

effekt optreedt in een vertikale dot met een klein aantal elektronen. Het ener-

gieverschil tussen spin-singlet- en spin-triplet-toestanden wordt ingesteld door

een magneetveld. Een Kondo-effekt treedt op voor een even aantal elektronen,

wanneer de singlet- en triplet-toestand ontaard zijn. De karakteristieke energie-

schaal blijkt veel groter te zijn dan voor het gebruikelijke spin-1/2 geval in dit

systeem. Dit type Kondo-effekt is niet eerder beschouwd, waarschijnlijk omdat

singlet-triplet-ontaarding niet optreedt in magnetische elementen.

Een ander Kondo-verschijnsel zonder tegenhanger in metalen systemen is het

multi-niveau-Kondo-effekt bij een hoog magneetveld, bestudeerd in een quan-

tum dot gefabriceerd met een selektieve groeimethode. Dit ongebruikelijk sterke
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Kondo-effekt wordt eveneens toegeschreven aan een singlet-triplet-overgang in

de grondtoestand van de dot. In tegenstelling tot het singlet-triplet-Kondo-effekt

waargenomen in een vertikale dot, is de geleiding nabij de overgang sterk gere-

duceerd voor lage spanningen en temperaturen. Dit gedrag wordt vergeleken met

voorspellingen voor een twee-fase Kondo-effekt in quantum dots gekoppeld aan

kontakten met één geleidingskanaal. Het verschillende gedrag van het singlet-

triplet-Kondo-effekt in een laterale dot in vergelijking met een vertikale dot

wordt toegeschreven aan een verschillend aantal geleidingskanalen in de kontak-

ten gekoppeld aan de dot.

De volgende logische stap na het bestuderen van individuele quantum dots

is het onderzoeken van systemen bestaande uit meer dan één dot. Door twee

quantum dots te koppelen in serie, wordt een systeem verkregen met funda-

menteel verschillende eigenschappen en mogelijkheden in vergelijking met een

enkele quantum dot. Waar enkele quantum dots beschouwd worden als ‘kunst-

matige atomen’, kunnen twee dots gekoppeld worden om een ‘kunstmatig mole-

kuul’ te vormen. Gemotiveerd door de relevantie voor het realiseren van vaste-

stof-quantum-bits, wordt elektrontransport door twee laterale quantum dots ge-

koppeld in serie in ogenschouw genomen. Een introduktie in het ladingssta-

biliteitsdiagram wordt gepresenteerd. Resonante-tunneling-experimenten laten

zien dat de dubbele-dot-geometrie de nauwkeurige bepaling van de intrinsieke

levensduur van diskrete energieniveaus in quantum dots mogelijk maakt. De

evolutie van diskrete energieniveaus in een magneetveld wordt bestudeerd. De

resolutie maakt het mogelijk afstoting tussen energieniveaus in het spektrum van

een quantum dot te meten. Met mikrogolf-spektroskopie is het mogelijk de over-

gang van een ionische binding (voor zwakke inter-dot-tunnelkoppeling) naar een

covalente binding (voor sterke inter-dot-tunnelkoppeling) zichtbaar te maken in

een dubbele dot.

De frequenties waarmee elastische en inelastische overgangen plaatsvinden in

een twee-niveau-systeem gevormd door een dubble quantum dot, worden geme-

ten door middel van een dc stroom door het systeem. De frequentie van de

inelastische overgangen wordt goed beschreven door de Einstein-coëfficiënten, die

absorptie relateren aan gestimuleerde en spontane emissie. Voor deze inelastische

processen wordt energie het meest efficiënt uitgewisseld met akoestische fononen.

De resultaten tonen het belang aan van vacuümfluktuaties in de omgeving van

circuits bestaande uit coherente quantum-strukturen.

Tenslotte wordt een elektro-magnetisch Aharonov-Bohm-effekt in een 2D elek-

trongas-ring bestudeerd. De mesoskopische 2DEG-ring is onderbroken door twee

tunnelbarrières die het mogelijk maken een goed gedefinieerd potentiaalverschil

over de twee helften van de ring aan te leggen. De elektroninterferentie in de ring
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wordt gemanipuleerd door een loodrecht magneetveld en een spanning, resul-

terend in duidelijke Aharonov-Bohm-oscillaties, tot in het quantum-Hall-regime,

als een funktie van beide parameters. Met behulp van een verstrooiingsmodel

wordt een nieuwe methode ontwikkeld voor het meten van de defaseringstijd van

de elektronen met een focus op de rol van elektron-elektron-interakties. De de-

faseringstijd wordt zeer kort bij hoge voltages en magneetvelden.

Wilfred G. van der Wiel

november 2001
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