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A B S T R A C T

To simplify the analysis and characterisation of composite laminates, an invariant-based approach to stiffness
that takes the trace of the plane stress stiffness matrix as a material property was recently proposed. In the
present work, a study based on micro-mechanical models brings new insight to this invariant-based approach.
The Rule of Mixtures and the Halpin-Tsai models are used to establish the relations between the fibre volume
fraction, the fibre/matrix stiffness ratios, and the trace-normalised engineering constants of unidirectional la-
minae and multidirectional laminates. For sufficiently high longitudinal fibre/matrix stiffness ratios and for fibre
volume fractions between 50% and 70%, typical of advanced CFRPs, the variation of the trace-normalised
longitudinal Young's modulus is within 6% for unidirectional laminae and within 1% for multidirectional la-
minates, supporting the definition of an invariant-based approach to stiffness based on aMaster Ply concept and
laminate factors derived thereof, defining clearly a domain of applicability of the invariant theory and con-
firming the empirical observations of the past.

1. Introduction

Despite the growing use of advanced polymer composite laminates
in structural applications, especially in the aerospace industry, the ex-
perimental programmes currently required to generate the mechanical
properties and design allowables for these materials are too costly and
time consuming. With the aim to simplify testing, design and under-
standing of composites in general, Tsai and Melo [1] proposed an in-
variant-based approach to stiffness that takes the trace of the plane
stress stiffness matrix as a material property.

The invariant-based approach proposed by Tsai and Melo [1] relies
on the normalisation of the stiffness components using the trace of the
plane stress stiffness matrix, which is invariant with respect to the
stacking sequence:

= =Q A DTr( ) Tr( ) Tr( ) (1)

where Tr(•) stands for the trace of (•). Q is the plane stress stiffness
matrix that, in the material coordinate system 1–2 (Fig. 1), can be
written as:
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with E1 and E2 the longitudinal and transverse Young's moduli, 12 and
21 the major and minor Poisson's ratios, where:
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2
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and G12 the shear modulus of the composite material. A and D are re-
spectively the normalised in-plane and flexural laminate stiffness ma-
trices, which can be written in the laminate coordinate system x-y as:
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where Q is the plane stress stiffness matrix in the laminate coordinate
system x-y and h is the laminate thickness.

Tsai and Melo [1] observed that the stiffness components normal-
ised by trace:
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of several CFRP systems are approximately the same. In particular, the
trace-normalised longitudinal stiffness component Q11

* had a coefficient
of variation of only 1.5% [1]. Using Q11

* , Q22
* , Q12

* and Q66
* , trace-nor-

malised engineering constants can be determined from the components
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of the trace-normalised compliance matrix (in engineering notation)
=S Q( )* * 1:
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Using the median values of the trace-normalised engineering con-
stants of several CFRPs, Tsai and Melo [1] proposed a Master Ply
(Table 1) that defines a universal relation between the orthotropic in-
plane engineering constants E1, E2, G12 and 12 and the trace QTr( ) of
any CFRP:

= = =E E E E G G
Q Q QTr( )

,
Tr( )

,
Tr( )

,1
* 1

2
* 2

12
* 12

12 (7)

Using theMaster Ply E1
*, E2

*, and 12 (Table 1), the trace-normalised
laminate engineering constants Ex

*, Ey
*, Gxy

* and xy, or laminate factors:
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where =A QTr( ) Tr( ), can be determined for virtually any laminate
using the Classical Laminated Plate Theory (CLPT) (Sect. 3.2). Table 1
shows the Master Ply proposed by Tsai and Melo [2] and examples of
laminate factors for several lay-ups. This concept allows the determi-
nation of the elastic properties Ex , Ey, Gxy and xy of virtually any CFRP
laminate using the laminate factors Ex

*, Ey
*,Gxy

* and xy obtained from the

Master Ply and CLPT (e.g. Table 1), and one independent elastic
property only — the trace =Q ATr( ) Tr( ) of the plane stress stiffness
matrix of the CFRP:

= = =E E E E G GA A ATr( ), Tr( ), Tr( ),x x y y xy xy xy
* * * (9)

To determine the value of trace ( =Q ATr( ) Tr( )), the plane stress
stiffness matrices do not need to be determined. Instead, it is sufficient
to know the longitudinal Young's modulus of a 0° unidirectional lami-
nate, E1, or the longitudinal Young's modulus of a multidirectional la-
minate, Ex , and to divide it by the corresponding trace-normalised la-
minate factor, E1

* or Ex
* (e.g. Table 1), whose coefficients of variation are

within 4% for CFRPs [2]:

= E
E

Q Master PlyTr( ) ( ), or1

1
* (10a)

= = E
E
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x
* (10b)

Hence, this Master Ply concept can simplify laminate stiffness char-
acterisation considerably by reducing the number of tests required to
fully characterise the orthotropic in-plane elastic properties of uni-
directional composites from 3 tests at the ply level (including the highly
non-linear in-plane shear test on a±45° coupon, which adds complexity
and cost to the characterisation programme due to off-axis lamination
and associated scrap material) to 1 test at the ply level (to obtain E1), or
1 test at the laminate level (to obtain Ex — for example, of a simple
cross-ply laminate [3]). It is interesting to note that, with 1 test at the
laminate level, lamination effects are intrinsically accounted for, po-
tentially replacing additional tests at the laminate level sometimes re-
quired to account for these effects (e.g. aerospace industry).

Although the reliability of this approximate approach to determine
the elastic properties of engineering laminates has been thoroughly
validated in the past [1–4], its empirical nature has been regarded as an
obstacle to its acceptance and adoption by the academic and industrial
communities. In the present work, a study based on micro-mechanical
models is presented, which brings a new perspective to the invariant-
based approach to stiffness proposed by Tsai and Melo [1].

2. Effective ply elastic properties

The Rule of Mixtures (RoM), being the simplest micro-mechanics
model, provides reasonable predictions for the effective longitudinal
stiffness of a unidirectional ply, E1, by assuming that the longitudinal
strain in the fibres and matrix is uniform. This is equivalent to a parallel
model, which can be written as:

= +E V E(( 1) 1)f m1 1 (11)

where Vf is the fibre volume fraction and = E E/f m1 1 is the ratio be-
tween the longitudinal Young's modulus of the fibres E f1 , assumed to be
transversely isotropic, and the Young's modulus of the matrix Em, as-
sumed to be isotropic. The same assumption (uniform longitudinal
strain in the fibres and matrix) also leads to reasonable estimations of
the effective Poisson's ratio 12:

= +V1 1f

m
f m12

12

(12)

where f12 is the Poisson's ratio of the fibres and m the Poisson's ratio of
the isotropic matrix.

However, simple RoM cannot provide reasonable predictions for the
effective transverse and shear elastic properties. Alternative micro-
mechanical models, often based on empirical parameters, are required
to obtain better estimates of these properties. One of these models is the
Halpin-Tsai model [5–7], which gives the following estimates for the
effective transverse Young's modulus, E2, and shear modulus, G12, re-
spectively:

Fig. 1. Material symmetry axes 1–2 and laminate coordinate system x-y.

Table 1
Master ply and examples of laminate factors obtained from the Master ply
using CLPT (after Tsai and Melo [2]). The elastic properties of any laminate can
be obtained multiplying the trace-normalised laminate factors by the value of
trace.

Master Ply E1
* E2

* G12
* 12

[0] 0.880 0.052 0.031 0.320

Laminate factors Ex
* Ey

* Gxy
* xy

[0/90] 0.468 0.468 0.031 0.036
±[0/ 45/90] 0.336 0.336 0.129 0.308
±[0 / 45/90]7 0.662 0.175 0.070 0.310
±[0 / 45 /90]5 2 0.518 0.208 0.109 0.423
±[0 / 45/90]2 0.445 0.289 0.109 0.308

±[0/ 45 /90]4 0.217 0.217 0.187 0.552
±[0/ 45] 0.370 0.155 0.161 0.734
±[0/ 45/0] 0.499 0.141 0.129 0.701
±[0/ 30] 0.510 0.074 0.129 1.220
±[0/ 30/0] 0.611 0.072 0.104 1.079

±[ 12.5] 0.764 0.053 0.066 0.913
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where = E E/f m2 2 is the ratio between the transverse Young's modulus
of the fibres (E f2 ) and the Young's modulus of the matrix, = G G/f m12 12
is the ratio between the shear modulus of the fibres (G f12 ) and the shear
modulus of the matrix (Gm):

=
+

G E
2(1 )m

m

m (15)

and 2 and 12 are empirical parameters that account for the reinforce-
ment geometry under transverse and shear loading, respectively. For
simplicity, and based on finite element analyses [8] and curve fitting of
experimental data [9], in the following it will be assumed that = 1.52
and = + V1 40 f12

10, results that are valid for at least V0.20 0.55f
and V 0.70f , respectively.

3. Trace-normalised stiffness components

3.1. Master Ply

Using Eq. (15) in Eq. (14), the effective elastic moduli in Eqs. (11),
(13) and (14) can be written as functions of the fibre volume fractionVf ,
of the ratios between the elastic moduli of the fibres and matrix

=i( 1,2,12)i , and of the Young's modulus of the matrix Em. The effec-
tive elastic moduli and the effective Poisson's ratio (Eq. (12)) can be
used to determine the components of the effective stiffness matrix Q
using Eq. (2). These components can then be used to determine the
trace of the effective stiffness matrix, = + +Q Q QQTr( ) 211 22 66, which
is used to normalise the effective elastic moduli E1, E2 and G12. The
resulting trace-normalised elastic moduli E1

*, E2
* and (Eq. (7)) are now

only functions of the fibre volume fraction Vf , of the ratios between the
elastic moduli of the fibres and matrix i, and of the Possion's ratios f12
and m.

Fig. 2 shows the effect of the fibre volume fraction ( < <V0.1 0.9f )
and of the ratio between the longitudinal Young's modulus of the fibres
and the Young's modulus of the matrix ( < <1 1001 ) on the effective
trace-normalised ply elastic moduli E1

*, E2
* and and on the effective ply

Poisson's ratio 12. Based on the standard properties of CFRPs [10],
= 42 , = 1012 , = 0.2f12 and = 0.35m were used.
For fibre volume fractions in the range < <V0.5 0.7f and long-

itudinal fibre/matrix stiffness ratios 501 , typical of advanced CFRPs
[10], the effective trace-normalised ply elastic moduli tend to a con-
stant value in the range of the Master Ply values reported by Tsai and
Melo [2] (see Table 1), shown as red dashed lines in Fig. 2. The effective
Poisson's ratio 12, however, although independent of 1, as would be
expected from Eq. (12), shows a linear variation with Vf , and it is
usually below the Master Ply value reported by Tsai and Melo [2] for
fibre volume fractions in the range < <V0.5 0.7f . Nevertheless, the
results presented in Fig. 2 support that, in the case of CFRPs (or other

Fig. 2. Effective trace-normalised ply elastic moduli E1
*, E2

* andG12
* and effective ply Poisson's ratio 12 (Master Ply) as a function of the fibre volume fraction Vf and

of the ratio between the longitudinal Young's modulus of the fibres and the Young's modulus of the matrix 1, with = 42 , = 1012 , = 0.2f12 and = 0.35m . The
dashed lines are, respectively, theMaster Ply values from Table 1 (red), the median values of the predictions for < <V0.5 0.7f and 501 (yellow), and the median
values of the predictions for < <V0.1 0.9f and < <1 1001 (cyan). (For interpretation of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)
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FRPs with 501 ), it is possible to define the stiffness of composite
laminae based on an invariant of the stiffness matrix using aMaster Ply
concept, reducing the number of independent stiffness properties to
one.

For lower values of the longitudinal fibre/matrix stiffness ratio (e.g.
in the range 22–241 as in GFRPs [10]), higher variations on the ef-
fective trace-normalised ply elastic moduli E1

*, E2
* and can be observed.

These variations become even more important when the reinforcing
fibres are assumed isotropic, i.e. =E Ef f2 1 and = +G E /(2(1 ))f f f12 1 12 ,
as it is usually the case in glass fibres.1 In addition, in this case ( 251
and isotropic fibres), the fibre volume fraction has a greater effect, not
only on E1

*, but more importantly on E2
* and . This explains why the

Master Ply concept or an invariant-based approach to stiffness for
GFRPs does not exist.

3.2. Laminate factors

Tsai and Melo [2] showed that another benefit of the Master Ply
concept comes from the ability to define laminate factors for virtually
any lay-up. Consequently, also the stiffness of composite laminates can

be defined using just an invariant of the stiffness matrix (independent of
lay-up and coordinate system — see Eq. (1)) and the corresponding
Master Ply-based laminate factors.

Using the calculated effective trace-normalised ply elastic moduli
E1

*, E2
* and and effective ply Poisson's ratio 12 to determine the trace-

normalised plane stress stiffness matrix Q* (in engineering notation):

=

G

Q

0

0

0 0

E E

E E*
1 1

1 1

12
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1
*

12 21
12 2
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12 21

21 1
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12 21
2
*

12 21

(16)

the effective laminate factors Ex
*, Ey

*,Gxy
* and xy can be derived using the

CLPT:
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where the normalised compliance matrix of the Master Ply, a*, is ob-
tained as:

= =
h

za A A Q( ) , with 1 d
h

h

* * 1 *

2

2
*

(18)

after transformation ofQ* to the laminate coordinate system x-y (Fig. 1)
— Q* . Figs. 3–5 show the effect of the fibre volume fraction
( < <V0.1 0.9f ) and of the ratio between the longitudinal Young's
modulus of the fibres and the Young's modulus of the matrix

Fig. 3. Trace-normalised laminate factors Ex
*, Ey

*, Gxy
* and xy of a [0/±45/90] lay-up as a function of the fibre volume fraction Vf and of the ratio between the

longitudinal Young's modulus of the fibres and the Young's modulus of the matrix 1, with = 42 , = 1012 , = 0.2f12 and = 0.35m . The dashed lines are, respectively,
the values of the laminate factors in Table 1 (red), the values calculated using the median values of the predictions for < <V0.5 0.7f and 501 (yellow), and the
values calculated using the median values of the predictions for < <V0.1 0.9f and < <1 1001 (cyan). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

1 The effective trace-normalised ply elastic moduli E1
*, E2

* and G12
* and effec-

tive ply Poisson's ratio 12 as a function of the fibre volume fraction Vf and of
the ratio between the longitudinal Young's modulus of the fibres and the
Young's modulus of the matrix 1 for an isotropic fibre are provided as
Supplementary Data on the online version of this paper.
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( < <1 1001 ) on the trace-normalised laminate factors for three lami-
nates from Table 1 (similar analyses for the remaining laminates in
Table 1 are provided as Supplementary Data on the online version of
this paper). Again, it is clear that, for the fibre volume fractions Vf and
fibre/matrix stiffness ratios 1 typical of advanced CFRPs ( < <V0.5 0.7f
and 501 ), the effective trace-normalised laminate properties tend to
constant values close to the laminate factors determined using the
Master Ply concept [2] (red dashed lines in Figs. 3–5). It is interesting
to note that, in this case, also the effective laminate Poisson's ratios xy
tend to constant values for the typical fibre volume fractions and fibre/
matrix stiffness ratios of advanced CFRPs, close to theMaster Ply-based
values in Table 1 (red dashed lines in Figs. 3–5).

4. Analysis verification

To validate the previous results, four FRP systems, two CFRPs and
two GFRPs, will be analysed based on the experimental data available
from Ref. [10] (Table 2). Using the elastic properties of the constituents,
the predictions of the effective trace-normalised elastic properties for
each of the four unidirectional laminae in Table 2 were obtained using
the micro-mechanical models presented in Sect. 2, for fibre volume
fractions in the range < <V0.1 0.9f . These predictions are shown in
Figs. 6 and 7, together with the Master Ply values from Table 1 (dashed
horizontal lines) and the experimentally determined trace-normalised
elastic properties for the unidirectional laminae in Table 2 (open circles).
As can be observed, the RoM and Halpin-Tsai models provide reasonable
predictions of the elastic properties of all unidirectional laminae, here

normalised by the trace of the plane stress stiffness matrix.
For the carbon/epoxy laminae (Fig. 6), the effective trace-normal-

ised stiffness properties for fibre volume fractions in the range
< <V0.5 0.7f (typical of advanced CFRPs) are within the Master Ply

values from Table 1 (the difference for E1
* is lower than 2%), confirming

the observations from Sect. 3.1. To further elucidate about the applic-
ability of the Master Ply concept for general CFRPs, Fig. 8 shows the
effect of 1 on the predicted effective trace-normalised elastic properties
of AS4/3501-6, obtained for variations of the longitudinal Young's
modulus of the fibres (E f1 ) within 50% (the effect of the remaining
fibre/matrix stiffness ratios on AS4/3501-6 and on T300/BSL914C are
provided as Supplementary Data on the online version of this paper). As
can be observed, the variation of the longitudinal Young's modulus of
the fibres leads to variations of the trace-normalised stiffness properties
within the range of the Master Ply values from Table 1, especially
for E1

*.
In addition, the effective trace-normalised stiffness properties of

fibreglass/epoxy laminae (Fig. 7) are not only substantially different
from the Master Ply values from Table 1, as would be expected (since
the latter were obtained specifically from CFRPs), but also the variation
of the trace-normalised stiffness properties is more pronounced for the
usually wide range of fibre volume fractions observed on GFRPs (the
effect of the fibre/matrix stiffness ratios on Gevetex/LY556 and Si-
lenka/MY750 are provided as Supplementary Data on the online ver-
sion of this paper). This observation again supports the difficulties of
defining a Master Ply concept or an invariant-based approach to
stiffness for GFRPs.

Fig. 4. Trace-normalised laminate factors Ex
*, Ey

*, Gxy
* and xy of a [07/±45/90] lay-up as a function of the fibre volume fraction Vf and of the ratio between the

longitudinal Young's modulus of the fibres and the Young's modulus of the matrix 1, with = 42 , = 1012 , = 0.2f12 and = 0.35m . The dashed lines are, respectively,
the values of the laminate factors in Table 1 (red), the values calculated using the median values of the predictions for < <V0.5 0.7f and 501 (yellow), and the
values calculated using the median values of the predictions for < <V0.1 0.9f and < <1 1001 (cyan). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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5. Discussion

Based on the micro-mechanical models presented herein, it is ob-
served that, for 501 and < <V0.5 0.7f , the variations of the effective
E1

* are within 6% (Fig. 2), and the variations of the effective Ex
* are

within 1% (e.g. Fig. 3), supporting the definition of an invariant-based

approach to stiffness for CFRPs (or other FRPs with similar fibre/matrix
stiffness ratios) using a Master Ply concept and laminate factors de-
rived thereof. In fact, a Master Ply can be defined based on the results
from Sect. 3.1 by taking the median values of the effective trace-nor-
malised elastic properties for 501 and < <V0.5 0.7f , for example.
This is shown as yellow dashed lines in Figs. 2 and 9. The difference to
the Master Ply values from Table 1 is very small, except for the Pois-
son's ratio 12, as already pointed out in Sect. 3.1. Similarly, it is also
possible to define a Master Ply using the entire dataset shown, for
instance, in Fig. 2, obtained using the micro-mechanical models from
Sect. 2. This is shown as cyan dashed lines (Fig. 2). Interestingly, also in
this case, the obtained values do not differ substantially from the
Master Ply values from Table 1, except for the Poisson's ratio 12

2. It is,
however, noted, that these values, obtained from either a reduced or
the entire dataset, provide reasonable approximations of the trace-
normalised elastic properties only for 501 . This observation high-
lights the difficulties to define an invariant-based approach to stiffness
for FRPs with low fibre/matrix stiffness ratios, such as GFRPs with

22–241 .
Using the calculated Master Ply values from the reduced and from

the entire micro-mechanics datasets, it is also possible to generate

Fig. 5. Trace-normalised laminate factors Ex
*, Ey

*, Gxy
* and xy of a [0/±454/90] lay-up as a function of the fibre volume fraction Vf and of the ratio between the

longitudinal Young's modulus of the fibres and the Young's modulus of the matrix 1, with = 42 , = 1012 , = 0.2f12 and = 0.35m . The dashed lines are, respectively,
the values of the laminate factors in Table 1 (red), the values calculated using the median values of the predictions for < <V0.5 0.7f and 501 (yellow), and the
values calculated using the median values of the predictions for < <V0.1 0.9f and < <1 1001 (cyan). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

Table 2
Elastic properties of four unidirectional laminae, their fibres and their matrices
[10].

Material system E1 (GPa) E2 (GPa) G12 (GPa) 12 (−) Vf (−)

AS4/3501-6 126 11 6.6 0.28 0.60
T300/BSL914C 138 11 5.5 0.28 0.60
Gevetex/LY556 53.48 17.7 5.83 0.278 0.62
Silenka/MY750 45.6 16.2 5.83 0.278 0.60

Fibres E f1 (GPa) E f2 (GPa) G f12 (GPa) f12 (−)

AS4 225 15 15 0.2
T300 230 15 15 0.2
E-glass 21xK43 Gevetex 80 80 33.33 0.2
Silenka E-Glass 1200tex 74 74 30.8 0.2

Matrices Em (GPa) m (−)

3501–6 4.2 0.34
BSL914C 4.0 0.35
LY556/HT907/DY063 3.35 0.35
MY750/HY917/DY063 3.35 0.35

2 Based on these results, a new Master Ply value of the Poisson's ratio 12 in
the range of 0.260–0.275 would possibly provide a better approximation of the
ply Poisson's ratio for advanced CFRPs instead of the proposed 0.320 (Table 1)
[2].
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Fig. 6. Effective trace-normalised ply elastic moduli E1
*, E2

* and G12
* and effective ply Poisson's ratio 12 for two carbon/epoxy systems as a function of fibre volume

fraction Vf (full lines). Comparison with the Master Ply values from Table 1 (dashed horizontal lines) and experimental data from Table 2 (open circles).

Fig. 7. Effective trace-normalised ply elastic moduli E1
*, E2

* andG12
* and effective ply Poisson's ratio 12 for two fibreglass/epoxy systems as a function of fibre volume

fractionVf (full lines). Comparison with the experimental data from Table 2 (open circles). For reference, theMaster Ply values from Table 1 are also shown (dashed
horizontal lines).
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Fig. 8. Effect of 1 on the effective trace-normalised ply elastic moduli E1
*, E2

* andG12
* and effective ply Poisson's ratio 12 for AS4/3501-6 carbon/epoxy as a function

of fibre volume fraction Vf . Comparison with the Master Ply values from Table 1 (dashed horizontal lines).

Fig. 9. Effective trace-normalised ply elastic moduli E1
*, E2

* and G12
* and effective ply Poisson's ratio 12 (Master Ply) for fibre volume fractions < <V0.5 0.7f and

fibre/matrix stiffness ratios 501 , with = 42 , = 1012 , = 0.2f12 and = 0.35m . The red dashed lines are theMaster Ply values from Table 1, and the yellow dashed
lines are the median values of the predictions for < <V0.5 0.7f and 501 . (For interpretation of the references to colour in this figure legend, the reader is referred
to the Web version of this article.)
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laminate factors for the lay-ups presented in Table 1. These laminate
factors are shown, respectively, as yellow and cyan dashed lines in
Figs. 3–5. Independently of the lay-up, reasonable approximations of
the trace-normalised elastic properties are obtained for 501 , typical,
for example, of advanced CFRPs. Moreover, the difference between the
calculated laminate factors based on the micro-mechanical data and the
laminate factors from Table 1 is remarkably small. This is attributed to
the predominance of E1

* in the determination of the laminate factors,
diluting the wider variation of the remaining trace-normalised ply
elastic properties [2]. This observation shows clearly that an invariant-
based approach to stiffness relying on a Master Ply concept is a viable
solution to not only simplify the analysis of FRPs with stiff fibres (e.g.
CFRPs), as proposed by Tsai and Melo [1], but also reduce the number
of material properties required to characterise these materials.

6. Conclusions

With the aim of understanding the origin and domain of validity of the
invariant-based approach to stiffness proposed by Tsai and Melo [1], micro-
mechanical models were used to obtain the relation between the fibre vo-
lume fraction, the fibre/matrix stiffness ratios, and the trace-normalised
engineering constants of unidirectional laminae and multidirectional lami-
nates. Based on the RoM and Halpin-Tsai models, it was shown that for
longitudinal fibre/matrix stiffness ratios 501 and for fibre volume frac-
tions in the range < <V0.5 0.7f , the variation of the trace-normalised
longitudinal Young's modulus is within 6% for unidirectional laminae (E1

*)
and within 1% for multidirectional laminates (Ex

*). This observation sup-
ports the definition of an invariant-based approach to stiffness based on a
Master Ply concept and laminate factors derived thereof for FRPs whose
fibres are substantially stiffer than the matrix material.

For lower fibre/matrix stiffness ratios, small variations on the elastic
properties of the constituents lead to higher variations on the trace-
normalised elastic properties. These results confirm the difficulties to
define a Master Ply for FRPs with fibres of lower stiffness, including
GFRPs (with 22–241 ).

It is important to note that, for the first time, the empirical ob-
servations from Tsai and Melo [1] have been confirmed by micro-me-
chanical models, clearly defining the domain of application of the in-
variant-based approach to stiffness for FRPs based on the properties of
the composite constituents. The applicability of the Master Ply pro-
posed by Tsai and Melo [2] based on the median values of several
CFRPs is verified for virtually any advanced carbon fibre-reinforced
composite (typically with 501 and < <V0.5 0.7f ), especially when
estimating laminate elastic properties based on laminate factors ob-
tained using the Master Ply concept.

Because the Master Ply concept is based on an averaging procedure of
normalised stiffness properties, for some, less abundant composites, such
as high modulus CFRPs, the discrepancies to the experimental values can
be up to 6% [4]. Although an estimate within 6% is reasonable enough
for most applications, the present work indicates that this difference can
be reduced (for high strength CFRPs this difference is around 1% [4]) by
considering a Master Ply based on the averaging of normalised stiffness
properties of high modulus CFRPs. Thus, the definition of the range of
applicability of the invariant-based approach to stiffness is of critical
importance to enable the use of this approach by the industry.

It is also important to stress that the adoption of the invariant-based
approach to stiffness allows the definition of the stiffness of composite
laminae and laminates based solely on an invariant of the stiffness matrix
— the trace — reducing the number of independent stiffness properties to
one. This not only reduces the number and complexity of the tests re-
quired to characterise advanced FRPs [3], but it also makes preliminary
material and laminate scrutiny easier and more cost effective, laminate
design and optimisation faster [11,12], and generation of design allow-
ables more efficient [13], improving the competitiveness of composite
materials in applications such as in aerospace and automotive. Although

the use of very simple models such as the RoM and Halpin-Tsai models
gives a reasonably good estimation of the elastic constants, they require
characterisation of the constituent materials (fibres and matrix), which is
complex (e.g. fibre testing requires a great amount of work due to pre-
paration and repetition of the tests to tackle the intrinsic variability in the
properties, while polymer characterisation requires the preparation and
adoption of non-conventional manufacturing procedures that do not re-
semble completely the composite manufacturing conditions) and cannot
usually be done by the composite end-users for characterisation and
certification purposes. Hence, unless the constituent properties are
available, the RoM and Halpin-Tsai models cannot be applied. In addi-
tion, lamination effects and variations in the manufacturing process (from
user to user) cannot be easily considered based solely on the constituent
properties. The Master Ply concept allows considering these effects with
a minimal number of independent properties and test configurations.
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