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Abstract—Consequences of the use of strain-softening models are reviewed both theoretically and

numerically. A most serious consequence of strain

-softening is that it may cause snap-back behavior on

4 structural level, Thi§ is demonstrated by means of two concrete structures, a reinforced concrete
structure angi an unreinforced specimen, In order to simulate the highly localized failure mode in a
strain-softening solid, it appeared necessary to modify the arc-length method. The paper furthermore
demonstrates that bifurcation points which occur in strain-softening solids can be located by numerical
methods and that the post-bifurcation response can be traced successfully.

1. INTRODUCTION

Strain-softening is an unpleasant phenomenon dis-
played by materials like concrete and geomaterials
(soils, rock). It hampers finite element applications as
calculations are repeatedly reported to be unstable
and as the analyst often finds it difficult to obtain a
truly converged solution.

Another major difficulty in applying finite element
models to strain-softening materials is the fact that
the results are not objective with regard to mesh
refinement, i.e. the results do not converge to the
‘““true” solution when the finite element mesh is
refined [3,4]. To remedy this disease, it has been
proposed to make the softening modulus a function
of the element size. In doing so, objective results can
again be obtained [4, 22, 26, 31),

Starting from a somewhat different point of view,
Crisfield [12] arrived at similar conclusions. He also
demonstrated by the simple example of a bar loaded
in pure tension that solutions in the strain-softening
regime are non-unique, and moreover, that some
equilibrium branches emanating from the bifurcation
point lead to snap-back behavior, These observations
have severe consequences for analyzing concrete
structures, either reinforced or not, It implies for
instance that truly converged solutions may not
always be obtained by customary displacement con-
trol, but that we often have to resort to more
sophisticated techniques like “arc-length” control in
order to obtain a proper solution [6, 11, 24, 25]. Here,
it even appears that the traditional “arc-length” in
the n-dimensional displacement space is not very W_ell
suited for controlling the solution process in strain-
softening solids. Indeed, the author has found that 2
global constraint equation which involves all degrees
of freedom cannot be employed successfully to obtain
converged solutions when analyzing concrete
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structures [8, 9]. Use of only a few dominant degrees
of freedom or removal of a number of degrees of
freedom from the constraint equation resulted in a
major improvement in convergence characteristics.
The failure of a global norm of displacement in-
crements may be explained by considering that for
problems involving softening, failure or bifurcation

" modes are often highly localized. Hence, only a few

nodes contribute to the norm of displacement in-
crements and failure is not sensed accurately by a
global norm,

To gain perspective we will start this article by
reviewing the pioneering work of Crisfield [12] in
some detail, After that, we will outline a numerical
approach to detect bifurcation points and to' trace
post-bifurcation and post-failure paths in strain-
softening solids. The procedures are subsequently
applied to a numerical bifurcation analysis of a bar
loaded in tension, and to two limit problems in-
volving snap-back behavior, whereby it is noted that
in the latter case the snap-behavior is believed to be
physical and does not have a numerical cause as was
probably the case in some previous analyses [13, 14].

2. STRAIN-SOFTENING, NON-UNIQUENESS
AND SNAP-BACK BEHAVIOR

We consider an unreinforced bar which is subjected
to pure tension [12) and the material of the bar is
modeled as elastic-softening with an ultimate strain ¢,
at which the tensile strength has vanished completely
(see Fig. 1). ¢, is assumed to be equal to » times the
strain at the tensile strength (e,). The bar is modeled
with m elements (see Fig. 2). If we have a perfect
bar, so that all elements have exactly the same tensile
strength and so on, the bar deforms uni-
formly throughout the loading process and the
load—deflection curve is simply a copy of the imposed
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Fig. 1. Stress-strain law for concrete in tension, The stress is plotted a
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Fig. 2. Model of bar composed of strain-softening material,

stress—strain law. However, if one element has a slight
imperfection, only this element will show loading

. while the other elements will show unloading. In this
situation, the imposed stress—strain law at local level
is not reproduced, Instead, an average strain is
calculated in the post-peak regime which is smaller
than the strain of the stress—strain law. This may be
explained as follows. The element which shows load-
ing will follow the path A~B in Fig. 1, while the other
elements will follow the path A—C. This implies that
when all elements have the same dimensions, we have
for the average strain increment A€

_ 1 Ao Ao
Ae =;n-[—(m - 1)-—E—' +m:]

*l—l Ac
T m E’

Consequently, when we increase the number of ele-
ments while keeping the length of the bar fixed, the
average strain in the post-peak regime gradually
becomes smaller and for m > n the average strain in
the post peak regime even becomes smaller than the
strain at peak load (Fig. 3). This implies that for
m >n, the load—deflection curve shows a “snap-
back™ [12]. It is noted that similar results have also
been derived for beams composed of strain-softening
material [29).

The above results imply that computational results
for materials with a local softening constitutive law
are not objective upon mesh refinement. To remedy
this disease, it has been proposed to make the soft-

0y

ening modulus dependent on the element size [4, 20],
Numerical experiments have confirmed that numer-
ical results are then objective with regard to mesh
refinement [4, 22, 26, 31]. The problem of making the
softening modulus dependent on the element size is:
that, for an arbitrary concrete structure, the spread of
the softening region is not known in advance. Con-
sequently, the observation that use of a local soft-
ening law may involve snap-back behavior on struc-
tural level may hold even when we use a model in
which the softening modulus has been adapted to
some structural size.

3. COMPUTATIONAL TECHNIQUES

In spite of its apparent simplicity the example of a
bar loaded in tension is a challenging problem for a
numerical simulation. To achieve this goal, current
numerical techniques must either be modified or be
employed very judiciously. First, we must have a
criterion to detect a bifurcation point in a discrete
mechanical model. In the present case, the bifur-
cation point is obvious as it simply coincides with the
limit point, but this seldom happens. In general,
bifurcation will be possible when the lowest eigen-
value vanishes{19]. In numerical applications, the
lovx{est eigenvalue will never become exactly zero
owing to round-off errors. Therefore, it has been
a§sumed that bifurcation is possible when the lowest
exgex_lvalue becomes slightly negative. It is noted in
Passing that the above statement holds rigorously for
mechanical systems with a symmetric stiffness matrix,
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Fig, 3. Possible post-bifurcation behavior for a bar loaded in tension. Which equilibrium path is followed
depends on the number of elements in which the crack localizes.

but that for systems with a non-symmetric stiffness
matrix the situation is less clear-cut [9].

Having determined the bifurcation point by an
eigenvalue analysis of the tangent stiffness matrix,
continuation on the localization branch instead of on
the fundamental branch can be forced by adding a
part of the eigenmode v, which belongs to the
vanishing eigenvalue, to the incremental displace-
ment field of the fundamental path Aa* [9, 25):

Aa = o(Aa* + fv,), 2)

with o and f# scalars. The magnitude of these scalars
is fixed by second-order terms or by switch conditions
for elastoplasticity or for plastic-fracturing materials.
The most simple way to determine f§ numerically is to
construct a trial displacement increment Aa such that
it is orthogonal to the fundamental path:

AaTAa* =0, 3

where the symbol T is employed to denote a trans-
pose, Substituting equation (2) in this expression
yields, for g,

(Aa*)" Aa*

S il it 4
B YO @
so that we obtain for Aa
Aa* TAa*
Aa=c {Aa* m%%)—r—vrvl}. ®)

Equation (5) fails when (Aa*)"v, =0, i.e. when the
bifurcation mode is orthogonal to the basic path. A
simple remedy is to normalize Aa such that

(Aa*)"Aa* = Aa"Aa. ©

This results in:
Aa = ! =
V(Aa%)TAa* — [(Aa*)Tv)]

X {(Aa*)’ v, Aa* — (Aa*)TAa*v,}. RO

The denominator of this expression never vanishes,
since this would imply that the eigenmode is identical
with the fundamental path.

In general, the bifurcation path will not be orthog-
onal to the fundamental path, but when we add
equilibrium iterations, the orthogonality condition
(3) will maximize the possibility that we converge on
a bifurcation branch and not on the fundamental
path, although this is not necessarily the lowest
bifurcation path when more equilibrium branches
emanate from the bifurcation point. When we do not
converge on the lowest bifurcation path, this will be
revealed by negative eigenvalues of the bifurcated
solution. The above described procedure can then be
repeated until we ultimately arrive at the lowest
bifurcation path.

The procedure described above is well suited for
assessing post-bifurcation behavior. Bifurcations,
however, are rather rare in normal structures owing
to imperfections, and even if a bifurcation point
exists in a structure, numerical round-off errors
and spatial discretization usually transfer the bifur-
cation point into a limit point unless we have a
homogeneous stress field. This observation does not
render the approach to bifurcation problems worth-
less as it provides a thorough insight which is of
importance for the associated limit problems, but it
is obvious that numerical procedures must also be
capable of locating limit points and tracing post-limit
behavior.

To control the incremental-iterative solution pro-
cedure, we have analogous to experiments load con-
trol and (direct) displacement control. However, ei-
ther of these procedures may fail in particular
circumstances. With load control, we are not able to

- overcome limit points at all, and with direct displace-

ment control it is not possible to properly analyze
snap-back behavior (see e.g. Fig. 3). Fortunately, a
very general and powerful method has been devel-
oped within the realm of geometrically non-linear
analysis. In this method, the incremental-iterative
process is controlled indirectly using a norm of
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incremental displacements [6, 11, 24, 25). For this rea-
son, the name “arc-length method” has been coined
for the procedure. For materially non-linear analysis,
a global norm on incremental displacements ig often
less successful due to localization effects and it may
be more efficient to employ only one dominant degree
of freedom or to omit some degrees of freedom from
the norm of incremental displacements. The name
arc-length control then no longer seems very appro-
priate. Instead we will use the term indirect displace-
ment control.

In a nonlinear finite element analysis, the load is
applied in a number of small increments (e.g.
Bathe [2]). Within each load increment, equilibrium
iterations are applied and the iterative improvement
da, in iteration number i to the displacement in-
crement Aa,_, is given by

58, = Ki\[pio1 + Apg*) @)

where K,_, is the possibly updated stiffness matrix,
¢* is a normalized load vector, Ay, is the value of the
load increment which may change from iteration to
iteration and p;_, is defined by

Pi—1=l/‘oq*’_f Bq;_dV. ®
v

In eqn (9) the symbols yy, B and ¢;_, have been
introduced for, respectively, the value of the scalar
load parameter at the beginning of the current in-
crement, the strain-nodal displacement matrix and
the stress vector at iteration number { — 1.

The essence of controlling the iterative solution
procedure indirectly by displacements is that da, is
conceived to be composed of two contributions:

6a,=dal+ Ay dall (10

with
Saj=K'\pi_, (1

and
dal' =K'\ q*. (12)

After calculating the displacement vectors da} and
dall, the value for Ay, is determined from some
constraint equation on the displacement increments
and Aa, is subsequently calculated from

Aa, = Aa,_, + Ja,. (13)

Crisfield [11], for instance, uses the norm of the
incremental displacements as constraint equation

AalAa; = A%, (14)

where Al is the arc-length of the equilibrium path in
the n-dimensional displacement space. The draw-
back of this so-called spherical arc-length method is
that it yields a quadratic equation for the load
increment. To circumvent this problem, one may
linearize equation (14), yielding [24]:

AaTAa,_, = A% (15
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This method, known as the updated normal path
method, results in a linear equation for the load
increment. Equation (15) may be simplified by sub-
tracting the constraint equation of the previous iter-

ation. This gives
Aal_ (Aa;— Aa;_,) =0, (16)

When we furthermore make the approximation

8a,~ 2(Aa;— Aa,_,) an
we obtain
Aal_ 52, =0. (18)
Substituting equation (10) then gives, for Au;:
Ay, = _Asf_ da} (19)
I Aal_ éall’

Both equations (14) and (15) have been employed
very successfully within the realm of geometrically
non-linear problems, where snapping and buckling of
thin shells can be traced very elegantly. Nevertheless,
for physically non-linear problems the method some-
times fails, which may be explained by considering
that for physically non-linear problems, failure or
bifurcation modes are often highly localized. Hence,
only a few nodes contribute to the norm of displace-
ment increments, and failure is not sensed accurately
by such a global norm. As straightforward applica-
tion of equations (14) or (15) is not always successful,
we may amend these constraint equations by ap-
plying weights to the different degrees of freedom or
omitting some of them from the constraint equation,
The constraint equation (15) then changes into

AufAu,_, =A%, (20)

where Au, contains only a limited number of the
degrees of freedom of those of Aa,, and equation (19)
changes in a similar manner. The disadvantage of
modifying the constraint equation is that the con-
straint equation becomes problem dependent. As a
consequence, the method loses some of its generality
and elegance,

4, BIFURCATION ANALYSIS OF A
BAR LOADED IN TENSION

We will now return to the problem of a perfect bar
of elastic-softening material which is subjected to a
uniformly distributed (tensile) load. From the pre-
ceding discussion it will be clear that the response of
an imperfect bar in the post-failure regime will de-
Pend upon the number of elements and the degree of
m?erpolation within the elements. For sake of sim-
plicity, the latter variable is eliminated by electing
.four-noded elements with a bilinear displacement
mtlerpolation, so that we have a constant strain in the
axial direction for each element. Then, the response

in the post-peak regime only depends upon the
number of elements.
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When the bar is modeled by m elements, the limit
point is an m — 1 fold bifurcation point in the sense
that m — 1 alternative equilibrium branches emanate
from this point apart from the fundamental mode
which continues to deform homogeneously, The
other bifurcation branches are associated with local-
ization modes in one or more elements, whereby the
other elements unload. This results in a fan of
possible bifurcation branches which emanate from
the bifurcation point. Which equilibrium path will be
traversed depends on the number of elements in
which the crack localizes (see Fig. 3).

When we introduce no imperfections, so that we do
not transfer the bifurcation problem into a pure limit

problem, a 64-bit processor is usually sufficient to -

guarantee that the bar deforms homogeneously also
after the bifurcation point has been passed. Con-
tinuation on an equilibrium path which shows strain
localization is then possible by adding a part of the
eigenvector which corresponds to a zero eigenvalue
to the fundamental solution (see the preceding sec-
tion), In practice, a bifurcation point cannot be
isolated exactly since we work with finite arithmetic.
Consequently, we load the bar slightly, say 1%,
beyond the bifurcation point and negative rather
than zero eigenvalues are obtained. Nevertheless, this
does not affect the essentials of the procedure.

In the example, we consider a material with a linear
softening branch for which the ultimate strain ¢, at
which the crack transfers no more normal stress,
equals 10 times the sirain at peak load. Let us first
assume that the bar is modeled by only two elements
in the axial direction (Fig. 4). The bar is loaded by
a uniformly distributed traction slightly beyond the
peak load, using indirect displacement control to
overcome the limit point properly. Next, the tangent
stiffness matrix is reformed and two negative eigen-
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values are calculated; the corresponding eigenmodes
having been plotted in Fig. 4. Adding a part of the
latter eigenmode to the fundamental solution resulted
in continuation on the localization path (A—C in Fig.
3). The resulting displacements when the load has
become zero have been plotted in Fig. 5.

When we model the bar by more than two ele-
ments, we obtain a multiple bifurcation point. In-
deed, we calculate m negative eigenvalues beyond
peak load when we divide the bar into m elements.
The selection of an appropriate eigenvector which
gives localization in only one element then becomes
a somewhat tedious task. The most simple way to
solve this difficulty in practice, is to take the eigen-
vector corresponding to the lowest eigenvalue and
add it to the fundamental solution. We will then
converge on a localization branch which is not neces-
sarily the lowest bifurcation branch. However, when
we extract the lowest eigenvalue and the correspond-
ing eigenvector for the new state and add them to the
current displacement increment, we generally arrive
at a lower bifurcation branch, whereby it seems
superfluous to remark that an extremely small in-
crement must be employed. Repeating this process
several times finally results in convergence on the
lowest bifurcation branch. For the present example,
it implies that we finally converge on a branch in
which the softening localizes in only one element
while the other elements show unloading.

The above procedure is illustrated by an analysis
in which the bar is divided in 10 elements. An
eigenvalue analysis slightly beyond peak strength
with a Jacobi-subspace method [23] resulted in 10
negative eigenvalues, The eigenvector belonging to
the lowest eigenvalue has been plotted in Fig. 6.
Adding this eigenvector to the fundamental mode did
not result in locdlization in one element, but in five

F
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Fig. 4. Bigenmodes for two-element bar.
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Fig. 5. Final displacements when the load has come down to zero.
F'
1 T | | | | T T T T | ~="72
| | I | I [ | | | |
| ! ! ! ! L : i L Ip—

Fig. 6, Eigenvector for bar divided into 10 elements when afl 10 elements show loading.
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Fig. 10. Final displacements for bar composed of 10 elements showing localization in only one element.

elements, which is not surprising in view of Fig. 6.
Performing an eigenvalue analysis for this tangent
stiffness, in which the moduli of five elements are
softening and the moduli of the remaining five ele-
ments unload via a secant branch [7-9, 26], resulted in
five negative eigenvalues, the eigenvector correspond-
ing to the lowest eigenvalue being plotted in Fig. 7.
Adding this eigenvector to the current (small) dis-
placement increment with localization in five ele-
ments resulted in a new equilibrium state with local-
ization in three elements. A new eigenvalue analysis
yielded three negative eigenvalues and addition of
the eigenvector (Fig. 8) corresponding to the lowest
eigenvalue to the current displacement increment
resulted in localization in two elements. A final loop
with the eigenvector of Fig. 9 yielded localization in
one element (Fig. 10).

The case when the bar is modeled with 10 elements
represents a critical case when the load falls down on
the localization path without any additional displace-
ment of the end of the bar (line A-D in Fig. 3), i.e.
the strain increment in the element in which the
deformation has localized together with the strain
increments of the unloading elements is exactly zero.
For a smaller number of elements the additional
displacement at the end of the bar is positive, but for
a greater number of elements, the additional displace-
ment is negative, so that the total displacement at the
end of the bar becomes smaller after the peak has
been passed (line A-F in Fig. 3, which is for 20
elements). Obviously, such a *“snap-back” behavior
cannot be analyzed under direct displacement con-
trol, but only with indirect displacement control. Yet,
many analysts have ignored the possibility of this

phenomenon in the past, and many analyses have
been terminated at such a point because of divergence
of the iterative procedure. A further parallel can be
drawn with experiments which cannot be performed
properly under displacement control, e.g. with shear
or other brittle failures. The observed explosive fail-
ure is then simply the result of an attempt to traverse
an equilibrium path under improper static loading
conditions.

5. MIXED-MODE FRACTURE IN A
NOTCHED SPECIMEN

In the preceding section, it has been demonstrated
how solutions can be obtained in the post-bifurcation
regime. In the present section, we will show that the
techniques and refinements discussed in the preceding
sections also allow for tracing limit and post-limit
behavior. Furthermore, we will show that some
theses postulated in the preceding sections concerning
the consequences of strain-softening are not merely
academic, but that they are indeed encountered in
concrete structures,

The first example which we consider, is the notched
unreinforced beam of Fig, 11. The beam has been
analyzed using eight-noded plane stress elements and
six-noded triangles have been used in the transition
region between the coarse part and the fine part of
the mesh. Nine-point Gauss quadrature has been
applied for the quadrilateral elements in order to
prevent the occurrence of spurious zero-energy
modes as much as possible [7]. The concrete has been
modeled ‘as linearly elastic in compression with a
Young’s modulus E, = 24800 N/mm? and a Poisson’s
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Fig. 11. Finite element mesh of notched beam.

ratio v =0.18. This approach is justified in this
case, because the compressive stresses remain low
enough to avoid yielding in compression. In tension,
the crack model as developed by de Borst[8, 9],
de Borst and Nauta[7] and Rots et al [26] has
been employed. The crack parameters have been
taken as: tensile strength £, = 2.8 N/mm?and fracture
energy G,=0.055N/mm. The width of the crack
band was assumed to be A = 10,167 mm, and linear
as well as nonlinear softening relations [10} have been
employed.

Figure 11 also gives the loading configuration
which shows that the beam is loaded asymmetrically
so that the crack propagating from the notch shows
opening as well as sliding. In the experiment[l]
the load was applied cyclically to point C of the
steel beam AB and was controlled by a feed-back
mechanism with the so-called Crack Mouth Sliding
Displacement (CMSD) as control parameter. After
peak, the envelope of the load cycles falls down
sharply (see Figs 12 and 13), which is particularly
challenging for a numerical simulation.

160 -
140

120 4

toad F (kN)

100
80 1
60
40

20§

A number of researchers have endeavored a nu-
merical analysis of this beam [1, 5, 15, 17, 21, 26, 30],
either with the smeared crack approach or with the
discrete crack approach. Invariably, however, they
adopted displacement control with respect to the
point of load application (point C in Fig. 11) and all
the calculated load-CMSD curves showed far too
much duectility in the post-peak regime (Fig. 12).
Moreover, the post-peak regime was repeatedly re-
ported to be highly unstable and converged equi-
librium states could not be obtained. Indeed, we will
show that such attempts are deemed to fail.

In the present study, the loading process has been
controlled indirectly by a displacement parameter
and the results of Fig. 13 show that the com-
putational results for the load—-CMSD curves fall
nicely within the experimental bounds, which is in
sharp contrast with previous results. Initially, a global
norm of displacements was employed, but this analy-
sis was not successful as this constraint equation
failed near peak load, probably for reasons as stated
in the preceding discussion. Indeed, we observe a

Previous numerical results

Experimental data

T T

" 008 030 012 04 0.6

CMSD (mm)

Fig. 12. Previous results for load vs CMSD, Computations performed with standard displacement
control [26]. The shaded area denotes the range of experimental results,
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Fig. 13. Load vs CMSD computed with CMSD-control. The shaded area denotes the range of
experimental results,

strong localization when we plot the eigen displace-
ment mode at peak load (see Fig. 14). However, for
the present problem, a displacement parameter which
can be used to control the loading process is naturally
available, namely the CMSD itself. In this way the
numerical analysis entirely parallels the experiment.
With CMSD-control, the load-increment is in the
linearized version determined from the condition

AuFAu;_, = AP, D

with Au, the increment in CMSD in iteration i Using
the constraint eqn (21), the limit point could be
overcome without problem with the same step size
where the constraint formulae (14) and (15) failed.

Near peak load, an attempt to increment the load
without CMSD control resulted in a divergence of the
iterative procedure, but with CMSD-control and a
full Newton-Raphson procedure a converged solu-
tion was obtained. Moreover, a negative pivot was
encountered upon factorizing the tangent stiffness
matrix after some iterations. An eigenvalue analysis
was performed subsequently and this resulted in one
negative eigenvalue with the eigenmode of Fig. 14
which is identical with the incremental displacement

0,13F

CMSD

field at peak load. Hence, the peak load is a limit
point and not a bifurcation point. After peak, the
load was decremented and a genuine equilibrium
path could be obtained.

If we assume that the beam of the test rig is
infinitely stiff, we can calculate the vertical displace-
ment of the point of load application C from the
calculated diplacements of points A and B (Figs 15
and '16). For the analysis with nonlinear softening
and a shear retention factor of 0.05, this results in the
load—deflection curve of Fig. 17, which shows a
violent snap-back behavior.

The snap-back after peak load entirely explains
why previous solutions which adopted displacement
control with respect to point C did not result in a
stable post-peak response, as such a solution simply
does not exist, at least not in the vicinity of the limit
point. In fact, the situation is even worse when the
analysis is performed under displacement control of
point C. This is because the beam of the test rig
cannot be modeled as infinitely stiff, so that after
peak the elastically stored energy of this beam is
partly released, thus making the snap-behavior even
more violent,

I I P

\
\\
-

Fig. 14, Eigen-displacement field at peak load,
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Downward displacement of point A (mm)

Fig. 15, Load-deflection curve of point A.

The load at point B versus the computed CMSD
is plotted in Fig. 13. The most ductile curve corre-
sponds to a shear retention factor §=0.1 and a
linear softening curve. We observe that the computed’
ultimate load overestimates the experimental values.
Figure 18, which gives the incremental displacements
and Figs 19 (a) and (b), which show the crack pattern
at ultimate load, reveal that the crack arising from the
notch has developed fully. Consequently, all stresses
which are transferred in this crack are shear stresses,
and these stresses cannot decrease because of the

load F (kN)

constant shear retention factor and because of the
relatively high threshold angle for the formation of
secondary cracks (o = 60° [7-9]). Indeed, beyond this
point, the load again falls down sharply, which
appeared to be due to formation of cracks elsewhere
in the beam. Because the solution then becomes
physically meaningless, this part of the curve has not
been plotted.

At ultimate load, the beam is fully cracked and
only shear stresses can be transferred across the
cracks. As the magnitude of the shear stresses is

0.02 0.04 0.06

0.08 0.10 0.12 0.14

Downward displacement of point B (mm)

Fig. 16. Load-deflection curve of point B.
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Fig. 17. Load—deflection curve of point C.

Fig. 18. Incremental displacements at ultimate load.
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Fig. 19 (a). Crack pattern at ultimate load. All cracks.  Fig, 19 (b). Crack pattern at ultimate load. Cracks which
transfer no normal stress.
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determined by the shear retention factor f, the ulti-
mate load is primarily a function of f. The cor-
rectness of this hypothesis was confirmed in sub-
sequent  calculations with §=0.05. These
calculations were performed with a linear as well as
with a non-linear softening curve and yielded a
significantly lower ultimate load. It is interesting to
note that use of a non-linear softening curve[10]
instead of a linear softening curve yielded almost the
same ultimate load (which strengthened the above
hypothesis), but resulted in a significantly lower peak
load. Hence, the shape of the softening curve also
strongly influences the computational results [27],

6. TENSION-PULL SPECIMEN

It is a widespread belief that reinforcement sta-
bilizes the numerical process. However, this is not
generally true, as addition of reinforcement not only
gives rise to stiffness differences in the structure, thus
leading a deterioration of the condition of the
stiffness matrix, but also adds to the possibility of
the occurrence of spurious alternative equilibrium
states and of snap-back behavior[13, 14]. We will
demonstrate this by means of perhaps the most
simple reinforced structure, namely an axisymmetric
specimen with an axial reinforcing bar,

Specifically, we will consider the tension-pull speci-
men which is shown in Fig. 20 [16). The reinforcing
bar is given by the line AB and a linear bond-slip law
is assumed between the concrete and the reinforce-
ment, i.e. the relation between the slip and the shear
stress between concrete and steel has been assumed to
be linear. In fact, the element which is employed for
the reinforcement is a combined steel-bond slip
clement [28]. The concrete has been modeled as lin-
early elastic in compression just as in the preceding
example with a Young’s modulus E, = 25000 N/mm?
and a Poisson’s ratio v =0.2, Also in this case the
approach is justified because of the relatively low
compressive stresses. The tensile strength has been
assumed as f, = 2.1 N/mm? and a non-linear soft-
ening curve has been employed after crack formation

21

with a fracture energy G;=0.06 N/mm. The shear
retention factor § was taken equal to 0.1, The rein-
forcing bar was assigned a Young's modulus
E,=177000 N/mm®> and a ' vyield strength
0, =210 N/mm?,

The loading is applied to point A of Fig. 20 in the
form of a concentrated load and the ensuing
load—displacement diagram is given in Fig, 2. The
present problem has much in common with the
preceding example as also in this case straightforward
application of a norm of incremental displacement to
control the solution process did not work effectively.
This can again be understood when we consider the
incremental displacement fields just prior to and just
beyond the limit point (Figs 22 and 23). Prior to the
limit point, the elastic deformations of the bar are
relatively so great, that they dominate the norm of
incremental displacements, Just beyond the peak,
when the crack near the centreline has localized, the
incremental deformations of the reinforcing bar
nearly vanish (they even change sign, so that we again
have a snap-back) and the concrete is the prime
contributor to the total norm of incremental displace-
ments. However, because of the relatively great val-
ues of the steel deformations just prior to the limit
point, the arc-length in the displacement space is not
influenced significantly. In this case, the degrees of
freedom belonging to the steel have therefore been
omitted from the norm of incremental displacements
for overcoming the limit point. For traversing the
valley in the load—displacement curve of Fig, 21, on
the other hand, the solution process has been con-
trolled by the displacements of the steel, as then these
displacements increase monotonically.

The present example is also well suited for assess-
ing the question of whether an equilibrium state
can be reached via a non-equilibrium path. It is the
author’s experience that this is often possible when
we adopt standard displacement control and if there
exists another equilibrium state which is located “not
too far away” from the current state [9]. Indeed, when
we attempted to analyze the present problem by pre-
scribing the displacement of point A, we obtained a

' _

— = F

B| A__. )
bond-slip ~= F ®,
elements
concrete —{— B
elements

250

30

" Fig, 20. Tension-pull specimen of Ddrr[16].
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Fig. 21. Load vs displacement of the end of the bar.

number of non-converged states just after the limit
point. This non-equilibrium path is indicated by the
dotted line in Fig. 21. However, after the crack had
localized, we again obtained converged equilibrium
states (dashed line in Fig. 21), which indicated that we
had arrived on a new equilibrium path. This illus-
trates that reaching another part of the equilibrium
path via a number of non-equilibrium states is some-
times possible, provided that there exists a new
equilibrium state which is “sufficiently close” to the
previous equilibrium state. Here, the tension-pull
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L

Fig. 22, Incremental displacement field just prior to the limit

point,
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Fig. 23. Incremental displacement field just after the limit
point, .

specimen sharply contrasts with the previous example
of mixed-mode crack propagation, as in the latter
case equilibrium could not be restored using direct
displacement control.

It is finally interesting to note that during the drop
of the load no new cracks arise, so that the crack
pattern of Fig. 24 remains unchanged. When the load
is increased again, new “cone-shaped™ cracks[18]
arise which are a consequence of the reversal of the
direction of the shear stresses along the bar near the
centre of the specimen (see Fig. 25).
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Fig. 25, Crack pattern at ultimate failure.
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7. CONCLUSIONS

Use of strain-softening models may lead to snap-
back behavior on a structural level. This observation,
which has probably been made first by Crisfield [12],
implies that structures composed of strain-softening
material cannot always be analyzed using standard
displacement control. The idea might arise that such
snap-back behavior can be avoided by adapting the
length of the softening branch to the element size as
is being done in the fictitious crack model [20] or in
the blunt crack band approach [4]. However, it has

been shown by means of two concrete structures, a

reinforced concrete structure and an unreinforced
specimen, that this is not generally true, which is
probably caused by the fact that the spread of the
softening region is not known in advance.

As concrete structures cannot always be analyzed
under standard displacement control, we have to
resort to more sophisticated techniques. Here, the
arc-length method seems a natural tool, but owing to
the highly localized failure modes in strain-softening
solids, the performance of this method is less than
might be expected. A major improvement can be
obtained when the global constraint equation is
replaced by a constraint equation which employs only
a limited number of degrees of freedom. As a con-
sequence, the method, which is now perhaps better
called “indirect displacement control”, loses some of
its elegance and generality.

A further problem with the use of strain-softening
models is the non-uniqueness of solution. Numerical
methods can locate bifurcation points by a combina-
tion of an incremental loading procedure and an

eigenvalue analysis of the tangent stiffness matrix, -

while bifurcation in a discrete mechanical model can
be forced by perturbing the fundamental solution by
the eigenvector which belongs to the vanishing eigen-
value. It has been shown that this technique, which
originates from geometrically nonlinear analysis, is
also versatile for structures composed of strain-
softening material.
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