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A B S T R A C T

The equilibrium of a membrane shell is governed by Pucher’s equation that is described in terms of the relations
among the external load, the shape of the shell, and the Airy stress function. Most of the existing funicular
form-finding algorithms take a discretized stress network as the input and find the shape. When the resulting
shape does not meet the user’s expectation, there is no direct clue on how to revise the input. The paper utilizes
the method of radial basis functions, which is typically used to smoothly approximate arbitrary scalar functions,
to represent 𝐶∞ smooth shapes and stress functions of shells. Thus, the boundary value problem of solving
Pucher’s equation can be converted into a least-squares regression problem, without the need of discretizing the
governing equation. When the provided shape or stress function admits no solution, the algorithm recommends
users how to tweak the input in order to find an approximate solution. The external load in this method
can easily incorporate vertical and horizontal components. The latter part might not always be negligible,
especially for the seismic hazard zones. This paper identifies that the peripheral walls are preferable to allow
the membrane shells to carry horizontal loads in various directions without deviating from their original shapes.
When there are no sufficient supports, the algorithm can also suggest the potential stress eccentricities, which
could inform the design of reinforcing beams.
. Introduction

A membrane shell supports loads by in-plane stresses and its cur-
atures. The absence of bending moments allows this type of struc-
ure to span a considerable distance with minimal material. Due to
ts structural efficiency and aesthetic elegance, the membrane shells
an be found in various structures, from medieval masonry vaults to
ontemporary glass roofs (Fig. 1).

Most arbitrarily curved surfaces do not have such a bending-free
roperty. The process of finding the special bending-free forms is
alled form-finding. The existing numerical form-finding algorithms
re largely based on funicular networks [1]. The form-found results
re affected by networks’ connectivity and parameters (e.g., stiffness
oefficients in the dynamic relaxation [2] and the force densities in the
orce density method [3]). But it is often not clear how to update the
onnectivity or parameters to control the resulting shapes.

Giving users greater control, thrust network analysis [4,5] allows
sers to interactively manipulate reciprocal diagrams to control the
ertically projected thrust network and the values of the force densities.
hen, the instant feedbacks are provided by computing the vertical
levation of the thrust network through the force density method.
he method of designing self-supporting surfaces in [6] goes one step
urther; it can take a 3D planar-facet mesh as the input and derive

∗ Corresponding author.
E-mail address: Chiang.YuChou@gmail.com (Y.-C. Chiang).

the best-fit polyhedral Airy stress function, which is equivalent to the
reciprocal diagrams (see [7]) in the thrust network analysis.

Unfortunately, those two interactive methods are incompatible with
horizontal loads, which are crucial for shell structures in seismic hazard
zones [8]. The dynamic response under a seismic load should be ana-
lyzed through dynamic analysis [9]. However, quasi-static horizontal
loading analyses can still provide basic information in a preliminary
design stage [10,11], and it is also useful to evaluate the safety of built
vault heritage [10].

Horizontal loads are also often left out in the closed-form solutions,
even though the analytical equations: Pucher’s equation [12] (gov-
erning vertical equilibrium) and the Airy stress function (expressing
horizontal equilibrium) have adequately incorporated horizontal loads.
The analytical discussions often set horizontal loads as zeros [13,14].

To develop a more fundamental form-finding method, this paper
revisits the governing Pucher’s equation, which describes the relation
among the external loads (in vertical and horizontal directions), the
shape of the shell, and the Airy stress function. Furthermore, the
method of radial basis functions (RBFs) is used, which is a numerical
method underutilized in the form-finding application [15]. RBFs can
convert boundary value problems into least-squares fitting problems,
without the need of discretizing governing equations or boundary con-
ditions [16,17]. This paper uses RBFs to smoothly represent the shapes
vailable online 11 November 2021
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Fig. 1. Examples of shell structures. (a) Masonry vault of Llotja de la Seda [Silk Exchange], Valencia, Spain. (b) Glass roof of Dutch Maritime Museum, Amsterdam, Netherlands.
Source: (a) TMaschler@commons.wikimedia.org. (b) © design Ney & Partners - www.photo-daylight.com.
of shells and the Airy stress functions and applies the least-squares
method to best fit the equilibrium equations. The resulting algorithm
can take an Airy stress function as the input, and then generates the
corresponding shape, or the other way around. Free-edge conditions
and horizontal loads are also compatible with the proposed algorithm.

The article is organized as follows. Section 2 gives an overview
of form-finding methods and positions the proposed method among
them. Section 3 revisits the essential statics theory of membrane shells.
Section 4 introduces the method of RBFs for solving generic differential
equations. Section 5 applies the RBFs specifically to find membrane
shells under vertical loads. Section 6 further applies the algorithm to
shells subjected to horizontal loads. Finally, Section 7 summarizes the
current finding and projects future investigations.

2. Form-finding methods

This section discusses the features and limitations of various form-
finding methods, including analytical approaches, numerical methods,
and the proposed RBFs algorithm. The features of discussed methods
are organized in Table 1, which shows the proposed RBFs algorithm
can unify various features of different form-finding methods.

Although the analytical equations, Pucher’s equation and the Airy
stress function, can adequately incorporate horizontal loads, horizontal
loads are often left out for simplification. Even only focusing on ver-
tical loads, analytical solutions are often limited to certain boundary
conditions of simple geometries, due to the limitation of the analytic
expressions.

To expand the geometric freedom, numerical algorithms are devel-
oped to analyze the statics of the shells. Most of the existing algorithms
discretize the continuous surfaces into networks with finite funicular
bars [1], or parameterized the surface as smooth Non-Uniform Rational
Basis Splines (NURBS) surfaces [18]. These computational form-finding
methods can be broken down into two categories: simulating the phys-
ical hanging models and numerically solving statics equations [19]
(Fig. 2).

Physics-based. In the category of simulating physical models, the most
representative method is dynamic relaxation [2]. The computational
models contain parameters such as the mass of each node, stiffness of
each bar, support positions, etc. The model computes the elongation
of bars and residual forces on nodes, and subsequently updates the
velocity and position of each node. Then, the model iteratively re-
calculates the elongation and residual forces based on the updated
2

position until all nodes rest at an equilibrium state. Methods in this
category are intuitive, but they can only provide physically stable
equilibrium solutions.

Mathematics-based. The methods of this category, in contrast, do not
calculate velocity or acceleration. They solve statics equations numer-
ically, and sometimes are called geometric stiffness methods [1]. The
most representative method is force density method [3], in which the
bars have prescribed forces proportional to their lengths. The ratio
of the force to the length is called ‘‘force density’’. The algorithm
computes the residual force of each node according to the ‘‘force
densities’’ and seeks the alternative position of each node to minimize
its residual force. The method of thrust network analysis [5] and methods
in [6,10,18] fall into this category. Methods in this category are slightly
abstract, but they can generate both physically stable and unstable
equilibrium solutions.

Most of these methods are based on networks of funicular bars
connected at nodes. The results are affected by the connectivity of
the network and the parameters of the edges, such as the spring
constants in dynamic relaxation [2] and the force densities in the force
density method [3]. These methods can find funicular forms. However,
most methods do not indicate how to alter the connectivity and the
parameters to approximate a predefined shape.

User interaction. To give users greater control, more interactive form-
finding methods have been proposed. Such as thrust network analy-
sis [5] enable users to manipulate the reciprocal diagrams to design the
connectivity and the force densities on the funicular networks. Then,
the algorithm provides real-time results, so that users can interactively
revise the reciprocal diagram until they are happy with the results.
Vouga et al. [6] provide a more direct control, their method of design-
ing self-supporting surfaces can take a planar mesh as the input and
reversely unveil the underlying polyhedral Airy stress function, which
is informationally equivalent to the reciprocal diagrams [7]. When the
shapes that users provided are not fully compatible with the statics
equations, Vouga’s method can tweak and thus correct the shape to
meet the conditions. The triangular meshes can also be replaced by
NURBSs as shown by Miki et al. [18].

Unfortunately, those interactive method is not compatible with
horizontal loads. To address this drawback, Marmo et al. [10] have
reformulated the thrust network analysis but at the expanse of giving
up the interactive reciprocal diagrams that allow users to indirectly
shaping the resulting funicular network.
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Table 1
Features of various form-finding methods.

Feature Analyticala DRb FDMc TNAd RTNAe SSSf PSSSg Paper

Basis function Analytic expressions Network Planar mesh NURBSs RBFs
Geometric freedom – Yes Yes Yes Yes Yes Yes Yes
Unstable solution Yes – Yes Yes Yes Yes Yes Yes
Shape tweaking Yes – – – – Yes Yes Yes
Horizontal loads Yesh Yes Yes – Yes – – Yes

aSee [13,14].
bDynamic Relaxation [2].
cForce Density Method [3].
dThrust Network Analysis [5].
eReformulated Thrust Network Analysis [10].
fSelf-Supporting Surfaces [6].
gParametric Self-Supporting Surfaces [18].
hIncluded in the governing equation but rarely in solutions.
Fig. 2. Schemes of finding funicular structures. (a) The method of dynamic relaxation starts from a set of springs, nodes, and loads. The residual force 𝐅 accelerates the node
oward a stable equilibrium. (b) The method of thrust network analysis initializes the process with pre-stressed bars, nodes, and loads. The nodes actively search for alternative
ositions to minimize all the residual forces 𝛴‖𝐅‖2.
𝑁
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otivation of utilizing rbfs. This paper is set to develop a method to
ollect the positive features mentioned above: having the geometric
reedom to meet various boundary conditions, deriving unstable equi-
ibrium configurations, tweaking and revising given shapes to meet the
tatics conditions, and finally being compatible with horizontal loads.
he method of radial basis functions (RBFs) provides a convenient
pproach, RBFs can rapidly convert a boundary value problem into
least-squares fitting problem, without the processes of discretizing

overning equations. The governing equation of membrane shells –
ucher’s equation [12] – is readily available, which sufficiently relates
hapes, stresses (expressed by the Airy stress functions), and loads in
ertical and horizontal directions. In the presented RBFs algorithm, the
oads are externally given, while shapes and the Airy stress functions
ill be represented by RBFs. The least-squares method is used to find

he best-fit shapes and the Airy stress functions satisfying the governing
quation. The resulting surfaces and stress functions are continuously
ifferentiable similar to analytical solutions. This feature allows con-
enient calculation of curvatures and stresses, which also benefit the
isualization of stress trajectories in this paper (e.g., Fig. 8). The
resented algorithm is deemed to be the most versatile form-finding
ethod among the others shown in Table 1.

. Statics of membrane shells

This section briefly revisits the essential formulations that govern
he equilibrium of membrane shells. The equilibrium equations connect
hree items: load, shape, and stress distribution (or an Airy stress
unction). The resulting equilibrium configuration, which can set a
ower bound in the plastic limit theorems, is useful in the design of
hells [13]. Material properties such as density and elastic modulus
re not involved in these expressions. In a way, the form-found shapes
re regarded as material independent, and the resulting shapes can be
3

a

found in a wide range of built structures, for instance, steel tessellated
roofs, masonry vaults, concrete shells.

Pucher’s equation. The governing differential equation – Pucher’s
equation – is expressed as [12, p. 461]

𝑁𝑥𝑥 ⋅ 𝜕𝑥𝑥𝑍 + 2𝑁𝑥𝑦 ⋅ 𝜕𝑥𝑦𝑍 +𝑁𝑦𝑦 ⋅ 𝜕𝑦𝑦𝑍 = 𝑝𝑥 ⋅ 𝜕𝑥𝑍 + 𝑝𝑦 ⋅ 𝜕𝑦𝑍 − 𝑝𝑧, (1)

where is 𝑁𝑖𝑗 (𝑖, 𝑗 ∈ {𝑥, 𝑦}) are the horizontal stress resultants, 𝜕𝑖𝑗
(𝑖, 𝑗 ∈ {𝑥, 𝑦}) are Euler’s notation for the derivatives such that 𝜕𝑖𝑗 =

𝜕2

𝜕𝑖 𝜕𝑗 ,
𝑍(𝑥, 𝑦) is the elevation of the shell, 𝑝𝑥, 𝑝𝑦 are horizontal body forces (per
unit horizontal area), and 𝑝𝑧 is the vertical load (per unit horizontal
area). The stress resultants 𝑁𝑖𝑗 can be expressed with an Airy stress
function 𝐹 (𝑥, 𝑦) as [20]

𝑥𝑥 = 𝜕𝑦𝑦𝐹 − ∫ 𝑝𝑥 𝑑𝑥, 𝑁𝑦𝑦 = 𝜕𝑥𝑥𝐹 − ∫ 𝑝𝑦 𝑑𝑦, 𝑁𝑥𝑦 = −𝜕𝑥𝑦𝐹 . (2)

hese expressions guarantee that 𝑁𝑖𝑗 satisfy the horizontal equilibrium
onditions ∑

𝑗 ∈{𝑥, 𝑦} 𝜕𝑗𝑁𝑖𝑗 + 𝑝𝑖 = 0.
From expressions (2), Pucher’s equation (1) becomes

(

𝜕𝑦𝑦𝐹 − ∫ 𝑝𝑥 𝑑𝑥
)

⋅ 𝜕𝑥𝑥𝑍 − 2 𝜕𝑥𝑦𝐹 ⋅ 𝜕𝑥𝑦𝑍 +
(

𝜕𝑥𝑥𝐹 − ∫ 𝑝𝑦 𝑑𝑦
)

⋅ 𝜕𝑦𝑦𝑍

= 𝑝𝑥 ⋅ 𝜕𝑥𝑍 + 𝑝𝑦 ⋅ 𝜕𝑦𝑍 − 𝑝𝑧. (3)

or a form-finding problem, the external loads 𝑝𝑥, 𝑝𝑦, 𝑝𝑧 are usually pre-
defined while stress 𝐹 (𝑥, 𝑦) and shape 𝑍(𝑥, 𝑦) are unknowns. With two
nknown functions and only one governing equation, a form-finding
roblem is mostly underdetermined.

wo perspectives. One of the two unknown functions shall better be
rescribed to turn the form-finding problem well-posed. For instance,
n the thrust network analysis [5], reciprocal diagrams are prescribed.
hen, the method provides the elevation of the thrust network. Equiv-

lently, in the proposed method, the Airy stress function 𝐹 (𝑥, 𝑦) can be
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Fig. 3. Local directions on an edge (left) and the stresses of an infinitesimal triangle
t the edge (right).

rescribed first, then the shape function 𝑍(𝑥, 𝑦) to be derived subse-
quently.

When stress function 𝐹 (𝑥, 𝑦), as well as the loads 𝑝𝑖(𝑥, 𝑦), is prede-
fined, Pucher’s equation (3) becomes a second-order partial differential
equation:

𝑃𝑢𝑐ℎ𝑒𝑟
𝐹 [𝑍(𝑥, 𝑦)] = −𝑝𝑧, (4)

where 𝑃𝑢𝑐ℎ𝑒𝑟
𝐹 [⋅] is the differential operator with subscript 𝐹 indi-

cates that the stress function 𝐹 (𝑥, 𝑦) is contained in the operator. The
operator is defined as

𝑃𝑢𝑐ℎ𝑒𝑟
𝐹 [⋅] =

(

𝜕𝑦𝑦𝐹 − ∫ 𝑝𝑥 𝑑𝑥
)

⋅ 𝜕𝑥𝑥[⋅] − 2 𝜕𝑥𝑦𝐹 ⋅ 𝜕𝑥𝑦[⋅]

+
(

𝜕𝑥𝑥𝐹 − ∫ 𝑝𝑦 𝑑𝑦
)

⋅ 𝜕𝑦𝑦[⋅] − 𝑝𝑥 ⋅ 𝜕𝑥[⋅] − 𝑝𝑦 ⋅ 𝜕𝑦[⋅].

In the other way around, when 𝑍(𝑥, 𝑦) is treated as a predefined
function, Pucher’s equation (3) can also be reorganized as

𝑃𝑢𝑐ℎ𝑒𝑟
𝑍 [𝐹 (𝑥, 𝑦)] = −𝑝𝑧 + 𝑝′ℎ. (5)

In this perspective, the corresponding differential operator goes as

𝑃𝑢𝑐ℎ𝑒𝑟
𝑍 [⋅] = 𝜕𝑥𝑥𝑍 ⋅ 𝜕𝑦𝑦[⋅] − 2 𝜕𝑥𝑦𝑍 ⋅ 𝜕𝑥𝑦[⋅] + 𝜕𝑦𝑦𝑍 ⋅ 𝜕𝑥𝑥[⋅].

Meanwhile, the term 𝑝′ℎ at the right-hand side of Eq. (4) is given by

𝑝′ℎ = 𝜕𝑥𝑥𝑍 ⋅ ∫ 𝑝𝑥 𝑑𝑥 + 𝜕𝑦𝑦𝑍 ⋅ ∫ 𝑝𝑦 𝑑𝑦 + 𝜕𝑥𝑍 ⋅ 𝑝𝑥 + 𝜕𝑦𝑍 ⋅ 𝑝𝑦.

The expressions (4) and (5) are convenient for formulating the
algorithm in Section 5.

Boundary conditions. So far, only the equilibrium within the domain
has been discussed. We shall also pay attention to the boundaries. The
boundaries are the edges of shells. At an edge, there are membrane
stresses on the curvy shell from one side. From the other side, there
is no shell element providing membrane stresses. Nonetheless, all ele-
ments on an edge need to stay in equilibrium, with or without stresses
transmitting across the edge.

One can first transform the stress resultants in 𝑥- and 𝑦- directions
into normal and tangential directions. The normal vector 𝐧 =

[

𝑛𝑥 𝑛𝑦
]T

is defined to be pointing outward while the tangential vector 𝐭 =
[

𝑡𝑥 𝑡𝑦
]T =

[

−𝑛𝑦 𝑛𝑥
]T is circling the domain counterclockwise (see

Fig. 3). The normal stress 𝑁𝑛𝑛 normal to the edge, the normal stress
𝑁𝑡𝑡 parallel to the edge, and the shear stress 𝑁𝑛𝑡 can be derived from
[21, p. 208]
[

𝑁𝑛𝑛 𝑁𝑛𝑡
𝑁𝑛𝑡 𝑁𝑡𝑡

]

=
[

𝑛𝑥 𝑛𝑦
−𝑛𝑦 𝑛𝑥

] [

𝑁𝑥𝑥 𝑁𝑥𝑦
𝑁𝑥𝑦 𝑁𝑦𝑦

] [

𝑛𝑥 −𝑛𝑦
𝑛𝑦 𝑛𝑥

]

. (6)

If all elements on an edge segment can reach equilibrium without
external stresses, then one can say the segment is a free edge, which is
free from external supports. On a free edge, one should have
4

𝑁𝑛𝑛 = 0, (7a)
Fig. 4. Forces and stress resultants on a segment of the reinforcing funicular rib.

𝑁𝑛𝑡 = 0, (7b)

𝑁𝑡𝑡 ⋅ 𝜕𝑡𝑡𝑍 = 𝑝𝑛 ⋅ 𝜕𝑛𝑍 + 𝑝𝑡 ⋅ 𝜕𝑡𝑍 − 𝑝𝑧. (7c)

Condition (7a) means there is zero normal stress across the boundary,
condition (7b) describes there is zero shear against the boundary, while
condition (7c) is a degenerated version of Pucher’s equation suggesting
the boundary is balanced in the vertical direction. Horizontal body
forces 𝑝𝑥 and 𝑝𝑦 are represented by 𝑝𝑛 = 𝑛𝑥𝑝𝑥 + 𝑛𝑦𝑝𝑦 and 𝑝𝑡 = −𝑛𝑦𝑝𝑥 +
𝑛𝑥𝑝𝑦.

Whenever any condition of (7a)–(7c) is not satisfied, external sup-
port or a special reinforcement will be needed to achieve an equilib-
rium. For instance, a designer can add a funicular rib and a vertical wall
at the edge to bypass conditions (7b)–(7c). Subsequently, condition (7a)
turns into

𝑁𝑛𝑛 = 𝑇 (𝜕𝑠𝒕 ⋅ 𝒏), (8)

and the corresponding supporting forces become

𝑇 = ∫ 𝑁𝑛𝑡 𝑑𝑠, (9)

𝑝𝑒𝑧 = 𝑁𝑛𝑛 ⋅ 𝜕𝑛𝑍 +𝑁𝑛𝑡 ⋅ 𝜕𝑡𝑍 − 𝑇 ⋅ 𝜕𝑡𝑡𝑍, (10)

here 𝑇 denotes the tension force of the funicular rib (Fig. 4) and 𝑝𝑒𝑧
enotes the vertical supporting force from the wall.

If the designer would like to bypass the condition (8), then a rigid
upport shall be provided. Since membrane shells transmit little bend-
ng moment, the support is needed to take only translational forces.
nce the support is capable of carrying forces in all directions, there is
o condition for such a fully supported edge.

. Introduction to radial basis functions (RBFs)

The method of RBFs is often used to represent a smooth multivariate
unction. The method has been developed for more than 40 years [16],
ut it is rarely used in solving form-finding problems [15]. Unlike
inite element methods requiring governing equations being discretized
nd integrated into weak forms over elements, RBFs can rapidly trans-
orm a boundary value problem into a least-squares regression fitting
rescribed values of the function and its derivatives [16,17]. It is
nstructive to first introduce how this method is used to numerically
olve a generic boundary value problem. Later, Section 5 will apply
BFs to solve the form-finding problems.

An arbitrary function 𝑓 (𝐱) can be approximated by a set of radial
asis functions 𝜙(𝐱) = 𝜙

(

‖

‖

𝐱 − 𝝁𝑖
‖

‖

; 𝜌𝑖
)

and augment polynomial terms
(𝐱) [16,22,23]:

(𝐱) =
𝑛
∑

𝜆𝑖𝜙
(

‖

‖

𝐱 − 𝝁𝑖
‖

‖

; 𝜌𝑖
)

+ ℎ (𝐱) + 𝜀, (11)

𝑖=1



Engineering Structures 251 (2022) 113514Y.-C. Chiang and A. Borgart
Fig. 5. The multiquadrics is an RBF that has a shape parameter 𝜌 that allows the RBF
to take a shape between a cone and a paraboloid as 𝜌 takes a value between 0 and ∞
(left to right).

in which 𝐱 is the position of evaluation, 𝜆𝑖 are the magnitude coeffi-
cients of the RBFs, 𝝁𝑖 are the source points, 𝜌𝑖 are the shape parameters
of the RBFs, and 𝜀 is the approximate error.

Let 𝑟 = ‖𝐱 − 𝝁‖ denotes the distance. The radial basis functions can
be as simple as the Euclidean distance 𝜙 (𝑟 ; 𝜌) = 𝑟, thin-plate splines
𝜙 (𝑟 ; 𝜌) = 𝑟2 log 𝑟, Gaussian 𝜙 (𝑟 ; 𝜌) = 𝑒−𝜌2𝑟2 , or multiquadrics

𝜙 (‖𝐱 − 𝝁‖ ; 𝜌) =
√

‖𝐱 − 𝝁‖2 + 𝜌2. (12)

The last one is used in all the cases in this paper because its shape
parameter 𝜌 allows the user to adjust the local intensity of the curvature
(Fig. 5). This benefit shall be discussed in detail in the upcoming
Section 5. Furthermore, there is no necessity to augment multiquadrics
with polynomial terms [22]. Therefore, Eq. (11) can be more specific
and simplistic as

𝑓 (𝐱) =
𝑛
∑

𝑖=1
𝜆𝑖
√

‖

‖

𝐱 − 𝝁𝑖
‖

‖

2 + 𝜌2𝑖 + 𝜀. (13)

By a sufficient number 𝑛 of multiquadrics and adequately arranged 𝝁𝑖
and 𝜌𝑖, the representable space [16]

𝑆 =

{ 𝑛
∑

𝑖=1
𝜆𝑖
√

‖

‖

𝐱 − 𝝁𝑖
‖

‖

2 + 𝜌2𝑖
|

|

|

|

|

{

𝜆𝑖
}

∈ R𝑛

}

(14)

shall be flexible enough to minimize the approximate error 𝜀. Let 𝐱𝑗
denote 𝑚 calibration points, and 𝑓𝑗 denote the target values. The errors
𝜀𝑗 shall be

𝜀𝑗 = 𝑓𝑗 − 𝜙𝑗𝑖 ⋅ 𝜆𝑖, (15)

where 𝜙𝑗𝑖 = 𝜙
(

‖

‖

‖

𝐱𝑗 − 𝝁𝑖
‖

‖

‖

; 𝜌𝑖
)

=
√

‖

‖

‖

𝐱𝑗 − 𝝁𝑖
‖

‖

‖

2
+ 𝜌2𝑖 . In matrix form, it

can be expressed as

𝜀 = 𝐟 −𝚽𝜆, (16)

in which 𝜺 and 𝐟 are two 𝑚 × 1 column vectors contenting 𝜀𝑗 and 𝑓𝑗 ; 𝝀
is an 𝑛×1 column vector containing 𝜆𝑖; while 𝚽 is an 𝑚× 𝑛 rectangular
matrix with elements as 𝜙𝑗𝑖. Then, the best-fit coefficient vector 𝝀 can
be provided by minimizing the approximate errors with the ordinary
least-squares method (LSM):

𝝀 = arg min
𝝀

𝜺T𝜺 =
(

𝚽T𝚽
)−1 𝚽T𝐟 . (17)

Eq. (17) is often applied to approximation problems.

Solving a differential equation. When the least-squares scheme include
prescribing not only the values of the function but also its derivatives,
the RBFs can also provide solutions of differential equations. Suppose
there is a linear partial differential equation problem as

 [𝑓 (𝐱)] = 𝑔(𝐱), 𝐱 ∈ 𝛺, (18)

 [𝑓 (𝐱)] = 𝑞(𝐱), 𝐱 ∈ 𝜕𝛺, (19)

where 𝛺 is the domain, 𝜕𝛺 is the boundary, [⋅] and [⋅] are the
differential operators of the governing equation and the boundary
condition respectively, while 𝑔 and 𝑞 are prescribed functions. When
5

𝐱𝛺 and 𝐱𝜕𝛺 are selected as calibration points, radial basis functions can
be used to approximate the problem as

𝑔(𝐱𝛺) =
𝑛
∑

𝑖=1

[

𝜙𝑖(𝐱𝛺)
]

+ 𝜀𝛺 , 𝐱𝛺 ∈ 𝛺, (20)

𝑞(𝐱𝜕𝛺) =
𝑛
∑

𝑖=1

[

𝜙𝑖(𝐱𝜕𝛺)
]

+ 𝜀𝜕𝛺 , 𝐱𝜕𝛺 ∈ 𝜕𝛺, (21)

or in a matrix form as
[

𝐠
𝐪

]

=
[

𝚽
𝚽

]

𝝀 +
[

𝜺𝛺
𝜺𝜕𝛺

]

. (22)

The weighted least-squares method can provide the solution:

𝝀 = arg min
𝝀

[

𝑤 𝜺𝛺
𝑤 𝜺𝜕𝛺

]T [𝑤 𝜺𝛺
𝑤 𝜺𝜕𝛺

]

, (23)

where 𝑤 and 𝑤 are the weights. The weights are crucial when [⋅]
and [⋅] have different dimensions.

The generic theory of differential and least-squares operations has
been clarified. The upcoming sections employ the method to form-
finding problems.

5. Algorithm and shells subjected to vertical loads

This section first builds generic RBF models to represent arbi-
trary 𝐶∞ smooth shapes 𝑍(𝑥, 𝑦) and Airy stress functions 𝐹 (𝑥, 𝑦) (Sec-
tion 5.1), then introduces the algorithm that solves form-finding prob-
lems when the loads are given (Section 5.2), and presents examples of
finding membrane shells on a triangular floor plan with free edges or
wall-supported edges (Sections 5.3–5.5).

With two unknown functions (𝑍(𝑥, 𝑦), 𝐹 (𝑥, 𝑦)) and only one govern-
ing Eq. (3), the form-finding problem is under-determined. However,
for a membrane that has free edges, its stress function 𝐹 (𝑥, 𝑦) faces
two boundary conditions (7a)–(7b), which make the free-edges over-
determined. Overall speaking, finding a membrane shell with free
edges is a problem with countless solutions yet in certain subsets. The
proposed algorithm can identify if an arbitrarily given shape or stress
function is one of the countless solutions. When the input function
permits no solution, the algorithm will tweak the input in order to reach
the solution subsets.

5.1. Models of the shape and the Airy stress function

In a problem of finding a membrane shell, the radial basis functions
are used to model two unknown functions of stress 𝐹 (𝐱) and shape 𝑍(𝐱):

𝐹 (𝐱) =
𝑛
∑

𝑖=1
𝜆𝐹 , 𝑖𝜙

(

‖

‖

𝐱 − 𝝁𝑖
‖

‖

; 𝜌𝑖
)

+ 𝜀𝐹 ,

𝑍(𝐱) =
𝑛
∑

𝑖=1
𝜆𝑍, 𝑖𝜙

(

‖

‖

𝐱 − 𝝁𝑖
‖

‖

; 𝜌𝑖
)

+ 𝜀𝑍 .

At points 𝐱𝛺 within the domain 𝛺, the functions 𝐹 (𝐱) and 𝑍(𝐱)
should satisfy Pucher’s equation (3). At points 𝐱𝜕𝛺, 𝑒 on the edges, the
functions should meet boundary conditions, such as Eqs. (7) for free
edges or Eq. (8) for wall-supported edges.

For the shape function, the relevant conditions can be translated
into a fitting problem:

− 𝑝𝑧(𝐱𝛺) =
𝑛
∑

𝑖=1
𝜆𝑍, 𝑖𝑃𝑢𝑐ℎ𝑒𝑟

𝐹
[

𝜙
(

𝐱𝛺
)]

+ 𝜀𝑃𝑢𝑐ℎ𝑒𝑟𝑍 , (24a)

𝑍𝜕𝛺, 𝑠 =
𝑛
∑

𝑖=1
𝜆𝑍, 𝑖𝜙

(

𝐱𝜕𝛺, 𝑠
)

+ 𝜀𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑍 , (24b)

where 𝑍𝜕𝛺, 𝑠 are prescribed elevations at the positions 𝐱𝜕𝛺, 𝑠 of the
supports.

On the other hand, for the stress function, the constraints include

− 𝑝𝑧(𝐱𝛺) + 𝑝′ℎ(𝐱𝛺) =
𝑛
∑

𝜆𝐹 , 𝑖𝑃𝑢𝑐ℎ𝑒𝑟
𝑍

[

𝜙
(

𝐱𝛺
)]

+ 𝜀𝑃𝑢𝑐ℎ𝑒𝑟𝐹 , (25a)

𝑖=1
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S
t
o
T

𝑞𝑁𝑜𝑟𝑚𝑎𝑙(𝐱𝜕𝛺, 𝑒) =
𝑛
∑

𝑖=1
𝜆𝐹 , 𝑖𝑁𝑜𝑟𝑚𝑎𝑙 [𝜙

(

𝐱𝜕𝛺, 𝑒
)]

+ 𝜀𝑁𝑜𝑟𝑚𝑎𝑙
𝐹 , (25b)

𝑞𝑆ℎ𝑒𝑎𝑟(𝐱𝜕𝛺, 𝑒) =
𝑛
∑

𝑖=1
𝜆𝐹 , 𝑖𝑆ℎ𝑒𝑎𝑟 [𝜙

(

𝐱𝜕𝛺, 𝑒
)]

+ 𝜀𝑆ℎ𝑒𝑎𝑟𝐹 , (25c)

𝐹𝜕𝛺, 𝑠 =
𝑛
∑

𝑖=1
𝜆𝐹 , 𝑖𝜙

(

𝐱𝜕𝛺, 𝑠
)

+ 𝜀𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝐹 . (25d)

ince the conditions (25a)–(25c) only refer to the second derivatives of
he stress function, extra conditions to fix the three degrees of freedom
n the overall value and the first-order derivatives are necessary.
herefore, condition (25d) is added.

The prescribed functions 𝑞𝑁𝑜𝑟𝑚𝑎𝑙(⋅), 𝑞𝑆ℎ𝑒𝑎𝑟(⋅) and the differential
operators 𝑁𝑜𝑟𝑚𝑎𝑙

𝑍 [⋅], 𝑠ℎ𝑒𝑎𝑟
𝑍 [⋅] can be provided by

𝑞𝑁𝑜𝑟𝑚𝑎𝑙(𝐱) = 𝑛2𝑥 ∫ 𝑝𝑥 𝑑𝑥 + 𝑛2𝑦 ∫ 𝑝𝑦 𝑑𝑦, (26a)

𝑁𝑜𝑟𝑚𝑎𝑙[⋅] = 𝑛2𝑥
𝑑2

𝑑𝑦2
[⋅] − 𝑛𝑥𝑛𝑦

𝑑2

𝑑𝑥𝑑𝑦
[⋅] + 𝑛2𝑦

𝑑2

𝑑𝑥2
[⋅], (26b)

𝑞𝑆ℎ𝑒𝑎𝑟(𝐱) = −𝑛𝑥𝑛𝑦 ∫ 𝑝𝑥 𝑑𝑥 + 𝑛𝑥𝑛𝑦 ∫ 𝑝𝑦 𝑑𝑦, (26c)

𝑆ℎ𝑒𝑎𝑟[⋅] = −𝑛𝑥𝑛𝑦
𝑑2

𝑑𝑦2
[⋅] − (𝑛2𝑥 − 𝑛2𝑦)

𝑑2

𝑑𝑥𝑑𝑦
[⋅] + 𝑛𝑥𝑛𝑦

𝑑2

𝑑𝑥2
[⋅]. (26d)

5.2. Steps of the algorithm

The basic workflow of the algorithm is outlined in Fig. 6, which
consists of 7 critical steps:

1. Determine the ground plan. List the boundary conditions of the
shell.

2. Describe load distributions (𝑝𝑥, 𝑝𝑦, and 𝑝𝑧).
3. Identify potential singular points and arrange the basis functions

accordingly.
4. The designer provides either (a) an initial stress function or (b)

an initial shape function.
5. (a) When a stress function is provided, find the corresponding

stress function.
(b) When a shape function is provided, find the correspond-

ing shape function.
6. Revise the stress function according to the updated shape, and

revise the shape function according to the updated stress until
two of them converged.

7. Export the stress and shape functions.

The singular points mentioned in step 3 refer to points having stress
concentration (for stress function) or dramatic curvature (for shape
function). In the following demonstration, the support points are such
singular points.

5.3. Steps 1–3: Calibration points and source points

The first 3 steps are eventually arranging calibration points (𝐱𝛺,
𝐱𝜕𝛺, 𝑒, 𝐱𝜕𝛺, 𝑠) and the prescribed values on these points (𝑝𝑧(𝐱𝛺), 𝑍(𝐱𝜕𝛺, 𝑠))
as well as the basis functions’ source points (𝝁𝑖) and the shape parame-
ters (𝜌𝑖). In the later steps, calibration points would be used to construct
the prescribing conditions, while the source points will provide degrees
of freedom of the representable space (Eq. (14)). The number of source
points shall be sufficient so that the optimization algorithm has suffi-
cient space to search the best fit magnitude coefficients. The number
of calibration points shall be larger than the number of source points,
so that the overall optimization problem stays well-posed.

Once the ground plan and boundary conditions are determined, one
can scatter the calibration points evenly within the domain and on the
boundary segments. Source points can be placed within and around the
domain. Extra source points are needed for where the resulting function
may have intense changes (e.g., the corners of the following triangular
shell).
6

Fig. 6. Flowchart of the algorithm.

Fig. 7. Distribution of calibration points and source points for the triangular shell
(color figure in web version.

Fig. 7 shows the arrangement of the calibration points and source
points for the demonstration shell, which has a triangular domain,
three anchorages, and a uniform vertical load. Triangular grid points
are arranged to be the domain type calibration points 𝐱 . Regarding
𝛺
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Fig. 8. The stress function (a) and the form-found shape function (b). The curvature
network of the stress function is the principal stress network of the resulting shell.
(color figure in web version).

calibration points of the boundary type, the first group 𝐱𝜕𝛺, 𝑒 contains
points on the three edges, while the second group 𝐱𝜕𝛺, 𝑠 includes three
vertices of the triangle.

Regarding the source points 𝝁𝑖 of the basis functions, grid points
within and around the domain 𝛺 are used. The shape parameters are
set to be 4 times the spacing of the grid (𝜌 = 4 ⋅ ‖𝛥𝝁‖) for most of the
source points. Considering there will be stress concentration around the
corners, each corner is assigned to two source points. One of them has
𝜌 = 0 and the other 𝜌 = 16 ⋅ ‖𝛥𝝁‖. Since the least-squares method is
going to be used, the source points 𝝁 can have less density than domain
calibration points 𝐱𝛺 (see Fig. 7).

5.4. Steps 4–5: Two paths of seeking the balance

After the common setup is built in the first three steps, the remain-
ing demonstration splits into two paths. The first path starts with an
initial stress function, and the second path starts with an initial shape
function.

Path A: Stress initiation. In this path, the demonstration initiates the
process from an analytical stress function provided by Csonka [14,
p. 587]. The initial input of the stress function goes as

𝐹 (𝑥, 𝑦) =
2(𝐿0 ⋅ 𝐿1 ⋅ 𝐿2)

15(𝐿0 ⋅ 𝐿1 ⋅ 𝐿2) + 6(𝑥2 + 𝑦2 − 1)
, (27)

where 𝐿𝑖 (𝑖 ∈ {1, 2, 3}) are linear functions that 𝐿𝑖(𝑥, 𝑦) =
cos (2𝜋𝑖∕3) 𝑥 + sin (2𝜋𝑖∕3) 𝑦 − 1∕2. This stress function automatically
satisfies the free edge conditions (25b)–(25c). Fig. 8a displays this stress
function and its principal curvature network.

The only part left unknown is the shape function 𝑍(𝑥, 𝑦), or 𝜆𝑍, 𝑖
which can be answered by minimizing the errors in Eqs. (24a)–(24b).
One can derive the coefficients for the differential operator 𝑃𝑢𝑐ℎ𝑒𝑟

𝐹 [⋅]
in the governing Eq. (24a) by evaluating the second deviates of the
stress function 𝐹 (𝑥, 𝑦) at the calibration points 𝐱𝛺. Along with the
boundary condition (24b), 𝜆𝑍, 𝑖 can be provided by the method of least
squares (see Eq. (17)). The shape solution provided by the radial basis
7

Fig. 9. Distribution of the residual error (color figure in web version).

Fig. 10. Root-mean-square errors decaying with the iteration (color figure in web
version).

functions, along with the network of stress trajectories (or isostatic
lines), is illustrated in Fig. 8b. The visualization of the stress network
is adapted from [24] for smooth stress trajectories.

Regarding the residual errors 𝜀𝑃𝑢𝑐ℎ𝑒𝑟𝐹 and 𝜀𝑃𝑢𝑐ℎ𝑒𝑟𝑍 , they are eventually
the same. Both of them represent the difference between prescribed 𝑝𝑧
and the supporting stress that 𝐹 (𝐱) and 𝑍(𝐱) are actually providing. The
error is within ±0.02𝑝𝑧 at most of the surface as depicted in Fig. 9. Near
the corners, some spots have larger errors (‖𝜀𝑃𝑢𝑐ℎ𝑒𝑟‖ > 0.2𝑝𝑧). These
spikes can be attributed to the short distance between the free edges,
which have calibration points on them. One may opt to place more
source points at those regions to curb the residual errors.

Path B: Shape initiation. For most ground plans, there may not be an
analytical free-edge stress function available. The designer can choose
path B to input an initial shape, then the algorithm can tweak the shape
to meet the prescribed boundary conditions. For instance, the designer
can provide a paraboloid as the initial shape:

𝑍(𝑥, 𝑦) = 7
10

(−𝑥2 − 𝑦2 + 1).

The initial shape function provided crucial coefficients to the differen-
tial operator 𝑃𝑢𝑐ℎ𝑒𝑟

𝑍 in the governing equation (25a). As suggested by
Csonka [14], the paraboloid cannot simultaneously be compatible with
the two free-edge conditions (25b)–(25c). To bypass condition (25c),
the designer is obliged to place funicular ribs at the edges and walls
below them to reinforce and support the paraboloid shell. The tension
forces in the ribs can be provided by Eq. (9), and the vertical supporting
force can be evaluated from Eq. (10). The resulting stress function and
the initial shape function are displayed in Fig. 11a. In practice, the
vertical supporting forces are often provided structural mullions [25].

The designer can also impose condition (25c), which will result in
a different solution of the stress function. Then, based on the updated
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stress function, the algorithm will find the tweaked shape. The algo-
rithm will alternately tweak or modify the stress and shape functions
before the converge condition is satisfied. When the iteration does not
converge well, the designer can first impose the condition (25c) with
lower weight then gradually increase it. In this demonstration, there are
four stages in the process. Each stage has a different value of the weight,
which is set to be 0.25 in the first 10 iterations (1–10), 0.5 in the follow-
ing 20 iterations (11–30), 0.75 in another group of 30 iterations (31–
60), and eventually to be 1 in the last 40 iterations (61–100). Fig. 10
shows the residual errors evolve along with the iterations. The over-
all root-mean-square error 𝜀𝑂𝑣𝑒𝑟𝑎𝑙𝑙 =

√

∑

(𝑤𝜀)2∕
∑

𝑤2 monotonically
decreases, and jumps only when the weights are changed.

Fig. 11b shows intermediate stress and shape functions after the first
30 iterations. Then, the stress and shape functions are turned into a
free-edged shell after 100 iterations as illustrated in Fig. 11c.

5.5. Steps 6–7: Convergence and export

Pucher’s equation (3) suggests the vertical load equals the deriva-
tives of the stress function 𝜕𝑖𝑗𝐹 (𝑖, 𝑗 ∈ 𝑥, 𝑦) time the derivatives of the
shape function 𝜕𝑖𝑗𝑍 (𝑖, 𝑗 ∈ 𝑥, 𝑦) (plus some other terms). When both
stress function and shape function are unknown (or both 𝝀𝐹 and 𝝀𝑍 are
unknown), finding the solution set of stress function and shape function
is a non-linear problem.

The proposed algorithm adjusts the stress function and shape func-
tion alternately. In an individual adjustment, either 𝝀𝐹 or 𝝀𝑍 is treated
as unknown and the other is treated as a given constant vector. In
this perspective, the error vector has a linear relation to the unknown
coefficient vector (𝝀𝐹 or 𝝀𝑍 ). The method of linear least square can
provide best fit magnitude coefficients without further trials, unlike the
method of gradient descent [26].

However, the overall path of the proposed algorithm still shows
striking similarities to the gradient descent (Fig. 12). In the gradient
descent, there are three features. First, the overall path is monotonically
descent. Secondly, each step ends at the tangent point to a contour of
the minimizing function. Thirdly, any subsequent step is perpendicular
to the previous step. In the proposed algorithm, each adjustment ends
at a conditional global minimum, thus the overall path is monotonic
and each endpoint tangents to the minimizing function. Moreover, in
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each iteration step, the updated coefficient vector is either (𝛥𝝀𝑍 , 𝟎) or
(𝟎, 𝛥𝝀𝐹 ), which is always perpendicular to the previous step.

Furthermore, given that all calibration points are in a non-singular
region, thus the smoothness of minimizing function ∑

[𝑤𝜀(𝝀)]2 is guar-
anteed. These features ensure that the proposed algorithm shall con-
verge at stationary points where the gradient of the minimizing func-
tion is zero: 𝜕

𝜕𝝀
∑

(𝑤𝜀)2 = 𝟎. Fig. 10 shows that the norm of gradient
‖

‖

‖

𝜕
𝜕𝝀

∑

(𝑤𝜀)2‖‖
‖

decays slowly. The slow convergence is due to the prob-
lem has strong eccentricity (e.g., the minimum is at the bottom of a
narrow valley) [27]. Another optimization scheme might be preferable
to accelerate the converge, but the inquiry is outside the scope of this
paper.

Practically, the sequence can be terminated if the minimizing func-
tion ∑

(𝑤𝜀)2 is smaller than a prescribed standard, says (𝜀𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 )2. If
the sequence reaches 𝜕

𝜕𝝀
∑

(𝑤𝜀)2 = 𝟎 or the descend of ∑(𝑤𝜀)2 stagnates
before ∑

(𝑤𝜀)2 < (𝜀𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 )2, then it is necessary to add or rearrange 𝝁𝑖
and 𝜌𝑖 in order to enlarge the representable space (14).

Regarding the export, the algorithm shall export the centers 𝝁𝑖 and
the shape coefficients 𝜌𝑖 as well as the magnitude coefficients 𝜆𝐹 , 𝑖 and
𝜆𝑍, 𝑖. For some users, a graphical output may be more relevant than the
numbers. This paper uses sets of stress trajectories, or principal stress
networks, to visualize the results. The widths of the trajectories are
proportional to the stress and are inversely proportional to the distances
to the adjacent trajectories. The visualization of the stress network is
adapted from [24] for smooth stress trajectories.

6. Shells subjected to both vertical and horizontal loads

This section shows how membrane stresses are affected by the
horizontal loads. If the original shape, or the thrust surface, cannot
carry the horizontal loads, this section also shows how the thrust
surface shall deviate from the original position.

The shape in Fig. 8 is put under this horizontal loading analysis.
The shape is regarded as the initial shape in the proposed form-finding
algorithm introduced in Section 5. The load cases contain horizontal
loads, which are set to be 30% of the 𝑝𝑧 in various directions:
(

𝑝 , 𝑝
)

= 0.3 ‖𝑝 ‖ cos 𝜃, sin 𝜃 , 𝜃 ∈ R.
𝑥 𝑦 ‖ 𝑧‖ ( )
Fig. 11. Shape functions (upper row) and stress functions (lower row) of the shell gradually evolve from a walls-supported paraboloid shape to a free-edge shell. (a) When the
paraboloid shell is supported on walls. The shell is pure compressed around the center and has tension stress near the corners. Correspondingly, the stress function is elliptic
around the center and hyperbolic near the corners. (b) Evolution toward satisfying free-edges conditions. (c) Result of the last iteration, which has stress concentration at the
corners. Correspondingly, the stress function is parabolic near the corners. (color figure in web version).
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Fig. 12. Converging path to a local minimum ∑

(𝑤𝜀)2.
Fig. 13. Shape functions (upper row) and stress functions (lower row) of the walls-supported shell under horizontal loads of different directions. (a) 𝜃 = −90◦. (b) 𝜃 = 0◦. (c)
𝜃 = 90◦. (color figure in web version).
For these uniform horizontal loads, a potential function 𝑉 (𝑥, 𝑦) can be
introduced [28]:

𝑉 (𝑥, 𝑦) = 𝑝𝑥𝑥 + 𝑝𝑦𝑦,

which satisfies 𝜕𝑥𝑉 = 𝑝𝑥 and 𝜕𝑦𝑉 = 𝑝𝑦, and thus the potential function
can replace ∫ 𝑝𝑥 𝑑𝑥 and ∫ 𝑝𝑦 𝑑𝑦 in Eqs. (26a), (26c).

The membrane shell is supported in two ways. In Section 6.1, the
shell’s corners are anchored to the foundation and the edges are rein-
forced by funicular ribs and set on vertical walls, which only provide
vertical reactions. In Section 6.2, the ribs and walls are removed. The
shell is only supported at the three corners. Two supporting conditions
generate quite distinct results. In the first case, the initial shape can
sufficiently carry different load cases. In the second case, the shape
function has to deviate from the initial geometry.

6.1. Walls-supported shell

As previously discussed and shown in Section 5, wall supports
can help a non-form-found shape carry vertical loads with membrane
stresses. The section further shows how wall supports can help a
vertically form-found shape carry horizontal loads.

At the edges, the funicular ribs and supporting walls make the stress
function only need to comply with Eqs. (25a), (25b), (25d). Eq. (25a)
governs the stress function in the domain, condition (25b) asks the
stress function to curve at the edges, and condition (25d) determines
the overall elevation and slopes of the stress function. The resulting
9

Fig. 14. A wall-supported edge under horizontal loads. The external forces are
represented by the green arrows. Meanwhile, the red and blue lines represent tension
and compression forces, respectively. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

stress function changes dramatically in response to the horizontal loads.

Fig. 13 displays the stress functions and the stress flow one the shape.

The shear stress of the shell next to a funicular rib accumulates as

the axial force in the rib. The axial force, which is also curved in the

vertical plane, requires vertical stress in order to strike the balance.

Such vertical stress can be provided by the supporting wall. The stresses

can be drawn as concentrated forces as in Fig. 14, which shows the

forces induced by a uniform horizontal load.
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6.2. Points-supported shell

Another way to set the boundary condition is to remove the ribs and
the walls. As a result, when horizontal loads appear, the shape function
has to deviate from the initial input. Even if the input is the form-found
shape under the vertical load, the deviation is still necessary in order
to recover the balance from the altered load condition. The algorithm
proposed in Section 5 can provide the solution sets of stress and shape
functions.

Fig. 15 displays the solutions of the stress functions in response
to the horizontal loads. In the presence of horizontal body forces, the
Airy stress functions have to curve following condition (25b), which is
shared with the stress functions in Fig. 13. Therefore, the edges of the
stress functions in these two figures have the same edges.

However, the stress functions for free edges have to exclusively fol-
low condition (25c), which asks the stress functions to twist specifically
at the edges. As the result, the principal orientation of stresses will align
with the edges. One can see the curvature lines of stress functions are
parallel or normal to the edges. The orientation of the stress functions’
principal curvatures is the same as the orientation of the principal
stresses, since the potential function 𝑉 (𝑥, 𝑦) is adopted to represent the
integrals ∫ 𝑝𝑥 𝑑𝑥 and ∫ 𝑝𝑦 𝑑𝑦. Therefore, the parallelism between edges
and curvature lines also implies the parallelism between the edges and
principal stresses, which is required by condition (25c).

A side effect of condition (25c) is that the initial shape function
may no longer satisfy Pucher’s equation. The proposed algorithm can
be used to find an alternative shape function. After the iterations in
the algorithm, one can get the shape functions in Fig. 15. This shape
functions have only three pinned supports and no supporting forces
from the walls. The shapes have to deviate from the original symmetry
geometry and lean into horizontal loads as a cyclist leans into a strong
crosswind.

The shape functions of various horizontal loads collectively define a
pair of upper and lower envelopes (see Fig. 16). The distance between
the envelopes suggests the potential eccentricity of the membrane stress
in the shell. For this points-supported shell, the eccentricity at the
boundary is larger than that in the center. Meanwhile, the eccentricity
at the midpoints of the edges is larger than that around the supports.
These envelopes can inform the design of the thickness of a masonry
vault [13], the reinforcement arrangement of a concrete shell [29], or
the depths of reinforcing beams [30].
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7. Concluding remarks

This paper has presented the first form-finding algorithm which
can take an initial shape as the input and adjust it under loads in
various directions. The algorithm uses the numerical method of radial
basis functions to represent Airy stress and shape functions of shells,
solves Pucher’s equation by the least-squares method, and finds the
equilibrium states of membrane shells.

Like other funicular form-finding methods, only the equilibrium
equations are concerned in this proposed method. The resulting equilib-
rium configuration can set a lower bound in the plastic limit theorems,
which is useful in the preliminary design of shells. More sophisti-
cated modeling can later be applied to analyze other aspects, such as
displacement, strains, buckling, creep, fatigue, etc.

The proposed method can start the form-finding process from either
an initial stress or shape function of the shell. The stress functions
denote the horizontal components of the membrane stresses, which
are equilibrium to the force density in the force density method or
the reciprocal diagrams in the thrust network analysis. In contrast to
the conventional force-density-like methods, which require the force
density to be provided, the proposed method allows users to directly
start the form-finding method with a preliminary shape without prior
knowledge on stress distribution. If the provided preliminary shape is
not compatible with the desired boundary conditions, the algorithm can
tweak the shape to meet the conditions.

Horizontal loads have also been integrated into the form-finding
algorithm. The analyses of the triangular shell acknowledge that pe-
ripheral walls are preferable to keep the shells having minimum stress
eccentricities. If no wall is supporting any edge, the algorithm can also
suggest the potential stress eccentricities, which can inform the design
of reinforcing beams.

Further valuable extensions would be to integrate a fast optimiza-
tion scheme, develop a double-membrane model for non-membrane
shells, and limit membrane stresses to compression for masonry vaults.
This paper uses gradient descent as the optimization scheme, but it
converges slowly. Another scheme might be preferable to accelerate
the process. Regarding the double-membrane model, previous research
indicates that the eccentricity of the stress resultants in a shell is
dependent on the orientation [9,31]. This observation suggests that,
for a general shell, the stress resultants should not be projected onto
a single thrust surface. Conversely, a double-membrane model can
Fig. 15. Shape functions (upper row) and stress functions (lower row) of the points-supported shell under horizontal loads of different directions. (a) 𝜃 = −90◦. (b) 𝜃 = 0◦. (c)
𝜃 = 90◦. (color figure in web version).
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Fig. 16. The envelopes defined by the thrust surfaces under various horizontal loads (color figure in web version).
capture the above observation. A general shell can be conceptually
decomposed into two membrane shells sandwiching a middle layer of
shear stress. The shear force can be treated as horizontal loads acting
on the membranes. Thus, the model can represent non-membrane shells
faithfully. Additionally, when both the membrane surfaces are limited
to compression, the model can also analyze the equilibrium states of
thick vaults.
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