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Abstract
We study the advantages and disadvantages of us-
ing Integer Linear Programming for solving in-
stances of the NP-complete puzzle Hitori. We do
so as part of a larger comparison between different
modelling-and-solving (M&S) paradigms that aims
to find what solving techniques do (not) work for
different paradigms so as to guide effective mod-
elling. To this end we create three models: a path
model that is quartic with regards to instance size, a
quadratic and probabilistic optimised naive model,
and an exponential duplicates model which uses
proven properties of the game. We measure their
runtime performance with and without different op-
timisations on 1000 10× 10 Hitori instances, com-
pare it to the runtime performance of models in
four other M&S paradigms, and correlate proper-
ties of puzzle instances to runtime. We find that
there is no performance difference between our op-
timised naive and duplicates models though our
path model is significantly slower. Adding redun-
dant constraints tends to slow models down. Our
optimised naive model performs better than a Logic
Programming model, but worse than a Satisfiability
Modulo Theories, a Constraint Satisfaction Prob-
lem, and an Answer Set Programming model. Run-
time correlates strongly with the number of non-
unique tiles in the problem instance, though the cor-
relation’s direction differs per model. We conclude
that ILP is an unintuitive and slow tool for solv-
ing Hitori instances, especially when compared to
other M&S paradigms.

1 Introduction
Modelling-and-solving (M&S) paradigms are powerful tools
in which users model a problem as a set of variables and
rules, and a solver then tries to find an assignment of those
variables which satisfies those rules. In M&S, the way one
models a problem influences how well one can solve it [1],
and that is where the motivation for our study lies: we in-
vestigate what solving techniques (do not) work well when
applying Integer Linear Programming (ILP) to Hitori. We do
so as part of a larger study in which five colleagues model
Hitori in five M&S paradigms in order to compare solving
strategies between different paradigms. This is in response to
a recent Dagstuhl seminar [2] which reaffirmed the need for
different M&S communities to create more cross-paradigm
interactions in order to keep up rapid progress on M&S re-
search. It’s also in response to a call for more comparisons
between M&S paradigms by Çoban et al. [3].

This study investigates ILP (though other paradigms were
considered, for more information see appendix A) and uses
the Gurobi solver to do so. We chose Gurobi because it is
very popular1 and as such we are interested in its strengths
and weaknesses. We define two research questions:

1They claim 80% market share, see [4]

Research question 1: How fast can we solve Hitori puzzles
using the Integer Linear Programming solver Gurobi?

Research question 2: What properties of Hitori instances
influence the speed at which the Gurobi models can solve the
instance?

The rest of this work is organised as follows: we first exam-
ine relevant prior work on this topic. Then in the background
section we detail ILP, the rules of Hitori, we provide a formal
definition of Hitori, and prove three properties of the game.
We define our three models and seven redundant constraints
in our approach section and elaborate on our research ques-
tions and experiment parameters in the experimental setup.
We show what modelling-decisions and instance properties
affected performance in our results which we reason about
in our discussion. Finally, we conclude that ILP is compara-
tively slow in solving Hitori, though the properties that slow
our models down depend on the encoding we use, and provide
ideas for further research in our conclusion.

2 Prior Work
Wensveen [5] has looked at Hitori before, identifying solv-
ing techniques and using them to create a difficulty classifi-
cation for instances. They also created a 2-SAT solver, and
a rules-based solver that rely solely on human-solving strate-
gies such as those described in Section 4.4. Our work will
build upon the solving rules defined in their work, and their
method of encoding the connectivity constraint. Gander and
Hofer [6] also created two Hitori solvers: a SAT-based one
similar to Wensveen, and an imperative one which relies on
other solving patterns. They use a different method to model
the connectivity constraint which inspires one of our models.

Beyond Hitori there is a large number of studies that con-
sider solving other logic problems with M&S paradigms. For
instance, Crawford et al. [7] and Bartlett et al. [8] both solve
Sudoku using Constraint Satisfaction Problems (CSP) and
ILP respectively, though no performance was reported on the
latter, so no comparison can be made. Smith et al. [9] solve
the Progressive Party Problem using both ILP and CSP and
compares both paradigms. They find CSP more intuitive to
model the problem in, and the resulting model to be faster.

Çoban et al. [3] compare ASP with the ILP/Constraint Pro-
gramming solver ILOG OPL. On their specific problem set
they find ASP consistently faster, though both solvers have
their merits in their language’s expressiveness. For future re-
search they recommend extending comparisons to different
problems.

3 Background
In this section we first describe ILP. We then move on to de-
scribing the rules of Hitori after which we give a formal de-
scription of Hitori. Last, we prove three properties of the
game that we use in one of our models.

3.1 Integer Linear Programming
ILP is an M&S paradigm where users model their prob-
lems through integer variables such as x1 ∈ [1..10] and



x2 ∈ [−4..2] and through rules as linear (in)equalities such as
x1 ≤ x2 and x2 ≥ −3. Optionally, they may add an objective
function such as maximise(x1 − x2) or minimise(x1 + x2).
The Gurobi solver then uses a simplex algorithm (for more
information see Dantzig [10]) to find an assignment of values
to the defined variables that optimises the objective function.
If no objective function is given, the model returns when it
has found any assignment that satisfies all rules.

3.2 The Rules of Hitori
Hitori is an NP-complete puzzle [11] where the player is
given an n × n grid with each tile containing a number be-
tween 1 and n inclusive. The player is tasked with marking
tiles such that three constraints hold:

• Uniqueness constraint: no unmarked number appears
twice in its row and column,

• Adjacency constraint: no marked tiles are orthogonally
adjacent,

• Connectivity constraint: all unmarked tiles are con-
nected through an orthogonal path.

We visualise these rules in Figure 1. On top of these rules,
we only consider Hitori instances with exactly one solution.
This is the most common version of the puzzle [5, 12] and it
also removes trivial instances from our problem-space.
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(a) An unsolved Hitori
board.
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(b) The adjacency con-
straint forbids two adjacent
marked tiles.
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(c) The connectivity
constraint requires all
unmarked tiles to be
orthogonally connected.
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(d) A solved Hitori board.

Figure 1: A visual explanation of the rules of Hitori.

3.3 Formal Description of Hitori
An n-Hitori instance can be described as an n × n matrix H
where variable Hi,j corresponds to the tile at the ith row and

jth column of the instance and shares its value. A solution S
is then another n × n matrix consisting of 1s and 0s where
Si,j = 0 means the tile on the ith row and jth column is
marked, and a Si,j = 1 means it is not.

The adjacency constraint is described as

∀i∈[1..n]j∈[1..n−1]Si,j + Si,j+1 ≥ 1

∀i∈[1..n−1]j∈[1..n]Si,j + Si+1,j ≥ 1

For the uniqueness constraint we define n3 auxiliary vari-
ables ti,j,k ∈ [0, 1] where i, j, k ∈ [1..n]. ti,j,k = 1 iff
Hi,j = k and 0 otherwise. Using these variables we describe
the constraint as

∀i,k
n∑

j=1

ti,j,k · Si,j = 1

∀j,k
n∑

i=1

ti,j,k · Si,j = 1

The connectivity constraint requires a different approach
where we encode the solution S as a graph C with a set of
vertices V and a set of edges E. To create V we add a vertex v
for each field in S where Si,j = 1. vi,j is then a vertex created
from Si,j . We then create E by adding an edge between all
vertices created from orthogonally adjacent fields in S:

∀i∈[1..n]j∈[1..n−1]Si,j +Si,j+1 = 2 ⇐⇒ {vi,j , vi,j+1} ∈ E

∀i∈[1..n−1]j∈[1..n]Si,j +Si+1,j = 2 ⇐⇒ {vi,j , vi+1,j} ∈ E

The connectivity constraint is then satisfied if there is a
path from every node n to every other node n′ in C, or in
other words, if there is only one connected component in C.
Last, since we only consider uniquely-solvable instances of
Hitori, if multiple different instances of S satisfy the above
three constraints for H, H itself was not a valid instance.

3.4 Properties of Hitori
Below we provide proofs for three properties: First, a unique
tile (one with a number that is unique in its row and column)
will never be marked. Second, if we forbid the marking of all
tiles in a cycle in the instance graph, the connectivity con-
straint will be satisfied. Third, as a corollary, we prove that
instance graphs do not need to contain unique tiles.
Theorem 3.1. Given a Hitori instance H, a tile Hi,j that is
unique in its row i and column j will never be marked.

Proof. We will use a proof by contradiction. Let S be the
solution of H, and assume that H contains a tile Hi,j that is
unique in its row and column, i.e. Hi,j ̸= Hk,j for k ∈ [1..n],
k ̸= i, and Hi,j ̸= Hi,k for any k ∈ [1..n], k ̸= j, and that
tile is marked, i.e. Si,j = 0.

We will now use this assumption to create a contradiction
by showing that we can create a second valid solution for
this instance H, which is impossible for any of the Hitori
instances we consider. We do so by setting Si,j to 1.

Changing Si,j to 1 cannot break the uniqueness con-
straint as Hi,j is unique in its row and column by its defi-
nition. It also does not break the adjacency constraint: since



S is a valid solution, removing a marked tile can never create
a solution where two marked tiles are adjacent. The connec-
tivity constraint is also preserved. As Si,j is marked as by our
assumption, we know that all tiles orthogonally adjacent are
not. Since we know of all of those tiles that they are part of an
orthogonal path connecting all unmarked tiles (as is required
by the existence of a valid solution S), when Si,j is unmarked
we can add it to the path simply through its neighbours.

We have now constructed a second valid solution to H
which we know is a contradiction. As such, we can conclude
that unique tiles in any given instance H will never be marked
in the corresponding solution S.

Next we introduce instance graphs. It should be noted that
these are distinctly different from the graph C from our for-
mal description. For each Hitori instance H there exists an
instance graph G with a set of vertices V and a set of edges
E. To create V we add a vertex v for each field in S where
Si,j = 0. vi,j is then a vertex created from Si,j . We add one
more vertex to V: b which represents the edge of the board.
We then create E by adding an edge between all vertices orig-
inating from diagonally adjacent fields in S, that is:

∀i∈[1..n−1]j∈[1..n−1]Si,j + Si+1,j+1 = 0

⇐⇒ {vi,j , vi+1,j+1} ∈ E

∀i,∈[1..n−1]j∈[2..n]Si,j + Si+1,j−1 = 2

⇐⇒ {vi,j , vi+1,j−1} ∈ E

Last, we add an edge between each marked tile on the edge
of the board and b, that is:

∀i∈[1..n],j∈[1,n]Si,j = 0 ⇐⇒ {vi,j , b} ∈ E

∀i∈[1,n],j∈[1..n]Si,j = 0 ⇐⇒ {vi,j , b} ∈ E

Theorem 3.2. Given a Hitori instance H and its graph repre-
sentation G, a solution that forbids all tiles in a given simple
cycle in graph G to be marked will guarantee the connectiv-
ity constraint [6].

Proof. We will use a proof by contradiction. Take an arbi-
trary Hitori instance H, its graph G, and its solution with re-
spect to only the first two constraints S′. Fix S′ so that it
does not satisfy the connectivity constraint, that is, there is a
set of tiles L in S′ which are all unmarked, and orthogonally
disjoint from the set K which contains every other unmarked
tile in S′. Now assume that for each cycle in G, at least one
of the tiles present in that cycle is unmarked, i.e. S′

tile = 1.
There are two features that can make L disjoint from K:

marked tiles and the edge of the board. Therefore, for L to be
orthogonally disjoint from K it must be orthogonally adjacent
to only marked tiles or the edge of the board. Define Q to
be the set of features orthogonally surrounding L. Since Q
consists solely out of marked tiles and possibly the edge of the
board, G must contain nodes representing all elements within
Q. We now define G′ to be the subgraph of G which consists
only of the elements in Q and the edges between them.

We will now create a contradiction by showing that, in
order for L to exist, G′ and thus G must contain a cycle of
marked tiles and possibly the board edge.

If there is no cycle of marked tiles and possibly the board
edge in G′, then Q does not form a cycle. By its definition,
Q is the set of features surrounding L. If Q does not form
a cycle in G′, L must be orthogonally adjacent to something
that is not a marked tile, or the edge of the board. This must
then be an unmarked tile. But this is not possible, because
L is disjoint from all other unmarked tiles. As such Q must
form a cycle in G′, and thus in G.

We have now shown that G contains a cycle of nodes that
represent marked tiles and potentially the edge of the board,
and as such a contradiction has formed. Thus we can now
conclude that if G contains no cycles, the connectivity con-
straint is satisfied.

Corollary 3.2.1. Given a Hitori instance H and its graph
representation G, the variables in H that are unique in their
row and column do not need to be added to G.

Proof. Theorem 3.2 states that only cycles of marked tiles
and potentially the edge of the board can break the connec-
tivity constraint. Theorem 3.1 states that unique tiles will
never be marked. As such, unique tiles will never be part
of a cycle that breaks the connectivity constraint and thus do
not need to be mapped in G.

4 Approach
We are interested in how well we can solve Hitori with
Gurobi, and what properties of Hitori influence the solving
speed of our models. To this end we define three models and
a number of redundant constraints we will use in our experi-
ments.

4.1 Translation to the Path Model
We define an n×n grid G of binary variables xi,j (with i, j ∈
[1..n]) with domain [0, 1], which represent whether a tile is
marked (xi,j = 1) or not (xi,j = 0). This is swapped from the
formal definition, because this allows for more efficient code
through the representation of unique tiles in the duplicates
model as an integer 0.

We model the adjacency constraint by enforcing

∀i∈[1..n],j∈[1..n−1]xi,j + xi,j+1 ≤ 1

∀i∈[1..n−1],j∈[1..n]xi,j + xi+1,j ≤ 1

For the uniqueness constraint we create k expressions ek
for each row and column. If a tile in the row/column has
Htile = k, ek sums xtile. If an expression ek contains o > 1
variables we enforce o− e ≤ 1.

To model the connectivity constraint we define a new grid
P of dimensions n×n×n2. If a tile is marked, it will not be
on the path, so we define

∀i,j∈[1..n]z∈[1..n2]Pi,j,z ≤ 1−Gi,j

We define that there may be only one source by forcing∑n
i=1

∑n
j=1 Pi,j,0 ≤ 1 and then build the path away from

the source, increasing z by 1 for each tile we traverse. We do
so by requiring:



∀i∈[2..n−1]z∈[2..n2]

Pi,1,z ≤ Pi−1,1,z−1 + Pi,2,z−1 + Pi+1,1,z−1

∀i∈[2..n−1]z∈[2..n2]

Pi,n,z ≤ Pi−1,n,z−1 + Pi,n−1,z−1 + Pi+1,n,z−1

∀j∈[2..n−1]z∈[2..n2]

P1,j,z ≤ P1,j−1,z−1 + P2,j,z−1 + P1,j+1,z−1

∀j∈[2..n−1]z∈[2..n2]

Pn,j,z ≤ Pn,j−1,z−1 + Pn−1,j,z−1 + Pn,j+1,z−1

∀i,j∈[2..n−1]z∈[2..n2]

Pi,j,z ≤ Pi+1,j,z−1+Pi−1,j,z−1+Pi,j+1,z−1+Pi,j−1,z−1

∀z∈[2..n2]P1,1,z ≤ P1,2,z−1 + P2,1,z−1

∀z∈[2..n2]Pn,1,z ≤ Pn,2,z−1 + Pn−1,1,z−1

∀z∈[2..n2]P1,n,z ≤ P1,n−1,z−1 + P2,n,z−1

∀z∈[2..n2]Pn,n,z ≤ Pn,n−1,z−1 + Pn−1,n,z−1

To count the number of variables on the path we iterate
over all tiles in the board and create a new binary variable si,j
and expression ei,j =

∑n2

z=1 Pi,j,z . We enforce si,j ≤ ei,j .
The number of tiles on the path is now l1 =

∑n
i=1

∑n
j=1 si,j .

We also create an expression counting the number of marked
tiles l2 =

∑n
i=1

∑n
j=1 Gi,j . In order to ensure all unmarked

tiles are on the path we require l1 + l2 = n2.

4.2 Translation to the Naive Model

The naive model enforces the adjacency and uniqueness
constraints in the same way as the path model. It does not
have an encoding for the connectivity constraint. Instead
it returns proposed solutions which are checked by a sep-
arate breadth-first search algorithm. If a proposed solution
does not satisfy the connectivity constraint we try again
after forbidding the proposed solution as follows: Define
new decision variable v, two expressions emarked tiles and
eunmarked tiles which sum the decision variables of all marked
and unmarked tiles respectively, value l which is the num-
ber of marked tiles in the proposed solution, and m ≫ n.
Enforce eunmarked tiles ≥ 1 − (v · m) and emarked tiles ≤
l − 1 + ((1− v) ·m)

We include the naive model in our experiment because we
are curious how a smaller, probabilistic model compares with
our two more involved models. We expect that this model will
perform comparatively fast on smaller problem instances.

4.3 Translation to the Duplicates Model
The duplicates model is named so because its constraints only
consider non-unique (duplicate) tiles. Similar to the path
translation we define an n × n grid, though now only with
binary variables xi,j on those locations where Hi,j is a non-
unique value (given again i, j ∈ [0..n − 1]). We model the
uniqueness and adjacency constraints the same as in the
path model, though using only the variables we have defined.
Unique tiles are thus not considered in these constraints.

We then use Theorem 3.2 to model the connectivity
constraint. For each cycle in G we create an expression e
summing its constituent variables. We define value l as the
number of variables in e, and enforce e ≤ l − 1.

Table 1 shows an overview of our three models and their
main properties.

Model Has connectivity
constraint

Uses Hitori
properties

Path Yes No
Naive No No
Duplicates Yes Yes

Table 1: Our three models and their properties.

4.4 Redundant Constraints
This section defines seven redundant constraints that provide
hints to the solver. Since we cannot change the solver itself,
we are limited to constraints that rely only on the initial board.
Appendix B provides a visualisation of these constraints.

Corner Close [5]: The connectivity constraint dictates
x0,1 = 1 =⇒ x1,0 = 0 and x1,0 = 1 =⇒ x0,1 = 0.
The same holds for xn−2,0 and xn−1,1, x0,n−2 and x1,n−1,
as well as xn−2,n−1 and xn−1,n−2.

Corner Check [5,6]: Given H0,0 = H0,1 ∧H1,0 = H1,1,
or H0,0 = H1,0 ∧ H0,1 = H1,1, all three Hitori constraints
together dictate x0,0 = x1,1 = 1 ∧ x0,1 = x0,2 = x1,2 =
x1,0 = x2,0 = x2,1 = 0.

Most Blacks: Given the adjacency constraint we know
that at most ⌈n

2 ⌉ tiles can be marked in any row or column.
Least Whites: The inverse of most blacks, determines that

at least ⌊n
2 ⌋ tiles must be unmarked in any row or column.

Sandwiches [5,6]: Covers both Sandwich Pair and its more
specific case Sandwich Triple. Given Hi,j = Hi+2,j then
xi+1,j = 0. If Hi,j = Hi+1,j as well, then we also know that
xi,j = xi+2,j = 1. The same goes columnwise.

Pair Isolation [5, 6]: Given Hi,j = Hi+1,j and Hk,j =
Hi,j with k ∈ [1..i − 2] ∪ [i + 3..n], then the uniqueness
and adjacency constraints require xk,j = 1. The same goes
columnwise.

Edge Pairs [5, 6]: Given Hi,1 ̸= Hi+1,1 = Hi+2,1 ̸=
Hi+3,1 ∧Hi+1,2 = Hi+2,2, then the three Hitori constraints
require xi,1 = xi+3,1 = 1. For each consecutive k where
Hi,k ̸= Hi+1,k = Hi+2,k ̸= Hi+3,k we know that xi,k−1

and xi+3,k−1 are also 1. The above description only describes
scenarios on the top edge of the board, but this constraint
holds for each edge of the board.



5 Experimental Setup
In this section we elaborate on our research questions and ex-
plain what experiments we run. We also provide more details
on how we conduct our experiments including what parame-
ters we used.

5.1 Detailing our Research Questions
Using the models and properties above we can now more
precisely define our research questions:

Research question 1: How fast can we solve Hitori puzzles
using the Integer Linear Programming solver Gurobi?

1. How does solving speed depend on the encoding of Hi-
tori?

2. How does the ILP model compare to an Answer Set Pro-
gramming (ASP), CSP, SMT, and Logic Programming
(LP) model in terms of solving speed?

We answer these research questions through 2 experiments.
In our first experiment we test our base models with and with-
out each of the redundant constraints defined in Section 4.4
on 1000 n = 10 instances. In our second experiment we run
our naive model with an ASP (in Clingo), CSP (in Pumpkin),
SMT (in Z3), and LP (in Prolog) model and compare their
solving speed over 50 instances of size 5,10, 15,. . . ,45,50.
The experiment was run by a colleague and thus uses differ-
ent hard- and software than described in Section 5.2. As such,
the results of the naive model in this experiment should not
be compared with our other experiments.
Research question 2: What properties of Hitori instances
influence the speed at which the Gurobi models can solve the
instance?

1. How does the average solving speed of our path, naive,
and duplicates models scale with instance size?

2. How does solving speed depend on the number of non-
unique tiles in the instance for the path, naive, and du-
plicates model?

3. How does solving speed depend on the number of
marked tiles in the solution for the path, naive, and du-
plicates model?

4. How does solving speed depend on the number of cycles
in the instance graph for the duplicates model?

We conduct two experiments to collect the data needed to an-
swer these questions. First, we run our base models on in-
stances of size 5 to 10 inclusive. Second, we collect data on
the number of non-unique tiles in instances, the number of
marked tiles in solutions, and the number of cycles. We com-
bine this data with other experiments that measured runtime
to run correlation tests.

5.2 Experiment Parameters
Our experiments were run on an AMD Ryzen 5 7640U proces-
sor connected to the grid and running in performance mode
hosting a Linux environment. To avoid thermal throttling af-
fecting our results we interleaved our models when running
experiments. Modelling was done with GurobiPy 12.0.3, the
Python API of Gurobi. The code that we used, including all

the instances that we ran our models against, are available
on GitHub2. The Hitori instances used were created using a
generator that is available here3. We generated our instances
from commit a2eb9004.

Experiments run on this hardware used instances of sizes
up to n = 10. This size was chosen to ensure that no model
would run out of memory, and our three models would be able
to solve most instances within 10 seconds, our defined time-
out limit. We used penalised aggregate runtime for models
that did exceed 10 seconds, meaning that we cut off their
process at 10 seconds and instead recorded 20 seconds as
their result. To closer emulate common benchmarking setups
in competitions, we imposed an 8 GB memory limit on the
model and forced it to run on a single thread.

When comparing models we look at the mean time it took
to solve an instance. This represents poor performing in-
stances and worst-case scenarios better than other statistics
such as most instances evaluated fastest, especially when
models perform well on the vast majority of instances. In Ap-
pendix C we detail why we use permutation tests and Spear-
man’s correlation tests to verify our results.

6 Results
In this section we first run two preliminary tests to optimise
our naive model. After that we run experiments to collect
data necessary to answer our research question. These exper-
iments are organised per research question.

6.1 Preliminary Experiments
We ran two preliminary tests to optimise our naive model.
First we compared the runtime of the naive model with the
same model if we added a heuristic to prioritise proposed so-
lutions with more or fewer marked tiles. A permutation test
showed that our model with no heuristic was 8.397 seconds
faster than our model that prioritised solutions with more
marked tiles (p < 0.001). Prioritising proposed solutions
with fewer marked tiles was the fastest, gaining 9.350 sec-
onds on the base model (p < 0.001).

We also tried three different algorithms for checking the
connectivity constraint after the naive model had returned
a potential solution. These algorithms were breadth-first
search (BFS), counting connected components (#CC)
in the graph of unmarked tiles in the solution, and counting
cycles (cycles) in the graph of marked tiles of the solution.
A permutation test found BFS was 0.001 seconds faster than
cycles (p < 0.001), and < 0.001 seconds faster than #CC
(p < 0.001). Given these results, all follow-up experiments
with the naive model used the minimisation heuristic and
BFS. This variant of the naive model will be referred to as
the optimised naive model.

RQ1.1: How does solving speed depend on the encod-
ing of Hitori?

2https://github.com/Sophieke32/Gurobi Hitori
3https://github.com/sappho3/Thesis-Hitori-shared
4https://github.com/sappho3/Thesis-Hitori-

shared/commit/a2eb9006ef758783665ef2287a0dbf1f0d555641

https://github.com/Sophieke32/Gurobi_Hitori
https://github.com/sappho3/Thesis-Hitori-shared
https://github.com/sappho3/Thesis-Hitori-shared/commit/a2eb9006ef758783665ef2287a0dbf1f0d555641
https://github.com/Sophieke32/Gurobi_Hitori
https://github.com/sappho3/Thesis-Hitori-shared
https://github.com/sappho3/Thesis-Hitori-shared/commit/a2eb9006ef758783665ef2287a0dbf1f0d555641
https://github.com/sappho3/Thesis-Hitori-shared/commit/a2eb9006ef758783665ef2287a0dbf1f0d555641


Constraint Occurrences Path Optimised Naive Duplicates
∆µ p ∆µ p ∆µ p

Corner Close 40005 0.049 < 0.001 0.040 0.104 - -
Corner Check 2 −0.003 < 0.001 < 0.001 0.419 < 0.001 0.215
Sandwich Pair 2648

0.017 0.059 −0.025 0.214 0.021 0.031Sandwich Triple 85
Edge pairs (any k) 0 −0.003 < 0.001 < 0.001 0.410 < −0.001 0.433
Most blacks 200005 −0.008 0.227 −0.017 0.289 < 0.001 0.348
Least whites 200005 −0.009 0.192 −0.018 0.272 < −0.001 0.062
Pair isolation 1748 0.027 < 0.001 −0.004 0.489 < −0.001 0.403

Table 2: Number of occurrences of each constraint in 1000 n = 10 instances, and their effect on solvers. ∆µ is the difference in mean
compared to the base case. p is the significance level.

When comparing the optimised naive model (µ = 0.140,
σ2 = 1.831), with the duplicates model (µ = 0.117, σ2 =
0.889) we find no statistically significant difference in solving
speed (p = 0.331). Both the optimised naive model (−0.308,
p < 0.001) and the duplicates model (−0.331, p < 0.001)
are significantly faster than the path model (µ = 0.448, σ2 =
0.248).

Figure 2 shows how long it took each model to solve in-
stances if all instances were sorted based on how fast the
model could solve them. It shows that the optimised naive
model is initially faster, but it spends over 87% of its total
runtime on just 10 instances, allowing the duplicates model
to close the gap.

Figure 2: Runtime on n = 10 instances of the path, optimised naive,
and duplicates model running on Gurobi. Note that the horizontal
axis uses logarithmic scaling.

Table 2 shows the effects of the implemented redundant
constraints. The path model had four significant results, the
optimised naive model none, and the duplicates model one.
The only constraints with meaningful effect size were sand-
wiches on the duplicates model and corner close and pair iso-
lation on the path model. None of these sped up the respective
model.

RQ1.2: How does the ILP model compare to an ASP, CSP,
SMT, or LP model in terms of solving speed?

Figure 3 shows the mean solving time of the five tested
models. Permutation testing shows that the ILP model is
1.739 seconds faster than the LP model (p < 0.001), but
slower than the SMT model (∆µ = −9.191, p < 0.001),
the CSP model (∆µ = −12.357, p < 0.001), and the ASP
model (∆µ = −12.862, p < 0.001).

Figure 3: Mean solving time over 1000 instances of different sizes
of the ILP, ASP, LP, CSP, and SMT models.

RQ2.1: How does the average solving speed of our path,
naive, and duplicates models scale with instance size?

Runtime grows exponentially as instance size increases as
shown in Figure 4, which makes sense as Hitori is an NP-
Complete problem. The optimised naive model seems to per-
form worse on instances with odd sizes as displayed by the
spikes in runtime for instance size 7 and 9.
RQ2.2: How does solving speed depend on the number of
non-unique tiles in the instance for the path, naive, and du-
plicates model?

Testing for correlation between the number of non-unique
tiles in the instance and the runtime of the three models with

5This constraint occurs a set number of times on every board
regardless of the contents of the instance.



Figure 4: Mean solving time over 1000 instances of different sizes of
the path, optimised naive, and duplicates model running on Gurobi.

a Spearman’s correlation test yields ρ = −0.121 (p < 0.001)
for the path model, ρ = −0.110 (p < 0.001) for the opti-
mised naive model, and ρ = 0.532 (p < 0.001) for the dupli-
cates model. Figure 5 shows this correlation for the duplicates
model.

Figure 5: The effect of the number of non-unique tiles in a problem
instance on the duplicates model’s runtime running in Gurobi. Note
the logarithmic scale on the horizontal axis.

RQ2.3: How does solving speed depend on the number of
marked tiles in the solution for the path, naive, and duplicates
model?

Figure 6a shows that runtime of the path model decreases
with more marked tiles in the solution (ρ = −0.173 p <
0.001), whereas the duplicates model has the opposite rela-
tion (ρ = 0.163 p < 0.001) as visible in Figure 6b. The opti-
mised naive model is not affected (ρ = −0.038 p = 0.224).
RQ2.4: How does solving speed depend on the number of
cycles in the instance graph for the duplicates model?

A spearman’s correlation test into the effect of the num-

(a) The path model

(b) The duplicates model

Figure 6: The effect of the number of marked tiles in the final solu-
tion on model runtime running in Gurobi. Note the logarithmic scale
on the horizontal axes.

ber of cycles in the instance graph on the runtime of the
duplicates model shows that they are positively correlated
ρ = 0.978 (p < 0.001).

7 Discussion
Heuristics for the naive model: The fact that prioritising
solutions with fewer marked tiles speeds up the solver hints at
a property of the instances we generated: boards tend to have
fewer, rather than more, marked tiles in their solution. This
makes sense in light of the connectivity constraint, which
favours boards with fewer marked tiles.
Checking the connectivity constraint: It is not surprising
that our BFS algorithm was the fastest. cycles and #CC
both required the creation of a graph before using a breadth-
first search algorithm. Therefore it makes sense that plain
BFS was the fastest.
Comparing the path, optimised naive, and duplicates
model The path model performed significantly worse than
the other two models. We hypothesise that this is because



the model is quartic compared to input size. On large in-
stance sizes this might be an advantage as other encodings
scale worse, but for the smaller instances from our experi-
ment this may prove a disadvantage.

An interesting property of the optimised naive model is
that its runtime seems to spike on instances with an odd size.
We recreated the optimised naive model in a different library
named ScipOpt (version 6.0.0) and ran it on the same in-
stances. Doing so did not reveal the same pattern. This in-
sinuates that the behaviour originates from the Gurobi solver.
Adding redundant constraints Almost none of the redun-
dant constraints led to a significant, let alone substantial dif-
ference on the runtime. This implies that the time gained
through the constraints about evens out with the overhead cre-
ated by them. Since none of the substantial differences were
a decrease in runtime, redundant constraints do not seem a
successful strategy for increasing solver speed.
Comparing our ILP model to an ASP, LP, CSP, and SMT
model ILP fares better than LP while SMT, CSP, and ASP far
outperform both with regards to solving speed. One expla-
nation for this is that our ILP model closely resembled SAT
models, using only boolean variables and involving small lin-
ear equations. As such, paradigms more optimised for SAT
solving will perform better.

An interesting observation also arises when comparing the
ILP and ASP models. The ASP model used a similar method
of modelling the connectivity constraint as our path model,
but in a much more lightweight manner.

The ASP model defined a grid Pi,j for i, j ∈ [1..n] and
force ti ≤ tj ∧ tj ≤ tj on all neighbouring tiles. Gurobi
reduces ti ≤ tj ∧ tj ≤ ti to ti = tj , and as such any two
adjacent tiles not on the path can put each other on the path.
Clasp prevents such circular arguments and can thus model
the connectivity constraint much more efficiently.
Effect of number of non-unique tiles in instance The fact
that the number of non-unique tiles in an instance correlates
with the solving time of the duplicates model makes sense.
More non-unique tiles means a larger graph, likely with more
cycles. We hypothesise that for the path model it is merely
a proxy for the positive effect of extra marked tiles in the
solution on runtime, given that the number of non-unique
tiles in an instance is positively correlated with the number
of marked tiles in its solution (ρ = 0.417, p ≤ 0.001).We
are not sure why more non-unique tiles correlates with faster
solving times for the optimised naive model.
Effect of number of marked tiles in solution The number
of marked tiles in the final solution correlates inversely with
solving speed of the path model. We suspect that this is be-
cause a marked tile in the path model instantly assigns a value
to n2 variables, since none of them will be on the path.

We suspected that an increase in the number of marked
tiles would slow down the optimised naive model, since it
prioritises solutions with fewer tiles. This did not turn out
to be the case. We hypothesise that a given instance has a
relatively small range of proposed solutions with a different
number of marked tiles. As such, instances where the solution
had many marked tiles did not have proposed solutions with
very few. As a result of this, the number of marked tiles in
the solution does not correlate with the runtime performance

of the optimised naive model.
The duplicates model’s solution time does correlate with

the number of marked tiles in the solution, but we hypothesise
that this is a proxy of the number of non-unique tiles in the
instance.
Number of cycles The result that the duplicates model’s run-
time correlates with the number of cycles is also intuitive. For
every extra cycle there are more constraints to make and keep
track off.
Using ILP for Hitori Hitori is, at its core, a boolean combi-
natorial problem: mark a tile or not. ILP is made for optimis-
ing linear equations. As a result, encodings are unintuitive
and many of the strengths of ILP are underused: all variables
were booleans and the path and duplicates model did not op-
timise any equation. As such, though it is possible to solve
Hitori with ILP, it is not necessarily intuitive or fast.

8 Conclusion
In this study we created and tested three ILP models on 1000
n = 10 instances of the Hitori puzzle. We did so to test how
well ILP can solve Hitori puzzles. We found that ILP is not
a good option for this problem: modelling Hitori in ILP is
unintuitive and impractical, and the resulting models do not
scale well with instance-size. We used three properties of Hi-
tori to create the duplicates model which performed equally
fast as its naive alternative though with higher memory usage.
Our path model was quartic with regards to instance size and
did not rely on probabilistic methods, yet it was much slower
than the other two models. Adding redundant constraints to
our model yielded no significant, substantial, positive results.
Our optimised naive model tested faster than an LP model,
but slower than an SMT, CSP, and an ASP model. The con-
clusion is straightforward: it is hard to solve Hitori with ILP,
especially compared to other M&S paradigms. This is be-
cause Hitori is a binary combinatorial problem, and ILP is
made for optimising linear equations.

This conclusion makes room for further research. We have
compared five paradigms, but there are more out there, which
might each bring new insights when applied on this puzzle.
Furthermore, Hitori is a very specific problem which favours
some paradigms over others. But it is merely one problem,
and there are many more out there to be solved. What con-
clusions hold for Hitori might not for Sudoku, the Progressive
Party Problem, or yet other problems.

Third, we do not claim our models to be optimal. New and
different insights from M&S communities might lead to new
optimisations, also in the ILP model. These too, might lead
to new conclusions.

9 Responsible Research
During this study we found three ethical considerations that
touched upon our work: reproducibility, extensibility, and the
use of Large Language Models (LLMs).

Throughout this study, we have tried to document our steps
as extensively as necessary for any future researchers to be
able to reproduce our work. This includes descriptions of
our models and experiments as well as links to the GitHub
repository where we ran our experiments. This repository



also includes a list of resources that may aid in the under-
standing and reproduction of our work. These aids consist of
a README which specifies how to run the experiments, the
code to run the experiments, the full set of problem instances
we used for our experiments, the data files we collected as a
result of our experiments, and the code we used to generate
our visualisations.

We also linked the code we used to generate our Hitori in-
stances, and provided a prove sketch in appendix D that this
method can yield any valid n × n instance, and no invalid
instance. In doing so we hope that others can extend our re-
search to include more instances.

In our project we did not make any use of LLMs. This was
a conscious decision informed by the ethical questions raised
by LLMs regarding for example copyright infringements [13]
and impact on our climate [14].
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Appendix
A Literature Review
At the start of the project we reviewed literature to better
understand different M&S paradigms. This helped us make
an informed decision when selecting the paradigm we would
use. As such, this literature review investigates three dom-
inant constraint modelling-and-solving (M&S) paradigms.
We briefly discuss their origins and inner workings, compare
them with one another, and investigate their application to Hi-
tori. Last, we look into earlier studies where M&S paradigms
are used to solve logic problems.

A.1 Linear Programming
Linear programming (LP) is at its heart a paradigm that tack-
les problems by solving linear (in)equalities [15]. The user
defines a list of linear constraints in the form of

2x1 + 3x2 ≤ 9

x1 ≤ 3

and the programme then optimises the variables for a min-
imal or maximal objective function[15, 16], such as:

maximise(x1 + 2x2)

The paradigm originally used the Simplex algorithm to at-
tain this, though alternatives exist as LP has been an active
field of research since the late 40’s [17, 18] (for more infor-
mation on the Simplex algorithm see Dantzig [10]). The ap-
proach was popularised by Dantzig around the 1950’s [15]
and variants were made, including integer linear program-
ming, where variables are restricted to integer values, mixed
integer linear programming, where some variables are re-
stricted to integers and others are not, and quadratic program-
ming, which allows for quadratic (in)equalities.

For Hitori, however, LP is not the most intuitive choice.
The paradigm grew out of resource allocation problems and
as such quickly evolved to be built around objective func-
tions [15]. Hitori, however, is not about allocating resources.
Answers in Hitori are correct or incorrect, there is no objec-
tive to minimise or maximise. Even though solving Hitori
in LP is possible, the paradigm is not made for solving such
types of problems, and solutions will likely involve unusual
workarounds.

A.2 Constraint Satisfaction Problems
Constraint Satisfaction Problems (CSPs) put variables at the
centre. Problem instances of CSPs have a finite set of vari-
ables, each with a finite domain of possible values [19, 20].
Only on top of that are constraints defined [19, 20]. A crucial
concept in solving CSPs is arc consistency, which is when
two variables xi and xj share a constraint Cij , and for each
element in the domain of xi, there exists an element in the
domain of xj such that Cij is satisfied [18].

CSP solvers in brief consist of two parts. The first is
a backwards-facing algorithm such as backtracking, where,
when a contradiction has been created through the elimina-
tion of elements within variable domains, the program undoes
decisions made before until the contradiction is resolved [18].
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The second is a forward-facing algorithm such as forward-
checking, which, when assigning a variable, ensures that arc
consistency is maintained by removing elements from vari-
ables’ domains [18, 20].

Unlike with LP, the type of problem that Hitori represents
is closely aligned with what CSP is made to solve. When
solving Hitori, one looks merely for satisfiability. A single
answer that satisfies the given constraints is enough, nothing
needs to be optimised. As such CSP provides an interesting
option as a paradigm for solving Hitori.

A.3 Satisfiability Modulo Theories Solvers
Satisfiability Modulo Theories (SMT) are a generalisation of
SAT which also include solving capacity for, for example,
strings, integers, and pattern matching through the imple-
mentation of theories [21]. To achieve this, an SMT solver
transforms its input by building a propositional skeleton in
conjunctive normal form, and then iteratively uses SAT solv-
ing and theory solving to come to a conclusion on whether
the given input is satisfiable or not [21, 22]. How exactly
the SAT and theory solving are done depends heavily on the
solver itself, though most modern models do SAT solving
with the Davis–Putnam–Logemann–Loveland (or DPLL) al-
gorithm [21] (for more information on DPLL refer to [23])

Compared to CSP, SMT is more generalised. Different
solvers which implement different theories support different
features, but all of them support theories, and thus variable-
types, that CSP cannot (easily) model. But that does not nec-
essarily make it more suitable for solving Hitori. A lot of the
functionality that comes with state of the art SMT solvers are
simply redundant for solving Hitori, and is thus not of interest
when solving it.

A.4 Prior Work on Solving Problems Using M&S
Paradigms

This section discusses four papers that applied M&S
paradigms. For each, notable findings that relate to solving
Hitori are marked.
Sudoku: Crawford et al. [7] solves sudoku using CSP. In
their paper they investigate using different variable and value
selection heuristics when making guesses. They find that the
fail-first heuristic, where variables with a smaller domain are
prioritised for selection, perform better due to their ability to
prune the search-space quicker.
The Progressive Party Problem: Smith et al. [9] also find
that fail-first is a good heuristic to use. In their paper they
solve the Progressive Party Problem (for more information,
refer to their paper) using both ILP and CSP. In doing so
they find that CSP provides a better framework for solving
the problem. CSP is faster, and, contrary to the ILP model,
able to find a solution for an instance with 13 host boats. This
is in large part contributed to the fact that CSP allows for a
more compact model, and the fact that its constraint propa-
gation is quick to prune large parts of the search-space. On
top of this, they also note that CSP also has a more intuitive
model, whereas mapping from the ILP model to the problem
is more difficult.

An important part for both of the two models is the removal
of symmetries in the search-space, for instance due to two

host boats with the same spare capacity, or two guest boats
with the same crew size. This will not be relevant for solving
Hitori, however, as there is only one possible solution for each
problem instance.
Self-reconfiguring Manufacturing Systems Using SMT: In
their paper, Macherki et al. [24] propose an SMT model
which is able to reconfigure a manufacturing plant when
given internal or external changes to the needs and abilities
of that plant (such as urgent orders or machine failures). No-
tably this system is incredibly complex and as such the model
uses many of the features that state of the art SMT solvers of-
fer. This is a stark difference to Hitori, which in itself is a
very simple combinatorial problem.
Hitori Last in this section, Wensveen studied the generation,
solving, and classification of Hitori [5]. In her work she made
a thorough analysis of a more generalised version of the game
which allows for n × m boards. She discusses a variety of
solving rules and builds a 2-SAT and a rules-based model to
solve the puzzles. Her work, however, is more focussed on
classifying the difficulty level of an existing dataset of Hitori
puzzles, whereas this paper is more interested in modelling
intuitiveness and speed. Nevertheless, this work will build
upon the solving rules defined in her work.



B Visualisation of Redundant Constraints
This appendix visualises the redundant constraints we have
implemented. Black tiles are marked, green tiles are defini-
tively unmarked, and white tiles are unknown. The grid on
the left defines a board state, and the grid on the right defines
a conclusion we can draw from that board state.

Corner Close [5]: The connectivity constraint dictates
x0,1 = 1 =⇒ x1,0 = 0 and x1,0 = 1 =⇒ x0,1 = 0.
The same holds for xn−2,0 and xn−1,1, x0,n−2 and x1,n−1,
as well as xn−2,n−1 and xn−1,n−2. See also Figure 7.

(a) x1,0 = 1 =⇒ x0,1 = 0.

(b) x0,1 = 1 =⇒ x1,0 = 0.

Figure 7: Corner Close is enforced by the connectivity constraint,
and holds in all corners.

Corner Check [5,6]: Given H0,0 = H0,1 ∧H1,0 = H1,1,
or H0,0 = H1,0 ∧ H0,1 = H1,1, all three Hitori constraints
together dictate x0,0 = x1,1 = 1 ∧ x0,1 = x0,2 = x1,2 =
x1,0 = x2,0 = x2,1 = 0. See also Figure 8.

(a) Horizontal corner check.

(b) Vertical corner check.

Figure 8: Corner Check is enforced by the connectivity constraint,
and holds in all corners.

Most Blacks: Given the adjacency constraint we know
that at most ⌈n

2 ⌉ tiles can be marked in any row or column.
Least Whites: The inverse of most blacks, determines that

at least ⌊n
2 ⌋ tiles must be unmarked in any row or column.

Sandwiches [5,6]: Covers both Sandwich Pair and its more
specific case Sandwich Triple. Given Hi,j = Hi+2,j then
xi+1,j = 0. If Hi,j = Hi+1,j as well, then we also know
that xi,j = xi+2,j = 1. The same goes columnwise. See also
Figure 9.

(a) A sandwich pair. The adjacency constraint requires the
middle tile to be left unmarked.

(b) A sandwich triple. The adjacency constraint requires the
middle tile to be marked, and the outer two to be unmarked.

Figure 9: Variants of the sandwich pair and sandwich triple. Both
hold in columns as well.

Pair Isolation [5, 6]: Given Hi,j = Hi+1,j and Hk,j =
Hi,j with k ∈ [1..i − 2] ∪ [i + 3..n], then the uniqueness
and adjacency constraints require xk,j = 1. The same goes
columnwise. See also Figure 10.

Figure 10: The uniqueness constraint requires that the single 2 on
the right must be marked, for at least one of the 2s on the left must
be unmarked.

Edge Pairs [5, 6]: Given Hi,1 ̸= Hi+1,1 = Hi+2,1 ̸=
Hi+3,1 ∧Hi+1,2 = Hi+2,2, then the three Hitori constraints
require xi,1 = xi+3,1 = 1. For each consecutive k where
Hi,k ̸= Hi+1,k = Hi+2,k ̸= Hi+3,k we know that xi,k−1

and xi+3,k−1 are also 1. The above description only describes
scenarios on the top edge of the board, but this constraint
holds for each edge of the board. See also Figure 11.



Figure 11: The adjacency and uniqueness constraints require the
middle two 4s, 5s, and 1s to have at least one marked, and one un-
marked tile. The green-marked cells must be unmarked as a result.

C Statistics
This appendix details the process of selecting statistical tests
and interpreting their results. The first observation made is
that we have two types of tests: Tests in which we compare
the means of datasets (when comparing the runtime perfor-
mance of two models), and testing for correlation between
two variables (for instance the effect of the number of cycles
in an instance graph on the runtime of the duplicates model).
As such, this appendix will be split in two, dealing with each
of these two types of tests. All statistical tests were run in
Scipy version 1.16.3.

C.1 Comparing means
When choosing a test to compare means it is crucial to de-
termine whether the data is parametric. To this end we ran a
Shapiro-Wilk test on each of our data-sets. The highest value
we got was W = 0.69, which is well-below the threshold.
We visually confirmed these findings using Quantile Quan-
tile plots. As shown in Figure 12 our data strayed far from
the 45◦line, and hence was not normally distributed.

(a) Naive no heuristic. (b) Naive, minimisation
heuristic.

(c) Duplicates model. (d) Duplicates, on n =
5, 6, 7, 8, 9, 10.

Figure 12: A selection of quantile quantile plots.

Since our data was non-parametric, we next checked to see
whether it followed a symmetrical distribution. To this end
we plotted our data in histograms, a few of which are shown
in Figure 13. They clearly do not follow a symmetrical distri-
bution. The next decision-point is whether our data is depen-
dent or independent. As we test all our models on the same
set of 1000 instances, they are paired (and thus dependent).

Given non-parametric, non-symmetric data, the best sta-
tistical tests is a permutation test [25–27]. Permutation tests
make no assumptions about data, but do allow the comparison
of means. We performed our permutation tests using SciPy’s
permutation test method [28]. We used 99999 resamples
(which, together with the original sample make 100000 sam-
ples) and the samples permutation type to reflect the depen-
dence of our data. The method returns a p-value which we



combine with the difference in mean (∆µ) to present the sig-
nificance and magnitude of our results.

(a) Optimised naive model,
does not include 7 outliers.

(b) Duplicates model, does
not include 5 outliers.

Figure 13: Histogram of runtime performance of two models.

C.2 Testing for correlations
When testing for correlations the distribution of our data
again matters. Here too we have non-parametric data (we
use the same runtime data as before). The type of variable
also matters. Since we have an interval variable (number of
marked tiles or number of cycles) and a ratio variable (run-
time), we can use the Spearman’s correlation test. The Spear-
man’s ρ’s interpretation is detailed in Table 3.

ρ Effect size
|ρ| = 0.00 no effect / very small effect
|ρ| = 0.10 small effect
|ρ| = 0.38 medium effect
|ρ| = 0.68 large effect
|ρ| = 0.89 very large effect

Table 3: Interpretation of ρ by [29].

ρ may also be negative, which indicates a negative correlation
of the same strength.

D Cooperative work
As mentioned prior, this thesis is part of a larger project to
compare the performance of different M&S paradigms on Hi-
tori. Five of us contributed directly to this project, each writ-
ing our own paper and working on a shared code base. This
code base included three programmes that aided our research.
First was an instance generator which could generate single-
solution Hitori puzzles of arbitrary size. Second was a rudi-
mentary solver in MiniZinc. This was meant as a proof of
concept, and was used by the solver to check that a generated
puzzle had exactly one solution. Last was a solution-checker,
which was used to confirm that the MiniZinc solver created
correct solutions to the generated puzzles.

Below we present a proof sketch for the correctness of our
generator. It was pivotal to our research that our generator
could generate every possible single-solution Hitori puzzle
and no invalid puzzle, and so we proved this property. Last,
we present author’s contributions.

D.1 Generator Proof Sketch
Below, we prove that our generator can generate only any
single-solution Hitori puzzle. We do so in three steps. In
the first step we prove that we can generate any valid solution
topology. In the second step we prove that, given a valid solu-
tion topology S, we can generate any valid Hitori puzzle that
has that solution topology. In the last step we put everything
together to prove the following theorem:

Theorem D.1. Our generator is complete. That is, Algorithm
1 can generate exactly only every uniquely-solvable puzzle
H .

Algorithm 1 Algorithm that exactly any valid Hitori instance
H

1: function GENERATEHITORIINSTANCE
2: Let S = GENERATESOLUTIONTOPOLOGY
3: Let H = GENERATEHITORIINSTANCE(S)
4: while H is not uniquely solvable do
5: H = GENERATEHITORIINSTANCE(S)
6: end while
7: return H
8: end function

Generating Solution Topologies
A solution topology S is an n × n grid where each element
Si,j (with i, j ∈ [1..n]) is marked or unmarked. Given a Hi-
tori instance H with S as its solution topology, having Si,j be
marked means the solution of H has tile Hi,j marked. Sim-
ilarly, if Si,j is unmarked, the solution of H has tile Hi,j

unmarked. A solution topology S is valid if it adheres to the
adjacency and uniqueness constraints defined by the Hitori
rules.

Algorithm 2 is a pseudo-code representation of the algo-
rithm with which we generate our solution topologies.

Lemma D.2. Algorithm 2 only generates valid solution
topologies.



Algorithm 2 Algorithm that generates a solution topology S.

1: function GENERATESOLUTIONTOPOLOGY
2: Let S[1, . . . , n][1, . . . , n] be the two-dimensional ar-

ray of tiles, all unmarked
3: Let C be the collection of all coordinates in S

((1, 1), (1, 2), . . . (1, n), (2, 1), . . . , (n, n)) in random or-
der

4: for i = C[1] to C[n2] do
5: if no orthogonally adjacent tile is marked then
6: S[i] = marked
7: if the unmarked tiles of S are disconnected

then
8: S[i] = unmarked
9: end if

10: end if
11: end for
12: return S
13: end function

Proof. For any marked tile that the algorithm places it checks
whether the adjacency or connectivity constraint are met. If
this is not the case, it rolls back the decision and moves on.

Since our generator loops over every tile on the board and
checks whether it can be marked, and only leaves the tile un-
marked if it were to break the adjacency or connectivity
constraints, it cannot generate any solution topology with un-
marked tiles that could be marked without violating the adja-
cency or connectivity constraints.

Lemma D.3. Algorithm 2 can generate exactly only any valid
solution topology.

Proof. Algorithm 2 generates solution topologies by iterating
over the tiles in a random order. We will use this to show that
it can generate any valid solution topology.

Take any valid solution topology S with marked tiles M
and unmarked tiles U . Since the solution topology is valid,
none of the tiles in M violate the adjacency or connectivity
constraints. Since Algorithm 2 visits tiles in a random order,
there is a non-zero chance that it will first visit all the tiles in
M before visiting any tile in U . Marking any of the tiles in M
does not violate the adjacency or connectivity constraints,
and as such all will be marked by the algorithm.

Since S is a valid solution topology, no tiles in U could
be marked without breaking the adjacency or connectivity
constraints, thus when the algorithm visits the tiles in U after
already marking the tiles in M , it will mark none of them.
After having visited the last tile in U , the algorithm will return
solution topology S.

Now given that Lemma D.2 proves that Algorithm 2 can
only generate valid solution topologies, we have now proven
that the algorithm can generate exactly only any valid solution
topology.

Generating Hitori instances
A puzzle instance of Hitori H is an n × n grid of numbers
where each element Hi,j ∈ [1..n] with i, j ∈ [1..n]. Algo-
rithm 3 is a pseudo-code representation of our algorithm for
generating an instance H from a given solution topology S.

It consists of two subsequent algorithms, Algorithm 4 which
generates numbers for the tiles in H which correspond to un-
marked tiles in S, and Algorithm 5 which generates numbers
for the tiles in H which correspond to marked tiles in S.

Algorithm 3 Algorithm that generates a Hitori instance H
from a solution topology S.

1: function GENERATEHITORIINSTANCEFROMS(S)
2: Let H[1, . . . , n][1, . . . , n] be a grid of 0s
3: FILLUNMARKEDTILES(H, S, n, 1)
4: FILLMARKEDTILES(H, S, n, 1)
5: return H
6: end function

Algorithm 4 Algorithm that fills in the unmarked tiles given
a partial Hitori instance H and a solution topology S.

1: function FILLUNMARKEDTILES(H, S, n, k)
2: Let i = ⌈ k

n⌉
3: Let j = ((k − 1) mod n) + 1
4: if k > n2 then
5: return true
6: else if S[i][j] == marked then return FILLUN-

MARKEDTILES(H, S, n, k + 1)
7: else
8: Let row be the numbers used in the row of H[i][j]
9: Let col be the numbers used in the column of

H[i][j]
10: C = {1, . . . , n} \ row \ col
11: if C = ∅ then
12: ▷ We check if a conflict occurred
13: return false
14: ▷ this is optimized by analyzing the conflict

and returning to the conflict’s cause
15: else
16: shuffle C
17: H[i][j] = C[1]
18: ▷ Assign H[i][j] the first element in C
19: end if
20: end if

return FILLUNMARKEDTILES(H, S, n, k + 1)
21: end function

Lemma D.4. Given a valid solution topology S, Algorithm 4
can generate all valid combinations of numbers in unmarked
tiles.

Proof. Take any valid partial Hitori instance H correspond-
ing to solution topology S, which has numbers assigned to
all its unmarked tiles such that all of the assigned numbers
are unique in their row and column. We will now show that
our generator can create this partial Hitori instance.

Our generator iterates over all tiles in order, moving from
left to right, top to bottom. At each unmarked tile the genera-
tor will create a list C of valid numbers to put in this tile. This
list consists of the numbers 1, 2, . . . , n excluding any number
that is already present in the row or column on an unmarked
tile.



If a number is not in C, putting it in the given tile would
not result in a valid partial Hitori instance corresponding to
the solution topology S, as it would either break the unique-
ness constraint if it remains unmarked in the solution, or it
would break the adjacency or connectivity constraints if it
is marked (by the definition of S).

Since C contains all valid numbers that the tile could re-
ceive, and Algorithm 4 selects a number at random, each pos-
sible valid number has a non-zero chance of being chosen,
including the corresponding value in H . Since this holds for
every unmarked tile that the algorithm visits, it can generate
H . As such, given a valid solution topology S, Algorithm 4
can generate all valid combinations of numbers in unmarked
tiles.

Lemma D.5. Given a valid solution topology S, Algorithm
4 can only generate valid combinations of numbers in un-
marked tiles.

Proof. Any invalid combination of numbers in unmarked
tiles has to contain two of the same numbers on a given row
or column. Since Algorithm 4 selects a number to give to
a tile from a list C that contains every number from 1 to n
excluding any number that is already present in the row or
column, the generator cannot create an invalid combination
of numbers in unmarked tiles.

Algorithm 5 Algorithm that fills in the marked tiles of a par-
tial Hitori instance H .

1: function FILLMARKEDTILES(H, S, n, k)
2: Let i = ⌈ k

n⌉
3: Let j = ((k − 1) mod n) + 1
4: if k > n2 then
5: return true
6: else if S[i][j] == unmarked then return FILL-

MARKEDTILES(H, S, n, k + 1)
7: else
8: Let row be the numbers used in the unmarked

tiles of the row of H[i][j]
9: Let col be the numbers used in the unmarked tiles

of the column of H[i][j]
10: C = row ∪ col
11: shuffle C
12: H[i][j] = c[1]
13: ▷ Assign H[i][j] the first element in C
14: end if

return FILLMARKEDTILES(H, S, n, k + 1)
15: end function

Lemma D.6. Given a valid solution topology S, and a valid
partial Hitori instance H with numbers assigned to each un-
marked tile, Algorithm 5 can generate any valid combination
l of numbers for in the marked tiles.

Proof. For a combination of numbers for in the marked tiles
to be valid, each number in l must already be present in the
row or column that l will be assigned to. When assigning

numbers to tiles, Algorithm 5 will create a list C which con-
sists of all numbers of unmarked tiles in the row and column
of the given tile.

Furthermore, since all numbers in l must be covered, as-
signing multiple tiles in l with a new number that is not
present in their row and column is not a valid move: at least
one of those tiles will not have to be covered.

Algorithm 5 then randomly selects a number from C and
assigns it to the given tile. Given that C contains all valid
options for in the tile, and given that the number is chosen at
random from C, each number has a non-zero chance of being
selected for the tile. As such, Algorithm 5 can generate any
valid combination l of numbers for in the marked tiles.

Lemma D.7. Given a valid solution topology S, and a valid
partial Hitori instance H with numbers assigned to each un-
marked tile, Algorithm 5 can generate only any valid combi-
nations l of numbers for in the marked tiles.

Proof. For a combination of numbers for in the marked tiles
to be invalid, at least one number in l must not already be
present in the row or column that l will be assigned to. Since
we pick a number at random from C, and C only contains
numbers from the tiles’ row and column, it is not possible for
the generator to pick an invalid number. As such, Algorithm
5 cannot generate an invalid combination of numbers for in
the marked tiles.

Lemma D.8. Given a valid solution topology S, Algorithm 3
can generate any valid puzzle instance H .

Proof. Lemma D.4 proves that, given any valid solution
topology S, we can generate all valid combinations of num-
bers for the unmarked tiles of a valid corresponding partial
Hitori instance H . Lemma D.5 proves that we can generate
nothing but valid combinations of numbers.

Lemma D.6 then proves that given a valid solution topol-
ogy S, and a valid partial Hitori instance H , we can generate
any valid combination of numbers for the marked tiles in H .
Lemma D.7 proves that we can only generate valid combina-
tions of numbers for the marked tiles in H .

Since we can generate only exactly any valid combination
of unmarked tiles, and given any valid combination of un-
marked tiles we can generate only exactly any valid combi-
nation of marked tiles, we can generate any valid combination
of tiles to create a valid Hitori instance given a valid solution
topology S.

Proving Theorem D.1
Proof. Lemma D.3 has proven that our algorithm can gener-
ate exactly any valid solution topology S, and Lemma D.8
has proven that, given any valid solution topology S we can
generate exactly only any valid puzzle instances H . In the
last part of Algorithm 1 we keep generating new instances
H from S until we have found one that is uniquely solvable.
Once we have found such an H , we return it.

Given this, we know that the generator can only return
uniquely-solvable valid instances H , and as such we have
proven Theorem D.1
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