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Executive Summary

This thesis investigates how green mobility hubs—integrating bicycles, shared micromobil-
ity, shared cars, and zero-emission buses—can reshape commuter behaviour, cut congestion,
and improve air quality in high-demand transport regions. The central objective is to under-
stand how mobility hubs—offering green alternatives—affect commuters’ first- and last-mile
decisions when private vehicle access is restricted at destinations like airports, industrial
zones and city centres. The study further explores how these behavioural changes translate
into network-wide traffic and air quality impacts, using a combination of discrete choice
modelling and advanced Digital Twin simulation.

The research builds on an extensive body of literature that positions mobility hubs as en-
ablers of multimodal and sustainable transport systems. Yet, three key gaps remain. First,
most studies focus on public transport users. Secondly, studies look into hubs that offer one
single type of services (just e-hubs or shared mobility hubs) or use assumed splits rather
than analysing the integrated realistic effects of multiple green modes in a hub setting.
Thirdly, very few attempt to link individual-level behaviour with system-level performance
indicators such as vehicle kilometres travelled or pollutant concentrations. This study ad-
dresses both gaps by combining behavioural insights from a stated preference survey with
network-level simulations for Schiphol Airport, one of Europe’s busiest transport hubs and
an area heavily affected by congestion and air quality concerns.

The methodology followed two main phases. In the first phase, a stated preference sur-
vey is conducted to capture how individuals would respond to different combinations of
travel time, cost, bus waiting time, and weather conditions. Respondents also provided
socio-demographic information including age, gender, education, employment, and digi-
tal comfort. A total of 131 valid responses are collected. These data are analysed using
discrete choice models: a base Multinomial Logit (MNL), a final MNL and a Panel Mixed
Logit (PML). Although the PML model provided a better statistical fit, it was less stable
and showed lower prediction ability in simulation, so the MNL model was ultimately cho-
sen for further analysis. Its specification, which included both mode attributes and socio-
demographic interactions, achieved good explanatory power (Rho-square bar of 0.309) and
produced interpretable parameters for use in policy-oriented applications.

The modelling results revealed clear behavioural patterns. Travel time and cost were the
most influential determinants, with students particularly sensitive to cost and younger or
digitally skilled individuals highly sensitive to time. Employment status mattered as well:
students and full-time workers demonstrated the strongest aversion to time loss, reflecting
their more rigid schedules. Weather significantly altered preferences: under rainy condi-
tions, travellers placed less weight on cost and more on comfort, favouring protected modes
such as buses or shared cars, while active and exposed modes lost appeal. Sensitivity analy-
ses showed that demand for active modes declined steeply beyond two to three kilometres,
while bus usage dropped sharply when waiting times exceeded fourteen minutes. Impor-
tantly, even respondents with limited digital comfort expressed willingness to use shared
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modes in the hub setting, highlighting the potential for inclusive design to broaden adop-
tion.

In the second phase, the estimated choice model was integrated into TNO’s Digital Twin
simulation platform to assess system-level impacts for the Schiphol region. Two scenarios
were tested: a baseline scenario without hubs and an intervention scenario in which two
strategically located hubs restricted car access and offered green alternatives. The simula-
tions showed that hubs produced a measurable reduction in vehicle kilometres travelled and
concentrations of NO2 and particulate matter on peripheral municipalities such as Haarlem-
mermeer and Haarlem, which experienced declines in through-traffic. At the same time,
some central zones like Amsterdam and Amstelveen recorded modest increases in traffic
and emission due to redistribution effects and rerouting around car-free zones. Despite
these localised shifts, the overall balance showed net reductions in traffic volumes. On the
environmental side, the simulations confirmed decreases in regional concentrations of NO2
and particulate matter, particularly along major corridors such as the A4 and A10. Localised
increases occurred around hub access points, but the net result was a substantial improve-
ment in air quality.

These findings contribute both empirically and methodologically. Empirically, the study
provides new evidence on how multiple green modes interact within a hub setting and
how sensitivities vary across socio-demographic groups and weather conditions. Method-
ologically, unlike most hub studies, this thesis explicitly links individual-level behavioural
sensitivities with system-wide traffic and emissions via a Digital Twin, providing a novel,
scalable evaluation framework. The case study at Schiphol illustrates that mobility hubs can
simultaneously reduce congestion, and improve environmental outcomes, when they are
strategically located and integrated into existing transport networks.

From a policy perspective, the results suggest that the effectiveness of hubs depends on
several conditions. High-frequency, weather-resilient services such as zero-emission buses
are essential to maintain reliability. Shared micromobility must be protected from weather
through covered docking and supported by pricing incentives that make these modes finan-
cially attractive. Inclusivity requires providing access both digitally and through alternative
channels for those less comfortable with apps. Strategic placement of hubs along ring roads
or park-and-ride facilities is critical to intercept car traffic before it enters congested cen-
tres. Partnerships with major employers can further support uptake by subsidising passes
or memberships for staff, and broader regulatory frameworks such as low car zones or zero-
emission zones can be reinforced by hub provision, ensuring that restrictions are paired with
attractive alternatives.

This thesis is the first to combine empirically estimated mode choice behaviour of private
vehicle users in a mandatory hub setting with a digital twin traffic-environment model,
providing both behavioural realism and system-level policy insights. Overall, this study
demonstrates that mobility hubs are more than physical infrastructures: they are systemic
interventions capable of reshaping both individual behaviour and regional mobility patterns.
The integration of behavioural modelling with simulation provides a replicable framework
for evaluating such interventions. The findings show that when designed to balance cost,
time, weather resilience, and digital inclusivity, hubs can deliver both behavioural and envi-
ronmental benefits. By confirming their potential in a complex and high-demand setting like
Schiphol, this thesis demonstrates not only feasibility but also transferability of hub-based
interventions. These insights provide a concrete evidence base for future policy pilots, par-
ticularly zero-emission zones at European airports and other high-demand transport hubs.

vi



Acknowledgements

Completing this thesis has been both challenging and rewarding, and it would not have been
possible without the support of many people.

First, I would like to thank my supervisors—Maaike, Alexandra, and Aswin—for their in-
valuable guidance, patience, and constructive feedback throughout this process. Their ex-
pertise and encouragement kept me focused and motivated, especially during the difficult
phases of the research.

I am grateful to my colleagues at TNO for their support, particularly for their help with the
digital twin simulations, interesting talks about their projects and all the fun moments that
made the work more enjoyable.

My deepest thanks go to my family for their constant support. Your belief in me gave me
the strength to keep going when things were tough.

Finally, I want to thank my friends here and back in Bangladesh for being there for me —
for believing that I can do a lot more but I just do not know it yet, for standing up for me
and for the much-needed distractions along the way. I have probably had the best time of
my life here, even though I was too proud to acknowledge that in those moments. Because
the truth is-you never know you are in the good old times, when you are in them. I am not
a very nostalgic person, I always believed that looking back even at the good times causes
you pain. But I still want to hold on to the beautiful journey I had in Delft.

This thesis would not have been possible without all of you.

Tabia
August 2025

vii



Contents

1. Introduction 1
1.1. Problem Statement and Knowledge Gap . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Research Goal and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Research Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4. Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Literature Review 6
2.1. Green Mode Alternatives as First and Last Mile Transportation Options . . . . 6
2.2. Attributes Influencing Mode Choice in Multimodal Transportation . . . . . . . 7
2.3. Models for Mode Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4. Environmental and Traffic Impacts of Mobility Hubs . . . . . . . . . . . . . . . 12
2.5. Conclusion on Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. Methodology 14
3.1. Stated Preference Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1. Context Scenario of the Survey . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2. Mode Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3. Personal And Mode Attributes . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.4. Survey Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.5. Necessary Number of Responses . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.6. Survey Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2. Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1. Statistical Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3. Discrete Choice Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1. Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2. Goodness of Fit and Evaluation . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3. Validation and Predictive Accuracy . . . . . . . . . . . . . . . . . . . . . 28
3.3.4. Model Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4. Traffic and Environmental Evaluation using the Digital Twin . . . . . . . . . . 30
3.4.1. Rationale for Using the Digital Twin Framework . . . . . . . . . . . . . 31
3.4.2. Simulation Design and OD Reallocation . . . . . . . . . . . . . . . . . . 31
3.4.3. Traffic Indicators and Emission Estimation . . . . . . . . . . . . . . . . . 34

4. Results 36
4.1. Sample characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2. Mode Choice of the Sample Across Demographics and Contexts . . . . . . . . 40
4.3. Model Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1. Base MNL Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2. Socio-demographic Models . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.3. Final MNL Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.4. Panel Mixed Logit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4. Model Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

viii



Contents

4.5. Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5. Model Application 58
5.1. Model Application For Dutch Adult Population . . . . . . . . . . . . . . . . . . 58
5.2. Model Application for Schiphol Commuters . . . . . . . . . . . . . . . . . . . . 59
5.3. Modal Split with Weather and Bike Availability . . . . . . . . . . . . . . . . . . 61
5.4. Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4.1. Sensitivity by Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4.2. Sensitivity by Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4.3. Sensitivity to Bus Waiting Time . . . . . . . . . . . . . . . . . . . . . . . 64
5.4.4. Sensitivity to Digital Comfort and Employment Status . . . . . . . . . . 65

6. Digital Twin Simulation 68
6.1. Case Study Area: Schiphol Airport and Commuter Flows . . . . . . . . . . . . 68
6.2. Traffic Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.1. Commuter Car Intensity Effects During Morning Peak . . . . . . . . . . 69
6.2.2. District Level Impacts on Vehicle Kilometers Travelled . . . . . . . . . . 69

6.3. Environmental Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.1. Spatial Impact on Environmental Indicators . . . . . . . . . . . . . . . . 71
6.3.2. District Level Change in Environmental Indicators . . . . . . . . . . . . 72

7. Discussion and Limitations 76
7.1. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8. Conclusions & Recommendations 83
8.1. Answers to the Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.2. Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.2.1. Recommendations for Practice . . . . . . . . . . . . . . . . . . . . . . . . 86
8.2.2. Recommendations for Research . . . . . . . . . . . . . . . . . . . . . . . 87

A. NGENE Syntax 89

B. Survey 90

C. Base Model Code 114

D. Final Model Code 117

E. Descriptive statistics 121

F. Environmental Impact Maps: Mobility Hub Intervention 132

ix



List of Figures

1.1. Using method of unraveling key concepts to derive research questions . . . . . 4

3.1. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2. Context and choice tasks from the stated-preference survey. . . . . . . . . . . . 21
3.3. Location of the two hubs for intervention scenario . . . . . . . . . . . . . . . . . 33
3.4. Flow from the base car network through a mobility hub to six mode-specific

networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5. Reallocation of trips at hub location . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1. Weather effect on modal choice by gender. . . . . . . . . . . . . . . . . . . . . . 45
4.2. Modal choice by age group under short vs. long travel time. . . . . . . . . . . . 45
4.3. NAE for MNL and PML model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1. Modal split in different weather condition and bike availability . . . . . . . . . 61
5.2. Sensitivity by distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3. Sensitivity by cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4. Sensitivity by bus Wait Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5. Predicted modal share across different population scenarios. . . . . . . . . . . . 67

6.1. Change in traffic intensity (Hub vs. No Hub scenario) . . . . . . . . . . . . . . 70
6.2. Percentage change in veh-km by district (Hub vs. No Hub scenario) . . . . . . 70
6.3. Difference in traffic-related NO2 emissions (in µg/m3) between the mobil-

ity hub scenario and the reference scenario (Red indicates emission increase;
green indicates reduction). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4. District-wise Change in NO2 emission . . . . . . . . . . . . . . . . . . . . . . . . 73
6.5. District-wise Change in PM10 emission . . . . . . . . . . . . . . . . . . . . . . . 74
6.6. District-wise Change in PM2.5 emission . . . . . . . . . . . . . . . . . . . . . . . 74

E.1. Gender distribution among respondents . . . . . . . . . . . . . . . . . . . . . . . 121
E.2. Gender distribution among respondents vs CBS . . . . . . . . . . . . . . . . . . 121
E.3. Age distribution among respondents . . . . . . . . . . . . . . . . . . . . . . . . . 122
E.4. Age distribution among respondents vs CBS . . . . . . . . . . . . . . . . . . . . 122
E.5. Education distribution among respondents . . . . . . . . . . . . . . . . . . . . . 123
E.6. Employment status distribution among respondents . . . . . . . . . . . . . . . 123
E.7. Trip purpose distribution among respondents . . . . . . . . . . . . . . . . . . . 124
E.8. Primary mode distribution among respondents . . . . . . . . . . . . . . . . . . 124
E.9. Shared mobility usage frequency distribution among respondents . . . . . . . 125
E.10. Comfort with digital transport apps distribution among respondents . . . . . . 126
E.11. Modal Share in survey answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
E.12. Modal choice distribution by gender. . . . . . . . . . . . . . . . . . . . . . . . . . 127
E.13. Modal choice distribution by age group. . . . . . . . . . . . . . . . . . . . . . . . 127
E.14. Modal choice by education level. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

x



List of Figures

E.15. Modal choice by employment status. . . . . . . . . . . . . . . . . . . . . . . . . . 128
E.16. Modal choice by digital comfort level. . . . . . . . . . . . . . . . . . . . . . . . . 129
E.17. Modal choice by travel purpose. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
E.18. Self-reported primary mode vs. task-level choice. . . . . . . . . . . . . . . . . . 130
E.19. Modal choice by frequency of shared transport use. . . . . . . . . . . . . . . . . 130
E.20. Modal choice by weather. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
E.21. Modal choice by distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

F.1. Change in PM2.5 concentration (µg/m3) due to the mobility hub scenario. . . . 133
F.2. Change in PM10 concentration (µg/m3) between scenarios. . . . . . . . . . . . 133

xi



List of Tables

2.1. Selected studies on access-egress options in hub-like contexts . . . . . . . . . . 7

3.1. Cost Comparison for Different Transport Modes . . . . . . . . . . . . . . . . . . 18
3.2. Reference speeds and estimated travel times for 2 km and 4 km distances . . . 18
3.3. Choice task attributes with realistic costs and ZE bus frequency for 2 km trips 20

4.1. Sociodemographic Distribution: Survey Sample vs CBS Population (NL) . . . 37
4.2. Chi-square test results for sociodemographic groups . . . . . . . . . . . . . . . 39
4.3. Combined Modal Split by Socio-Demographic Groups, Behavioural Factors,

Overall Share, Weather and Distance Effects (%) . . . . . . . . . . . . . . . . . . 41
4.4. Chi-square Test Results for Association Between Socio-demographic Factors

and Mode Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5. Estimation Results for the Base Model . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6. Model Fit Statistics for the Base Model . . . . . . . . . . . . . . . . . . . . . . . 47
4.7. Socio-demographic Models Ranked by Rho-square bar . . . . . . . . . . . . . . 48
4.8. Final MNL Model Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . 50
4.9. Final MNL Model Fit Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.10. Model Fit Statistics for Panel Mixed Logit Model (1000 Draws) . . . . . . . . . 53
4.11. Estimation Results for PML Model . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.12. Comparison of Model Fit Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.13. Modal Split Comparison: Actual vs Predicted (MNL and PML) . . . . . . . . . 56

5.1. Modal Split (% of Whole Population) . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2. Aggregated Modal Split (% with Bike Not Available) . . . . . . . . . . . . . . . 59
5.3. Overview of characteristics of the synthetic Schiphol population . . . . . . . . 60
5.4. Modal split under normal availability . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5. Modal split with bike unavailable . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.6. Socio-Digital Profiles of Population Groups . . . . . . . . . . . . . . . . . . . . . 66

6.1. Total Emission Reduction Due to Mobility Hub (in Metric Tonnes and Per-
centage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2. Percentage Change in Emissions by District (%) . . . . . . . . . . . . . . . . . . 75

8.1. Mode-wise Distribution of Total Trips . . . . . . . . . . . . . . . . . . . . . . . . 85

xii



Acronyms

List of Acronyms

AIC Akaike Information Criterion
ASC Alternative Specific Constant
BIC Bayesian Information Criterion
DCM Discrete Choice Modelling
IIA Independence of Irrelevant Alternatives
LCCM Latent Class Choice Model
LL Log Likelihood
MNL Multinomial Logit
NL Nested Logit
PML Panel Mixed Logit
PT Public Transport
RUM Random Utility Maximisation
SP Stated Preference
RP Revealed Preference
TNO Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek
VKT Vehicle Kilometers Traveled
ZE Zero-Emission
IMB Inter Model Broker
DT Digital Twin

xiii





1. Introduction

As cities worldwide transition toward more sustainable and efficient mobility, green mobil-
ity hubs have emerged as promising interventions to promote low-carbon travel behaviour.
These hubs are strategically located nodes that integrate multiple sustainable transport
modes to support multimodal connectivity [Aono, 2019]. In addition to reducing air pol-
lution and traffic congestion [Becker and Rudolf, 2018; Kondor et al., 2019; Tikoudis et al.,
2021], mobility hubs enhance accessibility and transport equity, particularly for peripheral
or underserved areas [Guo et al., 2020; Jiao and Wang, 2021].

Functionally, mobility hubs serve as critical access and transition points within multimodal
transport networks [Hochmair, 2015], enabling smooth modal transfers and accommodating
diverse trip purposes [Henry and Marsh, 2008]. Prior research has shown that green trans-
port services—such as bicycle-sharing [Wu et al., 2019; Ma et al., 2020], e-scooter sharing
[Baek et al., 2021], and car-sharing schemes [Correia and Antunes, 2012; Jorge and Correia,
2013]—can improve door-to-door travel experiences and foster environmentally sustainable
mobility choices [Scheltes and Correia, 2017].

Despite growing academic and policy interest, a key gap remains in understanding mode
choice behaviour within the context of mobility hubs, particularly when travellers switch
from private vehicles to green first- and last-mile alternatives. While mode choice behaviour
has been extensively studied across general contexts [Ohnemus and Perl, 2016; Shaheen and
Chan, 2016; Yap et al., 2016], limited research addresses the unique behavioural dynamics
within these hubs. Realizing the full traffic and environmental potential of mobility hubs
requires deeper insights into the user-specific and contextual factors—such as travel time,
cost, weather, and digital comfort—that shape these choices [Jahanshahi et al., 2020]. Such
insights are vital for guiding effective investment in first- and last-mile infrastructure.

This thesis investigates mobility hubs that connect high-demand fixed destinations—such
as airports, city centers, or business parks—under a stricter policy context where private
vehicle access to the destination is prohibited and travellers must transfer to green first- and
last-mile mode options offered at the hubs. The typical trip chain is conceptualized as:

Origin → Any Mode → Hub → Green Modes → Destination

This structure also accounts for return trips, where the last-mile of the inbound journey
becomes the first-mile of the outbound leg, assuming symmetric modal availability. Mod-
elling both directions provides a more realistic representation of travel preferences and hub
performance.

The objective of this study is to evaluate how implementing green mobility hubs—designed
to replace private vehicle access to fixed destinations—affects travel behaviour, traffic con-
ditions, and emissions. By estimating modal preferences and simulating their impact on
system-level indicators—such as vehicle kilometers travelled (VKT), intensity–capacity ra-
tios, and amount of NOx and particulate matter (PM)—this research bridges micro-level
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1. Introduction

travel preferences with macro-level system outcomes. The resulting insights provide prac-
tical guidance for designing green mobility hubs that are behaviourally realistic and opera-
tionally effective.

Scientifically, this thesis contributes in three key ways: (1) it empirically models mode choice
behaviour within multimodal green hub contexts, focusing on private vehicle users; (2)
it integrates behaviourally estimated models into a simulation-based evaluation of system-
wide impacts; and (3) it links individual travel preferences with macro-level policy outcomes,
advancing the behavioural realism of sustainable transport planning.

1.1. Problem Statement and Knowledge Gap

Numerous studies have investigated individual mode preferences across various transport
systems, with particular emphasis on access and egress mode choice for public transport. For
instance, Van Kuijk et al. [2024] and Oeschger et al. [2023] explored how users select first-
and last-mile options when using public transport, highlighting the rising use of shared
bikes, e-bikes, and e-scooters. Similarly, Sanders [2015] identified travel time and cost as
key determinants in selecting access-egress modes for public transport users. Studies by
Horjus et al. [2024] and Torabi et al. [2023] conceptualized public transport stops as hubs and
concluded that cost is the most influential factor in first- and last-mile mode choices. While
these works provide valuable insights into multimodal travel behaviour, they predominantly
focus on public transport users—overlooking other segments such as car or private vehicle
users. This group is particularly important when designing low-car or zero-emission zones
for high-demand destinations like airports, industrial areas, and city centers due to their
impacts on traffic and environmental conditions.

More recent studies have shifted attention toward mobility hubs that integrate a specific
type of sustainable transport mode. For example, Liao et al. [2023] and Hosseini et al. [2024]
examined electric mobility hubs (e-hubs) and found that public transport users are generally
more receptive to hub-based electric modes than car users. Similarly, Xanthopoulos et al.
[2024] and Garritsen et al. [2024] investigated shared-mobility hubs and suggested that de-
ploying more hubs with fewer vehicles may enhance operational efficiency. However, these
studies often rely on hypothetical modal splits or simplified assumptions, lacking empirical
modelling of traveller preferences—especially in the context of green mobility hubs. These
studies also focus on hubs offering one particular type of mode instead of focusing on the
most feasible and preferred transport modes, which undermines the benefits that are possi-
ble to achieve from a green mobility hub.

A more behaviourally focused perspective is provided by Zhou et al. [2023], who concluded
that introducing hubs alone does not significantly reduce car use. Zuurbier [2023] similarly
observed that frequent car users often maintain their reliance on private vehicles, even when
sustainable alternatives are made available. While Hachette et al. [2024] quantified potential
emission reductions from hub implementations, the underlying behavioural mechanisms
driving such outcomes remain unexplored. In addition, Xanthopoulos et al. [2024] reported
only marginal travel time and emission reductions from shared modes in the Amsterdam
region, though this analysis was based on assumed rather than observed mode choice be-
haviour. However, these studies examine contexts where using a hub is only an option and
private vehicle users can still access destinations directly. The stricter context of prohibiting
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private vehicles from high-demand destinations and requiring transfer at a hub has not yet
been examined.

Overall, the behavioural dimension of green mobility hubs—particularly for private vehicle
users required to switch to sustainable first- and last-mile options—remains underexplored.
This thesis addresses that gap by empirically modelling how car users trade off between
multiple sustainable modes under mandatory hub-transfer conditions, and embedding these
behavioural insights into a simulation of traffic and environmental impacts.

1.2. Research Goal and Scope

The goal of this research is to assess how the introduction of green mobility hubs influ-
ences travel behaviour and, in turn, affects traffic performance and environmental indica-
tors. Specifically, the study examines how travellers who currently rely on private vehicles
adapt their first- and last-mile choices when they are required to transfer at a hub and select
among sustainable alternatives such as shared bikes, e-scooters, or zero-emission buses.

To achieve this, the research investigates how mode choices are shaped by contextual fac-
tors—including weather, travel cost, and digital accessibility—using empirically collected
choice data. The analysis focuses on adults aged 18 and older living in the Netherlands.

Research Questions

Main Research Question:

What are the traffic and environmental impacts of introducing multimodal green mobility hubs for
first- and last-mile travel?

This question aims to assess the broader impact of implementing multimodal green mobility
hubs on the sustainability and performance of the Dutch transport system. It serves as the
central focus of the research, linking individual choices to aggregated traffic and environ-
mental outcomes.

Sub-questions

The following sub-questions are derived to answer the main research question:

1. Which traffic and environmental indicators are suitable for assessing the impacts of a mobility
hub, and why, according to existing literature?
This sub-question explores relevant academic literature to identify measurable indica-
tors—such as vehicle kilometers travelled (VKT), intensity-capacity ratios, and quantity
of emissions—that reflect changes in transport system performance and sustainability
following the introduction of a mobility hub.

2. What mode attributes and individual characteristics influence first- and last-mile mode choices
at green mobility hubs?
This sub-question investigates mode attributes (e.g., travel time, cost, and weather)
and user characteristics (e.g., age, digital literacy)—that shape decision-making in the
context of mobility hubs.
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3. Which modelling framework best captures individual mode choice behaviour in the context of a
mobility hub?
This sub-question identifies the modelling framework (e.g., Multinomial Logit, Nested
Logit) suitable for representing mode choice behaviour. It addresses how utility func-
tions are structured, whether to include interaction effects or dummy variable terms,
and how to decide which model yields the best result in the context of this study.

4. To what extent do the identified mode attributes and individual characteristics influence mode
choice behaviour?
This sub-question quantifies the statistical strength and significance of various influ-
encing factors, forming the basis for empirical choice modelling and behavioural pa-
rameter estimation.

5. How is demand redistributed among available modes when the mobility hub is introduced?
This sub-question evaluates how the availability of multiple green alternatives at a
mobility hub reallocates travel demand across modes. It enables the calculation of
associated traffic and emission impacts.

Figure 1.1 illustrates how the sub-questions were derived via the method of unraveling key
concepts.

Figure 1.1.: Using method of unraveling key concepts to derive research questions

1.3. Research Relevance

Empirical insights into how travellers choose green first- and last-mile alternatives in mo-
bility hub contexts are still limited. This study addresses that gap through an integrated
approach combining empirical choice modelling and simulation. This is particularly rele-
vant for creating low-car zone or zero-emission zones around high demand areas like city
centers, industrial areas or airports.
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For municipalities and transport planners, the findings help identify which mode combina-
tions and design features—such as frequency, cost, and distance—make green hubs most
effective. Insights from the simulation can support infrastructure investment decisions, op-
timize hub placement, and inform environmental policy development.

For policymakers, the research strengthens the case for mobility hubs as measures to meet
climate targets and reduce congestion—especially around key destinations. The case study
application in this study demonstrates the practical feasibility and policy relevance of the
proposed modelling approach.

Scientifically, the research advances transport modelling by analysing mode choice behaviour
in multimodal, hub-based settings. It contributes methodological value through its integra-
tion of behavioural estimation with simulation—addressing the relatively underexplored
domain of first- and last-mile substitutions.

For the general public, green mobility hubs improve accessibility, especially in underserved
areas, with car-sharing playing a major role [Frank et al., 2021]. By reducing travel costs
and emissions while improving system efficiency, these hubs contribute to healthier, more
inclusive urban environments.

1.4. Thesis Outline

This thesis is structured to systematically address the research questions. The Introduction
in Chapter 1 outlines the background, motivation, research gap, and objectives. The Litera-
ture Review in Chapter 2 examines key topics such as green mode alternatives at mobility
hubs, mode choice, relevant traffic and environmental indicators, and relevant modelling
approaches.

Chapter 3 describes the methodology of the thesis: data collection process using a stated
preference survey and the modelling tools employed. Chapter 4 presents the results from
the survey, including sample characteristics, descriptive statistics, and the discrete choice
model estimations.

In Chapter 5, the developed mode choice model is applied to different scenarios, including
Dutch adults and Schiphol commuters. The modal splits and sensitivity analyses under
varying conditions, such as distance and weather, are explored in detail. Chapter 6 explores
the results from the Digital Twin simulation. Chapter 7 provides a discussion of the find-
ings, reflecting on their practical relevance, limitations, and the interpretation of the final
model coefficients. Chapter 8 summarizes the answers to the research questions, provides
conclusions and recommendations for both practice and future research.
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2. Literature Review

This chapter provides a structured review of the academic literature relevant to mode choice
preferences and the impact evaluation of green mobility hubs. The review serves two main
purposes: (i) to define the research problem by identifying relevant first- and last-mile trans-
port modes (2.1), the factors influencing mode choice (2.2), and key environmental and traffic
indicators (2.4) likely to be affected by the introduction of mobility hubs; and (ii) to inform
the selection of an appropriate methodological approach (2.3).

The review focuses particularly on access and egress behaviour in the context of mobility
hubs or hub-like environments (e.g., public transport stations), which closely approximate
the functional characteristics of green mobility hubs. To support this, three primary search
terms were used: “mobility hubs”, “mode choice” and “mobility hubs”, and “impact” in
relation to mobility hubs. These terms were applied in ScienceDirect and Google Scholar
to retrieve a broad set of academic sources. All identified documents were screened for
relevance based on their title, abstract, and full text. A smaller subset was selected for in-
depth review. Additional literature was identified through backward and forward citation
tracking (i.e., snowballing).

2.1. Green Mode Alternatives as First and Last Mile
Transportation Options

According to Bertolini [2008], a hub comprises two elements: a network node facilitating
intermodal transfers and a place providing amenities and services for passengers. By inte-
grating complementary travel modes, such hubs aim to enhance travel efficiency and reduce
the environmental and spatial burdens of car dependence [Pitsiava-Latinopoulou and Ior-
danopoulos, 2012].

A substantial body of research has investigated access and egress mode choices at trans-
port nodes such as railway stations and metro stops. Recent studies increasingly examine
the incorporation of shared and low-emission modes within the mobility hub framework.
For instance, Abe [2021] analyzed access modes at Tokyo’s railway stations, accounting for
options like bicycles, private cars, motorcycles, and autonomous vehicles. Similarly, Baek
et al. [2021] examined subway access in Seoul, including town buses, shared bicycles, and
e-scooters.

In Europe, the access mode landscape has also evolved. Dutch studies, including Van Kuijk
et al. [2024] and Tona et al. [2024], analyzed access to rail stations using a wide range of
modes: shared bikes, e-bikes, e-scooters, e-mopeds, on-demand rides, and taxis. Other
Dutch research by Van Mil et al. [2020] and Stam et al. [2021] considered walking, cycling,
and car access to stations, reflecting typical first- and last-mile patterns. In Spain, Aguilera-
Garcı́a et al. [2020] examined shared vehicle access at railway stations, while Chan and
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Farber [2020] and Wu et al. [2019] studied shared micromobility use (e.g., e-scooters and
bicycles) in metro and transit settings.

The integration of active and shared modes at these hubs is widely recognized as a strat-
egy to improve travel experience and reduce car reliance, especially for short-distance trips.
Zhou et al. [2023] emphasized the importance of design features that prioritize active mo-
bility, and Alpkokin [2012] highlighted cycling as a viable alternative to cars in small cities
and for shorter journeys.

More recent literature also explores fully electric hubs (E-hubs) offering only electric vehicles
as access options. Although e-bikes have reduced conventional bicycle use in the Nether-
lands, their ability to substitute car travel remains limited [Kroesen, 2017; de Haas et al.,
2021; Sun et al., 2020]. These findings largely pertain to privately owned vehicles; however,
shared electric modes often exhibit different adoption patterns [Wang et al., 2020].

Van Kuijk et al. [2024] found that shared bikes and e-scooters were the most preferred modes
at hubs offering only shared options—especially among younger users and those traveling
to suburban destinations. Similarly, Torabi et al. [2023] confirmed the continued popularity
of shared bicycles. E-mopeds consistently rank among the least preferred shared electric
modes [Van Kuijk et al., 2024].

Table 2.1 provides an overview of selected studies in different countries, showing the range
of first- and last-mile options that have been analysed.

Table 2.1.: Selected studies on access-egress options in hub-like contexts
Study Country Context Modes reviewed

Molin and Timmermans (2010) Netherlands Railway stations Public transport, taxi, bike, shared bike, Shared e-cars
Ryley et al. (2014) United Kingdom Rail stations Bus, cycling, demand-responsive transport, car, walking
Yap et al. (2016) Netherlands Rail stations Bicycle, AV car-sharing, private car
Halldórsdóttir et al. (2017) Denmark Rail stations Bus, BRT, walking, cycling
Shelat et al. (2018) Netherlands Rail stations Walking, cycling, private car, car passenger
Wu et al. (2019) Taiwan Metro stations Shared bicycles
Aguilera-Garcı́a et al. (2020) Spain Rail stations Shared e-cars, private mopeds, motorcycles, walking, PT,

bike-sharing, scooter-sharing, taxis, ride-sourcing
Abe (2021) Japan Railway stations Bicycle, private car, motorcycle, walking, autonomous vehi-

cles
Baek et al. (2021) South Korea Subway Town bus, shared bicycles, shared e–scooters, walking
Zhou et al. (2023) Netherlands Mobility hubs Walking, cycling, shared bicycles
Van Kuijk et al. (2024) Netherlands Rail stations Shared bikes, e-bikes, e–scooters, e–mopeds, on-demand

rides, taxis

Five green modes consistently emerge as the most widely preferred access–egress options
across the literature: walking, cycling, shared bicycles, shared e-scooters, and shared electric
cars. These alternatives are well suited for integration into the mobility hub concept and
form the foundation for this study’s mode choice analysis.

2.2. Attributes Influencing Mode Choice in Multimodal
Transportation

Mode and user characteristics, particularly sociodemographic attributes, play a crucial role
in determining modal split within the context of this research. Numerous studies have
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explored how different mode and personal attributes influence mode choice for first- and
last-mile transportation across various contexts. Age, gender, education level, employment
status, primary mode of transportation and trip purpose consistently emerge as significant
factors. For research involving shared and digital transport services, factors such as digital
literacy and prior experience with shared mobility are also critical. Regarding mode-specific
characteristics, travel cost, distance, and waiting time are recurrent variables identified in
the literature.

Travel Costs

Financial considerations significantly influence mode choice decisions. Chen et al. [2020]
notes that travel cost is a major determinant of behavioural shifts. Torabi et al. [2023] found
travel cost to be the most important factor influencing mode choice. Similarly, Sanders [2015]
demonstrated that travel time and cost are key determinants when travellers decide modes
for medium- to long-distance journeys. Affordability remains consistently important across
traveller segments.

Distance

Trip distance plays a significant role in the adoption of green modes. Liao et al. [2023]
identified trip length as a key factor in determining willingness to switch modes. Ma et al.
[2020] found that short- to medium-distance trips are particularly conducive to bike-sharing
system adoption. Similarly, Jahanshahi et al. [2020] confirmed that travel distance influences
user acceptance of shared bikes.

Public Transport Frequency

Several studies have demonstrated the importance of public transport frequency in shaping
mode preferences. Scheltes and Correia [2017] showed that improved PT headways signif-
icantly enhanced integration with shared vehicles and feeder modes. Shaheen et al. [2017]
emphasized that increased frequency not only improves system efficiency but also equity
and accessibility, particularly when combined with shared mobility options. The less time
spent waiting, the more appealing the mode becomes [Dubey et al., 2024]. Increased transfer
time reduces the utility of choosing park and ride modes [Habib et al., 2012].

Weather

Weather conditions are critical in shaping decisions- especially for active modes. Tona et al.
[2024] and Torabi et al. [2023] include weather as a contextual variable, while Wu et al.
[2019] observed that rain or extreme cold reduces bike-share usage, leading travellers to opt
for more sheltered or motorized alternatives.
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Age

Age is a consistently influential factor in mode choice. Hensher et al. [2024] observed that
younger, tech-savvy, and environmentally conscious individuals tend to prefer micromobil-
ity and active transport for short distances and as first/last-mile options. This is corrob-
orated by Shelat et al. [2018], who found that individuals aged 17–27 are most likely to
combine cycling with public transport. Conversely, older adults are generally less inclined
to use shared bicycles [Böcker et al., 2020]. Van Kuijk et al. [2024] further highlights age as
a key determinant in preferences for shared mobility. Additionally, Jorritsma et al. [2021]
found that over half of Dutch car-sharing users are between 31 and 50 years old, while
slightly less than one-third are under 30.

Gender

Gender-based differences in mobility patterns are well documented in recent studies. Men
generally cycle more than women [Meng et al., 2016; Park et al., 2014], while women show
a preference for private over shared bicycles when accessing railway stations [Ji et al., 2017].
Men are also more inclined to use scooters for last mile travel, whereas women are more
likely to opt for buses [Halldórsdóttir et al., 2017; Tran et al., 2014]. These differences under-
score gender as a critical factor in first and last-mile transport preferences.

Employment Status

Employment status significantly impacts modal preference. Jorritsma et al. [2021] found that
individuals with higher incomes—typically linked to full-time employment—are more likely
to use shared cars, while those with lower incomes tend to prefer shared bikes due to their
affordability. Similarly, Aguilera-Garcı́a et al. [2020] found that middle- and high-income
individuals are more inclined to adopt scooter-sharing services in Spanish cities.

Education Level

Education level also influences green mode uptake. Shelat et al. [2018] and Jonkeren et al.
[2021] found that highly educated individuals are more likely to integrate cycling into mul-
timodal trips. Shaheen et al. [2017] suggests that individuals with higher educational attain-
ment are generally more open to adopting shared and emerging transport technologies.

Travel Purpose

The purpose of a trip has a notable impact on mode choice. Jiao and Bai [2020] showed
that commuters and those traveling for errands or leisure display different adoption rates
for shared e-scooters, with commuters showing a stronger preference due to time and con-
venience. Tona et al. [2024] also emphasized the significance of trip purpose in shaping
first/last-mile decisions, especially in the context of shared and hub-based services.
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Primary mode of transportation

Primary mode of transportation strongly influences first- and last-mile travel behaviour.
Studies consistently find that car ownership reduces the attractiveness of walking and cy-
cling alternatives [Halldórsdóttir et al., 2017]. Puello and Geurs [2015] noted that motorcycle
ownership reduces the likelihood of walking. Kroesen [2017] found that car users are more
willing to adopt e-bikes compared to conventional bicycles or public transport, especially
when e-bikes offer convenience and speed advantages. However, receptiveness to mobility
hubs differs between user groups: Liao et al. [2023] observed that public transport users are
more open to hub-based shared modes. Nonetheless, under favourable conditions—such as
free parking at the hub, good weather, and short distances—car users become more likely
to switch to shared or active modes facilitated by mobility hubs [Zhou et al., 2023; Rongen
et al., 2024].

Digital Skills

Digital literacy is a growing concern in equitable mobility access. Garritsen et al. [2024]
found that lower digital skills are associated with reduced use of shared modes. Vulner-
able groups—including older adults and lower-income individuals—face more barriers to
adopting digital mobility solutions, raising concerns around transport equity. Non et al.
[2023], drawing on data from OECD [2013], revealed that individuals with lower digital pro-
ficiency—often older, less educated, and more frequently female—are less likely to adopt
shared services.

Shared Mode Experience

Prior experience with shared mobility services strongly influences an individual’s likelihood
of future adoption. For instance, Habib et al. [2012] found that individuals with prior ex-
perience using car-sharing services showed significantly higher willingness to adopt them
again. Studies also show that familiarity with one shared mode often facilitates adoption
of others. Shaheen and Chan [2016] observed that early adopters of one shared service
(e.g., bike-share) are more open to trying additional shared options (e.g., e-scooters or ride-
hailing), suggesting a cumulative learning effect. These findings underscore the importance
of habit formation and ease-of-use in promoting sustained shared mobility use.

A wide range of sociodemographic and contextual factors influence first- and last-mile mode
choice. These insights inform both the specification of utility functions in discrete choice
models and the design of policy interventions aimed at supporting equitable and efficient
mobility hub implementation.

2.3. Models for Mode Choice

There are multiple frameworks to model and explain travel behaviour, each operating under
a distinct set of assumptions and methodologies, contributing to the understanding of travel
choices [Kroesen, 2023]. These frameworks aim to predict and explain travel behaviour
based on their underlying assumptions. This thesis specifically focuses on evaluating mode
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choice preferences for a mobility hub, and the econometric modelling paradigm is con-
sidered the most suitable for this analysis [Kroesen, 2023]. This paradigm assumes that
travellers make decisions that maximize their utility. A key mathematical framework within
this paradigm is the Random Utility Model (RUM), a well-established tool for explaining
mode choice.

Discrete Choice Modelling (DCM) has become a widely adopted technique for analysing
travel behaviour and understanding how individuals make choices among different alter-
natives [Ben-Akiva and Bierlaire, 2003]. Within DCM, models belonging to the logit family
are particularly common [Train, 2002]. As outlined by Ben-Akiva and Bierlaire [2003], four
types of logit-based models are extensively used: the Multinomial Logit Model (MNL), the
Nested Logit Model (NL), the Panel Mixed Logit Model (Panel ML), and the Latent Class
Choice Model (LCCM).

• The MNL model remains popular due to its simplicity and computational efficiency.
However, one of its key drawbacks is the assumption of independence from irrelevant
alternatives (IIA). This implies that the odds of selecting between two alternatives are
not influenced by the presence of additional choices, which may not always reflect
real-world decision-making.

• The NL model helps overcome IIA by accounting for correlations between similar alter-
natives. This makes it a better fit for scenarios where choices can be naturally grouped.
By removing the IIA assumption, the NL model becomes a more representative model
for grouped alternatives [Train, 2002].

• The Panel ML model can be a more representative model when studying repeated
choices by the same individuals. It captures personal variations for each individual and
provides a more comprehensive understanding of choice behaviour by incorporating
random heterogeneity in preferences [Train, 2002].

• The Latent Class Choice Model (LCCM) concept states that individuals form latent
groups based on their differing attitudes, motivations, experiences, and needs. This
integrates both the econometric and mobility styles paradigms to capture the impact
of these latent groups.

The psychological modelling paradigm is also relevant for understanding travel behaviour
decision-making. This framework suggests that people’s choices are shaped by psychologi-
cal factors, such as habits, social norms, and attitudes [Kroesen, 2023].

Given the research objective of modelling access and egress mode choices in green mo-
bility hubs, selecting an appropriate modelling framework is essential. The MNL model
offers simplicity and ease of estimation, but its assumption of Independence from Irrelevant
Alternatives (IIA) can be problematic. The NL model is more suitable if the alternatives
have overlapping characteristics. If panel data or repeated choice observations are avail-
able, the Panel Mixed Logit (PML) model is advantageous for capturing individual-level
heterogeneity in preferences. Likewise, if the aim is to segment travellers based on unob-
served behavioural traits—such as environmental concern or digital proficiency—the Latent
Class Choice Model (LCCM) is well suited. Each of these models offers distinct strengths,
and their appropriateness depends on the data structure, behavioural assumptions, and the
desired level of analytical depth.
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2.4. Environmental and Traffic Impacts of Mobility Hubs

Mobility hubs can play a pivotal role in mitigating the environmental burden of urban pas-
senger transport. In the Netherlands, passenger cars cover 122.5 billion kilometers country-
wide annually [Statistics Netherlands, nd]. In 2019, 49% of all trips were made by private
cars [Statistics Netherlands, nd], underscoring the urgency of shifting toward more sustain-
able modes. Common traffic indicators—such as traffic flow volumes, intensity-capacity (IC)
ratios, and vehicle kilometers travelled (VKT)—are frequently used in previous studies to
assess the impact of transport interventions [Stam et al., 2021; Xanthopoulos et al., 2024].

A growing body of evidence supports the environmental benefits of integrating shared mo-
bility services—such as shared bikes, e-cars, and public transport—within multimodal mo-
bility hubs. Meijkamp [2000] found that car-sharing users reduce their car kilometers by
two-thirds, resulting in a 40% lower environmental impact per household.

Mobility hubs also help reducing local pollutants like NO2 and PM, which are prominent
in short car trips. Shared e-bikes and public transport modes produce drastically lower
emissions per passenger-kilometer—in NO2, and PM compared to conventional cars [Chen
et al., 2020; Hosseini et al., 2024].

The guideline followed in this study for environmental quality is European Commission
[nd] standards. According to EU standards, the annual average limit for NO2 is 40 µg/m³,
PM10 is 40 µg/m³ and PM2.5 is 25 µg/m³. These environmental indicators form the basis for
empirical evaluation in this study.

Furthermore, research by Stam et al. [2021] and Xanthopoulos et al. [2024] confirms that hubs
reduce traffic congestion and parking demand by promoting seamless transitions between
modes. By combining infrastructure upgrades (e.g., e-bike lanes) with shared mobility, Hos-
seini et al. [2024] show that cities can achieve measurable environmental benefits, especially
when such services attract users with high environmental awareness [Sytsma and Stulen,
2018; Zijlstra et al., 2020].

In sum, mobility hubs—when integrated with green modes—offer a compelling and empiri-
cally supported pathway to reduce NO2, PM, and intensity-capacity ratios, while supporting
the behavioural shift needed for sustainable urban mobility.

2.5. Conclusion on Literature Review

This literature review has provided a comprehensive overview of the factors influencing
mode choice behaviour at mobility hubs, as well as the potential traffic and environmen-
tal impacts of introducing green, multimodal transport options. Prior studies consistently
highlight the role of user-specific attributes—such as age, gender, education level, employ-
ment status, digital literacy, and prior shared mode experience—in shaping travel decisions.
Mode-specific attributes, particularly travel cost, distance, weather conditions, and public
transport frequency, also emerge as critical determinants in multimodal contexts.

Although green transport options such as shared bikes, e-scooters, and shared electric cars
have been studied individually, there is limited research that evaluates these modes col-
lectively within the framework of a mobility hub serving a fixed destination, such as an
airport.
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From a modelling perspective, the Multinomial Logit (MNL) model is widely used for its
simplicity and interpretability. The Panel Mixed Logit (PML) model is better suited when
repeated choice data are available, as it can account for unobserved individual heterogene-
ity. The Nested Logit (NL) model becomes appropriate when multiple alternatives share
similar attributes. The Latent Class Choice Model (LCCM), on the other hand, is useful for
segmenting users based on unobserved behavioural traits.

To link individual-level behavioural shifts with broader traffic and environmental outcomes,
this study draws upon established indicators identified in the literature—such as traffic
volumes, intensity-capacity (IC) ratios, and emissions of NO2, and PM.

This research builds on existing literature by addressing the gap in understanding how
green mobility hubs influence mode choice and traffic and environmental performance when
multiple sustainable transport options are made available. The parameters derived from
the literature, in combination with choice modelling and traffic-environmental simulation,
provide a robust framework to investigate this complex and emerging topic.
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This chapter outlines the methodological framework used to evaluate the influence of green
mobility hubs on travel behaviour, traffic dynamics, and environmental outcomes. The study
adopts a hybrid approach that combines a stated preference survey, discrete choice mod-
elling, and simulation-based impact analysis.

Figure 3.1 illustrates the methodological sequence followed in this research, linking each
stage to specific sub-research questions. It presents the operational flow—from behavioural
data collection to the simulation of traffic and environmental indicators—clarifying how the
various components of the analysis are interconnected.

The chapter is organised into four main sections. Section 3.1 describes the design and dis-
tribution of the stated preference survey. Section 3.2 outlines the data preparation steps
undertaken prior to model estimation. Section 3.3 presents the discrete choice modelling
framework, including model selection, utility specification, and estimation strategies. Fi-
nally, Section 3.4 explains how the estimated model outputs are integrated into a simulation
environment to assess the network-level impacts of mobility hub interventions under differ-
ent scenarios.

Figure 3.1.: Methodology

3.1. Stated Preference Survey

As the literature lacks empirical data or detailed studies on modal split at green mobility
hubs, a primary data collection effort is required. In travel behaviour research, two main
approaches are commonly used for data collection: revealed preferences (RP) and stated
preferences (SP) [Kroesen, 2023]. RP methods are based on observing actual travel decisions
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made by individuals in real-world settings. In contrast, SP methods involve presenting
respondents with hypothetical yet realistic travel scenarios to elicit their preferences.

Collecting large-scale, high-quality RP data for mobility hub users would require extensive
fieldwork, partnerships with transport operators, or access to administrative datasets—resources
not feasible within the scope and timeline of this thesis. In contrast, SP surveys offer a
cost-effective and efficient method of obtaining mode choice data, particularly when the in-
frastructure being studied is not yet operational. This approach is widely recognised and
validated in transport research for evaluating new or emerging transport services, hypo-
thetical alternatives, and latent preferences [Torabi et al., 2023; Van Kuijk et al., 2024]. Prior
studies investigating mode choice, shared mobility adoption, and behavioural responses to
contextual variables have successfully employed SP surveys for these purposes [Pham, 2023;
van Langevelde van Bergen, 2023].

Since the proposed mobility hub is not yet implemented in practice, a hypothetical sce-
nario was constructed to evaluate user behaviour. This further supports the appropriateness
of the SP approach. Including a combination of emerging green alternatives—such as a
zero-emission bus—would not have been feasible with RP data. The SP method allows for
controlled manipulation of key attributes (e.g., travel costs, waiting times, and environmen-
tal conditions) to create realistic yet unobserved combinations that reflect possible future
conditions.

Additionally, SP surveys allow respondents to make multiple hypothetical choices, facili-
tating the observation of personal variation in preferences. This repetition increases model
reliability even with a relatively small sample size [Molin, 2023]. However, repeated obser-
vations can introduce bias. To address this, a Panel Mixed Logit (PML) model can be used
in this study to account for unobserved heterogeneity across repeated choices.

Furthermore, RP data would only capture behaviour from existing users of mobility hubs,
excluding the preferences of potential future users—particularly relevant for concepts like
green mobility hubs, which are still in early implementation stages.

Despite its advantages, the SP method is not without limitations. A key concern is hypo-
thetical bias—the difference between how individuals say they would behave in a survey
and how they would act in reality. This can arise because SP surveys often present idealised
or unfamiliar conditions, including perfect information, which respondents do not typically
experience in real-world settings. Another source of bias is sample representativeness—if
the respondent group differs demographically from the target population, the results may
not generalise well [Molin, 2023].

To mitigate the limitations associated with hypothetical bias in SP surveys, several best
practices are followed, drawing on recommendations from Heufke Kantelaar et al. [2022] and
Ben-Akiva et al. [2019]. First, ensuring that respondents are familiar with the alternatives
under evaluation is critical. In this study, the modes and the function of the mobility hub are
introduced at the beginning of the survey, accompanied by clear and neutral explanations to
minimise framing effects. Second, efforts are made to ensure that the sample was reasonably
representative of the broader population in terms of key socio-demographic variables, both
during survey design and distribution. Third, attention is paid to the overall quality of
the questionnaire. This included a careful selection of mode alternatives, the inclusion of
relevant socio-demographic questions, and the integration of context-specific variables such
as weather and distance. Fourth, the complexity of the design is deliberately controlled
by limiting the number of attributes and alternatives. This helped reduce cognitive fatigue
and improved the reliability of responses across multiple choice tasks. Finally, although a
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formal calibration with RP data is not feasible within the constraints of this study, real-world
costs, travel times, and service frequencies are incorporated into the SP scenarios to improve
realism and reduce the gap between hypothetical and actual behaviour.

3.1.1. Context Scenario of the Survey

To evaluate individual mode choice behaviour, a hypothetical scenario is developed and pre-
sented to respondents as part of the stated preference survey. In this scenario, the mobility
hub is defined as a transfer point where travellers are required to switch to alternative green
transport modes to reach key destinations such as city centres or airports. Crucially, private
vehicles—excluding bicycles—are not permitted beyond the hub. This design reflects the
operational principles of restrictive green mobility hubs, which aim to reduce emissions and
encourage sustainable travel by limiting private motor vehicle access. Travellers may arrive
at the hub by car, bicycle, or other means, but must complete their journey using one of the
available green alternatives.

In the case of private bicycles, respondents are assumed to either use their own bike from
the origin or pick it up at the hub and park it at the destination. Bicycles are allowed beyond
the hub because they align with the environmental objectives of the green mobility hub
concept. Shared modes are assumed to be available at the hub. Users operate these vehicles
themselves for the final leg of their trip and drop them off at the destination.

Although in practice some travellers may opt to switch to conventional public transport
services (e.g., trains or regional buses), if they are required to use the hub, such switches
are excluded from this study. This modelling choice ensures a focused analysis of first- and
last-mile mode choice behaviour within the operational boundaries of the green mobility
hub, rather than broader multimodal travel chains.

All shared modes are assumed to allow one-way usage. That is, users pick up the vehicle
at the mobility hub and drop it off at the destination, where dedicated parking or docking
facilities are assumed to exist. For the outbound trip, they can also pick up their first mile
modes from the destination parking or docking facilities and go to the hub to switch to their
original modes. There is no expectation that users must return the vehicle to the hub or
keep it for extended durations. This assumption reflects the realistic operational model of
available shared mobility systems [Micromobiliteit.nl, 2024].

3.1.2. Mode Alternatives

In the stated preference experiment, respondents are asked to choose between multiple
transport mode alternatives available at the proposed mobility hub. These alternatives repre-
sent a diverse set of sustainable options designed to serve as first- and last-mile connections.
The modes selected for this study are:

• Walk

• Private Bike

• Shared Bike

• Shared E-scooter
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• Shared E-car

• Zero-Emission Bus (ZE Bus)

The first five modes are selected based on consistent findings in the literature indicating
their prevalence and relevance in the context of mobility hubs (See section 2.1). Walking and
private bikes are included as active, emission-free modes that are particularly appropriate
for short distances and are widely adopted in the Dutch transport landscape. Shared bikes,
e-scooters, and e-cars reflect the increasing role of flexible, user-driven, and low-emission
shared mobility options in urban environments.

The Zero-Emission Bus (ZE Bus) is included as an emerging public transport alternative.
While not yet commonly integrated into mobility hubs, it aligns with broader sustainability
and climate mitigation policies. Its inclusion enables the study to examine user preferences
when clean public transport options are offered alongside active and shared mobility so-
lutions, broadening the scope of behavioural insights into future-oriented green transport
systems.

3.1.3. Personal And Mode Attributes

Mode Attributes

Each transport alternative in the stated preference experiment is characterised by a set of
mode-specific attributes that influence travellers’ decision-making. The final list of attributes
and attribute levels is derived from a combination of literature review, expert input, and
contextual relevance to the Dutch urban transport setting. The selection aims to ensure
sufficient realism while maintaining cognitive feasibility for respondents. The attributes
used in the mode choice tasks are:

• Distance from Hub: Two levels—2 km and 4 km—represent the travel distance from the
mobility hub to the destination. These distances are selected based on literature, where
2–5 km is typically considered the range for first- and last-mile trips [Torabi et al., 2023].
2 km and 4 km were chosen to strike a balance between a commonly walkable range
and a moderate cycling distance. Including both values supports sensitivity analysis
of distance effects on mode choice.

• Travel Cost: Two levels—€0 (free) and realistic cost per km per mode—capture respon-
dents’ sensitivity to out-of-pocket costs. The non-zero cost levels are based on actual
fare structures from Dutch transport providers, including NS, GVB, and Greenwheels
[GVB, 2025; NS, 2023a,b; GreenWheels, 2023]. For bus, reference is taken from GVB in
Amsterdam (€1.12 base cost and €0.207 per km)[GVB, 2025]. For e-scooter, NS have a
start cost of €1 and then €0.33 per minute [NS, 2023a]. NS bike costs €4.55 per day [NS,
2023b] and greenwheels shared e-car costs €3.60 per hour [GreenWheels, 2023]. These
reference prices are used to calculate approximate trip costs for each mode based on
the 2 km and 4 km distances, as shown in Table 3.1.

• Weather: Included as a contextual variable with two levels — rainy and sunny. This
accounts for weather-dependent mode preferences, especially for walking and cycling.
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Table 3.1.: Cost Comparison for Different Transport Modes
Mode Unit Cost Cost for 2 km (Euro) Cost for 4 km (Euro)
Shared Bike Euro 4.55 per day 4.55 4.55
Shared E-Scooter Euro 1 + 0.33 per minute 2.98 4.96
Shared E-Car Euro 3.6 per hour 3.60 7.20
Bus Euro 1.12 fixed + 0.207 per km 1.534 1.948

• Public Transport Frequency: Relevant for the ZE Bus alternative, with two levels —
5 minutes and 10 minutes — representing service frequency. In the Netherlands, es-
pecially within the Randstad region, buses typically operate with a headway of 10 to
15 minutes, influenced by factors such as passenger demand, area characteristics, and
time of day [GVB, 2025]. In general, passenger waiting time is assumed to be half
of the service headway, so people generally wait around 5 to 7.5 minutes. As it is a
specialized service, 5 and 10 minutes wait time are considered. A sensitivity analysis
is conducted to see the effect of various wait time in mode choice behaviour.

These attributes are assigned only to the relevant modes. For example, frequency applies
exclusively to ZE Bus, while walking and private bike alternatives are assumed to have no
monetary cost.

Travel time for all the modes derived from realistic average speeds per mode over distances
of 2 km and 4 km, are provided in the survey to help respondents better understand the
practical implications of choosing each mode.

Mode Speed (km/h) Travel Time for 2 km (min) Travel Time for 4 km (min)
Walking 5 24.0 48.0
Bike 15 8.0 16.0
Shared Bike 15 8.0 16.0
Shared e-Scooter 20 6.0 12.0
Shared e-Car 40 3.0 6.0
Zero Emission Bus 24 5.0 10.0

Table 3.2.: Reference speeds and estimated travel times for 2 km and 4 km distances

Socio-demographic Attributes

To understand how personal characteristics influence mode choice behaviour, a range of
sociodemographic variables is included in the survey. These variables allow the estimation
of interaction effects between user profiles and transport mode preferences. Incorporating
sociodemographics is crucial for identifying heterogeneity in travel behaviour, which can
inform more targeted and inclusive transport policies. Eight socio-demographics are selected
based on literature. The selected sociodemographic variables are as follows:

• Age: Age is collected in categorical ranges (e.g. 18–24, 25–29 etc.) to assess how pref-
erences vary across different age groups, particularly in relation to the use of shared,
active and digital modes.
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• Gender: Gender is captured to examine potential differences in comfort, safety percep-
tions, and mobility preferences across genders.

• Education level: Education is used to understand how education level impacts the
mode choice behaviour among the population.

• Employment status: Helps distinguish between the choice of people from different
employment status, which may affect time and cost sensitivity and mode selection.

• Trip purpose: Respondents are asked to indicate the purpose of their most common
reason to use a mobility hub (e.g., work, leisure, shopping), as this influences travel
time tolerance and mode preferences.

• Shared transport experience: Measures prior use of shared transport services. Fa-
miliarity with shared systems can reduce perceived barriers and increase adoption
likelihood.

• Primary mode of transport: Indicates car dependency and baseline availability of pri-
vate vehicles.

• Comfort with digital mobility: Captures digital literacy and willingness to engage with
app-based booking systems, essential for most shared and green alternatives.

These variables are primarily categorised based on CBS [Statistics Netherlands, nd] studies,
to align the sample analysis with nationally recognised demographic segmentation, thereby
enhancing comparability and generalisability. Following this categorization also helps the
application step, where to create a synthetic Dutch and Schiphol commuter population,
data from CBS is used (See Section 3.3.4). These variables not only support descriptive
analysis of the sample but also allow for deeper insights when integrated into discrete choice
models through interaction terms. Including these sociodemographic indicators enhances
the explanatory power and realism of the mode choice models used in this study.

3.1.4. Survey Design

The survey is administered online via the Qualtrics platform [Qualtrics, nd] and comprises
two core components:

• A series of stated preference (SP) choice tasks, in which respondents select their pre-
ferred transport mode from several alternatives under varying hypothetical conditions
(e.g., cost, distance, weather).

• A set of socio-demographic questions designed to capture personal characteristics rel-
evant for discrete choice modelling.

To generate the choice sets, Ngene software is used. The syntax is given in Appendix A. Since
no previous study has incorporated all six selected green alternatives together in the context
of mobility hubs, prior parameter estimates are not available. Consequently, an orthogonal
fractional factorial design is adopted, as recommended in the literature for cases with no
priors [Molin, 2024]. This design ensures that all attribute levels appear an equal number
of times across tasks, while having reduced number of choice sets to maintain manageable
cognitive load for respondents.

Because the alternatives are labelled (e.g., e-scooter, ZE bus), a labelled design is imple-
mented using simultaneous generation of choice sets. Ngene generated a design with eight

19



3. Methodology

unique choice tasks, which vary cost and frequency attributes across alternatives, as shown
in Table 3.3.

Choice Tasks Shared Bike (€) E-Car (€) E-Scooter (€) ZE Bus (€) ZE Bus Frequency (Mins)
1 4.55 3.60 0.00 1.54 5
2 0.00 0.00 0.00 0.00 10
3 4.55 0.00 0.00 1.54 5
4 0.00 3.60 0.00 1.54 10
5 0.00 3.60 2.98 0.00 5
6 4.55 0.00 2.98 0.00 10
7 0.00 0.00 2.98 1.54 5
8 4.55 3.60 2.98 1.54 10

Table 3.3.: Choice task attributes with realistic costs and ZE bus frequency for 2 km trips

For 4 Km scenarios, the costs are changed based on table 3.1. To test the effect of context on
mode choice, each choice task was presented under four different scenarios:

• 2 km, Rainy

• 2 km, Sunny

• 4 km, Rainy

• 4 km, Sunny

This results in 8 tasks in 4 contexts, meaning 32 total choice tasks. Additionally, to explore
the bias related to private bike usage—the sample is split. Half the respondents received
scenarios including the private bike alternative, while the other half received scenarios ex-
cluding it. This approach is supported by previous studies. This adjustment increased the
number of total unique choice tasks to 64 (32 with bike + 32 without bike).

To manage cognitive load and avoid respondent fatigue, a blocking design was imple-
mented. The 64 tasks were divided into four blocks of 16 tasks. Each participant was
randomly assigned to one block and exposed to only four choice tasks per context—either
tasks 1–4 or 5–8—ensuring full coverage of all four contexts with only 16 tasks per respon-
dent. Changing context every four questions also serves as a cognitive reset, helping to
reduce fatigue and maintain participant engagement throughout the survey.

One block of the survey is provided in Appendix B. An example of how context and SP
choice tasks are presented to the respondents is shown in Figure 3.2.

3.1.5. Necessary Number of Responses

Reliable estimation of parameters in stated preference (SP) models depends on having a
sufficiently large and well-distributed sample. To estimate the minimum required responses,
this study follows the heuristic by Orme [2010], presented in Equation 3.1:

n · t · a
c

≥ 500 (3.1)

Where:

20



3.1. Stated Preference Survey

(a) Survey context (b) Example SP choice task

Figure 3.2.: Context and choice tasks from the stated-preference survey.

• n = number of respondents,

• t = number of choice tasks per respondent,

• a = number of alternatives per task,

• c = largest number of attribute levels for any single attribute.

For this study:

• c = 2 (maximum number of levels for cost, distance and frequency),

• t = 16 (choice tasks per respondent),

• a = 6 (when private bike is included), or a = 5 (when excluded).

With Private Bike:

n ≥ 500 · 2
16 · 6

= 10.41 ≈ 11 (3.2)

Without Private Bike:

n ≥ 500 · 2
16 · 5

= 12.5 ≈ 13 (3.3)

Thus, the minimum sample size required to estimate main effects for two blocks each of
both designs (with and without private bike) is: 11×2 + 13 × 2 = 48 respondents
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However, this threshold only ensures aggregate-level estimation. One of the core goals of this
study is to investigate interaction effects across socio-demographic segments. Among the
selected variables, age contains the largest number of subgroups—up to 8 categorical bins
(e.g., 18–24, 25–29, etc.)—while others (e.g., education, employment, digital comfort) typi-
cally have fewer (3–5) categories. To ensure sufficient statistical power for subgroup analysis,
literature suggests a minimum of 30 respondents per subgroup [Pham, 2023]. Therefore, to
robustly estimate interactions across the age variable:

8 subgroups × 30 = 240 respondents

Although fewer respondents may suffice for other socio-demographic variables, age segmen-
tation imposes the most stringent requirement. Accordingly, a target sample size of at least
240 respondents is adopted to ensure reliable estimation of both main effects and subgroup
interactions in the discrete choice models.

3.1.6. Survey Distribution

To ensure adequate response volume and diversity in the sample, a multi-pronged strategy
is employed for survey distribution:

• Posters and flyers are placed in common areas at TU Delft, targeting students and staff.

• The survey is shared online via the researcher’s professional and academic network,
using social media and emails to expand outreach beyond the university.

• Employees working at Schiphol Airport and TNO are approached via email, with
permission from relevant contact points and stakeholders.

• Additional outreach targets professionals involved in mobility-related projects at Schiphol
to ensure contextual relevance among respondents.

All survey procedures are reviewed and approved by the TU Delft Human Research Ethics
Committee. The study adheres to the General Data Protection Regulation (GDPR) frame-
work throughout its design and deployment. Participation is voluntary, and informed con-
sent is obtained at the beginning of the survey. Respondents are clearly informed about the
purpose of the study, the anonymous nature of their responses, how their data will be used,
and their right to withdraw at any stage.

No personally identifiable information (PII) is collected. All data are stored securely using
GDPR-compliant infrastructure via the Qualtrics platform [Qualtrics, nd]. These measures
ensure that the research is conducted ethically, transparently, and in full compliance with
data protection standards.
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3.2. Data Preparation

The data preparation phase ensures that the dataset is clean, consistent, and ready for dis-
crete choice modelling. Raw data collected from Qualtrics [Qualtrics, nd] is first filtered to
retain only fully completed surveys. Incomplete responses are excluded to avoid introduc-
ing missing values or response bias. A minimum survey completion time of three minutes is
used as a quality threshold, based on the estimated time required to read and understand all
survey information. Responses submitted faster than this threshold are discarded, as they
may indicate disengagement or inattentiveness.

Each respondent receives either the version of the survey that includes the private bike
option or the version without it. For those in the latter group, private bike availability is
set to zero in the dataset. The contextual variables—distance (2 km or 4 km) and weather
(sunny or rainy)—are assigned to each choice task based on the respondent’s experimental
block.

The raw choice data is then transformed into a panel structure suitable for use in Biogeme.
This includes re-indexing all mode alternatives with numeric identifiers, encoding the re-
spondent’s actual choices into a choice variable, and stacking all tasks from the same re-
spondent to allow for panel estimation. Mode attributes—such as cost, frequency, and travel
time—are mapped to each alternative for each task based on the experimental design.

Socio-demographic variables are also processed for model inclusion. Categorical variables
(e.g., age group, education level, employment status) are converted into binary dummy
variables. These variables are used both directly in the model and for interaction terms to
capture preference heterogeneity. For example, age or comfort with digital platforms can be
interacted with cost or travel time to study conditional sensitivities. Responses marked as
“Prefer not to say” for any socio-demographic question are excluded from that specific sub-
group analysis to avoid bias. In cases where a subgroup contains fewer than 30 respondents,
categories are either removed or merged with similar ones, following the recommendation of
Gavriilidou [2024], although exceptions can be made for minor categories with irreplaceable
characteristics.

3.2.1. Statistical Testing

To assess whether the characteristics of the collected sample differ significantly from those
of the target population, and to examine the influence of socio-demographic variables on
mode preferences, a Chi-square (χ2) test is conducted. This non-parametric statistical test
evaluates the association between categorical variables by comparing observed and expected
frequencies across different categories. The Chi-square statistic is calculated using the fol-
lowing formula:

χ2 = ∑
(Oi − Ei)

2

Ei
(3.2)

Where:

• Oi is the observed frequency for category i,
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• Ei is the expected frequency for the same category, based on population-level statistics
(e.g., CBS data).

Expected frequencies are derived from official demographic distributions to ensure repre-
sentativeness [Statistics Netherlands, nd]. The test is applied to socio-demographic variables
such as age, gender, education level, and employment status, enabling the identification of
sample-population disparities.

In addition, Chi-square tests are employed to determine whether mode preferences differ
significantly across socio-demographic subgroups. This allows the study to identify which
user characteristics may significantly influence mode choice behaviour, supporting the in-
clusion of sociodemographic terms in the model.

Each test result is interpreted using the p-value at a 95% confidence level. A p-value below
0.05 indicates a statistically significant difference between observed and expected values, and
suggests that the corresponding variable may influence mode choice. Conversely, a p-value
above 0.05 indicates no statistically significant difference and implies limited or no impact
on mode choice. These findings help selecting significant socio-demographic variables in
the modelling process.

3.3. Discrete Choice Modelling

To analyze the stated preference (SP) data, this study employs discrete choice models to
examine the influence of various mode and user characteristics on mobility hubs. Two model
structures are applied: the Multinomial Logit (MNL) and the Panel Mixed Logit (PML). The
Multinomial Logit (MNL) model is chosen due to its simplicity, computational efficiency,
and suitability for capturing general mode choice behaviour. The Panel Mixed Logit (PML)
model is employed to account for repeated observations from the same individuals, thereby
capturing panel effect and improving model robustness. Other model types, such as the
Nested Logit (NL), are not suitable for this study, as the alternatives considered do not
exhibit hierarchical similarity or shared unobserved components. Likewise, the Latent Class
Choice Model (LCCM) is not applied, since the objective of this research is to understand
the average effect of mobility hubs on the general population rather than segmenting it
into latent user classes. Both MNL and PML models are grounded in the Random Utility
Maximization (RUM) framework.

Under the RUM framework, an individual n is assumed to choose the alternative i that offers
the highest utility Uni. The utility is composed of an observable deterministic part Vni and
an unobserved random component εni:

Uni = Vni + εni (3.3)

The deterministic component is modelled as:

Vni =
K

∑
k=1

βkXnik (3.4)

Where:

24



3.3. Discrete Choice Modelling

• Xnik: value of attribute k for individual n and alternative i,

• βk: parameter to be estimated, representing the marginal utility of attribute k,

• K: total number of attributes included in the model.

Despite the simplicity and intuitive interpretation offered by the MNL model, it has sev-
eral known limitations. Specifically, it assumes homogeneous preferences across individ-
uals, does not capture correlation in unobserved factors across repeated choices, and im-
poses the Independence of Irrelevant Alternatives (IIA) property. These assumptions limit
its ability to account for realistic substitution patterns or taste variation. In the context of
this study—where each respondent completes multiple choice tasks—ignoring panel effects
could bias the results. To address these issues, a more flexible modelling framework is re-
quired. Therefore, a Panel Mixed Logit (PML) model is also employed, which relaxes these
assumptions by allowing for random parameters and accommodating repeated observations
per individual [Train, 2002].

3.3.1. Model Specification

Base MNL Model: The first model estimates choices based solely on alternative-specific
constants (ASCs), that captures the effect on the utility of an alternative that is not explained
by the attributes, and transport attributes such as cost, travel time, and frequency (for ZE
Bus). Utility for reference alternative (ZE bus for this study) does not include ASC. For
example, utility function of shared bike for base model is:

UShared Bike = ASCShared Bike + βCost · Cost + βTravel Time · Travel Time (3.5)

Where:

• ASCShared Bike: Captures the alternative-specific constant for Shared Bike, reflecting
unobserved preferences not explained by observed attributes.

• βCost: Represents the marginal utility associated with an increase in travel cost.

• βTravel Time: Represents the marginal utility associated with an increase in travel time.

• Cost and Travel Time: These are the actual values of cost and travel time for the Shared
Bike alternative in a given choice scenario.

Sociodemographic Models: To add personal characteristics to the model, two methods are
used, (i) socio-demographic characteristics are added as binary dummies and (ii) interaction
terms are added between socio-demographic characteristics (e.g., age, education, employ-
ment status) and travel attributes (e.g., cost, time) [Gavriilidou, 2024]. Binary dummies
are created for all categorical variables. For example utility function of shared bike, where
gender is included as binary dummy (female is the reference category) is given below:

UShared Bike = ASCShared Bike + βCost · Cost + βTravel Time · Travel Time + βMale · Male (3.6)

Where:
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• βMale captures the difference in utility for male respondents compared to the female
reference group.

• Male is a dummy variable. Male =1 for males and 0 for females.

Sociodemographics as interaction terms are tested in three different ways. For example, to
add gender as interaction terms three sociodemographic models are tested, (i) gender-cost
interaction (ii) gender-travel time interaction, and (iii) gender as interaction terms with both
cost and travel time. Utility of shared bike when gender is included as interaction term with
both cost and travel time:

UShared Bike = ASCShared Bike + βCost, Male · Male · Cost + βCost, Female · Female · Cost
+ βTT, Male · Male · Travel Time + βTT, Female · Female · Travel Time (3.7)

Here:

• βCost, Male is the marginal utility of cost for male respondents. It reflects how sensitive
male respondents are to changes in cost.

• βCost, Female is the marginal utility of cost for female respondents. It reflects cost sensi-
tivity among female participants.

• βTime, Male and βTime, Female represent the marginal utilities of travel time for males and
females, respectively, indicating how much utility decreases with increasing travel time
for each gender.

Final MNL model: The best-performing interaction terms and dummy variable terms
(based on sociodemographic models) are iteratively added to the base model using forward
stepwise method until no further improvement in model fit is observed (Section 3.3.2). This
approach balances model complexity with explanatory power. All variables with p-values
greater than 0.05 are excluded in each step as they are not significant, thus parsimony is
improved. By excluding attributes that do not significantly improve the model, the forward
stepwise approach helps prevent overfitting, enhancing the model’s generalisability to new
data. The final MNL model includes all significant attributes and interaction terms. Each
coefficient is interpreted based on sign and magnitude.

Panel Mixed Logit (PML) Model: To account for the repeated nature of choice observa-
tions per individual and to relax the restrictive assumptions of the Multinomial Logit (MNL)
model, a Panel Mixed Logit (PML) model is estimated. The PML framework allows param-
eters to vary randomly across individuals. Each individual is assumed to have their own
preference structure, represented by random coefficients. A panel-specific random effect is
introduced in the final MNL model utility functions of all non-reference alternatives to al-
low for correlation across repeated choices made by the same respondent. The panel-specific
coefficient for respondent n is modelled as:

β′
n = β0 + σpanel · νn (3.8)
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where β0 is the mean of the distribution and is fixed to zero for identification purposes. The
term σpanel denotes the standard deviation, capturing the extent of unobserved heterogene-
ity, and νn is a random draw from a standard normal distribution, i.e., νn ∼ N (0, 1). This
formulation ensures that each individual n has a unique realization of the utility coefficient
β′

n, reflecting individual-specific preferences.

To ensure robustness in parameter estimation, the model employs Maximum Simulated
Likelihood using Monte Carlo simulation with 1000 Halton draws, which provide better
coverage of the integration space compared to purely random draws.

All models are estimated using Biogeme [bio, 2024], an open-source package that uses Max-
imum Likelihood Estimation (MLE) to estimate choice probabilities. MLE is chosen for its
robustness and widespread use in discrete choice analysis [Ben-Akiva and Bierlaire, 2003].

3.3.2. Goodness of Fit and Evaluation

To evaluate and compare the performance of estimated models, this study adopts a struc-
tured approach centered around three primary goodness-of-fit metrics: Adjusted Rho-square
(ρ̄2), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC).

Adjusted Rho-square is the principal measure used to assess model fit throughout the for-
ward stepwise selection process and in final model selection. It extends the traditional
Rho-square by incorporating a penalty for the number of estimated parameters, thereby dis-
couraging overfitting. A higher ρ̄2 value indicates a better trade-off between explanatory
power and model complexity. In this study, it serves as the primary decision criterion for
including or excluding interaction terms in successive model iterations.

As a secondary selection metric, AIC is consulted when multiple models exhibit similar ρ̄2

values. AIC supports parsimony by balancing fit and complexity. BIC, imposes a stricter
penalty for model complexity, particularly with large sample sizes, and therefore serves as
a conservative cross-validation tool. When AIC and BIC jointly favor a particular model
(i.e., has lower values) among those with similar adjusted Rho-square values, it strengthens
confidence in the model’s generalizability.

Log-likelihood values and Rho-square (ρ2) are also reported for completeness and trans-
parency. However, they are not used as the main criteria for final model selection. Instead,
they help provide context for how much explanatory power is gained relative to a null
model.

In addition to fit indices, model convergence diagnostics are closely monitored to ensure
numerical reliability. Specifically, the final gradient norm is examined as an indicator of
convergence quality. A low gradient norm—typically below 10−3—suggests that the esti-
mation process has reached a stable local maximum of the log-likelihood function. This
metric helps confirm that parameter estimates are robust and the optimization process has
adequately converged.

By prioritizing ρ̄2 while supplementing with AIC, BIC, and convergence checks, this evalu-
ation strategy ensures that the selected models are both statistically valid and behaviourally
interpretable. While fit metrics inform the statistical quality of the model, validation ensures
its predictive strength.
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3.3.3. Validation and Predictive Accuracy

To ensure the robustness and predictive accuracy of the estimated discrete choice models,
a structured validation procedure is implemented. Validation is crucial for demonstrating
that model results are not driven by overfitting for sample-specific characteristics, but are
generalizable to similar real-world contexts.

Following best practices in discrete choice modelling [Gavriilidou, 2024], the full stated pref-
erence dataset is decided to be randomly partitioned into two subsets: 80% for training and
20% for testing. The training set is used to estimate the model parameters, while the test set
serves to evaluate the model’s predictive performance on unseen data.

However, as recommended by Ben-Akiva and Bierlaire [2003], when the total sample size
or specific subgroup sizes fall below threshold (e.g., fewer than 30 observations per sub-
group), data splitting can compromise estimation stability and test power. In such cases,
the full dataset is used for both estimation and evaluation. This ensures reliable parameter
estimation while still allowing meaningful inference.

For each respondent, the probability of selecting each available alternative is computed
based on the utility functions and the estimated model parameters, following the proba-
bility of individual n choosing alternative i under the Multinomial Logit (MNL) model:

P(i) =
eVi

∑j eVj
(3.9)

Where:

• P(i) is the probability that alternative i is chosen,

• Vi is the deterministic utility component of alternative i,

• The denominator sums over all alternatives j in the choice set, ensuring that the prob-
abilities across all options sum to 1.

To compute aggregate mode shares, the predicted probabilities were summed across all in-
dividuals, as in Equation 3.10. For interpretability, this total was normalized by the number
of individuals N and expressed as a percentage. This yields the estimated modal split across
the population. This is operationalized through the following formula:

Ĉj =
1
N

N

∑
i=1

Pij × 100 (3.10)

Where:

• Ĉj is the aggregated probability of alternative j being chosen for the whole target
population,

• Pij is the probability that individual i selects alternative j,

• N is the total number of respondents.
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These are then compared to the actual observed frequencies from the data. To quantify
the model’s aggregate predictive accuracy, the Normalized Absolute Error (NAE) is calcu-
lated:

NAE =
∑J

j=1 |Ĉj − Cj|

∑J
j=1 Cj

(3.11)

Where:

• Cj is the observed frequency of alternative j,

• Ĉj is the predicted frequency of alternative j,

• J is the total number of alternatives.

The NAE provides a direct, interpretable measure of how closely the model replicates ob-
served aggregate behaviour. A lower NAE reflects stronger predictive power and supports
the model’s generalizability.

In contrast to the MNL validation, the Panel Mixed Logit (PML) model validation accounts
for repeated choices made by the same respondent by treating their observations as a panel.
Instead of assuming independent observations, the validation uses Panel Likelihood Tra-
jectory in Biogeme to preserve within-individual correlation. Additionally, it incorporates
random taste heterogeneity by simulating individual-specific coefficients through 1000 Hal-
ton draws. These draws are used to integrate over the distribution of random parameters
during simulation, allowing each respondent to reflect unique preference variations. Pre-
dicted choice probabilities are computed for each task, then aggregated across individuals to
estimate modal shares (Equation 3.9 and 3.10). This approach ensures that both panel struc-
ture and heterogeneity are retained in validation, making the prediction more behaviourally
consistent with the PML assumptions.

In this study, both model fit and predictive accuracy are used as complementary criteria for
final model selection. Model fit indicates how well the model explains the choices observed
in the training data. However, high goodness of fit does not guarantee that the model will
generalize well to new or unseen data. Therefore, predictive accuracy is equally important.
It assesses the model’s external validity and guards against overfitting by measuring how
well the estimated parameters perform when applied beyond the estimation sample. This
dual approach ensures that the final model is not only statistically robust but also practically
reliable for forecasting future behaviour. It aligns with best practices in discrete choice
modelling, where the goal is to balance explanatory power with predictive utility.

3.3.4. Model Application

To evaluate how the estimated discrete choice models translate into population-level be-
haviour, a stochastic simulation framework is used. The model is applied to a synthetic
population of Dutch residents and Schiphol commuters, enabling the computation of pre-
dicted mode shares. The modal split of the Dutch population is first computed to establish
a national benchmark. This is then compared to that of the Schiphol commuter group to
assess the realism and specificity of the simulated predictions for the target population. But
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the modal split for Schiphol commuter population is used in the case study simulation to
see traffic and environmental effects. All simulations are implemented in Python using Bio-
geme’s simulation framework, enabling full reproducibility and scalability to different target
populations.

A synthetic population of 100,000 individuals is generated using demographic and be-
havioural distributions derived from Dutch national statistics [Statistics Netherlands, nd]
and [Royal Schiphol Group, 2023]. Since the SP survey sample is not representative of the
entire commuting population in Schiphol Airport, relying solely on the raw responses would
bias modal split estimates. The synthetic population ensures that the mode choice model
is applied across a demographically realistic sample, enabling the estimation of aggregate
modal shares that are grounded in observed behavioural heterogeneity. Each synthetic re-
spondent is assigned attributes—such as age group, employment status, trip purpose, and
primary travel mode—based on empirically grounded probabilities. For instance, the dis-
tribution of age groups (11% aged 18–24, 8% aged 25–29, etc.) and employment types (e.g.,
56% full-time employed) are designed to match observed proportions in the targeted popu-
lation. These characteristics influence mode choice utilities through interaction terms in the
model. Trips simulated in this setup are fictive trips, 50% of 2 Km and 50% of 4 Km. For each
synthetic individual, weather conditions are also randomly assigned according to realistic
probabilities of rain in the Netherlands (e.g., 40% rainy, 60% sunny) [Statista Research De-
partment, 2023], which influence utility components via weather interaction terms. All these
assumptions are made to get one aggregate modal share that imitates real life conditions and
will be used for simulation in the next step.

Key travel attributes such as cost, travel time, and wait time were fixed based on the levels
presented in the SP survey. This ensured internal validity of the application and avoided
introducing inconsistencies that could arise from extrapolating beyond the original experi-
mental design. Although these trips are hypothetical, the use of realistic distributions and
empirically grounded parameters allows for meaningful behavioural inference.

The predictive mode shares are computed using individual-level choice probabilities, which
are obtained by applying the estimated utility functions to each respondent’s profile. The
final predicted share for each mode is calculated using Equation 3.9 and 3.10.

To complement the main simulation results, sensitivity analyses are conducted to assess the
robustness of mode choice predictions under varying conditions. Specifically, key attributes
such as travel costs and travel distances are systematically adjusted (e.g., increased or de-
creased by fixed percentages), while keeping other parameters fixed, to examine their effect
on predicted mode shares. This analysis provides insights into how sensitive the popula-
tion’s mode choices are to marginal changes in attributes. These insights help identify the
most effective policy levers—such as adjusting pricing or improving travel times. Further-
more, the resulting mode share estimates can serve as inputs for traffic and environmental
scenario analyses in future applications to see the effect of different contexts.

3.4. Traffic and Environmental Evaluation using the Digital
Twin

To evaluate the system-wide impacts of green mobility hubs, this study integrates be-
havioural outputs from discrete choice modelling into a simulation framework. This enables
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the translation of individual-level mode preferences into network-level outcomes, allowing
estimation of key indicators such as vehicle kilometers travelled (VKT), intensity–capacity
(I/C) ratios, and emissions of NOx, and particulate matter (PM).

3.4.1. Rationale for Using the Digital Twin Framework

The TNO in-house Digital Twin [Lohman, 2023] is selected for its technical capacity to simu-
late multimodal travel behaviour and assess macroscopic traffic and environmental impacts.
Digital Twin operates on the Inter Model Broker (IMB) framework, which is designed for
real-time scenario testing, distributed data management, and parallel computing [Lohman,
2023]. This technological foundation enables rapid simulation of ”what-if” scenarios, mak-
ing it possible to assess the potential impacts of policy interventions, such as the implementa-
tion of green mobility hubs, under varying demand, weather, and infrastructure conditions.
This is particularly valuable for evaluating dynamic system-level indicators such as network
flow, intensity–capacity (I/C) ratios, and emission concentrations.

Moreover, the DT is calibrated using real-world OD data and network data from Venom
model [Vervoerregio Amsterdam, 2024] (Base year for this data is 2019 and forecasted year
is 2030). This ensures credible baseline alignment to calculate the change of the indicators.

While the DT framework offers substantial analytical advantages, it also presents several
limitations. The model relies on static assumptions for key variables such as mode avail-
ability, and hub accessibility, which may not fully capture real-world fluctuations or dis-
ruptions—such as vehicle shortages, infrastructure failures, or weather-induced delays. In
this study, Volume Averaging (VA) assignment is used for car, shared electric car, and zero-
emission bus. VA approximates more realistic flow dispersion than All-or-Nothing (AON)
but can obscure localised bottlenecks and may overestimate network resilience. On the other
hand, All-or-Nothing (AON) assignment is used for bike, shared bike, shared e-scooter, and
walking modes, where users are more likely to follow a single, shortest-path route due to
network constraints or habitual behaviour. However, AON concentrates all demand on the
least-cost path, ignoring route diversity and user equilibrium, which may lead to under-
estimation of congestion and overloading on specific links. The combination of these two
assignment methods introduces limitations in calculating precise link-level outcomes under
peak or disrupted conditions.

3.4.2. Simulation Design and OD Reallocation

In this study, the Digital Twin takes car-based commuter flows as input and redistributes
them based on the fixed modal shares derived from the final discrete choice model applica-
tion on a synthetic Schiphol commuter population. All traffic simulations are based on the
morning peak period. Morning peak traffic represents the most critical load on urban trans-
port infrastructure, especially for work-related commuter flows, which are typically more
directional and concentrated. Modelling this period captures the system under its highest
stress, thus yielding more policy-relevant insights.

Car-based commuter flows are calculated from scaling the baseline car OD matrix, by using
a national average commuter share of 55% [PBL Netherlands Environmental Assessment
Agency, nd]. Trips undertaken entirely (from the origin) by private bike are not modelled,
as this remains unchanged and does not influence traffic or emissions. Passengers who
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switch to and from bikes at hubs are modelled. Other private modes (except car and bike)
are excluded due to data unavailability.

Commuter trips are selected as they account for a significant share of car travel to Schiphol,
and shifting this group to green modes is expected to yield significant traffic and environ-
mental benefits.

The generated OD flows were divided into six mode-specific OD matrices at the two main
hubs, based on the modal shares predicted by the MNL model. Each matrix was assigned
to the corresponding mode’s network. Passengers are assumed to leave their green mode
at the destination after use. For modelling simplicity, this process was represented using
four destination hubs. The same predicted modal split was applied across these hubs, as-
suming that travellers drop off their shared mode at the destination and may continue their
onward journey with another shared mode. While this assumption may oversimplify actual
behaviour, it enables tractable and reproducible DT integration.

Two scenarios are simulated: the baseline (car-only access to Schiphol) and the intervention
(two strategically placed mobility hubs). Figure 3.3 shows the location of the two hubs for the
intervention scenario. The hubs are strategically placed on the northern and southern edges
of the Schiphol Airport zone. The northern hub, located near the A4/A9 junction, enables
efficient access to and from Amsterdam and Amstelveen, key residential and employment
centers. The southern hub, situated near Rozenburg and Hoofddorp, serves the growing
suburban corridor of Haarlemmermeer and connects directly to regional roadways such
as the A4, N201, and N520. The DT assigns traffic flows using Static Traffic Assignment
(STA), which distributes trip volumes along shortest paths based on travel time and distance,
calculated using the Bureau of Public Roads (BPR) function. Dijkstra’s algorithm is applied
with a generalized cost function, and the “all-or-nothing” method (for bike, walk, shared
bike, and shared e-scooter) and “volume averaging” (for car, e-car, and ZE bus) assign flows
until convergence. This method, while simplifying congestion dynamics, is appropriate for
average peak-period analyses [Ortúzar and Willumsen, 2011]. Both outbound and inbound
trips between all of the Netherlands and Schiphol Airport are included.

To integrate the mobility hubs, new green modes are implemented in the DT by creating
network structures for all the modes. After generating the new network structures for the
modes, they are populated with relevant link-level data such as travel time, cost, and allowed
turns. As illustrated in Figure 3.4, the base car network feeds into the mobility hub, where
flows are redistributed to six mode-specific networks—walking, cycling, shared bike, shared
e-scooter, shared e-car, and ZE bus—each represented as its own layer with mode-specific
link attributes.

The Mobility Hub setup in DT ensures that all trips arriving at or departing from Schiphol
are routed through one of the two hubs. An example of how the car trips are reallocated
at the hub is shown in Figure 3.5. The diagram illustrates a fictional scenario where in
the intervention scenario, within Schiphol Airport zone 50% trips are allowed to go via car
and 50% trips have to switch to bike at the hub. In the baseline scenario, all 20 trips from
the origin to Schiphol Airport are made directly by car. After the hub is introduced in
the intervention scenario, 50% of these trips—10 out of 20—are assumed to switch to bike
through the hub. This results in a two-leg journey for these 10 trips: car from origin to the
hub, and bike from the hub to the airport. The remaining 10 trips still continue directly to
Schiphol Airport by car. For this study, modal switches at the hubs are implemented using
fixed modal shares from the MNL model applied to a synthetic population. These ratios are

32



3.4. Traffic and Environmental Evaluation using the Digital Twin

Figure 3.3.: Location of the two hubs for intervention scenario

HubBase car network

Walking network

Cycling network

Shared bike network

Shared e–scooter network

Shared e–car network

ZE bus network

Figure 3.4.: Flow from the base car network through a mobility hub to six mode-specific
networks.
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Figure 3.5.: Reallocation of trips at hub location

used to assign the second leg of inbound trips and first leg of outbound trips across green
modes.

This approach offers multiple advantages: it integrates behaviourally grounded mode shares
into a macroscopic traffic simulation, models green mode usage inside Schiphol Airport, and
enables estimation of system-level indicators.

However, limitations remain. By applying fixed, weighted-average modal splits, the model
cannot capture stochastic variation or context-specific switching (e.g., based on exact weather,
trip length, or socio-demographics). While this approach avoids overfitting and remains re-
producible, it overlooks individual-level heterogeneity. Moreover, universal mode availabil-
ity is assumed—shared services are always accessible and unconstrained by capacity. This
necessary simplification, due to the macroscopic resolution, may underestimate real-world
disruptions or shortages. Additionally, hub-to-destination network links do not dynamically
adjust utilities based on real-time conditions; travel times and costs are statically configured.
While simplifying integration, this omits dynamic feedback between network states and
behavioural choices. Future work could enhance realism with stochastic availability, agent-
based integration, or capacity-constrained service modeling.

3.4.3. Traffic Indicators and Emission Estimation

Following the traffic assignment using Static Traffic Assignment (STA), the resulting network
flows are used to compute key system-level indicators: Vehicle Kilometers Travelled (VKT),
intensity–capacity (I/C) ratios, and amount of NOx, and particulate matter (PM). These
indicators form the basis for assessing the impact of the mobility hub intervention.

In DT, air emissions are calculated using the standardized Dutch SRM1 [Smit et al., 2006]
and SRM2 [Smit et al., 2007; Wesseling and Zandveld, 2006] models, which estimate pol-
lutant concentrations based on road type, traffic volume, vehicle type, speed, and conges-
tion levels. However, a key limitation is that these models assume average meteorological
and background conditions for a given year, which may overlook short-term variations in
weather, traffic dynamics, or localized sources of pollution, potentially leading to under- or
overestimation of actual exposure levels. Emission outputs and VKT are evaluated both spa-
tially and numerically. First, results are visualized on all the districts to identify geographic
patterns in traffic and environmental impact. This spatial approach helps uncover localised
improvements or deteriorations in traffic conditions and pollutant concentrations.
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Second, changes in emissions and VKT are analysed in aggregated formats for each of the
districts, breaking down changes at the district level to identify areas with the most signif-
icant shifts. Then a net-change calculation is conducted to evaluate the impact across the
entire study area. These outputs enable both system-wide and place-specific insights into
the effects of hub implementation.

In addition, total emissions and I/C ratios after intervention are compared against estab-
lished benchmarks. For emissions, EU air quality thresholds are used as reference values
to assess whether pollution levels remain within acceptable environmental limits [Euro-
pean Commission, nd]. For traffic efficiency, I/C ratios are evaluated relative to the critical
threshold value of 1.0, which signifies full capacity utilization. This allows for a nuanced in-
terpretation: even if certain links experience increased flows or emissions post-intervention,
they may still fall within acceptable operational or environmental boundaries.

Microscopic dynamics such as agent-level transitions, intra-hub crowding, or intermodal
competition are not captured in this simulation. The Digital Twin also requires significant
computational resources and domain-specific calibration, which may limit its replicability in
other urban contexts without extensive data access and technical expertise. Lastly, while the
platform enables modular scenario testing, the interpretation of results still depends on the
quality and representativeness of input data and assumptions, which introduces a degree of
uncertainty into impact projections.

The Digital Twin offers a scalable, behaviourally informed platform for evaluating large-
scale sustainable mobility interventions. Its Inter Model Broker (IMB) architecture ensures
modularity, reproducibility, and computational transparency. The integration of empirically
estimated modal splits from the MNL model into a macroscopic traffic environment provides
a methodologically robust and policy-relevant framework for understanding the systemic
impacts of green mobility hubs.
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A total of 213 responses are initially collected from the survey. The dataset is then cleaned
by filtering out entries with missing values and inconsistencies. Of the valid responses, 138
participants progressed 100% of the survey, but only 130 of them answered all questions. To
maximize the usable sample size, respondents who completed all 16 choice tasks but had
missing sociodemographic information are also included. This brings the final analytical
sample to 131 respondents. The remaining 82 respondents have less than 50% progress and
40 of them have spent less than 3 minutes on the survey.

The survey was built with detailed categories to understand a wide range of personal at-
tributes, enabling a nuanced analysis of demographic and behavioural patterns. This level
of specificity was intended to identify whether certain groups showed distinct preferences
that might be overlooked using broader classifications.

However, during the analysis, it is found that some categories had very low response counts
(fewer than 30), which could undermine statistical power. To address this, similar categories
are combined—for example, age groups 40–49 and 50–59 are merged, as are employment
types such as part-time and unemployed. These adjustments ensure adequate sample sizes
for meaningful analysis.

Responses marked as “Prefer not to say” and those from participants who indicated they
would never use a mobility hub are excluded from the socio-demographic-based analyses.
In addition, categories such as “Other” gender or education levels like “High School” and
“MBO” are excluded due to insufficient responses.

Nevertheless, certain small groups—such as respondents aged 40-59 and 60+, people who
work part-time or unemployed, those whose primary mode of transport is walking or cate-
gorized as “Other,” and those selecting “Other” and shopping for trip purpose—are retained
in the analysis. These groups are considered essential for understanding diverse mobility
needs and choice behaviours, as their perspectives may significantly differ from those of the
general population and are not represented by other categories.

With these adjustments, all retained categories include more than 30 respondents, except for
the few mentioned above, which are preserved due to their critical analytical value.

4.1. Sample characteristics

The sample characteristics from the dataset are presented in Table 4.1 with the count and per-
centage of each aggregated category. The survey dataset is then compared to the CBS Data
for the Dutch population. Digital mobility skill (DMS) percentages are taken from Garritsen
et al. [2023]. As it is not possible to collect all this Data specifically for Schiphol commuters,
Dutch population is considered as it is a good representation of Schiphol commuters.
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Table 4.1.: Sociodemographic Distribution: Survey Sample vs CBS Population (NL)

Variable Category Count Sample (%) CBS (%)

Gender Male 83 63.8 49.6
Female 43 33.1 50.4
Other 2 1.5 –
Prefer not to say 2 1.5 –

Age Group 18–24 34 26.2 11.0
25–29 37 28.5 8.0
30–39 35 26.9 16.0
40–59 20 15.4 31.0
60+ 4 3.1 34.0
Prefer not to say 0 0.0 –

Education High School 2 1.5 –
MBO 1 0.8 –
Bachelor 48 36.9 –
Master+ 79 60.8 –
None / Not answer 0 0.0 –

Employment Full-time 69 53.1 56.3
Part-time / Unemployed 12 9.2 29.6
Student 48 36.9 20.01
Retired 0 0.0 –
Prefer not to say 1 0.8 –

Trip Purpose Work 96 40.0 20.0
Leisure 70 29.2 33.0
Shopping 19 7.9 22.0
Education 33 13.8 9.0
Other 5 2.1 16.0
Will never use a hub 3 1.3 -

Comfort with Digital modes High 49 37.7 37.0
Medium 56 43.1 47.0
Low 25 19.2 16.0

Shared Mode Usage Frequency Never 45 34.6 -
1–3 times/week 36 27.7 -
More than 3/week 49 37.7 -

Primary Mode Car 16 12.3 40.0
Public Transport 45 34.6 2.0
Bike 64 49.2 35.0
Walk/ Other 5 3.8 23.0
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Gender

The gender distribution among respondents is relatively balanced, with males comprising
approximately 63% of the sample and females around 33% . A small portion either identi-
fied as non-binary or preferred not to disclose their gender. Compared to national figures
reported by the Centraal Bureau voor de Statistiek [Statistics Netherlands, nd], where the
distribution is roughly 50.4% of women and 49.6% of men, the sample over-represents males.
This over-representation may reflect higher male engagement in transport and mobility-
related studies, or a sampling bias through academic or technical channels.

Age

Respondents are categorized into six age brackets: 18–24, 25–29, 30–39, 40–59, 60+ and
”Prefer not to say”. The largest group consists of individuals aged 25–39, accounting for
more than half the sample. In contrast, respondents aged 60+ make up less than 5%, and no
respondents are under 18, which aligns with the legal adult threshold and survey design.

The dominance of the 25–39 age group reflects a highly relevant demographic for mobility
innovation. This group is more likely to adopt app-based solutions and alternative transport
modes such as shared bikes and e-scooters [Van Kuijk et al., 2024]. However, it should be
noted that older adults, who are critical for universal mobility planning, are underrepre-
sented compared to national CBS [Statistics Netherlands, nd] age statistics. For context, over
34% of the Dutch population is aged 60 and above. This skew should be considered when
generalizing results to the national level.

Education Level

The sample is notably highly educated. Almost all of the respondents hold a bachelor’s
or master’s degree. In contrast, high school and MBO has just 2 and 1 responses. So
these responses are removed from the analysis. According to CBS classifications, 34% of the
working-age population in the Netherlands holds a higher education degree (HBO/WO),
which means the survey sample over-represents individuals with advanced education.

This over-representation likely stems from the online distribution of the survey through
academic and professional networks, which tends to attract more educated respondents.
Nonetheless, this demographic is likely to be early adopters of smart mobility systems,
making their preferences relevant for forward-looking infrastructure planning. However, the
over-representation should be considered while drawing any conclusion from the results.

Employment Status

In terms of employment, most respondents are either employed full-time (over 50%) or cur-
rently studying (around 35%). A small portion reported being unemployed or part-time
workers. This distribution reflects an economically active and mobile population segment.
Given that students and working professionals often form the majority of daily commuters,
their travel behaviour is central to understanding peak hour loads and preferences for mul-
timodal connectivity.
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Table 4.2.: Chi-square test results for sociodemographic groups
Variable Chi-square DF Critical Value P value
Age group 2426.489 4 9.488 0.00000
Gender 213.557 1 3.841 2.30 × 10−48

Purpose 1800.656 4 9.488 0.00000
Primary Mode 2304.855 5 11.070 0.00000
Digital Comfort 796.034 2 5.991 1.39 × 10−173

Trip Purpose

When asked about the primary reason they will use mobility hubs, a majority of respon-
dents cited commuting to work or school, followed by leisure and shopping. Only a small
percentage selected “will never use a hub,” indicating a strong relevance of the mobility
hub context for functional as well as discretionary trips. This balance confirms that mobility
hubs must serve both routine and occasional travel needs effectively.

Primary Mode of Transport

Nearly half of the respondents (49.2%) reported using the bicycle as their primary mode
of transport, followed by public transport users at 34.6%. In contrast, only 12.3% of re-
spondents primarily relied on cars, despite cars typically being dominant in broader travel
patterns. A small minority (3.8%) indicated walking or other modes as their primary means
of travel. Compared to CBS, bike and PT is overrepresented and other modes are dramati-
cally underrepresented. This skew toward active and public transport modes suggests that
the sample is relatively sustainability-oriented, which could influence overall willingness to
adopt green mobility hub services. It may also partially reflect the recruitment method or
urban context of the sample.

Experience with Shared Mobility

Respondents are also asked about their use of shared mobility options. A significant share
reported using shared mobility at least once per month. This finding confirms a familiarity
and comfort with shared modes, especially among younger and more digitally confident
users. It also indicates readiness for further integration of shared services within mobility
hubs.

Comfort with Digital Transport Apps

Digital comfort — the self-assessed ease with using digital devices and apps — is high
among the sample. Over 80% of respondents rated themselves as having medium to high
comfort.

All Chi-square statistics presented in Table 4.2 exceed their respective critical values by a
large margin, and all associated p-values are far below the 0.05 significance threshold. This
indicates that the sociodemographic composition of the survey sample is statistically differ-
ent from the reference population for every variable tested. These differences suggest that
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the sample may be skewed towards younger, highly educated individuals, which could limit
the generalizability of the findings—particularly to older or less digitally engaged popula-
tions. This skew is likely due to the survey’s distribution primarily within university settings
and among young professionals in the Randstad region.

While this discrepancy raises concerns about representativeness, it may not necessarily un-
dermine the study’s value. It closely reflects the target users of emerging urban mobility
systems—young, digitally engaged individuals. This makes it well-suited for analysing fu-
ture trends and behaviour within early-adopting segments. Therefore, although the dataset
may not reflect the current population structure, it remains relevant for exploring emerging
trends. Nonetheless, the potential for bias in model predictions when applied to the gen-
eral population should not be overlooked. These demographic differences must be taken
into account when interpreting the results to ensure accurate and contextually appropriate
conclusions.

4.2. Mode Choice of the Sample Across Demographics and
Contexts

Understanding how different socio-demographic groups choose their travel modes provides
crucial insights into mobility behaviour. Table 4.3 shows the percentage of each mode get-
ting selected by each respondent groups. For overall shares, ZE bus and private bikes are
the most chosen options. Shared e-car has the third most responses showcasing growing
preference for shared motorized modes, while walk and shared e-scooter are the least pop-
ular options. Effect of these socio-demographics on mode choice is discussed below. Some
combination effects are also examined. These combinations are selected based on their pro-
nounced behavioural contrasts, policy relevance, and alignment with existing gender and
equity concerns in sustainable transport. These trends not only stand out in the data but
also highlight user vulnerabilities and service design needs (e.g., weather, safety), especially
for female or older commuters.

Gender

Female respondents show greater use of zero emission buses (43%) and private bikes (25%),
than men whereas males show higher reliance on shared e-cars (22%) than women and a
slightly more diversified modal profile overall. This could be attributed to perceived safety,
physical convenience, or broader social norms.

Age

Modal preferences show distinct variations across age categories. Younger age groups
(18–29) exhibit a higher preference for shared and digitally enabled modes such as e-scooters
and shared bikes, while older groups tend to rely more on zero emission Buses. Private bike
usage remains relatively consistent across all groups, while walking sees a rise among those
aged 40 and above. These shifts likely reflect broader lifestyle transitions and comfort with
newer mobility options, especially those requiring digital interaction.
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Table 4.3.: Combined Modal Split by Socio-Demographic Groups, Behavioural Factors, Over-
all Share, Weather and Distance Effects (%)

Group/Condition Walk(%) Private Bike(%) Shared Bike(%) Shared E-scooter(%) Shared E-car(%) ZE Bus(%)
Overall Share and Effects
Overall Share 5 21 11 5 19 38
Sunny Weather 8 31 18 9 12 22
Rainy Weather 3 11 5 2 25 55
Short Trip (2 km) 9 24 11 6 15 34
Long Trip (4 km) 1 18 11 5 22 43
Gender
Male 5 19 11 6 22 36
Female 5 25 11 4 12 43
Age Group
Age 18–24 3 25 13 6 24 29
Age 25–29 5 18 13 8 16 41
Age 30–39 4 17 10 4 23 43
Age 40–59 11 27 9 1 11 41
Age 60+ 11 25 6 5 9 44
Education
Bachelor 4 21 12 7 21 36
Master+ 7 20 11 5 16 40
Employment Status
Full-time Employed 6 20 11 5 17 41
Student 3 23 12 6 22 34
Part-time/Unemployed 11 19 14 4 16 36
Digital Comfort
High 3 19 10 5 19 43
Medium 6 24 12 5 20 32
Low 8 18 11 6 15 42
Trip Purpose
Work 6 24 9 5 17 39
Leisure 6 25 11 6 19 33
Shopping 4 22 9 5 21 39
Education 3 24 12 4 20 36
Other 14 21 20 4 22 19
Primary Mode
Biking 5 26 15 6 17 31
Public Transport 6 17 8 4 20 45
Car (Driver + Passenger) 7 20 3 4 19 45
Walk/Other 1 14 12 4 22 49
Shared Mobility Frequency
Never 4 20 12 6 18 39
1–3 times 5 17 11 5 20 42
More than 3 times 6 24 11 5 18 35

Education

Both Bachelor’s and Master’s+ degree holders display a fairly even spread in modal share,
with ZE bus dominating for both groups (36–40%). The share for other modes for both
groups remain quite similar.

Employment Status

Employment status is also a strong differentiator. Students select private bike and shared e-
car more than other groups and part-time/unemployed group show higher usage of shared
bikes and walking, likely reflecting cost-consciousness or less rigid schedules. Full-time
workers show a higher preference for ZE bus. These patterns suggest practical constraints
and lifestyle rhythms influence mode choice substantially.
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Comfort with Digital Modes

Users with higher digital comfort are more inclined to choose shared e-modes like shared
cars than others. But people who are less comfortable with digital modes also show almost
similar interests in shared bike and e-scooter. These patterns prove even people who are not
fully comfortable with digital mode are also interested in using shared digital modes at the
hubs.

Trip Purpose

Trip purpose significantly shapes modal choice. Commuting to work is associated with
higher private bike (24%) and ZE bus (39%) usage, while leisure trips also favor active modes
such as private bikes (25%). Shopping trips see moderate use of shared e-cars (21%) and
buses (39%), reflecting practical transport needs. Education-related trips favor buses (36%)
and private bikes (24%), underscoring the importance of affordable, sustainable options for
students. Notably, ’other’ trips show a lower reliance on ZE buses (19%) and higher shared
e-car use (22%), suggesting a degree of flexibility and mode substitution depending on the
nature of the trip.

For commuting to work, users may prioritize reliability and directness, which makes pri-
vate bikes attractive for short distances and ZE buses for longer or more structured routes.
Leisure trips, being more flexible in schedule and distance, can tolerate active modes like
walking or biking, particularly among health- or cost-conscious users. Shopping trips of-
ten involve carrying goods, making shared e-cars and buses more practical than active
modes. Similarly, education-related trips tend to follow routine schedules and are cost-
sensitive—explaining higher bus usage among students, and some bike reliance where dis-
tances are manageable.

The “other” category likely includes more irregular or spontaneous travel, which may in-
volve longer distances or a need for convenience (e.g., family visits, medical appointments).
This could explain higher e-car use (for comfort and flexibility) and lower ZE bus use, as
users in this category may be less tied to fixed transit schedules or routes.

Primary Mode of Transport

The stated choice data reveals mixed pattern between participants’ primary travel modes
and the modes they selected during the survey. Individuals who primarily bike maintained
consistency, with 26% choosing the private bike and 15% opting for the shared bike. Car
users (driver or passenger), by contrast, shifted their preferences significantly: with a sub-
stantial 45% selected the Zero-Emission (ZE) bus. This indicates openness to public transport
options when presented with structured choices. Similarly, individuals whose main mode is
public transport also gravitated toward the ZE bus (45%) in the stated preference tasks, reaf-
firming mode familiarity. Interestingly, respondents who indicated “Walk/Other” as their
primary mode showed the highest share for ZE bus (49%) and relatively low selection of
shared modes. This likely reflects accessibility constraints or lack of private vehicle owner-
ship. Overall, the data suggest that while many participants exhibit inertia toward familiar
modes, the ZE bus—attracted significant interest across user groups.
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Shared Transport Frequency

Unsurprisingly, shared transport familiarity shaped preferences for specific services. Re-
spondents who reported using shared modes more than three times per week leaned more
toward private bike (24%), but interestingly, even this group maintained a strong prefer-
ence for ZE bus (35%). Infrequent or non-users of shared transport modes still exhibited
substantial interest in bus services (up to 39%).

Among respondents who reported using shared mobility more than three times per week,
a notable 35% still chose mostly ZE bus and private bikes in the stated choice tasks. This
reflects that even frequent shared mode users may favor reliable, protected, or cost-effective
options like ZE bus when presented with multiple alternatives under controlled trade-offs.
Factors such as perceived comfort, weather sensitivity, and cost-effectiveness during hypo-
thetical scenarios could drive this shift. Rather than implying avoidance, the result suggests
that stated preference experiments successfully elicit respondents’ latent preferences when
all options are equally available and attributes are explicitly stated—conditions that are often
not guaranteed in real-world situations.

Weather

Weather conditions demonstrated a notable influence on modal preferences. During rainy
conditions, use of ZE buses surged to 55%, displacing modes such as shared bikes and e-
scooters, which rely heavily on good weather. In contrast, on sunny days, private bikes (31%)
and shared bikes (18%) gained significant modal share. This weather-dependent modal shift
reflects the sensitivity of open and active transport modes to environmental conditions. The
consistent decrease in e-scooter, and walk shares under rain indicates that weather-resilient
infrastructure and vehicle access (e.g., covered bike lanes or e-car promotion) can play a
decisive role in maintaining mobility during adverse conditions.

Distance

The most immediate trend observed is the significant increase in walking share for short
trips—from just 1% at 4 km to 9% at 2 km. This suggests that walking becomes a viable and
appealing option only when the distance is minimal. Similarly, private bike usage increases
from 18% to 24% for shorter trips, reinforcing that active travel modes thrive in proximity-
based contexts.

Interestingly, shared bikes maintain a consistent share (11%) across both distances. This
consistency implies that shared bikes are perceived as equally suitable for both short and
long distances, potentially due to their ease of access and mechanical support which lowers
physical effort compared to private bikes.

In contrast, shared e-cars and ZE buses exhibit a marked increase in modal share for longer
trips. Shared e-cars rise from 15% (short) to 22% (long), while the use of ZE Buses increases
from 34% to 43%, making it the dominant mode for 4 km trips. These shifts signal that as
distance increases, comfort and convenience outweigh cost or environmental considerations,
nudging users toward motorized, enclosed modes.
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The low but slightly rising use of shared e-scooters (from 5% to 6%) suggests niche ap-
peal, potentially for users seeking a balance between convenience and speed over moderate
distances.

Table 4.4.: Chi-square Test Results for Association Between Socio-demographic Factors and
Mode Choice

Factor Chi-square Statistic p-value
Gender 76.11 <0.001
Age Group 124.80 <0.001
Education 76.65 <0.001
Employment Status 94.33 <0.001
Trip Purpose 174.43 <0.001
Shared Mobility Frequency 17.58 0.0624
Primary Mode 135.82 <0.001
Digital Comfort 36.26 <0.001

The results of the Chi-square tests, summarised in Table 4.4, provide statistical evidence
regarding the association between socio-demographic and mode choice. Most factors, in-
cluding gender, age, education, employment status, trip purpose, primary mode of trans-
port, and digital comfort, demonstrate statistically significant associations with mode choice,
as indicated by p-values below 0.05. This suggests that transport preferences vary mean-
ingfully across different population groups, highlighting the importance of accounting for
socio-demographic heterogeneity in the discrete choice modelling process.

Interestingly, shared mobility frequency did not show a statistically significant association
with mode choice at the 95% confidence level. This implies that prior experience with shared
mobility services does not strongly predict stated transport preferences within this sample.
These findings support the inclusion of interaction terms between socio-demographics and
mode attributes to capture behavioural variability in mode choice decisions, particularly in
the context of designing mobility hubs.

Gender-Based Weather Effects

As shown in Figure 4.1, under sunny conditions both male and female participants displayed
a stronger inclination toward active and shared micromobility modes. However, when the
weather shifts to rainy conditions, both genders significantly reduce their reliance on ex-
posed or active modes. ZE bus usage becomes dominant, particularly for females, with a
striking 61% modal share compared to 51% for males. This indicates that females are more
sensitive to adverse weather and tend to prefer enclosed, reliable options. shared e-cars also
gain traction in rainy conditions, capturing 30% of male and 17% of female trips, likely due
to their perceived protection and comfort.

Interestingly, micromobility modes like shared e-scooters and shared bikes see a sharp de-
cline across both genders under rain. This demonstrates the importance of weather resilience
in shared mobility offerings, such as sheltered waiting areas or incentivized mode switch-
ing.
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Figure 4.1.: Weather effect on modal choice by gender.

Age-Based Differences in Travel Time

Mode choice varies by age group for short (2 km) and long (4 km) trips (Figure 4.2). For
short trips, the most popular mode across all age groups is the ZE bus, ranging from 29%
(18–24) to 41% (25–29), suggesting that public transport remains a preferred choice for short
commutes. Private bike use is also significant, particularly among the 25–29 and 30–39
age groups (both around 20%), reflecting a younger demographic’s preference for active,
flexible modes. For long trips (right chart), there is a clear shift toward greater ZE bus
use, particularly among older age groups, peaking at 53% for those aged 60+, reflecting a
reliance on affordable, accessible transport for longer distances. Private bike use declines
for longer trips, particularly among older groups, consistent with the physical limitations or
comfort preferences of older individuals. Shared e-car use remains substantial across all age
groups (14% to 25%), suggesting that shared car services are a viable alternative for longer
distances, especially among younger adults (18–39). Walking is virtually negligible for long
trips, while shared bike and e-scooter use declines as trip distance increases.

Figure 4.2.: Modal choice by age group under short vs. long travel time.
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4.3. Model Building

To build the multinomial logit (MNL) and panel-based models, Biogeme is selected for its
efficiency in working with utility functions and its compatibility with survey data structured
as repeated choices.

4.3.1. Base MNL Model

The base model employed in this analysis is a multinomial logit (MNL) model. It serves as
the foundational model in this study, providing a benchmark for evaluating the impact of
additional sociodemographic and contextual interaction terms included in extended models.
The base model’s utility function for each mode includes the alternative specific constants
and mode attributes. ZE bus is considered as reference alternative. So the utility functions
for base model are:

Vwalk = ASCwalk + βtravel time · TT0

Vbike = ASCbike + βtravel time · TT1

Vshared bike = ASCshared bike + βtravel time · TT2 + βcost · TC2

Vshared escooter = ASCshared escooter + βtravel time · TT3 + βcost · TC3

Vshared ecar = ASCshared ecar + βtravel time · TT4 + βcost · TC4

Vze bus = βtravel time · TT5 + βcost · TC5 + βwait time bus · WT5

Where,

TT0, TT1, TT2, TT3, TT4, TT5 = Travel time for walk, private bike, shared bike,
shared e-scooter, shared e-car, and zero-emission bus

TC2, TC3, TC4, TC5 = Travel cost for shared bike, shared e-scooter,
shared e-car, and zero-emission bus

Table 4.5.: Estimation Results for the Base Model

Parameter Value Rob. Std Err Rob. t-test Rob. p-value

ASC bike -0.077 0.172 -0.451 0.652
ASC shared bike -1.016 0.175 -5.795 6.83 × 10−9

ASC shared ecar -1.538 0.167 -9.205 < 0.0001
ASC shared escooter -2.278 0.177 -12.848 < 0.0001
ASC walk -0.117 0.355 -0.329 0.742
βcost -0.480 0.025 -19.337 < 0.0001
βtravel time -0.119 0.015 -8.214 2.22 × 10−16

βwait time (bus) -0.091 0.019 -4.676 2.93 × 10−6

The code for base model is give in Appendix C. The model includes 8 estimated parameters.
It achieved a final log-likelihood of -2613.762, with a Rho-square of 0.266 and a Rho-square-
bar of 0.264, indicating low explanatory power. The likelihood ratio test yielded a value of
1892.634, confirming the model’s overall significance.
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Table 4.6.: Model Fit Statistics for the Base Model

Statistic Value

Number of estimated parameters 8
Sample size 131
Initial log-likelihood -3560.079
Final log-likelihood -2613.762
Log-likelihood ratio 1892.634
Rho-square 0.266
Rho-square-bar 0.264
Akaike Information Criterion 5243.524
Bayesian Information Criterion 5288.707
Final gradient norm 0.060

Among the alternative-specific constants (ASCs), all modes except walking and biking are
statistically significant and negative, implying a lower intrinsic preference for shared modes
compared to the base alternative ZE bus. Specifically, shared e-scooter and shared e-car
alternatives have the most negative constants, suggesting these modes require higher utility
from other attributes to be chosen.

The estimated coefficients for key travel attributes are all negative and statistically signifi-
cant, aligning with theoretical expectations. The travel cost coefficient ( βcost =-0.480) has
the largest magnitude, suggesting that cost is the most influential deterrent similar to the
existing literature [Torabi et al., 2023]. Travel time also has a significant effect ( βtravel time =-
0.119), reinforcing the sensitivity of users to time-based burdens. The waiting time for buses
is also negatively valued ( βwait time bus =-0.091), with a smaller magnitude. In the base
model, all of the model parameters without the ASCs for bike and walk, have a p-value
lower than 5%, meaning that their effect observed in the dataset is statistically significant.

Overall, the base model confirms that minimizing cost and time-related burdens significantly
increases the likelihood of selecting shared mobility options. The results highlight the im-
portance of improving operational efficiency and affordability to promote mode shift.

4.3.2. Socio-demographic Models

Building on the base model introduced earlier, the modelling effort is expanded by incor-
porating sociodemographic interactions to assess their explanatory value. To capture het-
erogeneity across user groups, additional models are estimated by introducing sociodemo-
graphic variables and their interactions with mode attributes.

Each model is evaluated using the adjusted Rho-square bar statistic, due to its power to
explain model fit and complexity. Table 4.7 presents all the model specification for each
sociodemographic or contextual factor.

Weather model has the highest Rho square bar value, indicating that weather-related effects
have a strong impact on travel behaviour. Other notable improvements over the base model
came from interactions with age, employment status and digital comfort.
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Table 4.7.: Socio-demographic Models Ranked by Rho-square bar

Model Specification Rho-square-bar

Weather Both time and cost interactions 0.3009
Weather Travel time interactions 0.2997
Age Both time and cost interactions 0.2761
Weather Travel cost interactions 0.2757
Employment Both time and cost interactions 0.2725
Comfort with Digital modes Both time and cost interactions 0.2711
Comfort with Digital modes Travel time interactions 0.2708
PrimaryMode Travel time interactions 0.2707
PrimaryMode Both time and cost interactions 0.2703
Frequency Travel time interactions 0.2695
Base model Only ASC and mode attributes 0.2694
Comfort with Digital modes Travel cost interactions 0.2693
Frequency Both time and cost interactions 0.2692
Weather As dummy variable 0.2691
PrimaryMode Travel cost interactions 0.2691
Frequency Travel cost interactions 0.2690
Frequency As dummy variable 0.2689
Comfort with Digital modes As dummy variable 0.2689
PrimaryMode As dummy variable 0.2686
Purpose As dummy variable 0.2684
Age As dummy variable 0.2683
Education Both time and cost interactions 0.2665
Gender Both time and cost interactions 0.2662
Education Travel time interactions 0.2659
Gender Travel cost interactions 0.2657
Gender Travel time interactions 0.2656
Gender As dummy variable 0.2652
Education Travel cost interactions 0.2651
Employment Travel cost interactions 0.2628
Purpose Travel cost interactions 0.2626
Purpose Travel time interactions 0.2584
Purpose Both time and cost interactions 0.2538
Age Travel time interactions 0.2153
Employment Travel time interactions 0.2106
Age Travel cost interactions 0.1991
Education As dummy variable 0.1323
Employment As dummy variable 0.1227
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4.3.3. Final MNL Model

The final model is constructed by combining the most influential variables from the above
analysis one by one and testing for improvement. Only the combinations that improved
the previous models are kept. The best possible combination based on Rho square bar
includes:

• Age

• Weather scenario

• Comfort with Digital modes

• Employment status

Let Vi, TTi, TCi be the utility, travel time and travel cost of mode i, where: i = 0, 1, 2, 3, 4, 5:
is Walk, Private bike, Shared bike, Shared e-scooter, Shared e-car and Zero-emission bus

The utility functions are defined as:

V0 = WeatherBlock(TT0, TC0) + AgeBlock(TT0, TC0) + EmploymentBlock(TT0, TC0)

+ComfortBlock(TT0, TC0)

V1 = WeatherBlock(TT1, TC1) + AgeBlock(TT1, TC1) + EmploymentBlock(TT1, TC1)

+ComfortBlock(TT1, TC1)

V2 = ASCshared bike + WeatherBlock(TT2, TC2) + AgeBlock(TT2, TC2) + EmploymentBlock(TT2, TC2)

+ComfortBlock(TT2, TC2)

V3 = ASCshared escooter + WeatherBlock(TT3, TC3) + AgeBlock(TT3, TC3) + EmploymentBlock(TT3, TC3)

+ComfortBlock(TT3, TC3)

V4 = ASCshared ecar + WeatherBlock(TT4, TC4) + AgeBlock(TT4, TC4) + EmploymentBlock(TT4, TC4)

+ComfortBlock(TT4, TC4)

V5 = WeatherBlock(TT5, TC5) + AgeBlock(TT5, TC5) + EmploymentBlock(TT5, TC5)

+βwait bus · WT5 + ComfortBlock(TT5, TC5)

Weather Block(TT, TC): Captures travel time and cost sensitivities under different weather
scenarios:

WeatherBlock(TT, TC) = βtt, rainy ·TT · rainy+ βcost, rainy ·TC · rainy+ βcost, sunny ·TC · sunny
(4.1)

49



4. Results

Age Block(TT, TC): Represents interaction of travel time and cost with age groups.

AgeBlock(TT, TC) = βtt, age18-24 ·TT ·Age18-24 + βtt, age25-29 ·TT ·Age25-29 + βtt, age30-39 ·TT ·Age30-39

(4.2)

Comfort Block(TT, TC): Interaction of travel time and cost with digital comfort level.

ComfortBlock(TT, TC) = βtt, comfort-high · TT ·ComfortHigh + βtt, comfort-mid · TT ·ComfortMid

(4.3)

Employment Block(TT, TC): Captures the effect of employment status on travel time and
cost sensitivity.

EmploymentBlock(TT, TC) = βtt, emp-fulltime · TT · EmpFullTime

+ βtt, emp-student · TT · EmpStudent

+ βcost, emp-student · TC · EmpStudent (4.4)

The code for final MNL model is given in Appendix D. The final MNL model includes 15
parameters based on a cleaned dataset of 126 respondents. The estimation yielded the value
of parameters given in 4.8.

Table 4.8.: Final MNL Model Estimation Results

Parameter Value Rob. Std. Err. Rob. t-test Rob. p-value

ASC shared bike -1.02 0.09 -11.73 < 10−10

ASC shared ecar -1.99 0.14 -14.26 < 10−10

ASC shared escooter -2.36 0.12 -20.07 < 10−10

beta cost emp student -0.22 0.06 -3.74 1.88 × 10−4

beta cost weather rainy -0.37 0.03 -11.34 < 10−10

beta cost weather sunny -0.54 0.05 -9.99 < 10−10

beta travel time age 18 24 -0.05 0.01 -3.75 1.78 × 10−4

beta travel time age 25 29 -0.04 0.01 -3.72 1.97 × 10−4

beta travel time age 30 39 -0.08 0.01 -5.74 9.72 × 10−9

beta tt digital comfort high -0.04 0.01 -4.89 9.93 × 10−7

beta tt digital comfort mid -0.02 0.01 -2.32 2.04 × 10−2

beta tt emp fulltime -0.04 0.01 -5.50 3.83 × 10−8

beta tt emp student -0.06 0.01 -4.36 1.31 × 10−5

beta tt weather rainy -0.15 0.02 -6.28 3.38 × 10−10

beta wait time bus -0.12 0.01 -10.31 < 10−10
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Table 4.9.: Final MNL Model Fit Statistics

Statistic Value

Number of estimated parameters 15
Sample size 126
Excluded observations 0
Initial log likelihood −3425.49
Final log likelihood −2351.594
Likelihood ratio test (vs. init model) 2147.791
Rho-square (init model) 0.314
Adjusted Rho-square 0.309
Akaike Information Criterion (AIC) 4733.189
Bayesian Information Criterion (BIC) 4817.322
Final gradient norm 2.1948 × 10−3

The values in Table 4.9 reflect a substantial improvement over the base model, confirming
the added explanatory value of incorporating individual-level and contextual interactions. It
achieved a final log-likelihood of –2351.59, which marks a substantial improvement over the
initial log-likelihood of –3425.49. This difference is confirmed by a highly significant likeli-
hood ratio test value of 2147.79, validating that the extended specification adds significant
explanatory power over the base model.

The Rho-square value of 0.314 and the adjusted Rho-square-bar of 0.309 indicate a good
model fit and improvement over the base model (Rho-square-bar of 0.264). These metrics
demonstrate that the model successfully captures meaningful variation in mode choice be-
haviour [Pham, 2023; Torabi et al., 2023]. Moreover, the Akaike Information Criterion (AIC)
and Bayesian Information Criterion (BIC) values of 4733.19 and 4817.32, respectively, reflect
a better balance between model complexity and explanatory power compared to simpler
alternatives.

The Alternative Specific Constants (ASCs) indicate baseline preferences for different modes
relative to a reference alternative (ZE bus). The ASCs for shared modes such as e-cars, shared
bikes and e-scooters remain significantly negative, reaffirming lower intrinsic preferences for
these modes unless compensated by strong attribute performance (e.g., shorter travel time
or lower cost). Shared e-scooter has the most negative value, indicating lowest intrinsic
preference towards this mode.

Students exhibit strong cost aversion, as expected due to lower disposable income. They
have constrained budgets and are thus more sensitive to monetary costs associated with
travel. This effect is critical in the context of shared mobility and zero-emission modes,
where pricing policies can significantly influence uptake.

Weather-related parameters show expected and statistically significant effects. The coeffi-
cient for travel cost in sunny weather (βcost,weather.sunny) is -0.537, which is more negative
than (βcost,weather.rainy), indicating that travel cost sensitivity increases during sunny condi-
tions. More negative value indicates that an increase in travel cost leads to more reduction in
the utility of transport modes when it is sunny. This indicates that during unfavorable rainy
conditions, individuals place more emphasis on other attributes such as comfort, protection,
or convenience, and become less cost-conscious. Individuals are more price-sensitive under
favorable weather conditions, their willingness to pay increases during rainy weather, likely
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reflecting a higher priority given to comfort or protection from adverse conditions over cost
considerations.

Age-based travel time sensitivities also reveal interesting patterns. Younger travelers (18–39)
have negative travel time coefficients, suggesting they are more time-sensitive. Notably,
individuals aged 30–39 exhibit the highest sensitivity, likely due to increased time constraints
from employment and family obligations.

Individuals with higher digital comfort are more time-sensitive. Higher digital comfort
enhances individuals’ ability to access, navigate, and utilize shared mobility services, apps,
and real-time information. So with easier access to more options, they exhibit increased
travel time sensitivity. They are more likely to actively seek faster, optimized travel options,
often leveraging digital tools for decision-making.

Employment status also presents important insights. The travel time sensitivity of students
and fully employed individuals, is significant compared to other groups. This highlights the
constraints imposed by structured schedules or fixed commitments. Students and employ-
ees often operate under rigid timeframes, making punctuality critical, while retirees may
prioritize convenience to maintain independence and routine. In contrast, part-time work-
ers and unemployed individuals may have greater schedule flexibility, resulting in lower
urgency and reduced travel time sensitivity.

The model results indicate disutility associated with travel time during rainy conditions, as
captured by the parameter βtt, weather rainy = −0.149. This negative coefficient implies that
individuals are significantly more averse to longer travel times when it is raining. Rain likely
amplifies discomfort and inconvenience during travel, particularly for active or partially
exposed modes such as walking or cycling. As a result, rainy conditions could trigger a
behavioural shift towards faster, more protected options like shared electric cars or public
transport. From a policy perspective, this highlights the value of adaptive mobility services
that can respond to real-time weather changes—for example, by offering dynamic pricing,
upgraded comfort, or alternative mode suggestions during adverse conditions.

Finally, the coefficient for bus wait time (βwait.time.bus = −0.12) is large in magnitude, neg-
ative, and significant, confirming the well-established aversion to waiting times in public
transport choices.

The Value of Time (VoT) represents the monetary value travellers assign to saving time, often
expressed in euros per minute or hour. In this study, VoT is calculated using the negative
ratio of the weighted average travel time coefficient to the weighted average cost coefficient
from the final Multinomial Logit model:

VoT = −
(

βtime (weighted avg)

βcost (weighted avg)

)
= −

(
−0.0596
−0.4067

)
≈ 0.146 €/min

This corresponds to approximately €8.8/hour, which is remarkably close to the Dutch na-
tional benchmark of €9/hour for car users [Kouwenhoven et al., 2014]. This proximity sug-
gests that the model accurately captures realistic travel behaviour in terms of time–money
trade-offs. The alignment between estimated and benchmark VoT values adds external va-
lidity to the stated preference data and supports the credibility of cost and time coefficients
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used in scenario simulations. Consequently, policy evaluations and pricing strategies de-
rived from this model are likely to yield behaviourally plausible and economically grounded
outcomes.

4.3.4. Panel Mixed Logit Model

To account for the repeated choice behaviour of individual respondents and capture unob-
served heterogeneity across decision-makers, a Panel Mixed Logit (PML) model is estimated.
This model builds on the Multinomial Logit (MNL) foundation by incorporating a random
parameter—specifically, a normally distributed random coefficient. The panel model aim to
relax the independence from irrelevant alternatives (IIA) assumption, which is a limitation
of the standard Multinomial Logit (MNL) framework.

This model is tested using 1000 of Monte Carlo draws to approximate the simulated likeli-
hood function. Halton sequences are used. The estimation process converged successfully
after a reasonable number of iterations. The model fit statistics are summarized in Table 4.10
and the estimation results are presented in Table 4.11.

The model specification includes 13 estimated parameters and was estimated on a dataset
comprising 2,016 observations from 126 individuals. The model demonstrates strong statisti-
cal fit. The initial log-likelihood was −3422.762, which improved substantially to a final log-
likelihood of −2312.186. This improvement yields a likelihood ratio test statistic of 2221.153,
indicating that the model provides a significantly better fit than a null model. The ρ2 value
is 0.324, while the adjusted ρ̄2 is 0.321, both indicating an acceptable level of explanatory
power for behavioural modeling purposes. The convergence quality is demonstrated by a
final gradient norm of 0.4437, and the relative gradient reached 1.20 × 10−4, which met the
specified convergence threshold.

Table 4.10.: Model Fit Statistics for Panel Mixed Logit Model (1000 Draws)

Statistic Value

Number of estimated parameters 13
Sample size 126
Initial log likelihood -3422.762
Final log likelihood -2312.186
Likelihood ratio test 2221.153
Rho-square 0.324
Adjusted Rho-square 0.321
Akaike Information Criterion (AIC) 4650.371
Bayesian Information Criterion (BIC) 4687.243
Final gradient norm 0.4437
Number of draws 1000
Relative gradient 0.00012017693253012157

Among the alternative specific constants (ASCs), shared mobility modes continue to show
negative coefficients, indicating lower baseline preference compared to the reference alter-
native (Zero Emission Bus). (σpanel = 2.05) is also significant. This indicates that the cost
parameter varies across individuals, reflecting heterogeneity in sensitivity within the sam-
ple. The significance of this parameter supports the inclusion of random coefficients to
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Table 4.11.: Estimation Results for PML Model

Parameter Value Rob. Std. Err. Rob. t-test Rob. p-value

ASC shared bike -0.97 0.17 -5.85 4.84 × 10−9

ASC shared ecar -2.23 0.25 -8.92 < 10−10

ASC shared escooter -2.42 0.21 -11.70 < 10−10

Sigma panel 2.05 0.22 9.15 < 10−10

beta cost emp student -0.23 0.09 -2.48 0.01
beta cost weather rainy -0.38 0.04 -8.97 < 10−10

beta cost weather sunny -0.55 0.08 -6.64 3.06 × 10−11

beta travel time age 25 29 -0.04 0.02 -1.87 0.06
beta travel time age 30 39 -0.09 0.03 -2.84 0.00
beta tt emp fulltime -0.10 0.02 -5.47 4.49 × 10−8

beta tt emp student -0.14 0.02 -7.53 5.06 × 10−14

beta tt weather rainy -0.17 0.04 -4.39 1.13 × 10−5

beta wait time bus -0.13 0.02 -6.62 3.71 × 10−11

capture unobserved taste variation, whereas the use of a panel specification is justified by
the repeated choices provided by each respondent. In practice, this means that different in-
dividuals perceive the disutility to different extents, and the panel mixed logit model accom-
modates this by relaxing the assumption of homogeneous preferences. Interestingly, digital
comfort terms and travel time terms for age 18-24 became insignificant in this model com-
pared to the final MNL model. The PML model’s flexible structure reallocates explanatory
power from observed variables (like age and digital comfort) to unobserved heterogene-
ity. This makes some segment-specific effects appear statistically weaker, not necessarily
because the effect disappears, but because it’s now masked by richer random variation in
preferences.

Overall, the panel mixed logit model provides a nuanced understanding of mode choice
behaviour. It effectively captures individual-level variability and reveals that unobserved
factors—such as personal risk tolerance, familiarity with transport options, or hidden socio-
demographic dimensions—play a substantial role in shaping mobility decisions. These in-
sights are critical for designing more inclusive and adaptive shared mobility systems.

4.4. Model Fit

To assess the quality and explanatory power of the developed models, the key performance
indicators of the Base MNL, Final MNL, and Panel Mixed Logit (PML) models are compared
in Table 4.12.

As expected, the Base MNL model provides the simplest specification, with only eight esti-
mated parameters. The Final MNL model significantly expands the specification, incorpo-
rating a richer set of explanatory variables, resulting in 15 estimated parameters. The Panel
Mixed Logit model introduces a random parameter to account for unobserved heterogeneity,
with a total of 13 parameters.
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Table 4.12.: Comparison of Model Fit Statistics
Performance Indicator Base MNL Final MNL Panel Mixed Logit
Number of estimated parameters 8 15 13
Sample size 131 126 126
Initial log-likelihood -3560.079 -3425.49 -3422.762
Final log-likelihood -2613.762 -2351.594 -2312.186
Likelihood ratio test 1892.634 2147.791 2221.153
Rho-square 0.266 0.314 0.324
Rho-square-bar (adjusted) 0.264 0.309 0.321
Akaike Information Criterion (AIC) 5243.524 4733.189 4650.371
Bayesian Information Criterion (BIC) 5288.707 4817.322 4687.243
Final gradient norm 0.060 0.00219 0.4437

The Final Log-Likelihood improves substantially from -2613.76 in the Base MNL to -2351.59
in the Final MNL, indicating a better model fit. The Panel Mixed Logit model achieves a
further improvement in log-likelihood to -2312.19, suggesting that capturing random taste
variation enhances the explanatory power of the model.

The Panel Mixed Logit (PML) model, achieves slightly better goodness-of-fit metrics with a
Rho-square of 0.324 and a log-likelihood of -2312.19. However, this improvement comes at
the cost of a higher gradient norm (0.4437), which suggests less precise convergence com-
pared to the Final MNL model (0.0022). Moreover, the PML required more computational
resources.

Both the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) favor
the Panel Mixed Logit model, with the lowest values compared to the Final MNL. These
criteria balance model fit with parsimony, suggesting that, despite potential convergence
concerns, the Panel Mixed Logit provides a better trade-off between explanatory power and
complexity.

It is evident that the Panel model exhibits the best overall performance in terms of goodness-
of-fit. It achieves the highest log-likelihood and Rho-square values while maintaining rel-
atively low AIC and BIC values. Goodness of fit suggests how well the estimated model
explains the observed data. Therefore, in addition to assessing the goodness-of-fit, it is
crucial to validate the model to ensure its generalizability beyond the estimation sample.

4.5. Model Validation

To evaluate the external validity and predictive performance of the Final MNL and Panel
Mixed Logit models, a modal split validation is conducted. The total respondent data is
used for validation as the number of respondents is too low (see Section 3.3.3). Table 4.13
illustrates the comparison between actual mode shares and those predicted by both models.
NAE values for PML and MNL are shown in Figure 4.3.

The results show that the Final MNL model predicts most modal shares with high accuracy.
It slightly underpredicts ZE Bus usage, walk and shared bike. In contrast, the Panel ML
model tends to overpredict shared modes (bike, e-car, and e-scooter) and bus usage, while
significantly underpredicting walk, suggesting a tendency to overfit certain segments of the
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data. The MNL model, by contrast, produced predictions that aligned more closely with
observed behaviour across all travel modes.

Although the Panel ML model better captures taste heterogeneity through the inclusion of
random parameters, the Final MNL model outperforms it in terms of absolute predictive
accuracy on most modes. These results emphasize that while Panel ML offers more be-
havioural richness, simpler models like MNL can be advantageous when the focus is on
predictive reliability. The MNL specification will generalize better to new data and is there-
fore more reliable for policy evaluation and forecasting applications.

Table 4.13.: Modal Split Comparison: Actual vs Predicted (MNL and PML)
Mode Actual Share (%) Predicted MNL (%) Predicted PML (%) NAE for MNL (%) NAE for PML (%)
Walk 5.34 5.18 4.09 -0.16 -1.25
Bike 21.01 21.16 20.78 0.15 -0.23
Shared bike 11.30 11.16 11.39 -0.14 0.09
Shared e-scooter 5.34 5.41 5.51 0.07 0.17
Shared e-car 18.70 19.20 19.47 0.50 0.77
ZE bus 38.32 37.89 38.76 -0.43 0.44

Figure 4.3.: NAE for MNL and PML model

Convergence behaviour further supports the robustness of the MNL model. It achieved
optimality with a very low relative gradient of 8.76 × 10−7 and a final gradient norm of
0.00219. Moreover, the model successfully completed all Hessian evaluations, indicating
numerical stability and a well-defined likelihood surface around the optimum.

PML model encountered difficulties during estimation. Specifically, it converged much
slower and less precisely than the simpler MNL model. It took over 180 iterations and
still ended with a high final gradient norm (0.44), signaling that it might not have reached
a true global optimum. This poor convergence performance is due to the complex shape
of the likelihood surface in PML models. The inclusion of random parameters makes the
surface flatter and more irregular, which increases the chances of the algorithm getting stuck
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in local optima rather than finding the best solution. Additionally, the Monte Carlo integra-
tion required in PML further complicates convergence by introducing noise. These factors
together can cause instability.

Finally, in practical applications such as policy testing, scenario simulation, and large-scale
deployment, the simplicity and interpretability of the MNL model offer advantages. The
absence of simulation draws or latent heterogeneity assumptions makes the MNL model
not only computationally efficient but also easier to explain and justify to stakeholders.

In light of the comprehensive evaluation, the Multinomial Logit (MNL) model is selected
as the final model for this study. It offers a well-balanced combination of predictive ac-
curacy, explanatory power, computational efficiency, and interpretability—qualities that are
essential for practical applications in transport policy analysis. While the Panel Mixed Logit
(PML) model demonstrated a marginal improvement in certain fit statistics, such as log-
likelihood and information criteria (e.g., Rho-square and BIC), these gains are offset by
its more complex convergence behaviour, longer runtime, and lower prediction accuracy.
Therefore, the final MNL specification is adopted for subsequent analysis to ensure reliable
and realistic outcomes.
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This chapter applies the estimated mode choice model to target populations across differ-
ent scenarios. The objectives are twofold: (i) to translate individual-level preferences into
system-level modal splits for the Schiphol commuter population, and (ii) to test how key
levers—such as cost, distance, waiting time, and personal characteristics—shape behavioural
responses across available alternatives.

The analysis proceeds in three stages. First, a national benchmark is established by estimat-
ing baseline modal shares for the Dutch adult population. Second, the model is applied to
Schiphol commuters under both a baseline and a “no private bike” scenario, in order to deal
with the bias related to private bikes. Following that, sensitivity analyses are conducted to
isolate the impact of key policy levers.

These applications build directly on the discrete choice model estimated in Chapter 4. While
Chapter 4 identified significant behavioural parameters and quantified their effects at the
individual level, this chapter scales those insights to synthetic populations. In doing so, it
provides a bridge from behavioural realism to policy relevance, showing how micro-level
preferences aggregate into macro-level outcomes that can guide service design, pricing poli-
cies, and targeted investment in sustainable mobility around Schiphol and comparable hubs
in the Netherlands.

5.1. Model Application For Dutch Adult Population

The application is conducted on a synthetic population created by using data from the Cen-
traal Bureau voor de Statistiek [Statistics Netherlands, nd], which provides official statistics
on population distributions in the Netherlands (Table 4.1). The Netherlands experiences
rain on approximately 132 days per year, representing around 40% of the year [Statista Re-
search Department, 2023], this percentage is used as the probability of having a rainy day
in this study. For the whole Dutch adult population, predicted choice probabilities for each
transport mode are generated using the final model’s estimated parameters.

Table 5.1.: Modal Split (% of Whole Population)

Mode Percentage (%)

Walking 7.38
Bicycle 43.92
Shared Bicycle 9.28
Shared E-Scooter 3.82
Shared Electric Car 11.56
Zero Emission Bus 24.05
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Table 5.2.: Aggregated Modal Split (% with Bike Not Available)

Mode Percentage (%)

Walking 13.89
Bicycle 0.00
Shared Bicycle 16.59
Shared E-Scooter 6.99
Shared Electric Car 19.65
Zero Emission Bus 42.88

In the baseline scenario (Table 5.1), cycling dominates with 43.9% of trips, confirming the
central role of bicycles in Dutch mobility culture (consistent with Statistics Netherlands [nd]).
Zero-emission (ZE) buses follow with 24.1%, reflecting the importance of sustainable public
transport as a secondary backbone. Shared e-cars (11.6%), shared bikes (9.3%), and walking
(7.4%) represent relevant but smaller shares, while e-scooters remain marginal (3.8%).

When bicycles are excluded (Table 5.2), ZE buses absorb the largest shift, rising to 42.9%.
This underlines their function as the primary substitute for cycling. Shared e-cars also
expand (19.7%), alongside smaller increases for shared bikes (16.6%), walking (13.9%), and
scooters (7.0%). These patterns suggest that electrified vehicles and buses partially offset the
absence of private bikes, though likely at higher system costs and reduced physical activity
benefits.

5.2. Model Application for Schiphol Commuters

To explore the implications of mobility policies in the Schiphol case study area, a synthetic
population was constructed to approximate the demographic and behavioural characteris-
tics of the real commuting population (Table 5.3). Synthetic population methods combine
partial datasets (e.g., CBS registers) into a statistically coherent agent base. It allows for
testing of hypothetical or future-oriented scenarios not directly observable in current data.
Although this approach relies on simplifying assumptions, it is widely accepted in transport
modelling contexts where privacy restrictions and fragmented data limit the feasibility of
full household surveys.

According to Royal Schiphol Group [2023], the actual commuter population consists of 12.6%
aged under 30, 30.7% aged 30–50, and 56.8% aged 50+. These values were redistributed into
the categories used in this study, using Dutch national proportions as a reference. Weather
weights were aligned with national averages like previous section, enabling scenario-based
sensitivity testing. Employment shares were derived from national data in the absence of
Schiphol-specific distributions.

In the baseline scenario (Table 5.4), cycling dominates with 44.0% of trips. Zero-emission
(ZE) buses follow with 23.9%, indicating their role as the secondary choice. Shared e-
cars (11.4%), shared bikes (9.3%), walking (7.6%), and shared e-scooters (3.8%) occupy
more marginal but non-negligible shares, underscoring the multimodal character of the net-
work.
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Table 5.3.: Overview of characteristics of the synthetic Schiphol population

Attribute Share in Population (%)

Age Groups
18–24 7.5
25–29 5.5
30–39 16.5
40–59 33.0
60+ 37.5

Weather Conditions
Rainy 40.0
Sunny 60.0

Comfort Preference
Low 16.0
Medium 47.0
High 37.0

Employment
Full-time 56.3
Student 20.0

Table 5.4.: Modal split under normal availability

Mode Share (%)

Walking 7.6
Bicycle 44.0
Shared Bicycle 9.3
Shared E-Scooter 3.8
Shared Electric Car 11.4
Zero-Emission Bus 23.9

Table 5.5.: Modal split with bike unavailable

Mode Share (%)

Walking 14.3
Bicycle 0.0
Shared Bicycle 16.6
Shared E-Scooter 7.0
Shared Electric Car 19.4
Zero-Emission Bus 42.7
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When private bicycles are excluded (Table 5.5), a pronounced modal shift occurs. ZE bus
share rises to 42.7%, absorbing the majority of former cyclists, while shared e-cars increase to
19.4%. Walking and shared bikes nearly double their shares (14.3% and 16.6%, respectively),
pointing to substitution potential in modes that otherwise remain secondary. These results
suggest that shared and public transport modes function as the immediate fallback when
cycling is unavailable. However, the shift also raises questions of system resilience: large-
scale reliance on ZE buses would require substantial increases in capacity and frequency,
while the substitution towards shared e-cars implies higher operational costs.

5.3. Modal Split with Weather and Bike Availability

Figure 5.1.: Modal split in different weather condition and bike availability

Figure 5.1 presents the modal split predictions for Schiphol commuters derived from the
final model under four different scenarios: (1) Sunny weather with bike access, (2) Sunny
weather without bike access, (3) Rainy weather with bike access, and (4) Rainy weather
without bike access.

The comparison between the sunny and rainy scenarios reveals a significant shift in travel be-
haviour. In particular, the share of private bike usage drops from 49% under sunny weather
to 38% in rainy conditions, indicating the weather sensitivity of active modes. In contrast,
zero-emission bus (ZE Bus) usage increases from 20% to 31% under rainy weather, reflecting
a modal shift from active to motorized public modes.

When private bikes are not available, even in sunny weather, there is a considerable redis-
tribution of mode choices. For example, shared bike usage increases to 17% (from 9% with
private bike availability), demonstrating a clear substitution effect.

Under the most constrained condition (rainy weather and no private bike access), there
is a notable consolidation towards public transport modes. ZE bus usage rises to 51%,
becoming the dominant mode in this scenario. Similarly, shared e-car usage also climbs to
27%, reflecting a preference for sheltered, comfortable, and flexible alternatives when both
weather and bike constraints are present.
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Across all conditions, shared e-scooters and shared e-cars show modest but consistent in-
creases when active travel becomes less appealing. This pattern confirms their role as inter-
mediate alternatives between conventional public transport and private mobility.

The observed shifts confirm theoretical expectations: active modes are strongly weather-
dependent, and mode availability significantly influences substitution patterns. Further-
more, the dominance of public and shared modes in adverse conditions supports the ro-
bustness of the model in simulating realistic urban travel behaviour.

5.4. Sensitivity Analysis

5.4.1. Sensitivity by Distance

To better understand how travel distance influences mode choice, a sensitivity analysis is
conducted by varying the origin-destination distance from 0.5 km to 6 km in 0.5 km incre-
ments. Travel times for each mode are computed based on fixed average speeds, as summa-
rized in Table 3.2, and adjusted accordingly at each step. All other variables (costs, weather,
wait times, etc.) were held constant to isolate the effect of distance on mode preference. The
resulting modal shares are visualized in Figure 5.2.

The analysis reveals several clear behavioural patterns. Walking is the dominant mode at
very short distances, with over 33% share at 0.5 km. However, it declines sharply as distance
increases, dropping below 10% beyond 2 km and nearing 0% around 5–6 km. This steep
decline reflects the limited practicality of walking for longer distances due to its low speed
and high physical effort.

Bicycles (both personal and shared) peak in preference around 1.5 km. While personal bikes
exhibit a slightly higher modal share than shared bikes, both modes show a gradual decline
after 2 km. This suggests that while cycling is a highly efficient option for short to medium
distances, its competitiveness weakens as faster alternatives become more attractive over
longer trips.

Shared e-scooters maintain a relatively small but stable share across distances. Their modal
share rises slightly up to 2–3 km, indicating a niche for medium-range urban trips, but they
are consistently outperformed by both bikes and e-cars.

Shared e-cars and zero-emission buses exhibit the most pronounced increase in modal share
with distance. Shared e-cars become increasingly attractive, surpassing bike and scooter op-
tions around the 3.5 km mark and reaching around 34% share by 6 km. Similarly, bus usage
grows consistently with distance, peaking at approximately 5 km before plateauing. This
pattern reflects their high average speeds and suitability for longer, less active journeys.

Overall, the results show a distinct transition in mode choice as distance increases active
modes (walking, biking) dominate up to 1.5–2 km and shared and motorized modes (e-car,
bus) take over as distance increases.

These trends reinforce the importance of multimodal infrastructure planning. For short
distances from the hub, enhancing pedestrian and cycling environments is key. For longer
distances, reliable and well-integrated shared and public transport options are essential to
sustain mode shift away from private car use.
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Figure 5.2.: Sensitivity by distance

5.4.2. Sensitivity by Cost

To evaluate how variations in cost influence travel behaviour, four alternative pricing sce-
narios were simulated and their impact on modal share was visualized in Figure 5.3. The
scenarios include: Free bus (zero cost for bus travel), Shared e-car surge (increased e-car
prices), Discounted shared bike and e-scooter (reduced costs for shared bikes and scooters)
and Uniform cost for all shared modes (a uniform shared mode fare set at €1.5).

These four scenarios are chosen to reflect realistic and policy-relevant pricing interventions
currently being discussed or piloted in European urban mobility contexts. The “Free Bus”
scenario is inspired by zero-fare public transport experiments (e.g., Tallinn, Luxembourg)
aimed at increasing ridership and reducing congestion. The “Shared e-car surge” scenario
captures concerns over the rising cost of energy and its potential to suppress adoption of
high-emission vehicle sharing options. The “Discounted shared micro-mobility” scenario
responds to increasing calls for equitable access to micromobility, particularly in first-/last-
mile settings. Finally, the “Uniform Cost” scenario tests fare harmonization—a principle
of fare integration found in many transit systems—to examine whether standardizing costs
across modes improves mode neutrality and uptake. These scenarios collectively span both
user incentives and regulatory levers, enabling the exploration of behavioural elasticity un-
der varying fare structures.

The results show significant variation in mode choice responses depending on cost assump-
tions. In the Free Bus scenario, bus usage peaks with a modal share of approximately 60%,
indicating that eliminating fares can strongly incentivize public transport adoption. This
supports broader European urban mobility strategies aimed at enhancing public transport
affordability and accessibility.

Conversely, in the Shared E-car Surge scenario, a 25% price increase reduces e-car usage to
near 14%, highlighting a strong price elasticity for individual shared vehicle use. This shift is

63



5. Model Application

Figure 5.3.: Sensitivity by cost

accompanied by increased shares for bikes and buses, suggesting that higher operating costs
for shared electric cars may prompt users to pivot to cheaper options. These findings imply
that demand-based pricing or congestion charges could be effective measures to discourage
high-emission modes during peak periods.

The Discounted Shared Bike and E-scooter scenario demonstrates a marked improvement
in uptake for shared micromobility, especially e-scooters and shared bikes. Their usage
increases notably when costs are reduced, which reinforces the case for targeted subsidies
or incentive schemes for short-distance urban travel.

Meanwhile, the Uniform Cost for All Shared Modes scenario yields a more balanced modal
distribution, with moderate increases in shared mode adoption (especially e-cars and scoot-
ers) without extreme shifts away from traditional modes. This suggests that a harmonized
fare structure could provide predictability and fairness in pricing across services.

Overall, these findings confirm that cost levels can significantly influence modal shifts, and
carefully designed pricing strategies can encourage greener mode choices. The policy im-
plications are broad: municipalities and transit agencies can use fare incentives not just to
boost ridership but also to address equity, reduce congestion, and support climate goals. Tai-
loring these strategies to specific demographic and spatial contexts—such as urban centers,
commuter belts, or vulnerable populations—could further enhance their effectiveness.

5.4.3. Sensitivity to Bus Waiting Time

In this analysis, the wait time for the zero-emission bus mode is varied from 0 to 20 minutes
in 2-minute increments, while all other parameters—including travel times, travel costs,
weather conditions, and user demographics—are held constant. Figure 5.4 displays how the
average modal share for each alternative responds to increasing bus wait times. The results
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Figure 5.4.: Sensitivity by bus Wait Time

indicate that bus ridership is highly sensitive to increases in waiting time. At a zero-minute
wait time, the bus captures over 55% of the total modal share, making it the dominant mode.
However, as wait time increases, the share of bus trips declines rapidly and almost linearly,
dropping below 15% when the wait reaches 20 minutes. This steep decline highlights the
critical role of frequency and reliability in attracting riders to public transportation.

Conversely, nearly all other modes show an upward trend in modal share as bus wait time
increases, although the degree of responsiveness varies. E-car and bike modes gain the most
from the decline in bus usage. The e-car share grows from 13% to nearly 27%, while biking
increases from 15% to 26% as bus wait time worsens. These modes act as key substitutes
to public transit for users prioritizing time reliability and comfort. Shared bike also exhibits
a moderate but steady rise in usage, indicating its appeal as a flexible and low-wait-time
alternative. Scooter and walking, although less sensitive, also gain some share.

This behavioural shift reflects a mode substitution effect, where users abandon high-delay
modes in favor of faster or more reliable options—even if those options may incur higher
costs or physical effort. The near-linear nature of the decline in bus share also suggests
that user perception of wait time may be linearly disutility-driven, at least within this 0–20
minute window.

5.4.4. Sensitivity to Digital Comfort and Employment Status

To evaluate how changes in employment status and digital comfort level influence travel
mode choices, five distinct population scenarios were constructed. These scenarios are:

• Young Digital Population: A digitally fluent group, primarily composed of students
and part-time workers.

• Working Professionals: Employed full-time with high digital comfort.
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Table 5.6.: Socio-Digital Profiles of Population Groups
Cluster Employment Distribution Digital Comfort Level
Young Digital Population 50% students, 50% part-

time/unemployed
80% high, 20% medium, 0% low

Working Professionals 90% full-time employed 70% high, 30% medium, 0% low
Retirement Community 100% retired 20% high, 50% medium, 30%

low
Low-Income Urban Mix 40% students, 40% part-

time/unemployed, 20% full-
time

10% high, 30% medium, 60%
low

Tech-Egalitarian Society 25% each: stu-
dents, full-time, part-
time/unemployed, retired

100% high, 0% medium, 0% low

• Retired Community: Older adults with varied levels of digital literacy and no active
employment.

• Low-Income Urban Mix: A mix of students, part-time workers, and unemployed in-
dividuals with lower digital comfort.

• Tech-Egalitarian Society: An evenly distributed employment profile with uniformly
high digital comfort.

The distributions within the groups are given in table 5.6.The distributions are de-
rived through an expert-informed synthesis process. Since complete joint distributions
of employment status and digital comfort are not readily available for Schiphol com-
muters, assumptions were triangulated from national-level data (e.g., CBS statistics)
and qualitative insights from relevant literature on digital inclusion. The purpose of
these clusters is to enable the simulation of meaningful diversity in digital mobility
readiness. For instance, the ”Young Digital Population” and ”Retirement Commu-
nity” reflect archetypal extremes in digital comfort, allowing us to explore how green
mobility adoption may differ across these ends of the spectrum. While individual clus-
ter proportions do not aim to be statistically significant predictors on their own, their
inclusion enhances behavioural plausibility within the synthetic population. Future
studies with larger sample sizes could calibrate these clusters more rigorously through
latent class or finite mixture models. Figure 5.5 shows that modal share distributions
are relatively stable across scenarios, with bus and bike dominating in all cases. How-
ever, subtle variations are observed:

– Walking share increases in the Low-Income Urban Mix and Tech-Egalitarian Society,
suggesting a higher reliance on pedestrian travel in digitally equitable or income-
constrained populations.

– Shared micromobility modes (e.g., shared bike, scooter) remain relatively stable,
with minor increases among younger or digitally proficient groups.

– Bus use remains the dominant mode overall but slightly declines in more digitally
active populations.

These results underscore the importance of considering population structure when
planning for mobility futures. Different segments of society are likely to respond
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Figure 5.5.: Predicted modal share across different population scenarios.

differently to transportation policy or technology interventions. By anticipating these
shifts, planners can tailor infrastructure and services to be more inclusive.

Overall, the applications in this chapter demonstrate how the estimated model scales
from individual-level sensitivities to system-level outcomes for Schiphol commuters.
The results consistently highlight the centrality of cycling and zero-emission buses,
while also revealing strong substitution patterns when weather or bike availability
constrain choices. These outcomes, however, using a synthetic commuter population
and stated preference parameters mean real-world elasticities may differ. Neverthe-
less, the patterns provide clear policy signals: availability of different modes should
be decided considering the distance between the hub and the destination, rainy condi-
tions point to the value of flexible fleet management, and pricing remains a powerful
lever for shifting demand toward greener modes. These preliminary findings set the
stage for deeper critical reflection and actionable policy recommendations in the later
chapters.
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This chapter presents the findings from the Digital Twin (DT) simulations conducted
for the Schiphol area. The DT framework was employed to evaluate the impacts of
introducing mobility hubs offering green first- and last-mile transport modes. The
simulations compared two scenarios: a baseline scenario reflecting current conditions
for commuter traffic without mobility hubs, and an intervention scenario incorporating
two strategically located mobility hubs to omit commuter car traffic inside Schiphol
Airport.

For modal splits to and from the hub, values from Table 5.4 are used. For simplifi-
cation purposes and data unavailability, only car traffic of the morning peak is taken
into account. Modelling this period captures the system under its highest stress, thus
yielding more policy-relevant insights regarding congestion, modal shifts, and emis-
sion reduction potential.

6.1. Case Study Area: Schiphol Airport and Commuter
Flows

Schiphol Airport, located southwest of Amsterdam, is the Netherlands’ largest airport
and one of the busiest air travel hubs in Europe. Beyond its role as an international
airport, Schiphol functions as a major employment center, with approximately 65,000
people working at the airport and its immediate surroundings [Royal Schiphol Group,
2023]. The airport area hosts a wide range of businesses, including aviation operations,
logistics, hospitality, retail, and office complexes, making it one of the largest single-site
employment zones in the country.

This thesis focuses exclusively on the commuter traffic associated with Schiphol Air-
port. Commuters are defined as individuals traveling to and from the airport area for
work purposes, irrespective of their mode of transport. While Schiphol experiences
significant volumes of passenger and freight traffic, commuters represent a substan-
tial share of daily movements. These movements play a critical role in shaping traffic
congestion, parking demand, and overall transport system performance in the region.

The airport’s strategic location near major highways (A4, A5 and A9) and its integra-
tion with the national rail network make it highly accessible. However, despite this,
peak-hour congestion, limited parking availability, environmental concerns and the
growing need to reduce private car dependency have further emphasized the impor-
tance of sustainable and multimodal solutions for commuting.

The Digital Twin simulations in this research are centered on this specific commuter
segment, evaluating how interventions such as the introduction of mobility hubs with
car restriction and green shared modes (e.g., shared bikes, e-scooters, zero-emission
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buses) can influence commuting patterns, reduce congestion, and improve environ-
mental indicators for the Schiphol region. By focusing on commuters, this study
provides insights into targeted mobility policies that can help alleviate pressure on
the airport’s transport network while supporting broader sustainability goals in the
region.

6.2. Traffic Impact

The DT simulations reveal a measurable influence of mobility hubs on traffic patterns
within the Schiphol area. The key traffic-related outcomes are summarized below. All
the calculations are done based on one morning peak (7:00-9:00 am).

6.2.1. Commuter Car Intensity Effects During Morning Peak

Figure 6.1 visualizes the change in commuter car intensity during the morning peak
hours (7:00–9:00 am) resulting from the introduction of mobility hubs. The red seg-
ments represent areas with increased car intensity, green segments indicate reductions,
and grey segments show neutral change. Notably, car intensity increases significantly
at the two designated mobility hub points (yellow), located along the main access
routes to Schiphol. This suggests that these hubs are attracting more commuter traffic,
due to park-and-transfer behaviour. In contrast, car trips inside Schiphol is replaced
by offered green modes.

Even though flows increase in some areas, the intensity capacity ratios stay under
0.9. So, it does not lead to critical overloading of the road network. The existing
infrastructure is generally capable of accommodating this demand without significant
congestion. But this I/C ratios ignore any modes other than car for simplification
reasons, so these results are very optimistic.

6.2.2. District Level Impacts on Vehicle Kilometers Travelled

To evaluate the spatial redistribution of traffic resulting from the mobility hub imple-
mentation, vehicle kilometers travelled (veh-km) were compared across administrative
districts under two scenarios: with and without the hub intervention. Figure 6.2 illus-
trates the percentage change in veh-km per district.

The implementation of the mobility hub produced a heterogeneous impact across the
regional transportation network. The district of Haarlemmermeer, experienced the
most reduction in vehicle kilometers, with a decline of approximately 0.85%. This
suggests that the hubs that restrict car usage, effectively diverts longer-distance private
vehicle trips away from this area. More moderate reductions were observed in districts
such as Haarlem and Kaag en Braassem, which exhibited decreases of 0.16% and 0.1%,
respectively.

In contrast, urban districts like Amsterdam and Amstelveen showed net increases in
vehicle kilometers traveled. Specifically, Amsterdam recorded a rise of approximately
3.71%, while Amstelveen saw an increase of around 2.08%. These increases are likely
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Figure 6.1.: Change in traffic intensity (Hub vs. No Hub scenario)

Figure 6.2.: Percentage change in veh-km by district (Hub vs. No Hub scenario)
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attributable to a combination of factors, including local circulation required to access
the mobility hub and the restriction of private vehicle access within Schiphol itself. As
a result, travelers may be taking longer or alternative routes to reach their destinations,
thereby increasing intra-urban vehicle kilometers. Additionally, this outcome could
reflect induced demand effects—where improvements in network accessibility (e.g.,
new or enhanced connections via the hub) inadvertently make driving more attractive
for certain trips.

Overall, the total vehicle kilometers across the entire network declined slightly from
34,631,470 km (without hub) to 34,621,750 km (with hub), amounting to a net reduc-
tion of approximately 9,720 km, or 0.03%. While marginal in aggregate terms, this shift
underscores a broader systemic trade-off: mobility hubs can alleviate congestion and
emissions in peripheral or high-throughput regions, yet simultaneously induce longer
trips distance-wise. These findings highlight the necessity for spatially targeted plan-
ning and complementary policies when integrating hubs into complex urban mobility
systems.

6.3. Environmental Impact

To evaluate the environmental implications of the hub strategy, three key traffic-related
emissions were analyzed: NO2, PM10, and PM2.5. Using the TNO Digital Twin plat-
form, the difference between the hub scenario and the reference scenario was visual-
ized for each pollutant.

6.3.1. Spatial Impact on Environmental Indicators

Figure 6.3 illustrates the spatial distribution of changes in NO2 emissions resulting
from the implementation of the hub scenario, as compared to the reference scenario.
The color scale indicates the direction and magnitude of change: green areas represent
emission reductions, while red areas signify increases, both measured in µg/m3. The
strong green segments, particularly along the main access routes to Schiphol Airport
and the internal airport roads, suggest the benefit of having no commuter car trips
inside Schiphol. This indicates a net environmental benefit around the airport core,
aligning with the intended role of the hubs.

Conversely, localized red zones around the northern and southern hub locations reflect
slight increases in emissions, likely due to concentrated traffic activity at the hub en-
try/exit points and rerouted trips. These hotspots are expected side effects of mobility
consolidation and mode switching at the hubs, where users arrive to pick up or drop
off shared vehicles.

Particulate Matter (PM10 and PM2.5) differences reflect a similar trend. Improvements
are seen especially near hub catchment areas and highway feeders into Amsterdam
and Schiphol. A minor PM10 increase near Rozenburg is observed but is not extensive
or severe. Overall, this supports the claim that the hub setup has led to healthier air
quality levels in urban and peri-urban zones. The spatial maps of these environmental
indicators are provided in Appendix F.
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The combined environmental results strongly support the effectiveness of the mobility
hub in promoting greener modal shifts. These hubs enhance air quality in a region
that is typically vulnerable to pollution from heavy transport and airport-related ac-
tivity. The spatial coherence of improvements across all three pollutants validates the
potential of hubs as a policy tool for urban sustainability and public health.

Minor increases in emissions on specific segments suggest a need for better traffic
redistribution or adaptive signaling to mitigate localized impacts. Still, the overall en-
vironmental benefit of the hub setup is clear and substantial. Even in the areas where
emission increases, most of them stay below EU thresholds [European Commission,
nd]. Higher than standard NO2 emission can be seen in some zones of Schiphol Air-
port for aircraft related activities.

6.3.2. District Level Change in Environmental Indicators

To assess the environmental implications of the hub setup, this study analyzed the per-
centage change in three key vehicular emission indicators—NO2, PM10, and PM2.5—across
districts. Emission changes are represented in Figure 6.4, 6.5 and 6.6.

The results reveal a notable overall improvement in air quality in several districts due
to the hub setup. The data reveal a mixed pattern of emission changes across dis-
tricts, driven by spatial shifts in traffic intensity due to the logistics hub configuration.
Notably, Amsterdam shows the largest increase across all pollutants, with NO2 up
by 2.51%, PM10 by 3.07%, and PM2.5 by 3.19% (Table 6.2). This may be attributed to
increased consolidation and traffic rerouting through major arterials in the city, rein-
forcing centralization effects in the hub setup.

Conversely, Haarlemmermeer shows the most significant reductions, with NO2 down
by 0.76%, and PM2.5 by 0.89%. This suggests that decentralization of trips or rerout-
ing away from the airport zone (Schiphol) and surrounding infrastructure may have
reduced traffic load in this high-sensitivity area.

Other districts like Amstelveen, Aalsmeer, and Uithoorn exhibit moderate increases,
likely due to increased local distribution activity closer to the urban fringes. Teylingen,
in contrast, experiences no measurable change across any pollutant—highlighting that
traffic volumes and patterns in peripheral zones remained stable under both scenarios.

Districts such as Kaag en Braassem, Leiden, and Lisse show slight decreases in emis-
sions (typically less than 0.15%), indicating minor but beneficial traffic redistribution
effects.

The findings from Table 6.2 confirm that the hub implementation causes net reduction
for all the indicators. Overall, the results underscore a trade-off—central urban zones
may see increased emissions due to aggregation and distribution efficiencies, but the
total emissions go lower due to improvement in other corridors (Table 6.1). These find-
ings support the need for district-specific air quality policies (i.e., low-emission zones,
vehicle access restrictions in dense cores, differentiated pricing based on emissions
class, or targeted electrification of urban freight fleets) and better spatial planning, en-
suring that efficiency gains at the regional scale do not come at the cost of localized
environmental degradation.
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6.3. Environmental Impact

Figure 6.3.: Difference in traffic-related NO2 emissions (in µg/m3) between the mobility
hub scenario and the reference scenario (Red indicates emission increase; green indicates
reduction).

Figure 6.4.: District-wise Change in NO2 emission

Table 6.1.: Total Emission Reduction Due to Mobility Hub (in Metric Tonnes and Percentage)
Pollutant Total Change (tonnes) Total Change (%)
NO2 −4.92 × 10−6 −0.021%
PM10 −1.57 × 10−5 −0.028%
PM2.5 −4.33 × 10−6 −0.027%

73



6. Digital Twin Simulation

Figure 6.5.: District-wise Change in PM10 emission

Figure 6.6.: District-wise Change in PM2.5 emission
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6.3. Environmental Impact

Table 6.2.: Percentage Change in Emissions by District (%)
District NO2 PM10 PM2.5
Haarlemmermeer -0.76 -0.94 -0.89
Amsterdam 2.51 3.07 3.19
Leiden -0.02 -0.02 -0.02
Kaag en Braassem -0.14 -0.11 -0.11
Ouder-Amstel 0.80 0.87 0.87
Aalsmeer 1.53 1.54 1.52
Lisse -0.04 -0.04 -0.04
Amstelveen 1.29 1.59 1.70
Uithoorn 0.32 0.43 0.46
Leiderdorp 0.09 0.08 0.08
Oegstgeest -0.00 -0.00 -0.00
Haarlem -0.14 -0.15 -0.15
Rest -0.02 -0.03 -0.03
Teylingen 0.00 0.00 0.00
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7. Discussion and Limitations

This chapter discusses the key findings and implications of the study, focusing on
user behaviour insights, the performance of green mobility modes, environmental and
traffic impacts, and the limitations of the study.

7.1. Discussion

The findings from both the discrete choice modelling and the digital twin simulation
provide valuable insights into commuter travel preferences, behavioural sensitivities,
and the broader effects of green mobility hub implementation.

Cost and time emerged as dominant factors in mode choice, but their influence is
far from uniform across individuals or contexts. The discrete choice modelling re-
vealed strong cost elasticity, with zero-fare bus scenarios producing large modal shifts.
This underscores affordability as a decisive barrier, consistent with studies in simi-
lar contexts [Sanders, 2015; Torabi et al., 2023]. However, even with uniform costs,
mode shares differ—reflecting intrinsic preferences, perceived travel time, and socio-
demographics. This indicates financial incentives alone cannot fully reshape travel
behaviour, as underlying constraints and preferences continue to play an important
role. At the same time, the strong response to free or subsidised fares raises questions
about financial sustainability: while such measures can substantially boost uptake,
they require durable funding mechanisms to avoid policy backfire once subsidies are
withdrawn.

Similarly, waiting time emerged as a critical disutility. Around 14 minutes of waiting,
bus usage falls below both bike and shared e-car usage, reinforcing earlier evidence
that travellers tolerate only a 3–15 minute transfer window as acceptable [Schakenbos
et al., 2016]. Long waits push commuters towards modes they can control directly
(bike, shared car), despite longer travel times.

Weather sensitivities revealed a notable asymmetry: during adverse conditions, time
sensitivity increased while cost sensitivity decreased. This shows that commuters pri-
oritise reliability and comfort over monetary savings when exposed to discomfort. In
practice, this means that dynamic pricing alone may be less effective in sustaining rid-
ership during adverse weather. Instead, a combined strategy is needed: on one hand,
operators could experiment with weather-responsive pricing schemes (e.g., temporary
discounts, flexible fare capping, or bundled services during rainfall or snowfall) to
cushion demand drops; on the other hand, infrastructural measures such as sheltered
bike lanes, heated pavements, or covered transfer zones are critical to address the
resilience gap. Sustainable modes like cycling and shared micromobility are more vul-
nerable to weather shocks, meaning that hubs risk becoming over-dependent on bus
capacity if these vulnerabilities are not mitigated.
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Both younger, digitally comfortable individuals and older, digitally uncomfortable in-
dividuals displayed similar preferences for shared modes, according to the sensitivity
analysis. This underscores an often-overlooked design principle: inclusivity in shared
mobility systems is not just about physical accessibility or pricing—it’s also about in-
terface clarity, onboarding simplicity, and perceived reliability. Without these features,
systems may inadvertently favour younger, higher-educated, and tech-savvy users, re-
inforcing digital divides. Designing for universal usability (e.g., multilingual apps,
cash options, simplified trip planning) will ensure equitable uptake among different
groups. Although these findings remain indicative, as older and less digitally skilled
commuters were underrepresented in the sample.

Parameters associated with trip purpose, gender, and shared vehicle frequencies are
found to be statistically insignificant in the model specifications, even though they
were relevant in similar studies (See section 2.2). However, this should not be inter-
preted as evidence that these factors do not influence travel behaviour. Rather, this
outcome may be attributed to sample limitations or cognitive fatigue among respon-
dents, particularly given the number of attributes and the complexity of the survey
tasks. It is possible that some factors were subconsciously ignored or given less atten-
tion, resulting in weaker statistical effects. Consequently, these attributes are excluded
from the final model, although their real-world relevance remains plausible.

A critical implication of hub-based interventions is the localised increase in traffic flows
around mobility hub nodes. While the overall system shows reductions in vehicle kilo-
metres travelled (VKT) and emissions, the design of the hubs inherently concentrates
certain trips—particularly drop-offs, pickups, and last-mile transfers—around specific
access points. This spatial redistribution creates trade-offs: at the regional scale, con-
gestion and emissions decline, but locally, access roads, intersections, and forecourts
may face disproportionate peak demand, raising safety concerns and potentially un-
dermining user satisfaction. These “pressure points” require active management to
ensure that local surges do not erode systemic benefits. However, as long as these
local flows remain below the infrastructural capacity threshold, the net benefits of hub
implementation—such as emissions reduction, reduced VKT, and improved accessibil-
ity—are preserved. Careful traffic engineering, dynamic access control, dedicated bus
lanes, and smart kerb or occupancy management are essential to prevent congestion
spillbacks and safety hazards, thereby preserving the wider gains of hub implementa-
tion.

In terms of modelling decisions, the Multinomial Logit (MNL) model is selected for
the final application phase due to its better prediction power and stability. However,
this choice also warrants reflection. As shown in Section 4.5, the Panel Mixed Logit
(PML) model outperformed the MNL model in terms of goodness-of-fit. PML also
accounts for individual-level random effects and repeated observations, which are es-
pecially relevant in a stated preference setting. The MNL framework assumes homo-
geneous preferences across individuals and adheres to the Independence of Irrelevant
Alternatives (IIA) property, meaning that the relative odds of choosing between two
options remain unchanged with the introduction or removal of other alternatives. This
assumption is particularly problematic in the context of introducing new shared mobil-
ity modes that have overlapping attributes. By ignoring correlated unobserved factors
across alternatives and inter-individual taste variation, the MNL model may misesti-
mate modal share patterns. This risks inflating or suppressing the potential uptake
of specific services under hypothetical conditions. By neglecting panel dynamics, the
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MNL model may provide clean but over-simplified estimates that mask nuanced be-
havioural patterns—particularly important when simulating long-term adoption tra-
jectories for emerging mobility technologies. Thus, MNL’s behavioural validity in cap-
turing the richness of mode choice psychology remains limited, warranting caution in
interpretation, particularly in policy contexts where substitution patterns between re-
lated services matter. The inability to account for unobserved preference correlations
may lead to over-optimistic demand forecasts. This means that policies relying on
MNL-based projections should be treated cautiously, as they may misrepresent substi-
tution effects between closely related services.

One concern is the potential impact of visual and textual framing. Even though ef-
forts were made to present all alternatives neutrally, variations in how shared mobility
modes were described or depicted may inadvertently amplify their perceived attrac-
tiveness. Such framing effects can affect choices, inflating the preference for technolog-
ically novel or environmentally appealing options. Another layer of bias stems from
the hypothetical nature of SP experiments. While the cost and time attributes were
grounded in real-world data, the stakes for respondents were hypothetical. In the ab-
sence of real monetary or temporal consequences, individuals may not fully internalize
the trade-offs, potentially overstating sensitivity to variables like cost or underestimat-
ing inconveniences such as waiting time or weather exposure. These two concerns
can mean respondents’ choice in the survey may diverge significantly from revealed
real-world choices, which may mean the uptake percentage is inflated for certain green
modes. This raises concerns about external validity—how well these stated preferences
will map onto revealed choices when the services are actually available.

Moreover, scenario simplifications—such as assuming universal availability of shared
services or constant weather conditions in DT and MNL—fail to capture the volatility
and constraints of real-world mobility ecosystems. These assumptions may result in
overly optimistic projections of mode adoption, particularly for resource-constrained
populations or less urbanized settings where service reliability is a key determinant of
behaviour.

The improvement results from the hubs are valid within the confines of assumptions
mentioned before. Most notably, the outputs of the Digital Twin—such as VKT, I/C
ratios, and emissions—are not validated against observed traffic or environmental data
for the Schiphol region. This absence of empirical grounding means that while the
trends appear behaviourally plausible, they should be interpreted as indicative rather
than predictive, limiting their utility in high-stakes policy forecasting.

This study provides actionable insights for mobility hub planning and green mode de-
sign. By integrating discrete choice models with large-scale traffic simulation, it offers
a reproducible, scalable approach for assessing multi-modal strategies. The findings
suggest that when designed with cost sensitivity, time efficiency, and digital inclu-
sivity in mind, shared mobility interventions can generate both behavioural and sys-
temic benefits. Future work should build on this integrative foundation with dynamic
agent-based models and real-world validation to close the gap between simulation and
reality.
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7.2. Limitations

While this study provides a novel integrative framework combining discrete choice
modelling and digital traffic simulation, several methodological, behavioural, and
modelling limitations must be acknowledged when interpreting the findings.

A key methodological challenge is ensuring that the collected data adequately rep-
resents the target population’s travel behaviour. The study aimed for 240 responses
to enable robust model estimation, but only 131 valid responses were obtained. This
shortfall limits the ability to capture heterogeneity in mobility preferences. The re-
spondent profile—mainly younger, highly educated, and digitally literate individu-
als—further constrains representativeness. While these groups reflect early adopters
of shared and sustainable mobility, their preferences may not align with the broader
commuting population. The sample’s deviation from population norms (as shown in
Section 4.1) implies underrepresentation of older adults, lower-income groups, and in-
dividuals with lower digital comfort or education. Several subgroups had fewer than
30 observations, weakening the ability to detect effects such as age-related digital dis-
comfort or age-related sensitivity to waiting time. As a result, model estimates likely
overstate adoption of digitally mediated green modes. A larger, more balanced sample
would likely yield different parameter values, particularly regarding technology use,
waiting-time sensitivity, and willingness to pay.

The demographic bias is reinforced by survey distribution methods. Most responses
came from urban populations with well-developed public transport and limited car
ownership. Distribution through personal networks also produced a concentration
of highly educated respondents, many with professional backgrounds in sustainable
transport or urban mobility. This group’s stronger environmental awareness and
pro-sustainability attitudes may inflate willingness to adopt some green modes and
heighten sensitivity to parameters such as cost and environmental impact, compared
to the general commuting population.

One important simplification in the utility specification is the omission of transfer
penalties, such as perceived transfer time, uncertainty, or walking time between modes.
Extensive literature indicates that transfers are a key deterrent in multi-modal journeys,
often exerting a disutility larger than in-vehicle travel time [Torabi et al., 2023; Zuur-
bier, 2023]. Incorporating transfer penalties would likely reduce the attractiveness
of certain green modes—thereby yielding more conservative and realistic adoption
forecasts. This omission likely inflates projected uptake and limits the precision of
scenario-specific policy insights. In future iterations, fixed and context-sensitive trans-
fer costs should be included to better reflect user experience and support accurate
hub-level design assessments.

Model validation is performed on the same dataset used for model estimation due to
the small sample size (n = 131). This approach, though suggested by literature, limits
the ability to assess out-of-sample predictive power, increasing the risk of overfitting.
When models are evaluated on the same data they are trained on, performance metrics
such as Rho-square bar or log-likelihood may overestimate generalizability. As a result,
while the model fits the current data well, its ability to accurately predict mode choice
behaviour in different populations or future conditions remains uncertain, limiting
confidence in applying these coefficients to other contexts or policy forecasts.
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In modelling the synthetic Schiphol commuter population, not all relevant user charac-
teristics—such as employment status or digital comfort—were available from existing
data sources. These attributes were therefore approximated or borrowed from broader
Dutch population statistics. While this approach enables demographic realism at an
aggregate level, it masks important local heterogeneities that could significantly influ-
ence mode choice and behavioural sensitivities. Schiphol is a unique employment hub
with atypical travel profiles: it includes shift workers, aviation staff subject to security
constraints, and part-time service personnel with irregular schedules. Such nuances
are not well captured through national averages. As a result, the mode choice predic-
tions derived from the discrete choice model, when scaled onto this synthetic popula-
tion, may overgeneralise behavioural patterns and fail to account for niche but policy-
relevant commuter groups (e.g., night-shift workers reliant on car access due to poor
off-peak transit). More broadly, synthetic populations provide structural demographic
realism but cannot capture individual-level variability in decision-making—especially
under context-specific constraints such as childcare responsibilities or flexible work
schedules. This means that simulations may reproduce aggregate travel patterns but
miss behavioural edge cases that are critical for targeted interventions.

Commuters who go to Schiphol by train are not considered in the study. Also, if hub
usage is mandatory, some people might shift to trains. This shift is not considered in
the study. Excluding the possibility of modal shift to trains can result in an overestima-
tion of the attractiveness or uptake of hub-based green modes. This limitation should
be considered when interpreting the scalability of mobility hub interventions in highly
connected regions like Schiphol.

In translating behavioural insights to the digital twin (DT) simulation, several struc-
tural assumptions are made. The simulation relies on fixed OD flows and modal
splits, omitting important feedback mechanisms—such as congestion deterring car use
or poor weather reducing micro-mobility viability. These omitted dynamics mean
that the simulation does not model long-term behavioural adaptation or nonlinear
system effects in real life, which are particularly relevant for interventions aimed at
system-wide transformation. For example, the simulation does not account for poten-
tial spillover effects. When a hub reduces congestion on a route, that improvement
could encourage more people to start driving again, creating a rebound effect. This re-
bound might cancel out some of the original benefits like reduced emissions or traffic.
Because the Digital Twin does not simulate these second-order or delayed responses,
it may paint an overly optimistic picture of the long-term impact. In reality, the system
might react in more complex, non-linear ways as travellers adapt their choices over
time.

Another methodological constraint lies in how trips are conceptualized and opera-
tionalized within the Digital Twin (DT) simulation. Specifically, the DT assumes trips
begin and end neatly within predefined origin-destination (OD) zones, with no al-
lowance for intermediate stops, spontaneous detours, or real-world trip chaining be-
haviours (e.g., daycare drop-offs, grocery errands, or work-related detours). This clean-
slate modelling structure does not reflect how multi-purpose, multi-modal daily trips
are actually constructed by users. As a result, the model potentially underrepresents
the true complexity of urban mobility, especially for individuals who rely on flexi-
ble or time-constrained travel. This simplification carries real implications: shared or
green modes may appear more attractive in the simulation than in real life, where
the inability to accommodate secondary trip purposes would discourage adoption. It
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also neglects mid-trip mode shifts (e.g., biking to a transit station and taking a shared
shuttle from there), which are relevant in mode choice decisions as well.

The temporal scope of input data imposes an additional limitation. The simulation is
calibrated using only morning peak-hour car traffic data, which was the most readily
available and complete dataset at the time of analysis. It ignores mode-switchers who
may enter the zone using non-car modes and switch to shared or green options within
the hub. These flows are especially important for understanding the full burden on
first and last-mile infrastructure. The omission of these flows can lead to underestima-
tion of total network volume, intersection-level congestion, and emissions, particularly
at critical intermodal nodes like mobility hubs or station forecourts. I/C ratios, which
are used as key indicators of network strain, may appear artificially low—resulting in
overly optimistic conclusions about system resilience. Likewise, emissions calculated
may fail to capture idling times, or modal interactions that occur at real-world con-
vergence points. Since the simulation is based solely on morning peak car traffic, it
captures only part of the daily mobility picture. This limits the assessment of full-day
impacts such as return commute patterns. As a result, both congestion and environ-
mental effects may be understated, and policy insights derived from the model should
be interpreted as lower-bound estimates.

Additionally, the DT does not model the operational flow and emissions from con-
ventional buses currently running within Schiphol’s internal network. This exclusion
underestimates both the total emissions and the I/C ratios, particularly in zones where
conventional bus congestion or idling is known to be substantial. As a result, the sim-
ulation may underrepresent existing pressures in the transport network, but the net
environmental and traffic gains of this study remain correct. Future work should con-
sider incorporating these transit flows.

AON and VA assignment strategies, while computationally tractable, have known
drawbacks. AON assigns all traffic between an OD pair to the single least-cost path,
ignoring route diversity and user heterogeneity. This over-concentrates flows along
selected corridors, artificially inflating I/C ratios. In scenarios involving mode shifts
or increased access traffic (e.g., at hub entry points), this leads to exaggerated stress
on particular network links without accounting for users’ natural route dispersion in
response to congestion. The volume averaging method, though a step toward real-
ism, smooths over localized bottlenecks. By distributing volumes based on averaged
conditions, it can under-represent congestion-induced delay or network vulnerabil-
ity, especially under peak pressure. This may result in underestimation of emission
hotspots or system inefficiencies during real-world operation. But for strategic deci-
sion making, static AON or VA assignment results are considered accurate enough in
practice.

Emission estimation within the DT framework also involves key limitations. Emissions
are calculated based on vehicle volumes, mode type, and standard emission factors,
without dynamically accounting for important modifiers such as stop-and-go traffic,
acceleration profiles, cold starts, or road gradient. This simplified estimation might not
fully reflect real-life scenarios, thus the calculated change in emissions will not be the
same as observed values. Despite these simplifications, the integration of behavioural
modelling with a digital twin still offers more realism than most existing studies, but
future work should address these constraints.
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The study evaluates only two hub scenarios, both of which are based on fixed assump-
tions regarding location, design features (e.g., parking capacity, green mode availabil-
ity), and integration with surrounding land use and transit networks. While these
serve as useful proof-of-concept cases, they do not reflect the full design space of
mobility hubs, nor the range of behavioural and infrastructural responses that could
emerge in different contexts. Hub performance is highly sensitive to spatial and socio-
economic context. A hub located in a high-density urban corridor with strong rail
access will yield very different usage patterns and network effects compared to one
in a low-density suburban area with limited transit integration. Factors such as walk-
ability, perceived safety, land value, and complementary amenities (e.g., bike repair
stations, retail options) also play critical roles in determining a hub’s attractiveness
and systemic impact. The two scenarios modelled here cannot capture this geographic
and operational heterogeneity.

Moreover, hub design itself is held constant across scenarios in terms of service offer-
ings, operational hours, and pricing strategies. In reality, such parameters may vary
based on local government priorities, operator business models, and user demograph-
ics. For instance, a hub offering real-time ride-matching and secure bike parking could
perform markedly better than one without these features, especially in areas with high
theft or low digital trust. These nuances are not captured in the current static hub
typology, which limits the policy specificity of the results.

This simplification also overlooks the possibility of non-linear or threshold effects—i.e.,
that mobility hubs may only trigger meaningful modal shifts once a critical mass of ser-
vice integration, user density, or fare subsidy is reached. By testing only two scenarios,
the analysis may produce disproportionately large behavioural or systemic responses.

These limitations suggest that while the study offers important preliminary findings,
further research is needed to validate and expand upon them. Future research should
prioritise combining revealed and stated preference data, improving demographic rep-
resentativeness, and validating simulation outcomes against real-world pilot hubs, to
strengthen both behavioural validity and policy applicability.
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8. Conclusions & Recommendations

This research investigates how mobility hubs offering green first- and last-mile trans-
port modes can influence travel behaviour, traffic conditions, and environmental out-
comes. Through a stated preference survey, discrete choice modelling, and integration
with a digital twin traffic simulation, the study provides data-driven insights for plan-
ning sustainable mobility hubs. This chapter summarizes key findings, beginning with
answers to the research questions, followed by practical recommendations for imple-
mentation and future research directions.

8.1. Answers to the Research Questions

1. Which traffic and environmental indicators are suitable for assessing the impacts of a
mobility hub, and why, according to existing literature?

From literature, the traffic and environmental indicators that will be affected by
a mobility hub are listed. The primary traffic indicators affected include vehicle
kilometers traveled (VKT), intensity-capacity ratios, and traffic flows. Environ-
mental indicators are concentration of NO2, PM10 and PM2.5. These indicators are
policy-relevant because they are routinely monitored in transport and environ-
mental planning frameworks and provide a direct link between user behaviour,
network efficiency, and environmental quality.

2. What are the different decision makers’ and alternatives’ attributes that affect people’s
decision to choose between the available mode options?

A literature study on mode choice behaviour is conducted to identify the key
characteristics that influence travellers’ mode choice decisions, particularly within
the context of green mobility hubs. These influencing factors include: passenger-
specific (decision-maker) attributes and alternative-specific (mode-related) attributes.

Three attributes of the transport modes are found in the literature to greatly in-
fluence choice. Travel cost consistently emerges as the most impactful factor in
most studies. Travel time is another crucial factor; travellers tend to prefer op-
tions that minimize door-to-door journey time. Public transport frequency has
been shown to influence choice, as users are more likely to select buses or trains
that run frequently, minimizing wait times.

Weather conditions, particularly rain or cold, strongly deter users from choosing
exposed modes like walking or biking. In such cases, users often shift toward
sheltered, reliable modes such as buses.
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The literature confirms that mode choice is shaped by complex interactions be-
tween individual characteristics and mode-specific features. Eight personal char-
acteristics are selected in this study: Age, Gender, Education, Employment status,
trip purpose, comfort with digital mode, primary mode and shared transport us-
age frequency. Successful mobility hubs must therefore cater to diverse needs—by
offering affordable, fast, digitally accessible, and weather-resilient transport modes—while
also aligning with the behaviour patterns and capabilities of the population they
serve.

3. What is the most appropriate model for capturing individual mode choice behaviour in the
context of a mobility hub?

Several discrete choice models were developed and tested to capture individual
mode choice behaviour. Among them, the Multinomial Logit (MNL) model was
selected as the most appropriate due to its balance of statistical performance,
interpretability, and robustness for integration with traffic simulations. The mod-
elling process began with a base MNL specification including only alternative-
specific constants and mode-level attributes (cost, distance, and waiting time).
The final MNL model was estimated through a forward stepwise procedure, se-
quentially incorporating statistically significant socio-demographic variables such
as age group, employment status, digital comfort, and weather sensitivity. This
specification substantially improved model performance, achieving a Rho-square
bar of 0.309.

A Panel Mixed Logit (PML) model was also estimated to account for repeated
observations and unobserved heterogeneity, and indeed achieved superior in-
sample fit. However, the PML suffered from convergence instability and limited
predictive robustness when applied in simulation, raising concerns about reliabil-
ity in scenario-based policy evaluation. In contrast, the MNL model offered stable
convergence and consistent predictions across varying hub scenarios.

Thus, despite its restrictive assumptions—such as homogeneous preferences and
the independence of irrelevant alternatives—the MNL emerged as the most suit-
able framework in this context. It strikes a pragmatic balance between capturing
key behavioural effects and ensuring robust predictive power and stability for
policy applications. This trade-off is consistent with the goal of the study, where
predictive power is prioritised for informing planning and hub design.

4. To what extent do the identified mode attributes and individual characteristics influence
mode choice behaviour?

The strength and direction of each factor are captured through the final utility
functions. Travel cost emerged as one of the most influential attributes, with con-
sistently negative coefficients. Students were the most cost-sensitive group. Rainy
weather has lower cost sensitivity—indicating that, under adverse conditions,
commuters prioritise comfort and reliability over monetary savings. Younger
individuals were particularly sensitive to travel time, while shared e-cars and
e-scooters carried negative intrinsic preferences compared to other modes, re-
flecting underlying scepticism or perceived inconvenience.
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Digital comfort also shaped behaviour: respondents highly comfortable with dig-
ital tools displayed strong negative sensitivity to travel time, while students and
full-time employees were especially time-critical. The significant random panel
parameter in PML further confirmed heterogeneity in cost perceptions, justifying
the inclusion of a panel specification.

Sensitivity analyses reinforced these findings. Active modes declined sharply
beyond 2–3 km, while motorised alternatives gained share. Increases in cost uni-
formly reduced modal shares, while longer bus waiting times shifted demand
towards more controllable modes such as cycling or car-sharing. Interestingly,
individuals with lower digital comfort were also willing to adopt shared modes
in a hub setting, suggesting that inclusive design features can broaden uptake.

Together, these results demonstrate that mode choice is not simply a function of
isolated attributes, but emerges from the interaction between mode based factors
(cost, time, waiting time) and personal characteristics (age, digital comfort, em-
ployment status). By incorporating interaction effects and contextual variables
such as weather and trip length, the model captured behavioural responses that
varied predictably across user types—highlighting the importance of tailoring
hub design to heterogeneous commuter needs.

5. How is demand redistributed among available modes when the mobility hub is introduced?

The introduction of two green mobility options at the hub produced a clear redis-
tribution of commuter demand across modes, confirmed by both discrete choice
estimates and simulation outputs. During the morning peak (07:00–09:00), a to-
tal of 4,845 trips with Schiphol as destination were reallocated according to the
modelled modal shares (Table 8.1).

Table 8.1.: Mode-wise Distribution of Total Trips

Mode Total Trips Percentage (%)

Walking 358 7.38
Bike 2127 43.91
Shared Bike 450 9.28
Shared E-scooter 185 3.82
Shared E-car 560 11.56
Zero Emission Bus 1165 24.05

Total 4845 100.00

Similar redistributions were observed for outbound trips. Collectively, this re-
distribution supports broader sustainability goals by lowering system-wide emis-
sions, easing congestion pressure, and promoting more inclusive and multimodal
mobility ecosystems.
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Answer to the Main Research Question

What are the traffic and environmental impacts of introducing multimodal green mobility hubs
for first- and last-mile travel?

The results demonstrate that green mobility hubs can deliver measurable traffic and
environmental benefits. By integrating the estimated mode choice model into the TNO
Digital Twin simulation, the study shows that hubs reduce vehicle kilometres travelled
(VKT), network intensity, and emissions such as NO2 and PM. Replacing commuter
car trips with active and shared modes produces a quantifiable decline in system-wide
congestion and air pollution, consistent with earlier evidence on the role of hubs in
promoting sustainable travel behaviour.

On the traffic side, the hub triggered a spatial redistribution of vehicle kilometres. Pe-
ripheral municipalities such as Haarlemmermeer (–0.85%), Haarlem (–0.14%) and Kaag
en Braassem (–0.12%) experienced reductions, reflecting a diversion of long-distance
through-traffic. In contrast, central urban zones like Amsterdam and Amstelveen
recorded modest increases (up to +3.7%), largely attributable to local redistribution
and rerouting linked to car-restricted zones around Schiphol. Despite these localised
shifts, the overall network registered a net reduction in veh-km and flow, indicating
that hubs act as a lever for improving traffic network.

On the environmental front, the hub produced consistent net reductions in major pol-
lutants across the region. District-level analysis confirmed improvements in Haarlem-
mermeer, Haarlem, and Kaag en Braassem, while emission maps highlighted widespread
decreases in NO2 and PM concentrations along major corridors such as the A4 and
A10. Localised hotspots emerged in a few urban areas, but these were outweighed by
regional-scale benefits.

Overall, the intervention validates mobility hubs as effective instruments for advancing
sustainability goals. Yet, their success depends on careful spatial planning, integration
with zero-emission modes, car-access restrictions, and coordinated traffic management
to mitigate displacement effects. Properly implemented, hubs can simultaneously im-
prove accessibility, reduce emissions, and support long-term modal shift in first- and
last-mile travel.

8.2. Recommendations

8.2.1. Recommendations for Practice

Several practical recommendations can be made to guide the development and imple-
mentation of green mobility hubs—particularly around major fixed destinations such
as airports and city centers based on the study.

The survey results show that travel behaviour is highly influenced by weather, cost, and
travel distance. Therefore, mobility hubs should provide a balanced mix of modes to
suit a range of preferences and conditions. Zero Emission Buses (ZE buses) should op-
erate at high frequencies, particularly during peak hours, with minimal waiting times
to attract users who prioritize comfort and weather protection. Shared micromobility
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options (e-scooters, bikes) should be placed under covered or indoor docking stations
to mitigate weather-related aversion. Pricing strategies should incentivize sustainable
choices—e.g., lower fees for shared e-bikes, or time-based discounts for off-peak travel.

Since digital comfort plays a significant role in mode choice, policymakers must en-
sure that access to shared mobility is inclusive. Providing multi-channel access to
shared services (e.g., physical kiosks or OV-chip integration for those uncomfortable
with apps) and offering digital literacy workshops or simple onboarding as part of
the hub experience can be helpful. Ensure that mobility hubs are equipped with intu-
itive signage, accessible design features, and real-time information displays to support
confident navigation for all users.

The digital twin analysis reveal notable reductions in emissions and congestion when
green modes are adopted. Hubs should be strategically located where they can inter-
cept car traffic (e.g., outer ring roads, P+R facilities), enabling early modal shift and
integrated into existing PT and cycling networks, with safe, direct routes to key des-
tinations. They should also be monitored and dynamically adjusted over time using
simulation-based tools like the digital twin to adapt to seasonal, demographic, and
demand changes.

Policies should address equity and uptake across diverse user groups. As the survey
results indicate, younger and digitally skilled travellers are currently more inclined to
adopt shared modes. To broaden adoption, targeted benefits such as subscription dis-
counts for students or seniors could be introduced. Partnerships with large employers
(e.g., Schiphol Airport) can further support uptake through subsidised memberships
(e.g., shared bikes, ZE bus passes) for their staff. Marketing and behaviour change
campaigns should build on real usage data and local insights to normalise shared and
active mobility choices.

Finally, mobility hubs can serve as enablers of wider regulatory measures. Zero-
emission zones (ZEZs) and car-free areas are increasingly important policy tools for
reducing urban emissions. Well-designed hubs can help these measures by providing
reliable and attractive alternatives to private car use, ensuring that restrictions on car
access are paired with viable, convenient substitutes.

8.2.2. Recommendations for Research

While this study offers valuable findings, several directions for further research can
strengthen the depth, realism, and policy relevance of mode choice modelling in the
context of mobility hubs. A first step should be to expand the number and diversity
of respondents. Greater coverage of age groups, educational backgrounds, and geo-
graphical areas—especially non-urban and digitally less-engaged populations—would
reduce sampling bias and improve representativeness. Weighting techniques could
also be applied to adjust for imbalance in representativeness, and validation against
a different dataset would provide a stronger test of predictive robustness. In addi-
tion, extending the scope of analysis to incorporate a wider set of green modes and
socio-demographic factors would allow more comprehensive behavioural insights.

Future research should also focus on addressing hypothetical bias inherent in stated
preference (SP) surveys. Pairing SP data with revealed preference (RP) data—such
as usage records from mobility-as-a-service platforms, operator datasets, or municipal
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traffic sensors—would enable more accurate calibration of utility functions. Attributes
that were not statistically significant in this study, potentially due to survey fatigue or
task complexity, could be re-examined through simplified or focused survey designs
that isolate these variables. Moreover, alternative modelling approaches such as Latent
Class Models could be employed to reveal hidden traveller segments with differing
sensitivities that are not visible in aggregate analysis.

Another priority is improving the behavioural realism of the simulation framework.
The current digital twin relies on static and deterministic assumptions, whereas future
iterations should incorporate stochastic service availability, and capacity-constrained
assignment. Such enhancements would better capture real-world conditions such as
temporary vehicle shortages, surge effects during peak hours, or weather-induced ser-
vice disruptions. Agent-based or micro-simulation methods could further enrich the
analysis by modelling individual-level heterogeneity, adaptive re-routing, and direct
interactions with hub infrastructure.

Finally, future studies should broaden the policy scope beyond infrastructure and
travel attributes. Policies such as dynamic tolling or low-emission zone charges, when
combined with mobility hub design, could be tested for their synergistic effects. The
role of bundled mobility services—for example, integrating e-scooter access with train
subscriptions—also warrants further investigation. Equally, behavioural interventions
such as nudges, default settings, and loyalty programmes should be studied as po-
tentially powerful tools to influence less conscious travel decisions. In addition, the
interaction between mobility hubs and larger regulatory measures, such as the intro-
duction of zero-emission or car-free zones, could be examined to understand their joint
impact on system performance.

Together, these recommendations highlight the importance of combining richer datasets,
advanced modelling techniques, and integrative policy analysis. Advancing along
these lines would bridge the gap between theoretical models and practical implemen-
tation, positioning mobility hubs not merely as infrastructure but as strategic instru-
ments for reducing emissions, enhancing accessibility, and shaping equitable urban
mobility futures. By linking individual behavioural insights with system-level out-
comes, this thesis moves beyond traditional hub studies and provides actionable evi-
dence for designing zero-emission zones around airports and city centres.
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A. NGENE Syntax

design

;alts = Walk, Bike, Shared_Bike, Shared_E-Car, Shared_E-Scooter, ZE_Bus

;rows = 8

;orth = sim

;model:

U(Walk) = ASC_Walk /

U(Bike) = ASC_Bike /

U(Shared_Bike) = ASC_Shared_Bike + b_cost*cost[0,1] /

U(Shared_E-Car) = ASC_Shared_E-Car + b_cost*cost /

U(Shared_E-Scooter) = ASC_Shared_E-Scooter + b_cost*cost /

U(ZE_Bus) = b_cost*cost + b_PT_Freq*PT_Freq[5,10]
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B. Survey

One out four blocks of the survey is attached on the next pages as an example:
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Type text here













































C. Base Model Code

Listing C.1: Python code used for base model estimation
# I m p o r t i n g p a c k a g e s

import numpy as np
import pandas as pd
import biogeme
import biogeme . database as db
import biogeme . biogeme as bio
from biogeme import models
import biogeme . t o o l s as t o o l s
from biogeme . express ions import Beta , Var iab le , log , exp
import pandas as pd
import numpy as np
import math
import datetime
import os

# l o a d i n g d a t a f rame
df = pd . read csv ( ” d f f i n a l . csv ” )

# C r e a t i n g g e n e r a l d a t a b a s e
database = db . Database ( ’ Survey answers ’ , df )

# D e f i n i n g v a r i a b l e s
globals ( ) . update ( database . v a r i a b l e s )

# D e f i n i n g b e t a s
ASC walk = Beta ( ’ ASC walk ’ , 0 , None , None , 0 )
ASC bike = Beta ( ’ ASC bike ’ , 0 , None , None , 0 )
ASC shared bike = Beta ( ’ ASC shared bike ’ , 0 , None , None , 0 )
ASC shared escooter = Beta ( ’ ASC shared escooter ’ , 0 , None , None , 0 )
ASC shared ecar = Beta ( ’ ASC shared ecar ’ , 0 , None , None , 0 )

b e t a c o s t = Beta ( ’ b e t a c o s t ’ , 0 , None , None , 0 )
be ta wai t t ime bus = Beta ( ’ be ta wai t t ime bus ’ , 0 , None , None , 0 )
b e t a t r a v e l t i m e = Beta ( ’ b e t a t r a v e l t i m e ’ , 0 , None , None , 0 )
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# D e f i n i n g u t i l i t y f u n c t i o n s

V walk = ( ASC walk + b e t a t r a v e l t i m e * TT0 )

V bike = ( ASC bike + b e t a t r a v e l t i m e * TT1 )

V shared bike = ( ASC shared bike + b e t a t r a v e l t i m e * TT2+
b e t a c o s t * TC2 )

V shared escooter = ( ASC shared escooter +
b e t a t r a v e l t i m e * TT3 +
b e t a c o s t * TC3 )

V shared ecar = ( ASC shared ecar +
b e t a t r a v e l t i m e * TT4 +
b e t a c o s t * TC4 )

V ze bus = ( b e t a t r a v e l t i m e * TT5 +
b e t a c o s t * TC5+ beta wai t t ime bus * WT5)

# A s s o c i a t e u t i l i t y f u n c t i o n s with t h e a l t e r n a t i v e s
V = {0 : V walk , 1 : V bike , 2 : V shared bike , 3 : V shared escooter ,

4 : V shared ecar , 5 : V ze bus}

# D e f i n e Biogeme V a r i a b l e s
avai l walk = Var iab le ( ’ ava i l walk ’ )
a v a i l b i k e = Var iab le ( ’ a v a i l b i k e ’ )
a v a i l s h a r e d b i k e = Var iab le ( ’ a v a i l s h a r e d b i k e ’ )
a v a i l s h a r e d e s c o o t e r = Var iab le ( ’ a v a i l s h a r e d e s c o o t e r ’ )
a v a i l s h a r e d e c a r = Var iable ( ’ a v a i l s h a r e d e c a r ’ )
a v a i l z e b u s = Var iab le ( ’ a v a i l z e b u s ’ )

# D e f i n e a v a i l a b i l i t y d i c t i o n a r y l i n k e d t o e a c h a l t e r n a t i v e
av = {

0 : avai l walk ,
1 : a v a i l b i k e ,
2 : a v a i l s h a r e d b i k e ,
3 : a v a i l s h a r e d e s c o o t e r ,
4 : a v a i l s h a r e d e c a r ,
5 : a v a i l z e b u s

}
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# The c h o i c e model i s a l o g i t model wi th a v a i l a b i l i t y c o n d i t i o n s
logprob = models . l o g l o g i t (V, av , choice )

# D e f i n e t h e Biogeme o b j e c t
biogeme = bio .BIOGEME( database , logprob )

# S e t t i n g r e p o r t i n g f i l e s
biogeme . g e n e r a t e p i c k l e = Fa l se
biogeme . generate html = True
biogeme . s a v e I t e r a t i o n s = True

#Naming and e s t i m a t i n g t h e model
biogeme . modelName = ” Base model”

r e s u l t s = biogeme . es t imate ( )

# Get g e n e r a l s t a t i s t i c s and e s t i m a t e d p a r a m e t e r s
print ( r e s u l t s . p r i n t G e n e r a l S t a t i s t i c s ( ) )
pandasResults = r e s u l t s . getEst imatedParameters ( )
display ( pandasResults )
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D. Final Model Code

This appendix includes the complete Python code for Final Model.

#Importing packages

import numpy as np

import pandas as pd

import biogeme

import biogeme.database as db

import biogeme.biogeme as bio

from biogeme import models

import biogeme.tools as tools

from biogeme.expressions import Beta, Variable , log, exp

import pandas as pd

import numpy as np

import math

import datetime

import os

#loading data frame

df = pd.read_csv("df_final.csv")

#Creating general database

# ------------------

# Setup for dataset

# ------------------

filtered_df_4 = df[(df[’PreferNotSay_Age’] != 1) & (df[’Emp_PreferNotSay’] != 1)

.copy()

filtered_df_4[’Emp_PartTimeOrUnemployed’] = filtered_df_4[’Emp_PartTime’] +

filtered_df_4[’Emp_Unemployed’]

filtered_df_4[’Emp_PartTimeOrUnemployed’] = filtered_df_4[’Emp_PartTimeOrUnemployed’]

.clip(upper=1)

database = db.Database("Final_Model_4", filtered_df_4)

globals().update(database.variables)

# ---------------

# Variable Setup

# ---------------

TT0, TT1, TT2, TT3, TT4, TT5 = Variable(’TT0’), Variable(’TT1’), Variable(’TT2’),
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D. Final Model Code

Variable(’TT3’), Variable(’TT4’), Variable(’TT5’)

TC2, TC3, TC4, TC5 = Variable(’TC2’), Variable(’TC3’), Variable(’TC4’),

Variable(’TC5’)

WT5 = Variable(’WT5’)

choice = Variable(’choice’)

# Availability

av = {

0: avail_walk,

1: avail_bike,

2: avail_shared_bike,

3: avail_shared_escooter,

4: avail_shared_ecar,

5: avail_ze_bus

}

# Constants

ASC_shared_bike = Beta(’ASC_shared_bike’, 0, None, None, 0)

ASC_shared_escooter = Beta(’ASC_shared_escooter’, 0, None, None, 0)

ASC_shared_ecar = Beta(’ASC_shared_ecar’, 0, None, None, 0)

beta_wait_time_bus = Beta(’beta_wait_time_bus’, 0, None, None, 0)

# ----------------------

# Weather Interactions

# ----------------------

beta_tt_weather_rainy = Beta(’beta_tt_weather_rainy’, 0, None, None, 0)

beta_cost_weather_rainy = Beta(’beta_cost_weather_rainy’, 0, None, None, 0)

beta_cost_weather_sunny = Beta(’beta_cost_weather_sunny’, 0, None, None, 0)

# ------------------

# Age Interactions

# ------------------

beta_travel_time_age_18_24 = Beta(’beta_travel_time_age_18_24’, 0, None, None, 0)

beta_travel_time_age_25_29 = Beta(’beta_travel_time_age_25_29’, 0, None, None, 0)

beta_travel_time_age_30_39 = Beta(’beta_travel_time_age_30_39’, 0, None, None, 0)

# Employment Interactions

# ----------------------

beta_tt_emp_fulltime = Beta(’beta_tt_emp_fulltime’, 0, None, None, 0)

beta_tt_emp_student = Beta(’beta_tt_emp_student’, 0, None, None, 0)

beta_cost_emp_student = Beta(’beta_cost_emp_student’, 0, None, None, 0)

beta_tt_comfort_high = Beta(’beta_tt_comfort_high’, 0, None, None, 0)

beta_tt_comfort_mid = Beta(’beta_tt_comfort_mid’, 0, None, None, 0)
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# Define blocks

def weather_block(TT, TC):

return (

beta_tt_weather_rainy * TT * rainy + beta_cost_weather_rainy * TC * rainy +

beta_cost_weather_sunny * TC * sunny

)

def age_block(TT, TC):

return (

beta_travel_time_age_18_24 * TT * Age_18_24 +

beta_travel_time_age_25_29 * TT * Age_25_29 +

beta_travel_time_age_30_39 * TT * Age_30_39

)

def comfort_block(TT,TC):

return (

beta_tt_comfort_high * TT * Comfort_High +

beta_tt_comfort_mid * TT * Comfort_Mid

)

def employment_block(TT, TC):

return (

beta_tt_emp_fulltime * TT * Emp_FullTime +

beta_tt_emp_student * TT * Emp_Student +

beta_cost_emp_student * TC * Emp_Student

)

# Define utilities

V = {

0: weather_block(TT0, 0)+age_block(TT0, 0)+comfort_block(TT0,0)

+employment_block(TT0, 0),

1: weather_block(TT1, 0)+age_block(TT1, 0)+comfort_block(TT1,0)

+employment_block(TT1, 0),

2: ASC_shared_bike + weather_block(TT2, TC2)+age_block(TT2, TC2)+comfort_block(TT2,TC2)

+employment_block(TT2, TC2),

3: ASC_shared_escooter + weather_block(TT3, TC3)+age_block(TT3, TC3)

+comfort_block(TT3,TC3)+employment_block(TT3, TC3),

4: ASC_shared_ecar + weather_block(TT4, TC4)+age_block(TT4, TC4)+comfort_block(TT4,TC4)

+employment_block(TT4, TC4),

5: weather_block(TT5, TC5)+age_block(TT5, TC5)+comfort_block(TT5,TC5)

+employment_block(TT5, TC5)+ beta_wait_time_bus * WT5,

}

# Availability dictionary

av = {

0: avail_walk,

1: avail_bike,

2: avail_shared_bike,

3: avail_shared_escooter,

4: avail_shared_ecar,

5: avail_ze_bus
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}

# Model estimation

logprob = models.loglogit(V, av, choice)

biogeme = bio.BIOGEME(database, logprob)

biogeme.seed = 1234

biogeme.generate_pickle = False

biogeme.generate_html = True

biogeme.saveIterations = True

biogeme.modelName = "Final_Model_tTest"

Final_Model_results = biogeme.estimate()

# Output

print(Final_Model_results.printGeneralStatistics())

pandasResults = Final_Model_results.getEstimatedParameters()

display(pandasResults)
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E. Descriptive statistics

Figure E.1.: Gender distribution among respondents

Figure E.2.: Gender distribution among respondents vs CBS
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E. Descriptive statistics

Figure E.3.: Age distribution among respondents

Figure E.4.: Age distribution among respondents vs CBS
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Figure E.5.: Education distribution among respondents

Figure E.6.: Employment status distribution among respondents
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E. Descriptive statistics

Figure E.7.: Trip purpose distribution among respondents

Figure E.8.: Primary mode distribution among respondents
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Figure E.9.: Shared mobility usage frequency distribution among respondents
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E. Descriptive statistics

Figure E.10.: Comfort with digital transport apps distribution among respondents

Figure E.11.: Modal Share in survey answers

126



Figure E.12.: Modal choice distribution by gender.

Figure E.13.: Modal choice distribution by age group.
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E. Descriptive statistics

Figure E.14.: Modal choice by education level.

Figure E.15.: Modal choice by employment status.
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Figure E.16.: Modal choice by digital comfort level.

Figure E.17.: Modal choice by travel purpose.
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Figure E.18.: Self-reported primary mode vs. task-level choice.

Figure E.19.: Modal choice by frequency of shared transport use.
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Figure E.20.: Modal choice by weather.

Figure E.21.: Modal choice by distance.
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F. Environmental Impact Maps:
Mobility Hub Intervention
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Figure F.1.: Change in PM2.5 concentration (µg/m3) due to the mobility hub scenario.

Figure F.2.: Change in PM10 concentration (µg/m3) between scenarios.
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