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Abstract

In industrial environments robots are used for various tasks. At this moment it is not feasible
for companies to deploy robots for productions with a limited batch size or for products with
large variations. The use of robots for such environments can become feasible through a new
generation of robots and software which can adapt quickly to new situations and learn from
their mistakes while being programmable without needing an expert.

A concept that can enable the transition to flexible robotics is the combination of imitation
learning and reinforcement learning. The purpose of imitation learning is to learn a task
by generalizing from observations. The power of imitation learning is that the robot is pro-
grammed in an intuitive way while the insight of the teacher is incorporated in the execution
of the task.

This research studies the combination of imitation and reinforcement learning, the research
is applied to an industrial use-case. The research question of this study is: "Can imitation
learning be combined with reinforcement learning to achieve a successful application in an
industrial robotic precision placement task?"

To imitate the demonstrated trajectories, Dynamic Movement Primitives (DMPs) are used.
The DMPs are used to encode the observed trajectories. DMPs can be seen as a spring-
damper like system with a non-linear forcing term. The forcing term is a sum of Gaussian
basis functions with each its corresponding weight. Reinforcement learning can be applied to
these weights to alter the shape of the trajectory created by a DMP. Policy Gradients with
Parameter based Exploration (PGPE) is used as reinforcement learning algorithm to optimize
the recorded trajectories.

Experiments done on a UR5 show that without the learning step, the DMPs are able to
provide a trajectory that results in a successful execution of a robotic precision placement
task. The experiments also show that the learning algorithm is not able to remove noise from
a demonstrated trajectory or complete a partial demonstrated trajectory. Therefore it can
be concluded that the PGPE algorithm is not suited for reinforcement learning in robotics in
its current form. It is therefore recommended to apply a data-efficient version of the PGPE
algorithm in order to achieve better learning results.

Master of Science Thesis I.T. van der Spek



ii

I.T. van der Spek Master of Science Thesis



Table of Contents

Preface vii

Acknowledgements ix

1 Introduction 1

2 Background information 5
2.1 Movement primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Imitation learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Imitation Learning based on Dynamic Movement Primitives . . . . . . . . 7
2.2.2 Imitation Learning based on Gaussian Mixture Models . . . . . . . . . . 8
2.2.3 Imitation Learning based on Hidden Markov Models . . . . . . . . . . . . 10
2.2.4 Imitation Learning based on other techniques . . . . . . . . . . . . . . . 11

2.3 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Reinforcement learning in robotics . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Inverse reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Preference-based reinforcement learning . . . . . . . . . . . . . . . . . . 15
2.3.4 Data-efficient reinforcement learning . . . . . . . . . . . . . . . . . . . . 16

3 Encoding trajectories in Dynamic Movement Primitives 19
3.1 Description of Dynamic Movement Primitives . . . . . . . . . . . . . . . . . . . 19
3.2 How to encode a trajectory in a DMP . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Combination of DMPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Policy Gradients with Parameter based Exploration 23
4.1 Dynamic Movement Primitive as a parameterized policy . . . . . . . . . . . . . . 23
4.2 Basic parameter-exploring policy gradients . . . . . . . . . . . . . . . . . . . . . 24
4.3 Symmetric sampling parameter-exploring policy gradients . . . . . . . . . . . . . 26
4.4 Dealing with small initial costs and a final reward . . . . . . . . . . . . . . . . . 27

Master of Science Thesis I.T. van der Spek



iv Table of Contents

5 Combination of policy search and imitation learning 29
5.1 Initializing policy search with imitation learning . . . . . . . . . . . . . . . . . . 29

5.1.1 DMPs and policy search . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.2 2-DoF example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Optimizing sequences of Dynamic Movement Primitives . . . . . . . . . . . . . . 31

6 Use-case description: precision placement task 35
6.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2.1 Desired situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.3 Benefits of imitation learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Implementation for use-case 39
7.1 Encoding the trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.1.1 Gathering trajectory data . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.1.2 Conversion from axis-angle representation to roll, pitch, yaw . . . . . . . 41
7.1.3 Conversion to ROS format . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.1.4 Applied DMPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.1.5 Splitting the trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.2 Application of PGPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2.1 Instances of PGPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2.2 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.3 Controlling the UR5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3.1 Control of the UR5 in ROS . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3.2 Rotation conversion from UR5 to ROS . . . . . . . . . . . . . . . . . . . 45
7.3.3 Executing a path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8 Experiments 49
8.1 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.2 Placement of cover part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8.2.1 Test method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.2.2 Results of normal demonstration . . . . . . . . . . . . . . . . . . . . . . 53
8.2.3 Results of noisy demonstration . . . . . . . . . . . . . . . . . . . . . . . 56
8.2.4 Results of partial demonstration . . . . . . . . . . . . . . . . . . . . . . 59
8.2.5 Results of shifted goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.3 Placement of connection cover part . . . . . . . . . . . . . . . . . . . . . . . . . 61

9 Conclusions & future work 65
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

I.T. van der Spek Master of Science Thesis



Table of Contents v

A Robot Operating System 69
A.1 Filesystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.2 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.3 Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.3.1 Gazebo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.3.2 RVIZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B MoveIt! 73

C Axis-angle to roll, pitch, yaw 75
C.1 Axis-angle rotation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
C.2 RPY rotation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
C.3 Converting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

D DSPE Conference 2014 proceedings 77

E Software variables 83
E.1 DMP package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
E.2 PGPE package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
E.3 Precision placement executive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Bibliography 85

Glossary 93
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Master of Science Thesis I.T. van der Spek



vi Table of Contents

I.T. van der Spek Master of Science Thesis



Preface

The master thesis in front of you is the written result of the research I performed for my
master graduation project in the last nine months.

The idea of doing my thesis on this subject came after I was hired as a graduate student
at Alten Nederland. The global idea of doing my thesis on ‘Programming by Example’ was
proposed by my colleagues Heico Sandee and Simon Jansen. During my literature study and
after some fruitful discussions with Simon and Jeroen, my daily supervisor, the project got the
direction and shape it now has. After taking a tour trough the factory at Philips Consumer
Lifestyle a suitable use-case was found regarding one of the processes in the factory. This all
together gave enough challenge and material for a master graduation project.

For me, this was the first time working with (industrial) robot arms and the first real contact
with the industry outside the academic world. I learned an incredible amount about robotics
and the applications in industry. This made that my enthusiasm and interest for the field of
robotics has grown strongly and is still growing.

I’m also very pleased that the abstract about the first findings of this research has been
accepted at the DSPE Conference 2014. For the interested reader the extended abstract
that will be published in the proceedings of the conference can be found in Appendix D.
The abstract and associated talk are titled: ‘Flexible industrial robotics through imitation
learning.’

I hope you will become as enthusiastic about robotics as I am while reading this thesis. Enjoy
all the hard work I put in creating this document!
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“Only those who attempt the absurd will achieve the impossible. I think it’s in
my basement... let me go upstairs and check.”
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Chapter 1

Introduction

In industrial environments robots are used for various tasks. At this moment it is not feasible
for companies to deploy robots for productions with a limited batch size or for products
with large variations. The current generation of robots is highly inflexible; therefore many
repetitive tasks are still performed by humans. Current robots essentially have an insufficient
level of intelligence: the robots are programmed at controller level and not at task level.
Typically, a fixed sequence of actions is programmed, and robots do not learn from their
mistakes or optimize their behaviour over time. Furthermore, a robot expert is still needed
to program the robot. A solution to these challenges would be a new generation of robots
and software which can adapt quickly to new situations and learn from their mistakes while
being programmable without needing an expert.

A concept that can enable the transition to flexible robotics was already introduced in the
1980s: ‘Programming by Example’ [1]. Which is also called Programming by Demonstration
(PbD), Learning from Demonstration (LfD) or Imitation Learning. These terms cover meth-
ods "by which a robot learns new skills through human guidance and imitation" [2]. Imitation
learning is derived from how humans monitor actions of other individuals to attain knowledge
[3]. The purpose of imitation learning is to perform a task by generalizing from observations
[4]. Throughout this thesis the term imitation learning will be used.

When introduced in the 80s, imitation learning was called guiding [5]. In guiding the user
moves the robot(arm) to desired positions while the trajectory is recorded. In this way
an exact copy of the demonstrated trajectory is reproduced. Today this method is most
referred to as teach-in [6]. Teach-in, also called kinesthetic teaching, is the input method
for the state-of-the-art robots like the UR5 from Universal Robotics or Baxter from Rethink
Robotics. In most systems teach-in is only used for storing way-points or trajectories, like the
aforementioned guiding. Although the task is learned trough a form of imitation, the robot is
not able to generalize and thus it is doubtful to speak about imitation learning. Baxter is an
exception to this in the sense that it uses vision to cope with uncertainties in the environment
e.g. coping with different locations of the object that has to be picked up. The downside of
teach-in as input method is, that it is hard to move all the joints of the robot in the right way
especially with bigger robots like Baxter. This might result in a trajectory that is suboptimal
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or includes unnecessary moves. In most industrial robots there is even no teach-in mode
available because the robot is too big for doing teach-in, this might even lead to safety issues.

Besides teach-in there are currently more input methods used in research labs like teleopera-
tion where the robot is moved by means of a remote control, motion-sensors or, vision-based
methods to track the movements of the body of the demonstrator.

When looking into an input method for imitation learning, the question ofWhat to imitate? is
treated. According to [2] three other questions can also be asked regarding imitation learning:
How to imitate?, When to imitate? and Whom to imitate to?. The how question focusses on
how to execute actions such that the robot reproduces the behavior that was demonstrated.
The other two questions respectively treat at which moment to imitate and who the target
of the learned task is. Only the first two questions are addressed in research up till now [2].
This thesis will mainly focus on the How to imitate? question.

As indicated in the beginning, imitation learning sounds promising regarding flexible robots
in industrial settings. However when we look at what is happening in industrial practice,
there is no significant role played by imitation learning. Most researches are also not focussed
on industrial applications but on humanoid robots for personal applications. An exception to
this is some work of Kober and Calinon e.g. [7] and [8]. This thesis will focus on imitation
learning in an industrial setting and more specifically imitation learning for a robotic precision
placement task.

Important concerns when applying imitation learning in an industrial task are: an operator
has to be able to teach the robot, the robot should improve the demonstration in order to
achieve a more efficient execution of the task, and preferably the learning should need as
few demonstrations as possible. The advantage of doing few demonstrations is that few hu-
man interactions are needed. To achieve a more efficient execution of the task, reinforcement
learning is combined with the aforementioned imitation learning in order to improve on the
demonstration. The research question for this thesis is: "Can imitation learning be com-
bined with reinforcement learning to achieve a successful application in an industrial robotic
precision placement task?"

However, learning a robot skill is a complex and high-dimensional task [9]. In this thesis three
methods are combined to reduce the complexity of learning a robot skill. The first method
is reducing the dimensionality of the task by using Dynamic Movement Primitive (DMP)
to encode the skill [10]. These DMPs are initialized by imitation learning through giving a
demonstration, which is the second method. The third method is the use of a policy gradient
method: Policy Gradients with Parameter based Exploration (PGPE) which is suited for
complex, high dimensional reinforcement learning problems [11]. The purpose of this thesis is
to combine these methods to achieve an easy way to program a robot for a precision placement
task.

This thesis has two main contributions to the existing work. The first contribution of this
thesis is the policy gradient algorithm which has not been combined with imitation learning
before. The policy gradient algorithm is modified to be used in combination with imitation
learning and to suit the use case. The second contribution is the combination of imitation
and reinforcement learning being applied in an industrial use-case.
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In the remainder of this thesis, the above concepts are explained and applied to a use-case.
Therefore this thesis is structured as follows: in Chapter 2 background information is given on
movement primitives, imitation and reinforcement learning. Chapter 3 explains how DMPs
can be used for encoding trajectories. Subsequently in Chapter 4 the policy gradient algorithm
is elaborated on. In Chapter 5 it is explained how imitation learning is used to initialize the
policy search algorithm. Then in Chapter 6 the use-case that forms the basis of this thesis
is explained. The theory of the above mentioned chapters is then applied to the use-case in
Chapter 7. The results of the experiments that are done in relation to the use-case are given
in Chapter 8. Finally in Chapter 9 the conclusions are drawn and some directions for future
work are given.
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Chapter 2

Background information

This chapter presents the work that is described in literature related to imitation and re-
inforcement learning. This chapter starts in Section 2.1 by explaining the theory behind
movement primitives which is a principle that is used as a basis for imitation learning in
many papers. Subsequently in Section 2.2 the work on imitation learning is reviewed. Finally
in Section 2.3 the work in reinforcement learning (for robotics) will be elaborated on.

2.1 Movement primitives

Movement primitives is a concept used as a basis in several studies concerning imitation
learning. A movement primitive, also called motor primitive, is derived from the complex
movement skills that are found in nature. Complex movement skills are combinations of
movement primitives [12]. These movement primitives can be seen as units of actions, basis
behaviors or motor schemas [13]. In 2003 Schaal recognized that movement primitives were
a possibility for robots to cope with the complexity of motor control and motor learning [13].
Therefore the concept of Dynamic Movement Primitive (DMP) was introduced, a concept
that can be used for imitation learning.

There are two kinds of DMPs: point attractive systems and limit-cycle systems. These are
used to represent discrete and rhythmic movement plans respectively. A DMP consists of
two sets of equations a canonical system and a transformation system. The transformation
system is given by:

τ v̇ = αv(βv(g − x)− v) + f(s)
τ ẋ = v

(2-1)

Which is a damped spring model with nonlinear terms. Here τ is a time constant and αv and
βv are positive constants. They represent spring stiffness and damping respectively. g is the
generalized goal position, x is the generalized current position and v is the generalized velocity.
Depending on the choice of f(s) the system can be made point attractive or oscillatory. This
function f(s) is called the forcing term.
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6 Background information

Discrete movement plans For discrete movement plans the canonical system is defined by:

τ ṡ = −αss (2-2)

Here αs is a predefined constant and s is the phase variable. This phase variable is used
instead of time to make the dependency of the resulting control policy on time more implicit.
This canonical system is used to replace the time component and models a generic behavior
of the model equations. The forcing term f is defined as:

f(s) =
∑N
i=1 Ψi(s)wi∑N

i=1wi
s(g − x0) (2-3)

Where Ψi(s) is a basis function given by:

Ψi(s) = exp
(
− 1

2σ2
i

(s− ci)2
)

(2-4)

Here σi and ci are constants that determine the width and centers of the basis functions. x0
in Equation (2-3) is the initial state. The parameters wi in Equation (2-3) can be adjusted
using learning algorithms in order to produce complex trajectories [10, 13].

Rhythmic movement plans For the rhythmic movement plans the canonical system, the
forcing term and the basis functions differ from the ones given for the discrete movement
plans. The canonical system is given by:

τ φ̇ = 1 (2-5)

here φ is the phase angle of the oscillator in polar coordinates and the amplitude of the
oscillation is r. The forcing term and the basis function are given by:

f(φ, r) =
∑N
i=1 Ψiwi∑N
i=1 Ψi

r (2-6)

Ψi = exp(hi(cos(φ− ci)− 1)) (2-7)

The basis functions are now gaussian-like functions that are periodic. The amplitude and
period of the oscillations can be modulated by varying r and τ [10, 13].

DMPs have however several drawbacks when they are generalized to other contexts than the
context that was used to learn the DMP [14]. The first drawback is that if the start and
goal position, x0 and g, of a movement are the same, the system will stay at x0. The second
drawback is that if g−x0 is close to zero, a small change in g may lead to huge accelerations.
The third drawback is that when a movement adapts to a new goal and the new goal is in
the opposite direction of the old goal, the resulting generalization is mirrored. Therefore [14]
modifies the DMPs by replacing the structure of the aforementioned transformation system.
In order to prevent the huge accelerations, first order filtering can be applied to the goal
change [10].

A different approach to movement primitives was taken in [15] where the behaviors underlying
in human motion data are extracted. Peformance-Derived Behavior Vocabularies (PDBV) are
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2.2 Imitation learning 7

used to design a repertoire of skills. Here a skill can be either a primitive or a meta-level
behavior. A primitive behavior has the ability to provide a prediction about the vector
direction given a certain point in the joint angle space. A meta-level behavior is a sequential
model of transitioning between a set of primitives. A PDBV assumes that there is a spatial-
temporal structure in the data in order to extract behaviors. So the problem of finding
behaviors can be seen as a problem of finding a spatio-temporal structure in the data.

2.2 Imitation learning

As indicated in Chapter 1, in the literature several terms are used to describe imitation learn-
ing. The most common terms are Programming by Example, Programming by Demonstration,
Learning from Demonstration and Imitation Learning. Furthermore the term apprenticeship
learning is used, this term has however multiple meanings in the literature, see also Sec-
tion 2.3.2.

This section will first describe imitation learning based on the DMPs described in Section 2.1
in Section 2.2.1. Subsequently in Section 2.2.2 imitation learning based on Gaussian Mixture
Models is explained. Then in Section 2.2.3 Hidden Markov Models are used as a basis for
imitation learning. Finally in Section 2.2.4 other techniques that are used for imitation
learning are described.

2.2.1 Imitation Learning based on Dynamic Movement Primitives

There are two levels where learning can be performed: learning the DMP itself and learning
a task using DMPs. The first can be achieved by finding the parameters wi of the non-
linear function f that is part of every DMP [16] as can be seen in Equation (2-6). The
goal is to reproduce the demonstration of the teacher [17]. The movement primitive is used
as a parameterized policy π(θ) where the parameters θ are given by the weights wi. The
parameters are learned through Locally Weighted Regression (LWR) [16, 18, 19, 20]. The
weights are estimated such that the error J =

∑T
t=1(ftarget(x(t)) − f(x(t)))2 is minimized

[18, 21].

For the learning of tasks using DMPs it is assumed that there is already some kind of library
of DMPs available [17, 18, 19]. In [18] the library is used to recognize which of the primitives
in the library is present in the observed trajectory. If there is no primitive found in the library
that matches a segment of the observed trajectory, it is added to the library.

Another way of using the library is generating a new movement by computing a weighted
average of all movement primitives in a library. The movement primitive is saved as a motor
policy πi(θ) in a library, where θ is the augmented state as mentioned above. The Mixture
of Motor Primitives generates a new movement according to the motor policy given by:

π(x) =
∑L
i=1 γi(δ)πi(x)∑L

i=1 γi(δ)
(2-8)

Here γi(δ) generates the weights and x = [s, δ] is the augmented state. Here s is the state and
δ are additional parameters like final state and duration of the movement. All weights γi(δ)
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8 Background information

together form a gating network. This gating network gives high weights to relevant movement
primitives while bad-suited movement primitives get low weights. So the mixture of motor
primitives selects primitives from the library based on the state x [17, 19].
A third approach is proposed by [22] which automatically creates Petri nets based on observed
demonstrations. Petri nets consist of places and transitions. Places represent states in the
system while transitions represent actions. The action recognition is done by using DMPs in
combination with affinity propagation. The affinity propagation algorithm is used to cluster
the weight parameters of the DMPs to identify similar motions and selects one motion to
represent a cluster. When a motion has finished, the motion is modeled by a DMP and then
identified using the affinity propagation algorithm. If the motion is new, it is added as a new
transition in the Petri net. The state of each object is represented by a place in the Petri net.
By using a Petri net, new ways of performing a task can be included [22, 23].

2.2.2 Imitation Learning based on Gaussian Mixture Models

This subsection will describe the use of Gaussian Mixture Model (GMM) in imitation learn-
ing. Therefore first is explained what GMMs are, then how they are used and finally some
variations on GMM will be shown.

Gaussian Mixture Models

A GMM is a method to model the joint distribution of an ‘input’ and ‘output’ variable [24].
It is a parametric probability density function represented as a weighted sum of Gaussian
component densities [25]. A dataset of N datapoints of D dimensions is encoded in a GMM
of M Gaussian densities [25, 26]. This can be written as [27]:

p(xi) =
M∑
k=1

πkp(xi|k) with p(xi|k) ∼ N (xi;µk,Σk) (2-9)

such that
∑M
k=1 πk = 1 and

N (xi;µk,Σk) = 1√
(2π)D|Σk|

exp(−1
2(xi − µk)TΣ−1

k (xi − µk)) (2-10)

which is a Gaussian function with mean vector µk and covariance matrix Σk [24, 25, 26, 27, 28].
Where xi is the time series of all demonstrations defined in the chosen task space and πk is
the prior matrix. The mean vector µk and covariance matrix Σk can be separated into their
respective input (ζ) and output(ξ) components:

µk = [µTk,ζ µTk,ξ]T (2-11)

Σk =
[

Σk,ζ Σk,ζξ

Σk,ξζ Σk, ξ

]
(2-12)

The GMM can be trained by using demonstration data as training data [24]. After training
it is possible to recover the expected output variable ξ̃ given the input variable ζ [28].

ξ̃ =
M∑
k=1

hk(ζ)(µk,ξ + Σk,ξζΣ−1
k,ζ(ζ − µk,ζ)) (2-13)
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where
hk(ζ) = πkN (ζ;µk,ζ ,Σk,ζ)∑M

k=1 πkN (ζ;µk,ζ ,Σk,ζ)
(2-14)

Thus given a certain output, the GMM is able to produce an estimate of the output whereby
this last step is called Gaussian Mixture Regression (GMR).

How GMMs are used

As is explained above, GMMs are used to make an estimate of the output based on the input.
This process which is called GMR, can be used to retrieve smooth generalized trajectories. In
the case of trajectory learning the regression process estimates a generalized trajectory based
on a set of trajectories used to train the model [26, 27]. The power of GMR is that it offers
a way of extracting a single generalized trajectory from a set of trajectories that are used to
train the model where the generalized trajectory is not part of the dataset but encapsulates
all of its essential features [26].

One way to encode a trajectory or motion in a GMM is to take the time as input variable
ζ and the velocity as output variable ξ [28]. Then the movement is modeled as a velocity
profile:

ẋm = F̃ẋ(t) (2-15)

Whereby ẋm is the velocity of the end-effector. F̃ẋ is obtained by applying GMR. Another
way is to encode the trajectory to take the position x and velocity ẋ as inputs and the
acceleration ẍ as an output. The trajectory can now be seen as a second order system of the
form

ẍm = F̃ẍ(x, ẋ) (2-16)

Then also GMR is applied to obtain F̃ẋ. These obtained values are used to modulate a
spring-and-damper dynamical system. This spring-and-damper system is used to enable a
robotic arm with n joints to reproduce a task with sufficient flexibility [24, 28].

The demonstrations can also be assumed to be instances of a stable dynamical system [29, 30],
which is almost the same as Equation (2-16):

ẋ = f(x) with f(x∗) = 0 (2-17)

Where f(x) can be encoded using a GMM using the Stable Estimator of Dynamical Systems
(SEDS) algorithm [31]. Once the GMM is learned, performing GMR yields an estimate f̂ of
the dynamical system.

Donut Mixture Model

In order to perform learning from failure the Donut distribution is introduced by [32]. The
motivation for learning from failure is that that the assumption that the demonstration is
successful is very strong. A Donut distribution is a difference between two Gaussians:

D(x|µα, µβ,Σα,Σβ, γ) = γN (x|µα,Σα)− (γ − 1)N (x|µβ,Σβ) (2-18)
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where γ > 1 and the priors must sum to 1. The aim of a Donut distribution is to find a good
trajectory in the covariance space between the two Gaussian distributions [33]. This leads to
the Donut Mixture Model (DMM). The DMM is used to generate novel trajectories [33].

A GMM is built from human demonstrations and the maximum of the corresponding DMM
is found. There is no analytical solution to finding the maximum of a DMM therefore an
optimization technique has to be used. In [32] gradient ascendant is proposed to find a
maximum around an initial guess. An improvement is introduced by [33] which uses the
Broyden-Fletcher-Goldfarb-Shanno algorithm. This is a quasi-Newton optimization method
that iteratively approximates the Hessian to converge to the solution. This method assures
fast convergence in several situations and it avoids calculation of second-order information.

In order to be able to use more than one demonstration for learning, a MultiDonut distribution
is introduced [34]. This MultiDonut distribution replaces the individual Donut distributions.
Thus instead of using k distributions with k holes just one distribution with k holes is used.
Whereby the holes model the failed demonstrations. The MultiDonut can eliminate regions
of parameters that lead to failure and remains in the region that leads to success.

2.2.3 Imitation Learning based on Hidden Markov Models

In [35] two Hidden Markov Models (HMMs) are used to capture and learn movements. These
HMMs act at two levels. One HMM is used to segment a set of sliding windows. Each
state of the HMM corresponds to a window, each change of state corresponds to a segment
point. This HMM decomposes the incoming data stream into short segments of time series
data that are potential motion primitives. The second HMM is used to group these segments
and extract a model for each group of similar segments. The HMM is used to abstract the
observation sequences. Thus each node in the HMM represents a group of similar motion
primitives. This results in a motion primitive graph as can be seen in Figure 2-1.

Figure 2-1: Example motion primitive graph [35].

Another approach is to encode the joint distribution P(x, ẋ) of position and velocity in a
HMM. The output distribution of each state is represented by a Gaussian locally encoding
variation and correlation information. The parameters of the HMM are Π, a, µ,Σ. Where Πi

is the initial probability of being in state i, aij is the probability of going from state i to state
j, µi and Σi represent the center and the covariance matrix of the i-th Gaussian distribution
of the HMM. A desired velocity is estimated through GMR. This estimation is extended
to recursively compute a likelihood through the HMM thereby also taking into account the
sequential information [36].
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2.2.4 Imitation Learning based on other techniques

There are a lot of other techniques that can be used to learn by imitation. This subsection
will only highlight a few of them.

Iterative Improvement An algorithm is proposed that learns user preferences over trajecto-
ries through interactive feedback from the user [37]. Because it learns in an iterative manner,
the user does not need to demonstrate an optimal trajectory. It is assumed that the user
has a scoring function s∗(x, y) that reflects how much a certain trajectory y is valued for
context x. However the user cannot provide this scoring function directly, the user provides
preferences that reflect the scoring function. The robot has to learn an approximation of the
scoring function of the user. There are two ways to give feedback to the robot: 1) the robot
displays a ranking of trajectories, the user can identify which is the best one or 2) through
an interface that allows the user to correct one of the waypoints.

Probabilistic trajectory matching The key idea of probabilistic trajectory matching is to
find a robot-specific policy such that the observed expert trajectories and the predicted robot
trajectories match. Probability distributions are used over the trajectories these represent
both the uncertainty about robot dynamics and the the variability of the demonstrations. The
similarity between these distributions is measured by the Kullback-Leibler (KL) divergence.
The objective is to find a policy that minimizes the KL divergence. This objective can be
rewritten in such a manner that reinforcement learning algorithms can be applied to find the
policy [38].

Approximate Policy Iteration In this method a mix of expert (LfD) and interaction (RL)
data is used. The method is formulated as a coupled constraint convex optimization in which
expert demonstrations define a set of linear constraints [39]. This optimization allows mistakes
in the demonstrations. The expert samples are used to shape the value function. If there
are few demonstrations, still a good generalization can be achieved due to the RL data. The
key advantage of this method is that it is not assumed that the expert demonstrations are
optimal.

Bayesian Network This approach incorporates both the concepts of GMM and DMP [40].
The GMM is used for autonomously segmenting the motion trajectories. The segmentation
points are estimated in temporally overlapping points between two consecutive Gaussians.
The set of segmented motion trajectories is then used to learn DMPs. Based on the situation
and the goal, the most appropriate DMP has to be selected. To learn the relationship between
task-relevant entities and motion primitives a Bayesian Network (BN) is used. The BN is
learned by clustering task-relevant entities based on criteria of the motion primitives. The
criterion used here is that the motion primitives have the same effect. The BNs are then used
to infer motions in a given situation.
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2.3 Reinforcement learning

This section will start of with work related to reinforcement learning in robotics in Sec-
tion 2.3.1. In Section 2.3.2 and Section 2.3.3 inverse reinforcement learning and preference-
based reinforcement learning, which are two special forms of reinforcement learning, will
respectively be presented. Finally in Section 2.3.4 an introduction to data-efficient reinforce-
ment learning will be given.

2.3.1 Reinforcement learning in robotics

This subsection will focus on Reinforcement Learning (RL) in robotics and thus not on RL
in general. The principle is not different but in robotics some challenges occur when applying
RL. A couple of challenges are: learning is applied to high-dimensional, continuous states
and actions; every trial run is costly; simulations are hard to use due to the big effect of small
modeling errors [6].

Theoretical background

RL is basically the process of learning from trial-and-error. By giving a reward or a pun-
ishment, the performance of the robot with respect to the desired goal is expressed. RL
adds three missing abilities to the existing techniques: learning new tasks which even a hu-
man teacher cannot demonstrate or program, learning to achieve an optimization goal of a
difficult problem by using only a cost function, and learning to adapt a skill to a new ver-
sion of a task [6]. The basis of RL can be written as finding a policy π(s, a) that gathers
maximal rewards R(s, a). Here s is the state and a the action. The policy can be written
as π(s, a) = f(a|s, θ) with parameters θ. RL then focusses on finding an optimal policy π∗
which maximizes the average return J(π)

J(π) =
∑
s,a

µπ(s)π(s, a)R(s, a) (2-19)

where µπ is the stationary state distribution generated by policy π acting in the environment
T (s, a, s′) = P (s′|s, a). This results in an optimization problem for J(π). It can be shown
that such policies that map states to actions are sufficient to ensure optimality. A policy
does not need to remember previous states visited, actions taken or the particular time step.
Optimizing in primal formulation is called policy search in RL while optimizing in the dual
formulation is called a value function-based approach [6]. The condition for optimality in the
dual formulation is:

V π∗ = max
a∗

[R(s, a∗)− R̄+
∑
s′

V ∗(s′)T (s, a∗, s′)] (2-20)

Where R̄ and V (s′) are Lagrange multipliers.

Value function-based approaches scale poorly to high dimensions, like robotics, as a good
representation of the value function becomes intractable. Furthermore even finding an optimal
solution can become a hard problem due to the high dimensionality. Therefore policy search
is more used in RL for robotics [6, 41]. In policy search RL a policy space which contains all
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2.3 Reinforcement learning 13

possible policies is used. This reduces the dimensionality and increases the convergence speed
compared to value function-based approaches [42]. There are three kind of policy search
approaches: 1) policy gradient approaches based on likelihood-ratio estimation, 2) policy
updates inspired by expectation maximization, and 3) path integral methods [6].

Learning Algorithms

In this subsection an overview of learning algorithms in robotics is given. This overview is a
small selection and by no means exhaustive.

Natural Actor-Critic The Natural Actor-Critic algorithm exploits the natural gradient for-
mulation [43]. The natural gradient is a gradient that is based on the Fisher information
metric, a metric in Riemann spaces. By proving that the Fisher information and all-action
matrix are the same, [43] derives the natural actor-critic algorithm. Therefore the Bellman
Equation is rewritten as a set of linear equations. Then the least-squares policy evaluation
method, LSTD(λ), is adapted to obtain value function parameters and the natural gradient.
This natural gradient is used to update the policy parameters. This algorithm guarantees
that it converges with probability 1 to the next local minimum of the average reward function
[43].

Expectation-Maximization based RL Expectation-Maximization algorithms choose the next
policy parameters θn+1 by maximizing the lower bound Lθ(θ′). Hereby Equation (2-21) is
solved for θ′ using weighted regression with the state-action values Qπ(s, a, t) as weights.

E

{
T∑
t=1

∂θ′ logπ(at|st, t)Qπ(s, a, t)
}

= 0 (2-21)

However the exploration at every step is now unstructured. Therefore a form of structured
exploration is introduced. By using state-dependent exploration, this results in a policy
a ∼ π(at|st, t) = N (a|θTφ(s, t), Σ̂(s, t)) [44]. This algorithm is called Policy learning by
Weighting Exploration with the Returns (PoWER). The algorithm has two advantages over
policy-gradient-based approaches: no learning rate is needed and it can make use of the
previous experience of the agent [45]. In summary PoWER estimates the policy parameters
to maximize the lower bound on the expected return from the following policy.

Probabilistic Inference The algorithm using probabilistic inference is called Probabilistic
Inference for Learning Control (PILCO). To minimize the cost function Jπ three components
are used: 1) a probabilistic Gaussian process dynamics model, 2) deterministic approximate
inference for long-term predictions and policy evaluations, and 3) analytic computation of the
policy gradient for policy improvement. The long term predictions are done by cascading one-
step predictions. By incorporating model uncertainty into long-term planning this approach
reduces the effects of model errors [46].
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Relative Entropy Relative entropy policy search (REPS) aims at finding the optimal policy
that maximizes the expected return based on all observed series of states, actions and rewards.
At the same time the loss of information has to be bounded using relative entropy between
the observed data distribution and the data distribution generated by the new policy. The
information loss bound is expressed using the Kullback-Leibler divergence:

D(pπ||q) =
∑
s,a

µπ(s)π(a|s)logµ
ππ(a|s)
q(s, a) ≤ ε (2-22)

Where µπ is a stationary state distribution, q(s, a) is the observed data distribution and
µπ(s)π(a|s) is the data distribution geneared by the new policy π. This results in an extra
constraint for the maximization of the expected reward J(π). This method can be used in a
generalized policy iteration algorithm which makes it applicable for RL [47].

2.3.2 Inverse reinforcement learning

Inverse Reinforcement Learning (IRL) is learning a reward function from the demonstrations
of an expert [48, 49, 50, 51, 52]. This reward function encodes the observed state-action pairs
of the agent. IRL thus assumes that the expert’s intent is driven by rewards. This reward
function that has to be discovered is the reward function of a Markov Decision Process (MDP).
This can also be written as a MDP without a reward specified, denoted by MDP\R. This is
a tuple (S,A, {Tα}, α, γ) where S is a set of states, A is a set of actions, Tα is a transition
matrix, α is the initial state distribution and γ is a discount factor [51, 53, 54, 55, 56].
Demonstrations are provided as a set of state-action pairs (si, ai). From these demonstrations
IRL tries to find a reward function that captures these observed demonstrations in a relation.
The corresponding optimal policy π∗ should match the demonstrations. The IRL problem is
ill-posed [51, 54].
To resolve this ill-posedness [53] proposes to assume that there is some vector of features
φ : S → [0, 1]k over states. There is also a true reward function R∗(s) = w∗φ(s). Where
w∗ is a weighting vector with unknown weights bounded by 1. Based on the assumption
that the reward function is expressible as a linear combination of the features φ, the feature
expectations µ(π) for a given policy π completely determine the expected sum of the dis-
counted rewards. An estimate of the expert’s feature expectations µE = µ(πE) is needed.
This estimate is calculated from a set of trajectories {s(i)

0 , si1, . . . }mi=1. The estimate is then
given by:

µ̂E = 1
m

m∑
i=1

∞∑
t=0

γtφ(s(i)
t ) (2-23)

An algorithm then iterates over randomly picked policies and tries to find the weights that
result in the best match between the expert policy and the picked policy in terms of the
feature expectations.
Another approach is that the reward function is written as a combination of basis reward
functions: Rsa =

∑
iw
∗
iR

i
sa where the unknown weights satisfy w∗i and

∑
iw
∗
i = 1 [56].

Each basis reward function has a corresponding basis value function V i(π). This results in
V (π) =

∑
iw
∗
i V

i(π) therefore the smallest possible difference between V (π) and V (πE) is
mini V i(π)− V i(πE). The goal then becomes to find a policy πA that solves

v∗ = max
π

min
i
V i(π)− V i(πE) (2-24)
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2.3 Reinforcement learning 15

This can be solved by computing the weights of Rsa.
There are many other ways to resolve the ill-posedness or to perform IRL. In [49] maximum
entropy is used, [50] first uses a classification step to obtain a score function followed by a re-
gression step that provides a reward function. The reward function can also be approximated
thereby dropping the assumption that the demonstrations are globally optimal [57]. Other
techniques are using a Bayesian nonparametric mixture model [58], score-based classification
[52] or bootstrapping [55].

Apprenticeship learning The term apprenticeship learning is used with different meanings.
Sometimes it is used as a synonym for imitation learning [4] but in most literature it is
associated with IRL. This is the case because the term apprenticeship learning was introduced
in a paper that uses IRL to solve the problem [53].

2.3.3 Preference-based reinforcement learning

Preference-based Reinforcement Learning (PBRL), also referred to as Preference-based Policy
Learning (PPL), consists essentially of four steps [59]:

1. Demonstration phase: the agent (robot) demonstrates a candidate policy.

2. Teaching phase: the expert ranks this policy compared to already demonstrated policies
based on preferences.

3. Learning phase: a policy return estimate is learned based on the expert ranking.

4. Self-training phase: new policies are generated, using an adaptive trade-off between the
policy return estimate and the policy diversity.

A candidate policy is selected to be demonstrated and the process is iterated. PPL has
two main advantages: it does not require an expert to know how to solve the task or to
demonstrate an optimal behavior [59, 60] and an expert does not need to design a reward
function [60].
As is the case in Section 2.3.2 a MDP without a reward function forms the basis. It is assumed
that there exists a utility function U∗ that is linear in terms of features: U∗(s, a) = W ∗φ(s, a)
[59, 60, 61]. This utility function can be seen as the reward function in classic RL however
with the difference that the utility of a trajectory can change with the occurrence of new
preferences [61]. The utility function is used to select actions that will be discovered [62].
The utility function of a policy can be written in terms of feature expectations: U(π) = Wµ(π)
[61].
To formally represent preferences, [61] suggests a notation based on sequences of state-action
pairs C(t) : N → S × A. A preference is a relation between two sequences C1, C2. If C1
is preferred over C2 this is noted by C1 � C2. The learning process can now be seen as
identifying a policy π∗ which generates trajectories that agree with the observed preferences
ζ.
Two approaches for comparing trajectories can be considered: 1) relational approaches that
try to define a preference relation on policies and 2) value-based approaches which attempt to
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associate numerical values with policies. The value-based approaches use the aforementioned
utility function to obtain a value for the policy [59, 60, 61]. This value is then used to indicate
how good it is to follow policy π.

New policies are in [59] generated by using a stochastic optimization method. From these
policies the best policy is selected and demonstrated to the expert. This selection is done by
using a criterion that enforces a trade-off between the exploration of the policy space and the
exploitation of the utility function. After the demonstration the process iterates.

2.3.4 Data-efficient reinforcement learning

In contrast to most RL methods which require many trials, data-efficient RL methods try
to keep this number of trials to a minimum [63, 64]. Keeping the trials to a minimum
has advantages in robotics because trials mean physical interactions with the environment
which are often infeasible and cause wear-and-tear. In general model-based methods are
more promising for efficiently extracting information from the available data than model-free
methods [63]. Model-free methods update the policy by executing roll-outs on the system
and collecting the corresponding rewards while no model of the robot dynamics is needed
[65]. The downside of model-free methods in this context however is that a large number of
interactions is needed. Model-based methods learn a dynamics model of the environment and
use this model to compute the rewards [65]. Model-based methods are not very common in
RL because they might suffer from model bias which is especially a problem when using only
a few samples [63, 64, 65].

The best known data-efficient reinforcement learning algorithm is PILCO: probabilistic infer-
ence for learning control [63]. PILCO uses Gaussian processes to express model uncertainty
in the dynamics model. Analytic gradients are used for policy improvement. This results
in an order of magnitude less trials needed for a cart-pole task, compared to conventional
algorithms.

Another algorithm that takes the same direction is GPREPS [65]. Here Gaussian processes
are used to learn forward models. These models are used to predict the reward. The policy
updates are based on the REPS algorithm [47]. For a 4-link pendulum balancing task, GREPS
needs about the same amount of experience as PILCO for achieving the same reward limit.
However the computation time of a sample trajectory for PILCO is 300 times higher than the
time required by GREPS. This shows that PILCO is data-efficient but it comes at the cost
of computation time.

A different approach is taken in [66] where reinforcement learning is seen as a reward-weighted
self-imitation. Therefore the reward weighted regression is reformulated in a Cost-regularized
Kernel Regression. This algorithm is compared to a policy gradient algorithm (finite differ-
ence) and reward-weighted regression. The CrKR outperforms these algorithms significantly.
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Summary

Within imitation learning there are two main movements for encoding demonstrations. The
first is Dynamic Movement Primitives which is a mathematical spring-damper system. These
DMPs virtually pull a goal position to a goal state. The second movement is based on
Gaussian Mixture Models which encode the demonstration in such a model.

Reinforcement learning is the process of learning from trial-and-error. The basis of RL is
finding a policy that gathers maximal rewards. In robotics policy search is the most used RL
technique, this technique reduces the dimensionality and increases the convergence speed.

Two different RL techniques are inverse reinforcement learning and preference-based rein-
forcement learning which base the reward function on the demonstrations or the feedback of
an expert respectively.

In order to reduce the number of iterations that is needed for the learning process, research
is done in data-efficient reinforcement learning. These techniques try to keep the number of
trials to a minimum.
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Chapter 3

Encoding trajectories in Dynamic
Movement Primitives

The trajectories representing the movement that are received in terms of coordinates and
orientations have to be encoded in such a way that the movements can be generalized and
learning can be applied. In Chapter 2 several methods to encode the trajectories have been
mentioned. In this thesis Dynamic Movement Primitive (DMP) will be used. There are
two main reasons why DMPs are used: First in this thesis ideally one demonstration of the
movement is given which can be captured in a DMP while a Gaussian Mixture Model (GMM)
is more useful if multiple demonstrations of the same movement are given, second DMPs are
proven to be suitable for generalization and learning [14, 67]. Apart from GMM there are
also other methods but the most used and mentioned in the literature are DMPs and GMM.

This chapter will start with formally describing the DMPs that are used in this thesis in
Section 3.1. In Section 3.2 will be explained how an observed movement can be encoded in a
DMP. Finally in Section 3.3 it is described how to combine various DMPs.

3.1 Description of Dynamic Movement Primitives

DMPs were already described in Section 2.1 but there exist several types of DMPs. This
section will describe the type of DMPs that will be used throughout this thesis.

As described in Section 2.1 a DMP consists of a transformation system, a canonical system
and a forcing term. The original DMPs have some drawbacks: if start and goal position
of a movement are the same, the system will remain at the start position; if the start and
goal position are very close together a small change in the goal position can lead to huge
accelerations; if a movement adapts to a new goal gnew such that (gnew −x0) changes its sign
compared to (goriginal−x0) the resulting generalization is mirrored [10, 14]. To overcome these
drawbacks an adjusted DMP is proposed [14]. In Figure 3-1 a comparison of the trajectories
generated by the different types of DMPs is given.
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20 Encoding trajectories in Dynamic Movement Primitives

Figure 3-1: Comparison of goal-changing results between old (Left) and new (Right) DMP
formulation in operational space (Y1, Y2) with one transformation system for each dimension.
The same original movement (solid line) and goals are used for both formulations. The dashed
lines show the result of changing the goal before movement onset (Top) and during the movement
(Bottom) [14].

The transformation system is given by:

τ v̇ = K(g − x)−Dv −K(g − x0)s+Kf(s)
τ ẋ = v

(3-1)

Here K and D are a spring and damping constant which are chosen such that the system is
critically damped; x and v are the generalized position and generalized velocity; x0 and g are
the start and goal position; τ is a temporal scaling factor; and f(s) is given by:

f(s) =
∑N
i=1wiψi(s)s∑N
i=1 ψi(s)

(3-2)

where ψi(s) = exp(−hi(s− ci)2) is a Gaussian basis function with center ci and width hi and
wi are adjustable weights. This function depends on the phase variable s which changes from
1 to 0 during a movement and is given by the canonical system:

τ ṡ = −αs (3-3)

Here α is a predefined constant. The term K(g − x0)s in Equation (3-1) is required to avoid
jumps at the beginning of the movement. These sets have some favourable characteristics:
convergence to the goal is guaranteed, the equations are spatial and temporal invariant, and
the formulation generates movements that are robust against perturbations [14].

In order to apply DMPs on multiple Degrees of Freedom (DoFs) there are three approaches: 1)
each DOF can be encoded in a separate DMP, 2) create coupling terms between different DoFs,
or 3) share one canonical system among all DoFs while each DoF has its own transformation
system [10, 14]. This last approach is used in both [10] and [14] and will also be used in this
thesis. An example for a 7-DoF system is given in Figure 3-2 here the orientation of the end
effector is encoded in quaternions.
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3.2 How to encode a trajectory in a DMP 21

Figure 3-2: Overview of a 7-DoF DMP, derived from [14].

3.2 How to encode a trajectory in a DMP

Let for simplicity take a one dimensional case to explain how to encode an observed trajectory
in a DMP. The desired behavior is given in terms of position which is differentiated to
obtain velocity and acceleration. This results in the triple (xdemo(t), ẋdemo(t), ẍdemo(t)) where
t ∈ [1, . . . , P ]. Encoding the movement is then done in two phases: first the high-level
parameters g, x0 and τ are determined and then learning is performed for the weights wi
[10]. This learning of the weights will be elaborated on in Section 5.2. Here we only give the
starting point.
Obtaining the high-level parameters is relatively easy. The parameter g is the position at the
end of the movement, g = xdemo(t = P ). In the same way is x0 the start position of the
movement, x0 = xdemo(t = 0). The parameter τ is the duration of the demonstration. In [10]
it is suggested that some tresholding is applied to obtain τ . For example a velocity treshold
of 2% of the maximum velocity in the movement may be used and τ can be chosen as 1.05
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times the duration of this tresholded trajectory piece. This factor is to compensate for the
treshold.

In order to learn the weights wi, Equation (3-1) is rewritten to:

ftarget(s) = τ2ẍ+Dτẋ

K
− (g − x) + (g − x0)s (3-4)

Where s is obtained by integrating the canonical system. Then regression techniques can
be applied to find for instance the weights that minimize the difference between f(s) and
ftarget(s). This results in the cost function J =

∑
s(ftarget(s)− f(s))2. There are however all

kind of cost functions possible.

3.3 Combination of DMPs

More complex movements can be generated by combining several DMPs. Starting a DMP
after another DMP has finished is straight forward because the boundary conditions of a
DMP are that the velocity and acceleration are zero. However, complete stops of the system
are undesirable. Avoiding stops of the system can be done by starting the execution of
the successive DMP before the preceding DMP has finished. In this case the velocities and
accelerations are not zero. Jumps in the acceleration can be avoided by properly initializing
the succeeding DMP with the velocities and positions of the preceding DMP [14].

Summary

Dynamic Movement Primitives are a spring-damper like system with a forcing term that can
be used to encode each kind of trajectory. The spring-damper system virtually pulls the start
state to the goal state while the forcing term determines the shape of the trajectory between
these two. DMPs for multiple degrees of freedom are formed by using one canonical system
while each degree has its own transformation system. One demonstration is used to encode
a DMP, the weights of the forcing term are determined using regression techniques.

I.T. van der Spek Master of Science Thesis



Chapter 4

Policy Gradients with Parameter based
Exploration

This chapter starts by describing the relation of Dynamic Movement Primitive (DMP) to pa-
rameterized policies in Section 4.1. From this section it can be seen that Dynamic Movement
Primitives can be optimized using policy search algorithms. In Section 4.2 and Section 4.3
two versions of the parameter-exploring policy gradients algorithm will be explained. This is
the policy search algorithm that will be used in this thesis. Some extensions to the algorithms
are given based on the findings in this thesis in respectively Section 4.2 and Section 4.4.

4.1 Dynamic Movement Primitive as a parameterized policy

In reinforcement learning a policy π maps states to actions. This policy can be optimized to
find the optimal policy π∗. The optimal policy optimizes the cumulative discounted reward
over time, also referred to as expected reward [11, 68]. When the action and state space
become continuous, the problem of finding an optimal policy becomes hard to solve. Therefore
parameteric policies πθ are used to find the optimal policy π∗. This is done by finding the
optimal policy parameters θ∗. These parameters θ∗ thus optimize the cumulative discounted
reward [68].

One way to parameterize a stochastic policy is to linearly parameterize it. The action at is
then written as:

at = gTt (θ + εt) (4-1)

Here gt is a vector of basis functions and θ still denotes the parameter vector. The additive
exploration εt is used to keep the policy stochastic [44, 69].

Following this line of thought, DMPs can be seen as a special case of parameterized policies.
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24 Policy Gradients with Parameter based Exploration

This becomes more clear if we rewrite Equation (3-1) slightly:

τ v̇ = ft +KgTt (θ + εt)
τ ẋ = v

τ ṡ = −αs
ft = K(g − x)−Dv −K(g − x0)s

(4-2)

Equation (3-2) is then transformed to:

[gt]i = ψi(s)s∑N
i=1 ψi(s)

(4-3)

The DMP equations are now written in the same form as Equation (4-1). Hereby the pa-
rameters θ of the policy correspond to the weights w of the basis functions [69]. It can be
concluded that a DMP is a special form of a parameterized policy.

As mentioned before, the policy can be optimized to find the optimal cumulative or expected
reward. The expected reward of the policy π with parameters θ is defined by

J(θ) =
∫
T
pθ(τ)R(τ)dτ (4-4)

Where T is the set of all possible paths and τ a possible path which is a series of states
and actions [44]. R(τ) is the reward over the path τ . Policy search algorithms try to find
a parameter vector θ∗ = argminθJ(θ) which minimizes the expected cost (or maximize the
reward) [70]. In the next sections a policy search algorithm will be elaborated on.

4.2 Basic parameter-exploring policy gradients

The Policy Gradients with Parameter based Exploration (PGPE) algorithm is a policy search
algorithm. In this section a summary of the derivation in [11] is given. The algorithm
is derived from the general framework of episodic reinforcement learning in a Markovian
environment.

We start by assuming that a stochastic policy suffices: the distribution over actions only
depends on the current state and the agent parameters θ: at ∼ p(at|st, θ). Given a history
h of state-action pairs, a cumulative reward can be computed: r(h) =

∑T
t=1 rt. The goal of

reinforcement learning is then to optimize the agent’s expected reward:

J(θ) =
∫
H
p(h|θ)r(h)dh (4-5)

One way to optimize this is to estimate the gradient ∇θJ and apply gradient ascent optimiza-
tion. The gradient can be written as:

∇θJ(θ) =
∫
H
p(h|θ)

T∑
t=1
∇θlog(p(at|st, θ))r(h)dh (4-6)

I.T. van der Spek Master of Science Thesis



4.2 Basic parameter-exploring policy gradients 25

Note that there is an error in the original paper [11] at this point, accidentally the logarithm
was left out. Because integrating over the entire space of histories is infeasible, sampling
methods have to be used

∇θJ(θ) ≈ 1
N

N∑
n=1

T∑
t=1
∇θlog(p(ant |snt , θ))r(hn) (4-7)

where the histories hi are chosen according to p(hi|θ).

The above derivation relates PGPE to classical policy gradients. However it is now the
question how to model p(at|st, θ). In policy gradient methods such as REINFORCE [71] the
parameters θ are used to determine a probabilistic policy. Sampling from this policy each
time step however leads to a high variance in the sample over histories which leads to a noisy
gradient estimate.

PGPE decreases the variance by using a probability distribution over the parameters θ instead
of a probabilistic policy

p(at|st, ρ) =
∫

Θ
p(θ|ρ)δFθ(st),atdθ (4-8)

where ρ are the parameters determining the distribution over θ, Fθ(st) is the deterministic
action chosen by the model with parameters in state st. The actions are now deterministic
and therefore an entire history can be generated from a single parameter sample. An extra
benefit is that the parameter gradient is estimated by direct parameter perturbations.

The expected reward, given a ρ, now becomes:

J(ρ) =
∫

Θ

∫
H
p(h, θ|ρ)r(h)dhdθ (4-9)

This then leads, by using sampling methods, to the gradient estimator

∇ρJ(ρ) ≈ 1
N

N∑
n=1
∇ρlog(p(θ|ρ))r(hn) (4-10)

By making the assumption that ρ consists of a set of means µi and standard deviations σi
that determine a normal distribution for each parameter θi, the derivative of log(p(θ|ρ)) can
be written with respect to µi and σi.

The reward gradient of Equation (4-10) requires for each sampling an entire state-action
history. A cheaper gradient estimate can be made by drawing a single sample θ and comparing
its reward r to a baseline reward b. This baseline is a moving average over previous samples.
Using the baseline the parameters are updated according to the following equations (using a
step size αi = ασ2

i in the direction of the positive gradient):

∆µi = α(r − b)(θi − µi) ∆σi = α(r − b)(θi − µi)2 − σ2
i

σi
(4-11)

In Algorithm 4.1 the resulting pseudo code of the algorithm can be found.
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26 Policy Gradients with Parameter based Exploration

Algorithm 4.1 Basic PGPE algorithm
procedure basicPGPE(µinit, σinit)

µ← µinit
σ ← σinit
while True do

for n=1 to N do
draw θn ∼ N (µ, Iσ2)
evaluate rn = r(h(θn))

end for
T = [tij ]ij with tij := (θi − µi)
S = [sij ]ij with sij := t2ij−σ

2
i

σi

r = [(r1 − b), . . . , (rN − b)]T
update µ = µ+ αTr
update σ = σ + αSr
update baseline b . An update rule for b can be: b = 0.9b+ 0.1r

end while
end procedure

Limiting the randomness

In practice the values for r − b were relatively big which resulted in huge values for the
updates. This had as a result that the samples were drawn from a bigger range than necessary.
Which finally led to obtaining very big rewards which amplified the effect, resulting in infinite
rewards. To limit the randomness or the range whereof the samples were drawn, the r − b
values had to be scaled. Inspired by the algorithm in Section 4.3 it was decided to keep track
of the maximum (or minimum) reward m received so far. Then the baseline b is subtracted
from m. This value is then finally used to scale the r − b value resulting in r−b

m−b as value to
replace r − b.

4.3 Symmetric sampling parameter-exploring policy gradients

An improvement of the algorithm in Section 4.2 is PGPE with symmetric sampling. This
gradient approximation is more robust because it measures the difference in reward between
two symmetric samples on either side of the current mean.

This is done by picking a perturbation ε from the distribution N (0, σ), using this perturbation
two parameter samples are created θ+ = µ+ ε and θ− = µ− ε. Then r+ is the reward of θ+

and r− of θ−. Both rewards are then used in the update equations:

∆µi = αεi(r+ − r−)
2m− r+ − r−

∆σi = α

m− b

(r+ + r−

2 − b
)(ε2 − σ2

i

σi

)
(4-12)

Where m is the maximum (or minimum) reward an agent can receive or when this is unknown
the maximum (or minimum) reward received so far. For the complete derivation of the update
equations see [11]. In Algorithm 4.2 the pseudo code for the symmetric sampling algorithm
is given. Note that this pseudo code includes the reward normalization which was omitted in
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4.4 Dealing with small initial costs and a final reward 27

[11]. It was decided to include it in this pseudo code because otherwise the algorithm is not
presented in accordance with the update equations of Equation (4-12).

Algorithm 4.2 Symmetric sampling PGPE algorithm
procedure symmetricPGPE(µinit, σinit)

µ← µinit
σ ← σinit
while True do

for n=1 to N do
draw εn ∼ N (0, Iσ2)
θ+,n = µ+ εn

θ−,n = µ− εn
evaluate r+,n = r(h(θ+,n))
evaluate r−,n = r(h(θ−,n))

end for
T = [tij ]ij with tij := εji

S = [sij ]ij with sij := t2ij−σ
2
i

σi

rT = [( r+,1−r−,1
2m−r+,1−r−,1 ), . . . , ( r+,N−r−,N

2m−r+,N−r−,N )]T

rS = [( 1
m−b(

r+,1+r−,1
2 − b)), . . . , ( 1

m−b(
r+,N+r−,N

2 − b))]T
update µ = µ+ αTrT
update σ = σ + αSrS
update baseline b . An update rule for b can be: b = 0.9b+ 0.1r

end while
end procedure

4.4 Dealing with small initial costs and a final reward

After doing a lot of testing, which is described in Chapter 8, it appeared that the algorithm
can not handle the combination of small costs in the beginning of the learning and a (binary)
final reward. If in the beginning small costs are rewarded and then a big cost is rewarded,
the algorithm crashes. This can be explained as follows:
Let’s assume we have received costs, both the positive and the negative cost, in the order
of 0.01 in the first two cycles. The baseline b is then also in the order of 0.01. In the third
cycle we get a positive cost in the order of 100.0 and a negative cost in the order of 0.01.
Take for simplicity r+ = 100.0 and r− = 0.01. Then the mean of the two costs becomes
mean = 50.005. The baseline is the result of the average of the two cycles before so it is
in the order of 0.1, take b = 0.2. The minimum value was received in the first cycle and is
m = 0.05. What you then get is: 1

m−baseline = −6.67, mean − b = 49.805. This results in
σδ = −332.20. Where σδ is the first part of the update equation for σ of Equation (4-12).
The above illustrates that this value can become very big in one cycle. This results in a big
growth of the σ value. This σ determines the width of the normal distribution whereof the
perturbations are drawn. So the chance of drawing a big perturbation has grown extremely
in just one cycle. A big perturbation then leads to a big change in θ. Which results in a huge
cost in most cases. Thereby in a few cycles the algorithm runs to costs that are infinity.
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28 Policy Gradients with Parameter based Exploration

The above sketched situation happens when a final cost or reward is used. Especially when
a binary final cost is given and this final cost is important and has therefore a high weight.
Because this behaviour is undesirable, a solution has to be found. As illustrated above the
combination of a relatively big 1

m−baseline and a relatively big mean− b results in a big value
for σδ. Therefore action has to be taken to limit the σδ when it grows to big. First it was
looked into if the maximum value of σδ could be based on the values that are available to the
algorithm. However, no good relation was found between the values available and a maximum
value for the σδ. For this thesis the maximum value was therefore determined empirically.
From observations it could be seen that the value was always below 20.0. Therefore it was
decided to reset all values of σδ that are higher than 20.0 to 0.0. This means that the current
σ value is not changed in the current iteration.

Summary

The policy search algorithm used in this thesis is Policy Gradients with Parameter based
Exploration. There are two versions of the algorithm: a basic version and a symmetric
sampling version.

The basic PGPE algorithm is a policy search algorithm that samples perturbations from a
normal distribution. The mean and standard deviation of the normal distribution are updated
according to the reward of the iteration step. Relatively high update values were received
for the normal distribution therefore it was decided to add a scaling factor to the original
algorithm. This resulted in a more stable algorithm.

The symmetric sampling version of the algorithm is the same as the basic algorithm apart
from the fact that it uses two samples on either side of the current mean. This results in two
rewards for the two samples which are both used to update the current mean and standard
deviation. The symmetric sampling version of the algorithm is more robust and needs less
samples than the basic version even though the algorithm needs twice as much samples per
iteration.

The symmetric sampling version of the algorithm is adjusted such that it can deal with small
initial costs and a final reward. Therefore a simple clipping measure was taken based on
empirical values.
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Chapter 5

Combination of policy search and
imitation learning

In this chapter it is explained how the trajectories that are encoded in a Dynamic Movement
Primitive (DMP) (Chapter 3) are combined with the policy gradient algorithm in Chapter 4.
Therefore, in Section 5.1 it is explained how imitation learning initializes the policy search. In
Section 5.2 we improve the learning by splitting the demonstrated trajectory in multiple sub-
trajectories. Troughout this chapter a 2-DoF example will be used to illustrate the differences
between the approaches that are explained. This 2-DoF example can be seen as a simplified
version of the use-case described in Chapter 6. The same principles apply however the number
of DoFs is reduced.

5.1 Initializing policy search with imitation learning

5.1.1 DMPs and policy search

As explained in Section 4.1, DMPs can be seen as a parametrized policy. The weights of the
DMPs can be used as the parameters of the policy that has to be learned. In Section 3.2 it was
described how the weights of the DMPs can be obtained by using regression techniques. The
idea of initializing policy search with imitation learning is to first obtain an initial approx-
imation of the demonstrated trajectory by using regression techniques to obtain the initial
weights. These initial weights are then used as a starting point for the Policy Gradients with
Parameter based Exploration (PGPE) algorithm. This is done by setting µinit to winit where
winit are the initial weights and µinit can be found in Algorithm 4.1. These weights can then
be optimized according to a pre-defined cost function which calculates the cost. By using the
initial weights the policy search gets a good initial starting point for exploring.
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30 Combination of policy search and imitation learning

5.1.2 2-DoF example

In order to illustrate the use of initializing the policy search with imitation learning, a 2
Degree of Freedom example is used. Hereby we start with a trajectory in the x, y-plane where
the x and y trajectory are encoded in a DMP with both their own transformation system.
The original trajectories and the resulting DMPs without learning can be found in Figure 5-1

Figure 5-1: x, y-plot of original trajectories and trajectories generated by learned DMPs of the
2-DoF example

These trajectories are then optimized using the basic and symmetric PGPE algorithm accord-
ing to the cost function defined in Equation (5-1) where N is the number of trajectory points.
Here the learned trajectory has to follow the demonstrated trajectory as best as possible but
at least it should reach its goal.

J =
N−1∑
i=0

[−(xdemo(i)− xact(i))2 − (ydemo(i)− yact(i))2]

−κ(xdemo(N)− xact(N))2 + (ydemo(N)− yact(N))2
(5-1)

Where κ is a variable that determines the importance of the last term and was chosen to be
1000. The parameters that are used for learning are the weights and the goals of the two
DMPs.

To give an impression about the results after applying the two PGPE algorithms, in Figure 5-
2 the resulting trajectories can be found. In Figure 5-3 the corresponding cycle-cost plot can
be found. It can be seen that the symmetric algorithm needs more cycles to converge but
that it obtains a lower cost.
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(a) Basic PGPE algorithm (b) Symmetric sampling PGPE algorithm

Figure 5-2: Resulting trajectories after learning

(a) Basic PGPE algorithm (b) Symmetric sampling PGPE algorithm

Figure 5-3: Cycle-cost plot

5.2 Optimizing sequences of Dynamic Movement Primitives

Until now it was assumed that the whole demonstration is captured in just one DMP. However
as suggested by [72] a movement can also consist of a sequence of DMPs. This is simply done
by scheduling the DMPs after each other where the next DMP takes as x0 the goals of the
current DMP. An algorithm can then be used to optimize the sequence of DMPs. The
algorithm that is used in [72] is PI2 which is a policy improvement algorithm.

In this thesis also a sequence of DMPs will be used. However, because we are using a different
algorithm we have to slightly adjust the way that a sequence of DMPs is optimized. In the PI2

algorithm costs can be rewarded during the execution of the trajectory, this is visually shown
in Figure 5-4. It can be seen that the weights of the DMPs are adjusted during execution
while the goals are adjusted at the end of the execution. It can also be seen that the costs of
the next DMPs are also used for improving the current goal.
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Figure 5-4: Cost rewarding of [72]

The aforementioned idea of incorporating the costs of the next DMPs is also used in this
thesis. However there is just one kind of cost because it is not possible to reward costs while
executing a DMP due to the PGPE algorithm. Therefore only the total cost of a DMP is
used. For updating the weights only the total cost of the trajectory of the corresponding
DMP is used while for updating the goals the total cost for the current trajectory and all
next trajectories is used. The reason behind using the accumulated cost for the goals is
that the goals of the current DMP also form the starting point of the next DMP and thus
influences the costs of the next primitive(s). When we redraw Figure 5-4 according to the
above mentioned changes, this results in Figure 5-5.

Figure 5-5: Cost rewarding used in this thesis

Sequence of DMPs in 2-DoF example

We applied the above theory to the same case as described in Section 5.1.2. But instead of
using one DMP for the whole trajectory, the trajectory is split in three intervals which all get
their own DMP. The result, without learning, can be seen in Figure 5-6 where the chosen
intervals are indicated by the vertical lines.

To also show the difference with one DMP in learning, in Figure 5-7 the result after 500
iterations of the symmetric sampling PGPE can be found. It can be concluded that using a
sequence of DMPs leads to a lower cost and a faster convergence for a 2-DoF case.
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Figure 5-6: x, y-plot of original trajectories and trajectories generated by learned DMPs of the
2-DoF example using a sequence of DMPs

(a) Resulting trajectories (b) Cycle-cost plot for symmetric PGPE

Figure 5-7: Results after 500 iterations for learning of a sequence of DMPs
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Conclusion
The weights of the DMPs can be used as a parametrized policy for the policy search algorithm.
Then the algorithm can be used to alter the trajectories according to a cost function. From
the 2 DoF case it can be concluded that optimizing a sequence of DMPs using the symmetric
sampling version of the algorithm leads to a lower cost and a faster convergence compared to
using a single DMP.
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Chapter 6

Use-case description: precision
placement task

In this chapter the use-case that forms the basis for the research in this thesis is explained. In
Section 6.1 the setting of the use-case is described. Subsequently in Section 6.2 the problem
is described. Finally in Section 6.3 the benefits of using imitation learning for this use-case
are given.

6.1 Setting

This use-case is derived from a process in a consumer product factory. For a specific product
parts are painted/lacquered in a paintshop. About 40 different parts of the final product are
handled in this process. All parts are supplied in trays which have separate compartments for
each separate part, a schematic overview is given in Figure 6-1. In the current situation these
parts are picked by a human and placed on a jig. These jigs are attached to a carousel which
can be rotated to place parts on all jigs. These carousels are on poles which are attached to
a chain conveyor. This conveyor moves with intervals of a certain amount of time. Once in
around half an hour the kind of part that is placed on the carousels is changed. Because the
jigs on the carousels are made for a specific part, the carousels have to be changed.

The aforementioned placing of the part on the jig is not a trivial movement. Most parts have
to be attached to the jig with a movement that is specific for that part. In Figure 6-2 an
example of a movement of placing a part on a jig that is attached to a carousel is shown. This
movement depends greatly on the part that is handled. Most movements result in a ’click’.

After the placing of the parts on the carousels the parts move through the whole painting
process and finally come to a stage where the parts are removed from the jigs and placed
back in the trays.
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36 Use-case description: precision placement task

Figure 6-1: Overview of supply of parts in a tray

Figure 6-2: Schematic of placing a part on a jig that is attached on a carousel

6.2 Problem description

6.2.1 Desired situation

A desired situation for the situation described in Section 6.1 is that the process of placing
and removing the parts to and from the jigs is robotised. Because there are multiple sub
processes in this process, it is decided to focus on the sub process of picking the object from
the trays and placing them on the jig. As explained before the placement on the jig is not a
trivial place movement. Therefore we call this use-case a precision placement task.

This thesis thus focusses on the case of picking a part from the tray, moving it to the jig
and placing it on the jig. This should all be done with a robot arm. The ’programming’ of
the robot should be done with the use of imitation learning. The robot arm should be able
to handle each of the about 40 parts. An extra requirement is that new parts can be easily
introduced in the system through imitation learning.

6.2.2 Assumptions

In order to make this case fit for this thesis, some assumptions have to be made. The
assumptions that are made are:

• The parts in the trays are not flipped. The only variance in the configurations is as
depicted in Figure 6-1.
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• The parts are already recognized by some means and the Cartesian coordinates are
known.

• The parts are assumed to be in the gripper of the robot arm at the start of the movement,
when the arm is at the above mentioned coordinates.

• The demonstrated trajectory is available in Cartesian coordinates with corresponding
time stamps or sampling rate.

• The Cartesian coordinates of the jig are known.

• The carousel does not have to be rotated

• Only jigs that are reachable without rotating the carousel have to be filled.

• The demonstrated trajectory is not necessarily optimal with relation to energy con-
sumption, execution time and joint trajectories.

To summarize these assumptions: this use-case focusses purely on the trajectory. No work is
done in object recognition, grasping techniques, robot grippers etcetera.

6.3 Benefits of imitation learning

The reason that imitation learning is chosen to solve the described problem is that it has
some benefits over other solutions. The biggest benefit is that new parts can be introduced
easily: a new trajectory for a part can be taught by a non-robot expert. As a result there
is no longer a need for (expensive) robot experts. Another benefit is that the robot is more
flexible and, if the algorithm is implemented successfully, the robot can also be applied to
other tasks than precision placement.

Summary

As use-case a precision placement task is chosen. A part has to be placed on a jig that is
attached to a carousel. The use-case purely focusses on learning the trajectory that is needed
for the successful placement of the part.
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Chapter 7

Implementation for use-case

In this chapter the implementation of the previously described methods and techniques is
explained. Therefore it is first described how the trajectories are captured and subsequently
encoded and used (Section 7.1). Then the application of Policy Gradients with Parameter
based Exploration (PGPE) to the use-case is explained in Section 7.2. Finally in Section 7.3
it is elaborated on how the robot is controlled. For the application the UR5 robot from
Universal Robots [73] is used.

7.1 Encoding the trajectories

7.1.1 Gathering trajectory data

In order to gather the data that is needed for encoding the trajectories, the aforementioned
UR5 [73] is used. The UR5 robot can be put in teach-in modus which enables the user to
move all the joints of the robot by gripping the joint that has to be moved and moving it in
the desired state. Putting the robot in teach-in modus is done by holding a button at the
back of the control panel of the robot (see Figure 7-1). This has as disadvantage that only
one hand can be used to move the robot around.

The data is gathered by using a Matlab driver for the UR5 that is available at Delft Uni-
versity of Technology (TU Delft). This driver enables you to specify the sample frequency
and the time it has to capture data. All data that is available at the control panel of the
robot can be read out e.g. joint positions, joint speeds and tool position. The data that was
gathered in this thesis are the position of the tool in x, y, z coordinates and for the rotation
rx, ry and rz. The x, y, z coordinates are in the reference frame of the base_link of the
robot and rx, ry, rz is an axis-angle representation of the rotation. The reference frame can
be found in Figure 7-2. Note that the robot in itself is symmetric but that the side of the
wire can help as orientation point. In Figure 7-2 the wire is in the green y axis.
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Figure 7-1: Control panel of the UR5 [73]

Figure 7-2: Coordinate frame as defined in Matlab and on the UR5: x (red), y (green), z
(blue)
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7.1.2 Conversion from axis-angle representation to roll, pitch, yaw

Roll, pitch and yaw are a common representation for the orientation of an object. The
Matlab driver is able to output these values. Therefore, and because roll, pitch, yaw is
an intuitive representation, the implementation of the algorithms was based on using roll,
pitch and yaw as representation for the rotation. However after testing it appeared that the
roll value was not recorded correctly, it was always 0.0.

Therefore it was decided to convert the rx, ry, rz representation to roll, pitch, yaw rep-
resentation. Here rx, ry and rz are an axis-angle representation for the rotation. This
representation is also used by the UR5 on the control panel. Equation (7-1) describes this
angle-axis representation. This can also be written as a normalized vector r̂ times an angle
θ as can be seen at the right in Equation (7-2), the angle θ is equal to the length of r. A
visualization of a rotation represented by the axis-angle notation can be found in Figure 7-3

r =

rxry
rz

 (7-1)

r = θr̂ (7-2)

Figure 7-3: Axis-angle representation of a rotation [74]

The conversion to roll, pitch and yaw can be done through writing down the rotation
matrices for both representations and use this to convert one into the other. This is explained
in Appendix C, here only the resulting formulas are given. It should be noted that there are
singularities in the conversion, in Appendix C it is explained how these can be prevented. In
Equation (7-3), Equation (7-4) and Equation (7-5) the formulas for roll, pitch and yaw can
be found respectively. Here f , g and h are the normalized values of rx, ry, rz and θ is the
above mentioned angle.

roll = atan2((1− cos(θ))gh+ f sin(θ), (1− cos(θ)h2 + cos(θ)) (7-3)

pitch = asin(−(1− cos(θ))fh+ g sin(θ)) (7-4)
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yaw = atan2((1− cos(θ))fg + h sin(θ), (1− cos(θ))f2 + cos(θ)) (7-5)

7.1.3 Conversion to ROS format

The algorithms and control of the robot are all implemented in the Robot Operating Sys-
tem (ROS) framework. This is an open-source framework for writing robot software, see
Appendix A for more information on ROS. In order to use the data from Matlab in ROS,
the x, y, z, roll, pitch and yaw values are exported to a .csv-file. Which can be imported
in ROS. The data is then converted to a data-type that is used by a package for encoding
Dynamic Movement Primitive (DMP)s. This data-type is called DMPTraj which consists of
points and times. In one point all the trajectory data at a certain time are stored while the
corresponding timestamp is stored in times. So in this case a point entry in points consists
of six ‘positions’ namely x, y, z, roll, pitch and yaw while the corresponding timestamp is
stored at the same entry in times.

7.1.4 Applied DMPs

For the application to the use-case a 6 DoF DMP is used. In Section 3.1 it was already
explained how such a DMP is constructed. The used variables for the DMP are x, y, z, roll,
pitch and yaw as mentioned above.

For encoding trajectories an existing ROS package was used [75]. However this package was
written for a previous ROS version and had to be updated to ROS Hydro (the ROS version
used in this thesis). Working with the package, it was discovered that there were some bugs
and short comings. The most missing feature was that there were no Gaussian basis functions
used as basis functions for the DMPs. It was decided to improve this package and implement
Gaussian basis functions. The Gaussian basis function used is of the form in Equation (7-6).

ψi = exp
(
−0.5(x− ci)2

w2
i

)
(7-6)

Here the centers c and widths w are determined using a function that is used in [76] for
determining the meta parameters of Locally Weighted Regression (LWR). A specified number
of basis functions is placed between a given min and max value thereby taking into account
the height at which two neighbouring basis functions should intersect. Thus the input of
the function is: num_basis_functions, min_value, max_value, intersection_height. The
num_basis_functions are linearly spaced between min_value and max_value to get the
centers c. The width wi is determined by:

wi =
√

(ci+1 − ci)2

−8log(h) (7-7)

Here h is the intersection_height. In this thesis there is chosen for an intersection_height
of 0.5. The number of used basis functions is 15.
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Locally Weighted Regression is used to determine the weights of the basis functions. LWR
is very similar to simple regression the only difference is that a weight matrix is introduced.
The simple regression is written as:

β = (XTX)−1XT y (7-8)

In LWR a weight matrix is added to the equation [77, 78]. The formula then becomes:

β = (XTWX)−1XTWy (7-9)

The basis functions are evaluated for each input and used to determine the weight matrix W .

7.1.5 Splitting the trajectories

As explained in Section 5.2 the trajectories can be split in multiple sub-trajectories and for
each sub-trajectory a DMP can be learned. Then the total trajectory is constructed by a
sequence of DMPs. The splitting is now done by plotting the captured data and setting the
splits such that resulting sub-trajectories can be easily approximated by the DMPs. The
reason that this is done by hand is that splitting the trajectory automatically is very hard.
By doing it by hand, and because the trajectories are relatively simple, the human intuition
on smart sub-trajectories can be incorporated.

7.2 Application of PGPE

7.2.1 Instances of PGPE

For each DMP, and thus sub-trajectory, two instances of the PGPE algorithm are created.
One is for learning the weights of the DMP and one for learning the goals of the DMP. As
mentioned in Section 7.1.4 a 6 DoF DMP is used. This means that the number of weights
is six times the number of basis functions. It was decided to learn all these weights using
one instance of the PGPE algorithm. There are two reasons for that: first from a software
point of view it is easier to learn all weights using one instance; second the 2 DoF example
of Chapter 5 did not show any difference in performance of the algorithm. The six goals that
the 6 DoF DMP has, are learned by the other instance of the PGPE algorithm.

An important parameter in the instantiation of the PGPE algorithm is the σinit value. As
can be seen in Algorithm 4.2, this value has to be set by hand. In the literature there is no
procedure described how to determine this value. Therefore in this thesis these values were
determined empirically. This value determines the width of the initial normal distribution
where the perturbations ε are drawn from. When σinit is chosen very high, the normal
distribution becomes very wide and there is a wide range of values with a high chance of
being drawn. In the opposite case when this value is very small, the range of values that have
a high chance of being drawn is very narrow.

The σinit in this thesis are chosen as follows: for the trajectories σinit is 0.02 and for the goals
σinit is 0.01. These values are chosen based on the experiments, they can be explained when
looking what the σinit determines. The σinit determines the width of the initial normal distri-
bution and thus the range of values that can be picked. Because the weights are in the order of
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0.1 to 1.0, small perturbations can cause a big change. Furthermore the initial demonstration
gives a good first approximation of the desired trajectory. Based on the combination of these
two facts it can be seen that small values for the σinit are reasonable.

Because the perturbations ε are drawn from a normal distribution, there is a small chance of
getting an extreme value. An extreme value results in a huge perturbation which might lead
to an infinite cost. Therefore it was decided to limit the drawing of the ε to a range of plus
and minus three times the standard deviation σ. If the drawn perturbation ε is outside this
range, a new value is drawn. A range of three times the standard deviation is based on the
fact that hereby 99.7 % of the values of the normal distribution are covered as illustrated in
Figure 7-4.

Figure 7-4: Normal distribution curve that illustrates standard deviations [79]

7.2.2 Cost function

The cost function used for the use-case consists of three sub-costs. The cost function was
designed based on what is important from the practical view. This resulted in three factors
and hence three sub-costs: 1) in the beginning of the movement the demonstrated trajectory
has to be followed but deviations are allowed, 2) in the end of the movement the demonstrated
trajectory is very critical to follow and only small deviations are allowed and 3) the part should
be placed on the jig. To summarize this in a cost equation:

J = −
K−1∑
i=0

[δa(fdemo(i)− fact(i))2]−
K+N−1∑
i=K

[δb(fdemo(i)− fact(i))2]

− δc[κ+ λ(fdemo(K +N)− fact(K +N))2)] (7-10)

Here f contains the values of the trajectory, in this case x, y, z, roll, pitch and yaw. The
values of the demonstrated and actual trajectory are compared. The difference is squared for
three reasons: the number should always be positive, the larger the difference the bigger the
cost should be and it is most seen in literature e.g. [72]. K is the number of points in the
sub-trajectories that are not the final sub-trajectory. N is the number op points in the final
trajectory. The δ’s represent a condition in this case. When the learned trajectory deviates
more than 15% from the demonstrated trajectory, δa is 1 otherwise it is 0. The same holds
for δb but there is the percentage 5%. For the last δc it holds that it is 1 when the part is
not placed, otherwise it is 0. The variables κ and λ are weighting factors. For this use-case
κ was 1000 and λ 300. These numbers were chosen because the placement and the deviation
from the final position are seen as important.
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7.3 Controlling the UR5

7.3.1 Control of the UR5 in ROS

The UR5 can be controlled in ROS by using the motion planner of ROS, MoveIt! [80].
MoveIt! is state of the art software for mobile manipulation, more information on MoveIt!
can be found in Appendix B. A robot can be controlled through MoveIt! in several ways:
providing a desired joint configuration, providing a desired position and quaternion of the
end effector or providing a sequence of desired waypoints. In the first two cases MoveIt! uses
a stochastic planner to determine a path that reaches the desired configuration. In the last
case the planner tries to fit a path trough the waypoints, this will be further explained in
Section 7.3.3.
The first two ways of controlling the UR5 are used for initializing the robot to a standard
configuration and moving it to the start pose for learning and executing. When providing
a desired position and quaternion (for the rotation) of the end effector the corresponding
reference frame has to be set. Otherwise the planner does not know relative to what the
position is provided. In order to take safety into account, each planned trajectory is first
shown in simulation. Then the user is asked if the shown trajectory has to be executed, if
the answer is ’no’ the planner plans a new trajectory. If the answer is ’yes’ the planner will
execute the shown trajectory on the real robot.

7.3.2 Rotation conversion from UR5 to ROS

In Section 7.3.1 it was explained that a robot can be controlled by passing a Pose to the
motion planner. This Pose consists of a Position and Orientation. The quaternion that
is needed for the Orientation can also be set by using roll, pitch and yaw. ROS then
converts these values to a quaternion. After simulation and testing it appeared that setting
an orientation in this way does not result in the same orientation as desired while the same
reference frame was used. We could compare this because we know both the quaternions in
ROS and the measured values for rx, ry and rz from the demonstrations.
After research and testing it appeared that the conversion from roll, pitch, yaw to a quater-
nion is correct in ROS. However the problem is in how the rotation for the 0 vector is defined.
If we take rx = 0,ry = 0, rz = 0, this is converted to the quaternion 1 + 0i+ 0j + 0k. If we
set the following values on the control screen of the UR5: x = 0, y = −0.4, z = 0.5, rx = 0
,ry = 0, rz = 0 this results in the pose of Figure 7-5a. While if we use ROS to go to the
same position and use the quaternion 1 + 0i+ 0j+ 0k to set the orientation this results in the
pose of Figure 7-5b. So where the zero orientation on the UR5 is defined looking up along
the z-axis, in ROS it defined as looking forward along the x-axis.
Without a right conversion the application that was built, is worthless. Because all code was
in the ROS framework while the demonstrations could only be captured using the Matlab
driver. The problem could not be solved by performing transformations between different
reference frames. Therefore it was decided to look into the resulting quaternions. The orien-
tation of the rx = 0 ,ry = 0, rz = 0 pose is in ROS seen as 0.5 + 0.5i− 0.5j + 0.5k.
The problem can be solved by multiplying the quaternion q = 1 + 0i+ 0j + 0k with another
quaternion r = r0 + r1i+ r2j + r3k to get t = 0.5 + 0.5i− 0.5j + 0.5k. We then get t = qxr,
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(a) UR5 (b) ROS

Figure 7-5: Zero orientation

with t:

t0 = r0q0 − r1q1 − r2q2 − r3q3

t1 = r0q1 + r1q0 − r2q3 + r3q2

t2 = r0q2 + r1q3 + r2q0 − r3q1

t3 = r0q3 − r1q2 + r2q1 + r3q0

Because we know t and q, we can compute r. We then get r = 0.5 − 0.5i + 0.5j + 0.5k.
Multiplying the quaternion that results from the conversion of the UR5 values with r gives
the correct pose in ROS.

7.3.3 Executing a path

The aforementioned learned DMPs are used to generate a path that can be executed by the
robot. The earlier mentioned ROS package is used to generate this path, also called plan.
This is done by just filling in all values in Equation (3-1). This results in a vector with
points, velocities and times.

For the control of the UR5 we can only use the points at this moment, due to limitation
in the implementation of MoveIt!. The points of the DMPs are converted to positions and
orientations which together form a Pose. These Poses are put in a vector. The vector can
then be used as input for the function computeCartesianPath() which converts the Poses to
a path for the end effector in the Cartesian space. This path can then be supplied to MoveIt!
which executes the path on the robot.

To prevent that a lot of unusable trajectories are executed on the UR5, a check is done before
sending the path to the computeCartesianPath() function. The end points of the path that
has to be sent to computeCartesianPath() are checked for being within a certain margin
of the desired end points. Because if the end points are outside this margin, it can be sure
that the placement is unsuccessful. In this specific case the values in Table 7-1 are chosen as
margin values. These have been determined empirically.

I.T. van der Spek Master of Science Thesis



7.3 Controlling the UR5 47

Table 7-1: Margins used for precision placement application

Variable Margin
x 0.013 [m]
y 0.013 [m]
z 0.013 [m]
roll 0.05 [rad]
pitch 0.05 [rad]
yaw 0.07 [rad]

Summary

The trajectory data of the demonstrations is recorded by means of a Matlab driver for the
UR5. The x, y, z, rx, ry and rz values are recorded. Where rx, ry and rz is an axis-angle
representation of the rotation which is converted to roll, pitch and yaw. These values are
used to encode the DMPs, LWR is used as regression technique for determining the initial
weights.

For each sub-trajectory two instances of the PGPE algorithm are created: one for the weights
of the DMP and one for the goals. The perturbations are drawn in a limited region to create
a more stable algorithm. The cost function that is used for learning is based on following the
demonstrated trajectory, the deviation from the final position and if the part is placed.

The UR5 is controlled using the motion planner of ROS, MoveIt!. The path created by the
DMPs are supplied to the path planner as input which tries to convert this to an executable
path for the robot.
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Chapter 8

Experiments

Before starting to describe the results of the experiments, in Section 8.1 the test setup will
be described. Then in Section 8.2 the results of the placement of the cover part will be given.
Subsequently in Section 8.3 the results of the placement of the connection cover part will be
given.

8.1 Test setup

Two of the parts supplied by Philips Consumer Lifestyle are used for the test of the preci-
sion placement task. These parts are chosen because the movement that is needed for the
placement is non-trivial and because these parts can be easily mounted on the robot without
blocking elements of the part that are needed for the placement. The parts that are used
for the placement, are a cover and a part that covers a connection. In Figure 8-1 the cover
part is shown and in Figure 8-2 the connection cover part is shown. In Figure 8-3 it is shown
how the parts are attached to a wooden board which on its turn can be attached to the end
effector of the robot.

The parts need to be placed on a jig which is attached to a carousel. These carousels for the
two different parts are shown in Figure 8-4. The carousel with the jigs, is attached to a PVC
pipe which is attached to a wooden block. This wooden block is then clamped to the table
by two (glue) clamps. An overview of the whole setup can be found in Figure 8-5, a close-up
can be found in Figure 8-6.
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(a) Front (b) Back

Figure 8-1: Cover part

(a) Front (b) Side (c) Back

Figure 8-2: Connection cover part
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(a) Cover (b) Connection cover

Figure 8-3: Parts attached to wooden board

(a) Cover (b) Connection cover

Figure 8-4: Carousels with jigs
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Figure 8-5: Overview of the test setup

Figure 8-6: Close-up of the setup
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8.2 Placement of cover part

8.2.1 Test method

The software that is described in Chapter 7 is tested in this section. Therefore first a demon-
stration of the placement is given using the teach-in mode of the UR5. The cover part is
placed as is shown in Figure 6-2. First the bottom of the cover has to be placed over the
top of the jig and then a downward turning movement has to be made to ‘click’ the top of
the part into place. It should be noted that the part is placed upside down on the jig so
top and bottom refer to the orientation as shown in the figures. The demonstration is given
such that the movement is easy to perform by the demonstrator and is only based on human
intuition. The demonstration is not necessarily fluent however the movement always results
in a successful placement. The demonstration is then split in sub-trajectories and given as
input to the software.

The demonstrated trajectory was split in four sub-trajectories based on the plot of the values.
The resulting sub-trajectories are as depicted in Figure 8-7. 1) is chosen because there is a
non-trivial change in yaw, 2) is chosen because there is a change in roll, 3) and 4) are chosen
because there is again a big change in roll. The last part is not used because the object was
already placed but the recording was still running.

8.2.2 Results of normal demonstration

A sequence of Dynamic Movement Primitive (DMP) results from the above mentioned sub-
trajectories. A surprising observation was that the initial DMPs that were learned from these
sub-trajectories already resulted in a successful placement. It was not expected before hand
that the initial DMPs would be sufficiently shaped to do a successful placement. A plot of
the trajectories that were demonstrated and the trajectories that were created by the initial
DMPs can be found in Figure 8-8. Since the placement is already successful with the initial
DMPs the learning step is not needed in this case.

In order to figure out if the learning step could improve the trajectory of a successful place-
ment, the cost function was altered. A term was included that accounts for the jerk. Jerk is
the third derivative of the position. To move smoothly from one point to another, the sum of
the squared jerk along the trajectory should be minimized [81]. The jerk was computed for
each sub-trajectory. However it appeared that the jerk could not be minimized further. The
last two sub-trajectories can not become minimum jerk because the specific ‘click’ movement
has to be made which is not a smooth movement. The first two sub-trajectories appear to
be relatively minimum jerk already which can be explained by the fact that humans move
with minimum jerk and thus a demonstration might already be minimum jerk. Overall the
learning algorithm could not reduce the initial cost any further. This can be seen in Figure 8-9
where the cost is shown of a 100 cycle run. The algorithm is not able to reach the minimal
cost that was reached in cycle 0. The most seen cost plot is that of Figure 8-10a where there
is one peak with a very huge cost. If there is only looked at the first 20 cycles, a plot like
Figure 8-10b would be found.
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Figure 8-7: Demonstrated placement of cover with sub-trajectories shown

Figure 8-8: Demonstrated trajectories and resulting trajectories of initial DMPs
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Figure 8-9: Cost plot of the placement of a cover

(a) Complete run (b) up to iteration 20

Figure 8-10: Cost plot of learning step
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8.2.3 Results of noisy demonstration

In order to test the learning algorithm, a demonstration is given that does not result in a
placement by the initial DMPs. This is done by adding white Gaussian noise to the trajectories
that were used in Section 8.2.2. These trajectories result in initial DMPs that do not place
the part. Furthermore the noisy trajectories can be seen as a simulation of an input method
that is noisier than teach-in e.g. based on vision. In practice vision-based systems will be
used to capture the demonstrations because teach-in is not available or feasible on all robots.
The trajectories that are given as input are shown in Figure 8-11, the same sub-trajectories
as in Section 8.2.2 are used. The initial DMPs result in the trajectory shown in Figure 8-12.

Figure 8-11: Demonstrated placement of cover with added noise

As these trajectories do not result in a successful placement, learning is needed to improve
the trajectories to achieve a successful placement. From Figure 8-12 it can be seen why no
placement is achieved. This is caused by both the x and z trajectory. When looking at the
final position it can be seen that, due to the noise, there is a spike in the end of the trajectory.
Thus the trajectory moves away from the desired value. Furthermore some spikes can be
seen halfway the movement. These are caused by the change from one DMP to another.
In practice the software does not execute the initial trajectory because the final points are
outside the margins of the desired end points, as defined in Section 7.3.3. The goals that are
given to the DMPs are the desired final positions. After around 70 iterations the learning
algorithm finds a solution within the margins and thus can be executed. However due to
unknown reasons the computeCartesianPath() function of MoveIt! is not able to convert
100% of the trajectory that is given as input. This results in a execution that stops before
the complete trajectory is finished. Therefore it can not be determined if the placement is
successful or not. In Figure 8-13 such a probably successful placement can be seen. Again it
can be noticed that the change from one DMP to another is not fluent. The trajectories that
can be converted for more than 90%, which is enough for complete execution, do not result
in a successful placement.
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Figure 8-12: Demonstrated trajectories and resulting trajectories of initial DMPs of placement
of cover with added noise

Figure 8-13: Trajectories of a probably successful placement
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When looking into the plots of the learned trajectories, it can be seen why the part is not
successfully placed. In Figure 8-14 the plot of iteration 76 is shown where the final position
is within the margins and thus is executed. Especially the last section of the trajectories is
important because that determines the ‘click’ movement. It can be seen that the spike in
the end of the x trajectory is not flattened out but has grown. Furthermore a new spike is
found in the roll trajectory. This means that the algorithm is increasing the weights of the
basis functions that create the spike, presumably as part of a random action. These two facts
combined make that the part can not be placed successfully. For a successful placement the
trajectories should follow a flattened version of the noisy trajectories from second 8 to the
end, especially the roll trajectory is very important. It might be possible that a suitable
solution is found after more than 150 iterations however no more than 150 iterations could
be done due to time constraints. From iteration 70 the algorithm finds solutions within the
margins and these have to be executed which takes a couple of minutes per execution so the
learning process takes a lot of time. Another observation that is done, is that the algorithm
can’t find an executable trajectory at all. In Figure 8-15 a cost plot can be found of a run of
2000 cycles which did not find a trajectory within the margins.

Figure 8-14: Demonstrated trajectories and resulting trajectories of iteration 76
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Figure 8-15: Cost plot of the noisy placement of a cover

8.2.4 Results of partial demonstration

Another experiment to test the learning step is done by simulating a partial demonstration. A
partial demonstration requires the learning algorithm to find the missing part of the demon-
stration. The partial demonstration is simulated by taking the demonstration of Section 8.2.2
and setting the boundary of the last sub-trajectory to a value before the demonstration is ac-
tually finished. The goals of the DMPs are then set to the desired final position. Furthermore
the final place cost is compared to the desired final position. The resulting initial DMPs and
the original demonstrated trajectory are shown in Figure 8-16. Especially the roll trajectory
suffers from this partial demonstration, it goes steep to its final value instead of following the
demonstrated curve.

The task for the learning step is to find a solution that places the part successfully. Therefore
it needs to learn to follow the curve. From iteration 45 the algorithm starts to find solutions
that are within the margin for execution. In Figure 8-17 the plots of iterations 47 and 75 are
shown. It becomes clear that the learning algorithm is not able to find a solution that can
successfully place the part. This is caused by the fact that the learning algorithm does not
create the original curve. Changing the margins of the cost function of Section 7.2.2 does
not change the outcome. Furthermore it can be seen that the resulting learned trajectories
become less smooth.
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Figure 8-16: Demonstrated trajectories and initial trajectories of partial demonstration

(a) Iteration 47 (b) Iteration 75

Figure 8-17: Learning of partial demonstration
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8.2.5 Results of shifted goal

In order to test the working of DMPs itself, a different goal than the demonstrated goal
was set. According to the description of the DMPs this should also result in a successful
placement. Therefore the carousel was shifted 2 cm in the x-direction and the goals of the
DMP of the final trajectory were adjusted. This did not result in a successful placement.
This is caused by the fact that the 2 cm shifted is needed earlier in the movement. From
tests it appeared that the goal needs to be shifted for all sub-trajectories except for the first
one to result in a successful placement. In the case of a failing initial placement, the learning
step was again not able to learn a successful placement.

8.3 Placement of connection cover part

For the placement of the connection cover part the same procedure is used as in Section 8.2.1.
However the placement needs a different movement. For this part the bottom of the part has
to be placed in the gap at the bottom of the jig. Then a turning movement has to be made
to ‘click’ the part on the jig at the top. Two clamps hold the part there while the pin of the
jig sticks through the hole of the part.

The demonstration resulted in the plot that can be found in Figure 8-18. The sub-trajectories
are shown by the vertical lines. The reasoning behind this split is as follows: 1) is chosen
because of the big changes in roll it is no problem if the movement is smoothed a bit by
the initial weights, 2) is chosen for the big change in pitch and 3) is chosen because of the
change in both roll and yaw. In Figure 8-19 the resulting initial trajectories are shown. The
trajectories fit less with the demonstrated trajectories than that was the case for the cover
part.

After demonstration it appeared that the trajectories could not be executed by MoveIt!. The
computeCartesianPath() function could only convert up to 30% of the received trajectory
to an executable trajectory. Because this represents only the beginning of the movement,
it could not be determined if the trajectories achieve a successful placement. It was tried
to get the computeCartesianPath() function to convert a higher percentage of the received
trajectories by supplying a less dense trajectory however without any effect. Because this is
an built-in function of MoveIt! it could not be told what the cause of the error is.
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Figure 8-18: Demonstrated placement of the connection cover and the chosen sub-trajectories

Figure 8-19: Demonstrated trajectories and resulting trajectories of initial DMPs of the place-
ment of the connection cover
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Conclusion
This chapter described the experiments that were done for the use-case. From these experi-
ments several conclusions can be drawn. From the first experiment of the placement of the
cover part it can be concluded that the initial DMPs performed better than expected. It was
expected that a learning step was needed however the initial DMPs were able to achieve a
successful placement. The other experiments showed three main things: 1) the learning step
did not perform as good as expected, 2) MoveIt! needs improvement and 3) data-efficient
Reinforcement Learning (RL) is almost required for RL in robotics. The third observation
partly follows from the first observation.

There are several reasons why the learning step did not perform as good as expected. The
third and most important reason is that this algorithm needs already over 500 iterations for a
2 Degrees of Freedom (DoFs) case. Because for the use-case execution is needed to determine
the cost, a lot of executions are needed. It is infeasible to do more than 50 executions
in a reasonable time. Therefore the number of iterations that could be reached was most
of the time below 200. That 200 iterations could be reached was because of the smart
implementation of the margin. This proves the third observation: for a successful application
of RL to robotic tasks a data-efficient learning algorithm is needed. By using a data-efficient
algorithm the number of executions can be limited. The second reason is that it is very hard
to design a good cost function which is the function that determines the performance of the
algorithm in the specific case. The cost function is build purely based on human intuition
and insight however the effect of the algorithm might not always be as expected. The third
reason is that due to the binary final cost, the cost function can be very fluctuating. This
also has effect on the gradient. In the case of a smooth cost function and smooth gradient,
minimization is done by following the function. However, due to the binary final cost, the
algorithm depends more on its random actions for finding the optimal solution. Without
random actions the algorithm is not able to find a successful placement and thus exploration
is very important in the case of a binary cost.

The second observation is based on the performance of the computeCartesianPath() function
of MoveIt!. The function was not able to convert all provided trajectories to a trajectory for
execution on the robot. Why this was the case is not clear because the MoveIt! path planner
is kind of a black-box application. Actually it is not expected that this happens because the
trajectories are recorded using teach-in and are thus feasible.
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Chapter 9

Conclusions & future work

In this chapter the conclusions that can be drawn from the research in this thesis are given.
Furthermore some directions for future work are given.

9.1 Conclusions

From the research some general conclusions can be drawn and also some conclusions specif-
ically related to the use-case can be drawn. First the general conclusions will be given and
then the use-case specific conclusions. Finally the research question will be answered.

The Dynamic Movement Primitives that were used in this thesis performed as expected. From
the experiment in Section 8.2.5 it became clear that shifting the goal indeed results in a scaled
version of the original movement. Furthermore it is confirmed that a sequence of DMPs is
more suitable to describe a movement that consist of multiple sub-movements. Where we, as
humans, see a lot of movements as one movement; from an engineering point of view these
movements can be brought down to a sequence of movements. Encoding each sub-movement
in a separate DMP gave better results than expected. It was expected that the initial DMPs,
obtained through regression, would not be able to do a successful placement. However during
the experiments it became clear that the sequence of initial DMPs was able to do a successful
placement of the part on the jig. Therefore the conclusion can be drawn that a sequence of
DMPs is perfectly able to encode a challenging trajectory if it is split in sub-trajectories.

During the testing of the algorithm it became clear that it was not very stable; it crashed very
randomly. When looking into the cause of the crash and reasoning about the algorithm it
appeared that it had to do with the perturbations that were drawn. Therefore it was decided
to limit the size of the perturbation to a deviation of three times the standard deviation
from the current mean. This resulted in a more stable algorithm in the sense that infinite
costs became very rare. The algorithm was also improved to handle binary final costs in
combination with small initial costs. In the original form the algorithm crashed within 20
iterations when this combination was given as an input. In the improved form, which posed
limitations on the update equations, the algorithm could run stable.
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From the application of the PGPE algorithm to the DMPs it can be concluded that rein-
forcement learning can be combined with imitation learning. Where imitation learning is
represented by DMPs and reinforcement learning by the PGPE algorithm. In itself this is
nothing new as the derivation of the parametrized policy showed each DMP can be seen as a
parametrized policy and used for reinforcement learning. The PGPE algorithm however had
not been combined with DMPs before. The combination was successful in the sense that they
could be combined without any adjustments to the algorithm or DMPs itself. The downside
of the PGPE algorithm became very clear when the experiments were done: in the number
of iterations that is feasible to do on a robot the algorithm was not able to improve upon the
given trajectories. This fact leads to the conclusion that data-efficient reinforcement learning
algorithms are required for the application of reinforcement learning to robotics in a practical
situation. The number of trials for achieving a minimal cost should be kept to a minimum.
Regarding the Robot Operating System (ROS) framework it can be said that the framework
is very suited for the easy development of robot applications. In the six months that were used
to develop the software, the framework was learned from scratch and the resulting application
was built. Due to the core components that are provided by the framework e.g. simulator,
communication layer and path planner, the focus can be purely on the software that has to
be added. Building further on the DMP package also shows the strength of the framework:
by using software that is shared by others, relatively little effort has to be put in creating
parts of the application. Another big advantage is that applications can first be tested in
simulation and subsequently on the real robot. This helps discovering bugs and errors before
the real robot is needed which is very helpful when the access time to the robot is limited.
The first conclusion that can be drawn related to the use-case is that the initial Dynamic
Movement Primitives are very well suited for imitating a demonstrated trajectory. As already
said above it was not expected that the initial DMPs were able to place the part successfully.
By choosing smart sub-trajectories the initial DMPs were however able to place the part
successfully. Thereby successfully completing the task that was described by the use-case.
Another aspect that was shown by the experiments for the use-case was that the learning step
did not perform as expected. The learning step was not able to improve on the demonstrated
trajectory. The PGPE algorithm was not able to optimize a complete demonstration or
improve a partial or noisy demonstration. There are several reasons why the learning step
did not perform as expected. The first reason is that is very hard to design a suitable
cost function. In summary the cost function represents what the designer, mostly based on
intuition, thinks is important. Especially the weights that are given to sub-costs are quite
arbitrary. For the use-case it is important to follow the demonstrated trajectory but also
deviations are allowed especially in the first part of the trajectory. These constraints are very
intuitive to a human but hard to express in a mathematical formula. The second reason is,
as mentioned above, the PGPE algorithm is not data-efficient and therefore requires a lot of
iterations which was not feasible to do on the real setup. The maximal feasible number of
iterations that could be done on the setup was around 200. The 2-DoF case showed that for
that case already up to 500 iterations were needed. It can be imagined that the real setup,
which is 6-DoF, needs more iterations to find a minimal cost because it is a harder to solve
problem due to the number of extra weights. The third reason is the binary final cost which
makes the cost function very fluctuating. Because the algorithm is based on gradient ascent,
and a fluctuating cost results in a rough gradient landscape, it depends more on its random
actions to find a minimal cost. The random actions are needed to find a successful placement.
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The last conclusion is that the computeCartesianPath() function of MoveIt! is, at this mo-
ment, not suited to convert all provided trajectories. Because this is a complicated function,
the user can not easily see what is going on. Therefore it is more like a black-box function
that does or doesn’t work.

To finalize this conclusion section the research question that was posed in the introduction is
answered. The research question was:

“Can imitation learning be combined with reinforcement learning to achieve a successful
application in an industrial robotic precision placement task?”

To answer this question, the above conclusions and derivations can be summarized. The first
insight is that the robotic precision placement task could be achieved by only using imitation
learning. Thus purely based on the results of this thesis the answer to this research question
should be ‘no’. This answer would then be based on the fact that the reinforcement learning
step is not giving good results. However it is clear that reinforcement learning and imitation
learning can be combined. Adjustments to the current algorithm or a change of algorithm
might result in a working combination of imitation learning and reinforcement learning for a
robotic precision placement task. Which has as advantage for the current application, which
full fills the task, that it is able to improve on the demonstrated and initial trajectory. Where
in this thesis the focus was on following the trajectory, minimizing the jerk, smoothing a
noisy trajectory or completing a partially demonstrated trajectory other objectives are also
possible. Other minimization objectives might be: energy, execution time, etcetera.

9.2 Future work

Based on the conclusions above and the experience gathered during the research in this thesis
some directions for future work can be given. Most directions are tailored to improve the
application designed in this thesis. The directions or the results thereof however might also
be applicable to other cases.

The first direction for future research is the combination of multiple demonstrations in one
DMP. In GMM already multiple demonstrations are used to create the model. It will be
an interesting research direction to see if a hybrid model can be created that combines the
strengths of both DMP and GMM. A starting point for this direction might be the research
of [82] which combines multiple demonstrations in a DMP like system. The advantage of
combining multiple demonstrations is that a more general movement is learned.

The second improvement is the splitting of the demonstrated trajectory into multiple sub-
trajectories. In this thesis this is done by hand based on the intuition of the researcher. How-
ever the ideal case is that no expert is needed and therefore the division in sub-trajectories
should become automatic. The application is even not industry ready when this is not im-
plemented and is therefore a necessary extension.

For the recording of the trajectories, the Matlab driver has to be used which runs on Win-
dows while the ROS framework runs on Linux. Therefore the ROS UR5 driver should be
improved such that the teach-in mode of the UR5 can be used in combination with ROS
such that the trajectories can be directly recorded using the ROS framework. This extensions
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is also needed if the application runs in an industrial environment; the application should
become one software package that incorporates all functionality. Furthermore there should
be looked into the input method that is used, currently it is assumed that this is teach-in.
However, for industrial robots a teach-in mode is not always available. Vision seems to be
the most promising and intuitive input method for giving the demonstrations. It would be a
nice challenge to incorporate this as input method in the current application.

Until now the application has only be tested on the UR5 robot. However the application
should be suited for each robot for which a ROS driver exists. A relatively simple but
interesting case would be to test the application on different robots.

As concluded a data-efficient reinforcement learning algorithm is actually needed for reinforce-
ment learning in robotics. While the work of this thesis was already in progress a data-efficient
version of the PGPE algorithm was proposed in a paper [83],[84]. It would be interesting to
see what the results of the data-efficient version of the algorithm are.

The last direction of future work is to overcome the problem of creating a suitable cost
function. This might be done by doing research in the direction of inverse reinforcement
learning or preference-based reinforcement learning which were mentioned in Chapter 2. A
good starting point might be a recent paper about direct policy search using preference-
based reinforcement learning [85]. Another starting point can be a new framework called
programming by feedback [86].
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Appendix A

Robot Operating System

The Robot Operating System (ROS) is a flexible framework for writing robot software. It
is a collection of tools, libraries, and conventions that aim to simplify the task of creating
complex and robust robot behaviour across a wide variety of robotic platforms. ROS was
built to encourage collaborative robotics software development [87]. In this appendix some
basis principles of ROS will be explained.

A.1 Filesystem

The functional parts of ROS are formed by nodes. A node is a standalone executable file, but
it also refers to the source code behind it. Functionalities are grouped in packages. A package
can contain several nodes. A package is the most atomic build item and release item in ROS.
Besides source code a package can also contain messages and services. Which contain the
definition of a data structure used for a message or the definition of a request and response
data structure respectively [88].

A.2 Communication

The communication in ROS is done over topics. A node sends out a message by publishing it
to a given topic. The topic is a name that is used to identify the content of the message. A
node that wants information about certain kind of data, subscribes to the appropriate topic.
In general publishers and subscribers are not aware of each others’ existence. The idea is to
decouple the production of information from its consumption.

In order to support a request/reply manner of interaction the service was introduced. A
service is a defined pair of message structures: one for the request and one for the reply. A
providing node offers a service under a name and another node uses the service by sending
the appropriate request message. From a programming point of view this can be seen as a
remote procedure call [88].
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A.3 Plugins

There are some plugins or software packages that are available upon install of ROS. The
three most important ones are Gazebo, RVIZ and MoveIt!. MoveIt! will be explained in
Appendix B.

A.3.1 Gazebo

Gazebo is a robot simulation tool [89]. It offers the ability to efficiently simulate robots in
complex indoor and outdoor environments. Gazebo enables the user to build its own elements
in a simulation like robots, lights, sensors and objects. Gazebo is a real physics simulator
which simulates the real world. An impression of a UR5 in Gazebo can be found in Figure A-1.

Figure A-1: UR5 in Gazebo

A.3.2 RVIZ

RVIZ stands for Robot Visualiser, it visualizes all information that is available in the ROS
system [90]. RVIZ can for example be used to visualize the data of a 3D camera but also all
the known reference frames or the model of the robot. A picture of RVIZ displaying a point
cloud received from a 3D camera can be found in Figure A-2
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Figure A-2: UR5 as seen by a 3D camera in RVIZ
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Appendix B

MoveIt!

MoveIt! is a state of the art software package for mobile manipulation, incorporating the
latest advances in motion planning, manipulation, kinematics, control and navigation [80].
In combination with Robot Operating System (ROS) MoveIt! is mostly used to control the
robot by planning its movements. MoveIt! integrates with the Open Motion Planning Library
(OMPL) which primarily implements randomized motion planners. These motion planners
are used by MoveIt! as its default set of planners. The planners in OMPL have no concept
of a robot. MoveIt! configures OMPL and provides the back-end to work with problems in
robotics. MoveIt! is able to take the environment into account and plan a collision free path
for multiple degrees of freedom.

OMPL

This section gives a short introduction into OMPL and its sampling-based motion planning.

Sampling-based motion planning is a powerful concept that employs sampling of the state
space of the robot in order to quickly and effectively answer planning queries especially for
systems with many degrees of freedom [91]. Sampling arises out of the need to quickly cover
a large and complex state space. Sampling-based motion planning reasons over a finite set of
configurations in the state space.

The goal of a sampling-based motion planning query is the task of finding a collision free
path in the state space of the robot from a distinct start state to a specific goal state.
Hereby utilizing a path composed of configurations connected by collision free paths. OMPL
implements several different sampling-based motion planning algorithms.

The default motion planner used by MoveIt! is the LBKPIECE1 which stands for Lazy Bi-
directional KPIECE with one level of discretization. It is a tree-based planner that uses a
discretization to guide the exploration of the continuous space. This implementation uses two
trees of exploration with lazy collision checking [92].
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Appendix C

Axis-angle to roll, pitch, yaw

This appendix describes the conversions from the axis-angle representation as used by the
UR5 to the roll, pitch yaw representation as used by Robot Operating System (ROS). A lot of
knowledge for the conversion is derived from [93]. The conversion is done by writing down the
rotation matrix for both the axis-angle representation and the roll, pitch, yaw representation.
Because these rotation matrices should be the same, one can write terms of one matrix in
terms of the other matrix which is done for the conversion.

C.1 Axis-angle rotation matrix

The complete derivation of the rotation matrix of the axis-angle representation can be found
at [93]. Here only the result is given. It should be noted that the 3x3 matrix that is used for
representing the axis-angle is converted from vector algebra to matrix algebra using the skew
symmetric or ‘tilde’ matrix. This results in:

[R] = [I] + sin(angle)[∼ axis] + (1− cos(angle))[∼ axis]2 (C-1)

If we write out the rotation matrix R we get the following:

[R] =

 tx2 + c txy − zs txz + ys
txy + zs ty2 + c tyz − xs
txz − ys tyz + xs tz2 + c

 (C-2)

Where c = cos(angle), s = sin(angle), t = 1 − c, x is the normalized axis x coordinate, y is
the normalized axis y coordinate and z is the normalized axis z coordinate.

C.2 RPY rotation matrix

The rotation matrix for roll, pitch, yaw is derived from [94]. For each of the rotation a
separate rotation matrix can be written down.
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Roll:

Rx(γ) =

1 0 0
0 cos(γ) − sin(γ)
0 sin(γ) cos(γ)

 (C-3)

Pitch:

Ry(β) =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

 (C-4)

Yaw:

Rz(α) =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 (C-5)

The roll, pitch, yaw rotation matrices can be multiplied to obtain a single rotation matrix.
It should be noted that R(α, β, γ) first performs the roll, then the pitch and then the yaw. If
the order is changed, a different rotation matrix would result.

R(α, β, γ) = Rz(α)Ry(β)Rx(γ) =

cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ

 (C-6)

Where c is cos and s is sin.

C.3 Converting

To get the value for β we take the term R3,1. This results in:

β = asin(−txz + ys) (C-7)

To get the value for γ we divide R3,2 by R3,3 which results in:

γ = atan2(tyz + xs, tz2 + c) (C-8)

To get the value for α we divide R2,1 by R1,1 which results in:

α = atan2(txy + zs, tx2 + c) (C-9)

There are two singularities at β = π/2 and at β = −π/2. When β = π/2 we can rewrite the
rotation matrix using some trigonometric identities. We then can write:

R1,2
R1,3

= sin(γ − α)
cos(γ − α) (C-10)

Then choose α = 0. This results in

γ = atan2(txy − zs, txz + ys) (C-11)

The same can be done for β = −π/2. Then we also take alpha = 0 and we get:

γ = atan2(txy − zs, txz + ys) (C-12)
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DSPE Conference 2014 proceedings

On the next pages the extended abstract that is published in the proceedings of the DSPE
Conference 2014 on precision mechatronics is shown. The theme of the conference is ‘Revo-
lution vs. Evolution’ [95].
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Flexible industrial robotics through imitation learning
Mark Geelen, Simon Jansen, Jacco van der Spek
Alten Mechatronics, Eindhoven, The Netherlands
Jacco.van.der.Spek@alten.nl

INTRODUCTION
In industrial environments robots are used for various 
tasks. However, it is not feasible for companies to 
deploy robots for productions with a limited batch 
size or for products with large variations. The current 
generation of robots is highly inflexible; therefore 
many repetitive tasks are still performed by humans. 
Current robots essentially have an insufficient level of 
intelligence: the robots are programmed at controller 
level and not at task level. Typically, a fixed sequence of 
actions is programmed, and robots do not learn from 
their mistakes or optimize their behaviour over time. 
Furthermore, a robot expert is still needed to program 
the robot. A solution to these challenges would be a 
new generation of robots and software which can adapt 
quickly to new situations and which learns from their 
mistakes while being programmable without needing  
an expert.

The concept that we propose as enabler to more flexible 
robotics is the combination of imitation learning and 
reinforcement learning. Imitation learning is a method 
“by which a robot learns new skills through human 
guidance and imitation” [1]. The purpose of imitation 
learning is to learn a task by generalizing from observa
tions. The power of imitation learning is that the robot is 
programmed in an intuitive way while the insight of the 
teacher is incorporated in the execution of the task.

In this work, a combination of imitation and reinforce
ment learning is applied to a robotic precision place
ment task in an industrial setting. The robot genera
lizes movements that are demonstrated through 
an advanced form of teachin by human operators. 
Reinforcement learning is then used to optimize the 
demonstrated trajectory in order to make sure that a 
correct placement is achieved. This optimization step is 
important because the initial learned movement cannot 
be assumed to be perfect.

This research contributes to the existing solutions in two 
ways. The first contribution of this work is the algorithm 
that is used for the optimization which has not been 
combined with imitation learning before.  

The second contribution is the combination of imitation 
and reinforcement learning being applied in an 
industrial usecase.

This extended abstract is structured as follows:  
first, the concept of Dynamic Movement Primitives 
(DMPs) [2] are explained, this forms the basis of 
imitation learning. Next it is shown that a DMP can be 
seen as a parameterized policy. After that, the used 
algorithm is shortly explained. Furthermore the results 
of experiments are discussed. Finally, conclusions  
are presented.

DYNAMIC MOVEMENT PRIMITIVES
A movement primitive is derived from the complex 
movement skills that are found in nature. Dynamic 
Movement Primitives (DMPs) can be seen as a spring
damper like system with a nonlinear forcing term [2]. 
This is also called the transformation system and is 
given by:

The forcing term f is a sum of Gaussian basis functions 
with each its corresponding weight wi. The K and D para
meters are the spring and damper constants respec ti
vely. x and v are the position and velocity; x0 and g are the  
start and goal position; and τ is a temporal scaling factor. 
The phase variable s changes from 1 to 0 during the 
move ment. The term K(g-x0) is required to avoid jumps  
at the beginning of the movement.

In order to encode a demonstrated trajectory in a 
DMP, first the high level parameters g, x0 and τ are 
deter mined. Where τ is simply the duration of the 
demonstrated movement. The weights wi are then 
determined by Locally Weighted Regression (LWR) [3] 
which minimizes the error between the demonstration 
and the trajectory created by the DMP.

DMP AS A PARAMETERIZED POLICY
In reinforcement learning, a policy π maps states to 
actions. This policy can be optimized to find the optimal 
policy π*. When the action and state space become 
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continuous, the problem of finding an optimal policy 
becomes hard to solve. Therefore a parametric policy πθ 
is used to find the optimal policy. This is done by finding 
the optimal policy parameters θ* [4]. A DMP can be seen 
as a special form of a parameterized policy where the 
weights wi of the forcing term are taken as parameters θ.  
Policy search algorithms can be used to find a parameter 
vector θ* which minimizes the expected cost. Here, the 
cost is a function which is determined before hand and 
incorporates terms that have to be minimized. In the 
next section the reinforcement learning algorithm that 
is used to minimize this cost is explained.

POLICY GRADIENTS WITH PARAMETER
BASED EXPLORATION
The Policy Gradients with Parameter based Exploration 
(PGPE) algorithm is a policy search algorithm [5]. 
The algorithm is derived from the general framework 
of episodic reinforcement learning in a Markovian 
environment. The goal of reinforcement learning is 
to optimize the agent’s expected reward. One way to 
optimize this is by estimating the gradient of the cost
function J(θ) which has to be optimized.

PROOF OF PRINCIPLE
In order to prove the principle of combining the methods 
mentioned above, a 2 Degree of Freedom (DoF) case is 
taken. The xy trajectory of a two joint robot is taken as 
demonstration. This demonstration is used to encode 
a sequence of 2 DoF DMPs; one for each DoF. By this 
encoding the aforementioned weights w are obtained. 
These weights w are used as an initialization of the 
PGPE algorithm: μ is set to the initial weights. Then 

the PGPE algorithm tries to optimize the trajectories 
that are formed by the DMPs according to a cost 
function. The cost function is focused on following the 
demonstrated trajectory.

The demonstrated trajectory and the resulting trajectory 
of the initial DMPs can be found in Figure 1. It should 
be noted that the trajectory is split, by hand, in sub
trajectories as can be seen in the figure by the black 
dotted lines. For each subtrajectory a DMP is learned. 
After applying learning to the weights of the DMPs the 
resulting trajectory can be found in Figure 2 while the 
corresponding cyclecost plot can be found in Figure 3. 
It can be concluded that after 300 cycles the cost starts 
to converge and that the resulting trajectory after  
500 cycles has significantly improved.

Figure 1
Demonstrated trajectory and initial DMP trajectory

Figure 2 
Resulting trajectory 

Figure 3 
Cyclecost plot
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USE-CASE
For the usecase an UR5 robot from Universal Robots 
[6] was used in teachin modus to record demonstrated 
trajectories. These demonstrated trajectories are then 
used to encode a 6 DoF DMP: the trajectory is described 
using the x, y, z positions and roll, pitch, yaw rotations 
of the tooltip. These variables were chosen because by 
operating in Cartesian space, the operation becomes 
robot independent. The performed task is a precision 
placement of a part on a jig which is attached to a 
carrousel. In Figure 4, the setup, and the part attached 
to the tooltip and carrousel can be seen. The placing of 
the part is derived from a process at Philips Consumer 
Lifestyle where a part of a Philips consumer product has 
to be placed on a painting carrousel manually.

All the above mentioned algorithms and techniques 
were implemented using the Robot Operating System 
Industrial (ROSI) [7]. ROSI is an open source frame
work for robotic applications which incorporates many 
existing software packages. Therefore, the builtin path 
planning package of ROSI, MoveIt!, was used to control 
the UR5 robot arm.

First experiments already show promising results. 
Figure 6, presents the demonstrated trajectories and 
the produced trajectories. The produced trajectories  
are generated by the initial sequence of DMPs which  
are used to encode the demonstrated trajectories.  
When executing the generated trajectories, this results 
in the placement of the part on the jig as can be 
observed in Figure 5.

Figure 5 
Setup after successful placement

Figure 4 
Setup before placement

Figure 6 
Demonstrated trajectories  
and initial DMP trajectories
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CONCLUSION
The initial tests in which the combination of imitation 
and reinforcement learning were used are very 
promising. Even without learning, the robot was able  
to perform a successful precision placement of the  
part on the jig.

The proof of principle showed that a combination of 
imitation learning and reinforcement learning is able 
to improve a demonstrated trajectory. From this, we 
can conclude that the chosen optimization algorithm 
can be successfully combined with imitation learning. 

Furthermore, the results of this proof of principle 
enable the future application of this research in an 
industrial usecase.

Therefore, we can conclude that a combination of 
imitation and reinforcement learning is a promising 
direction toward more flexible robotics. In this way, a 
robot can be programmed by a nonexpert operator, 
without the need for perfect demonstrations.

This work is part of the R5COP project and was funded 
by the ECSELJU.
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Appendix E

Software variables

This appendix gives an overview of the variables that are used for the software packages.
Most of the variables are also mentioned in the thesis but this appendix collects them in one
place.

E.1 DMP package

Table E-1: Variables used in the DMP package

Variable Value
D 100.0
K 20.0
number_basis_functions 15
intersection_height 0.5
goal_tresh 0.05
integrate_iter 1
alpha − log(0.01)

Master of Science Thesis I.T. van der Spek



84 Software variables

E.2 PGPE package

Table E-2: Variables used in the PGPE package

Variable Value
t_sigma 0.02
g_sigma 0.01
max delta_sigma 20.0
max random_number µ± 3σ

E.3 Precision placement executive

Table E-3: Margins used for precision placement application

Variable Margin
x 0.013 [m]
y 0.013 [m]
z 0.013 [m]
roll 0.05 [rad]
pitch 0.05 [rad]
yaw 0.07 [rad]
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Glossary

List of Acronyms

BN Bayesian Network

DMM Donut Mixture Model

DMP Dynamic Movement Primitive

DoFs Degrees of Freedom

GMM Gaussian Mixture Model

GMR Gaussian Mixture Regression

IRL Inverse Reinforcement Learning

LWR Locally Weighted Regression

MDP Markov Decision Process

PBRL Preference-based Reinforcement Learning

PGPE Policy Gradients with Parameter based Exploration

PPL Preference-based Policy Learning

RL Reinforcement Learning

ROS Robot Operating System

SEDS Stable Estimator of Dynamical Systems

TU Delft Delft University of Technology
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94 Glossary

List of Symbols

π Policy
π∗ Optimal policy
τ Temporal scaling factor
θ Policy parameters
θ∗ Optimal policy parameters
D Damping constant
f(s) Forcing term
g Generalized goal position
J(π) Average return
K Spring constant
R(τ) Reward
s Phase variable
v Generalized velocity
wi Adjustable weights of the DMP
x Generalized position
x0 Generalized start position
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