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A B S T R A C T

Artificial bee colony (ABC) is a prominent algorithm that offers great exploration capabilities among various
meta-heuristic algorithms. However, its monotonous and one-dimensional search strategy limits its searching
performance in the solving process. Thus, to address this issue, a Q-learning based multi-strategy integrated
ABC algorithm (QMABC) is proposed. In the QMABC, multiple search strategies are proposed to utilize
different individual experiences and search approaches for solution updates. Then, Q-learning is employed
for strategy selection. In comparison to previous studies, this paper introduces more effective state and action
configurations within the framework of Q-learning. To evaluate the performance of the QMABC, CEC 2017
benchmark functions are adopted to compare it to different meta-heuristic algorithms including ABC based
and non-ABC based algorithms. Moreover, applications in path planning are implemented to further verify
the effectiveness of the QMABC. Overall, it should be highlighted that the proposed QMABC demonstrates
superiority in both numerical and practical experiments.
1. Introduction

Nowadays, multiple industries are transitioning towards intelligence
and automation in the revolution brought about by computer technol-
ogy. This shift has resulted in the emergence of increasingly complex
operation research problems. These problems share troublesome fea-
tures, including nonlinear, high-dimensional, nondifferentiable, etc.,
which lead to the inapplicability of traditional exact optimization algo-
rithms and heuristic algorithms. In this case, meta-heuristic algorithms
have become a hotspot for their excellent performance. Evolutionary
algorithms constitute a significant category within the realm of meta-
heuristic algorithms. In general, they are a combination of stochas-
tic algorithms and local search. Meanwhile, they have the benefits
of simple theory and high efficiency. Genetic algorithm (GA) (Hol-
land, 1992), particle swarm optimization (PSO) (Kennedy & Eberhart,
1995), differential evolution (DE) (Storn & Price, 1997), artificial bee
colony (ABC) (Karaboga & Basturk, 2007), and ant colony optimiza-
tion (ACO) (Dorigo et al., 1996) are the paradigms of evolutionary
algorithm.

Among the various algorithms, the ABC algorithm has good ex-
ploration ability and robustness. Thus, it is applied to a wide range
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of optimization problems, including workshop scheduling (Pan et al.,
2011), vehicle path planning (Szeto et al., 2011), and market forecast-
ing (Hsieh et al., 2011). However, the exploration and exploitation of
the algorithm are always contradictory. At the same time, the search
equation of ABC is simple and only one dimension of information is
updated in each iteration, which results in a moderate exploitation
ability and slow convergence speed (Liao et al., 2012). Therefore, lots
of researchers have attempted to optimize it.

In the past few years, plenty of ABC variants have been modified
to address its limitations. These variants have been created from dif-
ferent perspectives, including parameter adjustment, search equation
improvement, algorithm scheme modification, and so on Cui et al.
(2023). Nevertheless, a single search equation can hardly satisfy the
requirements for effectiveness in every situation. Under the circum-
stances, some ABC variants address this problem by importing multiple
strategies. For example, Chen et al. (2019) introduced three DE strate-
gies, namely ‘‘rand/1/bin’’, ‘‘current-to-pbest/1/bin’’, and ‘‘current-to-
rand/1’’, to the employed bee phase to replace the original strat-
egy. Cao and Shi (2021) also added a DE strategy and an elite-guided
strategy into the onlooker bee phase. Yong et al. (2021) applied three
vailable online 24 August 2023
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search strategies from DE, GA, and PSO to the employed bee phase. Bra-
jevic et al. (2020) combined the search equations from the firefly
algorithm and ABC, and made choices through a variance operator.

Although these modifications have made progress in the perfor-
mance of the ABC algorithm, there are still several drawbacks. Firstly,
although these works consider a variety of strategies, they are essen-
tially homogeneous. The different strategies share the same decision
mechanism for determining the number of dimensions to be updated
and the similar form of search equation. Secondly, these strategy
selection mechanisms are not robust. Due to the large randomness of
the meta-heuristic algorithm, both the changes in fitness value and the
number of successfully updated individuals will fluctuate dramatically
in a single iteration. This can lead to bias in the strategy selection
operators.

To alleviate the first issue, we choose strategies that vary signifi-
cantly. The differences can be reflected in the following aspects: the
number of dimensions to be updated can be merely one, entire, or
stochastic; the guidance solution can be a randomly selected solution,
global optima, or neighborhood optima; the base solution can move
towards the target solution straightly or spirally, etc. By incorporating
these strategies, they can meet different situations and complement
each other when used together. To address the second issue, we fo-
cus on the Q-learning algorithm (Lee & Lee, 2021). As a typical RL
algorithm, Q-learning can solve various problems through a decision-
making agent learning from the interactions with its environment (He
et al., 2023). The formation of the Q-table is influenced by the results
of calculations over a period of time. In addition, the set of actions
is relatively flexible. For example, the actions we set in this paper
do not directly select a certain strategy but indirectly make decisions
by changing the probability of selecting strategies in small steps. In
this way, the strategy selection method through Q-learning has strong
robustness because it is no longer sensitive to the results in a few iter-
ations. Based on these considerations, we propose a novel ABC variant
called Q-learning based multi-strategy integrated ABC (QMABC).

To verify the validity of the proposed QMABC algorithm, it is
compared to the ABC variants and other improved meta-heuristic algo-
rithms on the CEC 2017 benchmark functions in different dimensions.
The experimental results illustrate that the QMABC algorithm is supe-
rior to the competitors in searching accuracy and convergence rate.
Moreover, it is applied to the unmanned vehicle path planning. Com-
pared to classical path planning methods, the proposed algorithm
shows great superiority in the searching accuracy and execution time.

The main contributions of this paper can be summarized as follows:

(1) Several novel strategies are introduced into the algorithm, in-
cluding one in the employed bee phase to enhance exploration
capabilities and three in the onlooker bee phase to improve
exploitation capabilities.

(2) Q-learning algorithm is utilized to adaptively determine the most
suitable strategy for the current population. Different from the
existing works (Wang et al., 2022c; Zhou & Zhao, 2023), in our
Q-learning framework, the state setting focuses on the update
status of the whole population instead of individuals. Strategies
are indirectly selected based on probability values. It further
enhances the search ability of the algorithm.

(3) Compared with ABC variants and other meta-heuristic algo-
rithms, the proposed QMABC shows great superiority in terms
of search accuracy, convergence speed, and robustness. Besides,
the proposed QMABC algorithm also shows super performance
compared with other path planners in both two-dimensional and
three-dimensional path planning problems.

The remainder of this paper is organized as follows. Literature
eviews and some relevant algorithms are presented in Section 2.
ection 3 elaborates on the proposed QMABC algorithm in detail. In
ection 4, numerical experiments are conducted to test the effectiveness
f the proposed algorithm. Then, Section 5 applies the algorithm to
oncrete unmanned vehicle path planning problems. Finally, we give
he conclusion in Section 6.
2

2. Preliminaries and related work

In this section, two basic algorithms (ABC and Q-learning) will be
introduced, and overall reviews of relevant literature will be made.

2.1. The standard ABC algorithm

The ABC algorithm was first proposed by Karaboga and Basturk
(2007), inspired by the behavior of bee colonies. In the bee colonies, the
entire bees are divided into three types: employed bees, onlooker bees,
and scout bees. The three types of bees cooperated in the process of
honey gathering. Accordingly, the ABC algorithm imitates the behavior
of three kinds of bees to achieve good optimization results.

2.1.1. Implement of ABC algorithm
There are four phases in the ABC algorithm, which are explained in

detail in this section.
Initialization phase: ABC needs to generate a certain number of

solutions as the initial population. We assume that the population size
is 𝑆𝑁 and the dimension of one solution is 𝐷, then the form of solutions
is 𝑥𝑖 =

(

𝑥𝑖,1, 𝑥𝑖,2,… , 𝑥𝑖,𝐷
)

, 𝑖 ∈ {1, 2,… , 𝑆𝑁}. For the 𝑗th dimension of
the 𝑖th solution, ABC uses Eq. (1) to generate a feasible number.

𝑥𝑖,𝑗 = 𝑥𝑙𝑜𝑤𝑒𝑟
𝑗 + 𝑟𝑎𝑛𝑑(0, 1) × (𝑥𝑢𝑝𝑝𝑒𝑟𝑗 − 𝑥𝑙𝑜𝑤𝑒𝑟

𝑗 ), (1)

where 𝑥𝑙𝑜𝑤𝑒𝑟
𝑗 and 𝑥𝑢𝑝𝑝𝑒𝑟𝑗 are the lower bound and upper bound of the

𝑗th dimension. Similar to many EAs, the initial solutions of ABC are
randomly generated with uniformly distributed probabilities within the
range of feasible domains in each dimension.

Employed bee phase: ABC enters the loop and executes the three
main phases in a continuous sequence. In this phase, each individual
searches the entire solution space for a better candidate solution based
on its corresponding food source. This step is primarily responsible for
exploring the solution space. The search equation is shown below:

𝑣𝑖,𝑗 = 𝑥𝑖,𝑗 + 𝜙 × (𝑥𝑖,𝑗 − 𝑥𝑘,𝑗 ), (2)

where 𝑘 ≠ 𝑖 is a random number selected from {1, 2,… , 𝑆𝑁}, 𝜙 is a
random number with uniform distribution in the range of [−1, 1], and
𝑣𝑖,𝑗 is the 𝑗th dimension of the candidate solution.

Then the objective function value is used to evaluate the candidate
solution and the original solution, and a better solution is chosen via
the greedy choice strategy:

𝑥𝑛𝑒𝑤𝑖 =
{

𝑥𝑖, 𝑓 (𝑣𝑖) > 𝑓 (𝑥𝑖),
𝑣𝑖, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(3)

It should be noted that ABC has a counter 𝑡𝑟𝑖𝑎𝑙𝑖 to count the number
of unsuccessful updates for solution 𝑖. If 𝑓 (𝑣𝑖) ≤ 𝑓 (𝑥𝑖), then 𝑣𝑖 replaces
𝑥𝑖 and 𝑡𝑟𝑖𝑎𝑙𝑖 is set to 0; otherwise 𝑡𝑟𝑖𝑎𝑙𝑖 is added by 1.

Onlooker bee phase: In the onlooker bee phase, new food sources
are searched based on information about promising food sources. This
phase mainly aims to achieve exploitation in the vicinity of high-quality
solutions. To facilitate the calculation of the probability of each solution
being selected, it is necessary to convert the objective function 𝑓 (𝑥𝑖)
into a fitness function 𝑓𝑖𝑡𝑖 through Eq. (4) as:

𝑓𝑖𝑡𝑖 =

⎧

⎪

⎨

⎪

⎩

1
1 + 𝑓𝑖

, 𝑓𝑖 ≥ 0,

1 + |𝑓𝑖|, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(4)

where 𝑓𝑖𝑡𝑖 is always greater than 0 and inversely proportional to 𝑓 (𝑥𝑖).
A roulette wheel selection mechanism is used to choose base vector 𝑥𝑖
with probability 𝑝𝑖 as:

𝑃𝑖 =
𝑓𝑖𝑡𝑖

∑𝑆𝑁
𝑛=1 𝑓𝑖𝑡𝑛

. (5)

It can be found that the larger the solution fitness value, the greater
the probability of being selected. Then the process is the same as
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that of the employed bee phase, including computing of the candidate
solutions (Eq. (2)), making greedy choices (Eq. (3)) and updating the
counter 𝑡𝑟𝑖𝑎𝑙𝑖.

Scout bee phase: The scout bee phase aims to prevent the solution
from falling into the local optimum by regenerating solutions that
cannot be successfully updated for a certain number of iterations. If
the counter 𝑡𝑟𝑖𝑎𝑙𝑖, 𝑖 ∈ {1, 2,… , 𝑆𝑁} reaches the boundary conditions
𝑡𝑟𝑖𝑎𝑙𝑙𝑖𝑚𝑖𝑡, a novel solution will be generated by Eq. (1) and the 𝑡𝑟𝑖𝑎𝑙𝑖
will be reset to 0.

2.1.2. Literature review of ABC algorithm
Currently, the mainstream optimization ideas of swarm intelligence

algorithms can be categorized into three types (Das et al., 2016). The
modification of the ABC algorithm is no exception (Karaboga et al.,
2014). The first type is the optimization of the search equations,
which adds or removes items or optimizes and adapts parameters
in the search equations to reduce the number of manually defined
parameters or obtain the balanced unity of the parameter values in
different problem situations. The second is the combination of different
algorithms to compensate for the shortcomings of a single algorithm
so that it can achieve more preferable global and local search ability.
The third is to carry on additional supplements or enhancements to
the algorithm. In many cases, researchers will combine multiple types
of ideas simultaneously to achieve better results in an optimization
problem.

For the first type of thinking: Zhu and Kwong (2010) believed that
the search equation of the traditional ABC algorithm moves a solution
to another randomly selected solution, making it uncertain whether
better solutions can be found. Although the algorithm has a stronger
exploration ability, it will also greatly reduce the convergence speed.
Therefore, the author proposed GABC algorithm, which combines the
concept of the current global optimal solution in the PSO algorithm
and adds the experience of the current global optimal solution into the
search equation of ABC algorithm to guide the search for new solutions.
This strategy improved the search efficiency and solving accuracy of
ABC algorithm which was later used by many researchers. Xu et al.
(2020) and Zhou et al. (2021) adopted the current global optimal
solution-oriented strategy in their papers to guide the generation of new
solutions. Based on the GABC algorithm, Zhao et al. (2022) proposed
PAABC algorithm, which adjusted the combination of group experience
by studying the coverage of the search equation and adaptively ad-
justed the search step size based on individual fitness, thus reducing
the probability of invalid search and further improving the search
efficiency and solving accuracy of the algorithm.

In addition to the search equation considering the current global
optimal solution, Zhou et al. (2022) took into account the experience of
the neighborhood optimal solution and used the current local optimal
solution to guide exploitation, thereby, significantly improving the
local search ability.

From another perspective, Akay and Karaboga (2012) found that
the range of perturbation value significantly affects the exploration
and exploitation ability of the algorithm. Therefore, their algorithm
adaptively changed the scale of this item to use different disturbance
values for different search stages.

For the second type of thinking: The combination of ABC algo-
rithm and DE algorithm is the most mainstream one. Gao et al. (2012)
first introduced the mechanism of DE into the ABC algorithm, replacing
the original search strategy with the strategy of DE. Such a combination
can effectively improve the coverage degree of the algorithm’s search
space and significantly improve the algorithm’s accuracy and conver-
gence speed. Chen et al. (2019) further improved this combination by
introducing three different DE search equations. Therefore, three search
equations that perform differently were introduced at the same time.
In practical application, the selection probability of the three strategies
was adaptively allocated according to the actual optimization effect,
3

and good results were achieved. Ustun et al. (2022) combined the DE
in a more detailed way, and only adopted the crossover and mutation
strategies in the onlooker bee phase to achieve better results.

In addition to combining with DE, Pan et al. (2017) proposed a
compact ABC algorithm to combine the idea of the distribution esti-
mation method, which used truncated normal distribution to replace
the actual population, and finally converged to the optimal solution
by updating the variance and mean. Banitalebi et al. (2015) also
optimized the compact ABC algorithm to replace the truncated normal
distribution with a segmented probability distribution, while increasing
the perturbation of the probability distribution to increase randomness.
This method can greatly save space and reduce the complexity of the
algorithm, but it has the problem of low accuracy compared with the
algorithm with the actual population.

Etminaniesfahani et al. (2022) considered the newer Fibonacci intel-
ligent algorithm, embedded it into the onlooker bee phase of ABC, and
selected either the original ABC strategy or the FA strategy according
to a certain probability.

For the third type of thinking: Researchers also proposed addi-
tional supplements and strengthened the algorithm mechanism. Gao
and Liu (2012) adopted the initial solution generation method based on
opposition learning and a chaotic system, which effectively increased
the diversity of initial solutions and enhanced the efficiency of the
algorithm. Cui et al. (2017) adopted the fitness ranking rather than fit-
ness to determine the selection probability. At the same time, adaptive
parameters were used to adjust the selection probability of individuals
assigned by ranking in different search periods, to balance the global
and local search ability.

Liao et al. (2012) dynamically adjusted the probability of updating
each dimension of the solution, which indirectly changed the number
of updated dimensions. Cui et al. (2022) have also improved upon this
mechanism by incorporating the idea of RL. Each time the search equa-
tion was used to update the solution, the number of updated dimensions
was determined by the current situation and reward mechanism so that
the program can automatically find the updated degree of the relatively
suitable solution at different stages. It greatly improved the efficiency
of the algorithm and the success rate of the updated solution. Aiming at
the actual discretization problem, Lei and He (2022) developed three
variants for the onlooker bee phase and introduced adaptive selection
indexes for pattern selection.

Wang et al. (2022) introduced a significant change to the mech-
anism of the ABC algorithm, enabling each individual could continu-
ously change according to the solution situation in the stage of three
kinds of bees, and realized the dynamic balance of exploration and
exploitation. This paper also created a new idea for the optimization
of ABC algorithm. Zhou et al. (2023) incorporated fitness landscape
analysis to assess the smoothness of the landscape of the solution space
based on the population’s diversity. If the landscape was smooth, a
strategy more inclined towards exploitation was selected; conversely, if
the landscape was relatively rugged, a strategy more inclined towards
exploration was chosen.

2.2. The Q-learning algorithm

2.2.1. The basic idea of Q-learning algorithm
Since the 1980s, machine learning (ML) has attracted widespread

interest in the field of artificial intelligence and it has been utilized
in metaheuristics in the current year (Fister et al., 2016). The four
main approaches in the field of ML are supervised learning, unsuper-
vised learning, semi-supervised learning, and reinforcement learning
(RL) (Sarker, 2021). Among them, RL is a kind of environment-driven
approach that relies on reward or penalty and its objectives in order
to take action to increase the reward or minimize the risk. With its
unique advantages, RL is widely adopted in various fields, including
the field of predictive analytics and intelligent decision-making, smart

city and energy construction, traffic prediction and transportation, etc.
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Fig. 1. Q-learning framework.

However, RL may not be the preferred approach for solving the basic
or straightforward problems.

In the development of RL systems, Watkins and Dayan (1992) com-
bined the theory of optimal control including the Bellman equation and
Markov decision process together with temporal-difference learning
to form a well-known Q-learning. Q-learning has three characteris-
tics, which are model-free, off-policy, and bootstrapping. These give
Q-learning plenty of benefits like stability, simplicity, rapidity, and
adaptability to a larger state-space environment (Nguyen et al., 2020).

To be precise, the framework of Q-learning is displayed in Fig. 1.
It involves four components of Q-table, state 𝑠, reward 𝑟, and action
𝑎. The agent recognizes state 𝑠𝑡 from the environment and then takes
a promising action 𝑎𝑡 to execute based on the Q-table. After applying
the action, the environment will be changed to state 𝑠𝑡+1 and return
the reward 𝑟 to the agent. Then the Q-table will be updated through
Eq. (6).

𝑄𝑛𝑒𝑤(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 × [𝑟𝑡+1 + 𝛾𝑚𝑎𝑥
𝑎∈𝐴

𝑄(𝑠𝑡+1, 𝑎) −𝑄(𝑠𝑡, 𝑎𝑡)], (6)

where 𝑄𝑠𝑡 ,𝑎𝑡 is the Q-value of taking action 𝑎𝑡 at state 𝑠𝑡, 𝛼 is the learning
rate that controls the influence of past experiences and present reward,
and 𝛾 is the discount rate. So far, a whole iteration has been completed.
And it will continue until the terminal state is achieved. The pseudo
code of Q-learning is shown as Algorithm 1.

Algorithm 1: Pseudo code of Q-learning algorithm
1 begin
2 Initialize 𝑄(𝑠, 𝑎) arbitrarily;
3 Choose a initial state 𝑠1 randomly;
4 while state 𝑠 is not terminal do
5 Choose action 𝑎𝑡 from 𝑠𝑡 using policy derived from Q-table;
6 Take action 𝑎𝑡, obtain reward 𝑟𝑡+1 and state 𝑠𝑡+1;
7 Update Q-table via Eq. (6)
8 end while
9 end

2.2.2. Review of Q-learning based ABC
Currently, many researchers have incorporated RL into meta-

heuristic algorithms to enhance their accuracy, efficiency, and ro-
bustness. There are two main categories of ideas in the research of
combining ABC with Q-learning. The first category focuses on utilizing
Q-learning to adaptively adjust the parameters in the algorithm, aiming
to achieve improved search effectiveness. The second category uses
Q-learning to select the most suitable strategy from multiple search
strategies by considering the corresponding search state.

In the first kind of idea, Long et al. (2022) defined states by con-
sidering the weighted average value of optimal fitness value, average
fitness value, and population diversity within the algorithm population.
Based on these states, the number of dimensions for updating is de-
termined. Cui et al. (2022) defined states of Q-learning by considering
whether the current search successfully updates the solution, and it was
also adopted to determine the number of update dimensions.
4

In the second kind of idea, Wang et al. (2022c) initially designed
multiple search strategies and employed Q-learning for strategy selec-
tion in ABC. The states and rewards of Q-learning were determined
based on the updating status of individuals, while the actions involved
the direct selection of a particular strategy. Similar approaches were
proposed by Li et al. (2023) and Wang et al. (2022d), where the main
ideas were analogous to the last study. However, these researches only
considered the influence of individual update status when setting the
states of Q-learning. In contrast, Jia et al. (2021) revealed that the
overall performance of the population played a more crucial role in the
adaptive adjustment process of RL. In this case, Zhou and Zhao (2023)
introduced a distinct state and reward mechanism, which depended
on whether the population had any improvement in one iteration.
Nevertheless, its state setting remains simplistic, as it does not consider
the variations in population update efficiency. Furthermore, within
such kind of idea, the action setting remains simple, where all strategy
selections are directly determined solely based on the values presented
in the Q-table.

3. Proposed QMABC algorithm

As mentioned in Section 2, each of its three phases plays a different
role. The employed bee phase is mainly used to explore the global
solution space. The onlooker bee phase is mainly used to exploit local
solution space. The scout bee phase is used for the regeneration of so-
lutions trapped in local optimality. The effective coordination between
these three phases allows ABC to achieve an excellent balance between
exploration and exploitation. However, due to its single search equation
and weak local search capability, we can further expand its global
and local search abilities under the original ABC framework to achieve
better solving precision and convergence speed of the algorithm.

In the remainder of this section, we will elaborate on several strate-
gies and the framework of Q-learning for strategy choices.

3.1. Modified employed bee phase

Many researchers introduced the equation of DE into different
algorithms as the unique search equation of DE allows the population
to maintain a high degree of diversity and covers a large portion of
the solution space (Bhattacharya & Chattopadhyay, 2010; Cui et al.,
2022; Liu et al., 2010). Therefore, to further enhance the global search
ability of the algorithm, we add an improved DE search equation into
the employed bee phase.

In DE algorithm, the following two search equations are commonly
used (Das et al., 2016):

𝐷𝐸∕𝑟𝑎𝑛𝑑∕1 ∶ 𝑣𝑖,𝑗 = 𝑥𝑟1,𝑗 + 𝐹 × (𝑥𝑟2,𝑗 − 𝑥𝑟3,𝑗 ), (7a)

𝐷𝐸∕𝑐𝑢𝑟𝑟𝑒𝑛𝑡− 𝑡𝑜−𝑏𝑒𝑠𝑡∕1 ∶ 𝑣𝑖,𝑗 = 𝑥𝑖,𝑗 +𝐹 ×(𝑥𝑏𝑒𝑠𝑡,𝑗 −𝑥𝑖,𝑗 )+𝐹 ×(𝑥𝑟1,𝑗 −𝑥𝑟2,𝑗 ).

(7b)

The 𝐷𝐸∕𝑟𝑎𝑛𝑑∕1 takes 𝑥𝑟1 as the base vector and adds a perturbation
item related to two randomly selected vectors. Similarly, the base
vector of 𝐷𝐸∕𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑡𝑜 − 𝑏𝑒𝑠𝑡∕1 is the current solution itself and
the mutated solution itself, respectively. Considering that our goal is
to enhance the exploration in this phase, more individual participation
can bring more mutation possibilities. It is more appropriate to use
a stochastic solution as the base vector to improve the diversity of
individuals (Ghosh et al., 2011; Mallipeddi et al., 2011). However,
too many participants in the mutation process can easily lead to a
large mutated value outside the domain. Thus, we propose a modified
search equation by combining Eqs. (7a) and (7b) and further replace
the current global best item with a random one. Moreover, the mutation
coefficient F is substituted by a uniformly distributed random number
to increase the stochasticity. Finally, the improved search equation is
displayed in Eq. (8) as:

𝑣 = 𝑥 + 𝜙 × (𝑥 − 𝑥 ) + 𝜑 × (𝑥 − 𝑥 ), (8)
𝑖,𝑗 𝑟1 𝑖,𝑗 𝑟2 𝑟1 𝑖,𝑗 𝑟3 𝑟1
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where 𝜙𝑖,𝑗 and 𝜑𝑖,𝑗 are both uniform random numbers in the range of
−1, 1], 𝑟1, 𝑟2, 𝑟3 are random numbers in {1, 2,… , 𝑆𝑁}. In Eq. (8), the

first two items take 𝑥𝑟1 as the base vector and perturb in the scope
of [2𝑥𝑟1 − 𝑥𝑟2, 𝑥𝑟2] when 𝑥𝑟1 ≤ 𝑥𝑟2 or [𝑥𝑟2, 2𝑥𝑟1 − 𝑥𝑟2] when 𝑥𝑟1 > 𝑥𝑟2.
They give the search equation the ability to cover all the points in the
range with equal probability. To further enhance the randomness of
this search equation, we introduce an additional third item to enable
the mutated point ulteriorly to move within the radius of the distance
between 𝑥𝑟3 and 𝑥𝑟1 based on the original perturbance range. The
enhanced randomness allows the search equation to perform stronger
exploration capability.

𝑥𝑖,𝑗 =
{

𝑥𝑖,𝑗 , 𝑟𝑎𝑛𝑑𝑗 > 𝐶𝑅,
𝑣𝑖,𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(9)

We also take the number of updated dimensions into account as
Eq. (9). For each dimension of the solution, whether it will mutate
using the search equation Eq. (8) is fully based on the size relationship
between a random number and crossover rate 𝐶𝑅. It gives the search
process more degree of freedom to enhance the exploration.

3.2. Three novel search strategies in onlooker bee phase

When it comes to the local search ability of the search equation,
its impacts vary when the form and dimension of the problems are
different. In fact, none of the search equations can always perform
best in every function case. Instead, they only have excellent effects
in certain situations. For this reason, more and more researchers have
adopted multiple search equations in algorithm development to cope
with different situations (Chen et al., 2019). Therefore, in the onlooker
bee phase, we also aim to develop several powerful search equations to
improve the local search ability of the algorithm and provide stability
in diverse scenarios.

Strategy 1: Spiral approximation strategy
Among the many meta-heuristic algorithms, the whale optimization

algorithm (WOA) and its variants (Abd El Aziz et al., 2017; Mirjalili &
Lewis, 2016) have a distinctive strategy. In this strategy, movements
from the base vector to the target vector are not in a straight line
direction. Instead, the base vector takes the current global best solution
as the target vector and moves towards it with a spiral trajectory. The
search equation can be expressed as follow:

𝑣𝑖,𝑗 = 𝑥𝑔𝑏,𝑗 + |𝑥𝑔𝑏,𝑗 − 𝑥𝑖,𝑗 | × 𝑒𝑏×𝑟 × 𝑐𝑜𝑠(2𝜋𝑟), (10)

where 𝑥𝑔𝑏 is the current global best solution, 𝑟 is a uniformly distributed
random number in the range of [−1, 1], and 𝑏 is a constant parameter.
When this strategy is activated, it updates every 𝑗th dimension for
𝑗 ∈ {1, 2,… , 𝑆𝑁}. Through Eq. (10), we can observe the attributes
of this strategy. Firstly, the location update of the solution 𝑥𝑖 is only
related to the position of 𝑥𝑔𝑏 and the absolute distance between 𝑥𝑔𝑏
and 𝑥𝑖. Secondly, the approaching step size of the second item in
Eq. (10) is determined by a composite function with exponential and
cosine parts. So the approaching step size to the 𝑥𝑔𝑏 is more inclined
to move in small steps instead of rapidly getting close to it. Because
of these attributes, this strategy possesses great exploitation ability.
Besides, owing to its full-dimensional update feature and spiral search
mode, each individual has the possibility of falling on any side of the
global best solution. Therefore, this search equation exhibits a higher
capability for exploiting regions around the global best solution.

In this paper, we modify this strategy to make it more flexible
in different search stages. Parameter 𝑏 is turned into an adaptive
parameter related to the function evaluations as:

𝑏 = 1 − 𝐹𝐸𝑆
𝐹𝐸𝑆𝑚𝑎𝑥

, (11)

here 𝐹𝐸𝑆 is the number of objective function evaluations, 𝐹𝐸𝑆𝑚𝑎𝑥
s the maximum number of calls. After modification, parameter 𝑏 will
5

gradually decrease from 1 to 0 as 𝐹𝐸𝑆 increases. We display three cases
with 𝑏 = 1, 0.5, 0.1 in Fig. 2 to illustrate the effect of different parameter
alues.

We can see that the number of 𝐹𝐸𝑆 is small, and the value of
arameter 𝑏 is close to 1 in the early stage of algorithm execution. At
his time, the possible positions of the updated solution are distributed
round the center of the current global optimal solution. The distance
etween the new solution 𝑣𝑖 and 𝑥𝑔𝑏 might be slightly greater than
hat between 𝑥𝑖 and 𝑥𝑔𝑏. With the progress of the loop, the value of 𝑏
ecreases, then the possible position of the new solution is gradually
educed to a smaller area around the global optimal solution. This
echanism allows the search equation to exploit in a larger area in the

arly period and a tendency to further exploit around 𝑥𝑔𝑏 in the later
eriod. It nicely adjusts the choice of exploitation scope at different
imes.

trategy 2: Global and neighborhood best guide strategy
In previous research, many ABC variants show that the elite indi-

iduals have been utilized to guide search (Xiang et al., 2015). For
xample, Zhu and Kwong (2010) proposed the global best guided ABC
lgorithm to take advantage of the valuable information from the
uperior individual. However, there is a risk that the best individual can
e easily overutilized. To alleviate this problem, some neighborhood
lite based ABC are proposed. Neighborhood guidance enhances the
earch in the local area and eliminates the probability of prematurity.
evertheless, the global search ability is diminished in this way. Thus,
y considering both the current global best individual and the neigh-
orhood best individual, we make a fusion of such elite guidances and
ropose our strategy in Eq. (12) as follows:

𝑖,𝑗 = 𝑥𝑖,𝑗+𝑐1×𝜙𝑖,𝑗×(𝑥𝑟1,𝑗−𝑥𝑖,𝑗 )+𝑐2×𝜑𝑖,𝑗×(𝑥𝑔𝑏,𝑗−𝑥𝑖,𝑗 )+𝑐3×(𝑥𝑛𝑏,𝑗−𝑥𝑖,𝑗 ), (12)

here 𝑥𝑔𝑏,𝑗 is the 𝑗th dimension of the current global optimal solution,
𝑛𝑏,𝑗 is the 𝑗th dimension of the neighborhood optimal solution. In
his paper, neighborhood represents an exact scope around the base
olution. The identification of the neighborhood solutions depends on
he size relationship between the distance of two solutions and the
eighborhood radius based on Eq. (13). In Eq. (13), 𝑑 donates the
uclidean distance defined as:

𝑖,𝑗 =

√

√

√

√

𝐷
∑

𝑛=1
(𝑥𝑖,𝑛 − 𝑥𝑗,𝑛). (13)

According to existing research, if the 𝑑𝑖,𝑗 is smaller than the thresh-
ld value, then the two solutions can be regarded as neighborhood
olutions to each other. The threshold value is usually set to 10 (Zhou
t al., 2022).

In Eq. (12), the orientation of the two elite solutions is apparent,
hich is more likely to trigger premature convergence of the solution
rocess. Therefore, to slow down the convergence speed and strengthen
he exploitation ability, only one dimension 𝑗 ∈ {1, 2,… , 𝑆𝑁} is
elected for an update each time.

Besides, 𝑐1, 𝑐2, 𝑐3 are three adaptive parameters to adjust search
ocus in different periods.

1 =
𝑓 (𝑥𝑖,𝑗 ) − 𝑓 (𝑥𝑟1,𝑗 )
𝑓 (𝑥𝑖,𝑗 ) + 𝑓 (𝑥𝑟1,𝑗 )

, (14)

𝑐2 = 2 × 𝑡𝑟𝑖𝑎𝑙
𝑡𝑟𝑖𝑎𝑙𝑙𝑖𝑚𝑖𝑡

, (15)

𝑐3 = 2 ×
(

1 − 𝑡𝑟𝑖𝑎𝑙
𝑡𝑟𝑖𝑎𝑙𝑙𝑖𝑚𝑖𝑡

)

. (16)

We believe that the fitness value of each solution can reflect its ability
to guide search. In Eq. (14), 𝑐1 determines the degree that controls
how much to accept the experience of a randomly selected solution.
When the difference between the fitness values of 𝑥𝑟1 and 𝑥𝑖 is large,
it means that 𝑥𝑟1 is much worse than 𝑥𝑖. At this time, the value of 𝑐1

will be small, and the second item will guide the search away from
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Fig. 2. Location of points generated through strategy 1.
𝑥𝑟1, and vice versa. 𝑐2 and 𝑐3 are two operators that determine which
solution dominates the search direction between 𝑥𝑔𝑏 and 𝑥𝑛𝑏. During the
iteration, the value of 𝑐2 increases, and the value of 𝑐3 decreases as the
unsuccessful update counter 𝑡𝑟𝑖𝑎𝑙𝑖 increases. That is, 𝑥𝑛𝑏’s experience
counts more when there are fewer unsuccessful updates, and 𝑥𝑔𝑏’s ex-
perience is considered more after a long period of unsuccessful updates.
We adopt the operators setting as there may be better solutions near
𝑥𝑖 that need to be discovered when the 𝑡𝑟𝑖𝑎𝑙𝑖 is relatively small, and
a premature move to 𝑥𝑔𝑏 will ignore the exploitation of neighborhood
space. When the number of unsuccessful updates increases, it indicates
that the neighborhood information has been fully developed, so further
exploitation is made around the 𝑥𝑔𝑏.

Strategy 3: Low dimensional dominance strategy
The strategies mentioned above are effective for high-dimensional

problems but do not perform as well in low-dimensional problems.
According to previous research and experimental results, the search
equation 𝐷𝐸∕𝑟𝑎𝑛𝑑∕1 has demonstrated exceptional performance in
low-dimensional problems. Therefore, as a supplement to the above two
strategies, we add the strategy shown in Eq. (17) in the onlooker bee
phase as follows:

𝑣𝑖,𝑗 = 𝑥𝑖,𝑗 + 𝐹 × (𝑥𝑟1,𝑗 − 𝑥𝑟2,𝑗 ). (17)

This search equation is identical to the standard DE search equation,
and the number of dimensions to update is also determined by the
crossover rate 𝐶𝑅 through Eq. (9).

3.3. Q-learning framework for strategy selection

Although it is possible to introduce multiple search equations, it
can be challenging to determine which one to use at a particular
time. Q-learning, as one of the classical RL algorithms, can have a
self-learning mechanism through the interaction between the reward
and the environment. Therefore, we consider that the selection of the
search equation can be entrusted to the Q-learning algorithm. In this
way, a more appropriate strategy can be adopted based on the current
calculation situation.

In this section, the method of using Q-learning to instruct strategy
choice will be elaborated. To be specific, our algorithm introduces
parameters 𝑝1, 𝑝2, 𝑝3 that control the probability of each strategy being
selected. Q-learning algorithm dynamically adjusts each probability
during iteration. We do not use Q-learning directly to determine the
chosen strategy for the following two reasons. Firstly, finding new
solutions by search equations is a random process. Each strategy has
the potential to find better solutions but they differ from each other for
different probability of finding them. Secondly, some strategies may be
more difficult to guide successful updates, but they are more effective
once they succeed. For these reasons, it is necessary to allow for each
strategy to be selected while avoiding too many ineffective updates.

Seven different actions can be taken to adjust the probability of
choosing a strategy. Namely, at same, 𝑝 + 𝜇, 𝑝 − 𝜇, 𝑝 + 𝜇, 𝑝 − 𝜇,
6

1 1 2 2
𝑝3 + 𝜇, 𝑝3 − 𝜇, respectively. 𝜇 is the step size to adjust the probability.
Meanwhile, the summation of the probability is 1, so the three param-
eters have only two degrees of freedom. Therefore, the seven actions
can be reduced to five and the actions 𝑝3 +𝜇 and 𝑝3 −𝜇 can be deleted.
Furthermore, to ensure that each strategy has a possibility of being
chosen regardless of its effectiveness, two predetermined parameters 𝑙𝑏
and 𝑢𝑏 are set, where 𝑙𝑏 and 𝑢𝑏 are the lower bound and upper bound
for the probability values 𝑝𝑖, 𝑝𝑗 , 𝑝𝑘. That is, the probability values will be
constrained in a range of [𝑙𝑏, 𝑢𝑏]. It is important to note that as one of
the parameters increases or decreases, the remaining two parameters
decrease or increase in proportion to their values. For example, if
𝑝𝑖, 𝑖 ∈ {1, 2, 3} is added by 𝜇, then the other two probability values
𝑝𝑗 , 𝑝𝑘, 𝑖 ≠ 𝑗 ≠ 𝑘 can be calculated as:

𝑝𝑗 = 𝑝𝑗 − 𝜇 ×

(

𝑝𝑗 − 𝑙𝑏
)

|𝑝𝑗 − 𝑙𝑏| + |𝑝𝑘 − 𝑙𝑏|
, (18a)

𝑝𝑘 = 𝑝𝑘 − 𝜇 ×

(

𝑝𝑘 − 𝑙𝑏
)

|𝑝𝑘 − 𝑙𝑏| + |𝑝𝑗 − 𝑙𝑏|
. (18b)

Similarly, if the action being performed is 𝑝𝑖 − 𝜇, the parameter 𝑙𝑏 in
Eq. (18) will be replaced by the 𝑢𝑏.

In the setting of the states, we consider the update situation of the
population from a macro perspective. This is because judging by the
individual’s single success or failure is highly biased. Moreover, all in-
dividuals’ updates depend on the experience of other individuals in the
population so that the effectiveness of a strategy is more influenced by
the population structure. To assess the population update situation un-
der the current stage, we introduce a counter 𝑇 𝑟𝑖𝑎𝑙𝑖, 𝑖 ∈ {1, 2,… , 𝑆𝑁}
to record the number of unsuccessful updates during the onlooker bee
phase. Similar to the counter 𝑡𝑟𝑖𝑎𝑙𝑖 in the standard ABC, the counter
𝑇 𝑟𝑖𝑎𝑙𝑖 is reset to zero when the 𝑖th solution undergoes a successful
update, and it is incremented by one otherwise. The distinction lies in
its activation solely during the onlooker bee phase. Thus, we set two
states depending on Eq. (19) as:

𝑛𝐺𝑠 = 𝑆𝑁 −
𝑆𝑁
∑

𝑖=1
max

(

𝑇 𝑟𝑖𝑎𝑙𝐺𝑖 − 𝑇 𝑟𝑖𝑎𝑙𝐺−1
𝑖 , 0

)

, (19)

where 𝑇 𝑟𝑖𝑎𝑙𝐺𝑖 is the value of the unsuccessful update counter of the 𝑖th
solution after iteration 𝐺.

Based on the above definition, the two states are defined as below:
𝑠1: 𝑛𝐺𝑠 ≥ 𝑛𝐺−1

𝑠 , the number of successfully updated solution is larger
than or equal to that in the last iteration. Under the circumstances, the
reward value is set as 1;

𝑠2: 𝑛𝐺𝑠 < 𝑛𝐺−1
𝑠 , the number of successfully updated solution is less

than that in the last iteration. Under the circumstances, reward value
is set as −1.

To be precise, the structure of Q-table for strategy selection is shown
in Table 1.

In Table 1, 𝑄(𝑠𝑖, 𝑎𝑗 ) is the Q-value of taking action 𝑎𝑗 at state 𝑠𝑖.
Notice that, the population shares the same Q-table. In addition, many
researchers adopt the 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 mechanism for action selection in
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Table 1
Q-table in QMABC.

Action

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5

state 𝑠1 𝑄(𝑠1 , 𝑎1) 𝑄(𝑠1 , 𝑎2) 𝑄(𝑠1 , 𝑎3) 𝑄(𝑠1 , 𝑎4) 𝑄(𝑠1 , 𝑎5)
𝑠2 𝑄(𝑠2 , 𝑎1) 𝑄(𝑠2 , 𝑎2) 𝑄(𝑠2 , 𝑎3) 𝑄(𝑠2 , 𝑎4) 𝑄(𝑠2 , 𝑎5)

recent works, which allows the Q-learning method to balance the ex-
ploration and the exploitation well. However, the number of successful
update maintains a certain degree of inherent randomness, so it is
unnecessary to introduce the above mechanism. Thus, we follow the
simple greedy selection to choose actions.

To summarize, the pseudo code is exhibited in Algorithm 2.

3.4. Complexity analysis

We adopt the method in Wang et al. (2022) to analyze the com-
plexity of the proposed QMABC and compare it to the standard ABC.
In ABC, the key factors that determine the algorithm complexity are
population size 𝑆𝑁 , problem dimension 𝐷, and maximum iteration
time 𝐼 . For the initialization phase, the complexity depends on the
number and dimension of individuals, so it is 𝑂(𝑆𝑁 × 𝐷). For the
employed bee phase, each bee will be updated in each iteration, so
the complexity is 𝑂(𝑆𝑁 × 𝐼). In the onlooker bee phase, except for the
updates, the probabilities of being selected for each individual require
calculations, so the complexity is 𝑂(2 × 𝑆𝑁 × 𝐼). For the scout bee
phase, the execution times are relatively few and the complexity can
be omitted. Overall, the complexity of ABC is 𝑂(𝑆𝑁 ×𝐷+ 3×𝑆𝑁 × 𝐼).

QMABC has the same complexity in the initialization and scout bee
phase as standard ABC. In the employed bee phase, the complexity
becomes 𝑂(𝐶𝑅 × 𝐷 × 𝑆𝑁 × 𝐼), which is influenced by the crossover
rate 𝐶𝑅. In the onlooker bee phase of QMABC, the selection probability
is canceled. Meanwhile, the strategies are related to the finding of
global and neighborhood optimal solutions, and the update of multiple
dimensions. Therefore, the complexity of the three strategies are 𝑂(𝐷×
𝑆𝑁 × 𝐼 + 𝑆𝑁 × 𝐼), 𝑂(3 × 𝑆𝑁 × 𝐼), 𝑂(𝐶𝑅 × 𝐷 × 𝑆𝑁 × 𝐼), respectively.
Therefore, the first strategy has the maximum complexity among the
three strategies. In this case, we adopt the maximum value 𝑂(𝐷×𝑆𝑁 ×
𝐼+𝑆𝑁×𝐼) as the complexity in this process. In addition, the Q-learning
framework includes calculating the state (𝑂(𝐼)), updating the Q table
(𝑂(𝐼)), selecting the action (𝑂(𝐼)), and performing the action (𝑂(3×𝐼)),
which has a total complexity of 𝑂(6 × 𝐼). Thus, the overall complexity
of QMABC is 𝑂(𝑆𝑁 ×𝐷+𝐶𝑅×𝐷×𝑆𝑁 ×𝐼+𝐷×𝑆𝑁 ×𝐼+𝑆𝑁 ×𝐼+6×𝐼).

Although QMABC is more complex than ABC, it is acceptable due
to two reasons. Firstly, in the actual computing task, the time cost of
function evaluation accounts for a large proportion. On the contrary,
the complexity of the algorithm itself has little impact. Secondly, the
QMABC algorithm has a faster convergence speed. So it requires fewer
iterations and function evaluation times in the solving process.

4. Numerical experiments

In this section, we conduct real-parameter optimization experiments
to validate the effectiveness of the proposed algorithm. Twenty-nine
CEC 2017 benchmark functions are employed for the QMABC algorithm
compared to ABC variants and other novel meta-heuristic algorithms in
different dimensions, respectively.

4.1. Benchmark function

The benchmark functions are obtained from 2017 IEEE Congress
on Evolutionary Computation (CEC 2017) (Awad et al., 2016). They
provide a relatively objective and impartial platform to evaluate the
optimization performance of different meta-heuristic algorithms. For
7

Algorithm 2: Pseudo code of QMABC algorithm
Input: Objective function F(x), 𝐹𝐸𝑆𝑚𝑎𝑥, SN, 𝑡𝑟𝑖𝑎𝑙𝑙𝑖𝑚𝑖𝑡, 𝑝1, 𝑝2, 𝑝3, lb, ub
Output: Feasible solution

1 begin
2 G=0;
3 Generate SN candidate solutions using Eq. (1);
4 Evaluate the initial population; Set 𝑡𝑟𝑖𝑎𝑙𝑖 = 0 for each solution;
5 while 𝐹𝐸𝑆 < 𝐹𝐸𝑆𝑚𝑎𝑥 do
6 for 𝑖 = 1, 2, ..., 𝑆𝑁 do
7 Randomly select 𝑟1 ≠ 𝑟2 ≠ 𝑟3 from 1, 2, ..., 𝑆𝑁 ;
8 for 𝑗 = 1, 2, ..., 𝐷 do
9 if 𝑟𝑎𝑛𝑑 ≤ 𝐶𝑅 then
10 Generate a new candidate solution 𝑣𝑖 using Eq.

(8);
11 end if
12 end for
13 Evaluate the new solution 𝑣𝑖;
14 if 𝑓 (𝑣𝑖) ≤ 𝑓 (𝑥𝑖) then
15 𝑥𝑖 = 𝑣𝑖; 𝑡𝑟𝑖𝑎𝑙𝑖 = 0;
16 else
17 𝑡𝑟𝑖𝑎𝑙𝑖 = 𝑡𝑟𝑖𝑎𝑙𝑖 + 1;
18 end if
19 end for
20 𝑛𝐺𝑠 = 0;
21 for 𝑖 = 1, 2, ..., 𝑆𝑁 do
22 Generate a random number 𝑅𝐴𝑁𝐷;
23 if 𝑅𝐴𝑁𝐷 ≤ 𝑝1 then
24 Generate a new candidate solution 𝑣𝑖 using Eq. (10);
25 else if 𝑅𝐴𝑁𝐷 ≤ 𝑝2 then
26 Generate a new candidate solution 𝑣𝑖 using Eq. (12);
27 else
28 Generate a new candidate solution 𝑣𝑖 using Eq. (17);
29 end if
30 Evaluate the new solution 𝑣𝑖;
31 if 𝑓 (𝑣𝑖) ≤ 𝑓 (𝑥𝑖) then
32 𝑥𝑖 = 𝑣𝑖; 𝑡𝑟𝑖𝑎𝑙𝑖 = 0; 𝑇 𝑟𝑖𝑎𝑙𝐺𝑖 = 0;
33 else
34 𝑡𝑟𝑖𝑎𝑙𝑖 = 𝑡𝑟𝑖𝑎𝑙𝑖 + 1; 𝑇 𝑟𝑖𝑎𝑙𝐺𝑖 = 𝑇 𝑟𝑖𝑎𝑙𝐺𝑖 + 1;
35 end if
36 end for
37 𝐹𝐸𝑆 = 𝐹𝐸𝑆 + 2 × 𝑆𝑁 ;
38 Calculate the value of 𝑛𝐺𝑠 via Eq. (19);
39 if 𝑛𝐺𝑠 ≥ 𝑛𝐺−1

𝑠 then
40 𝑟𝑒𝑤𝑎𝑟𝑑 = 1;
41 𝑠𝑡𝑎𝑡𝑒 = 𝑠1;
42 else
43 𝑟𝑒𝑤𝑎𝑟𝑑 = −1;
44 𝑠𝑡𝑎𝑡𝑒 = 𝑠2;
45 end if
46 Update Q-table via Eq. (6);
47 Obtain 𝑝1, 𝑝2 and 𝑝3 in the next iteration through Q-table and

Eq. (18);
48 for 𝑖 = 1, 2, ..., 𝑆𝑁 do
49 if 𝑡𝑟𝑖𝑎𝑙𝑖 > 𝑡𝑟𝑖𝑎𝑙𝑙𝑖𝑚𝑖𝑡 then
50 Generate a new candidate solution 𝑣𝑖 using Eq. (1);
51 Evaluate the new solution 𝑣𝑖;
52 𝑡𝑟𝑖𝑎𝑙𝑖 = 0; 𝐹𝐸𝑆 = 𝐹𝐸𝑆 + 1;
53 end if
54 end for
55 G=G+1;
56 end while
57 end

the rigor of the experiment, all the twenty-nine benchmark functions
in CEC 2017 were taken into consideration.

For CEC 2017, it contains four types of benchmark functions, in
which 𝑓1, 𝑓3 are 2 unimodal functions, 𝑓4 ∼ 𝑓10 are 7 simple multi-
modal functions, 𝑓 ∼ 𝑓 are 10 hybrid functions, and 𝑓 ∼ 𝑓 are
11 20 21 30
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Table 2
Comparison algorithm selection of ABC variants.
Algorithm Source Parameter setting

ABC Karaboga and Basturk (2007) 𝑆𝑁 = 50, 𝑙𝑖𝑚𝑖𝑡 = 𝑆𝑁 ∗ 𝐷
PAABC Zhao et al. (2022) 𝑆𝑁 = 50, 𝑙𝑖𝑚𝑖𝑡 = 𝑆𝑁 ∗ 𝐷
mABC Ustun et al. (2022) 𝑆𝑁 = 50, 𝑙𝑖𝑚𝑖𝑡 = 𝑆𝑁 ∗ 𝐷,𝐹 = 0.5, 𝐶𝑅 = 0.3
BDLDABC Wang et al. (2022) 𝑆𝑁 = 50, 𝑙𝑖𝑚𝑖𝑡 = 𝑆𝑁 ∗ 𝐷, 𝛼 = 20, 𝛽 = 0.4, 𝛾 = 0.01, 𝜇 = 0.5
ABC_RL Cui et al. (2022) 𝑆𝑁 = 50, 𝑙𝑖𝑚𝑖𝑡 = 𝑆𝑁 ∗ 𝐷, 𝛼 = 0.6, 𝛾 = 0.4, 𝜖 = 0.3
BABC Zhu et al. (2023) 𝑆𝑁 = 50, 𝑙𝑖𝑚𝑖𝑡 = 50, ℎ𝑖𝑛𝑡 = 𝑆𝑁
QMABC This article 𝑆𝑁 = 50, 𝑙𝑖𝑚𝑖𝑡 = 𝑆𝑁 ∗ 𝐷, 𝛼 = 0.2, 𝐹 = 0.5, 𝐶𝑅 = 0.3, 𝑝1 = 0.4, 𝑝2 = 𝑝3 = 0.3, 𝑙𝑏 = 0.1, 𝑢𝑏 = 0.7
Fig. 3. Friedman test of comparison with ABC and ABC variants.
10 composition functions. Notice that the function 𝑓2 has been deleted
in the latest official code.

In the specification document of CEC 2017, the evaluation crite-
ria are defined. For each benchmark function, the search range is
[−100, 100], and the optimal value is the corresponding serial number
of function multiplied by 100. The terminal condition is the maximum
number of function evaluations (𝐹𝐸𝑆𝑚𝑎𝑥), which is determined by the
dimension of the problem. 𝐹𝐸𝑆𝑚𝑎𝑥 = 10000 ×𝐷.

4.2. Comparison with ABC and ABC variants

In this section, the proposed QMABC is compared to the standard
ABC and four latest ABC variants. Table 2 presents the selected algo-
rithm, which includes the abbreviation, sources, and parameter settings
of those algorithms. Since the parameters have a tremendous influence
on the actual effect of the algorithms, the parameters of the comparison
algorithms are taken from the corresponding paper to prevent the
change of algorithm effects.

All algorithms were run 30 times independently on each of the 29
CEC 2017 benchmark functions while the mean values and standard
deviations were recorded. We studied 𝐷 = 10, 30, 50, and 100
respectively to verify the effectiveness of the algorithm under different
problem dimensions. Table 3, S.Tables 1–3, and Fig. 3 show the com-
parison test results of QMABC algorithm with ABC and ABC variants.
To show the results in a more rational way, we conduct two statistical
measures: the Wilcoxon test and the Friedman test. The significant
levels are both 𝛼 = 0.05 under the two tests.

The Wilcoxon test is used to compare two independent individ-
uals, and here we use it to show the significance between QMABC
and the competitors, respectively. The bottom row of the tables lists
the summation of each case. Friedman test applies to comparisons
between multiple samples, so we also put the six algorithms together
for comparison. The average ranks are shown in Fig. 3.

According to the experimental results with 𝐷 = 10 in S.Table 1,
QMABC obtains the smallest objective function values in 7 bench-
mark functions

(

𝑓3, 𝑓5, 𝑓7, 𝑓8, 𝑓11, 𝑓27, 𝑓30
)

and the worst rankings in
2 functions

(

𝑓21, 𝑓28
)

. It inferiors to the mABC in more than half of
the functions but outperforms the other four algorithms. In general,
8

QMABC shows preferable results on the 10-dimensional problems. Es-
pecially when compared to standard ABC, it is better on 21 functions
and slightly worse on only 7 functions. Nevertheless, QMABC still has
room for improvement in the low-dimensional problem because it still
has a gap compared to mABC.

Table 3 lists the experimental results with 𝐷 = 30. QMABC has the
best ranks in a total of 13 benchmark functions

(

𝑓3, 𝑓5, 𝑓7, 𝑓8, 𝑓14, 𝑓16,
𝑓17, 𝑓20, 𝑓22, 𝑓25, 𝑓27, 𝑓29, 𝑓30

)

and worst ranks in merely 2 functions
(

𝑓10, 𝑓28
)

. Through the results, we can find that QMABC surpasses all
five comparison algorithms in the 30-dimension problems. Moreover,
the number of first rankings has reached half of the total number
of functions. The functions dominated by QMABC consist of multiple
types, which illustrates that QMABC not only performs well in solving
a single type of function but also shows comprehensive advantages.

In S.Table 2, the experimental results with 𝐷 = 50 are pre-
sented. We can find that up to 12 functions

(

𝑓1, 𝑓3, 𝑓5, 𝑓8, 𝑓9, 𝑓16,
𝑓17, 𝑓20, 𝑓25, 𝑓27, 𝑓29, 𝑓30

)

are dominated by the QMABC while the num-
ber of worst rankings

(

𝑓6
)

reduces to 1. QMABC surpasses the five
algorithms of original ABC, PAABC, mABC, BDLDABC, ABC_RL, and
BABC on 21, 21, 21, 19, 17, and 24 functions, respectively. While it
fails to compete with them on 5, 6, 8, 6, 8, and 3 functions severally.
These results indicate that QMABC has comprehensively outperformed
its competitors in the 50-dimension problem.

In 100-dimensional problems, the results are displayed in S.Table 3.
Based on the Wilcoxon test results, QMABC is the best algorithm on 13
functions

(

𝑓3, 𝑓5, 𝑓8, 𝑓9, 𝑓11, 𝑓16, 𝑓17, 𝑓24, 𝑓26, 𝑓27, 𝑓28, 𝑓29, 𝑓30
)

while the
function 𝑓6 is still a failing for QMABC. In the 100-dimensional prob-
lem, QMABC has the most obvious improvement over the original ABC,
where QMABC has 25 functions performing better than the original
ABC. Besides, the results point out that QMABC algorithm shows a
better balance between exploitation and exploration abilities compared
to other competitors during the search process.

In the Friedman test, a smaller ranking means better performance.
According to the test results, we can find that QMABC always maintains
a small ranking. QMABC is the third-best algorithm for the experiment
with 𝐷 = 10 and jumps to the top of the ranking for the experiments
with 𝐷 = 30, 50, and 100. Furthermore, the average ranking of QMABC

in the test consistently decreases with the problem dimension increase.
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Table 3
Comparison with ABC and ABC variants with D=30.

Benchmark Statistic ABC PAABC mABC BDLDABC ABC_RL BABC QMABC

𝑓1 Mean 3.79E+02 − 1.53E+04 − 1.30E−01 − 4.64E+03 + 2.69E+03 = 5.71E+03 + 2.50E+03
Std. 2.72E+02 3.93E+04 2.57E−01 4.17E+03 3.70E+03 5.51E+03 2.62E+03

𝑓3 Mean 1.35E+05 + 1.22E+05 + 6.89E+04 + 3.42E+04 + 5.46E+04 + 1.00E+05 + 6.77E+03
Std. 1.78E+04 1.93E+04 7.99E+03 7.16E+03 1.29E+04 1.76E+04 2.41E+03

𝑓4 Mean 3.60E+01 − 4.81E+01 − 7.28E+01 + 8.24E+01 + 7.79E+01 + 6.58E+01 + 5.97E+01
Std. 2.62E+01 2.34E+01 1.59E+01 2.49E+01 1.65E+01 2.73E+01 2.62E+01

𝑓5 Mean 8.84E+01 + 3.87E+01 + 5.79E+01 + 5.61E+01 + 4.46E+01 + 1.19E+02 + 3.28E+01
Std. 1.38E+01 6.38E+00 6.75E+00 1.56E+01 7.54E+00 1.69E+01 6.67E+00

𝑓6 Mean 1.30E−11 + 0.00E+00 − 0.00E+00 − 9.36E−04 + 0.00E+00 − 1.60E+00 + 2.77E−07
Std. 1.53E−11 0.00E+00 0.00E+00 1.79E−03 2.08E−14 7.49E−01 9.10E−07

𝑓7 Mean 1.03E+02 + 6.29E+01 + 9.09E+01 + 9.98E+01 + 7.18E+01 + 1.70E+02 + 6.15E+01
Std. 9.88E+00 4.99E+00 7.20E+00 2.15E+01 7.68E+00 1.94E+01 8.54E+00

𝑓8 Mean 9.58E+01 + 4.48E+01 + 6.80E+01 + 5.83E+01 + 5.16E+01 + 1.14E+02 + 3.50E+01
Std. 1.18E+01 5.67E+00 8.11E+00 1.25E+01 7.60E+00 1.70E+01 7.61E+00

𝑓9 Mean 1.18E+03 + 2.90E+01 + 2.69E+02 + 8.74E+01 + 4.78E−01 = 3.36E+02 + 7.73E−01
Std. 4.32E+02 1.71E+01 1.41E+02 6.12E+01 6.58E−01 2.93E+02 9.61E−01

𝑓10 Mean 2.28E+03 − 2.13E+03 − 2.27E+03 − 2.90E+03 − 2.15E+03 − 2.11E+03 − 2.73E+03
Std. 2.71E+02 2.15E+02 1.97E+02 1.39E+03 3.09E+02 3.73E+02 2.69E+02

𝑓11 Mean 9.31E+02 + 7.87E+02 + 2.81E+01 − 8.73E+01 + 3.71E+01 − 1.03E+03 + 6.08E+01
Std. 6.28E+02 4.91E+02 7.00E+00 3.27E+01 2.69E+01 6.23E+02 2.53E+01

𝑓12 Mean 9.51E+05 + 7.65E+05 + 5.88E+05 + 5.81E+04 − 2.08E+05 + 1.17E+06 + 1.06E+05
Std. 3.21E+05 5.02E+05 2.55E+05 4.63E+04 2.35E+05 9.46E+05 8.72E+04

𝑓13 Mean 1.91E+04 + 1.22E+04 + 1.60E+04 + 2.06E+04 + 2.07E+04 + 1.83E+04 = 1.20E+04
Std. 9.70E+03 5.52E+03 1.01E+04 1.85E+04 1.98E+04 2.22E+04 1.17E+04

𝑓14 Mean 1.24E+05 + 1.86E+05 + 1.48E+04 + 2.99E+04 + 2.65E+04 + 9.64E+04 + 6.93E+03
Std. 7.20E+04 1.46E+05 8.87E+03 3.02E+04 2.75E+04 9.13E+04 8.78E+03

𝑓15 Mean 3.25E+03 + 4.10E+03 + 1.98E+03 = 8.48E+03 + 1.05E+04 + 8.40E+03 + 3.96E+03
Std. 1.88E+03 2.96E+03 1.43E+03 8.66E+03 1.08E+04 8.33E+03 7.40E+03

𝑓16 Mean 6.34E+02 + 6.64E+02 + 5.14E+02 + 8.29E+02 + 4.65E+02 + 7.46E+02 + 3.67E+02
Std. 1.40E+02 1.42E+02 1.24E+02 2.30E+02 1.46E+02 1.85E+02 1.58E+02

𝑓17 Mean 2.08E+02 + 1.71E+02 + 1.07E+02 + 2.30E+02 + 9.57E+01 + 3.40E+02 + 6.89E+01
Std. 9.22E+01 8.61E+01 4.13E+01 1.55E+02 7.27E+01 1.26E+02 5.67E+01

𝑓18 Mean 2.81E+05 + 2.39E+05 + 2.07E+05 + 1.49E+05 = 2.05E+05 + 3.57E+05 + 1.53E+05
Std. 1.27E+05 9.09E+04 1.03E+05 1.27E+05 1.47E+05 2.20E+05 8.89E+04

𝑓19 Mean 3.00E+03 = 6.76E+03 + 2.16E+03 − 1.18E+04 + 1.28E+04 + 8.68E+03 + 4.76E+03
Std. 1.44E+03 4.38E+03 1.31E+03 1.48E+04 1.52E+04 8.66E+03 5.07E+03

𝑓20 Mean 2.59E+02 + 2.35E+02 + 1.48E+02 + 2.82E+02 + 1.31E+02 + 3.18E+02 + 9.12E+01
Std. 8.52E+01 8.64E+01 6.60E+01 1.46E+02 1.02E+02 1.28E+02 5.60E+01

𝑓21 Mean 2.63E+02 + 2.36E+02 − 2.59E+02 − 2.63E+02 = 2.47E+02 − 3.00E+02 + 2.64E+02
Std. 6.66E+01 2.59E+01 7.26E+00 1.67E+01 2.56E+01 5.87E+01 1.49E+01

𝑓22 Mean 6.38E+02 + 1.09E+02 + 2.36E+02 + 8.12E+02 + 3.40E+02 + 9.39E+02 + 1.00E+02
Std. 1.05E+03 5.82E+00 5.27E+02 1.44E+03 7.22E+02 1.23E+03 7.37E−01

𝑓23 Mean 4.25E+02 + 3.99E+02 − 4.08E+02 = 4.13E+02 = 4.00E+02 − 4.46E+02 + 4.10E+02
Std. 2.77E+01 7.00E+00 1.02E+01 1.84E+01 1.23E+01 4.78E+01 1.76E+01

𝑓24 Mean 4.87E+02 + 5.13E+02 + 4.91E+02 = 5.05E+02 + 4.97E+02 = 5.83E+02 + 4.95E+02
Std. 1.92E+02 1.72E+01 1.14E+01 2.07E+01 1.32E+01 4.93E+01 2.70E+01

𝑓25 Mean 3.84E+02 + 3.87E+02 + 3.87E+02 + 3.89E+02 + 3.87E+02 + 3.88E+02 + 3.78E+02
Std. 7.60E−01 5.75E−01 1.08E+00 3.50E+00 9.03E−01 2.04E+00 1.08E+00

𝑓26 Mean 3.60E+02 − 1.38E+03 + 1.59E+03 + 1.77E+03 + 1.31E+03 + 3.16E+02 − 1.40E+03
Std. 4.22E+02 5.54E+02 4.11E+02 2.01E+02 5.78E+02 2.04E+02 1.53E+02

𝑓27 Mean 5.15E+02 + 5.16E+02 + 5.07E+02 + 5.18E+02 + 5.03E+02 + 5.22E+02 + 5.00E+02
Std. 4.17E+00 4.69E+00 3.65E+00 1.00E+01 5.15E+00 7.01E+00 1.57E−04

𝑓28 Mean 4.00E+02 − 4.17E+02 − 4.16E+02 − 4.08E+02 − 4.10E+02 − 4.31E+02 − 4.95E+02
Std. 3.86E+00 1.71E+01 5.00E+00 1.90E+01 1.11E+01 1.50E+01 1.69E+01

𝑓29 Mean 6.46E+02 + 5.76E+02 + 5.98E+02 + 7.56E+02 + 4.91E+02 + 7.03E+02 + 4.50E+02
Std. 7.94E+01 6.12E+01 7.68E+01 1.75E+02 5.63E+01 1.07E+02 8.50E+01

𝑓30 Mean 1.11E+04 + 8.56E+03 + 6.28E+03 + 5.68E+03 + 6.41E+03 + 1.17E+04 + 2.46E+03
Std. 2.21E+03 3.44E+03 1.51E+03 3.35E+03 3.75E+03 4.88E+03 2.50E+03

Wilcoxon +/=/− 23/1/5 22/0/7 19/3/7 23/3/3 20/3/6 25/1/3

1‘‘+’’,‘‘−’’, and ‘‘=’’ symbolize that QMABC is better than, worse than, or similar to its competitor, respectively.
2 The significance value for Wilcoxon test is 𝛼 = 0.05.
It indicates that QMABC has good performance in all dimensions and
absolute preponderance in high-dimensional problems.

Fig. 4 exhibits the convergence performance of compared ABC vari-
ants, in which we select several representative functions (𝑓3, 𝑓8, 𝑓27, 𝑓30)
to demonstrate the characteristics of QMABC. We can find that the
QMABC has a faster convergence speed on 𝑓3 and is more precise on
𝑓8. Moreover, it maintains both of these superiorities on 𝑓27, 𝑓30. The
functions above cover many types, ranging from simple to complex,
9

so the capability of QMABC is well-validated. It is important to note
that QMABC does not show the best performance on all functions, but
performs better in most cases.

4.3. Comparison with other meta-heuristic algorithms

To further investigate the performance of the QMABC, we selected
the standard DE and four latest meta-heuristic algorithms to partic-
ipate in the comparison experiment. The abbreviation, sources, and
parameter settings of those algorithms are displayed in Table 4. The
reason why we choose the original DE algorithm to participate in the
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Fig. 4. The convergence performance of compared ABC variants.
Table 4
Comparison algorithm selection of other meta-heuristic algorithms.
Algorithm Source Parameter setting

DE Storn and Price (1997) 𝑁𝑃 = 50, 𝐹 = 0.5, 𝐶𝑅 = 0.3, 𝐷𝐸∕𝑟𝑎𝑛𝑑∕1
LJA Iacca et al. (2021) 𝑁𝑃 = 50, 𝛽 = 1.8
ACWOA Tang et al. (2022) 𝑁𝑃 = 50, 𝑝 = 0.5, 𝑙𝑖𝑚𝑖𝑡𝐴 = 0.5, 𝑏 = 1
APDPSO Liu et al. (2022) 𝑁𝑃 = 50, 𝜔 = 0.729, 𝑐 = 1.49
CUSDE Zou et al. (2022) 𝑁𝑃 = 50, 𝑐 = 40, 𝐹 = 0.5, 𝐶𝑅 = 0.9
QMABC This article 𝑆𝑁 = 50, 𝑙𝑖𝑚𝑖𝑡 = 𝑆𝑁 ∗ 𝐷, 𝛼 = 0.2, 𝐹 = 0.5, 𝐶𝑅 = 0.3, 𝑝1 = 0.4, 𝑝2 = 𝑝3 = 0.3, 𝑙𝑏 = 0.1, 𝑢𝑏 = 0.7
p
F
t

a
a
a
a

comparison here is that the fast convergence and local development
ability of DE are incomparable to most of the variants. DE can be
compared with QMABC here as a representative of the low dimensional
dominance algorithm.

Similar to the comparison with ABC variants, these meta-heuristic
algorithms are run 30 times independently on each of the 29 CEC 2017
benchmark functions with the mean values and standard deviations
output. Two statistical methods, the Wilcoxon test and the Friedman
test, are also applied to test the significance of the comparison. The
difference is that the dimension of the test changes to 𝐷 = 10, 30, and
0. The experimental results are exhibited in Table 5, S.Tables 4–5, and
ig. 5.
10

p

On the basis of the experimental results, QMABC completely sur-
asses LJA and APDPSO on total 29 functions with 𝐷 = 10, 30, 50.
urthermore, QMABC is superior to DE, ACWOA, and CUSDE on nearly
wo-thirds functions.

According to the Friedman test results, QMABC performs the best
verage ranking in all experiments with 𝐷 = 10, 30, and 50. In
ddition, similar to the trend of comparing to the ABC variants, QMABC
lso illustrates a high-dimensional superiority over other meta-heuristic
lgorithms.

Fig. 6 displays the convergence performance of QMABC and com-
ared meta-heuristic algorithms on three typical functions including
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Table 5
Comparison with other meta-heuristic algorithms with D=10.

Benchmark Statistic DE LJA ACWOA APDPSO CUSDE QMABC

𝑓1 Mean 8.11E+02 − 1.71E+08 + 2.81E+03 + 1.18E+08 + 0.00E+00 − 1.39E+03
Std. 1.86E+03 6.46E+07 3.02E+03 1.86E+08 2.59E−15 1.69E+03

𝑓3 Mean 7.60E−02 + 2.48E+03 + 1.69E−01 + 3.29E+03 + 0.00E+00 = 0.00E+00
Std. 4.09E−01 6.84E+02 4.28E−01 1.83E+03 0.00E+00 1.47E−14

𝑓4 Mean 6.53E+00 + 9.01E+00 + 2.63E+00 − 1.84E+01 + 3.15E−09 − 3.59E+00
Std. 1.05E+00 3.38E+00 1.86E+00 1.88E+01 1.69E−08 9.07E−01

𝑓5 Mean 1.13E+01 + 3.88E+01 + 7.30E+00 + 2.56E+01 + 2.13E+01 + 2.77E+00
Std. 2.67E+00 4.86E+00 1.48E+00 7.83E+00 5.48E+00 1.05E+00

𝑓6 Mean 0.00E+00 = 6.50E+00 + 1.87E−05 + 3.17E+00 + 3.08E−03 + 0.00E+00
Std. 0.00E+00 1.24E+00 9.99E−06 4.00E+00 4.27E−03 0.00E+00

𝑓7 Mean 2.39E+01 + 5.02E+01 + 1.71E+01 + 6.69E+01 + 3.36E+01 + 1.25E+01
Std. 1.98E+00 6.35E+00 2.56E+00 1.45E+01 4.97E+00 8.21E−01

𝑓8 Mean 1.17E+01 + 3.65E+01 + 7.46E+00 + 2.69E+01 + 2.07E+01 + 2.72E+00
Std. 2.86E+00 6.13E+00 2.13E+00 7.39E+00 5.00E+00 1.05E+00

𝑓9 Mean 3.15E−06 + 1.75E+01 + 3.70E−08 + 1.14E+02 + 1.51E−02 + 0.00E+00
Std. 1.68E−05 6.32E+00 5.41E−08 1.01E+02 8.16E−02 0.00E+00

𝑓10 Mean 4.14E+02 + 9.77E+02 + 2.38E+02 + 1.25E+03 + 1.56E+03 + 1.53E+02
Std. 2.06E+02 2.13E+02 1.02E+02 3.60E+02 1.96E+02 1.20E+02

𝑓11 Mean 2.09E+00 + 5.55E+01 + 2.74E+00 + 1.09E+02 + 3.79E+00 + 1.24E+00
Std. 1.01E+00 2.01E+01 1.30E+00 6.91E+01 1.85E+00 1.23E+00

𝑓12 Mean 3.61E+03 − 3.81E+06 + 1.63E+04 + 2.07E+06 + 8.25E+01 − 7.59E+03
Std. 5.89E+03 3.44E+06 1.41E+04 1.63E+06 5.35E+01 5.70E+03

𝑓13 Mean 2.75E+02 − 1.08E+04 + 2.43E+03 + 1.14E+04 + 8.98E+00 − 2.13E+03
Std. 8.56E+02 1.07E+04 3.55E+03 5.10E+03 3.20E+00 3.16E+03

𝑓14 Mean 2.07E+00 − 8.40E+01 + 1.41E+01 + 1.00E+02 + 2.26E+01 + 1.66E+00
Std. 6.30E+00 2.71E+01 8.96E+00 3.54E+01 1.13E+00 3.91E+00

𝑓15 Mean 4.99E−01 − 4.50E+02 + 4.87E+00 + 1.86E+03 + 1.65E+00 + 1.46E+00
Std. 4.78E−01 1.77E+02 2.79E+00 2.25E+03 8.37E−01 8.39E−01

𝑓16 Mean 1.78E+00 − 7.51E+01 + 1.99E+00 + 1.42E+02 + 4.73E+01 + 5.21E+00
Std. 3.32E+00 1.71E+01 1.87E+00 8.93E+01 2.41E+01 2.15E+01

𝑓17 Mean 3.16E−01 − 7.33E+01 + 2.59E+00 + 7.74E+01 + 4.07E+01 + 2.40E+00
Std. 4.18E−01 1.14E+01 2.17E+00 2.68E+01 6.83E+00 5.53E+00

𝑓18 Mean 3.96E+01 − 4.41E+04 + 3.10E+03 + 1.95E+04 + 2.04E+01 + 1.10E+01
Std. 1.71E+02 7.49E+03 3.75E+03 1.27E+04 2.17E−01 2.15E+01

𝑓19 Mean 4.99E+00 − 4.39E+02 + 1.92E+01 + 1.05E+04 + 1.56E+00 + 3.15E−01
Std. 1.85E+01 2.94E+02 6.72E+01 6.81E+03 3.52E−01 4.46E−01

𝑓20 Mean 9.37E−02 − 6.13E+01 + 5.13E−01 + 7.03E+01 + 2.95E+01 + 3.86E−01
Std. 1.64E−01 1.32E+01 6.16E−01 4.60E+01 5.55E+00 4.51E−01

𝑓21 Mean 1.89E+02 + 2.20E+02 + 1.01E+02 − 2.32E+02 + 1.16E+02 − 1.71E+02
Std. 4.87E+01 4.09E+01 1.12E+00 1.97E+01 2.92E+01 4.64E+01

𝑓22 Mean 1.00E+02 − 1.19E+02 + 8.60E+01 = 1.22E+02 + 1.00E+02 + 9.29E+01
Std. 1.45E−01 3.82E+00 2.93E+01 1.58E+01 9.40E+00 2.33E+01

𝑓23 Mean 3.08E+02 + 3.41E+02 + 3.10E+02 + 3.35E+02 + 3.28E+02 + 3.06E+02
Std. 3.04E+00 4.97E+00 2.93E+00 1.27E+01 6.55E+00 1.55E+00

𝑓24 Mean 3.45E+02 + 3.54E+02 + 2.27E+02 − 3.64E+02 + 2.72E+02 = 3.21E+02
Std. 3.83E+00 4.98E+01 1.19E+02 9.84E+00 9.09E+01 5.14E+01

𝑓25 Mean 4.27E+02 = 4.47E+02 + 3.88E+02 − 4.55E+02 + 3.98E+02 − 4.25E+02
Std. 2.22E+01 1.47E+01 5.35E+01 2.01E+01 1.88E−01 2.33E+01

𝑓26 Mean 3.31E+02 + 4.15E+02 + 2.89E+02 + 7.51E+02 + 4.33E+02 + 2.90E+02
Std. 3.74E+01 1.38E+01 3.41E+01 4.29E+02 1.17E+02 9.65E+01

𝑓27 Mean 3.91E+02 + 3.97E+02 + 3.89E+02 + 4.04E+02 + 4.46E+02 + 3.73E+02
Std. 1.75E+00 3.03E+00 3.37E−01 9.05E+00 4.57E+01 1.76E+00

𝑓28 Mean 5.52E+02 + 5.72E+02 + 3.73E+02 − 7.66E+02 + 4.84E+02 + 4.49E+02
Std. 8.64E+01 1.26E+02 9.35E+01 1.54E+02 1.04E+01 6.73E+01

𝑓29 Mean 2.58E+02 + 2.85E+02 + 2.40E+02 − 3.40E+02 + 2.53E+02 + 2.49E+02
Std. 7.02E+00 3.05E+01 1.55E+01 3.84E+01 1.13E+01 7.86E+00

𝑓30 Mean 5.69E+04 + 2.57E+05 + 3.89E+03 + 1.38E+06 + 2.02E+02 − 3.75E+02
Std. 2.03E+05 3.19E+05 5.69E+03 1.07E+06 5.13E−01 5.91E+02

Wilcoxon +/=/− 16/2/11 29/0/0 22/1/6 29/0/0 20/2/7

1 ‘‘+’’,‘‘−’’, and ‘‘=’’ symbolize that QMABC is better than, worse than, or similar to its competitor, respectively.
The significance value for Wilcoxon test is 𝛼 = 0.05.
p
m

7, 𝑓16, 𝑓27. According to these convergence curves, the faster conver-
ence speed and more precise solution are apparent for QMABC.

.4. Effectiveness analysis

To validate the effectiveness of the proposed Q-learning-based strat-
gy selection framework, we compare it with two more selection ap-
roaches under the same search strategies. In the first approach, the
hree search strategies for the onlooker bee phase are randomly se-
ected during each update, aiming to validate the effectiveness of the
11
roposed method in comparison to the absence of any strategy selection
echanism. The first approach is referred to as QMABC𝑟𝑎𝑛𝑑 . In the

second approach, we utilize Q-learning to directly select one strategy
in the onlooker bee phase, rather than the indirect method of adjusting
the probability of each strategy being selected. Specifically, in this
approach, the state setting, rewards, update equation of the Q-table,
and parameters are identical to those described in Section 3. The
difference lies in the action setting, which consists of three options,
corresponding to the selection of the respective strategy. And this
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Fig. 5. Friedman test of comparison with other meta-heuristic algorithms.
Fig. 6. The convergence performance of compared meta-heuristic algorithms.
approach is referred to as QMABC𝑑𝑖𝑟𝑒𝑐𝑡. Besides, the proposed algorithm
in Section 3 is referred to as QMABC.

We conduct a comprehensive comparison of the three approaches
using the CEC 2017 benchmark function. The final evaluation encom-
passes pairwise comparison results and an overall ranking for each
approach. The results are shown in Table 6.

The results from Table 6 reveal that the proposed QMABC consis-
tently maintains the best overall ranking and demonstrates advantages
in pairwise comparisons across the three distinct problem dimensions.
These results indicate that, compared to the direct strategy selec-
12

tion through Q-learning (QMABC𝑑𝑖𝑟𝑒𝑐𝑡) or random strategy selection
(QMABC𝑟𝑎𝑛𝑑), adjusting the probabilities of each strategy being selected
through Q-learning proves to be a more effective approach.

Furthermore, The differences among the approaches are relatively
small when the problem dimension is low (30D), whereas significant
variations emerge as the problem dimension increases (50D,100D). It
indicates that when the problem complexity is low and each strat-
egy has a sufficient number of executions, the effectiveness of the
proposed Q-learning framework is limited. However, when confronted
with higher-dimensional and more complex problems, the limited num-
ber of iterations does not allow each strategy to be fully utilized. In
such a situation, the proposed Q-learning strategy selection framework
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Table 6
Effectiveness comparison of different selection method.

Dimension Evaluation QMABC𝑟𝑎𝑛𝑑 QMABC𝑑𝑖𝑟𝑒𝑐𝑡 QMABC

30D +∕ = ∕− 8/18/3 18/10/1
Average rank 2.03 2.00 1.97

50D +∕ = ∕− 10/15/4 16/11/2
Average rank 1.89 2.56 1.55

100D +∕ = ∕− 14/11/4 17/11/1
Average rank 1.86 2.59 1.55

1 ‘‘+’’,‘‘−’’, and ‘‘=’’ symbolize that QMABC is better than, worse than, or similar to its competitor, respectively. The significance value for the test is 𝛼 = 0.05.
Fig. 7. The exploration and exploitation ability of QMABC.
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in this paper effectively allocates the utilization rate of each strategy,
yielding superior performance.

4.5. Exploration and exploitation ability analysis

In meta-heuristic algorithms, exploration and exploitation abilities
are two critical factors that influence algorithm performance. Currently,
the similarity to the closest neighbor (𝑆𝐶𝑁) is a commonly used
indicator to differentiate between exploration and exploitation. The
mathematic definition of 𝑆𝐶𝑁 is as follows Brajevic and Stanimirovic
(2018):

𝑆𝐶𝑁(𝑥𝑛𝑒𝑤, 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) = min
{

‖

‖

𝑥𝑛𝑒𝑤 − 𝑥𝑖‖‖
2
|𝑥𝑖 ∈ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

}

, (20)

here 𝑥𝑛𝑒𝑤 is the new solution generated by the search equation,
𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 includes all the individuals. In other words, the classification
f an update as exploration or exploitation can be determined by
easuring the closest distance between the newly generated individual

nd all individuals in the original population. The specific method for
his classification is shown in Eq. (21):

𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 ∶ 𝑆𝐶𝑁(𝑥𝑛𝑒𝑤, 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) > 𝜖, (21a)

𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 ∶ 𝑆𝐶𝑁(𝑥𝑛𝑒𝑤, 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) ≤ 𝜖, (21b)

here 𝜖 is the threshold value to distinguish exploration and exploita-
ion. The value of 𝜖 is determined by the domain of the variable, and
he calculation is as follows:

=

(

𝑥𝑢𝑝𝑝𝑒𝑟 − 𝑥𝑙𝑜𝑤𝑒𝑟)

100
. (22)

Based on the approach above, we investigate the exploration and
xploitation abilities of two bee phases and search stages in the pro-
osed QMABC algorithm during the solving process. We still use the
EC 2017 benchmark function to test the performance, with a problem
imension of 30. The algorithm parameters are set to the same values as
escribed earlier. A total of ten search stages are set, where each of the
tages includes one-tenth of the maximum iterations. The proportion
f exploration behavior is calculated as the average value within each
tage.

As shown in Fig. 7, there is a noticeable difference in the proportions
f exploration between the two bee phases. In the employed bee phase,
13

a

he proportion of exploration behavior approaches 1, indicating that
he search equation in Eq. (8) exhibits strong exploration capabilities
cross all search stages. In the onlooker bee phase, the proportion
f exploration behavior consistently remains lower than that of the
mployed bee phase, and it can reach lower levels. This indicates that
he three strategies in the onlooker bee phase ensure the algorithm’s
xploitation capability and dynamically adjust the balance between
xploration and exploitation based on the search situation.

. Application in unmanned vehicle path planning

With the advancement of informatization, intelligence, and au-
omation in many industries typically automated driving, solving op-
imization problems in related fields has become a crucial challenge
or development. Among them, the path planning of unmanned ve-
icles has become a crucial proposition in the field of automated
riving. Path planning problem of unmanned vehicles focuses on find-
ng the best path for a vehicle to navigate through complex geographic
nvironments. The complexity of such an optimization problem is
eflected in how to formulate interactions between the path and the
nvironment with obstacles. As for this problem, there are three main-
tream modeling methods: global path planning (Song et al., 2020),
earch-based path planning (Guo et al., 2022), and sample-based path
lanning (Wang, Jia, et al., 2022). Since meta-heuristic algorithms are
ore suitable for the global path planning method, we will utilize and

xplain it below.
In previous research, three methods are mainly used in environment

odeling of global path planning, which are the grid method (Song
t al., 2021), the topology method (Pattnaik et al., 2022), and the free
pace method (Xu et al., 2020). The grid method divides the working
pace of the vehicle into many grid-like units. The occupancy or free of
grid is generally represented by a number 1 or 0. The defects of this
ethod lie in the high complexity of model solving and the trouble

f generating and updating solutions. The topology method divides
he working environment into many small regions according to some
eatures of the topology structure, and then establishes a network by
onnecting relationships between small regions. The drawback of this
ethod is the lack of accuracy. The free space method uses geometric

hapes to represent the area of obstacles and a certain number of

bsolutely free points connected in turn to form a path. It is relatively
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Fig. 8. Environment modeling for path planning.

superior because it takes into account the accuracy of the solution and
the complexity of the environment modeling.

Thus, we utilize the free space method as the environment modeling
method in this section and focus on the performance of the proposed
algorithm applied to this specific problem.

5.1. 2D path planning

5.1.1. Environment modeling
For two-dimensional path planning, the environment can be re-

garded as a top view of a three-dimensional scene. An environment
typically contains the following elements: the origin and destination
of the path, as well as obstacles. In the general free space method,
we describe the environment in the coordinate system 𝑋𝑂𝑌 . However,
this modeling method will result in two degrees of freedom in 𝑋 and
𝑌 directions for each waypoint, which greatly increases the burden
of computation. As shown in Fig. 8, we can therefore implement
coordinate transformation to eliminate one degree of freedom. The new
coordinate system takes the path origin as the coordinate origin, the
direction of the path destination as the positive direction of the 𝑥-axis,
and the vertical direction of the line connecting the origin and the
destination as the direction of the 𝑦-axis. The three elements constitute
a new coordinate system 𝑋′𝑂′𝑌 ′.

There is an exact transformation relationship between the points
under the new coordinates and the original coordinates, as shown in
Eq. (23):
[

𝑥
𝑦

]

=
[

cos 𝛼 − sin 𝛼
sin 𝛼 cos 𝛼

]([

𝑥′

𝑦′

]

−
[

𝑥′𝑜
𝑦′𝑜

])

+
[

𝑥𝑜
𝑦𝑜

]

, (23)

where
(

𝑥′, 𝑦′
)

is the point under the new coordinate system and (𝑥, 𝑦) is
the point under the original coordinate system. 𝛼 is the rotation angle
between two coordinates. The rotation angle can be obtained in the
following way:

𝛼 = arctan
(

𝑦𝑑 − 𝑦𝑜
𝑥𝑑 − 𝑥𝑜

)

. (24)

We assume that a complete path comprises two endpoints and 𝐷
nodes. The two endpoints cannot be moved, and the horizontal position
of each node in the new coordinate system is successively the (𝐷 + 1)
equinox of the line between the origin and the destination. Their
abscissa in the new coordinate system can be expressed as:

𝑥′ = 𝑖 ×
|𝑥′𝑑 − 𝑥′𝑜| . (25)
14

𝑖 𝐷 + 1
In this way, the node can only move longitudinally under the new
coordinate system. The degree of the freedom of the solution space is
reduced to the number of nodes 𝐷. The solution space can be described
as 𝑆 =

{

𝑦′1, 𝑦
′
2,… , 𝑦′𝐷

}

. Notably, the larger the value of 𝐷, the higher
the precision of the path planner. Therefore, careful consideration
should be given when setting 𝐷 values to balance model complexity
and accuracy requirements.

5.1.2. Path planning modeling
Path planning modeling can be flexibly adjusted to the actual prob-

lem. Common factors include path length, steering angle, distance from
obstacles, etc. In this paper, we only take the path length into account.
In this case, the total path length can be represented by a summation
of path length between every two adjacent points as:

𝐶𝑑 = 𝑑𝑂𝑟𝑖𝑔𝑖𝑛,1 +
𝐷
∑

𝑗=1
𝑑𝑗,𝑗+1 + 𝑑𝐷,𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, (26)

where we use the Euclidean distance as the distance between two
points. Therefore, it is calculated as:

𝑑𝑗,𝑗+1 =
√

(𝑥𝑗+1 − 𝑥𝑗 )2 + (𝑦𝑗+1 − 𝑦𝑗 )2. (27)

Besides, in order to facilitate the execution of the meta-heuristic
algorithms to solve constrained optimization problems, constraints are
generally converted into penalties. The penalty is a binary value func-
tion, where the function value is zero when the constraints are sat-
isfied and an extremely large number if not. In this case, the con-
straint ensures that the path does not pass through any obstacle. The
corresponding penalty is displayed as:

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =
{

0, 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 − 𝑓𝑟𝑒𝑒,
𝑀, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(28)

To be precise, the collision-free path is judged via two parts. Firstly,
all nodes and endpoints must be positioned outside of any obstacles
in the environment. Secondly, the lines between two adjacent nodes
cannot go through the obstacles. To achieve this goal, we can divide
the lines into 𝑛 equal parts and extract the position of multisection
points. And then those multisection points are utilized to verify if the
corresponding section of the path goes through the obstacle. Similar
to the value of 𝐷, the larger 𝑛 is, the more accurate the judgment of
path collision will be. Therefore, the value of 𝑛 should be determined
according to the actual geometry of the obstacles. In the following
simulation, the value of 𝑛 is 2.

Finally, the constrained optimization problem is simplified to a
problem with merely one single objective function in Eq. (29):

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑐𝑜𝑠𝑡 = 𝜔1 × 𝐶𝑑 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦. (29)

5.1.3. Experimental results
In this section, we compare the performance of the proposed

QMABC algorithm with four typical path planning algorithms in three
different environments. The four algorithms are PRM, RRT, BRRT, and
A* algorithm.

In the experiments, considering the scale of environments, the num-
ber of sampling points in PRM is defined as 50. The step length of RRT
and BRRT are set as 10. As for the QMABC, the parameter settings are
the same as in the algorithm description with 𝑆𝑁 = 50, 𝐷 = 10, and
the determination condition is set as 𝐹𝐸𝑆𝑚𝑎𝑥 = 2000 ×𝐷. The 𝜔1 is set
as 1 and the penalty is set as 1000.

The simulations are conducted with MATLAB R2013b on Intel(R)
Core(TM) i5-8265U with 1.80 GHz CPU and 8.00 GB memory. Each
algorithm is executed independently 10 times. The average path length
and running time for each algorithm are shown in Table 7. In addition,
we also display the path of the best simulation results in Fig. 9 aiming
to present the upper limit of capability for every typical path planner.

As can be seen in Table 7 and Fig. 9, both the average path
length and the execution time for QMABC are less than other typical
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Table 7
Experimental results and comparison between other path planners.

Environment Attribute PRM RRT BRRT A* QMABC

Map 1 Path length 693.462 751.560 807.872 719.828 684.876
Running time (s) 3.926 2.885 2.747 33.483 2.825

Map 2 Path length 752.248 826.420 858.109 752.046 693.117
Running time (s) 3.898 3.735 2.979 57.526 2.845

Map 3 Path length 767.549 822.918 847.833 769.619 723.804
Running time (s) 3.809 12.381 3.806 70.078 3.026
Fig. 9. The best path for different algorithms in different 2D environments.
algorithms, regardless of the complexity of the environment. In par-
ticular, the solving speed of the QMABC is more stable in different
environments, rather than significantly slowing down with the increase
of environmental complexity like A* and RRT. Moreover, the path
generated by QMABC is straighter and smoother, aligning better with
the practical requirement of unmanned vehicles. To sum up, QMABC is
an excellent method in path planning problems with short path length,
rapidity, and smoothness.

5.2. 3D path planning

In this section, we consider three-dimensional path planning prob-
lems with the objective of minimizing the path length.

5.2.1. Environment modeling
In the 3D environment modeling, the biggest difference with the 2D

environment modeling is that the environments have elevation change
and the planned paths need to strictly fit the terrain. In this case, the
free space method in the 2D case is no longer applicable. Because if
the distance between the adjacent linearly connected nodes is relatively
far, The path formed by the two nodes cannot fit the terrain, which will
cause distortion. Therefore, we propose a two stage three-dimensional
modeling method to address the problem. The first stage of the method
refers to the free space method to set a certain number of primary
nodes. In the second stage, we add sub-nodes adaptively between
adjacent nodes to address the issue above. The proposed methods are
as follows:

Firstly, it is necessary to rasterize the environment map. The ras-
terized map can be expressed as a 𝑛 × 𝑚 matrix, where the rows of
the matrix represent the 𝑛th grid region in the 𝑥-axis direction, and
the columns of the matrix represent the 𝑚th grid region in the 𝑦-axis
direction. Each position of the matrix has a specific value representing
the elevation in the grid area.
15
Secondly, the 3D environment map can be set in an XYZ coordinate
system. The form of a path can be expressed as:

𝑃𝑎𝑡ℎ =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2
⋯ ⋯ ⋯
𝑥𝑛 𝑦𝑛 𝑧𝑛

⎤

⎥

⎥

⎥

⎥

⎦

. (30)

In the first stage, the 𝑥-axis is divided into 𝑛 segments on average
according to the grid size, and the corresponding coordinates of path
nodes in the 𝑥-axis direction are determined. For each path node, which
can move freely in the plane perpendicular to the 𝑥-axis, there are
two dimensions of freedom. The solution space can be expressed as
𝑆 =

{

𝜋1, 𝜋2,… , 𝜋𝑛
}

, where 𝜋𝑖, 𝑖 ∈ {1, 2,… , 𝑛} is the plane corresponding
to each 𝑥-axis equal division point, as Fig. 10 shows. At the same time,
due to the one-to-one correspondence between terrain 𝑧𝑖 and 𝑦-axis
position 𝑦𝑖 in a map, namely 𝑧𝑖 = 𝑓

(

𝑥𝑖, 𝑦𝑖
)

, the degree of freedom of
each path node can be reduced to 1.

In the second stage, the primary purpose is to reasonably adjust
the path elevation between adjacent nodes to achieve the matching
between the path and terrain. The method is to add corresponding sub-
nodes adaptively according to the grid size and path length between
adjacent nodes. The position of each sub-node in the 𝑦-axis direction
falls on the 𝑚 equal division points. The elevation of sub-nodes is
determined according to the actual terrain. The process is shown in
Fig. 11.

In this case, the number of sub-nodes can be determined according
to Eq. (31):

𝑛𝑠𝑢𝑏 = 𝑓𝑙𝑜𝑜𝑟
(

|𝑦𝑘 − 𝑦𝑘−1|
𝐿𝑘,𝑘−1

)

. (31)

5.2.2. Path planning modeling
In the 3D path planning modeling, this paper still takes minimiz-

ing the total path length as the objective and further considers the
constraints of collision avoidance and climbing ability to model the



Expert Systems With Applications 236 (2024) 121303X. Ni et al.
Fig. 10. First stage of 3D environment modeling.

Fig. 11. Second stage of 3D environment modeling.

problem. The path length is the sum of the distance between adjacent
path nodes. Therefore, the total path length can be expressed as:

𝐿 =
𝑛−1
∑

𝑖=1

𝑛𝑖𝑠𝑢𝑏
∑

𝑗=1

(

𝑑𝑖𝑖,1 + 𝑑𝑖𝑗,𝑗+1 + 𝑑𝑖
𝑛𝑖𝑠𝑢𝑏 ,𝑖+1

)

, (32)

where 𝑑𝑖𝑗,𝑗+1 is the distance between the 𝑗th sub-node and the (𝑗 + 1)th
sub-node between the 𝑖th node and the (𝑖 + 1)th node, and 𝑑𝑖𝑖,1, 𝑑

𝑖
𝑛𝑖𝑠𝑢𝑏 ,𝑖+1

respectively represent the distance between the sub-node and the ad-
jacent primary node. It should be noted that the distance 𝑑𝑖𝑗,𝑗+1 in this
subsection is different from the previous definition, and the distance in
three-dimensional space is shown as Eq. (33):

𝑑𝑗,𝑗+1 =
√

(𝑥𝑗+1 − 𝑥𝑗 )2 + (𝑦𝑗+1 − 𝑦𝑗 )2 + (𝑧𝑗+1 − 𝑧𝑗 )2. (33)

Constraints on collision and vehicle climbing ability can be con-
verted into penalties and added to the objective function according to
the above ideas. The transformation of collision avoidance constraint
is as follows:

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑐 =
{

0, 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 − 𝑓𝑟𝑒𝑒,
𝑀𝑐 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(34)

The constraint of vehicle climbing ability is similar to the collision
avoidance constraint. That is, when the climbing angle is beyond the
acceptable value, the penalty is an extremely large value; otherwise, it
is 0. The penalty is shown as:

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑠 =
{

0, 𝜃𝑚𝑖𝑛 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥, (35)
16

𝑀𝑠, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
where the calculation of angle 𝜃 is as follows:

𝜃 = arctan

⎛

⎜

⎜

⎜

⎝

𝑧𝑗+1 − 𝑧𝑗
√

(𝑥𝑗+1 − 𝑥𝑗 )2 + (𝑦𝑗+1 − 𝑦𝑗 )2

⎞

⎟

⎟

⎟

⎠

. (36)

To sum up, the final problem modeling can be integrated into a
single minimization objective function, which can be expressed as:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹𝑐𝑜𝑠𝑡 = 𝜔 ×
𝑛−1
∑

𝑖=1

𝑛𝑖𝑠𝑢𝑏
∑

𝑗=1

(

𝑑𝑖
𝑖,1 + 𝑑𝑖

𝑗,𝑗+1 + 𝑑𝑖
𝑛𝑖𝑠𝑢𝑏 ,𝑖+1

)

+ 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑐 + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑠.

(37)

5.2.3. Experimental results
Similar to the experiments in 2D path planning, we compare the

performance of the proposed QMABC algorithm with several meta-
heuristic algorithms in the built environment. The model parameters
are set to 𝜔 = 1,𝑀𝑐 = 1000,𝑀𝑠 = 1000, and the algorithm parameters
are the same as those described in the algorithm description. The
experimental equipment environmental parameters are the same as the
2D problem. Each algorithm is executed 20 times independently.

The experimental results are the average path length and the short-
est path length to show the robustness and upper limit of capability of
different algorithms respectively. In addition, the execution time is no
longer recorded because the generation of sub-nodes depends on the
initial solution, which will have a great impact on the calculation time,
resulting in a lack of universality. The results are shown in Table 8
and Fig. 12. In Fig. 12, the color represents the terrain elevation, and
the red cylinder areas represent the obstacle zones, which means the
unmanned vehicles cannot pass through this area. Since there are many
algorithms implemented in the experiments, to avoid confusion about
the paths, we only put four comparison algorithms and the proposed
QMABC in the figures.

According to the solving results, the algorithm proposed in this
paper achieves the best performance in both the best value and the av-
erage value within a certain number of iterations. However, compared
with BDLDABC and CUSDE, its advantages are not obvious, so there is
still room for improvement.

6. Conclusions

This paper proposes a novel multi-strategy based ABC algorithm
integrated with a Q-learning framework for strategies selection named
QMABC. To compensate for the limited exploitation ability of a single
search equation, three distinct but effective strategies are added to the
onlooker bee phase. Meanwhile, Q-learning is adopted to adjust the
probability of each strategy being chosen via learning the historical
population updating experience in the onlooker bee phase. In addition,
a modified DE search equation replaces the original one in the em-
ployed bee phase to improve the exploration ability and increase the
diversity of the population.

Both numerical and practical experiments are performed to demon-
strate the performance of the proposed QMABC. In the numerical
experiments, the comparison between QMABC and ABC variants, as
well as other meta-heuristic algorithms are conducted on 29 CEC
2017 benchmark functions. The comparison results illustrate the out-
standing accuracy and robustness of the proposed algorithm. In the
practical experiments, both 2D and 3D path planning are taken as the
optimization problems with the test of solving accuracy. The experi-
mental results in path planning also show that QMABC is superior to
four well-recognized path planning methods and other meta-heuristic
algorithms.

Although QMABC has achieved good results, there is still room
for further improvement. For example, more premium strategies can
be introduced into QMABC for better results, which requires a lot of
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Table 8
Experimental results and comparison between different algorithms in 3D environments.
Algorithm Attribute Map 1 Map 2

ABC Mean length 33.6289 31.3661
Shortest length 32.6398 30.8461

PAABC Mean length 36.3252 31.5022
Shortest length 35.3541 30.9233

mABC Mean length 33.6818 30.8905
Shortest length 32.4546 30.5141

BDLDABC Mean length 33.697 31.487
Shortest length 31.2304 30.2509

ABC_RL Mean length 33.7287 31.0012
Shortest length 32.3125 30.6231

DE Mean length 34.8564 31.4614
Shortest length 31.1356 30.2474

LJA Mean length 35.2879 30.7804
Shortest length 31.9123 29.911

ACWOA Mean length 35.115 30.8407
Shortest length 34.8759 30.7628

APDPSO Mean length 38.0627 35.8649
Shortest length 36.1127 33.2666

CUSDE Mean length 34.119 30.179
Shortest length 31.1624 29.8768

QMABC Mean length 33.5649 30.3501
Shortest length 31.0353 29.863
Fig. 12. The best path for different algorithms in different 3D environments.
work. Furthermore, QMABC can be extended to accommodate discrete
or multi-objective problems.
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