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ABSTRACT:

Point cloud data are an important source for 3D geoinformation. Modern day 3D data acquisition and processing techniques such as
airborne laser scanning and multi-beam echosounding generate billions of 3D points for simply an area of few square kilometers. With
the size of the point clouds exceeding the billion mark for even a small area, there is a need for their efficient storage and management.
These point clouds are sometimes associated with attributes and constraints as well. Storing billions of 3D points is currently possible
which is confirmed by the initial implementations in Oracle Spatial SDO_PC and the PostgreSQL Point Cloud extension. But to be
able to analyse and extract useful information from point clouds, we need more than just points i.e. we require the surface defined by
these points in space. There are different ways to represent surfaces in GIS including grids, TINs, boundary representations, etc. In
this study, we investigate the database solutions for the storage and management of massive TINs. The classical (face and edge based)
and compact (star based) data structures are discussed at length with reference to their structure, advantages and limitations in handling
massive triangulations and are compared with the current solution of PostGIS Simple Feature. The main test dataset is the TIN generated
from third national elevation model of the Netherlands (AHN?3) with a point density of over 10 points/m”. PostgreSQL/PostGIS DBMS
is used for storing the generated TIN. The data structures are tested with the generated TIN models to account for their geometry,
topology, storage, indexing, and loading time in a database. Our study is useful in identifying what are the limitations of the existing
data structures for storing massive TINs and what is required to optimise these structures for managing massive triangulations in a

database.

1. INTRODUCTION

Airborne LiDAR technology is nowadays extensively used to col-
lect 3D information in the form of dense point clouds, quickly
and with great accuracy. AHN (Actueel Hoogtebestand Neder-
land), the national elevation dataset of the Netherlands, contains
billions of points with a point density of 6-10 points/m*. With
the size of such point clouds exceeding the billion mark even for
the smaller areas, difficulties arise in storing and managing these
datasets. The existing DBMS solutions such as the Oracle Spa-
tial SDO_PC package (Ravada et al., 2009) and the PostgreSQL
Point Cloud extension (Ramsey, 2013) provide only for the stor-
age of point clouds i.e. unconnected points that are samples of
the surface representing the Earth. However, in order to analyse
and extract useful information like slope/aspect, viewshed analy-
sis, watershed modelling, delineation of basins, etc. from a point
cloud, we require more than just points: we must be able to recon-
struct and manipulate the surface defined by these points. Surface
defines the spatial relationships between the disjoint points in 3D
space. The most common method for representing a surface in
GIS is the construction of a 2.5D structure such as TIN (Trian-
gulated Irregular Network) (Peucker et al., 1978). Practitioners
often think of grids as the simplest way to represent a surface. In
fact, It may be the best model to depict the real world scenarios,
but this possibility depends on the potential of the grids rather
than their current use (Fisher, 1997). In this study, we investigate
the database solutions for the storage and management of mas-
sive TINs. Here, the term “massive” refers to extremely large
size which is difficult to manipulate and manage with main mem-
ory. The more complex representations of TINs take into account
the attributes and constraints associated with the connecting ele-
ments. The local density of the points in a TIN can be adjusted in
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accordance with the variations in the height of original terrain e.g.
TINs naturally represent areas of detailed relief with denser trian-
gulation than areas with a smoother relief (Kumler, 1994). While
the enormous size of the point clouds is already an issue, storing
the derived TIN significantly increases the storage requirements
since the number of triangles generated is about twice the num-
ber of points taken into account for triangulation (De Berg et al.,
2000). AHN2 point cloud dataset has over 640 billion points. The
number of triangles generated during triangulation is thus around
1.3 trillion.

Storing massive TINs in the database is much more complicated
than storing point clouds since storage of TIN not only requires
storing its geometry but the topology as well. The requirement
is to reduce the redundancy of explicit representations while still
supporting mesh traversal and modifications to dynamically main-
tain the mesh in the event of local updates like add/delete a ver-
tex/triangle, edge flipping, etc. Essentially, the ideal characteris-
tics of storing TINs in a database include low storage costs for ge-
ometry, topology and other attributes, simplicity, easy modifica-
tions/updates, faster access to the adjacency information and scal-
ability. Solutions that handle the issue of massive point clouds
such as tiling are less viable in the case of TINs. When the dataset
is too large to be processed within the available main memory, it
is split into smaller parts (called files). The processing is done
incrementally on the generated tiles. For the analysis of TINs,
the main memory of the computer plays a key role in deciding
the maximum size of the dataset that can be processed (Isenburg
et al., 2006). If the dataset exceeds the memory size, then the
swapping of data between the disk and the main memory starts,
thereby increasing the processing time. This process of tiling
cannot be extended to TINs without breaking its topology (Fig.
1) unless there is addition of explicit points on the tile borders
(called Steiner points) causing changes in TIN topology (Fig. 2).
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Oracle SDO_TIN uses a slightly different approach when it comes
to tiling the dataset. The point cloud is partitioned into multiple
blocks/tiles and each block is uniquely identified with a Block
ID. For triangles spanning more than one tile/block in the TIN,
the vertex is identified by a pair of Block ID (bigint) and Point ID
(bigint) i.e. for each vertex, references to two IDs (Block ID and
Point ID) are required to be maintained. This results in a stor-
age cost of 128 bits for referencing a single vertex, which is very
high. To avoid the problems with the storage of TIN topology,
one solution can be to store only the 3D points and generating
the TIN surface when required. But this can be memory and time
expensive operation where there is a change in geometry. For ex-
ample insertion/deletion of a point will require recomputing the
entire TIN structure. In the event of completely storing the TIN
(along with the points, triangles and topology) in a database, one
can fully depend on DBMS for its management. The entire TIN
is available in the database and need not to be recomputed, it can
be queried and analysed easily. DBMS solutions offer several ad-
vantages over the conventional systems: reduced data access and
storage costs, security, multi-user access, scalability, rich query
language, etc. (Elmasri and Navathe, 2014).

Tile Boundary

Tile 1 Tile 2
Unsafe Triang\es /\
Tile 3 Tile 4

Figure 1: Tiling of TIN

Tile Boundary

Tile 1 Tile 2
New Trianglds
Steiner Points at Tile Boundany
Tile 3 Tile 4

Figure 2: Addition of Steiner Points

There exists several data structures for representing TINs in mem-
ory but only a little has been done so far for their database imple-
mentations. We provide here a comparative analysis of the ex-
isting TIN data structures. The classical (face and edge based)
and compact (star based) data structures are discussed at length
with reference to their structure, advantages and limitations in
handling massive triangulations. Our aim is to compress these
structures while maintaining the topological replationships. In
this paper, we explain how to implement these structures in a
database. These data structures are tested with a few real world
datasets and we report on their geometry, topology, storage, in-
dexing, and loading time in a database. The study is useful in
deriving what are the limitations of the existing data structures
in storing massive TINs and what is required to optimise these
structures for managing massive triangulations in a database.

2. RELATED WORK

2.1 TIN Structure

A TIN is a network of non-overlapping triangles formed by the
interconnection of irregularly spaced points (Kumler, 1994). They
are mostly constructed with Delaunay triangulation but this is not
always the case. For a given set of points, different triangulations
can be constructed (Rippa, 1990, Dyn et al., 1990). A Delaunay
triangulation (DT) of a point set S (Fig. 3) is defined as a triangu-
lation of S such that no point in S lies inside the circumcircle of
any other triangle in the triangulation (De Berg et al., 2000). DT
maximizes the minimum angle among all possible triangulations
to avoid long and skinny triangles.

empty circumcircle

Figure 3: Delaunay Triangulation of a set of points

But everytime the usual inputs for TIN generation are not merely
a set of vertices. If the point set is associated to some constraints
(segments, polygons, etc.) then a Constrained Delaunay trian-
gulation (CDT) can be constructed. A CDT is similar to DT
but every input segment appears as an edge of the triangulation
(Shewchuk, 1996). CDT requires that the vertices of every trian-
gle are visible to each other i.e. no input segment (or a part of
it) lies between its any two vertices and the circumcircle of each
triangle contains no vertices that are visible from the interior of
the triangle (Shewchuk, 1996). Fig. 4 and 5 show an example of
CDT.

Point
—— Predefined Edge
(Constraint)

Figure 4: Point set and constrained edge for CDT

2.2 TIN Representations

Several data structures have been proposed for the representation
and storage of TINs in memory and it is not surprising to see that
they exhibit redundancy and store a lot of information for provid-
ing direct retrieval of the adjacency relationships. In this paper,
we follow an assumption that the size of the convex hull is rela-
tively small as compared to the total number of vertices in TIN, so
there are roughly 2n triangles and 3n edges in the TIN (De Berg
et al., 2000). The term “references” in the text relates to the inte-
ger/long integer I D's associated with the vertices/edges/triangles.
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Not Delaunay

Delaunay

Figure 5: Constrained Delaunay Triangulation of point set and
edge

Most of the TIN data structures stores triangulations as an ar-
ray of vertices or as references to the vertices forming the trian-
gles, thereby capturing the mesh geometry. OGC Simple Feature
(OGC, 2011) is a classical example of such data structures and
is supported by almost all the spatial databases. It stores each
triangle abc as a linear ring of vertex coordinates with last ver-
tex = first vertex as depicted in Fig. 6. The size of the database
increases considerably with the repeated storage of vertex infor-
mation for each triangle and creation of complex GiST spatial
index on the triangle geoemetry. The average degree of a ver-
tex in a 2D Delaunay triangulation is 6, given that the vertices
follow Poisson distribution (Okabe et al., 2009). This suggests
that on an average each vertex is stored 6+6/3 = § times. In gen-
eral terms, each vertex is stored (¢ + ¢/3) times in the database
with Simple Feature, where ¢ is the number of incident triangles
on a vertex. Here the operand /3 suggests the fact that given
vertex can be the first vertex (and thereby the last vertex) in ¢/3
number of incident triangles. It does not store explicitly the ad-
jacency relationships between the triangles, which is helpful for
the traversal of the triangular mesh.

(z1,y1, 21)

(22,92, 22) (23,93, 23)
POLYGON(( 21yl 21, 22 y2 22, 23 y3 23, 21 yl z1))

Figure 6: OGC Simple Feature

Similarly, what we refer here as the Triangle data structure stores
a triangulation as references to the I Ds of three vertices forming
the triangle (Fig. 7). The coordinates are not repeated here as
in the Simple Feature. Oracle Spatial SDO_TIN (Ravada et al.,
2009) uses Triangle for storing TINs. The vertices are stored as
SDO_PC type and the triangles are stored as references to their
three vertices. A notable point of this approach is that the index-
ing is performed at the block level and not at the vertex or triangle
level. The limitation of this approach is that it lacks information
about the adjacency and incidence relationships between the tri-
angles and the vertices are not stored explicitly. Also, it suffers
from the problem of redundancy, when the triangles span more
than one block (Fig. 1). Maintaining the topology of the TIN is
by far the most expensive operation.

A more convenient approach is to store the triangles along with
their adjacency information (here we refer to it as Triangle+).

’Ul
: ﬁ
v3

Figure 7: Triangle

CGAL (Computational Geometry Algorithms Library) 2D tri-
angulations (Boissonnat et al., 2002) and Shewchuk’s Triangle
(Shewchuk, 1996) use this data structure. Apart from storing ref-
erences to the 3 bounding vertices v, vz, v3, it also stores refer-
ences to the 3 adjacent triangles 7'1, 72, T'3 for maintaining the
topology as depicted in Fig. 8. Thus, it requires 2*(3+3) = 12rpv
(references per vertex) or 3+3 = 6rpt (references per triangle)
for representing the TIN models. The storage requirements are
increased with the presence of adjacency relationships.

Triangle+ table

[T [o1]v2]v3| 717979

Figure 8: Triangle+

Likewise, the edge based data structures namely, the Half-edge
(Mintyld, 1987) or DCEL (Doubly Connected Edge List) (Muller
and Preparata, 1978) represents each edge as a composition of
two half-edges (counter clockwise and opposite) in a slightly non-
intuitive fashion (Fig. 9). Apart from storing the adjacency rela-
tionships (i.e. references to previous edge p(e), next edge n(e)
and the incident face f(e)), DCEL maintains references to the in-
cident half edges e and e’ and to the bounding vertex v (De Berg
et al., 2000). While the number of edges e in a triangulation is
about thrice the number of vertices n, this results in 3e + n refer-
ences for the mesh with 197pv or 6rpt . Other variations like the
Winged-edge (Baumgart, 1975) stores eight references per edge
of the triangle. The storage requirements of these data structures
is high which is accompanied by the large size of their spatial
index.

Apart from the classical representations, several compact data
structures for the triangular meshes have been described to reduce
the number of references required and the memory requirements
while still ensuring an efficient implementation in terms of run
time and mesh traversal operations. Blandford et al. (2005) de-
scribes a compressed, pointer less, star based data structure for
compactly representing the triangular meshes in two and three

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B2-123-2016 125



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016
XXIIl' ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

Half edge table

‘e‘v‘e’

p(e) [n(e)] £(e)]

Figure 9: DCEL

dimensions. Each element in the star of a vertex is encoded as
the difference of its label value from that of the original ver-
tex. These differences are represented with 4-bit codes therefore,
the data structure uses comparatively much less memory than
the traditional representations i.e. by a factor of 5 (Blandford et
al., 2005). However, this compression scheme is not reasonable
while dealing with massive datasets in the DBMS, for e.g. to per-
form point/range queries, the data needs to be decoded which is
not time efficient. For such cases, the uncompressed version of
the star data structure pgTIN (Ledoux, 2015) to store TINs in a
database is of relevance. The star of a bounding vertex star(v)
is represented as an ordered list (counter-clockwise) of vertex la-
bels v, v2, v3, .., vi forming the link (Fig. 10). The triangles are
computed on-the-fly. Each incident triangle at the bounding ver-
tex v is represented by v and the two consecutive vertices v; in
the list. On an average, each vertex in the star stores reference
to 6 neighboring vertices, which results in a storage cost of 6rpv.
The main advantage of the star data structure is that it does not
require creation of complex spatial index like giST. The indexing
is done at vertex level with a simple B-tree.

Star table

v

v

z

star(v) ‘

Figure 10: Star of a vertex

For practical use, we attempt to create a data structure which can
be built on the fly, simultaneously with mesh generation/processing.
Table 1 highlights the comparison between the existing data struc-
tures for the triangular meshes.

3. TINS IN DBMS

Traditionally, DBMS were used for handling admistrative and
other voluminous data but now they have evolved to integrate

the spatial component. At present, database systems like Ora-
cle, PostGIS, IBM DB2, Ingres, Informix, MySQL, etc. provide
support for spatial data types, spatial indexing and other extended
functionalities. Storage and analysis of spatial data can be done
with SQL queries. Most of these database systems offer 2D data
types (generally point, line, and polygon). Only two database
implementations for TIN type are seen so far, namely Oracle
SDO_TIN and OGC Simple Feature Access model in PostGIS.
OGC Simple Feature Access model (OGC, 2011) specifies the ge-
ometrical model to be followed for representing geographical ob-
jects. It describes triangle as a polygon with 3 non-collinear and
distinct points and not having any interior rings or holes. A TIN
is described as a contiguous collection of triangles (a polyhedral
surface) which share common edges. In 3D, with the inclusion of
z-values (height), they are refered as TriangleZ and TINZ respec-
tively. At present, the support for storing TriangleZ and TINZ in
the database is provided by PostGIS v2. The WKT (Well Known
Text) for representing TriangleZ and TINZ is:

TRIANGLEZ ((000,010,110,000)) and
TINZ ((000,001,010,000)),((000,010,110,000))).

In Simple Feature, the geometry is stored with a unique ID, bound-
ing box, and WKB (Well Known Binary) representation of OGC
Geometry. Fig. 11 describes the WKB format for OGC Simple
Feature type.

WKB Polygon

Ring

T =3|NR=1|NP=3| X1 | Y1 X2 | Y2 X3 Y3

Figure 11: WKB of OGC Simple Feature

Here B represents the Byte order (big endian = 0 and little endian
= 1), T represents the WKB Geometry type, NR denotes num-
ber of rings in the geometry, NP denotes number of points in the
geometry and X, Y, Z are the coordinate values of the points.

Fig. 12 describes the structure of Triangle and TIN type in Post-
GIS. PostGIS TIN type stores only the geometry of TIN and not
the topology.

Oracle SDO_TIN makes use of Triangle data structure for storing
triangulations (Fig. 14). It is an extension of Oracle SDO_PC
type with almost same structure and storage scheme but has an
additional column to store the TIN objects. The SDO_PC par-
titions the point cloud into multiple blocks which are uniquely
identified by their block IDs and then spatially indexed (Finnegan
and Smith, 2010). The SDO_TIN object stores TIN metadata
and a reference to the TIN Block table (SDO_TIN_BLK). Fig.
13 explains the structure of SDO_TIN. The TIN is divided into
blocks/buckets and is stored in the TIN Block table with points
and triangles as BLOBs (Binary Large OBjects). A point BLOB
consists of an array of points of size d * 8-bytes (d = dimensions,
2 in our case) along with Bucket/Block ID and Point ID (BLK_ID,
PT_ID) of each point. Each triangle BLOB comprises of an array
of triangles, wherein each triangle has 3 vertices and each vertex
is refered by the pair of Bucket/Block ID and Point ID (BLK_ID,
PT_ID). Each row of the SDO_TIN_BLK table can be considered
itself as a complete and connected bucket. Moreover, this explicit
storage of block ID with each point solves the issue of dividing
TIN with bucketing. (Ravada et al., 2009).

The Oracle SDO_TIN does not store the topology of TIN. This
can be supplemented with the triangle adjacency information as
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Data Structure Type pt Topology Features Limitations
PostGIS SF Face based 4 X Face as linear ring of  Vertex information re-
vertices dundancy, No topology,
Large spatial index
Oracle Triangle Face based 3 X Triangle as reference to  No topology
3 vertices only, Buck-
eting of vertices, Block
level indexing
Triangle+ Face based 6 v Triangle as reference to  Triangle level indexing
3 vertices only, Explicit
topology storage
DCEL Edge based 6 v Triangles as reference Edge information re-
to the half edges dundancy, Large spatial
index
Star Vertex based 3 v Triangles as ordered No dynamic updates
list of vertex labels and
are computed on the fly,
Vertex adjacency infor-
mation, More compact,
No spatial indexing but
simple B-tree indexing
at vertex level
Table 1: Existing TIN data structures
TIN SDO_TIN
+srid <>— +TIN_ID
+ngeoms +TIN_EXTENT
+maxgeoms and other metadata...
+geoms
+bbox +blocks
TRIANGLE
Fsrid SDO_TIN_BLK
+points Y +bbox +OBJ_ID
+BLK_ID
Y +BLK_EXTENT
POINTARRAY BBOX AL IO
+pointlist +xmin +NUM_TRIANGLES
+npoints +Xxmax +TRIANGLES
+maxpoints +ymin and other attributes..
+ymax
+zmin
‘hzmax Figure 13: TIN in Oracle

Figure 12: Triangle and TIN type in PostGIS

seen in the Triangle+ data structure in section 2. Storing trian-
gulation requires a table where each row contains the IDs of the
three vertices forming the triangle. Adding the adjacency infor-
mation requires creation of another table with triangle ID and
IDs of three neighbouring triangles sharing common edges with
it. Fig. 15 shows the structure of Triangle+ approach in the
database. Using this approach, only 6rpt are required to store
a single triangle with topology in the database.

Among other implementations, the pgTIN extension for Post-
greSQL (Ledoux, 2015) stores TIN as uncompressed stars. It
only makes use of a vertex table with each row containing a ver-
tex ID, vertex coordinates and an array of references to the ver-
tices in the star of the vertex as explained in section 2. Fig. 16
describes the structure of stars in a database. Triangles are com-
puted on-the-fly using the explicitly stored topology. Thus, only
3rpt are required to represent a triangle. However, each vertex

POINTS +point_references

TRIANGLES
< . +triangle_id
+trianglelist: {point_id}

+point_id

+point_coordinate_x
+point_coordinate_y
+point_coordinate_z

Figure 14: Storing Triangle

POINTS +point_references TRIANGLE+
««— @ +triangle_id
+trianglelist: {point_id}
+adjacent_triangle_id: {triangle_id}

+point_id

+point_coordinate_x
+point_coordinate_y
+point_coordinate_z

Figure 15: Triangle+ UML

in the table is indexed, although using a binary tree, the index so
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generated is large.

STARS

+point_id
+point_coordinate_x
+point_coordinate_y
+point_coordinate_z
+star {point_id}

Figure 16: Stars UML

Fig. 17 depicts the row structure of the above discussed data
structures in PostgreSQL.

a = 80376.10399 448812.44900 3.59669
b = 80377.26649 448811.58599 4.75999
c = 80371.10399 448812.44900 3.29499

1 3

Simple Feature
endianness| Type rings | points coordinates
1 3 1 4 80376.10399 448812.44900 3.59669 80377.26649 ...
Triangle
tID | vl BLK_ID| vl P_ID|v2 BLK_ID| v2 P.ID . v3 BLK_ID | v3 P_ID
) 1 a 2 ¥ . 2 g
Triangle+
tID| vl PID|v2 PID|v3 PID|t1.ID| t2.ID |t3.1D
t0 a I g t1 2 t3
Star
vID| T Yy z star|]
¢ 010 0 [b,c.d,e, f,g]

Figure 17: Row structure in SF, Triangle, Triangle+ and Star

4. IMPLEMENTATION
4.1 Construction of TIN

Two filtered subsets and an AHN3 Tile# 37EN/1 (PDOK, 2015)
of the massive AHN3 point cloud dataset are utilised as inputs
for the construction of TIN. The TIN is generated based on the
concept of spatial streaming given by Isenburg (2006). The mesh
construction pipeline makes use of spfinalize and spdelaunay2d
modules of the blast extension of Lastools. These modules ex-
ploit the spatial coherence of the massive point clouds to compute
a streaming triangulation. (Isenburg et al., 2006). The TIN is cre-
ated and stored without any attributes and constraints. The details
of the input datasets are given in Table 2. It lists the number of
points in each subset, the number of triangle generated in trian-
gulation, the points forming the convex hull of the subset and the
average and maximum number of edges incident on a vertex i.e.
the average and maximum degree of a vertex in the triangulation.

4.2 Testing

The PostgresSQL/PostGIS DBMS is used for storing the TIN.
For the storage of vertex IDs and triangle IDs, 64-bit large range
integers i.e. bigint because 32-bit integers limit the dataset to
232/2 (i.e. around 2 billion) IDs. The coordinates (x,%,z) of the
vertices are stored in three separate columns as 64-bit double pre-
cision. For the storage of star of a vertex, variable length integer
array is used because the link of a vertex can contain 2 to an in-
finte number of vertices. To store the triangles, the triangle ID
and the IDs (64-bit integers) of its three vertices are stored in
three separate columns. The adjacency relationsips for the Trian-
gle+ are stored in a similar manner. For the storage of attributes
or constraints associated with the triangles, a new column with
proper data type must be created. The python implementations of
the data structures are used to populate the PostgreSQL/PostGIS
database using the *.smb outputs of spdelaunay2d. The testing is
done on Intel(R) Xeon(R) CPU E5-2650 v3 (2.30GHz) running
Ubuntu (Linux), Python 2.7.6 and PostgreSQL v9.3.11.

To compare these data structures, the TIN is stored:

1. in the triangle/triangle+/star based representations with B-tree
index.

2. in the PostGIS Simple Feature with GiST index.

Table 3 enlists the time taken for the construction and loading
of TIN and spatial index of datasets for different data structures.
The storage space used in PostgresSQL is given in table 4.

5. RESULTS AND DISCUSSION

From Table 3, it is observed that it takes significantly large amount
of time to populate and index the TIN datasets with PostGIS SF
i.e. ~15 hours for a TIN generated from one tile of AHN3. The
minimal time is taken by the Star data structure i.e ~4 hours, fol-
lowed by the Triangle. This is around 4 times less than that of
the SF. This can be owed to the construction of complex PostGIS
GiST index which took around 14 times more time than indexing
stars with a B-tree.

From Table 4, it is clear that GiST is larger than B-tree as it takes
the maximum disk space i.e. ~202 GB for storing a TIN gen-
erated from a single tile of AHN3. Stars take the least space
of about 77 GB for the same. Storing TINs in PostGIS SF is
memory expensive because of two reasons: First, the triangles
are almost twice in number than the points and with vertex infor-
mation redundancy there is a significant wastage of storage space
of (number of triangles * (t+t/3) * 8) bytes. Second, the bounding
box of every triangle is explicitly stored in PostGIS. The memory
requiement statistics for the data structures in the database can be
seen as:

1. SF - (number of triangles * 4 * number of dimensions * 8)
bytes

2. Triangle - ((number of triangles * 4 * 4) + (number of vertices
* 3 * 8) bytes

3. Triangle+ - ((number of triangles * 7 * 4)+ (number of vertices
* 3 * 8)) bytes

4. Star - (number of vertices * 4 * number of elements in each
link * 4) bytes
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Subset Points Triangles Convex Hull Avg Degree Max Degree
AHN3 S1 40 506 390 81012 707 29 5.99(6) 321
AHN3 S2 220 506 390 442 022 687 1168 5.99(6) 238
AHN3 Tile 508 564 458 1117 129 823 657 5.99(6) 418
Table 2: AHN3 Inputs
Data AHN3 S1 AHN3 S2 Tile
Structure
Construction Indexing Total Construction Indexing Total Construction Indexing Total
SF 2493 min  24.72min  49.65min  174.5min  183.8 min 3583 min 4228 min 513.6 min 936 min
Triangle 23.8 min 1.3 min 25.1 min 118 5min  11.8 min 130.3 min 2874 min 34 min 321 min
Triangle+  44.2 min 1.4 min 45.6 min 2029 min  11.8 min 2147min 6132 min  34.6 min 647.8 min
Star 13.3 min 2.8 min 16.1 min 73.2 min 15.6 min 88.8 min 212 min 35.8 min 247.8 min
Table 3: Runtime for the pipeline
Data AHN3 S1 AHN3 S2 Tile
Structure
Table Index Total Table Index Total Table Index Total
SF 13GB 4.2GB 17.2 GB 61.4GB 25.8 GB 87.2GB 143.5GB  58.2GB 201.7 GB
Triangle 5.7GB 1.7 GB 7.4 GB 229GB 13.3GB 36.2 GB 53.8 GB 29.5 GB 83.3GB
Triangle+ 9.2 GB 1.7GB 10.9 GB 48.6 GB 13.3GB 61.9 GB 1342GB  29.5GB 163.7 GB
Star 4.3 GB 868 MB 5.1GB 26.4 GB 43 GB 30.7 GB 63.2GB 13.8 GB 77 GB

Table 4: Storage size in Database

6. CONCLUSION

Storage and analysis of massive TINs can be tackled in differ-
ent ways. One way is to store them in file based systems either
as point clouds (*.laz, *.xyz, etc.) or as a collection of trian-
gles (*.obj, *.smb, etc.). But with increasing size of the point
clouds and derived TINs, the storage size and requirements are
also increased. Therefore, we have investigated in this paper the
data structures which can be implemented as DBMS solutions
for the storage of TINs. From the tests conducted, it can be con-
cluded that PostGIS SF can be overlooked for the storing TINs
as far as memory usage, loading and query times, indexing and
topology is concerned. Although storing triangles as references
to their vertices is quick, it suffers from lack of topological infor-
mation when it comes to TIN traversal and updates. Other rep-
resentations like DCEL seems to be excessive in terms of adding
bookkeeping concerns for object references which require a de-
pendency over robust memory management subsystem to work
efficiently with massive triangulations. These classical structures
are not useful if the mesh contains a large number of uncon-
nected triangles since the neighbouring information depends on
the connectivity of triangles. A compact yet fully connected data
structure is the requirement for storage efficient representation of
TINs. The requirement for storage efficient representations for
triangular meshes has resulted in a number of compression meth-
ods and light weight data structures like SQuad (Gurung et al.,
2011a), Grouper (Luftel et al., 2014), Laced Ring (LR) (Gurung
etal., 2011b), Zipper (Gurung et al., 2013), and Tripod (Snoeyink
and Speckmann, 1999). These data structures just stores a set of
core links from which other links can be inferred. In the testing
results, Triangle+ and Star seems to be promising representa-
tions for the storage and management of TINs. The future re-
search holds for rigourous testing with the compact representa-
tions and comparing the analysis results with that of the Trian-
gle+ and Star. Data structures are also to be implemented with
tiling the dataset into non-massive tiles/blocks to see how effi-
ciently the topological relations across the tiles can be inferred,
thereby making it possible to traverse across the tiles. The data
structures (with and without tiling) are to be tested for their prac-

tical performance by implementing spatial analysis functions and
triggering spatial queries on the stored data.
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