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ABSTRACT Food profiling is an essential step in any food monitoring system needed to prevent health risks
and potential frauds in the food industry. Significant improvements in sequencing technologies are pushing
food profiling to become the main computational bottleneck. State-of-the-art profilers are unfortunately too
costly for food profiling. Our goal is to design a food profiler that solves the main limitations of existing
profilers, namely (1) working on massive data structures and (2) incurring considerable data movement,
for a real-time monitoring system. To this end, we propose Demeter, the first platform-independent
framework for food profiling. Demeter overcomes the first limitation through the use of hyperdimensional
computing (HDC) and efficiently performs the accurate few-species classification required in food profiling.
We overcome the second limitation by the use of an in-memory hardware accelerator for Demeter (named
Acc-Demeter) based on memristor devices. Acc-Demeter actualizes several domain-specific optimizations
and exploits the inherent characteristics of memristors to improve the overall performance and energy
consumption of Acc-Demeter. We compare Demeter’s accuracy with other industrial food profilers using
detailed software modeling. We synthesize Acc-Demeter’s required hardware using UMC’s 65nm library by
considering an accurate PCM model based on silicon-based prototypes. Our evaluations demonstrate that
Acc-Demeter achieves a (1) throughput improvement of 192x and 724 x and (2) memory reduction of 36 x
and 33x compared to Kraken2 and MetaCache (2 state-of-the-art profilers), respectively, on typical food-
related databases. Demeter maintains an acceptable profiling accuracy (within 2% of existing tools) and
incurs a very low area overhead.

INDEX TERMS Food profiling, emerging memories, in memory processing, analog computing.

I. INTRODUCTION dollars is estimated only for the frauds happening in the fish

The urgent need for a real-time, efficient, and accurate
food monitoring system is apparent when one considers
the economic impacts and health risk issues due to human
errors and/or intentional fraud regarding everyday food. For
example, a worldwide annual loss of $10 to $24 billion of
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industry [1]. The Halal meat scandal [2] and the black fish
scandal [3] are just a few other preventable examples that
could have been quickly prevented if we had accurately and
efficiently monitored all the food productions in real-time.
Food profiling is the first step and the only computationally
expensive task in a food monitoring system. The food profil-
ing task entails the functionality of determining the existing
species in a food sample and their relative abundance [4], [5].
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Today’s food profilers work with sequenced data as we can
capture a more accurate profile using the sequences of a food
sample. The rapid drop in the cost of DNA sequencing in the
past decades and the expectation for a continual trend [6], [7] !
is expected to lead the way for profiling to become the main
bottleneck of this pipeline.

Currently, the industry utilizes state-of-the-art (SOTA)
taxonomic profilers from metagenomic studies for food pro-
filing due to the similarity of problem statements in food
profiling and metagenomics profiling. However, as alluded,
such profilers are developed as the first step of metagenomic
studies [9]-[11]: a new, yet different, line of research that
allows us to study many species that are taken directly from
their environment altogether, as opposed to studying them
individually. Unfortunately, these profilers are overkill for
simply profiling a given food sample and, therefore, costly
since those taxonomic profilers have been designed for differ-
ent, more complex goals such as (1) capturing complex oper-
ations between organisms or (2) finding insights on species
that cannot be clonally cultured in labs. Such profilers are also
designed for working on larger, more complex, and randomly
mixed genome sequences and demand a significant amount
of resources that simply impede real-time monitoring of all
food samples after production, shipment, or distribution; the
ultimate goal of a food monitoring system. Therefore, a new
solution must be sought after specifically for food profiling
that is cheaper, faster, more energy-efficient, and yet accurate.

In particular, we pinpoint two critical sources of
inefficiency in SOTA profilers currently used for food moni-
toring, collectively called food profilers or profilers hereafter.
First, all current (food) profilers work with significantly
large working data structures, e.g., humongous hash tables or
sorted lists, that require high-end servers with extensive stor-
age and memory capabilities to be handled. This fundamen-
tally limits performance scaling in par with that in sequencing
technologies. Second, current profiling techniques incur a
significant number of random accesses to large working
datasets, and as a result, unnecessary data movement between
their storage and memory plus their memory and compute
units which cannot be otherwise done where the data resides
due to (1) the size of the final data structures and (2) the
required operations for tasks in hand. This directly translates
to massive energy consumption and latency. For example,
as shown in our evaluations Sections IV, VII, a widely used
SOTA profiler takes ~1 minute to profile one high-coverage
sequenced food sample. However, it requires a super machine
or cluster with at least 300 GB of memory and proportionally
scaled-up compute power. These costs add up to an unbear-
able required time and equipment for real-time monitoring of
all existing and producing food samples. Therefore, a healthy
economy regarding the food industry cannot keep using these

IResearchers expect that soon different analyses on the sequenced data
become the cost and performance bottleneck rather than sequencing itself,
as is currently the case for read mapping vs. DNA sequencing [8].
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profilers and demands cheaper, faster, more energy-efficient,
and accurate food profilers for the years to come.

Our goal in this work is to solve both limitations of
previous profilers, namely (1) reliance on high-end servers
and scaling problem due to required massive data struc-
tures and (2) incurring unnecessary data movement. To this
end, we propose Demeter, an end-to-end, hardware/software
co-designed food profiling framework that efficiently profiles
species of a food sample. The key idea of Demeter is to
reduce the food profiling problem to a multi-object (multi-
species) classification problem using hyperdimensional (HD)
computing (HDC) followed by an abundance estimation step.
Demeter is a platform-independent framework and produces
accurate results on any hardware platform such as cen-
tral processing unit) CPU, graphics processing unit (GPU),
or application-specific integrated circuit (ASIC).

Our experiments show that although the accuracy of
Demeter is comparable with existing SOTA profilers, typical
processing units (CPUs) are not exploiting the full par-
allelism offered by our HDC-based approach, prohibiting
those platforms from outperforming SOTA profilers. More-
over, we find two more optimization opportunities that can
be achieved with a wisely-chosen platform: (1) eliminat-
ing the cost of existing shift operations and (2) mitigating
the significant amount of data movement involved in our
HDC-based solution. Therefore, we propose an in-memory
hardware accelerator for Demeter, Acc-Demeter, to mitigate
the costs mentioned above and simultaneously solve the
second problem of profilers as well. Acc-Demeter achieves
these by (1) the physical attributes of nanoscale memristive-
based devices,? (2) Processing-In-Memory (PIM), where the
data resides, and (3) zero-overhead shift operation in hard-
ware. It is worth noting that, with the advent of portable
sequencing machines, a move from cloud computing with
sophisticated infrastructure towards an in-build profiler (or
other genomics-related kernels) inside the sequencer is finally
in the foreseeable future.

Our paper makes the following main contributions:

e To our knowledge, Demeter is the first framework
that enables food profiling via HDC. Demeter pro-
vides a five-step approach to determine the relative
abundance of a set of the food read sequences at species-
level. We design Demeter to (1) address the key prob-
lems of food profiling rather than accelerating regular
metagenomic profilers and (2) be platform-independent
(Section III).

« We propose a PIM-enabled hardware accelerator for
Demeter using memristor devices (Acc-Demeter) to
extract Demeter’s full potentials and solve the data
movement problem in Demeter and previous profil-
ers. We propose several optimization techniques for
Acc-Demeter based on domain-specific knowledge of

2We choose Phase Change Memory (PCM) devices as members of mem-
ristor families due to our accessibility to accurate measurements and mod-
els. However, in principle, our proposed techniques can be applied to any
memristor-based memory technology, such as ReRAM or STT-MRAM.
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food profiling and our background on PCM cells char-
acteristics and HDC operations. To our knowledge,
Acc-Demeter is the first (in-memory) hardware accel-
erator for a food profiler (Section V).

o We rigorously compared Demeter and Acc-Demeter to
four SOTA food profilers. We show that Demeter pro-
vides an accuracy level comparable with previous food
profilers and within the accepted level of food monitor-
ing systems. The default setting of Acc-Demeter enables
a (1) throughput improvement of ~192x and 724 x and
(2) reduction in the required memory of ~36x and 33 x
compared to Kraken2 [12] and MetaCache [4], respec-
tively, when querying on a typical food-related reference
genome database, i.e., AFS20 [4]. Our design requires
only ~8.9 mm? die area and can process ~9.45 Mbp
per joule for our largest food-related database AFS31 [4]
(Section VII).

Il. BACKGROUND AND MOTIVATION

This section discusses the necessary background and intro-
duction to (1) the current taxonomic profilers and their short-
comings when used for food profiling, (2) HDC, and (3) the
PIM paradigm. We devote the materials mainly to those
closely related to or used by Demeter. For more detailed back-
ground information, we refer the reader to comprehensive
reviews on these topics [13]-[19].

A. METAGENOMIC PROFILERS

Constantly increasing the performance of sequencing tech-
nologies and the fast drop in the cost of DNA sequencing [6],
[7] catalyzed the metagenomic studies [9]-[11]. These stud-
ies enable us to capture the big picture of the environment
without isolating or cultivating individual organisms. For this
purpose, one needs to perform taxonomic profiling: determin-
ing the relative abundances of species in a sample directly
taken from the environment. Due to the high cost associated
with alignment and assembly for large reference datasets, till
this date, we still prefer heuristics statistical-based profilers
to assembly- or alignment-based ones. However, even these
profilers are not yet cheap or economic and prevent large-
scale, real-time studying. Their cost is mainly related to the
required memory for profilers’ data structure and algorithms.
Such large data structures or sophisticated algorithms force
us to use high-end servers and are needed to fulfill complex
goals of subsequent metagenomic analysis, namely captur-
ing complex operations between organisms and discovering
insights on species that cannot be clonally cultured in labs.
This high cost of profiling in metagenomics profiler prevents
us from efficiently profiling food samples in real-time, the
end goal of a food monitoring system.

B. PROBLEMS OF FOOD PROFILERS

We use VTune [20] and profile three SOTA profilers that are
currently used for food samples as well, namely Kraken2,
CLARK, and MetaCache, using their default datasets and
parameters on the original platforms for which they have been
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designed. We make two main observations, which follow
a similar trend reported in previous studies in genomics as
well [12], [21], [22].

Observation 1. All these profilers induce large memory
requirements for their data structures. For example, Kraken2
requires a minimum of 300 GB memory for its reference data
structure. Even for smaller and less complex reference data
bases such as those in food industry, Kraken2 still requires
more than 50 GB of memory (Section IV-D).

Observation 2. All profilers induce high miss rates in
L2 and L3 (~68 to 90%). The nature of their underlying
algorithms causes this inefficiency because they always query
a small fraction of keys in a large hash table and/or sorted list,
leading to random memory access patterns. In other words,
the arithmetic intensity of the profilers is too small to the
extent that even increasing the number of threads does not
help resolve the CPU stall cycles caused by memory accesses
required by these misses.

Overall, current food profilers’ large working data struc-
ture and their low arithmetic intensity lead to high storage
cost, low performance, and high energy consumption. It also
demands high-end servers. This motivates designs (such as
Demeter and Acc-Demeter) that provide reduced working
data structures, eliminate unnecessary data movements, and
can liberate us from dependency on the clusters.

C. HYPERDIMENSIONAL COMPUTING

Hyperdimensional computing (HDC) [23], [24] is a
brain-inspired computing paradigm that has been demon-
strated to be effective in reference-based learning domains,
such as text classification [25]-[27], gesture recognition [28],
and latent semantic analysis [29]. Elements of HDC are
presented using high-dimensional vectors, hereafter called
HD vectors. HD vectors can be composed of real [30]-[32],
binary [23], [33], bipolar [28], [34], or complex numbers [35].
Previous works show that binary representations of HD
vectors are more practical and efficient for classification
problems or one-shot reinforcement learning. This represen-
tation is also more hardware-friendly. Therefore, we proceed
with binary HD representations. HD vectors also come with
other powerful features such as robustness to random errors,
holistic representation, and randomness. We refer the enthu-
siastic readers to previous works for more details on these
features [17], [23].

Like other reference-based classifiers, an HDC-based sys-
tem also takes two steps: (1) training and (2) classification.
An encoding mechanism is used in both steps. One famous
example is the N-gram encoding mechanism that follows a
two-step approach for encoding a string of size L to an HD
vector of size D. Step 1: It combines N consecutive alphabets
of the string and builds an HD vector that is orthogonal to
them all and can preserve their relative order. This operation is
called binding and is represented in Equation 1, where p/(X)
represents the i permutation of vector X and B; are once
randomly-generated representative HD vectors (also referred
to as atomic or basis HD vectors) for the i character of the
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string C;. The string is a DNA sequence in Demeter.

L CON)=B1®pB)®--- @ p" " (By)
(D

Step 2: The encoder performs an element-wise addi-
tion between all HD vectors corresponding to consecutive
N-grams, called bundling, to present the entire input
sequence. To binarize the final HD vector, the encoder applies
a majority function over each position. This final vector is
stored in associate memory (AM) and is called a prototype
HD vector if the input was a reference genome. Otherwise,
it is called query HD vector and will use it for classification.

The most common approach for classifying whether the
sequence query belongs to any of the classes in AM after
using N-gram encoding mechanism is to measure the ham-
ming distance between the query HD vector (Q) and each of
the prototype HD vectors (Ps) and decide based on a fixed
distance or threshold (T). This can be easily performed with
an XNOR of Q and each P followed by a pop-count® and
thresholding operation, as shown in Equation 2.

N —gram(Cy, Cy, ..

D = .
Classification(i) = L i ,; QUIOPG) = T 2)

0, otherwise

D. COMPUTING INSIDE/NEAR MEMORY

For decades, the processing units have been developed at
a faster rate than memory units, causing memory units
to become a bottleneck, especially in data-intensive work-
loads. The Processing-In-Memory (PIM) (interchangeably
also referred to as Computation-In-Memory (CIM)) is a
promising paradigm that aims to alleviate the data movement
bottleneck. In essence, PIM advocates for avoiding unneces-
sary data movement and redesigning systems such that they
are no longer processor-centric. Previous works show the
potential of various memory technologies for implementing
PIM-based architectures [36]-[39]. Resistive memories or
memristive devices, such as ReRAM and PCM [37], [40],
[41], have recently been introduced as a suitable candidate
for both storage and computation units that can efficiently
perform vector-matrix multiplication [42] and bulk bit-wise
logical operations [43], [44] since they can follow Kirch-
hoff’s law inherently. They also enjoy non-volatility, high-
density, and near-zero standby power. Due to the inherent
high parallelism, simplicity of the required operations, and
intrinsic robustness and error tolerance of an HDC-based
system, such a system fits well with the PIM paradigm.
A few recent works propose application-specific hardware
accelerators based on memristive devices [41], [45]-[47]
for such HDC-based systems. We describe the differences
between our implementation and closest previous proposals
in Sections V and IX.

3Pop—count (population count) of a vector or specific value is the process
of finding the number of set bits (1s) in that value.
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IlIl. DEMETER

Demeter is a configurable framework for food profiling and
is based on three main insights: (1) current food profilers,
whereas accurate, are neither memory- nor energy-efficient,
(2) the primary sources of high cost and inefficiency in cur-
rent food profilers is their large reference data structures and
working sets, and (3) one can profile food samples quickly
and accurately using HDC. Fig. 1 provides an overview of
the five key steps in Demeter: @ defining an HD space, @
building an HD reference database (HD-RefDB), ® convert-
ing sample reads into HD space, @ determining the possible
species assignment per sample read, and @ performing abun-
dance estimation. We describe each step in more detail next.

A. STEP 1: DEFINE THE HD SPACE

As the first step (@ in Fig. 1), Demeter defines an HD space
for all subsequent operations and steps. This is a crucial
step as it determines the operations in the remaining steps.
Unfortunately, many previous HDC-based proposals did not
support the user’s input for determining the HD space and
designed their space statically. Hence, such designs are more
limited.

Demeter defines the HD space in 4 stages. Stage 1: Deme-
ter fixes two hyperparameters: (1) The dimension of the HD
space; i.e., the dimensionality of the HD vectors (element
representations), and (2) The sparsity of each element (HD
vector). Stage 2: Demeter generates a few atomic HD vectors
and stores them in memory (commonly called Item Memory
(IM)). These vectors can be (1) the HD vectors that represent
our genome alphabets or (2) the one-time randomly generated
HD vectors that some encoding mechanisms use, for exam-
ple, to introduce the concept of order between alphabets of
one input. Stage 3: Demeter decides on the encoding mecha-
nism to build the space with. This very encoding mechanism
will be used throughout Steps @ and ® of Demeter. Stage 4:
Demeter fixes the similarity metric and any other associated
parameters (such as thresholds) based on the user’s input
or a common choice considering previous stages. Demeter
stores a default value for each stage in a configuration file.
Once the user summons Demeter, Demeter quickly checks
if a configuration file matches with the user’s requested HD
space or not. Demeter only runs this step if such file does not
exist or the user asked for a change.

B. STEP 2: BUILD DEMETER’s REFERENCE DATA
STRUCTURE

Demeter takes two sets of inputs in step @: (1) HD space
parameters defined in Step @ and (2) a reference genome
database. Subsequently, Demeter builds a new reference
database in its HD space out of all the considered reference
genomes. This new database, called HD-RefDB, consists
of one (or few) prototype HD vector(s) from any given
reference genome in the original reference database and is
stored in AM. HD-RefDB can be as varied as the num-
ber of combinations of possible hyperparameters, atomic

VOLUME 10, 2022
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User Input Reads
Food Sample Reads
Read Sequences Offline / One-time ; ) \ {L J
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e Step 1:
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- L_Read e 1. Hyperparameters:
; L '8 0 Dimension of HD
T ﬁ 0 Sparsity of HD vecs :> - Y
~ 2 HD Vzcs' gneration HD-RefDB : [Read k| 0010100101 ... 0011110100 |
Reference Genomes 3. Encoding mechanism Specie 1 | 0010111001 ...0010110001 | |
CTGGTCA . TRTTCACCCG 4. Similarity metric [ Specie 2 | 0010001101 .. 1010010111 ]| Online / Multiple
TCATGACGA ... TCGTCTACGC ; : i
CTACATAGTA ... AMATCACACT [ Specie N | 0010111001 .. 0010110001 | e
GAGCGTGCCC ... TGTTCACCCG A\ - o~ - Step 3:
: Refs e Step 2: Read Conversion
TTACGAGTCA ... TGGGCAGC Build HD-RefDB S -
CCCCTGGTCC ... CGTGCACGGG @ @
P C— ( Online / Multipl
- nline ultiple
HDC Confisuration —> 0 Step 4: Similarity Check -
e lgurati . Multl -Species Classification )
New Dimension | O
New Sparsity 1 1 1
| Encoding Mechanism | Online / Multiple
| e eStep 5: Relative Abundance Species-level Abundance Calculation J P
./ | Estimations
FIGURE 1. Overview of demeter framework.

vectors, and encoding mechanisms in Step @. This step aims
to reduce the size of the working set for the classification task
while avoiding accuracy drop. Since this step requires only
simple arithmetics and is also highly parallelizable, it can
still be accelerated on our proposed PIM-enabled accelerator
(Section V).

C. STEP 3: DEMETER’s READ CONVERSION

Demeter again takes two inputs in Step ©: (1) HD space
configuration and (2) read sequences of the food sample
under study. Demeter translates each of these read sequences
into one query HD vector. To prevent any extra storage cost
and to pipeline computations of Step ® and Step @, Demeter
forwards each query HD vector to the next step instead of
storing them inside a memory unit while waiting for all of
them to be constructed first.* Query HD vectors created in
this step can require larger or smaller space than a read,
depending on the initial length of the read sequences and
the dimension of the HD space. Therefore, although Steps &
and ® share the encoding mechanism, their input and how
Demeter treats the outcome are pretty different. Step & nei-
ther introduces a new operation nor a procedure other than
those that already exist from Step @. Therefore, it enjoys
similar benefits as Step @, namely high parallelization and

4This is the default behavior in Demeter. However, we also provide the
option for the user to keep and store these query HD vectors (HD-ReadDB)
in case one needs to analyze them further. If one uses this option, the stored
query HD vectors create another database representing the reads in our food
sample, called HD-ReadDB hereafter.
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in-memory suitability. Demeter runs Step ® every time it
profiles a new read of a food sample.

D. STEP 4: MULTI-SPECIES CLASSIFICATION PER READ

In this step, Demeter takes (1) the query HD vector (Step @),
(2) HD-RefDB (Step @), and (3) similarity function and its
corresponding parameters (Step @) as inputs. To determine
the specie(s) that each read belongs to, Demeter performs a
similarity check between the query HD vector and each of the
prototype HD vectors in HD-RefDB. The similarity measure
can vary depending on the vector representations and encod-
ing approaches. Demeter allows various famous mechanisms
for the similarity check, such as Hamming distance [17]
and dot product [16]. Usually, this step can be implemented
only with simple operations (Section II-C). It also enjoys
high parallelization, similar to the previous steps. Although
a similarity metric and its related parameters highly relate to
(1) the encoding mechanism and (2) hyperparameters of the
HD space, such as representations, sparsity, and the dimen-
sion of HD vectors, and therefore it makes sense not to let
them change arbitrarily, Demeter supports changing them in
Step @ as well, without needing to re-run Steps @ or ®. This
is because some studies show that different similarity metrics
and thresholds may outperform others depending on your
application and data for a fixed set of hyperparameters and
encoding mechanisms. Therefore, if one decides to change
their reference database, they may need to play with these to
find the right match, and Demeter allows such investigations.
Currently, Demeter provides a default option.
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Demeter may find out that the query HD vector is close to
one, multiple, or none of the prototype HD vectors in HD-
RefDB. This variety in possible outputs differentiates Deme-
ter from many previous HDC-based designs [17], [41], [48]—
[50]. In such works, mostly due to the characteristics of appli-
cations under study, researchers always assume that (1) the
query HD vector can only belong to one of the prototype HD
vectors, and (2) the class of the query HD vector will exist in
the AM. However, none of these assumptions hold for a food
profiler. One read from the food sample can be related to one,
multiple, or none of the reference genomes in the original ref-
erence genome database. This is because the read sequences
are mostly short strings with a reasonably high probability
of existence in longer reference genome sequences. It is also
not uncommon that the query HD vector does not belong to
any of the reference genomes in the initial reference genome
database. This case can happen when, for example, (1) there
is either an unknown species in the food sample, (2) one
incorrectly excludes the corresponding reference genome in
the initial reference genome database, or (3) an uncorrected
sequencing error has happened. A food profiler should cap-
ture such cases. This difference between how many prototype
HD vectors in HD-RefDB can be assigned to one query HD
vector is a key difference that affects both the following abun-
dance estimation step and final results. It also distinguishes
this work further from previous HDC-based proposals for
different applications. Step @ also enjoys high parallelization
and in-memory suitability features similar to previous steps.

E. STEP 5: SPECIES LEVEL ABUNDANCE ESTIMATION

In Step ®, Demeter performs a relative abundance estimation
based on the results of Step @. This step is particularly needed
for a food profiler in which one query HD vector can be
similar to one or more classes/species. Demeter categorizes
each query HD vector into (1) uniquely-mapped, (2) multi-
mapped, and (3) unmapped, taking a two-step approach.
In the first step, Demeter assigns the uniquely mapped query
HD vectors to the species that they are similar to. In the
second step, Demeter assigns the multi-mapped query HD
vector to multi-species proportionally to the number of reads
that have been uniquely aligned to in the first step divided by
the length of species (reference genome). Demeter’s Step @
can be extended to support different assignment policies for
the multi-mapped reads. We leave investigating the effect of
such methods for future work.

IV. DEMETER's EVALUATION

A. METHODOLOGY

We implement a multi-threaded highly-parallelized ver-
sion of Demeter in C++ using SeqAn library [51], called
C-Demeter. SeqAn library is an open-source optimized
library for biological data. C-Demeter verifies the accu-
racy of Demeter. We also implement a GPU version of
Demeter, G-Demeter. G-Demeter uses CUDA streams for
parallelizing data copy operation between shared memory
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and global memory with other computations as much as
possible. It implements the similarity check using parallel
reduction technique introduced by Harris et al. [52] in the
shared memory. All of our experiments run on a 128-core
server with AMD EPYC 7742 CPUs [53] and with 500 GB
of DDR4 DRAM. G-Demeter runs on an NVIDIA RTX
2080Ti GPU. Our sensitivity analysis shows that binary HD
vectors of size 40,000, with dense distributed representation
(DDR [17]) and N-gram-based encoding mechanism, strike a
sweet spot in the tradeoff between accuracy, required mem-
ory, and performance. Therefore, unless otherwise stated, our
evaluations use these setups.

1) ACCURACY METRICS

We capture the four fundamental rates from a (food) profiler
when considering the presence and absence of each species in
the output, i.e., True Positive (TP), False Positive (FP), False
Negative (FN), and True Negative (TN) Rate. Based on these
rates, Demeter reports two standard metrics of Precision and
Recall [12], [54], [55] to assess the accuracy of our (food)
profilers.

2) PERFORMANCE METRICS

Performance analysis consists of three experiments: (1) Build
time, (2) Query time, and (3) Query throughput or speed. This
separation has two main reasons. (1) Build time is normally
a one-time job and does not affect the overall profiler’s per-
formance. Therefore, it is only fair to separate build time and
query time. (2) Query time is simply the required time for
profiling one single read. However, throughput is measured
by million reads per minute (A%) and should be differentiated
as it can get affected easily by other factors such as the size
of the data structure, the classifier’s parallelization capabil-
ity, or the infrastructure’s computation and storage/memory
limitations (e.g., duplicating capabilities).

3) DATASETS

We have two sets of datasets. (1) Genome sequences used
as a reference database. (2) Genomes sequences used as
food samples and input queries. We consider AFS20 and
AFS31 [4], [5] as our reference genome datasets. These
datasets are two-commonly used datasets consist of 20 and
31 food-related reference genomes related to animals whose
sizes vary from 12 MB to 14 GB. AFS31 is currently also the
biggest reference dataset used in food profiling. Food sample
reads or queries are from calibrator sausage samples from
ENA project ID PRJEB34001 [56] and PRINA271645 [57].
These reads are real short-read sequences from a mixture of
food ingredients such as chicken, turkey, etc., sequenced on
an Illumina HiSeq machine.

4) BASELINES

We compare Demeter against MetaCache [4] (the most accu-
rate food profiler) Kraken2 [12], Kraken2+Bracken [58],
and CLARK [59], the top 3 alignment-free and fastest
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metagenomic profilers that are also commonly used for food
profiling.

B. DEMETER's ACCURACY ANALYSIS

Figures 2 and 3 present the results for the precision and
recall of all evaluated food profilers on the species levels over
AFS20 for Kylo and Kal food samples [56], [57], respec-
tively. Note that the relative abundance of higher taxonomy
levels is not of importance in food profiling. Additionally,
those calculations highly depend on the propagation method
from species level to those levels. Therefore, they have been
excluded from this study.

We observe that Demeter stands very close to the most
accurate profiler, MetaCache, and has only 1.4% and 2.6%
less precision and recall, respectively, for KLyo samples.
Moreover, Demeter achieves similar results on AFS31
and Kal samples. Note that accuracy is very much data-
dependent, and indeed this accuracy drop is acceptable for
a food profiler. The results of the latest comparison between
current (metagenomics) profilers [60] show an Std error of the
mean ranging from 0 to 5% regarding the precision and recall
among various widely-used profilers on different datasets.

We conclude that Demeter is accurate and achieves high
precision and recall for food samples. These results show
that Demeter’s HDC-based classification approach followed
by our abundance estimation technique does not hurt the
accuracy of the profiler compared to baselines.

C. DEMETER’S SOFTWARE PERFORMANCE ANALYSIS

Fig. 4-a and Fig. 5-a present the time that each profiler takes
to query one (short) read from the query food sample and
classify its specie(s) over AFS20 and AFS31, respectively.
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We observe that both C-Demeter and G-Demeter, whereas
accurate, require higher query time compared to Kraken2.
The time breakdown, using Intel VTune [20] and cudaEvents,
reveals that both implementations are memory bound, mean-
ing there exists a significant percentage of under-utilized slots
due to data access issues.

We believe that there are two main reasons behind this
problem. First, the shift operation per processed character in
the encoding mechanism of Demeter. Both of these imple-
mentations store the large HD vectors into multiple registers.
Every shift operation translates to multiple copy operations
among those registers, which can become costly in terms of
time and energy consumption. This is why the query time is
higher than expected. Second, not all prototype HD vectors
fit in the caches. Therefore, the software versions take a few
cycles to read prototype HD vectors in batches, compare them
to query HD vector, save the results, and continue with the
next batch. Note that these also put a limit on the expected
throughput.

Fig. 4-b and Fig. 5-b present throughput of different pro-
filers over AFS20 and AFS31. We make three observations.
First, C-Demeter achieves a lower throughput compared to
Kraken2. The reasons behind this are similar to what was
discussed for its longer query time. Second, we observe that
G-Demeter improves the throughput by up to 24% (depend-
ing on the reference dataset) and therefore can be used
for food profiling in the industry in the near future. Third,
we observe that simply increasing the number of working
threads by moving from C-Demeter to G-Demeter does not
improve the throughput considerably. We ask to use the com-
modity GPUs to perform the food profiling to cut the cost
in the short term. In the long term, we propose extending
Demeter to ASIC designs (such as those we present next) that
solve the new sources of inefficiency we discussed above.
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However, our analysis also shows that even a massively-
parallel implementation of Demeter, G-Demeter, does not
fully utilize the parallelism offered by vector operations of
HDC classification of Demeter, while also suffering from
expensive copy-pasting among registers and its inability to
perform the classification efficiently on a large vector in
software.

D. DEMETER’s MEMORY ANALYSIS
To show a key source of improvement in Demeter (and an
enabler for Acc-Demeter), we compared the memory require-
ment of Demeter with the other food profilers. Fig. 6 presents
the required memory for each profiler on AFS20 and AFS31.
We make the following two observations. First, Demeter
requires ~33x and 36x less memory than Kraken2 and
MetaCache for AFS20 database and ~27x and 30x less
memory for them for AFS31 database, respectively. This
makes Demeter the most efficient food profiler from a mem-
ory usage perspective. Second, the reduction in memory
requirement for Demeter is to the extent that, for the first time,
the data structure of the food profiler can fit into a standard
size memory and does not require a colossal RAM managing
further queries. This reduction is the main enabler behind
Acc-Demeter. We conclude that Demeter is very memory
efficient.

V. DEMETER's PIM-ENABLED ACCELERATOR
Demeter is positioned as a platform-independent food pro-
filing framework that uses HDC. Demeter works with large
HD vectors, is robust against errors, enjoys high parallelism,
and exploits simple operations. These characteristics make
Demeter a suitable candidate for hardware acceleration. How-
ever, the interest behind accelerating Demeter in a highly
parallelizable and energy-efficient platform and specifically a
PIM-enabled design goes beyond being simply its suitability
and is a requisite for such a platform with two main motives.
Motivation 1: As discussed in Section IV-C, a software
version of Demeter incurs a considerable cost on copy oper-
ations among registers holding intermediate HD vectors and
classification. It also performs the classification poorly due
to larger than cache HD-RefDB and low cache hit rate. These
costs diminish all the benefits of Demeter that come from
its small data structures and memory requirement. However,
one can prevent this if Demeter is implemented in hardware
as they can (1) realize the shift operation for free by only
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redirecting the output of each register to the next one and (2)
perform the classification efficiently.

Motivation 2: A software-based implementation of Deme-
ter still incurs a lot of unnecessary data movement for
Steps ®, @, and @. A hardware accelerator, especially a
PIM-enabled one, can mitigate this problem greatly.

Therefore, we propose a PIM-enabled hardware accel-
erator for Demeter using PCM cells. One can acceler-
ate Demeter using a PIM-enabled design on different
memory technologies. We choose a memristor-enabled
design for three main reasons. First, it is well-known that
memristor-based memory technologies can perform vector-
matrix multiplication [61]-[64] using Kirchhoff’s law effi-
ciently, making them suitable for our design. In this work,
we manage to propose a hybrid row-major/column-major
data mapping and intelligent data duplication scheme to per-
form encoding, classification, and profiling efficiently on
PCM devices using this operation. Other technologies than
memristors do not offer the same features for our hybrid data
mapping.

Second, traditional technologies, such as non-memristor-
based ones, are generally general-purpose and cost-driven.
Moreover, their design does not allow even simple circuit
modifications without high penalty on the area and cost. This
makes them face a lot of pushback from the industry and
unlikely to see future adoption. One of the advantages of
memristors over them is their high density and scalability, and
previous works show a wide range of accelerators using them.

Third, researchers already show the potential of acceler-
ators based on emerging technologies for other ML-based
algorithms [62], [65]. Also, multiple memory technologies
already exist in current sequence machines. Therefore, it is
not unreasonable to imagine one sort of these emerging
memory technologies also be installed in these machines,
especially for performing ML-based algorithms such as those
for base-calling that are necessary for the sequencers [66].

In this work, we focus on PCM devices, as a member of
the family of memristor devices, due to our accessibility to
accurate device measurements and models for these devices
and leave exploring other technologies for future research.

A. OVERVIEW OF DEMETER’s ACCELERATOR

Fig. 7 shows an overview of the proposed PIM-enabled hard-
ware accelerator for Demeter, Acc-Demeter. Acc-Demeter
consists of 5 key elements: @ Item Memory (IM), @ Encoder,
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@ Associate Memory (AM), @ Distance calculator, and @
Controller. IM and AM units are memory units, and we
implement them as PCM arrays with their control circuitry.
However, the encoder and distance calculator units are com-
puting units implemented as the periphery. The controller is
a simple FSM designed to harmonize the required steps of
Demeter. The CPU initiates Demeter by gathering the user’s
input (Step @) and then booting the controller; i.e., it sends the
start command, initializes the registers, and sets the addresses
to consider for food samples and/or reference genomes in the
controller. In a nutshell, Acc-Demeter accelerates Steps @, ©,
and @ of Demeter. The controller returns the results of Step @
to the CPU for final processing and performing the relative
abundance estimation (Step @). We discuss these units in
more detail next.

B. ITEM MEMORY (IM) DESIGN

We implement our IM using PCM arrays and corresponding
circuits, such as decoders. IM stores the atomic HD vectors.
Binary “0” and binary ““1”” in an HD vector translate to amor-
phous and crystalline states, respectively. In the beginning,
the user (or Demeter) generates 4 HD vectors for each DNA
alphabet in Step @ of Demeter and stores them in the IM. Acc-
Demeter reads these atomic HD vectors from IM every time
it meets a new symbol. Once Demeter fixes the HD space,
IM becomes a read-only memory. This allows us to prevent
unwanted changes to the atomic vectors.

Fig. 8-(A) presents the IM design. The gate enabler pro-
vides access to cells that the row decoder activated. This
way, the design of an entire array is achieved much easier,
and the write/read disturbance effect is also mitigated to a
great extent. However, this design also blocks the write on
a row basis and only allows column-wise programming of
IM. This does not complicate IM in any way because the
atomic vectors are generated once in the beginning by the
host CPU and then stored in the IM for a long time. Note
that random number generators are already well-optimized in
CPUs. In addition, randomly generated values inside memris-
tors are still in early stages [67]-[69], and Acc-Demeter can
be modified later to benefit from a non-intrusive (compatible)
random number generator in the future.

Fig. 8-(B) presents (1) data mapping and (2) placement of
HD vectors in the IM unit. Note that data mapping is a critical
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contribution of Acc-Demeter. Acc-Demeter uses a hybrid
row-major and column-major data mapping for IM and AM
units, respectively. IM enjoys a row-major data mapping for
two reasons. First, a row-major data mapping of HD vectors
allows Acc-Demeter to read the cells written in one row in
one cycle. This is helpful as IM is used in the encoding
procedure, which is the bottleneck. Second, the used PCM
model provides more #columns than #rows. Therefore, even
if there was a method to read column cells all at once but
separately, one could only store smaller chunks of an HD
vector on that column.

An important design choice regarding IM is related to the
limited size of PCM arrays (512 x 2048 [41]). This limitation
of array size (which also exists in mature memory tech-
nologies such as DRAM) prevents us from fitting an entire
large HD vector in one row or column. Therefore, one needs
to break such an HD vector into smaller chunks and store
them into separate rows. Three options exist: (1) putting the
chunks in the same array, (2) putting them in different arrays,
(3) a hybrid approach. As shown in Section VII, encoder is
the bottleneck of our operation. Therefore, to prevent exacer-
bating the overhead of the encoding procedure, IM breaks a
HD vector to the largest power of two that is smaller than the
number of columns available in an array (2048 in our case)
and stores different chunks on different arrays. This is a direct
tradeoff between the used area (#arrays) and performance.
Fig. 8-(B) also shows this placement.

C. ENCODER DESIGN

The encoder is the main compute unit of Acc-Demeter. The
encoder is implemented in the periphery of arrays and exe-
cutes the binding and bundling operations via a sequence of
commands determined by the controller. Demeter is capable
of handling different representations (Section III). However,
to reduce the complexity and make the design hardware
friendly, the current design of Acc-Demeter only supports
binary representations. In this setup, the N-gram encoding
mechanism is the most common one, which Acc-Demeter
supports. We suspect that other choices are also possible
with the same hardware or minimal changes. We leave the
exploration of those designs for future work.

Based on Equation 1, building an N-gram requires only
simple XOR and shift operations. This bitwise XOR oper-
ation can be quickly computed after reading the atomic HD
vector from the IM with an XOR gate in the periphery. Note
that one can also implement XOR using bitwise AND (A) and
OR (V). However, this technique requires breaking the XOR
operations into minterms whose numbers increase exponen-
tially. Any attempt to reduce them, even if empirically works
as in [41], will only produce approximated results and hurt
the accuracy. Although some applications can tolerate such
extreme accuracy loss, food profiling cannot. Note that the
2-minterm based encoding in [41] also affects the sparsity of
N-grams (acknowledged in the paper) and limits the size of
the N-gram. However, this is not the case in Acc-Demeter
because all the operations accurately use XOR gates. This
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Encoder

FIGURE 9. Encoder components and schematic.

way, Acc-Demeter can benefit from larger N-grams and does
not hurt the density of the HD vectors. As discussed in
Section IV-C, the shift operation can quickly become a bot-
tleneck for large HD vectors and strings in a software-based
implementation. However, this does not happen here since
Acc-Demeter realizes the shift for free by simply redirecting
each Flip-Flop (FF)’s stored value to the neighboring one
every clock cycle. Fig. 9 depicts a schematic illustration of
the encoder unit.

From the hardware perspective, the encoder distinguishes
the binding and bundling components completely. For the
binding, the SA reads out the value from IM to one input
of an XOR gate and uses the previously stored value of
neighbor FFs as the second input. The encoder then stores
the results in a buffer and repeats the procedure. This design
choice provides Acc-Demeter with the cascaded logical oper-
ations, with minimum changes to the memory array, and
prevents any write back and pressuring the endurance of
the PCM substrates. The encoder performs this sequence N
times (enforced by the signals from the controller) to build an
N-gram. After it finishes creating one N-gram, it passes
the N-gram to the bundler unit, resets the buffer, and starts
building the next N-gram until it hits either the last character
of the input or set limit per final HD vector.

The bundler takes N-grams and adds them to a global HD
vector that presents each position with a counter instead of
only one bit per position. It then repeats this operation for
M N-grams. Finally, the bundler applies a threshold (T) and
makes a final binary HD vector representing all the pro-
cessed characters while building this vector. At this point, the
encoder is done. It passes the results to be stored as prototype
HD vectors or used as query HD vector in AM and resets both
the integer-based and binary HD vectors.

D. ASSOCIATE MEMORY (AM) DESIGN

The AM unit is implemented using PCM arrays and their cor-
responding circuitry, similar to the IM unit. This unit takes the
output of the encoding mechanism (an HD vector) as input.
Although the AM and the IM can technically be combined,
Acc-Demeter considers separate hardware for three reasons.
First, these units serve in subsequent and completely different
steps in a profiling pipeline, naming encoding, and classi-
fication step. Such a distinct separation enables building a
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pipeline for them. Second, row-major and column-major data
mapping in IM and introduce different parallelism oppor-
tunities for encoding and classification steps of a profiling
pipeline, respectively. Row-major data mapping of IM paral-
lelizes encoding of all bits in a single HD vector in each clock
cycle. On the other hand, column-major mapping of paral-
lelizes the similarity check of one query HD vector with all
prototype HD vectors stored vertically in at that clock cycle.
Third, separate hardware helps us to simplify IM design by
using sense amplifiers instead of ADCs. Doing so brings
various benefits in terms of area saving, energy consumption,
and read-out time. Note that ADCs are usually the bottleneck
of a memristor-based memory in terms of energy, area, and
time [70] and that is why one only uses them when VMM
or other logical operations such as Scouting Logic [43] are
necessary.

Equation 2 shows that for the classification, we need to
count the differences between the query HD vector and each
prototype HD vector and then decide whether or not it can
belong to the corresponding class. Although one can realize
this in hardware by performing XNOR operation between
the two vectors followed by a pop-count operation all in
the periphery, such design comes with two drawbacks: (1)
it requires the pop-count operation even after the XNOR,
which introduces enormous area cost and significant delay
(logaD + 1 cycles [71]), and (2) the AM unit, similar to
the IM, only allows to write columns, not the rows. Since
prototype HD vectors are not known from the beginning
(unlike atomic HD vectors), this limitation forces us to save
them all in another extra unit first and then write them back
on a row basis. This is again inefficient.

However, Acc-Demeter proposes a new column-major
data mapping and intelligent data duplication for this unit
and exploits the characteristics of the PCM substrate to
solve all these problems for HDC-based classification. It is
well-known that memristor-based memory technologies can
perform vector-matrix multiplication [61]-[64]. Therefore,
Acc-Demeter implements the required XNOR and following
pop-count operations in Equation 2 in four steps, three of
which happen in the unit and the last one in the Similarity
Check unit.

Step 1: Acc-Demeter stores one prototype HD vector (or a
chunk of one HD vector) in one column and its complement in
the same column number of a second array. Fig. 10-A shows
their placement in the AM unit. Step 2: Acc-Demeter applies
the query HD vector (Q) to the rows of the first array and the
complement of the query HD vector (Q) to the rows of the
second array with complement prototype HD vectors (Ps),
shown in Fig. 10-B. Step 3: Acc-Demeter enables columns
consecutively and effectively read out the number of ones in
Q.P and Q. P in ADCs of each array. This way, it performs
two vector-matrix multiplications using Kirchhoff’s law, one
between Q and all Ps in the first array and one between Q
and all Ps. Section V-E describes Step 4 that realizes XNOR
and pop-count operation simultaneously. Fig. 10-B presents
a high-level illustration of AM design.
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FIGURE 10. (A) Data mapping and placement of prototype HD vectors in,
(B) high-level design, and (C) partial hardware for similarity check unit.

Similar to the case in IM, the limited array size of PCM
substrates also prevents Acc-Demeter from storing a full
HD vector in one row or column of AM. To reduce the
required area, and since the encoding is the bottleneck and
not the classification (Section VII), in the AM, unlike IM,
Acc-Demeter stores the chunks of HD vectors in the same
array. Fig. 10-A takes a color-coding approach and depicts the
way Acc-Demeter breaks prototype HD vectors into multiple
chunks and stores them in columns of AM in and among
tiles. It is worth noting that Acc-Demeter only writes to the
PCM cells once in both IM and AM units unless either the
configuration file in Step @ or the user the default reference
genome database in Step @ changes. This prevents many
writes to the devices, which still have limited endurance
compared to traditional memory technologies.

E. SIMILARITY CHECK HARDWARE

The similarity check unit is a small computing unit that
takes the two ADCs’ output of similar columns from the two
crossbars and adds them together (Step 4). Fig. 10-C depicts
all the logic for this unit. The output of this unit is the results
of XNOR and pop-count together. At this stage, the similarity
check unit sends the results out to the host CPU to determine
whether the similarity is close to the threshold and should be
considered in the abundance estimation (®-b, and ©). The
reason behind sending the results out instead of a winner-
take-all (WTA) circuit used in previous works [41], [72]
is two-folded. First, a WTA circuit assumes that the query
matches one and only one prototype HD vector. However,
as discussed in Section III-D and III-E, this is not always
the case when profiling the genomics data. Second, the rel-
ative abundance estimation techniques (Step ® in Fig. 1),
although simple, require more complex and area-hungry
logic circuits, which Acc-Demeter aims to avoid whenever
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possible. Therefore, since the results will be analyzed outside
the PCM-substrate anyway and transferring such small data
can be easily handled by interconnects between the host
and Acc-Demeter, Acc-Demeter relies on the host CPU to
perform the final steps of Demeter. Note that the host is aware
of prototype HD vectors’ mappings.

F. CONTROLLER UNIT

The controller orchestrates all the operations of Acc-Demeter
by generating control signals for other components. It gets
the start signal and the address of food samples (or reference
genomes) in the memory as its inputs. The controller outputs
the results of the similarity check unit back to the host for final
steps. The controller is designed as a simple FSM machine
and operates based on parameters set in Step @.

VI. SYSTEM INTEGRATION OF ACC-DEMETER

This section discussed Acc-Demeter’s system integration
stack that enables it to operate with the host processing
system.

A. ADDRESS TRANSLATION

Acc-Demeter works with physical addresses, instead of vir-
tual ones, and is relieved of address translation challenges
that exist and dealt with in previous works [73], [74]. The
CPU host uses the same translation lookaside buffer (TLB)
lookup mechanism that exist for normal load/store oper-
ations to translate instructions’s virtual memory addresses
into their physical addresses when we have a Acc-Demeter’s
instruction.

B. COHERENCE

Acc-Demeter may require modified and/or generated atomic
vectors (for the IM units) or loaded prototype vectors (for
the AM units). Similar to previous works [75]-[77], ensuring
that data for Acc-Demeter is up-to-date is a responsibility for
programmers and can be achieved easily by flushing cache
lines. Acc-Demeter is also capable of leveraging previous
PIM coherence optimizations [78], [79] for further perfor-
mance improvement.

C. INTERRUPTS

We assume that the pages required by Acc-Demeter’s AM
and IM units are already present. When this is not the case,
we rely on the conventional mechanisms for handling the
page faults to place this data into the correct arrays. Therefore,
Acc-Demeter does not face page fault during the execution of
food profiling since pages used by Acc-Demeter are already
loaded and pinned into AM and IM units. Acc-Demeter may,
however, face an interrupt during a context switch. In such
cases, the context of the control unit in Acc-Demeter will be
saved and then restored when the profiler resumes.

D. ISA EXTENSIONS AND PROGRAMMING INTERFACE
An expressive and efficient programming interface is a must
for Acc-Demeter as it directly impacts the usability of
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TABLE 1. Acc-Demeter ISA extensions.

Type ISA Format

Initialization
Input Operation

bbop_init, address, size, n
bbop_op, size, n

TABLE 2. PCM configuration.

Technology PCM (512%2048 @ 1bit), Cell Size = 50 F2
Current on Conducting Devices | 0.1pA

Read Voltage 0.1V

Read/Write Latency Read=2.8 ns, write=100 ns

ADC 9 bits resolution, 2 ns, 4 pJ per sample

Demeter framework. To enable easy communication between
Acc-Demeter and the programmer, we envision to extend
the ISA with a few instructions to allow the control unit
knows about the required operations, their timing, and the
place where data objects reside in IM and AM units. ISA
extension is possible due to the unused opcode space in the
host CPU, and has also been adopted in previous PIM-related
architectures [36], [73].

Acc-Demeter requires 2 types of instructions: (1)
bbop_initaddress, size, n: initialization of IM and AM units
and (2) bbop_opsize, n: instructions for performing different
operations in Acc-Demeter. bbop_init is the initialization
instruction that informs the OS that the memory object is
for Acc-Demeter. This way the OS performs virtual-to-
physical memory mapping required for AM and IM units.
bbop_init takes the base physical address, the size of the
vector, and the intended value. For Acc-Demeter’s operations,
we extend the CPU ISA with bbop_op. Acc-Demeter utilizes
an array-based computation model, i.e., src and dst are source
and destination arrays. bbop_op is the opcode, where size and
n are #elements in the array and #bits in each array element,
respectively. This paper assumes that the programmer will
writing suitable code for Acc-Demeter operations manually.
We summarized the required CPU ISA extensions for these
operations in Table 1.

VIl. ACC-DEMETER’s EVALUATION

A. METHODOLOGY

We emulate the execution of Acc-Demeter using a
cycle-accurate RTL model and synthesized it using UMC
65 nm technology node in Synopsys Design Compiler [80].
We verify the correct behavior of our memory model using
test benches and previous in-memory simulators [41], [62].
We consider a typical operation condition of temperature 25°
and voltage 1.2V when evaluating our energy consumption.
All the experiments for the PCM-based Acc-Demeter are
carried out based on PCM statistical models that capture the
variations in the spatiotemporal conductivity of the devices.
PCM prototypes and analytical models used for validation
and further simulations are based on the results of EU
project MNEMOSENE [81], led and concluded by TU Delft
in 2020. Table 2 shows the other parameters of our PCM
crossbars.
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FIGURE 11. Build time on (a) AFS20 and (b) AFS31.

B. ACC-DEMETER’s PERFORMANCE ANALYSIS

This section compares the performance of SOTA profil-
ers compared to Acc-Demeter, our PIM-enabled accelerator
design of Demeter.

1) BUILD TIME

Fig. 11 shows the build time that each profiler takes to build
its initial data structure for two reference databases AFS20
and AFS31.

We make two observations. First, Acc-Demeter has the
lowest build time among all previous food profilers. Acc-
Demeter builds HD-RefDB corresponding to AFS20 and
AFS31 ~3.2x and 2.8 x faster, respectively than MetaCache,
the next fastest profiler. Unlike previous HDC-based methods
that are faster than their ML competitors due to the one-shot
learning ability of HDC paradigm, Acc-Demeter outperforms
SOTA profilers due to its highly parallelized performance and
simple operations being performed on Acc-Demeter’s hard-
ware. SOTA food profilers parse the reference genomes only
once, and the one-shot learning of Demeter is not particularly
advantageous.

Second, CLARK exceeds the 500 GB memory of the sys-
tem when running it for AFS31. This is in line with obser-
vations in [4]. Therefore, we excluded it from all analyses
regarding AFS31 from now on. This case shows an excellent
example of where metagenomic profilers, whereas good for
lengthy and costly studies, may not be applicable for the sce-
nario of food profiling and later food analysis and monitoring.

2) QUERY TIME

Fig. 12 presents the time that each profiler takes to query
one (short) read from the query food sample and classify its
specie(s) over AFS20 and AFS31.

We make two key observations. Acc-Demeter improves
the query time by ~74x/88x and 272x/350x compared to
Kraken2 and MetaCache, respectively, on AFS20/AFS31.
This shows that the acceleration of Demeter pays off and
finally makes Demeter not only an accurate but also a fast
food profiler.

Second, the query time for Acc-Demeter remains almost
the same for both databases and does not change much.
We further investigate this and realize a bottleneck shift:
Step ® or abundance estimation that is being performed
inside the CPU is now the bottleneck of Acc-Demeter.
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This happens because of the high-frequency Acc-Demeter
achieved. However, this contrasts with other profilers that
spend most of their time querying their massive data structure.

3) QUERY THROUGHPUT
Fig. 13 shows the throughput of different profilers over
AFS20 and ASF31.

We make two observations. First, Acc-Demeter provides
throughput improvement of ~192x and 232x for both
AFS20 and AFS31, respectively, compared to Kraken2,
the second food profiler regarding throughput. This more
remarkable improvement in throughput than query time
results from Acc-Demeter’s ability to classify one query
read in parallel with the encoding of the following query.
Note that the throughput analysis of the previous profiler
does not consider the time for loading their data structure.
Second, similar to the query time, throughput is almost the
same regardless of the database due to the bottleneck shift.
We conclude that Acc-Demeter significantly outperforms all
four SOTA baselines for all performance metrics.

C. ACC-DEMETER’s POWER AND AREA ANALYSIS
Table 3 provides the area and energy consumption break-

down of different components in Acc-Demeter per query on
AFS31.
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TABLE 3. Area and power breakdown of Acc-Demeter.

Unit [ Area (mnzz) [ Area (%) [ Energy (nj) [ Energy (%) l

M 0.07 3.1 1.179E-06 7.4
Encoder 1.375 78.3 1.43E-05 90.6

AM 0.15 8.4 247E-07 1.56
Similarity 0.1815 10.2 6.91E-08 0.4

We make two observations. First, the logic for the encoder
unit is the most energy and area hungry unit among all others,
more than 90% and 78% energy and area of the whole Acc-
Demeter. This is expected because (1) the encoder consists of
many CMOS circuits whereas AM and IM are small memory
units with PCM technology and (2) the encoder is in the heart
of all operations in Demeter, and we spend most of our time
in this unit. We argue that this amount of logic around our
array is still justifiable. Second, compared to the die area in an
Intel Xeon E5-2697 CPU [82], Acc-Demeter only has an area
overhead of less than 2%. We conclude that Acc-Demeter is
low-cost in terms of die area.

Our evaluations show that Acc-Demeter is capable of
performing 9.45Mbp query per joule. Unfortunately, mea-
suring the energy consumption of other profilers and hav-
ing an apple-to-apple comparison between the energy con-
sumption of this method with other ones is hard. How-
ever, Merelli et al. [83], [84] show that running Kraken2 with
querying an even smaller data structure built from a reduced
reference genome dataset, minikraken [83], [85], can incur
more energy (maximum of 0.6MTI.”’). This considerable differ-
ence happens because of three reasons: (1) Kraken2 queries
a more complex data structure compared to Acc-Demeter
and requires more complex operations, (2) Kraken2 queries
a bigger data structure for its query, and (3) Kraken2 incurs
significant data movement between the memory and the pro-
cessing unit. All of these limitations exist in similar forms in
CLARK and MetaCache. We conclude that Acc-Demeter is
more energy-efficient than all four SOTA baselines.

VIil. DISCUSSIONS AND FUTURE WORKS

Capacity. We define the capacity of Demeter as the ratio
between the number of reference genomes encoded as pro-
totype HD vectors to the size of HD space for a competitive
profiling accuracy target. The higher #prototype HD vectors
are, the bigger capacity is needed, resulting in bigger HD
space and lower efficiency. Therefore, if one uses Demeter,
as is, as a metagenomics profiler, they cannot expect similar
improvements compared to SOTA metagenomics profilers
(e.g., Kraken2, on those datasets. We are currently investi-
gating the additional techniques to enable Demeter for those
cases as well. However, we leave further analysis of required
changes to Demeter for supporting metagenomics profiling
or other profiling studies with many reference genomes for
future work.

A. SUPPORTED FUNCTIONS AND REPRESENTATIONS

As discussed (Sections I, III, and V), Acc-Demeter currently
supports only binary representations and N-gram encoding
mechanism. This is a design choice made for simplicity and is
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based on acceptable accuracy results of the software version.
We leave the hardware for other encoding mechanisms and
data representations for future work.

IX. RELATED WORKS

To our knowledge, Demeter is the first paper to pro-
pose a framework to perform food profiling using HDC.
Acc-Demeter is also the first hardware accelerator that
enables low-cost and accurate in-memory profiling for a
typical reference database in food profilers. We have already
compared Demeter and Acc-Demeter extensively to SOTA
profilers in Sections IV and VII. This section briefly dis-
cusses previous software works for profilers (food or metage-
nomics), software or hardware of HDC-based systems, and
PIM-enabled accelerators.

A. METAGENOMIC PROFILERS

Several recent works propose approaches and techniques
to directly or indirectly accelerate or improve the accuracy
of metagenomics profiling, the first step of such studies.
These works take three approaches: (1) Reducing the ref-
erence database’s size by pre-alignment filtering [86], [87]
or heuristics for taxonomic classification techniques [55],
[88]-[91], (2) Accelerating read alignment or assembly
(only for alignment-/assembly-based profilers) on CPUs,
FPGAs, or GPUs [92]-[98], (3) post-alignment/-assembly/-
classification presence and abundance estimation heuris-
tics [54], [55], [99]. Demeter is categorized in the first group,
taking a HDC-based approach for the first time. However,
compared to the first group, Acc-Demeter is much faster and
has a lower cost (regarding both energy and area consump-
tion). Note that Demeter and Acc-Demeter are orthogonal to
works in the third group, and their Step ® can adapt their
proposed techniques for the abundance estimation after the
initial classification.

B. HDC-BASED SYSTEMS

Many works exploit the HDC paradigm for specific machine
learning applications that require capturing temporal patterns.
These works vary from language [100] and voice [101] detec-
tion to seizure detection [102]. Demeter is the first work that
investigates HDC in the realm of profiling genomics data.
Although HDNA [48] and GenieHD [103] propose to use
HDC for (partial®) sequence alignment of a single reference
genome divided into multiple pieces, they never exploit it for
any metagenomics or food profiling.

A few works also suggest various hardware platforms such
as FPGAs, GPUs, or ASICs [41], [48] to improve the perfor-
mance of HDC-based designs. Acc-Demeter is different from
all of these designs from two important aspects. First, Acc-
Demeter performs an exact pop-count operation in one cycle,
performing two VMM in parallel and then adding the outputs

SNeither HDNA nor GenieHD is capable of producing the exact type and
location of edits between their query and the reference genome as in the
typical outputs (.sam file) of a sequence aligner. Hence, the term ““partial”.
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of ADCs. This is in contrast to previous works [41], [48],
[102], [103] that perform an exact pop-count operation in
logoD+1 cycles, where D is the size of an HD vector. Second,
unlike [41], Acc-Demeter can perform the required HDC-
based operations on long, non-sparse N-grams (discussed in
Section V-C). To the best of our knowledge, Acc-Demeter is
the only PIM-enabled accelerator for food profiling.

C. PIM-ENABLED ACCELERATORS

Prior works also heavily investigate various forms of
compute-capable memories [36], [104], [105]. Among these,
only a few use in-memory capability for HDC designs [41],
[106]. However, these works are either tuned for single tasks
or capable of limited sizes for N-grams like only up to
3-grams [106], or only based on compact models from small
prototypes with 256 x 256 ReRAM arrays. Demeter is the
first work that proposes food profiling inside memory. In the-
ory, one can accelerate Demeter using a PIM-enabled design
on DRAM, SRAM, and other technologies. However, for the
reasons iterated in Section V, Acc-Demeter exploits PCM to
improve the performance of Demeter.

X. CONCLUSION

This paper introduces Demeter, the first framework that
enables profiling of food samples via HDC whereas strictly
meeting the accuracy of state-of-the-art profilers. Deme-
ter uses a five-step approach to enable species-level pro-
filing using HDC. This paper also introduces the first
PCM-based PIM-enabled hardware accelerator, called Acc-
Demeter. We evaluate Demeter on software and Acc-Demeter
using a cycle-accurate model based on a small-scale PCM-
based prototype. We design Demeter and Acc-Demeter to
(1) address the key challenge of HDC-systems when fac-
ing a massive input, (2) eliminate the need for a powerful
machine with very large memories, and (3) prevent unnec-
essary data movement between memory and processing units
and therefore prevent wasting time and energy. We achieve
significant performance and energy benefits over the SOTA
CPU implementations whereas achieving the same accuracy.
We hope that future work builds on top of our framework
and its hardware and extends it to further improve our food
profiling systems.
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