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ABSTRACT

The spatial heterogeneity and temporal variation of soil moisture and surface heat fluxes are key to many

geophysical and environmental studies. It has been demonstrated that they can bemapped by assimilating soil

thermal and wetness information into surface energy balance models. The aim of this work is to determine

whether enhancing the spatial resolution or temporal sampling frequency of soil moisture data could improve

soil moisture or surface heat flux estimates. Two experiments are conducted in an area mainly covered by

grassland, and land surface temperature (LST) observations from the Geostationary Operational Environ-

mental Satellite (GOES) mission are assimilated together with either an enhanced L-band passive soil moisture

product (9 km, 2–3 days) from the Soil Moisture Active Passive (SMAP) mission or a merged product (36 km,

quasi-daily) from the SMAP and the Soil Moisture Ocean Salinity (SMOS) mission. The results suggest that

the availability of soil moisture observations is increased by 41% after merging data from the SMAP and the

SMOS missions. A comparison with results from a previous study that assimilated a coarser SMAP soil

moisture product (36 km, 2–3 days) suggests that enhancing the temporal sampling frequency of soil moisture

observations leads to improved soil moisture estimates at both the surface and root zone, and the largest

improvement is seen in the bias metric (0.008 and 0.007m3m23 on average at the surface and root zone,

respectively). Enhancing the spatial resolution, however, does not significantly improve soil moisture esti-

mates, particularly at the surface. Surface heat flux estimates from assimilating soil moisture data of different

spatial or temporal resolutions are very similar.

1. Introduction

The dynamics of soil moisture and the partitioning of

solar radiation at the land surface is key to hydrology

(McCabe andWood 2006), meteorology (Andrews et al.

2009), water resources management (Yang et al. 2018;

Rigden and Salvucci 2015), and the terrestrial water

cycle (Kumar et al. 2018). Soil moisture and surface

heat fluxes can be measured with in situ flux networks

(Dorigo et al. 2011; Baldocchi et al. 2001), but the ex-

trapolation to regional scale is hindered by the uneven

distribution of observation networks as well as their

heterogeneous nature in space (Jung et al. 2011). Re-

mote sensing is a promising technique for large-scale

land variable monitoring, but energy fluxes have no

unique signature that is detectable by remote sensing

instruments (Sini et al. 2008). Although soil moisture

can be detected using microwave remote sensing, the

data are generally provided with low spatial or temporal

resolution. For example, data from microwave radi-

ometers (Petropoulos et al. 2015) or scatterometers

(Brocca et al. 2017) are of low temporal sampling

frequency (2–3 days) and coarse spatial resolution

(30–50 km), while data from some synthetic apertureCorresponding author: Yang Lu, y.lu-1@tudelft.nl
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radar systems (Lievens and Verhoest 2011; Malenovský
et al. 2012; Paloscia et al. 2013; Bauer-Marschallinger

et al. 2018) are of fine spatial resolution (,3 km) but

longer revisit interval. Furthermore, only soil moisture

near the surface (,5 cm) can be measured as a result of

the limited sensing depth of microwave instruments,

while the soil moisture at larger depth, which is crucial

for vegetation transpiration, remains undetectable.

To generate soil moisture and surface heat fluxes at

finer spatial and temporal resolution, many studies have

focused on simulations using surface energy balance

models or land surface models (Su 2002; Vinukollu et al.

2011; Huang et al. 2015; Bastiaanssen et al. 1998; Kilic

et al. 2016). These models have wide applicability under

different climatic conditions and over various land cover

types but often require a large suite of input data (Sini

et al. 2008). Simpler approaches have also been de-

veloped that are based on empirical relationships with

local indicators at finer resolution such as land surface

temperature (LST) and vegetation indices (Tang et al.

2010; Yang et al. 2015; Zhang et al. 2015; Sadeghi et al.

2017; Zhao et al. 2017). Such methods are easy to im-

plement but largely rely on historical data for model

calibration and are often region-dependent.

In a departure from the direct modeling approaches,

some studies estimate surface heat fluxes by assimilat-

ing LST time series into simple heat transfer schemes

(Castelli et al. 1999; Boni et al. 2001; Caparrini et al.

2003, 2004a,b; Crow and Kustas 2005; Bateni and Liang

2012; Bateni and Entekhabi 2012b; Bateni et al. 2013;

Xu et al. 2014, 2015, 2016; Abdolghafoorian et al. 2017;

Xu et al. 2018, 2019; He et al. 2018). Such methods only

require a limited amount of input data and are easily

transferable to other regions. By coupling the heat

transfer scheme with a soil moisture transfer scheme, Lu

et al. (2016) improved the methodology by jointly as-

similating in situ measured soil moisture and LST data.

The rationale is that available energy partitioning

between the sensible and latent heat fluxes at the land

surface influences the daytime evolution of surface

thermal condition, therefore the partitioning of avail-

able energy can be inferred from a series of LST

observations, while assimilating soil moisture data fur-

ther constrains the partitioning (Bateni and Entekhabi

2012a). The key is to estimate two parameters: a bulk

heat transfer coefficient under neutral atmosphere CHN ,

which determines the sum of available energy, and a

daytime constant evaporative fraction (EF), which rep-

resents the partitioning between sensible and latent heat

fluxes. A subsequent study using LST data from the

Geostationary Operational Environmental Satellite

(GOES) mission and soil moisture data from the Soil

Moisture Active Passive (SMAP)mission suggests that

both surface heat flux and soil moisture estimates can be

improved through the joint assimilation strategy (Lu

et al. 2017).

Despite the improved surface heat flux and soil

moisture estimates, only soil moisture data from the pas-

sive microwave radiometer have been used for assimila-

tion, of which the spatial resolution (36km) and temporal

sampling frequency (2–3 days) are both very coarse. As a

result of the spatial heterogeneity and limited memory

of soil moisture (Dunne and Entekhabi 2006), using

coarse resolution soil moisture data may limit the ca-

pability of themethod to characterize the spatial pattern

and the temporal dynamics of soil wetness condition,

which directly influences surface energy partitioning.

With the abundance of soil moisture data sources, de-

riving soil moisture products of higher spatial resolution or

temporal sampling frequency has become possible. Poten-

tial data sources include the Advanced Microwave Scan-

ning Radiometer for Earth Observing System (AMSR-E;

Njoku et al. 2003), the Advanced Scatterometer (ASCAT;

Bartalis et al. 2007), the Advanced Microwave Scanning

Radiometer-2 (AMSR-2; Imaoka et al. 2010), the Soil

Moisture Ocean Salinity (SMOS; Kerr et al. 2001), as

well as the enhanced and combined active/passive

products from the SMAP mission (Entekhabi et al.

2010). On one hand, soil moisture data can be obtained

at higher spatial resolution (,10 km) using radar or

through downscaling procedures, which can better

characterize the spatial heterogeneity of soil moisture

caused by differences in meteorological conditions or

surface properties. On the other hand, multisource soil

moisture data from different remote sensing platforms

contain complementary information on soil moisture

dynamics, which has great potential for better depicting

the temporal evolution of soil moisture through data

fusion. This provides great opportunity to explore the

question that given soil moisture data at higher spatial

resolution or temporal sampling frequency, how much

improvement can be expected in soil moisture and sur-

face heat flux estimates.

This study is based on the methodology developed in

Lu et al. (2017) and focuses on evaluating the impact of

different soil moisture data on the soil moisture and

surface heat flux estimates through data assimilation

using two comparative experiments. In the first experi-

ment, GOES LST time series are assimilated together

with the SMAP Level-3 enhanced passive soil moisture

product (L3_SM_P_E), which is provided at finer spatial

resolution (9 km). In the second experiment, the soil

moisture dataset used for assimilation is a merged prod-

uct derived from the SMAP and the SMOS mission to

obtain observations at higher sampling frequency (quasi-

daily). Results from both experiments are compared with
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those from Lu et al. (2017), which assimilated the SMAP

Level-3 soil moisture product (L3_SM_P, 36km/2–3 days)

to evaluate the respective differences in surface heat flux

estimates as well as soil moisture estimates at both the

surface and the root zone. This is the first study that

assimilates SMAP enhanced soil moisture product and

the first to combine SMAP and SMOS products for

improving surface heat flux and soil moisture estimates

using data assimilation.

2. Methodology

a. Dual-source energy balance scheme

The methodology is based on a dual-source surface

energy balance scheme, which was first proposed by

Norman et al. (1995) and Kustas et al. (1996). In this

scheme, the soil heat transfer is coupled to the soil

water transfer. The key of this coupling is the tight in-

teraction between soil moisture and latent heat flux:

the modeled soil moisture influences the EF, which

directly determines the partitioning of available energy

at the land surface, while the estimated latent heat flux

in turn serves as the sink term in the soil moisture

modeling. The coupled heat and water transfer scheme

is detailed in Lu et al. (2017).

The land surface is seen as a mixture of bare soil and

vegetation canopy, and the total sensible (H) and latent

(LE) heat fluxes are derived as the weighted average of

the contributions from the soil and the canopy

H5 f
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whereHs (LEs) andHc (LEc) are the sensible (latent) heat

fluxes of the soil and the canopy, EFs and EFc (both

unitless) are the EF values for the soil and canopy com-

ponents, and fc (unitless) is the canopy fractional coverage.

To calculate Hs and Hc, a parameter (CHN ; unitless)

needs to be estimated, which represents the impact of the

landscape on the sum of the available energy under neu-

tral atmospheric condition. The parameter CHN is influ-

enced by the bare soil as well as the vegetation condition.

Following Farhadi et al. (2014), CHN is estimated by

C
HN

5 exp(a1 b3LAI). (3)

Here the parameters a and b represent the influence

from the soil and vegetation density, respectively, which

will be estimated during data assimilation, and LAI

(unitless) is the leaf area index.

To calculate LEs and LEc, a key assumption is made

that EFs and EFc stay constant during daytime (0900–

1600 LT) when the sky is clear (Crago 1996; Crago and

Brutsaert 1996; Gentine et al. 2007; Peng et al. 2013).

Under this assumption, only one EFs and one EFc need

to be estimated to calculate LEs and LEc at every time

step during daytime, which greatly reduces the pa-

rameters to be estimated and makes the methodology

more robust.

An arctangent-form relationship proposed byDirmeyer

et al. (2000) is improved to calculate reference values for

EFs and EFc from the modeled soil moisture profile:

EFref
s 5

2EF
max

p
arctan(a

s
SWI

s
) , (4)

EFref
c 5

2EF
max

p
arctan(a

c
SWI

c
) , (5)

where EFref
s and EFref

c are the reference values for EFs

andEFc, EFmax is themaximumpossible EF (assumed to

be unity), SWIs and SWIc are the soil wetness indices

calculated from the modeled soil moisture profile (Lu

et al. 2017), and as and ac are slope factors that control

the shape of the curve and will be estimated during the

assimilation. To account for the uncertainties in the

estimation, EFs and EFc will be randomly sampled

within a 60.2 range around the reference values (Lu

et al. 2016). A detailed description of the model is

presented in Lu et al. (2017).

b. Study area and data

The methodology is applied over an area (35.758–
37.248N, 96.728–98.218W) in the U.S. Southern Great

Plains (SGP) shown in Fig. 1. The study area is covered

by 303 30 GOES LST cells at 0.058 resolution, or by 43
4 SMAP grid cells posted on a 36-kmEqual-Area Scalable

Earth-2 (EASE-2) grid. This area is selected because of

the relatively dense flux network. The area is generally flat

and mostly covered by grassland and cropland, with a

small fraction of urban area and water bodies. The

dominant soil types are sandy loam and silt loam. In situ

flux measurements are available at four stations from

the Atmospheric Radiation Measurement (ARM) net-

work. ParametersH and LE are measured every 30min

by energy balance Bowen ratio (EBBR) instruments. In

situ soil moisture observations are available at two sta-

tions from the U.S. Climate Reference Network (CRN;

Bell et al. 2013) and the Soil Climate Analysis Network

(SCAN; Schaefer et al. 2007), respectively. The soil

moisture data are collected hourly at the depths of 5, 10,

20, 50, and 100 cm from the surface.

The input data include forcing and ancillary datasets

for the model simulation, and remote sensing datasets
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for data assimilation. Precipitation forcing data are

provided by the 3IMERGHH product from the Global

Precipitation Mission (GPM; Hou et al. 2014; Huffman

et al. 2015). Other meteorological data, including

incoming shortwave RY
s and longwave radiation RY

l ,

wind speedU, air temperature Ta, and air pressure Pa,

are obtained from the North American Land Data

Assimilation System project phase 2 (NLDAS-2; Xia

et al. 2012). A summary of datasets is provided in

Table 1.

The ancillary data used include data on soil texture,

vegetation, and land cover. The 3-km soil texture data,

including sand and clay fraction and soil bulk density

data, are provided by the National Snow and Ice Data

Center (NSIDC; Das 2013). The soil texture data are

used to calculate soil hydraulic properties using the

ROSETTA software (Schaap et al. 2001). The LAI data

(1 km, 8-day composite) used are the MCD15A2 prod-

uct from the Moderate Resolution Imaging Spectror-

adiometer (MODIS; Knyazikhin et al. 1999). The land

cover data are obtained from the ESA Climate Change

Initiative (CCI; v1.6.1).

The data for assimilation include remote sensing ob-

servations for LST and soil moisture. The LST time

series based on the geostationary observations from

the GOES mission are obtained from the Copernicus

Global Land Service (Freitas et al. 2013). Three remote

sensing soil moisture datasets of different spatial and

temporal resolution are involved in this study, including

two operational products from the SMAP mission and a

combined dataset from the SMAP and the SMOS mis-

sion. All soil moisture products are bias-corrected using

the cumulative distribution function (CDF) matching

approach before assimilation to reconcile for the dif-

ference between model simulations and observations

in the long-term mean, variance and higher moments

(De Lannoy and Reichle 2016).

One SMAP product is the Level-3 passive microwave

soil moisture product (L3_SM_P). This data product is

retrieved from the L-band microwave radiometer

FIG. 1. Land cover and soil types in the study area. The thick black lines represent SMAP

36-km grids; the dashed lines in red and black represent SMAP 9-km grids and GOES LST

grids, respectively.
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measurements, with a typical spatial resolution of 36 km

and a revisit interval of 2–3 days (Entekhabi et al.

2014). The other SMAP product is the SMAP Level-3

enhanced passive microwave soil moisture product

(L3_SM_P_E). L3_SM_P_E distinguishes itself from

the L3_SM_P in that the soil moisture retrievals are

posted on 9-km grids instead of 36-km grids. This is

achieved by first interpolating the original Level-1B

brightness temperature observations using the Backus–

Gilbert optimal interpolation technique (Chan et al.

2018) to take advantage of the overlapping radiometer

footprints. The interpolated brightness temperature

‘‘observations’’ are then used as the input to the baseline

algorithm to generate soil moisture retrievals at 9-km

resolution. Comparison against in situ observations sug-

gests that the performance of the 9-km enhanced soil

moisture product is comparable to that of the 36-km soil

moisture product (Chan et al. 2018).

In addition, a merged product from the SMAP

L3_SM_P product and the SMOS-IC (SMOS-INRA-

CESBIO) product is also used. SMOS-IC differs from

the operational SMOS Level-3 soil moisture product in

the treatment of heterogeneous grid cells. Themain goal

of this product is to be as independent as possible from

ancillary data. To achieve this goal, SMOS-IC considers

grid cells as homogeneous to avoid uncertainties caused

by ancillary data, which are used to characterize the

heterogeneity of the grid cells. The schemes used for

vegetation scattering albedo and soil roughness cor-

rection are also different. SMOS-IC product is posted

on the same grids with the operational SMOS data.

Comparison against European Centre for Medium-

Range Weather Forecasts (ECMWF) soil moisture

outputs suggests that SMOS-IC product yields higher

correlations and lower unbiased RMSD (ubRMSD)

than the operational SMOS soil moisture product over

most pixels globally (Fernandez-Moran et al. 2017).

Here SMOS-IC data are used in a data fusion process

to fill in the gaps of SMAP L3_SM_P product between

two SMAP descending overpasses (0600 LT). The

original SMOS-IC data are first interpolated to the

same grids as SMAP L3_SM_P at 36-km resolution.

The interpolated SMOS-IC data are rescaled to model

simulations and then used to fill in the gaps of SMAP

L3_SM_P observations to achieve higher temporal

sampling frequency. For days when only SMOS-IC

data are available, the data are inserted into the SMAP

L3_SM_P data stream as ‘‘additional observations.’’ On

days with both SMAP L3_SM_P and SMOS overpasses,

SMOS-IC data are not used. This is to enhance the

temporal sampling frequency of soil moisture data

while minimizing the perturbation of the original

SMAP L3_SM_P data dynamics.

c. Data assimilation strategy

Soil moisture data and LST time series are assimilated

into the coupled heat and water transfer model using

different assimilation approaches. The main reason is

the contrasting spatial and temporal resolution gap be-

tween the two datasets. As the spatial and temporal

resolution of LST data is much higher than that of

the soil moisture data, if assimilated jointly within

the daytime window, the information contained in the

soil moisture observations will be masked by the large

number of LST observations. In addition, soil moisture

observations are like a ‘‘snapshot’’ of the surface and

represent instantaneous soil wetness condition, there-

fore filtering is better suited to update soil moisture state

at the satellite overpass time. While the information on

surface energy partitioning can be derived from the

temporal evolution of a series of LST observations in-

stead of the magnitude of each individual observation,

hence smoothing is used instead of filtering for LST

assimilation.

Here soil moisture data are assimilated using a parti-

cle filter (PF) at 0600 LT, while LST time series are as-

similated using an adaptive particle batch smoother

(APBS)within the daytimewindow (0900–1600LT)when

EF can be assumed invariant under clear-sky condition.

The soil moisture profile is updated through soil moisture

TABLE 1. Summary of datasets. The variables are explained in the text.

Original resolution

Category Source Dataset Spatial Temporal

Forcing data NLDAS-2 RY
s , R

Y
l , U, Ta, Pa 0.1258 1 h

GPM P 0.18 30min

Ancillary data NSIDC Soil texture 3 km —

MODIS LAI 1 km 8 days

ESA CCI Land cover 300m 2
Data for assimilation SMAP Soil moisture 9 km 2–3 days

36 km

SMOS-IC 35–50 km

GOES LST 0.058 1 h
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assimilation, while Ts and Tc as well as the four pa-

rameters (a and b for calculating CHN , and as and ac for

estimating reference EF values) are updated during the

LST assimilation. The hybrid data assimilation strategy

was proposed by Lu et al. (2017), and proved effective

in improving soil moisture states as well as surface heat

flux estimates using remote sensing data. A detailed de-

scription is provided in Lu et al. (2017).

d. Experiment implementation

The experiment is run from day of year (DOY) 155

to 274 (120 days) in 2015 at a 30-min time step and 0.058
resolution. Six-hundred particles are used, which prove

sufficient from a sensitivity test. Since the forcing data

are coarser than the model grid cell, a ‘‘drop in the

bucket’’ strategy is used to extract forcing data for

each model grid cell. The forcing data fromNLDAS-2

are also assumed representative during the 1-h period

to accommodate the temporal resolution gap with

model simulations. To account for the uncertainty of the

forcing data as well as their heterogeneity within the

data grid cells, perturbations are added which are sum-

marized in Table 2. The perturbations are determined

based on values suggested by previous studies (Luo et al.

2003; Dong et al. 2016; Lu et al. 2017). Sensitivity anal-

ysis indicates that model estimates are robust as long as

the perturbations are within a reasonable range. The

modeling errors for the heat and water transfer are as-

sumed to be 0.1K and 0.001m3m23 following Lu et al.

(2016). The observation errors for remote sensing soil

moisture and LST data are assumed to be 0.04m3m23

(Chan et al. 2016; Cai et al. 2017; Colliander et al. 2017)

and 3K (Lu et al. 2016), respectively. The ancillary data

are spatially aggregated to the modeling scale, and the

LAI data are also temporally interpolated to derive

daily LAI values for each model grid cell.

There are four parameters to be determined through

data assimilation: a and b for calculating CHN , and as

and ac for estimating reference EF values. Initially, the

parameter values are uniformly sampled from a given

range. The ranges for a and b are (27, 25) and (0, 1),

respectively, following Abdolghafoorian et al. (2017),

and an initial range of (1, 10) is used for as and ac based

on values from Dirmeyer et al. (2000), which allows

sufficient EF dynamics under different soil wetness

condition.

During daytime (0900–1600 LT), LEs and LEc are

estimated from Hs and Hc, and G is estimated as the

residual of energy balance and is used to propagate Ts.

From 1600 to 0900 LT the next day when EF can no

longer be assumed constant,G is estimated as a random

fraction (between 0% and 30%) of Rns (Choudhury

et al. 1987; French et al. 2003) and used to propagate

Ts, andTc is assumed equal toTs. This enables themodel

to run continuously outside the daytime window so

that the temperature states only need to be initialized

once at the beginning, while this study focuses on flux

estimates in the daytime window. More details can be

found in Lu et al. (2016).

Two assimilation experiments are conducted to evalu-

ate the impact of spatial resolution and temporal sam-

pling frequency of soil moisture data. In the first

experiment (hereafter DA9km), the SMAP L3_SM_P_E

data at 9-km resolution are assimilated together with

GOES LST data. In the second experiment (hereafter

DAmerge), the soil moisture data assimilated are the

merged dataset at 36-km resolution but with finer

sampling frequency. Results from both experiments

are compared with those from a previous study (Lu

et al. 2017), which assimilated the spatiotemporally

coarse (36 km, 2–3 days) SMAP L3_SM_P product

(hereafter DA36km), and from the open-loop (no

assimilation case, hereafter OL) runs.

3. Results and discussion

a. Improving spatial resolution of soil moisture
observations

The observed mean surface soil moisture (0–5 cm,

hereafter SSM) during the study period for the study

area is plotted in Fig. 2 to examine the consistency and

difference between the SMAP 36-km (L3_SM_P)

product and 9-km (L3_SM_P_E) product. Both products

show similar SSM patterns in the study area, demon-

strating a clear dry–wet gradient from the southwest to the

northeast. The areal mean SSM values generally agree

well with each other, and the SMAP 9-km product better

characterizes the spatial heterogeneity of SSM as a re-

sult of the enhanced spatial resolution. This is expected

since both products are retrieved from the same original

brightness temperature observations. The largest dif-

ference appears in the northeast of the area [grid cell

(2, 1) of the SMAP 36-km product], which is influenced

by the relatively high fraction of water body. A large lake

exists in the northern part of the grid cell, which would

greatly lower the observed brightness temperature and

TABLE 2. Perturbations used for forcing data.

Forcing Perturbation Standard deviation

RY
s Gaussian, multiplicative 3, 0.1

RY
l Gaussian, multiplicative 3, 0.1

U Gaussian, additive 1m s21

Ta Gaussian, additive 5K

P Lognormal, multiplicative 3, 0.2
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make the SSM retrieval less reliable. The soil moisture

retrievals in that grid cell therefore should be used with

caution.

The SSM estimates from DA36km and DA9km are as-

sessed atAbrams and Stillwater in Fig. 3 usingmetrics of

RMSD, ubRMSD, bias, and R. The model simulations

are influenced by the disagreement between GPM re-

trievals and in situ precipitation measurements as well

the deficiencies in the texture-derived soil hydraulic

properties, which are more evident at Stillwater. The

difference between SMAP 36- and 9-km soil moisture

products are generally very small, particularly at Stillwater

where there are many long dry-down events during the

study period. The maximum difference however, can

reach over 0.05m3m23 at both stations on a couple of

days. The large differences mainly occur after rain events,

which may be caused by the SSM heterogeneity within

the 36-km footprint caused by the uneven distribution

of precipitation and soil hydraulic properties. Experiments

DA36km and DA9km both show considerable improvement

in SSM estimates over the OL simulations, but the im-

provement is comparable in terms of the statistical metrics.

This may imply that the spatial variation of SSM is small

within one 36-km grid cell in the study area, and that the

SSM estimates are to a large extent dependent on the

quality of the precipitation input. As a result, assimilat-

ing soil moisture data with enhanced spatial resolution

only leads to limited improvement in SSM estimates,

despite the finer spatial patterns the dataset reveals.

A statistical comparison of 30-min SSM estimates

from DA36km and DA9km in the study area is conducted

to evaluate the consistency between the two assimilation

strategies. As is shown in Fig. 4, theR2 is above 0.95 over

most of the area, indicating a very good agreement in

the estimated SSM time series. This again proves the

dominance of precipitation forcing on SSM dynamics.

The ubRMSD and the bias are also very small through-

out the study area, which confirms the comparable per-

formance by assimilating soil moisture observations at

36- and 9-km scale.

The performance of data assimilation is also assessed

for the second layer (5–15 cm) and root-zone soil mois-

ture (hereafter RZSM) in Fig. 5. A small difference

exists between the thickness of modeled (90 cm) and

observed (100 cm) soil column. To calculate RZSM,

the model simulations are averaged along the soil

column weighted by their respective layer thicknesses

to derive a RZSM for the 0–90-cm soil column. The

in situ soil moisture measurements are first linearly

interpolated to get a soil moisture profile, and then in-

tegrated to get the RZSM for the 0–100-cm soil column.

Both DA36km and DA9km show correction of model

simulations toward the independent in situ measure-

ments, particularly in the second layer where the

correlation with SSM is stronger. DA9km slightly out-

performs DA36km, which is more evident in Abrams

where the soil hydraulic properties are more plausible.

Large bias exists between model simulations and in situ

measurements for RZSM, which is mainly caused by

the initialization error of soil moisture profile, and the

assimilation system is not designed to quickly correct the

bias. For initialization, the soil moisture profile is as-

sumed uniform with randomly sampled soil moisture,

since little is known about the initial soil moisture state

along the soil column. Remote sensing soil moisture

observations are assimilated before the deep layer soil

FIG. 2. Observed mean SSM during the study period for the study area from the SMAP 36-km (L3_SM_P) product

and 9-km (L3_SM_P_E) product.

APRIL 2019 LU ET AL . 721



moisture has reached its climatological values. Conse-

quently, the updated deep layer soilmoisturewill be lower

than the measurements. In addition, in situ observations

suggest that soil moisture is almost always near saturation

in the deepest layer with little dynamics, which further

contributes to the large bias.

The 30-min H and LE estimates from DA36km and

DA9km are compared with those from OL and in situ

measurements at the four flux stations in the study area

in Fig. 6. Both DA36km and DA9km show considerable

improvement on flux estimates over OL simulations,

particularly for LE estimates. This mainly benefits

FIG. 4. Statistical comparison of 30-min SSM time series from DA9km with those from DA36km. Grid cells with dominant land cover types

of water body or urban area are masked out.

FIG. 3. Assessment of SSM estimates from DA36km and DA9km against in situ measurements. The thick and thin dashed lines represent

residual and saturated soil moisture used in the modeling, respectively.
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FIG. 5. Assessment of the (a),(b) second layer (5–15 cm) and (c),(d) RZSM from DA36km, DA9km, and DAmerge against in situ mea-

surements. The thick and thin dashed lines represent residual and saturated soil moisture used in the modeling, respectively.
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from the better characterization of soil moisture dy-

namics after data assimilation. The H and LE esti-

mates at daytime scale (0900–1600 LT) yield similar

results (not shown). Generally, the estimates from

DA36km and DA9km are very similar. This is under-

standable since the soil moisture estimates at the sur-

face and deeper layers are very similar from both

strategies, which results in comparable energy flux

partitioning at the land surface.

b. Improving temporal resolution of soil moisture
observations

Before merging the SMAP L3_SM_P product and the

SMOS-IC product to obtain soil moisture data with

higher sampling frequency, the histograms of SSM data

from the original SMAP L3_SM_P product and SMOS-

IC product (mapped to 36-km scale) are plotted in Fig. 7

to check the consistency between the two products

using all the available data. SSM from both products

falls in the range of (0, 0.45), and the distributions

also show similar patterns. SMAP L3_SM_P product

shows a slight wet bias compared to the SMOS-IC

product, which may be caused by the difference in the

remote sensing platforms or the soil moisture retrieval

algorithms. Overall, the two products agree very well

with each other in both the distribution and the soil

moisture magnitude, which lays a good basis for data

fusion. The SMOS-IC observations are then inserted

into the SMAP L3_SM_P time series as ‘‘additional

observations’’ following the procedures described in

section 2b.

The availability of soil moisture observations from the

SMAP L3_SM_P product and SMOS-IC product in the

16 grid cells at 36-km scale in the study area is shown in

Fig. 8. On average, there are 59 SMAP L3_SM_P ob-

servations and 40.7 SMOS-IC observations available

during the 120-day study period for each grid cell. Out

of the 40.7 SMOS-IC observations, 24.2 observations

are from days without SMAP overpass, showing great

potential for providing additional soil moisture in-

formation. When data fusion is conducted, the merged

product provides 83.2 observations for each grid cell on

average, which is a 41% increase over the SMAPL3_SM_P

product. The merged product with enhanced temporal

sampling frequency is expected to better characterize

soil moisture dynamics.

The SSM estimates from DA36km and DAmerge are

compared at the two soil moisture stations in Fig. 9.

FIG. 6. Statistical comparison of 30-min H and LE estimates from DA36km, DA9km, and DAmerge at four flux stations.
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The difference between the two strategies is most

evident for periods when there are more frequent

additional observations from SMOS-IC. As a result,

the SSM estimates from DAmerge are more strongly

corrected toward the observations, which is also re-

vealed by the reduced bias. In terms of statistical

metrics, DAmerge outperforms DA36km in SSM esti-

mates, particularly in Abrams. The ubRMSD, RMSD,

bias, and R are all improved in DAmerge, while the

largest improvement is seen in the bias metric. This is

mainly caused by the stronger constraint on soil moisture

simulation through more frequent SSM assimilation. The

uncertainties in soil moisture simulations can become

larger with time as a result of the inaccurate soil hydraulic

properties or the deficiencies in remote sensing pre-

cipitation input (Lu et al. 2017), which can be mitigated

by updating soil moisture states toward observations

through data assimilation. With enhanced temporal

sampling frequency, assimilating the merged soil mois-

ture product enables more frequent soil moisture up-

dates, which essentially prevents the estimation bias from

becoming too large. As a result, an evident decrease in

bias is seen at both stations.

The estimates of soil moisture of the second layer

and the RZSM from DAmerge are also plotted in Fig. 5.

Experiment DAmerge improves soil moisture estimates

FIG. 7. Histograms of the SMAP L3_SM_P product and SMOS-IC product in the study area

during the study period at 36-km scale using all available data.

FIG. 8. The availabilities of the SMAP L3_SM_P product and SMOS-IC product in the study

area during the study period. The colors indicate only SMAP L3_SM_P data available (red),

only SMOS-IC data available (yellow), both data available (blue), and no data available (gray).
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in both the second layer as well as the root zone, partic-

ularly in the second layer since it is more closely corre-

lated with the SSM observations from remote sensing.

The improvement is more evident in Abrams, since the

precipitation forcing data and soil hydraulic properties

agree better with in situ observations. As a result of the

stronger and more frequent constraint on soil moisture

dynamics, DAmerge performs best among all the three

data assimilation strategies (DA36km, DA9km, DAmerge)

based on all the statistical metrics. This implies that the

soil moisture heterogeneity in the study area is not pro-

nounced and that observations at 36-km scale can well

represent the soil wetness condition. As a result, im-

proving the temporal sampling frequency may be more

meaningful by improving the characterization of soil

wetness dynamics. Table 3 summarizes all the statistical

metrics for soil moisture from remote sensing and model

simulations against in situ measurements.

The 30-min H and LE estimates from DA36km

and DAmerge are also compared in Fig. 6. Despite the

improvement in soil moisture estimates, no evident im-

provement can be seen in the H and LE estimates from

DAmerge compared to those from DA36km. Since the ref-

erence EF values are determined by soil moisture using

an arctangent relationship, a small difference in soil

moisture will not have large influence on the reference

EF values, especially when the soil moisture is high and

the reference EF plateaus. In addition, the 60.2 un-

certainty given to the reference EF values further reduces

theEFvariations caused by the difference in soilmoisture

estimates. As a result, the influence of slightly improved

soil moisture estimates on flux estimates is limited. The

comparison is similar at daytime scale (not shown).

4. Conclusions

In this study, the impact of enhanced spatial and tem-

poral resolution of soil moisture data on the estimates of

soil moisture and surface heat fluxes through data assim-

ilation is evaluated using two comparative experiments in

FIG. 9. Assessment of SSM estimates from DA36km and DAmerge against in situ measurements. The thick and thin dashed lines represent

residual and saturated soil moisture used in the modeling, respectively.
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apredominantly grasslandarea in theSouthernGreatPlains.

In the first experiment (DA9km), the SMAP L3_SM_P_E

product (9km, 2–3 days) is assimilated together with GOES

LST time series. In the second experiment (DAmerge), the

soilmoisture product assimilated is amerged dataset (36km,

quasi-daily) from SMAP and SMOS-IC products. Results

from both experiments are compared to those from a

previous study (DA36km), which assimilated the SMAP

L3_SM_P product (36 km, 2–3 days), as well as from a

no-assimilation case (OL), and the impact of enhanced

resolution is discussed.

Although the 9-km SMAP L3_SM_P_E product is

expected to better characterize the spatial heterogeneity

of soil moisture, the improvement in soil moisture of the

surface and deeper layers is in general not evident

compared to those from DA36km. This may be attribut-

able to the limited soil moisture heterogeneity in the

study area, therefore the improvement in soil moisture

estimates by enhancing the soil moisture observations to

9-km scale is limited.

Assimilating the merged soil moisture product out-

performs all other assimilation strategies in soil moisture

estimates of both the surface and the root zone at the

two soil moisture stations. This benefits from the

stronger constraints put on soil moisture dynamics. As a

result of the enhanced temporal sampling frequency,

soil moisture states are updated more frequently in

DAmerge, which prevents the simulation error from be-

coming too large. This indicates that soil moisture data

with enhanced temporal resolution indeed contain use-

ful information that helps to improve soil moisture es-

timates at both the land surface and the root zone.

Despite the differences in soil moisture estimates, no

evident improvement in surface heat flux estimates can

be seen from either DA9km or DAmerge. This is expected

in DA9km since the soil moisture estimates are similar

with those from DA36km. In DAmerge, the improvement

in soil moisture estimates does not lead to improvement

in flux estimates as a result of the uncertainties in EF

estimates. This may imply that surface energy partitioning

cannot be further improved by improving soil moisture

states alone, and that information from other data sources

should be incorporated to further constrain EF, for ex-

ample, vegetation dynamics (Bateni et al. 2014).

Here the merged soil moisture data are generated

directly from the SMAP and SMOS-IC soil moisture

products for simplicity and easier comparison with

previous studies (Lu et al. 2017). It should be noted that

the aim is not to find the optimal approach for SMAP

and SMOS-IC data fusion but to evaluate the impact

when more frequent soil moisture sampling becomes

available. A more rigorous data fusion should convert

brightness temperature observations from SMOS to

SMAP-like data using methods such as that proposed by

De Lannoy et al. (2015) before performing soil moisture

retrieval. The assimilation results are expected to be

similar as a result of the similarity and consistency be-

tween the two missions. Other merged soil moisture

products such as the ESA CCI soil moisture product

(Dorigo et al. 2015, 2017) could combine the advantages

of active and passive sensors and provide soil moisture

data that are consistent in a long period with even higher

temporal frequency (approximately daily), which is ex-

pected to further improve soil moisture estimates with

this methodology.

One limitation of this study is the small domain and

relatively short study period. In particular, the limited

soil moisture heterogeneity and relatively uniform land

TABLE 3. Statistical assessment of remote sensing soil moisture observations and model estimates against in situ measurements. The best

performance in each category is shown in bold.

Abrams Stillwater

ubRMSD Bias R ubRMSD Bias R

Observations SMAP36km 0.047 0.001 0.62 0.068 20.046 0.68

SMAP9km 0.047 20.014 0.64 0.064 20.044 0.71

SMAP1SMOS-IC 0.045 0.006 0.65 0.063 20.048 0.74

SSM OL 0.042 20.025 0.64 0.060 20.060 0.76

DA36km 0.037 20.016 0.69 0.059 20.056 0.78

DA9km 0.037 20.021 0.72 0.060 20.049 0.77

DAmerge 0.036 20.007 0.70 0.057 20.048 0.80

Second layer OL 0.052 20.029 0.43 0.059 20.104 0.71

DA36km 0.049 20.021 0.45 0.058 20.096 0.73

DA9km 0.035 20.026 0.69 0.058 20.091 0.74

DAmerge 0.034 20.013 0.70 0.056 20.091 0.76

RZSM OL 0.031 20.153 0.30 0.043 20.192 0.53

DA36km 0.027 20.135 0.48 0.044 20.171 0.51

DA9km 0.028 20.143 0.44 0.042 20.167 0.56

DAmerge 0.025 20.126 0.54 0.039 20.165 0.64
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cover type may reduce the added value of assimilating

high-resolution soil moisture data. The impact of com-

plex terrain and mixed land cover types should be fur-

ther explored. Future studies should also evaluate the

performance of the methodology at larger scales for a

longer period and under different climate and soil wet-

ness conditions, which may have an influence on the soil

wetness control strength on surface energy partitioning.
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