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Abstract

This research paper proposes a deep learning model
to infer segments of speaking intentions using body
language captured by a body-worn accelerometer.
The objective of the study is to detect instances
where individuals exhibit a desire to speak based
on their body language cues. The labeling scheme
employed is a binary string, with “0” indicating
no intention to speak and “1” indicating the pres-
ence of an intention to speak on a defined window
size of 40 (corresponding to a 2 seconds segment
recorded at a frequency of 100 Hz scaled down to
20 binary points per second). In this experiment, a
real-life social event dataset was employed, and in-
tentions to speak were manually annotated. A 10-
minute segment from the dataset was selected and
annotated using the ELAN software. The annota-
tions included two categories: realized intentions,
where individuals intended to speak and actually
did so, and unrealized intentions, where individuals
displayed intentions to speak but did not take their
turn. The dataset consisted of 255 segments with
realized intentions and 31 segments with unreal-
ized intentions. Additionally, 255 negative samples
were included, representing instances where no in-
tention to speak was observed throughout the entire
segment. To address the class imbalance inherent
in the dataset, the model was evaluated using the
Area Under the ROC Curve (AUC) metric using 5-
fold cross validation. The model was tested on re-
alized intentions, unrealized intentions, and a com-
bination of both. Its performance was compared
against a baseline model, which is assumed to al-
ways predict the start of the intention in the middle
of the segment. Also, a new model was built that
enables classification using varying window sizes
as input. The classification task is performed to
provide a comparison to another study [1] in which
the training segments were predetermined window
sizes instead of precisely annotated segments. The
results of the study indicate that the deep learning
models perform consistently better than the base-
line on the segmentation task, and surpasses the
performance of the model trained exclusively on
window sizes on the classification task. This not
only demonstrates the potential of body language
as an informative cue for inferring speaking inten-
tions, but also suggests that a supervised learning
where intentions are identified with greater preci-
sion can lead to a superior outcome.

1 Introduction
The pace of development for AI-powered systems is in con-
tinuous growth and as a result, interacting with such systems
in various forms, including chatbots, robots, and home assis-
tants, will become increasingly popular. Although such voice
interactive systems have achieved impressive levels of perfor-

mance, one of their current limitations is the lack of “human-
touch”. Carrying a conversation with a home assistant or a
robot does not yet provide the same social interaction experi-
ence as with fellow humans.

Several factors, such as the absence of voice nuances, strict
and uniform language use, and limited adaptation to the per-
son they communicate with, contribute to this disparity. This
includes their inability to recognize when one or more of its
interlocutors want to contribute in the group discussion. If
they could detect such behavior, robots and other conversa-
tional agents could create a more engaging environment for
conversation. For instance, they could turn towards the per-
son and welcome them to speak up politely. Enabling conver-
sational agents to recognize when someone wants to speak up
would not only enhance the “human-touch” experience of in-
teracting with non-human agents but also create a more equi-
table environment. Robots could serve as mediators to ensure
that everyone has the opportunity to express their opinions
and thoughts. In order to make significant advancements in
the development of our interactive systems, it is needed to
dedicate research efforts to the study of speaking intentions.
This area of investigation holds key importance, as it can pave
the way for further progress.

Previous work by L. Litian et al. [1] attempts to develop an
estimator by recording and annotating data from a body-worn
accelerometer in a social gathering of 13 individuals that meet
the required criteria (i.e., every participant is in the frame of
one of the four cameras during the extract under study, and
wears a voice audio recorder and a body-worn accelerome-
ter). They divide intentions into realized (how an individual
behaves before starting to speak) and unrealized (when an in-
dividual exhibits observable behaviors, either visual or audi-
tory, that are interpreted as indicative of their desire to speak
but they do not actually take their turn in the conversation).

Despite obtaining some promising insights on how body
posture changes with the intention to speak, their model is
a classifier that predicts whether an individual has the inten-
tion to speak within 4 given time windows (1, 2, 3, and 4
seconds before the individual starts speaking). The model
does not identify precise start and endpoints of speaking in-
tention from the discussion, and thereby does not provide a
comprehensive understanding of the underlying structure of
these intentions. This limitation raises questions about when
the intentions truly commence and how they may vary among
different individuals and across different types of intentions.

1.1 Contribution
This paper seeks to expand on the findings from [1] and
make further progress by attempting to estimate segments
of intention-to-speak, from the moment an individual is
assumed to want to speak to the moment when the individual
starts speaking if the intention is realized and to the moment
he/she is assumed to have started speaking if the intention is
not realized, using body language data gathered by a body-
worn accelerometer. In typical segmentation tasks, the goal
is to identify all instances of intention-to-speak by examining
the entire timeline. However, this research takes a different
approach by focusing on already extracted segments and
aiming to pinpoint the exact start and end points of intention-
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to-speak within those segments. This approach allows for
performing segmentation analysis as well as performing
classification to compare with the work conducted by [1]. In
this study, the specific segments of interest can be studied
in isolation, providing a valuable opportunity to investigate
specific patterns, trends, or anomalies within those segments.
It is interesting to know if this supervised process can yield
better result than using pre-defined window sizes. Despite
the advantages of using additional modalities to enhance
the model’s performance, this paper focuses specifically on
demonstrating the potential of body language in inferring
speaking intentions as it aims to provide a fair comparison of
the results with the model presented in the study conducted
by [1]. In alignment with their research, which solely utilized
accelerometer data, this study will also exclusively employ
accelerometer data. If successful, a potential outcome of this
research could be a deeper understanding of the structure
of conversational speech, from the perspective of body
language and its relation to the progression from intention to
articulation.

Research question: How can body language, captured by
a body-worn accelerometer, be utilized to estimate segments
of speaking intentions in time, and does a supervised learning
process improve the performance of detecting such cases?

2 Related work
Turn-taking
A significant aspect to consider is the influence of cultural
differences on turn-taking behaviors. T. Stivers et al. [2] con-
ducted an analysis of 10 languages with diverse characteris-
tics. Their research confirmed the presence of strong univer-
sals in turn-taking mechanisms, despite these cultural vari-
ations. These universals include a positive time offset in re-
sponse and, on average, no more than half a second of overlap
with the previous speaker. Additionally, the factors indicating
response time appeared to be consistent across all languages.

However, the authors acknowledge that ethnographic re-
ports on certain languages, such as Danish, suggest a subjec-
tive impression of longer response times. They argue that this
perception can be explained by humans’ hypersensitivity to
even minor changes in response time, often within the range
of less than 100 ms, where in reality this delay can simply be
attributed to the time required to articulate the first syllable;
which may differ among languages.

In another work, by H. Sacks et al. [3], the authors es-
tablish a set of systematic rules that appear to govern the or-
ganization of turn-taking. They propose that turn allocation
in conversation is a collaborative process, guided by shared
understandings among participants. Rather than following
a predetermined order, turn allocation is negotiated in real-
time, contingent upon various cues and signals present in the
interaction. The authors emphasize the concept of ”transition
relevance places” (TRPs), identifying these as points in the
conversation where a current speaker can appropriately yield
the floor to the next speaker. TRPs are marked by syntac-
tic completion points, prosodic cues, or other indicators that
indicate a suitable moment for transition.

Their analysis also acknowledges the occurrence of over-
laps and interruptions in conversation, which challenge the
notion of a clean turn-taking process. However, they demon-
strate that these phenomena are not random but rather sys-
tematic and rule-governed. By examining recorded conversa-
tional data, they provide insights into how participants man-
age and resolve overlaps and interruptions within the turn-
taking system.

Verbal cues
G. Skantze [4] has made significant contributions to the un-
derstanding of verbal cues and demonstrated that they play a
vital role in analyzing conversational speech, providing valu-
able insights into the intentions and dynamics of communica-
tion. According to his research, lip smacks, filler words, and
inhaling have emerged as significant indicators. These cues,
when observed and understood, can offer valuable informa-
tion about the speaker’s cognitive and emotional states, the
organization of the conversation, and social interactions.

Lip smacks, characterized by a brief clicking or smack-
ing sound produced by the lips, often occur during pauses
or transitions in speech, indicating an intention to continue
speaking or marking a momentary hesitation. Filler words,
such as ”um,” ”uh,” or ”like,” are another set of verbal cues
that can provide valuable insights. These words often appear
during pauses or when speakers are searching for words or
formulating their thoughts. Inhaling, although primarily a
physiological process, can also act as a relevant verbal cue.
The sound of inhalation can signify the speaker’s intention to
take a breath before continuing their speech. It may indicate
pauses, turn-taking, or shifts in emphasis.

In her paper, Schaffer D. [5] explores how intonation serves
as a cue to indicate intentions in conversation. She highlights
that variations in pitch, stress, and rhythm can convey signals
of a speaker’s intention to continue or yield their turn in a con-
versation. Intonation patterns, such as rising or falling pitch
contours, can indicate whether a speaker is making a state-
ment, asking a question, or signaling their desire to maintain
or relinquish their speaking turn. Schaffer emphasizes the
significance of intonation as a powerful cue that contributes
to the smooth flow and coordination of conversation.

Non-verbal cues
The research conducted by P. Bull (1983) and later by F. Poy-
atos (2002), focus on the significance of nonverbal communi-
cation in interpersonal interactions. Bull’s study examines
the relationship between body movement and communica-
tion, emphasizing the role of nonverbal cues, such as gestures,
posture, and facial expressions, in interpreting social interac-
tions. Poyatos’ research explores the multifaceted nature of
nonverbal communication across different disciplines, inves-
tigating cultural influences, sensory interactions, speech, and
conversation in shaping nonverbal communication patterns.

Common nonverbal cues discussed in the research papers
include facial expressions, gestures, eye contact, proximity,
touch, and body movements. Facial expressions convey emo-
tions and intentions, while gestures and body postures pro-
vide additional meaning during communication. Eye con-
tact signals interest or disengagement, and proximity reflects
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personal space and cultural norms. Touch communicates
warmth, trust, and familiarity. Body movements, such as ori-
entation and posture, contribute to nonverbal communication,
indicating interest, disinterest, or discomfort.

3 Methodology
3.1 Information about the dataset
To conduct the experiment, data from a real-life social event
was used, which recorded audio, video, and gathered data
from a body-worn accelerometer for some of the participants.
The dataset was explored collaboratively with 4 other stu-
dents researching on a different subtopic and modality. The
focus was on the REWIND dataset [6], which consists of a
1.5-hour business networking event. The first half of the event
consisted of workshops where participants were assigned spe-
cific topics for discussion. During the second half, partici-
pants were encouraged to engage in free conversations, pro-
viding a more natural conversational setting. Four cameras
were strategically positioned to capture the event from differ-
ent angles. The focus was on a 10 minute extract of the event,
precisely from 1:00:00 to 1:10:00. This particular extract was
chosen as it corresponds to the one utilized by [6], ensuring a
fair comparison, and offers the advantage of capturing partic-
ipants engaged in free conversations, thus reflecting a prac-
tical setting outside of controlled environments. Like in the
case of the study conducted by [1], among the 58 participants
who attended the event, only 13 could be successfully identi-
fied during the extract on at least one of the four cameras, and
were also wearing a body-worn accelerometer device and a
voice audio recorder.

3.2 Generating samples
Segments of intentions were manually extracted from the
dataset using the ELAN software [7] and categorized into re-
alized and unrealized intentions, similar to the approach un-
dergone by [1]. The unrealized intentions were used to eval-
uate the performance of the model. To generate samples suit-
able for a segmentation task, the labels were represented as
binary strings with a maximum defined length. In this en-
coding scheme, a value of “0” indicated that no intention to
speak had been detected, while a value of “1” represented
the presence of an intention to speak. The end of the string
corresponded to the precise moment when the person began
to speak. For realized intentions-to-speak, this moment was
identified by detecting a spike in activity on the voice audio
recorder, indicating the start of speech, or in this case the end
of the intention. This approach excluded filler words, which
were considered part of that intention. Since the dataset was
in the Dutch language, a list of filler words specific to that
language was defined during the annotation process. The re-
search team, including three members who were native Dutch
speakers, collaborated to establish this list. For unrealized in-
tentions, this precise moment was less straight forward and
had to be approximated instead. The annotation of unrealized
intentions for each participant followed the annotation of re-
alized intentions, which proved helpful in identifying patterns
in individual behavior. This process contributed to establish-
ing a ground truth for each participant. For instance, it was

observed that some participants initiated speech immediately
after a posture shift, while others did so after a certain time
delay following a tongue click. The same cues were utilized
to annotate the endpoint of the intention to speak. Appendix
A.1 illustrates a list of all the defined cues along with their
presence or absence in each unrealized intention found.

A visual representation of a label is given in Figure 1. By
employing this binary string representation, the model was
effectively identifying and segmenting periods of speech in-
tention within the given input data.

Figure 1: Binary string representing the model’s output

To generate the training dataset, data collected by the body-
worn accelerometer was used. Specifically, the readings cor-
responded to the data collected during the timeframe encom-
passing the moment a person began to speak and a fixed inter-
val before it. The length of this timeframe was predetermined
and consistent with the data from the labels.

For the classification task, the labels were defined using
the standard binary encoding (1 indicating the detection of
an intention, 0 otherwise). The model was trained and tested
using the same dataset associated with the detected intentions,
but following two distinct approaches. In the first approach,
the model was trained and tested using a uniform window size
for all samples, similar to the method employed by [1]. In
the second approach, the model was trained and tested using
manually extracted segments of speaking intentions. The idea
was to test the benefits of using the segments extracted during
the segmentation task to build a classification model.

3.3 Building and evaluating the model
To accurately predict the segments, a predictive model
was constructed using a Recurrent Neural Network (RNN),
known for its effectiveness in sequence modeling tasks. To
assess the model’s performance, its predictions were com-
pared to a baseline model, for which the exact behaviour will
be explained in the Experimental Set Up section.

To ensure a comprehensive evaluation, this process was re-
peated using three different configurations for the test set.
This provided a robust assessment of the model’s perfor-
mance across 3 different criteria:

• Only test on unrealized intentions to speak
• Only test on realized intentions to speak
• Test on a combination of both (realized and unrealized)
For the classification task, a modified version of the Re-

current Neural Network (RNN) was developed, enabling it
to handle variable input sizes. This modification allowed the
RNN model to be trained and tested on the extracted segments
that have varying lengths.
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4 Experimental Setup and Results
4.1 Experimental Setup
Extracting realized intentions
In order to obtain a substantial amount of data, an automated
approach using a voice activity detector (VAD) was consid-
ered for extracting segments corresponding to the intention to
speak in the training dataset. However, this approach proved
unsuitable for achieving the research objective. The aim was
to precisely define segments of speech intentions, necessitat-
ing the identification of exact start and end points in time.
When provided with an audio file, the VAD has the capabil-
ity to detect voice activity, thereby indicating the beginning
of speech. However, it is limited to detecting only the onset
of someone speaking and does not provide information about
the intention that precedes the speech. This limitation is what
forced the researchers from [1] to employ fixed window sizes,
which assumed uniform duration for all intentions. This con-
tradicted the purpose of the current research, which sought to
explore a different approach.

An exploration of the dataset was conducted, searching for
patterns that could serve as simplified assumptions for a rule-
based approach to segment extraction using the VAD. The re-
sults revealed that, although patterns were identifiable among
the 13 individuals being studied, they were too diverse to es-
tablish a universal rule. Some individuals manifested an in-
tention to speak by leaning backward, while others did so by
noding their heads, and still others by remaining motionless,
occasionally signaling their intention to speak with a tongue
click or inhaling. These differences are documented more
in details in A.1. This indicated that extracting data using
a rule-based approach would have needed a complex multi-
modal extractor that falls beyond the scope of the current
study. Consequently, under the current experimental con-
ditions, segments had to be manually annotated to generate
samples.

To accurately identify the start and end points of an
intention-to-speak, it was crucial to understand which indica-
tors to consider during the annotation process and as already
mentioned and illustrated in A.1, these indicators vary sig-
nificantly. The literature helped in trying to define a ground
truth in the annotation process, especially the cues found in
the turn-taking mechanism mentioned by [8] and [3], and the
non-verbal cues mentioned by [9] and [10]. A.2 provides de-
tailed descriptions of two instances during the annotation pro-
cess, along with an explanation of the cues employed in each
case.

During the 10-minute extract and for the 13 participants
under study, 255 segments of speaking intentions were iden-
tified and annotated. During the data exploration of the an-
notated segments, it was discovered that the average duration
of the segments was approximately 1.32 seconds, with the
longest segment spanning 1.91 seconds. Based on this anal-
ysis, the decision was made to set the segment length to 2
seconds for the segmentation task.

The first intriguing discovery from the study was the no-
table variation in the time gap between the appearen of in-
dicators signaling an intention to speak and the actual com-
mencement of speech, even within the same individuals. This

finding emphasizes the likely significance of adopting super-
vised learning techniques to infer instances of speaking inten-
tions, rather than relying on pre-defined time windows.

Extracting negative samples
To ensure the model’s ability to distinguish between cases
where participants did not intend to speak, negative sam-
ples were included. These negative samples were carefully
selected to avoid any overlap with the positive samples, al-
though they could overlap with each other. To generate these
negative samples, the minimum start time and maximum end
time of any detected intention to speak for a specific partici-
pant were used as the lower and upper bounds, respectively.
A new start time was randomly generated within this range,
and the segment length was added to determine the end time
of the new segment. Subsequently, it was verified whether
this new segment overlapped with any realized, or unrealized
segments. If an overlap occurred, the method was recursively
called, and if no overlap was found, the segment was consid-
ered a valid negative sample. The label associated with this
new segment was assigned zeros and added to the dataset.

For each participant, an equal number of negative segments
were generated as the number of realized intentions found for
them. This approach ensured consistency in the training pro-
cess and provided each participant with an equal represen-
tation during training. This summed up to 510 samples for
training and testing the model. In the classification task, neg-
ative samples were also included during the testing phase of
unrealized intentions following a similar approach.

Generating the samples
To extract the accelerometer data from a specific segment,
the AccelExtractor class provided by [1] was used. By pro-
viding the person’s ID, start time, and end time, this class
returns a matrix consisting of three arrays that represent the
three parameters recorded by the accelerometer device dur-
ing the corresponding interval for that particular person. The
accelerometer data is recorded at a frequency of 100 Hz but
scaled down to 20 binary points per second.

Each mask in the segmentation task had a duration of 2
seconds and consequently each feature array from a sample
had a length of 40. The corresponding label array also had
a size of 40, where the values were set to zero from the be-
ginning until the start of the intention, and then set to one
from that point until the end of the segment. For negative
sample points, this array was filled with only zeros. For the
classification task, the size of the feature array was found by
multiplying the window size (in seconds) by 20.

Building and evaluating the model
For the segmentation task, the model used for prediction is
a Recurrent Neural Network built using pytorch [11] with a
first simple layer of 64 units and relu as activation function,
and a Dense layer of 40 units (the output array length) and
a sigmoid activation function. The model’s performance was
evaluated using a 5-fold cross validation technique. To ensure
fairness in evaluation, the unrealized intentions were tested
using the same trained models that were generated at every
fold. To evaluate both the realized and unrealized intentions
together, the annotated segments of the unrealized intentions
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were concatenated with the validation set before performing
the evaluation.

In the segmentation task, the model does not adhere
to a binary classification framework. While metrics like
Intersection-Over-Union (IoU) are more commonly used for
segmentation problems, the preferred choice was the AUC
score. This metric is a popular choice when dealing with class
imbalance which was likely to be the case in this experiment
[12]. It is used to evaluate the performance of binary classifi-
cation models by measuring the overall quality of the model’s
predictions across different classification thresholds. A curve
is constructed by plotting the true positive rate (TPR) against
the false positive rate (FPR) as the classification threshold
varies. The area under this curve, called the Receiver Oper-
ating Characteristic (ROC) curve, represents the AUC score,
which ranges from 0 to 1. An AUC score of 1 indicates a
perfect classifier that achieves perfect discrimination between
the positive and negative classes. A classifier with an AUC
score of 0.5 performs no better than random guessing, indi-
cating that its predictions are essentially random. Although
it might seem logical to evaluate the model’s performance
against a random guesser, such a comparison would not be
fair due to the underlying structure of the labels, which can
lead to highly promising results. In this case, the labels con-
sist of binary strings that begin with zeros and end with ones.
The only variation among the labels is the position of the first
occurrence of ”1.” Consequently, the labels exhibit signifi-
cant similarity to one another, and there is a high likelihood
of accurately identifying segments containing true positives
(as the start and end positions of the labels are almost always
the same). To ensure a fair comparison, the model should be
evaluated against a model that takes this underlying structure
into account. One approach is to assume that a comparable
model always predicts the first occurrence of ”1” to be lo-
cated in the middle of the segment, specifically at index 20.
All the entries before that index contain only zeros and all the
entries after that index only contain ones. The model can then
be tested against this baseline model using the same respec-
tive test sets (realized/unrealized/combination).

To facilitate the use of the AUC score for the segmentation
task, each entry in the prediction window array was treated as
an individual prediction. The AUC score was subsequently
computed based on the transformed labels and averaged. A
similar approach was used by [13] in detecting and inferring
segments of laughter on the same dataset. The refactored
code used in the experiment is hosted on Github and can be
publicly accessed here [14].

The results derived from the trained model and the baseline
model are shown on a Box plot for realized, unrealized, and a
combination of both. A box plot is a graphical representation
of a dataset’s summary statistics [15]. It is constructed as
follows:

• The box: The box in the plot represents the interquartile
range (IQR), which encompasses the middle 50% of the
data. The lower edge of the box represents the first quar-
tile (Q1), and the upper edge represents the third quartile
(Q3). The length of the box therefore depicts the spread
of the central data.

• The line within the box: This line represents the me-
dian, which is the middle value of the dataset when ar-
ranged in ascending order.

• The whiskers: The whiskers extend from the box and
indicate the range of the data. By default, the whiskers
extend to 1.5 times the IQR beyond the first and third
quartiles. Data points beyond the whiskers are consid-
ered outliers and are typically represented as individual
points.

• Outliers: Data points that fall outside the whiskers are
considered outliers and are often shown as individual
points beyond the whiskers.

The model used by [1] for classification does not allow for
varying window sizes, making it unsuitable for the intended
purpose. As this limitation hinders a truly realistic compari-
son, this research used an alternative model, a modified ver-
sion of a Recurrent Neural Network (RNN) that allows for the
utilization of different window sizes as input, to perform the
classification evaluation on both window sizes and extracted
segments. The model comprises a first layer of Long Short-
Term Memory (LSTM) with a size of 64. Then, a Dense layer
of size 1 is added for binary classification, using a sigmoid ac-
tivation function. Just like the metric utilized for evaluating
the classifier developed by [1], the AUC score was also em-
ployed in this context as an evaluation metric. The results are
also obtained using 5-fold cross validation on the 3 different
criteria (realized, unrealized, and both) and visualized using
a Box plot for the 4 different window sizes (1, 2, 3, and 4
seconds) and for the supervised segments.

4.2 Results

For the segmentation task, the performance achieved on each
of the 5 folds for the 3 test sets are shown on the respective
Box and Whisker plots in Figure 2a, 2b, and 2c. Table 1 and 2
display the average scores and standard deviation respectively
obtained by the trained and baseline model on the 3 criteria.

Table 1: Average AUC score and S.D for the trained model

Realized Unrealized Combination
Average 0.827 0.944 0.840

S.D 0.018 0.005 0.010

Table 2: Average AUC score and S.D for the baseline model

Realized Unrealized Combination
Average 0.750 0.864 0.765

S.D 0.011 0.0 0.006

For the classification task, the performance achieved on
each of the 5 folds for each respective window size and for
the supervised case on the 3 criteria are resepctively shown in
Figure 3a, 3b, and 3c. Tables 3, 4, 5, 6, and 7 also display the
average score and standard deviation.
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(a) Realized intentions (b) Unrealized intentions

(c) Combination

Figure 2: Box plots displaying the AUC scores of the trained model
and the baseline model for the segmentation task

Table 3: Average AUC score and S.D for window size = 1

Realized Unrealized Combination
Average 0.556 0.556 0.552

S.D 0.065 0.026 0.018

Table 4: Average AUC score and S.D for window size = 2

Realized Unrealized Combination
Average 0.556 0.571 0.569

S.D 0.011 0.016 0.017

Table 5: Average AUC score and S.D for window size = 3

Realized Unrealized Combination
Average 0.528 0.514 0.518

S.D 0.032 0.017 0.018

Table 6: Average AUC score and S.D for window size = 4

Realized Unrealized Combination
Average 0.529 0.545 0.541

S.D 0.068 0.026 0.025

Table 7: Average AUC score and S.D for the supervised case

Realized Unrealized Combination
Average 0.727 0.963 0.960

S.D 0.10 0.074 0.080

(a) Realized intentions (b) Unrealized intentions

(c) Combination

Figure 3: Box plots displaying the AUC scores of the model trained
and tested on different window size and on a supervised case for the
classification task

On the segmentation task, the trained model demonstrates
better performance compared to the baseline model across
the 3 evaluation criteria, including realized intentions, unreal-
ized intentions, and their combined evaluation. All the results
were also depicting a relatively small standard deviation. The
observed lower performance in the realized intentions with
respect to the unrealized ones could be attributed, at least in
part, to the inclusion of negative samples in the test set of the
realized intentions. It is plausible that the model displays re-
duced accuracy when dealing with negative samples, leading
to a higher rate of false positives. In such cases, the model
mistakenly predicts a speaking intention (assigning a value of
1) when the true label is actually 0. Consequently, this dis-
crepancy contributes to a decrease in the overall AUC score,
despite still performing better than the baseline. This finding
suggests that the model has a tendency to overestimate the oc-
currence of speaking intentions. Overall, the results demon-
strate the potential of the proposed deep learning model in in-
ferring speaking intentions from body language captured by a
body-worn accelerometer, although further analysis and eval-
uation may be necessary to assess the robustness and general-
izability of the model across different datasets and contexts.
For example, the model was tested against a single “baseline”
model, relying on a simplistic assumption. However, there is
room for employing diverse evaluation approaches that can
be tested against and potentially surpass the performance of
the trained model.

On the classification task, the performance of the super-
vised model surpassed that of the models trained and evalu-
ated with fixed window sizes in all three evaluation criteria.
The results demonstrated a notable consistency with a rela-
tively low standard deviation. These findings highlight the
significant benefits of employing a supervised learning pro-
cess to infer cases of intentions to speak in a dataset. Further-
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more, an intriguing observation is that the results obtained
for the window sizes align with the findings of [1] regarding
unrealized intentions (referred to as “unsuccessful” in their
research). This alignment suggests that the 2-second segment
demonstrates the most promising outcomes among the four
fixed window sizes. However, the alignment does not hold
for realized intentions (referred to as “successful” in [1]),
where a window size of 1 second yields better results accord-
ing to their findings, whereas the present research indicates
improved results in the 2-second segment.

It is worth mentioning that, both on the classification and
the segmentation task, the models were trained on a limited
dataset due to the manual annotation process. Also, only one
metric (AUC) was used to evaluate the model’s performance,
and some different approaches could be more representative
for the task at hand, especially for the segmentation task.
Lastly, it is crucial to note that the models used in the experi-
ment were not fine-tuned and were not subjected to extensive
testing with various sets of hyperparameters and/or layers.

5 Conclusions and Future Work
In summary, the experiment highlighted the significance of
body language and nonverbal cues in understanding speak-
ing intentions. It is worth noting that a model solely trained
on accelerometer data showed great segmentation capability
by effectively identifying both positive and negative instances
within the given window size. Although it was inferred that
the model performs worse on the negative cases, the AUC
scores achieved by the trained model surpassed the ones ob-
tained with the baseline model for all 3 criteria with minimal
standard deviation. Furthermore, the supervised learning ap-
pears to bring great improvement to the classification task,
suggesting that focusing on highly qualitative data to infer in-
stances of speaking intention can be the next crucial step in
building more realistic estimators that can be used in a prac-
tical setting to improve the quality of human-computer inter-
actions.

Several potential ideas for improvement were identified,
including training and testing the model on a larger dataset
and incorporating data from diverse cultures and languages.
For example, a rule-based approach could be employed to
extract the data directly from the Voice Activity Detector
(VAD). By developing a multi-modal extractor, it would be
possible to extract segments of speaking intentions in signif-
icant quantities, without relying on manual annotation. This
not only saves time but also overcomes the limitations im-
posed by the availability of human resources for manual an-
notation. Furthermore, the annotations on intentions to speak
from the dataset were carried out manually and individu-
ally, relying on assumptions derived from existing literature
on turn-taking and conversational speech. It is important to
acknowledge that this process is subjective, and to ensure
the accuracy and reliability of the annotations, it is recom-
mended to have multiple individuals performing the annota-
tions. Lastly, fine-tuning the model and assessing its perfor-
mance using different metrics are also factors worth consid-
ering. By exploring these ideas, further advancements can
be made in leveraging body language for inferring speaking

intentions.

6 Responsible Research
The research utilized data obtained from real individuals,
enabling the identification of their faces through camera
footage, as well as the ability to listen to their discussions
with other participants during the recorded 1.5-hour session.
From the audio recordings, it was possible to deduce personal
information such as their names, ages, residential addresses,
workplace details, and other relevant data. Given the sensitive
nature of this information, an End-User License Agreement
(EULA) was signed to ensure confidentiality. To maintain
data ownership, the collected data was not shared on plat-
forms that do not guarantee ownership rights, opting instead
for the use of Surfdrive instead of platforms like WeTrans-
fer. Additionally, while the experiment’s code was hosted on
GitHub, the data files remained exclusively on local comput-
ers and were never committed to any remote repository. No
individual other than the research team that signed the EULA
has had direct or indirect access to the data. Visual illustra-
tions of the event are displayed in the appendix. Special effort
was made to blur the faces ensuring that no individual can be
personally identified in these illustrations. In terms of the
practical use of the model, the mapping is from accelerome-
ter data to an estimated speaking intention. The model does
not receive any audio, video, or extracted body pose infor-
mation as input. Consequently, the absence of such trivial
information ensures that personal identification of the partici-
pants cannot be derived from it. This characteristic makes the
model suitable for practical use, as it alleviates any privacy
concerns related to personal identification.
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A Appendix
A.1 Cues Employed in the Annotation Process
A list of predefined cues, along with the absence or presence
of these cues for each participant in the annotated unrealized
segments, was constructed in collaboration with four other
teammates. The matrix illustrating this annotation of cues is
presented in Figure 4. The same set of cues was employed
individually during the annotation process for the realized in-
tentions. By utilizing this collaborative approach, a compre-
hensive analysis of the cues exhibited in both realized and
unrealized intentions was facilitated, enabling a better under-
standing of the dynamics of speaking intentions. Table 8 dis-
plays the percentage of occurrence of each cue in the anno-
tated intentions:
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Figure 4: Screenshot of the annotated spreadsheet matrix showcas-
ing cues and their presence or absence for each unrealized intention

Table 8: Occurrence of each cue in the annotations (as a percentage)

%
Posture shift 57

Head movement 77
Arm/hand movement 51

Filler word(s) 77
Intonation 66
Lip smack 22

Throat clearing 1.8
Inhaling 2.3

Among the identified cues, the most frequently occur-
ring ones, in descending order, are head movements, the use
of filler words, specific intonations, posture shifts, and arm
and/or hand movements. On the other hand, throat clearing
and inhaling were observed less frequently. It is crucial to ac-
knowledge that these findings are derived from the analysis of
a limited sample size of only 52 segments. To ensure greater
realism, it is essential to incorporate a larger volume of data
in future analyses.

A.2 Annotations: Understanding with Examples
2 participants were selected at random to illustrate the proce-
dure followed during the annotation phase. Figures 5a, 5b and
5c, 5d, respectively show for these 2 participants the change
in body posture and head movement between the start of the
detected intention to the moment the individuals start speak-
ing. The change in body posture and head movement are
evident behaviours occurring during an intention to speak.
Participants intending to speak shift their position, redirect-
ing their gaze towards their interlocutor just before initiating
speech. These behaviors are consistent with the existing lit-
erature on non-verbal cues in conversational speech, with the
notable contributions from Bull P. [9] and Poyatos F. [10] as
described in the section on related works.

Important cues can also be derived using vocal informa-
tion. The verbal cues considered when annotating intentions
to speak were derived from the literature on verbal cues [5].
These include the presence of lip smacks, illustrated in Fig-
ures 6a and 6b, as well as the presence of inhaling, illustrated
in Figures 6c and 6d extracted from the voice audio recorder
(VAR) of the same two participants. Both are illustrated as a

(a) Start of intention, indiv. 1 (b) End of intention, indiv. 1

(c) Start of intention, indiv. 2 (d) End of intention, indiv. 2

Figure 5: Body language at the start and end of an intention to speak
for 2 participants

screenshot of the VAR from their respective segments. These
captured verbal cues provided insightful information during
the annotation process as these cues frequently serve as the
initial indicators and thus define the beginning of the inten-
tion.

(a) Lip smack, indiv. 1 (b) Lip smack, indiv. 2

(c) Inhaling, indiv. 1 (d) Inhaling, indiv. 2

Figure 6: Lip smacking and inhaling for 2 participants
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