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A B S T R A C T

Automated semantic segmentation and object detection are of great importance in geospatial data analysis.
However, supervised machine learning systems such as convolutional neural networks require large corpora of
annotated training data. Especially in the geospatial domain, such datasets are quite scarce. Within this paper, we
aim to alleviate this issue by introducing a new annotated 3D dataset that is unique in three ways: i) The dataset
consists of both an Unmanned Aerial Vehicle (UAV) laser scanning point cloud and a 3D textured mesh. ii) The
point cloud features a mean point density of about 800 pts/m2 and the oblique imagery used for 3D mesh
texturing realizes a ground sampling distance of about 2–3 cm. This enables the identification of fine-grained
structures and represents the state of the art in UAV-based mapping. iii) Both data modalities will be pub-
lished for a total of three epochs allowing applications such as change detection. The dataset depicts the village of
Hessigheim (Germany), henceforth referred to as H3D - either represented as 3D point cloud H3D(PC) or 3D mesh
H3D(Mesh). It is designed to promote research in the field of 3D data analysis on one hand and to evaluate and
rank existing and emerging approaches for semantic segmentation of both data modalities on the other hand.
Ultimately, we hope that H3D will become a widely used benchmark dataset in company with the well-
established ISPRS Vaihingen 3D Semantic Labeling Challenge benchmark (V3D). The dataset can be down-
loaded from https://ifpwww.ifp.uni-stuttgart.de/benchmark/hessigheim/default.aspx.
1. Introduction

Supervised Machine Learning (ML), especially embodied by Con-
volutional Neural Networks (CNNs), has become state of the art for
automatic interpretation of various data. However, the applicability and
acceptance of such approaches are greatly hindered by the lack of labeled
datasets for both training and evaluation (and, consequently, for the
verification of their quality). For that purpose, large datasets of labeled
2D imagery were established, for example the ImageNet dataset (Deng
et al., 2009). As such an extensive annotation process cannot be
accomplished by a single person or group, crowdsourcing was employed.
Whereas 2D imagery can be very well interpreted by non-experts (i.e.,
crowdworkers), labeling 3D data is much more demanding. Although
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techniques. However, at least for evaluating ML models for semantic
segmentation, full annotations are beneficial, which are typically ac-
quired by experts. In case of outdoor 3D data, existing datasets can be
categorized into two different domains (comprehensive literature re-
views are given by Griffiths and Boehm (2019) and Xie et al. (2020)):
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Fig. 1. Overview of H3D(PC) and H3D(Mesh) using an orthophoto basemap.
H3D(PC) is partitioned into training set (indicated by class colors; see Table 1),
validation set (indicated by class colors and marked by a yellow box), and test set
(grey). H3D(Mesh) is organized in tiles that exceed the annotated point cloud
(see Section 2.5). The data splits of H3D(Mesh) are partitioned in accordance
with the respective H3D(PC) splits. They are shown in semi-transparent manner
(see legend).
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i) Outdoor terrestrial data. Capturing outdoor terrestrial data has
become most popular in the context of autonomous driving. Cars
destined for self-driving are equipped with a great variety of different
sensors such as cameras, laser scanners, and odometers. Often, only
the combination of these sensors allows a comprehensive under-
standing of the complete scene, which is studied extensively on the
basis of the well-known KITTI dataset (Geiger et al., 2012) and the
derived SemanticKITTI dataset (Behley et al., 2019) respectively.
Although mobile laser scanning point clouds of typical urban scenes
are often provided as stand-alone products (Roynard et al., 2018;
Munoz et al., 2009; Hackel et al., 2017; Tan et al., 2020), the con-
current availability of LiDAR data and imagery in the form of meshes
is often pursued (Riemenschneider et al., 2014). Caesar et al. (2020)
provide a unique multi-modal dataset for autonomous driving appli-
cations by the combination of both cameras and ranging sensors (i.e.,
LiDAR & RADAR) for 3D object detection.

ii) Outdoor airborne data. Datasets of this category are often referred
to as (large-scale) geospatial data and deviate from the previous ones
due to a significantly increased distance between target and sensor,
which is attached to an airborne platform (mostly small aircraft). So
far, publicly available datasets provide labeled point clouds obtained
from a single sensor, either a camera (Hu et al., 2020) or a LiDAR
sensor (Varney et al., 2020). One prominent example of the latter case
is the Vaihingen 3D (V3D) dataset acquired by Cramer (2010), which
served as the basis for the ISPRS 3D Semantic Labeling benchmark
(Niemeyer et al., 2014). Additionally, some national mapping
agencies publish large-scale annotated LiDAR point clouds as open
data, which typically realize a rather coarse class catalog and a point
density of up to about 40 pts/m2 (Actueel Hoogtebestand Nederland,
2021; National Land Survey of Finland, 2021). For obtaining higher
LiDAR point densities, the carrier of the sensor can be replaced by a
helicopter platform allowing the generation of data with point den-
sities of up to about 350 pts/m2 (Zolanvari et al., 2019). For labeling
their data, the authors opt for a broad class catalog (compared to
V3D) due to the high point density and the resulting depiction of fine
structures. Recently, Can et al. (2020) provided benchmark data
composed by the vertices of a purely photogrammetric 3Dmesh. They
reconstructed the underlying mesh based on high-resolution imagery
with a Ground Sampling Distance (GSD) of 1.25 cm.

The Hessigheim 3D (H3D) dataset presented in this paper belongs to
the second group but differs from other datasets because it is the first
ultra-high resolution, fully annotated 3D dataset acquired from a LiDAR
system and cameras integrated on the same Unmanned Aerial Vehicle
(UAV) platform. This results in a unique multi-modal scene description
by a LiDAR point cloud H3D(PC) and a textured 3D mesh H3D(Mesh).
Hence, properties unique for these two acquisition methods can be effi-
ciently combined, which offers new possibilities for high-accuracy
georeferencing (Glira et al., 2019) and semantic segmentation (Lau-
pheimer et al., 2020). We consider H3D to be the logical successor of
V3D, which was already captured in 2008 and therefore no longer rep-
resents the state of the art. As H3D was acquired from a UAV platform by
the usage of state-of-the-art sensors, a point density that is about a
hundred times higher compared to V3D can be achieved, allowing the
expansion of the class catalog of V3D. Furthermore, H3D shall improve
the dissemination and acceptance of the mesh representation in photo-
grammetry and remote sensing. So far, meshes are the state-of-the-art
representation for small-scale datasets covering indoor scenes or single
objects that are commonly treated by the computer vision community
(Kalogerakis et al., 2010; Armeni et al., 2017; Hua et al., 2016; Dai et al.,
2017; Shilane et al., 2004). In contrast to unordered point clouds, meshes
are graph-based surface structures that provide explicit adjacency in-
formation. The surface description enables high-resolution texturing
while efficiently storing geometry (which can be interpreted as
surface-aware subsampling). A more detailed comparison is given by
Laupheimer and Haala (2021). With the help of H3D(Mesh), we want to
2

i) foster semantic mesh segmentation and ii) evaluate the community's
interest in this kind of representation at the same time.

The rest of this paper focuses on presenting H3D as a new benchmark
dataset. This includes a detailed presentation of data acquisition, the
registration process, and a discussion of the unique characteristics of H3D
(Sections 2.1-2.3). Sections 2.4 and 2.5 are dedicated to present the class
catalog and the annotation process for H3D(PC) and H3D(Mesh). As we
aim at generating a benchmark for semantic segmentation, Section 2.6
describes the general structure of H3D, i.e., the partitioning into disjoint
subsets for training, validation, and testing. As labels of the test set are
not disclosed to the public, labels are to be predicted by participants
(Section 2.7) and transmitted to the authors for evaluation (Section 2.8).
We present first results based on two state-of-the-art approaches for se-
mantic segmentation to kick off the benchmark process and to give first
baseline results (Section 3) before concluding with a summary in Section
4.



Fig. 2. Ricopter platform equipped with Riegl VUX-1LR scanner and two oblique
Sony Alpha 6000 cameras used for capturing H3D.

Fig. 3. Achieved point density of H3D(PC). Different point densities are due to
diagonal strips for further block stabilization beneficial for adjustment of LiDAR
strips. Flight trajectories of LiDAR strips are shown in black.

Fig. 4. The same subset of the village of Hessigheim captured by a conventional
ALS campaign carried out by the state mapping agency of Baden-Wuerttemberg
in 2016 (top) and as it is depicted in H3D(PC) (bottom).
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2. The H3D dataset

The H3D dataset was originally captured in a joint project of the
University of Stuttgart and the German Federal Institute of Hydrology
(BfG) for detecting ground subsidence in the high accuracy range. For
this monitoring application, the area of interest, which is the village of
Hessigheim, Germany (see Fig. 1), was surveyed at multiple epochs in
3

March 2018, November 2018, and March 2019. Although all those
datasets will be made publicly available, this paper only covers the first
epoch (i.e., March 2018) as only this dataset has been labeled so far.
Concerning later epochs, the data publication shall follow in the course of
2021.

2.1. Capturing H3D

In all three epochs, our sensor setup was constituted of a RIEGL VUX-
1LR scanner and two oblique Sony Alpha 6000 cameras integrated on a
RIEGL Ricopter platform (see Fig. 2). Considering a height above ground
of 50 m, we achieved a laser footprint of less than 3 cm and a GSD of 2–3
cm for the cameras. Using this setup, we obtain two distinct data repre-
sentations: i) H3D(PC) and ii) H3D(Mesh) (see Section 2.2 and Section
2.3 respectively).

2.2. H3D(PC)

H3D was acquired by a total of 11 longitudinal (i.e., north-south)
strips and several diagonal strips (see Fig. 3). Scanner parameters
(Pulse Repetition Rate and the mirror's rotation rate) and flying param-
eters (flying altitude and speed) were set for receiving a point distance of
about 5 cm both in and across flight direction. Hence, we obtain about
400 pts/m2 for one single LiDAR strip and about 800 pts/m2 for the
complete point cloud due to strip overlap. As additional strips were flown
for further block stabilization, in some areas significantly higher point
densities are achieved (see Fig. 3). Compared to conventional Airborne



Fig. 5. Available attributes of both modalities of H3D.
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Laser Scanning (ALS) flight campaigns applying manned platforms (see
Fig. 4 top), this high-resolution point cloud allows a more comprehensive
3D scene analysis in comparison to existing datasets. For accurate co-
registration of acquired strips with respect to available control planes
(Haala et al. (2020)), trajectories were corrected by the bias model
offered by the OPALS software (Pfeifer et al., 2014). In this context, for
each strip a constant offset for each trajectory parameter (ΔX, ΔY, ΔZ,
Δω, Δϕ, Δκ) was estimated.

Apart from the XYZ coordinates of each point, LiDAR inherent fea-
tures such as the echo number, number of echos, and reflectance were
measured. While up to 6 echos were recorded per pulse emitted, the
majority of subsequent echos (echo number > 1) are second and third
echos (see yellow and green color in Fig. 5 (a)). Instead of the intensity of
received echos, we provide reflectance values1, which can be interpreted
as range corrected intensity. Please note that these values were not cor-
rected for differences in reflectance due to different inclination angles of
the laser beam with the illuminated object surface. Reflectance values
1 http://www.riegl.com/uploads/tx_pxpriegldownloads/Whitepaper_LASextr
abytes_implementation_in-RIEGLSoftware_2017-12-04.pdf.

4

range from about �30 dB for objects of diffuse reflection properties such
as vegetation or asphalt (dark blue and light green points respectively in
Fig. 5 (b)) up to about 20 dB for objects of directed reflection such as roof
or façade elements (red points in Fig. 5 (b)).

Point cloud colorization was done in a two-step process. We first
derived the mesh as outlined in Section 2.3. Afterwards, we extracted an
individual RGB tuple for each LiDAR point by nearest neighbor inter-
polation from the textured mesh. The nearest neighbor interpolation in
3D space (i.e., between mesh and point cloud) is a simple approximation
of an occlusion-aware projection of 3D LiDAR points to image space as
achieved by the collinearity condition (result is visualized in Fig. 5 (c)).

Additionally, we provide a class label for every point (classes and the
annotation will be discussed in Sections 2.4 and 2.5). Both plain ASCII
files and las files are used for data exchange.

2.3. H3D(Mesh)

We generated the 3D mesh with software SURE (Rothermel et al.,
2012). For the geometric reconstruction of the scene, both LiDAR data
and imagery were used to benefit from their complementary properties
(Mandlburger et al., 2017). The fusion of both data sources results in a

http://www.riegl.com/uploads/tx_pxpriegldownloads/Whitepaper_LASextrabytes_implementation_in-RIEGLSoftware_2017-12-04.pdf
http://www.riegl.com/uploads/tx_pxpriegldownloads/Whitepaper_LASextrabytes_implementation_in-RIEGLSoftware_2017-12-04.pdf


Fig. 6. An exemplary congruent subset of H3D(PC) (top, colored according to
reflectance) and H3D(Mesh) represented as wireframe (bottom, colored ac-
cording to height above ground). It can be observed that even regions under
trees such as ground and hedges can be reconstructed. Generally, fine structures
such as vines (e.g., on the left) or tombstones of the graveyard (front center) are
smoothed in the 3D mesh.

Table 1
Class catalog of H3D for epoch
March 2018.
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more complete mesh compared to a mesh derived from images only. For
instance, urban canyons are difficult to reconstruct from imagery (due to
required visibility in at least two images) but their reconstruction works
smoothly for LiDAR data (where one received echo is already sufficient).
This is also the case for regions occluded by semi-transparent objects such
as vegetation. Fig. 6 demonstrates that objects underneath tree crowns
can be successfully included in the 3D mesh thanks to the concurrently
available LiDAR data used for generation of the mesh. Furthermore, the
oblique images serve for texturing the generated 3D mesh, which allows
a realistic representation of vertical faces (e.g., façades in Fig. 5). The
mesh data is provided in a tiled manner. Each tile is given in both
textured and labeled mode. For the textured form, each tile consists of i)
an obj file describing the geometry and referring to (ii) the mtl file
encoding material properties which links to the (iii) texture atlas that
provides textural information (jpgs). Their labeled counterparts consist of
an obj file (containing the same geometry as the respective textured
version) and a mtl which encodes the class properties (i.e., the
color-coding). Therefore, the labeled obj files do not require texture
atlases since they are pseudo-textured by the class labels. Additionally,
we provide Centers of Gravity (CoGs) for each face along with the
transferred labels as CoG point cloud. The CoG cloud is available as a
plain ASCII file enabling simple data handling and data exchange.
2.4. Class catalog

For H3D(PC) and H3D(Mesh), we employ the same fine-grained class
catalog, which is based on V3D but is refined due to H3D's higher point
5

density (and due to the purpose of the Hessigheim project, which is
monitoring the shipping lock depicted in Fig. 1). This allows to differ-
entiate more details than in V3D. Hence, we added classes Urban Furni-
ture (i.e., paved ground), Soil/Gravel, Vertical Surface (e.g., found at the
shipping lock in Fig. 5) and Chimney (see Table 1).
2.5. Generating ground truth data for H3D

As previously mentioned, the main objective of H3D is to provide
labeled multi-temporal and multi-modal datasets for training and eval-
uation of ML systems for the task of semantic point cloud segmentation.
For labeling H3D(PC) (see Section 2.2), we established a manual process
carried out by student assistants, resulting in an annotation as depicted in
Fig. 5 (d). This classification was generated by extracting point cloud
segments with uniform class affiliation (i.e., the point cloud was manu-
ally segmented into many small subsets of homogeneous class member-
ship). Segments of each class were afterwards merged to form the
semantic segmentation. The whole process was carried out with the help
of CloudCompare (Girardeau-Montaut, 2021). Quality control was
accomplished in a two-stage procedure. First, the student assistants
checked each other's labels, and finally, the authors verified the results as
last instance. Despite the comprehensive quality check, we are aware of
the fact that manual annotations are error-prone and label noise cannot
be avoided.

For the 3D mesh, we automatically transfer labels from the manually
annotated point cloud by a geometry-driven approach that associates the
representation entities, i.e., points and faces (Laupheimer et al., 2020).
Therefore, the mesh inherits the class catalog (see Table 1) of the point
cloud. In comparison to the point cloud representation, the mesh is more
efficient because only a small number of faces is required to represent flat
surfaces. For this reason, the number of faces is significantly smaller than
the number of LiDAR points (see Table 2). Consequently, several points
are commonly linked to the same face. Hence, the per-face label is
determined by majority vote of the respective LiDAR points. However,
due to structural discrepancies, some faces remain unlabeled because no
points can be associated with them (e.g., absence of LiDAR points or
geometric reconstruction errors). These faces are marked by the pseudo
class label �1. Unlabeled faces cover about 40% of the entire mesh
surface. As can be seen from Fig. 1, the majority of the unlabeled area
(99.7%) belongs to parts where the mesh tiles exceed the labeled point
cloud. This is due to limited availability of class labels of the point cloud
(i.e., only a subset of the complete dataset is labeled), so that parts of
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Fig. 7. Class distributions of the training set T and the validation set V both for
H3D(PC) and H3D(Mesh). For the mesh, the relative class distribution is given in
terms of i) the face count and ii) the area A of faces. Unlabeled faces are not
considered in this figure.
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some mesh tiles remain partly unlabeled. For the overlap of LiDAR and
mesh (i.e., the relevant data), 84% of the mesh surface carries an
annotation.

2.6. Data splits

The datasets of all epochs are split into a distinct training, validation,
and test area (see Fig. 1). The splits are identical in both modalities and
chosen in accordance with the mesh tiling. Since H3D is designed as a
benchmark, labels of the test set are not disclosed to the participants of
the benchmark. Whereas labels of the training and validation sets can be
used by participants as desired, we recommend utilizing the pre-defined
splits. Detailed statistics of class frequencies in the training and valida-
tion sets can be found in Table 2 for both modalities (points vs. faces/
CoGs) and are visualized in Fig. 7. For the mesh, we additionally provide
the area each class covers, measured by the area of faces assigned to the
corresponding class.

In case of the point cloud, the relative number of points for classes
covering large areas (such as Low Vegetation, Impervious Surface, Tree and
Roof) is naturally the highest. Regarding class Tree, the number of points
is further increased since multiple echos were received for one laser
beam. The most underrepresented classes are Vehicle and Chimney.
Although the relative class frequencies for the mesh are similar, we can
observe that there are fewer instances of classes corresponding to the
ground (Low Vegetation, Impervious Surface and Soil/Gravel), which is due
to large face elements used for representing such planar surfaces. On the
other hand, the relative number of instances of class Tree is increased,
because vegetation surfaces are characterized by a high roughness and,
thus are typically approximated by a large number of surface elements
(i.e., faces.)

2.7. Benchmark challenge

In contrast to V3D, the H3D benchmark challenge is twofold in terms
of data representation. For both H3D(PC) and H3D(Mesh), we offer
participants to use the training and validation dataset for developing ML
approaches for supervised classification and then to apply those to the
test dataset. Predicted labels are to be returned to the authors for



Table 3
Baseline results of semantic segmentation for both H3D(PC) and H3D(Mesh). For the mesh, we report the performance metrics weighted by the covered surface.

F1-scores [%]

Modality Method Low Veg. I. Surf. Vehicle U. Furn. Roof Façade Shrub Tree Soil V. Surf. Chimney mF1 [%] OA [%]

H3D(PC) RF 90.36 88.55 66.89 51.55 96.06 78.47 67.25 95.91 47.91 59.73 80.65 74.85 87.43
SCN 92.31 88.14 63.51 57.17 96.86 83.19 68.59 96.98 44.81 78.20 73.61 76.67 88.42

H3D(Mesh) RF 89.35 89.06 61.38 57.65 93.29 82.16 69.27 96.09 48.85 62.58 76.43 75.10 86.53
SCN 89.82 83.66 61.05 52.24 87.09 81.01 59.75 95.06 51.00 56.61 70.22 71.59 83.73
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evaluation (see Section 2.8). For the mesh, the predictions are to be
returned to the authors as labeled CoG cloud (the respective plain ASCII
file of CoGs is provided by the authors). The authors will match the
predicted per-face labels with the corresponding faces of the obj files.
Simply put, the CoG cloud is utilized as an efficient link to the underlying
mesh structure to keep the memory footprint of submitted data low. The
evaluation itself will be done on the mesh (obj files).

To avoid overfitting on the benchmark data, the submission protocol
allows the upload of one result per author and modality/epoch for the
time being. Results of participants will be presented on the official H3D
homepage (https://ifpwww.ifp.uni-stuttgart.de/benchmark/hessigh
eim/results.aspx) in order to reflect the state of the art of semantic seg-
mentation of point clouds and meshes.
2.8. Evaluation metrics

Semantic segmentation results submitted by participants of the
benchmark are evaluated by the H3D team by means of the derived
confusion matrices. In order to obtain performance metrics for individual
classes, the number of True Positives (TP), the number of False Positives
(FP), and the number of False Negatives (FN) are determined for each
class c. These numbers are used for determining Precision (P) and Recall
(R) (Equation (1) and (2). Additionally, we derive a F1-score as the
harmonic mean of P and R for each class (Equation (3)) (Goutte and
Gaussier, 2005).

Pc ¼ TPc

TPc þ FPc
(1)

Rc ¼ TPc

TPc þ FNc
(2)

F1c ¼ 2 �Pc �Rc

Pc þ Rc
(3)

To describe the total performance of a classifier, we combine indi-
vidual class scores by computing i) the Overall Accuracy (OA¼P

cTPc/N,
with N being the total number of labeled instances) and ii) the mean F1-
score (macro-F1). These measures are determined both for H3D(PC) and
H3D(Mesh). In case of the latter, the evaluation is based on the covered
area of correctly/incorrectly classified faces (as provided as CoG cloud by
the participants).

3. Baselines

We initialize the H3D benchmark challenge by providing two base-
line solutions for semantic segmentation of H3D. On one hand, we apply
a conventional Random Forest (RF) classifier (Breiman, 2001) relying on
hand-crafted features (see Section 3.1) and on the other hand, we use a
Sparse Convolutional Network (SCN) as end-to-end learning approach
(see Section 3.2). In case of H3D(PC), we enrich our baselines with
PointNetþþ (Qi et al., 2017) and KPConv (Thomas et al., 2019) but
restrict ourselves to the discussion of the RF and SCN since they reach top
results (results of all approaches are reported on our homepage https://if
pwww.ifp.uni-stuttgart.de/benchmark/hessigheim/results.aspx). Please
note that a comprehensive comparison of possible classification
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approaches is out of scope for this specific paper, but will be gradually
created in context of the benchmark challenge. An overview of suitable
deep learning approaches for semantic segmentation can be found in
Griffiths and Boehm (2019) and Guo et al. (2020).
3.1. Random Forest

For semantic segmentation of the point cloud, we compute geometric
features as proposed in Weinmann et al. (2015) and in Chehata et al.
(2009) by estimating the structural tensor for a local neighborhood of
each point. After extracting the Eigenvalues of that tensor, we can
determine the characteristics of the respective point distribution by
forming different ratios of Eigenvalues (Weinmann et al., 2015). As
computing Eigenvalues and Eigenvectors eventually means to fit a plane
to the local point set, we can further enhance our feature vector by taking
into account the orientation of these planes. Furthermore, we consider
height-based features by determining the height above ground (i.e.,
above the Digital TerrainModel (DTM) level; DTM is derived by SCOPþþ
(Pfeifer et al., 2001)) for each LiDAR point. In addition to purely geo-
metric features, LiDAR-inherent features such as echo ratio and intensity
of the received echo are also used for the semantic segmentation. In order
to establish a multi-scale approach and to analyze features on different
levels of abstraction, we follow the recommendation of Weinmann et al.
(2018) and compute each feature for spherical neighborhoods of radii r
¼ 1, 2, 3 and 5m. To account for the high density of H3D, we expand the
feature vector of each point by additionally deriving all geometric fea-
tures for radii r ¼ 0.125, 0.25, 0.5 and 0.75m.

To obtain mesh features, we follow the approach of Tutzauer et al.
(2019) and encode each face by its CoG. In this way, we can on one hand
compute all aforementioned geometric features for our CoG cloud. On
the other hand, we preserve features of the mesh geometry by assigning
mesh-inherent features such as face area, face density, and normal
orientation to the respective faces. Furthermore, we transfer
LiDAR-specific features to the mesh representation by the approach
presented in Laupheimer et al. (2020).

For both the point cloud and the mesh, we additionally incorporate
radiometric features. For this purpose, RGB tuples are converted to HSV
color space and used together with Gaussian smoothed color values for
the aforementioned spatial neighborhoods. Since a multitude of HSV
tuples is encoded in each face, we additionally calculate the HSV variance
for each face.

Based on these features, a RF model is trained for H3D(PC) and
H3D(Mesh). Prediction results for the test set can be found in Table 3 (see
discussion of results in Section 3.3). The RF models are parametrized by
100 binary decision trees with a maximum depth of 18. Niemeyer et al.
(2014) have shown that pure pointwise results of the RF classifier can be
further refined by a Markov Random Field (MRF). Therefore, we enhance
our RF by an a posteriori probability-aware MRF-like smoothing (a
posteriori probability is used as unary potential; points within 0.5m
radius are considered for the regularization term).
3.2. Sparse Convolutional Network

As deep learning has become a de-facto standard in most fields of
pattern recognition, we also include a neural network in our baselines. In

https://ifpwww.ifp.uni-stuttgart.de/benchmark/hessigheim/results.aspx
https://ifpwww.ifp.uni-stuttgart.de/benchmark/hessigheim/results.aspx
https://ifpwww.ifp.uni-stuttgart.de/benchmark/hessigheim/results.aspx
https://ifpwww.ifp.uni-stuttgart.de/benchmark/hessigheim/results.aspx


Fig. 8. Results of semantic segmentation on the test set of H3D(PC) for both our RF (left) and our SCN classifier (right).
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particular, we employ a 3D CNN in U-Net form with submanifold sparse
convolutional layers (Graham et al., 2018) to account for the typical
spatial distribution of ALS point clouds. The network's general layout and
training regime is described in Schmohl and S€orgel (2019). It consists of 3
downsampling levels and 21 convolutional layers in total. The input data
(point cloud or mesh) is discretized to sparse 3D voxel grids with voxels
of 25 cm side length. We found that smaller voxel sizes did not yield to
significantly better accuracies on this dataset. Although additional input
features as used for the RF improved accuracy by about 1 percentage
point, we opted to report the results with each input point containing just
the native point features as a purely learned baseline in contrast to the RF
using engineered features. In case of the point cloud, these are the
measured point attributes (echo number, number of echos, reflectance &
RGB values) as described in Section 2.2. For the mesh, voxels are derived
from the CoG point cloud and attributed with the texture information
(RGB) only. We tested also a configuration with additional normal
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information, since this is the most basic native mesh feature besides RGB.
However, the achieved performance is slightly worse (�0.6 and �2.34
percentage points for OA and mean F1-score respectively). For evalua-
tion, the inferred voxel labels are transferred back to the enclosed points
or faces. Results are also reported in Table 3.
3.3. Discussion of baseline results

Within this chapter, we analyze the performance of our two baseline
classifiers (see Section 3.3.1 and Section 3.3.2 respectively) for both
H3D(PC) and H3D(Mesh) in order to develop a better understanding of
challenges of H3D and to kick-off the benchmark competition.

3.3.1. H3D(PC)
Generally, we can observe from Table 3 that the RF and the SCN

classifiers perform similarly well, with the SCN slightly better in terms of



Fig. 9. Regions of distinct classes in H3D(PC) with similar radiometric prop-
erties. Issues in automated semantic segmentation based on colors can arise due
to small parts of other class affiliation (1), misleading colors caused by wetness
such as puddles (2) and human created structures that have been overgrown and
eroded over time (3 & 4).
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the OA and the mean F1-score. Both baseline solutions (RF & SCN)
achieve similar results for the ground classes Low Vegetation and Imper-
vious Surface. However, performance for class Soil/Gravel is rather poor in
both cases for there is often confusion with other ground classes (see
Fig. 8). Since points of all ground classes incorporate similar geometric
properties (e.g., similar normals and smooth surfaces), distinguishing
these classes is only possible with the help of radiometric features such as
reflectance or color information (see Fig. 5). Whereas this performs well
for Low Vegetation vs. Impervious Surface, segmenting points of Soil/Gravel
is rather demanding due to similar radiometric properties to Low Vege-
tation (similar to bare soil) and Impervious Surface (similar to debris and
gravel), which is further amplified by the acquisition during leaf-off
season in which even grassland is often dominated by a brownish
color. Possible confusions between such ground classes due to the usage
of color information are also displayed in Fig. 9.

Similar radiometric and geometric properties are also the reason for
the confusion of Shrub with Tree (greenish color in both cases and rough
surfaces). Nevertheless, the extraction of tree points succeeds quite well,
probably due to the distinctive multi-echo ability of the employed sensor
(see Fig. 5 (a)). Regarding buildings, roofs can be extracted successfully,
but the detection of façades seems to be more demanding for both clas-
sifiers (see Table 3). This may be caused by the presence of façade
furniture (such as balconies with handrails and outdoor furniture
differing from smooth façades), which is similar to urban furniture. The
confusion matrices in Fig. 8 further indicate that points of class Urban
Furniture are spread across many other classes. This is due to the great
variety of objects belonging to this class, since essentially it serves as
quasi-class Other. Performance evaluation of classifiers for such fine-
grained elements of façade furniture and urban furniture could hardly
be evaluated in the past due to the mostly insufficient representation of
these fine structures resulting from the poor resolution of former data-
sets. Therefore this is a unique feature of H3D.

In this context, a significant amount of misclassification can be
observed for cars, which are predicted as Urban Furniture. This can be
explained by a great variety of colors in both classes and some special
cases, such as the car-like shapes of covered wood piles often found in
gardens (see the results in Fig. 8 (c) and (d) and their associated confu-
sion matrices in (e) and (f)). The classes Vertical Surface and Chimney
newly introduced compared to V3D, seem to be demanding as well. In
this context, it is worth mentioning that whereas the RF classifier con-
fuses façades with other vertical surfaces as anticipated, this is not the
case for the SCN, where only a small number of vertical surface points are
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allocated in class Façade. This may be due to the larger receptive field of
20m for the lowest SCN filters compared to the maximum neighborhood
radius for feature computation of 5m in case of the RF. For chimneys, on
the other hand, the RF classifier performs better probably due to the
discretization of the SCN approach, so that the RF might capture such
small structures more precisely for its pointwise working principle.

To conclude, our baseline solutions indicate, that the depiction of
detailed structures and the consequently expanded class catalog of H3D
(compared to V3D) poses new challenges for the development of methods
for semantic segmentation. Particularly, this applies to entities belonging
to newly introduced classes but also for the interaction of those with
representatives of common object classes (e.g., Vertical Surface vs.
Façade).

3.3.2. H3D(Mesh)
In addition to results for H3D(PC), Table 3 also reports per-class F1-

scores, mean F1-score, and OA for our baseline classifiers RF and SCN on
H3D(Mesh). The respective confusion matrices are depicted in Fig. 10 (e)
and (f). Due to the non-uniformity of meshes, we evaluate the considered
metrics concerning the covered surface for each entity. Each face con-
tributes to the performance metrics depending on its surface area. By
these means, a large face has more impact compared to a small face. This
contrasts with point cloud evaluation where all points share the same
weight. However, we observed that the weighted performance metrics
scarcely differ from their unweighted counterparts, which indicates that
the majority of large faces is correctly predicted. Moreover, their simi-
larity hints at the constitution of the mesh. The automatically generated
mesh differs from an ideal mesh in such sense that the non-uniformity of
faces is kept small in order to uphold details in the reconstructed mesh.
Loosely speaking, a large number of faces roughly share the same face
area. Nonetheless, flat surfaces are represented by few large faces,
whereas rough surfaces (e.g., vegetational classes) use many small faces
(covering roughly the same area). Therefore, the effect of the surface-
driven evaluation is best visible for classes that consist of flat surfaces.
For instance, 42% of faces predicted as vertical surfaces are façades in
reality (for SCN). Regarding covered area, this makes already 46% of
mispredicted façades.

Generally, the feature-driven RF outperforms the data-driven SCN in
terms of OA and mean F1-score by 2.8 and 3.5 percentage points
respectively. We assume that voxelization and the small set of input
features mainly cause the slight inferiority of the SCN. Whereas the RF
uses the underlying mesh geometry encoded in the variety of hand-
crafted features (see Section 3.1), SCN first voxelizes the textured data
and learns features merely on the voxel representation. Furthermore, by
utilizing transferred LiDAR features, RF implicitly leverages the fine-
grained point cloud geometry that does not suffer from mesh recon-
struction errors. Generally, fine-grained structures such as urban furni-
ture and shrubs are demanding objects for meshing algorithms. Hence,
the transferred LiDAR features enhance the geometric information and
help to correctly classify non-correctly reconstructed objects. For these
reasons, we deduce that the end-to-end learning SCN approach cannot
fully compete with the feature-driven RF in this case. The results further
indicate that feature engineering and multi-modal feature transfer are
valid alternatives to state-of-the-art end-to-end learning approaches.
Apart from their varying overall performance, the confusion matrices of
RF and SCN show similar strengths and weaknesses. Considering per-
class F1-scores, we note similar performances for classes Low Vegeta-
tion, Vehicle, Façade and Tree. Both classifiers struggle with class Urban
Furniture due to its large intra-class variance (see discussion in Section
3.3.1). For instance, cars are often classified as Urban Furniture by
mistake. However, due to the utilized superior geometric information,
the RF copes better with the variance resulting in an F1-score that is 5.4
percentage points better compared to SCN. For class Shrub, the RF is 9.5
percentage points better. In case of the SCN, themajority of predictions of
class Shrub truly belongs to Urban Furniture. As can be seen for the
shipping lock in Fig. 10 (b), SCN confuses Impervious Surface with Roof



Fig. 10. Results of semantic segmentation on the test set of H3D(Mesh) for both our RF (left) and our SCN classifier (right).
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and hence performs worse than the RF on these classes. The geometric
similarity of ground classes in the mesh representation (Impervious Sur-
face, Low Vegetation, and Gravel/Soil) makes it demanding to correctly
separate them. Therefore, the color information is decisive for the correct
prediction. Both classifiers predict other ground classes for Gravel/Soil.
Gravel/Soil is the only class where SCN outperforms the RF. Most prob-
ably, the Gaussian smoothed features cause misprediction of chimneys as
Roof for RF. In case of SCN, Chimney has a high recall but at cost of good
precision. On the contrary, RF has a significantly worse recall but very
high precision resulting in a better F1-score. The distinction of vertical
surfaces and façades is demanding for both classifiers due to their small
inter-class variance.

4. Conclusion

In this paper, we presented a new benchmark on semantic segmen-
tation of high-resolution 3D point clouds and textured meshes as
10
acquired and derived from UAV LiDAR and Multi-View-Stereo: Hes-
sigheim 3D (H3D). We have introduced the multi-modal data corre-
sponding to the first epoch of H3D (March 2018), comprising H3D(PC)
and H3D(Mesh). Follow-on epochs (November 2018 &March 2019) will
cover an extended area and offer an even more detailed class catalog.
Apart from discussing the data acquisition and processing, we applied
different classifiers to H3D(PC) and H3D(Mesh) as a baseline for the
benchmark. The results indicate great potential for testing ML ap-
proaches on H3D due to its large sets of labeled data. Eventually, we hope
H3D to become a second established ISPRS benchmark dataset in com-
pany with V3D.
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