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Abstract. The problem of smoothing dry weather inflow variations for
a Waste Water Treatment Plant (WWTP) that receives sewage from
multiple mixed sewer systems is presented, together with a first rough
solution algorithm. A simplification followed by a naive translation into
a zero-one linear programming problem results in 1152 inequalities for
480 binary variables.
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1 Introduction

In 2015 representatives of two water boards and one municipality decided to
look into a long standing problem. The Garmerwolde Waste Water Treatment
Plant (WWTP) receives water from several pressurized pipelines. These in turn
receive sewage from local sewer systems through pumping stations. The WWTP
plant was designed to process sewage as it arrives in the plant, there are no
bu↵ers. The supply varies roughly sinusoidally over a 24 hour period and the
pumps are under local control (no coordination). This leads to extremely uneven
supply to the WWTP, which in turn leads to high costs for chemical additives
and air injection. Moreover, at times three large pumping stations may be us-
ing the same pressurized line, which wastes energy as well. Ideally, the flow to
the WWTP should be approximately constant, the number of pump starts and
stops should be limited, and the sewage in local sewer systems should not be
stationary for long periods to avoid silting up of the pipes. The pumping stations
themselves cannot deliver all flows between 0 and their maximum capacity, there
may be “holes” in the flow range. In fact some of them may be limited to on/o↵
operation, so this has some of the properties of a mixed integer problem. More
information on the design and operation of Dutch combined sewer systems can
be found in [2].

2 Abstract problem formulation

We have m reservoirs and an n time step inflow forecast for each reservoir. Time
step length is �t, tk is the start of time step k. For each reservoir there is a time
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dependent regulated outflow. We introduce the following functions (lower case:
scalars or vectors, upper case: closed finite intervals):

vi (t) volume stored in reservoir i at time t, non-negative real number;
⌧i (t) time since last state change of pumping station i;
⌧
e,i (t) time since reservoir i was last considered empty;
Vi (k) limits on storage use for reservoir i at tk, a non-negative, non-empty real

closed finite interval;
v
e,i level for which reservoir i is considered empty;
q
in,i (t) actual inflow into reservoir i at time t, non-negative real number;
q
fc,i (k) average inflow into reservoir i forecast for time step k, non-negative real

number;
ci number of di↵erent flow ranges available for pumping station i, ci 2 N, ci > 0;
Ci (k) set of flow ranges accessible to pumping station i in time step k, integer,

{0} ✓ Ci (k) ✓ {0, 1, . . . , ci};
j
out,i (t) actual flow range in use for pumping station i at time t, this is a piece-

wise constant function;
ji (k) selected flow range for pumping station i for time step k, non-negative

real number;
Qi,j (k) with j = 0, 1, 2, . . . , ci (k) � 1, non-negative, non-empty disjoint real

closed finite intervals, for all i and k we have Qi,0 (k) = [0, 0] which is used
when the pump is o↵;

q
out,i (t) actual discharge from pumping station i at time t;
qi (k) discharge setting for pumping station i for time step k, non-negative real

number;
⌧
min,i minimum time between pump range switching moments for pump at reser-

voir i;
⌧
e,max,i maximum time between times that vi (t)  v

e,i (k) for reservoir i;
Q

tgt

(k) range of allowed total flows to the WWTP in time step k.

3 Problem to be solved

The simplest version of the problem is the following. Given the initial state
vi
�
t�
0

�
, ⌧

e,i

�
t�
0

�
, ⌧i

�
t�
0

�
, j

out,i

�
t�
0

�
for i = 1, 2, . . . ,m; fixed parameters ⌧

min,i,
v
e,i for i = 1, 2, . . . ,m and the constraints up to the time horizon, q

in,i (k), Ci (k),
Qi,j (k), Qtgt

(k) for i = 1, 2, . . . ,m and k = 0, 1, . . . , n�1. The constraint Vi (k)
is available for i = 1, 2, . . . ,m and k = 0, 1, . . . , n. Assume that vi

�
t�
0

�
2 Vi (0).

Determine ji (k) and qi (k) for i = 1, 2, . . . ,m and k = 0, 1, . . . , n� 1 such that

ji (k) 2 Ci (k) , qi (k) 2 Qi,ji (k)

mX
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qi (k) 2 Q
tgt

(k)

vi (tk+1
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and as “soft” constraints
⌧
e,i (tk+1

)  ⌧
e,max,i

⌧i (tk) < ⌧i (tk+1

) or ⌧i (tk) � ⌧
min,i

where for tk < t  tk+1

vi (t) = vi (tk) + (t� tk) (qin,i (k)� qi (k))

⌧i (t) =

(
(t� tk) : ji (k) 6= ji

�
t�k

�

⌧i (tk) + (t� tk) : ji (k) = ji
�
t�k

�

⌧
e,i (t) =

8
><

>:

0 : vi (t)  v
e,i

t� t
last empty

: vi (t)  v
e,i and vi (t) > v

e,i

⌧i (tk) + (t� tk) : vi (tk) > v
e,i and vi (t) > v

e,i

So we have 2 ⇥ (5 + 1) inequalities per time step (2 for total discharge and
2 per pumping station for storage) and 5 variables (the discharges) per time
step. These variables might be either integer or continuous or continuous with
gaps in the allowed value range. In addition we have the soft constraints on run
times and on emptying the system. For a simplified problem without run time
or emptying constraints with on/o↵ pumps, a 15 minute time step and 24 hour
look-ahead we get 1152 inequalities for 480 binary variables.

4 Typical input data

In the Garmerwolde case there are five pumping stations. The inflow exhibits a
roughly periodic sinusoidal pattern with a length of 24 hours with a minimum
around 6 AM. Time step length is 15 minutes. Minima and maxima for the
inflow patterns are given in Table 1. Note that the dry weather hourly inflows

Pumping station min max
m3/h m3/h

Groningen (GR) 454 1179
Selwerd (SE) 126 423

G. Huizinga (GH) 144 600
Haren W. (HW) 80 155
Lewenborg (LE) 2 335

Table 1. Minima and maxima of hourly inflow

for all but Groningen are always below the minimum pumping capacity. Tow
examples for the V and Q intervals are given in Table 2. A typical target flow
range would be Q

tgt

= [1700, 2200]. Even with O (10) possible combinations of
pumps per time step, the number of possible selections in the unconstrained
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Pumping station Volumes (m3) Pumps (m3/h)
ve,i Example 1 Example 2 Example 1 Example 2

Groningen (GR) 1000 [95,3957] [95,6800] [1800,2200] [1000,4250]
Selwerd (SE) 121 [38,296] [38,3200]] [1620,1980] [1060,2000]

G. Huizinga (GH) 176 [150,300] [150,4900] [330,400] [1600,3280]
Haren W. (HW) 27 [22,50] [22,1378] [1020,1320] [300,1200]
Lewenborg (LE) 30 [9,239] [9,4100] [1440,1760] [550,1900]

Table 2. Data used in program

problem with 15 minute time step and 24 hour look ahead is O
�
1096

�
. For the

problem with variable flows there is the added complexity of selecting the flow
for each pump. If the pumps were simple on/o↵ pumps then fitting them into
the range of target flows would be remarkably like the two dimensional cutting
stock problem [1]. The problem also has points in common with the problem
addressed in [4], but that approach does not allow for variable part supply rates.
A result on the existence of solutions for a very special case is discussed in [3].

5 A simple greedy algorithm

We do a depth first search for a path of length n in a tree where the nodes
correspond to system states at times tk and the edges correspond to choices
of flow ranges. At each node we generate all possible combinations of pump
flow states, filter out those that are certain to lead to volume or target flow
constraint violations, order the remainder so that we will first try those, that
respect both “minimum run time” and “time since empty” constraints, then
those that respect only “minimum run time”, followed by those that respect
only “time since empty” and finally those that do not respect either of these
constraints. Within each group the flow state combinations where the pumps for
districts furthest from empty are active are taken first. The first path to reach
the horizon is used. For the selection of flow ranges in the first step along the
path specific discharges are calculated. The main purpose of the search is to cope
with the periodic variation in the inflow. Once a path is found the selection of
flow ranges for the first step needs to be translated into actual pump flows.

5.1 Implementation with interval arithmetic

For narrow pump ranges Q and a narrow target range it makes sense to work in
interval arithmetic for the system state. For wide ranges further investigations
are needed. For narrow ranges we proceed as follows.

V
fc,i (t0) = vi

�
t�
0

�
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A time step is processed as follows. For each j 2 C
1

(k)⇥ C
2

(k)⇥ · · ·⇥ Cm (k)
we apply the following accept/reject process. We calculate

Q00
ji (k) =

✓
Vi (k + 1)� V

fc,i (tk)

�k

◆
\Qji (k)

Q0
ji (k) = Q00

ji (k) \

0

@Q
tgt

(k)�
mX

u=1,u 6=i

Qju (k)

1

A

and then test

1.
�Pm

i=1

Q0
ji (k)

�
\Q

tgt

(k) 6= ;
2.

�
V
fc,i (tk) +�kQ

0
ji (k)

�
\ Vi (k + 1) 6= ;

If both tests then we define

V
fc,i (t) =

�
V
fc,i (tk) + (t� tk)Q

0
ji (k)

�

V
fc,i (tk+1

) =
�
V
fc,i (tk) + (t� tk)Q

0
ji (k)

�
\ Vi (k + 1)

Next we calculate ⌧i (t) as before, but we set

⌧
e,i (t) =

8
><

>:

0 : v
e,i 2 V

fc,i (t)

t� t
last empty

: v
e,i 2 V

fc,i (tk) and V
fc,i (t) > v

e,i

⌧i (tk) + (t� tk) : V
fc,i (tk) > v

e,i and V
fc,i (t) > v

e,i

6 Plans

First trials with the algorithm showed a potential problem with sedimentation
due to long stays of sewage in the urban sewer system. Probably a slowly varying
target flow (changes of up to 100m3/h per hour will not adversely a↵ect the
WWTP) would be a better option. Interval arithmetic is probably desirable as
we are constantly checking constraints on calculated values, but it might be a
good idea to preselect much narrower intervals for the calculation of V

fc,i (tk+1

)
from V

fc,i (tk).
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