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Abstract

Intense precipitation can have extensive economic outcomes, from disrupting outdoor
activities to causing severe infrastructural damage, such as landslides, and endan-
gering public safety. The urgency to mitigate these impacts underscores the need for
improved early warning systems. Enhanced short-term weather prediction, or now-
casting, is critical for addressing these severe weather events effectively. Traditional
meteorological forecasting methods, while foundational, are often constrained by sim-
plistic physical assumptions and fail to capture the complex, nonlinear patterns of in-
tense weather events. Thesemethods also struggle with high computational demands
and lack the resolution needed to detect crucial microscale atmospheric phenomena
for accurate short-term forecasts.

To address these challenges, this research introduces a novel deep learning approach
utilizing a streamlined architecture that combines a Vector Quantized Variational Au-
toencoder (VQVAE) and an Autoregressive (AR) Transformer. This model aims to pre-
dict weather conditions up to 180 minutes ahead, using data analyzed at 30-minute
intervals. The proposedmodel displays comparable performance with the state-of-the-
art conventional methods and other deep learning nowcastingmodels in predicting pre-
cipitations and sometimes extreme events. This study seeks to enhance forecasting
accuracy and efficiency, providing valuable contributions to the field of meteorological
nowcasting.
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1
Introduction

1.1. Background
Intense precipitation can have extensive economic outcomes, starting with its impact
on outdoor activities, leading to event postponements or cancellations. This disrup-
tion extends to ground transportation delays, flight cancellations, power station inter-
ruptions, and marine service terminations. Additionally, such precipitation can dev-
astate agricultural crops, escalating economic pressures. As precipitation intensity
increases, the consequences transition from merely disrupting events to posing sub-
stantial risks to infrastructure, including landslides, endangering public safety, and, in
severe instances, threatening human lives.

To mitigate these far-reaching consequences, the implementation of an early warn-
ing system becomes crucial. Such a system, exemplified by Weather Nowcasting,
empowers governments and responsible entities to take timely action and prevent
hazards. Nowcasting predicts rainfall intensities over a specific region for a short pe-
riod, typically up to 6 hours, serving as a vital tool for proactive disaster management.

The variability of weather phenomena across spatial scales, ranging from global to
synoptic, mesoscale, and microscale in descending order of size, presents a complex
challenge for meteorological forecasting. Numerical Weather Prediction (NWP) con-
stitutes the primary methodology for weather prediction, relying on sophisticated math-
ematical models to simulate atmospheric and oceanic conditions. However, NWP en-
counters notable limitations. Firstly, its computational demands are substantial due
to the intricacy of the mathematical algorithms employed. Additionally, NWP exhibits
constraints in temporal and spatial resolution, limiting its ability to detect microscale
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1.2. Research: Motivation and Goal 2

phenomena essential for short-term forecasting, such as convective patterns crucial
for rainfall prediction. Despite advancements in computing technology enhancing
NWP’s resolution in recent times, it remains inferior to the precision attained by now-
casting systems. This deficiency may arise from the chaotic nature of the atmosphere,
posing inherent challenges to its mathematical representation. To address this gap,
radar-extrapolation techniques have emerged. These methods utilize radar obser-
vations of the current atmospheric state to predict future weather conditions. They
offer the advantages of simpler models, higher resolution, and enhanced forecast-
ing accuracy within the first few hours (typically less than 6 hours). Currently, radar-
extrapolation approaches remain essential components of the majority of operational
nowcasting systems.

In recent years, researchers have incorporated deep learning models into nowcasting
tasks. These advanced models, akin to traditional approaches, predominantly lever-
age radar precipitation fields to represent weather conditions and forecast future pre-
cipitation patterns. Among the pioneering models is ConvLSTM by Shi et al.[1], which
treats nowcasting as a video prediction task, employing convolution within LSTM to
simultaneously capture spatial and temporal features. Another approach treats now-
casting as an image transformation task, utilizing the U-Net structure. The success of
deep generative models like GAN and VAE in various fields has inspired researchers
to integrate them into nowcasting. For instance, DeepMind (Google) [2] developed
a conditional GAN model for nowcasting purposes, aiming for predictions within the
90-120 minute timeframe. Additionally, Bi et al.[3] in 2023 implemented a VQGAN
model with an EVL loss function, focusing on extreme precipitation nowcasting. The
work of Bi et al. has served as a benchmark for subsequent research in this area.

Compared to traditional radar-extrapolation methods, deep learning models offer sev-
eral advantages. They are data-driven, flexible, and not constrained by explicit physics
requirements. Moreover, they possess superior non-linear modeling capabilities facil-
itated by the use of activation functions, crucial for capturing complex weather events
like convection initiation. However, challenges such as blurry results and interpretabil-
ity persist in deep learning nowcasting, setting it apart from other well-established
deep learning tasks.

1.2. Research: Motivation and Goal
Despite these advancements, Nowcasting still faces challenges in delivering precise
and efficient short-term weather predictions. Traditional NWP models often fall short
within the crucial zero to two-hour forecast window due to their high computational
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load and coarse resolution. Similarly, radar-based methods can oversimplify atmo-
spheric dynamics, missing transient details crucial for accurate predictions.

Deep learning presents a promising solution. Models like ConvLSTM and UNet have
shown potential in leveraging large datasets to discern complex atmospheric behav-
iors. However, these models often produce overly smooth forecasts lacking fine detail,
primarily due to their reliance on Mean Squared Error (MSE) for loss calculation.

Recent studies, including the work by Bi et al. [3], have shown that adversarial training
can significantly enhance the realism and sharpness of nowcasting predictions. In-
spired by these advances, this thesis aims to develop a novel deep generative model
using a streamlined architecture that incorporates a Vector Quantized Variational Au-
toencoder (VQVAE) and an Autoregressive (AR) Transformer. This model is designed
to improve upon both computational efficiency and forecasting accuracy.

The goal is to predict weather conditions up to 180 minutes ahead using data from
the preceding 90 minutes, analyzed at 30-minute intervals. The project will focus
on optimizing the VQVAE for effective data representation and experimenting with
various transformer configurations to refine the model’s predictive capabilities. The
effectiveness of the model will be evaluated comprehensively across different regions
and scales within the Netherlands.

1.3. Thesis Outline
This thesis explores the complexities of nowcasting using deep learning and genera-
tive models, systematically building on the knowledge from each chapter to conduct
a comprehensive evaluation of the proposed model.

1. Chapter 2 : provides a thorough examination of existing nowcasting methods. It
traces developments from traditional Numerical Weather Prediction (NWP) and
radar-based techniques to cutting-edge deep learning models, assessing their
strengths and limitations. The chapter also delves into the latest advancements
in generative models for nowcasting, setting the stage for the methodologies
introduced in this research.

2. Chapter 3: delves into the specifics of the dataset obtained from the Royal
Netherlands Meteorological Institute (KNMI). It encompasses a detailed exam-
ination of data preprocessing techniques and provides a statistical analysis of
the dataset to understand its characteristics better. Additionally, it outlines the
criteria and process for selecting meteorological events relevant to the study.
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The chapter concludes with a comprehensive discussion on how the data is di-
vided into training, validation, and testing sets, ensuring robust model training
and evaluation.

3. Chapter 4: presents the theoretical foundations and practical aspects of the
deep generative model used in this thesis. It elaborates on the basic principles
and functionalities of the Vector Quantized Variational Autoencoder (VQVAE)
and the Autoregressive (AR) Transformer. The discussion extends to a detailed
examination of the loss functions used for training these models. Furthermore,
the chapter explains how these models are combined and fine-tuned, illustrat-
ing their collaborative effectiveness in improving the precision and efficiency of
nowcasting predictions.

4. Chapter 5: introduces the comprehensive set of evaluation metrics used to as-
sess the accuracy of weather predictions generated by the VQVAE and AR
Transformer models. The evaluations focus on the Netherlands, specifically tar-
geting the entire region and the catchment areas.

5. Chapter 6: presents a detailed analysis of various Transformer configurations,
exploring their effectiveness at both the national and catchment levels. It in-
cludes an in-depth study of the attention mechanisms within the models, provid-
ing insights into how these mechanisms influence the predictive accuracy of the
nowcasting models.

6. Chapter 7: offers a detailed examination of the findings, placing the results in
the context of established nowcasting technologies such as PySteps and Nuwa-
Pytorch. It evaluates the strengths and shortcomings of the proposed approach
relative to these models, with a comparative analysis that encompasses results
from both the entire Netherlands region and specific catchment areas.

7. Chapter 8: concludes by summarizing the key findings and contributions of the
research. It also outlines potential future directions for extending the work, in-
cluding integration with other meteorological forecasting systems and exploring
new generative model architectures.



2
Literature Review

2.1. Introduction

In this chapter, we embark on a comprehensive exploration of nowcasting methods,
tracing the evolution from traditional approaches to the forefront of modern technolog-
ical advancements. We begin with a deep dive into traditional methods like Numerical
Weather Prediction (NWP) and radar-based techniques, assessing their strengths and
limitations. Subsequently, we transition into sophisticated deep learning approaches
that leverage large datasets to capture complex atmospheric dynamics more effec-
tively. By critically analyzing these methodologies, this literature review aims to lay a
solid foundation for understanding the current capabilities and identifying future direc-
tions in meteorological forecasting.

2.2. Traditional nowcasting methods

Numerical Weather Prediction
Numerical Weather Prediction (NWP) models serve as the foundation of meteorologi-
cal forecasting, employing complex mathematical formulations to predict atmospheric
dynamics. While these models possess the ability to generate forecasts across var-
ious timescales and demonstrate comprehensive capabilities, they demand substan-
tial computational resources and often exhibit limitations in very short-term forecasts,
particularly within the zero to two-hour window [4]. This scenario underscores a crit-
ical trade-off in operational meteorology: balancing the demand for quick, accurate
forecasts with the computational demand imposed by NWP models.

5
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Radar-Based Approach: Euler and Lagrangian Persistance Methods
To tackle this challenge, radar-based approaches present a practical solution, allevi-
ating the computational load associated with NWPs. These methods predominantly
rely on the assumption of a steady-state condition in atmospheric advection fields to
forecast precipitation dynamics. However, this simplification of the forecasting pro-
cess comes with the risk of overlooking transient and dynamic atmospheric variables
that significantly influence precipitation patterns.
Within the framework of these radar-based strategies, Eulerian and Lagrangian per-
sistence (as highlighted by Germann et al. [5]) play pivotal roles. The Eulerian model
assumes that the future precipitation state at a specific position x and future time t0+τ

will mirror the most recent observations at the initial time t0, as represented by Equa-
tion 2.1.

Ψ̂(t0 + τ, x) = Ψ(t0, x) (2.1)

Conversely, the Lagrangian perspective operates under the assumption that air parcels
maintain a consistent state, attributing any alteration in the precipitation field solely to
the background flow [5]. As described in equation 2.2, the future state of precipitation
at a specific location (x) and time (t0+τ ) is influenced by the properties of air parcels at
a previous position (x−λ) as well as the initial time (t0). Most radar-based nowcasting
methods are based on the Lagrangian persistence method.

Ψ̂(t0 + τ, x) = Ψ(t0, x− λ) (2.2)

Although Lagrangian persistence has established itself as a pillar in precipitation
nowcasting, its assumptions often fall short when predicting the actual movement of
precipitation. To improve the accuracy of nowcasting models, there is a shift towards
integrating probabilistic and stochastic methods. These approaches not only consider
the advection process but also introduce uncertainty into the forecasts, providing more
adaptable approach to Lagrangian persistence by accommodating variations within
the advection field.

PySTEPS
Introducing PySTEPS, an open-source library for radar-based nowcasting [6], com-
bines the optical flow method with advanced extrapolation techniques in an integrated
manner. The optical flowmethod typically involve two key stages: first, the motion field
is inferred from the observed data, and then the recent observations are extrapolated
forward along the motion field to generate a forecast.
PySTEPS presents two methodologies: daterministic method which employs the S-
PROG algorithm (Spectral PROGnosis) and the probabilistic method which utilizes the
STEPS algorithm (short-term ensemble prediction system). STEPS integrates now-
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casting results with downscaled NWP (Numerical Weather Prediction) outcomes. The
workflow of the Pysteps follows same configuration as mentioned in [[6]]. In particular,
PySTEPS operates in the following manner:

1. Analyze radar composites, convert radar reflectivity data into rainfall measure-
ments (mm/h), and then apply a logarithmic transformation to represent the
results on a dB scale.

2. Employ the optical flow method to estimate the motion of precipitation, capturing
both velocity and direction.

3. Incorporate an advection scheme to extrapolate the position and intensity of
precipitation fields, thereby enhancing predictions for short-term timescales.

4. Utilize Fast Fourier Transform (FFT ) to decompose the rainfall field into a multi-
plicative cascade, where each level represents a distinct spatial scale and rain-
fall intensity.

5. Compute the auto-correlation matrix for each level of the cascade, then derive
parameters for an AutoRegressive (AR) model using Yule-Walker equations. Ap-
ply this model over time to address temporal changes and correlations within the
precipitation structure. The AR model is expressed as follows:

Rj(x, y, t) = ϕj,1Rj(x, y, t−∆t) + ϕj,2Rj(x, y, t− 2∆t) (2.3)

Here, R denotes the radar map, (x, y, t) represents coordinates, ϕj indicates the
model parameter, and j signifies the number of cascade levels.

6. Introduce stochastic perturbations to the AR models and advection field to ac-
commodate uncertainties in rainfall intensities and motion fields.

7. Reassemble the cascade by integrating the AR model and stochastic perturba-
tions to generate the result of the nowcasting ensemble.

PySTEPS represents a significant advancement in nowcasting, it bridges the gap be-
tween the need for rapid, computationally efficient forecasts and the forecast accuracy
taking into account the meteorological complexity. By providing a probabilistic frame-
work and allowing for the incorporation of ensemble techniques, PySTEPS not only
addresses the deterministic limitations of the Eulerian and Lagrangian models but also
provides a platform for the continual refinement and evolution of nowcasting capabil-
ities [6]. Recently adopted by Royal Netherlands Meteorological Institute (KNMI) as
their new operational nowcasting system, STEPS will also serve as the benchmark
for this thesis project, providing a well-established and robust point of comparison.
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2.3. Deep-learning nowcasting methods

The unpredictable and rapidly changing conditions of the atmosphere present signifi-
cant challenges to traditional nowcasting methods. Eventhough the NWPmodels and
radar-based extrapolation techniques constitute the foundation of weather forecasting,
they often struggle with the real time prediction of short term precipitation due to their
reliance on complex mathematical equations and forecasting advection fields. These
traditional approaches are constrained by assumptions that do not fully account for the
atmospheric dynamic, leading to inaccuracies in predicting sudden weather changes.
Furthermore, the extensive computational resources and prolonged processing times
required by these methods hinder their effectiveness in nowcasting scenarios , where
forecasts need to be both timely and accurate.
Deep learning models stand out as a superior alternative for meeting the demands of
nowcasting, thanks to their unparalleled ability to process and learn from extensive
datasets. These models excel in identifying complex, nonlinear relationships among
atmospheric variables, surpassing the predictive capabilities of traditional methods
that depend heavily on extrapolating from historical data. Deep learning’s proficiency
in processing large volumes of data rapidly addresses the critical computational limi-
tations in NWP and enhances the accuracy of nowcasting, offering a powerful tool to
navigate the complexities of the atmosphere.

Spatio-Temporal Models
Predicting rainfall precipitation presents a complex challenge that involves spatial-
temporal modeling, necessitating an approach adept at handling both the spatial dis-
tribution and the temporal evolution of precipitation patterns. Given their strengths in
temporal modeling and time series prediction, Gated Recurrent Units (GRU) and Long
Short-Term Memory (LSTM) networks, both variants of Recurrent Neural Networks
(RNN), are particularly promising for weather forecasting. Notably, LSTMs feature a
unique gating mechanism that retains and utilizes information over prolonged periods,
aiding in modeling the intricate dependencies crucial for accurate weather forecasting
across both time and space. In response to this challenge, Shi et al. [1] introduced
ConvLSTM, the first deep learning method employed in precipitation nowcasting.

The innovative aspect of ConvLSTM lies in its approach in treating nowcasting similar
to video prediction by replacing the fully connected layers (typical of standard LSTMs)
with convolutional layers. This modification allows the model to process radar images
as 3D tensors, applying convolution across different kernel sizes to the input images.
This approach enables the extraction of both spatial and temporal features essential



2.3. Deep-learning nowcasting methods 9

for accurate precipitation forecasting.

ConvLSTM has established itself as a foundational architecture for research into deep
learning models for nowcasting. Based on this, a novel model known as Trajectory
GRU ([7]) has been developed, which is proficient at learning structures that change lo-
cation over time. Unlike ConvLSTM, Trajectory GRU is capable of aggregating states
along dynamically learned paths. Moreover, recent advancements include the inte-
gration of attention and context matching mechanisms to enhance the model’s long-
term forecasting capabilities and interpretability. Studies indicate that these enhanced
models surpass the original ConvLSTM in nowcasting accuracy when evaluated using
Mean Squared Error (MSE) metrics.

UNet Models
Instead of using LSTM and Trajectory GRU, which view weather forecasting as a task
of predicting spatio-temporal patterns, some researchers approach nowcasting from
a different angle by viewing it as a form of image-to-image translation. To tackle this,
researchers employ well-known UNet architecture, recognized for its convolutional
neural network (CNN ) design and characteristic ”U ” shape. UNet processes either
a single radar image or a sequence of radar images to produce a single predictive
image. However, due to the absence of a dedicated memory component in UNet, the
prediction process occurs recursively.

Furthermore, researchers have explored enhancements to the fundamental UNet ar-
chitecture to improve its forecasting accuracy and operational efficiency. One no-
table advancement is the development of SmaAtUNet [8], which incorporates atten-
tion mechanisms and depthwise separable convolutions. This model utilizes Con-
volutional Block Attention Modules (CBAMs) to sequentially prioritize channels and
spatial regions of input images, leading to more effective feature extraction. Remark-
ably, despite having only a quarter of the parameters of UNet, SmaAtUNet achieves
performance that is approximately similar [8].

Incorporating attention mechanisms expands the opportunities for developing new,
innovative models. Bojesomo et al[9] introduced a model that utilizes the 3D Swin
Transformer within a UNet framework. This model incorporates essential elements
such as patch merging, expanding layers, and a multistage encoding process with the
Swin Transformer. The Swin Transformer employs a localized self-attention mecha-
nism, focusing on specific features before shifting its attention to capture a wide range
of interactions. Additionally, the decoder employs a cross-attention mechanism to in-
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tegrate the encoder’s output with its input, significantly enhancing the model’s ability
to synthesize information across different stages of processing.

In comparison to spatio-temporal networks, UNet models offer greater adaptability
to the forecast period, which can potentially improve the accuracy of short-term fore-
casting. Additionally, UNet benefits from a simpler and more straightforward training
process. However, concerns have been raised about the recursive nature of this fore-
casting method, as it may lead to increased error accumulation over longer forecast
periods [10].

2.4. Deep-Generative methods

Deep learningmodels have demonstrated potential in improving nowcasting accuracy;
however, these models often produce blurred forecasts when extending the prediction
period. This blurry effect primarily stems from the use of mean square error (MSE) as
a loss function, which encourages models to average all possible outcomes. While
these models perform well in predicting low rainfall intensities, their effectiveness di-
minishes for high-intensity rainfall events. Furthermore, most existing deep learning
approaches are limited as they focus on specific locations and temporal resolutions,
rather than providing probabilistic forecasts that cover entire precipitation fields. This
lack of generalizability significantly constrains their operational utility, as they fail to
deliver consistent predictions across diverse spatial and temporal scales.

In contrast, deep generative models present a robust alternative to traditional forecast-
ing methods, excelling at learning the probability distributions of data. These models
generate forecasts based on current radar observations and are capable of delivering
skillful probabilistic predictions, potentially overcoming the limitations of conventional
deep learning techniques. Generative Adversarial Networks (GANs) [11] play a crucial
role in this advancement by enhancing the accuracy and realism of weather predic-
tions. The adversarial training within GANs is particularly effective in generating more
detailed predictions and capturing a broader range of meteorological phenomena.

The GA-ConvGRU model, developed by Tian et al. [12], integrates Generative Adver-
sarial Networks (GANs) with a convolutional Gated Recurrent Unit (convGRU) gener-
ator, supplemented by a discriminator consisting of five CNN layers (shown in figure
2.1). Employing an encoder-decoder architecture, the system analyzes sequences of
radar images for weather forecasting.
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Figure 2.1: A schematic diagram of the model GA-ConvGRU [12]

The generator employs a multistep approach to forecast future frames. Initially, the
input sequence undergoes multiple downsampling stages, followed by ConvGRU pro-
cessing. This encoding process enables the model to compress information into ab-
stract hidden representations, facilitating a more compact representation of the input
data.
During the decoding phase, the decoder module begins by generating a predicted
image sequence. This process starts with feeding the last hidden state into the corre-
sponding ConvGRU unit, followed by applying an upsampling operator to produce the
initial prediction. Subsequently, the outputs from each upsampling stage are subject
to iterative refinement. During this refinement, the outputs are integrated with hidden
states from the corresponding downsampling stage. This iterative process, guided by
spatial and temporal information encoded in the hidden representations, facilitates the
accurate prediction of future frames. Additionally, it progressively enhances the level
of detail captured in the forecasted images.
The discriminator functions as a binary classifier and plays a crucial role in differen-
tiating between synthetically generated sequences and actual observational data. It
evaluates ten pairs of sample images; each pair consists of a predicted image along-
side its corresponding real radar observation. The goal is to accurately identify which
images are real.
The comprehensive loss for the GA−ConvGRU model, denoted as Ltotal, merges the
mean square error loss with the adversarial loss (eq:2.4)[12]. This adversarial train-
ing strategy allows the generator to overcome the inherent limitations of mean square
loss, resulting in predictions that are both more precise and realistic.

Ltotal = LMSE +min
G
max
D

V (D,G) (2.4)
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Building upon this foundation, Jing et al. introduced the Adversarial Extrapolation
Neural Network (AENN ) model [13]. The AENN model employs a GAN framework
that features a conditional generator with an encoder-decoder architecture. Initially,
the encoder transforms input radar images into a feature space, effectively captur-
ing spatial attributes.These features are then processed by a ConvLSTM to model
temporal dynamics and forecast future states. The forecasts are subsequently con-
verted back into image format by the decoder. The model utilizes two discriminators:
one evaluates individual frames (echo-frame discriminator), and the other assesses
the sequence as a whole (echo-sequence discriminator). Notably, the AENN model
demonstrates remarkable proficiency in forecasting radar echoes with detailed texture.
However, it does exhibit a reduction in predictive accuracy with longer forecast dura-
tion.

Beyond the GA-ConvGRU and AENN models, numerous deep generative models
have emerged to enhance radar-based weather forecasting. Ravuri et al. [2] intro-
duced the Deep Generative Model for Radar (DGMR), which integrates two discrim-
inators and a regularization term into its training process. The DGMR model shows
improvements in location accuracy, capturing small-scale weather phenomena, main-
taining statistical properties of precipitation, and reducing blurry predictions. However,
it faces challenges in accurately predicting heavy rainfall intensity over extended lead
times or during extreme precipitation events.

Addressing the challenge of predicting high-intensity rainfall, Bi et al. [3] proposed
the Vector Quantization Generative Adversarial Network with Transformer (V QGAN+

Transformer). This model (2.2) incorporates a Vector Quantized Variational Auto-
encoder (V QV AE) to compress radar data into a latent space representation, along
with a spatial discriminator and an auto-regressive transformer (AR − transformer).
The attention mechanism used in the transformer, known as 3DNA, is well-suited
to the inherent 3D data structure of radar observations. To handle extreme weather
events, Bi et al. introduced the concept of an extreme value loss (EV L), based on
the extreme value theory, which emphasizes the accurate prediction of rare but cru-
cial events. By integrating EV L with the cross-entropy loss of the transformer, the
V QGAN + Transformer model enhances its ability to handle data imbalances and
focus on rare events, thereby improving overall forecasting performance.
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Figure 2.2: A schematic diagram of the model VQGAN [3]

Climax [14] extends the transformer architecture with vector tokenization and aggrega-
tion blocks to handle heterogeneous data with varying spatial and temporal resolutions.
In this model, vector tokenization divides input variables into patches and linearly em-
beds them into vectors, which provides flexibility but can lead to high computational
complexity. To mitigate this, Climax employs variable aggregation, which reduces
sequence length by performing cross-attention for each spatial position. The model
utilizes a standard Vision Transformer (V iT ) to generate output tokens, followed by
a prediction head that outputs the final predictions. These enhancements improve
Climax’s capability to handle diverse climate data, making it versatile, adaptable, and
precise, even when dealing with different spatial and temporal resolutions.

These diverse approaches within the realm of deep generative models highlight on-
going efforts to address the challenges associated with radar-based weather fore-
casting. From enhancing spatial and temporal consistency to accurately predicting
extreme weather events, each model contributes unique insights and methodologies.
Together, they significantly advance the predictive capabilities of meteorology.

2.5. Conclusion

This chapter has reviewed the evolution of nowcasting methods, from traditional Nu-
merical Weather Prediction and radar-based techniques to advanced deep learning
and generative models. As we move forward, the next chapter will delve into data
analysis, focusing specifically on the radar images provided by the Royal Netherlands
Meteorological Institute (KNMI). This dataset will be pivotal in training and testing the
deep generative model, which is central to evaluating the effectiveness and efficiency
of these advanced forecasting techniques.



3
Data

3.1. KNMI Radar Dataset
Weather radars are utilized to monitor precipitation patterns. The Royal Netherlands
Meteorological Institute (KNMI) operates two advanced C-band weather radars, lo-
cated in Den Helder and Herwijnen. The latter replaced an earlier radar that was
operational in De Bilt until 2017 [15]. Equipped with dual-polarized technology, these
radars accurately gauge the initial radar reflectivity, denoted as Z, which quantifies
the amount of radiation reflected back at an altitude of 1500 meters.
Radar reflectivity is used to estimate the rainfall rate using a fixed Z-R transformation
equation [16], expressed as:

Zh = 200.R1.6 (3.1)

where Zh represents the radar reflectivity in (mm6/mm3), and R represents the rainfall
rate in (mm/hr). Intially, the radar reflectivity Zh is expressed in dBZ which can be
converted to mm6/mm3 using the formula 10log10(Zh).In this process, reflectivity be-
low 7dB (precipitation intensity 0.1mm/hr) are neglected and reflectivity above 55dB

(precipitation intensity 100mm/hr) are fixed at 55dB. Following the aforementioned
conversion process, the data becomes available as Quantitative Precipitation Esti-
mation (QPE) data on the KNMI website, where it is recognized as the RT dataset.
Figure 3.1 shows an example of an RT dataset over different time stamps.

14
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Figure 3.1: Radar maps of the real time dataset at three different time stamps.

KNMI provides an additional dataset known as the MFBS dataset, which exclusively
covers the Netherlands area. Figure 3.2 shows an example of the MFBS dataset at
different time scales. This dataset maintains the same temporal and spatial resolution
as the RT dataset. Calibration of the RT dataset utilizes data collected from 31 auto-
matic and 325 manual rain gauges. Despite the superior accuracy of the MFBS data
compared to the RT datasets, its update frequency is limited to monthly intervals due
to the substantial labor required for manual measurements. Consequently, the MFBS
dataset is employed primarily for event selection, whereas the RT dataset is utilized
for training and testing purposes.

Figure 3.2: Radar maps of MFBS dataset at three different time stamps.

The real-time (RT ) dataset contains radar images spanning the years 2008 to 2021.
These radar maps have dimensions of 765 × 700 pixels, with a spatial resolution of 1
km and a temporal resolution of 5 minutes. Figure 3.1 presents an example from the
RT dataset; it illustrates that a significant portion of the area displays unavailable data
(represented by the grey area). Within this image, a circular area with a radius of 200
km, centered around De Bilt, is populated with data. This circle encompasses regions
of the Netherlands as well as parts of Germany and Belgium. However, the primary
objective of this thesis is the nowcasting of precipitation within the Netherlands. There-
fore, the image is cropped to a size of 256 × 256 pixels, ensuring that it includes only
the Netherlands (an example shown in fig: 3.3).
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Figure 3.3: Radar maps of the real time dataset at three different time stamps cropped at the
Netherland Region.

3.2. Data Analysis
To analyze the rainfall distribution over the Netherlands area, a dataset was compiled
by consecutively sampling one radar image every hour from 00:00 on January 1,
2008, to 24:00 on December 31, 2014, resulting in a total of 60,000 images. The
frequency of various precipitation intensities was recordedwith a precision of 0.1mm/h.
The resulting data, detailed in 3.4a, offer a comprehensive overview of rainfall patterns
during the period.
For enhanced visualization, the data is presented in a histogram 3.4b. This histogram
reveals that over 94% of the recorded images show very light precipitation with inten-
sities less than 0.01mm/h, illustrating a predominance of low intensity rainfall events.
Precipitation with intensities of 1mm/h is less frequently observed, and instances of
rainfall exceeding 1mm/h are remarkably rare. This distribution underscores the oc-
currence of minimal rainfall in the Netherlands throughout the examined time frame.

Rainfall intensity X (mm/h) Percent
X ≤ 0.1 94.7%

0.1 < X ≤ 1 4.2%
1 < X ≤ 5 1.0%
5 < X ≤ 10 0.06%
X > 10 0.02%

(a) Percentage of occurrence for different rainfall intensity
thresholds.

(b) Distribution of Rainfall Intensity Across the Netherlands.

Figure 3.4: Rainfall Intensity Distribution in the Netherlands: The table delineates the percentage
occurrence of specified rainfall intensities, while the histogram visualizes the distribution of

precipitation intensities across the selected RT image dataset.
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To refine our analysis and the selection of significant events, it is crucial to examine
the precipitation distribution in catchment areas. These areas are prone to flooding
or water accumulation after periods of intense rainfall. Accurate monitoring of rainfall
levels in these zones is critical to provide early flood warnings. In this study, 12 Dutch
catchment areas will be analyzed. Their locations are illustrated in fig 3.5a, while their
detailed positioning on the MFBS is outlined in fig 3.5b.

(a) Netherland map with the illustration of the radars location in de Bilt and
Den Helder and the catchment locations.

(b) Figure illustrates the specific location of the catchments in
our MFBS dataset

Figure 3.5: The location of the catchment areas and their detailed positioning on the MFBS

In the catchment level analysis, we averaged the rainfall accumulation over three-
hour periods for each designated catchment area. This averaged data acts as the
primary indicator of rainfall intensities for these areas. For consistency, the radar
images analyzed were selected from the same period, 2008 to 2014, which aligns with
the comprehensive analysis period for the entire Netherlands region. Figure 3.6 shows
the statistical analysis of rainfall precipitation. It reveals that 91.1% of the catchment-
averaged precipitation corresponds to pixels with no to light rain (≤ 1mm/3hrs), 7.57%
corresponds to moderate rain ( 1mm/3hrs < averageintensity ≤ 5mm/3hrs ), and
1.33% corresponds to heavy rain (> 5mm/3hrs).

3.3. Event Selection
As mentioned earlier, the tedious process of manually collecting the measurements of
the MFBS data limits its real time availability to be used for training purposes. There-
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Figure 3.6: Distribution of Rainfall Intensities of the selected RT images based on catchment-level

fore, it will only be used for event selection. On the other hand, RT data will be used for
training purposes as it mimics real time events. In this thesis, an event within a catch-
ment is classified as extreme if it results in an average precipitation accumulation that
exceeds the catchment’s specific extreme threshold over a 3-hour period. To define
this extreme threshold for a given catchment, the following steps are undertaken:

1. Select a Catchment Area: Choose a specific catchment as the primary focus
for the study.

2. Event Classification: Determine whether each rainfall event is a non-rain event
(average precipitation < 0.1mm/3h) or a rain event ( average precipitation ≥
0.1mm/3h).

3. Rank and Define Extremes: Arrange the events by average precipitation and
identify the top 1% as extreme events, establishing the threshold for extremes
in that catchment.

Relying solely on extreme events (top 1%) does not provide a sufficient diverse
dataset to train a deep learning model. Therefore, events that fall within the top 5% of
precipitation, categorized as heavy rain events, are also included in the dataset. This
expanded dataset is systematically divided into three parts: training, validation, and
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testing purpose. The training dataset consists of 30632 events from 2008 to 2014; the
validation dataset includes 3453 events from 2015 to 2017; and the testing dataset,
focused exclusively on the extreme events (top 1%), contains 357 events from 2019
to 2021.



4
Methodology

This chapter explores the methodologies adopted to address the computational chal-
lenges of processing our radar dataset, which is fundamentally structured as 256×256

pixels. Due to the quadratic complexity of the attention mechanism, using a trans-
former for forecasting precipitation maps is computationally intensive. To tackle this,
our model incorporates two main components: the Vector Quantized Variational Au-
toencoder (VQ-VAE) and the transformer. The VQ-VAE crucially reduces the input
dimensions by learning discrete codes, making the computational process feasible.
We provide a detailed examination of the architecture, functionality, and integration of
the VQ-VAE and the AR Transformer, enhancing both the model’s efficiency and its
nowcasting accuracy. The complete model, illustrated in fig 4.1, demonstrates how
these components work in unison to effectively manage and interpret meteorological
data.

20
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Figure 4.1: VQVAE in a combination with an AR Transformer used in Weather Prediction

4.1. Vector Quantized Variational Autoencoder
In their pivotal work, van den Oord et al. [17] introduced the Vector Quantized Vari-
ational AutoEncoder (VQ-VAE), an approach that diverges from traditional autoen-
coders. Unlike typical autoencoders that encode data into a continuous latent space,
the VQ-VAE utilizes vector quantization, leveraging the distinct advantages of discrete
latent structures. This method leverages the unique benefits of discrete latent struc-
tures, which are exceptionally adept at navigating the complexities associated with
the spatial dimensions of data. The VQ-VAE architecture, illustrated in (figure 4.2),
employs a predefined codebook that transforms input data into a compact and inter-
pretable format. This approach significantly reduces the redundancy commonly asso-
ciated with pixel-level feature processing.

Figure 4.2: VQVAE Visualization
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The encoder-decoder configuration of the VQ-VAE is designed to optimize data repre-
sentation. The encoder progressively narrows the spatial dimensions while expanding
the feature channels; thereby compressing the data and reducing irrelevant informa-
tion. Each input is mapped into a discrete set of codebook entries, optimizing the
encoding process while maintaining critical data features. Subsequently, the decoder
reconstructs the input from these discrete codes, closely approximating the original
data. This encoding-decoding process does not only preserve the integrity of the data
but it also enhances its utility for practical applications such as image reconstruction.

When applying VQ-VAE to radar image processing, the first step is to encode the radar
image x (x ∈ RH×W ), to produce a latent representation ẑ (ẑ ∈ Rh×w×nz ) where: H

and W represent the height and width of the radar image, respectively; nz is the em-
bedding dimension; h and w are the spatial dimensions in the latent space.
This continuous latent space is then discretized into a set Z = {zk}Kk=1 of K discrete
codebook vectors, each with a dimension of nz.

Upon encoding, each element of ẑ is associated with the nearest codebook vector zk.
As a result, the radar image is generated as a set of discrete tokens (fig 4.3). It is worth
noting that the selection of codebook vectors depends on the unique characteristics
of each input image and the spatial dimensions output produced by the encoder.

Figure 4.3: VQ-VAE codebook Visualization

On the decoding side, discrete tokens serve as indices, each pointing to a specific
codebook vector in Z. These indices facilitate a lookup operation to fetch the corre-
sponding vectors. The decoder utilizes these vectors to reconstruct the image, em-
ploying a series of strategic transformations and decisions to optimally combine the
codebook vectors. The objective is to recreate an output that not only closely approxi-
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mates the original input but also captures its essential characteristics with high fidelity.

To train the VQ-VAE model, a set of distinct loss functions are harnessed and opti-
mized. These loss functions (eq: 4.1) encompass the reconstruction loss, the code-
book loss, the commitment loss, and the perceptual loss.

L(E,D,Z) = ∥x− x̂∥1 + ∥sg[E(x)]− zq∥22 + ∥sg [zq]− E(x)∥22 + Lperceptual(x,D(z))

(4.1)

where:
zq = q(ẑ) :=

(
argmin

zk∈Z
∥ẑij − zk∥

)
∈ Rh×w×nz

q(·) is the element-wise quantization of each spatial code ẑij ∈ Rnz ,

ẑ = E(x) ∈ Rh×w×nz ,

x̂ = D(zq),

and zq is obtained using the encoder.
The reconstruction x̂ ≈ x is then given by

x̂ = D (zq) = D(q(E(x))).

The reconstruction loss is the difference between the reconstructed image (obtained
from the discrete latent codes) and the original input data. The main goal of the recon-
struction loss is to urge the decoder to produce reconstructions that closely align with
the original data. During back-propagation, the gradients of the reconstruction loss is
calculated with respect to zq. This involves applying the chain rule to propagate the
gradients backward through the decoder.

In dealing with the non-differentiable mapping from ze to zq, the Straight-Through Es-
timator, known as Copying Gradients, comes into play. This estimation technique
involves copying the gradient from the decoder’s input back to the encoder’s output
(∇(ze) = ∇(zq)), allowing the encoder to receive an approximate gradient that would
be obtained if the quantization step were differentiable. The encoder parameters are
updated using the commitment loss (third term in equation (4.1)), where zq is treated
as a constant. The commitment loss forces the encoder to adhere to a specific em-
bedding, by minimizing the distance between the encoder outputs and the selected
embedding vectors. It also imposes penalties on the encoder outputs if they drift too
far from their assigned embeddings, ensuring that minor fluctuations in ze do not lead
to changes in the quantized outputs zq.
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Separately, the embedding vectors are updated using the VQ loss (the second term in
(4.1). This loss is differentiable with respect to the embedding vectors. It encourages
the discrete latent codes to be close to the embedding in the code-book and measures
how well the latent codes match the nearest embedding vectors.

Inspired by Esser et al. [18] and Micheli et al. [19] where perceptual loss is effectively
combined with commitment and reconstruction losses to train VQ-VAE, our model
adopts a similar approach. We utilize a pretrained V GG-16 network, originally trained
on the comprehensive Image-Net dataset as documented by Johnson et al. [20], to
compute the perceptual loss. This network is crucial for its proven ability to extract and
analyze high-level features from images, which is essential for evaluating perceptual
similarity.
During the training of our VQ-VAE, both the target images (x) and the generated im-
ages (x̂) by the VQ-VAE are fed into the unchanged (frozen) V GG-16 network, as
illustrated in figure 4.4. This network serves as a fixed feature extractor, producing
feature maps from its intermediate layers for each image pair. Perceptual loss is
then calculated based on these feature maps, emphasizing differences in textures,
shapes, and general patterns, which offers more detailed measure of similarity than
simple pixel-by-pixel accuracy.

Figure 4.4: perceptual loss

The mathematical formulation of perceptual loss used in our training process is ex-
pressed as follows:

Lperceptual(x̂, x) =
1

CjHjWj

∥ϕj(x̂)− ϕj(x)∥2 (4.2)

Here, x̂ represents the output image; x denotes the target image; ϕj(x̂) and ϕj(x) are
the feature maps from the jth layer of the CNN of the output and target images, re-
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spectively. The terms Cj, Hj, and Wj correspond to the channel count, height, and
width of the feature maps at the jth layer, ensuring the normalization of the loss calcu-
lation.

During the training process, the weights of the generative model are updated to mini-
mize both direct pixel differences and perceptual differences. This dual focus ensures
that the final outputs accurately resemble the target images while also being visually
appealing and realistic.

4.2. Auto Regressive Transformer
Introduced by Vaswani et al. [21], the transformer represents a significant shift in
sequence prediction models, designed to address the limitations of its predecessors,
such as LSTM and GRU. These traditional models often struggle with the vanish-
ing gradient problem during training, a problem that becomes pronounced over long
sequences. Additionally, their sequential processing nature limits their efficiency in
capturing long-range dependencies Cho et al. [22]. These factors makes them less
effective for tasks involving long sequences and computationally inefficient due to their
inability to parallelize operations. Unlike LSTM andGRU, the Transformer model elimi-
nates recurrent layers and relies entirely on self-attention mechanisms [21]. This archi-
tecture not only overcomes the challenges associated with long-range dependencies
but also enhances computational efficiency and scalability by enabling parallel pro-
cessing of sequence data.

The Transformer model leverages an attention mechanism that allows it to understand
interactions between elements in an input sequence, irrespective of their positions.
This provides a significant advantage over traditional models, which process inputs
linearly. The model comprises two core parts: the encoder and the decoder. Each
part plays a crucial role in handling the complexities of sequence prediction more ef-
fectively than its predecessors.

The key distinction between the encoder and decoder layers in the Transformer model
lies in how they process inputs. In the encoder, the input sequence, combined with
positional embeddings, first goes through a multi-head attention mechanism. Imme-
diately following this, residual connections and then layer normalization are applied
to enhance the flow and stability of information. This process is repeated after the
position-wise feed-forward network, where another set of residual connections and
layer normalization help prepare the output for subsequent layers, thus enabling the
construction of deeper architectures with improved training stability.
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Conversely, in the decoder, the inputs consist of embedded tokens generated during
the decoding process, along with positional embeddings. These inputs are processed
by masked attention components, which are crucial for ensuring that the attention
mechanism only considers previously known or decoded tokens, thus preventing the
decoder from accessing future information prematurely. This design is fundamental
to maintaining the autoregressive property of the decoder, where each prediction is
made based only on earlier tokens in the sequence. The output from the masked
attention, when combined with the outputs from the encoder, feeds into the encoder-
decoder attention mechanism, facilitating interaction between current decoder inputs
and all encoder outputs. Subsequently, this integrated output passes through a feed-
forward network. Similar to the encoder, both residual connections and layer normal-
ization are applied after each component to promote stable training and enhance the
learning process effectively.

The process concludes in the decoder’s final layer, where the model generates the
logits of the output sequence through a linear transformation of the decoder’s out-
puts. These logits are subsequently processed by the softmax function, which con-
verts them into probabilities. This final transformation aims to predict the next element
in the sequence, effectively capturing the sequential nature and dependencies of the
input data.

Inspired by Bi et al. [3], the Autoregressive Transformer (AR Transformer) is specifi-
cally adapted for weather nowcasting. This streamlined version of the original archi-
tecture eliminates the encoder and relies solely on the decoder. It primarily processes
a sequence of conditioned tokens to predict subsequent tokens, ensuring each predic-
tion is based only on previously known information.The AR Transformer’s decoder fea-
tures layers of causal self-attention, which prevent attending to future tokens, paired
with a position-wise feed-forward network using GELU as the nonlinearity. Each com-
ponent is followed by residual connections and layer normalization to promote stable
training and effective learning. In the final layer of the decoder, the model outputs log-
its through a linear transformation, which are then converted into probabilities by the
softmax function. The decision-making process in our project utilizes these probabili-
ties, selecting the codebook token with the highest likelihood as the model’s prediction.

4.2.1. Multi-head self Attention Mechanism
The attention mechanism is a fundamental component of the Transformer model, dis-
tinguishing it from traditional neural network architectures through its ability to capture
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complex relationships and dependencies among input elements, irrespective of their
positions within the sequence. This mechanism based on three critical components:
queries (Q), keys (K), and values (V). It evaluates the similarity between ’query’ and
’key’ to assign weights to the ’value’ components, thereby enabling the model to focus
variably on different parts of the input sequence according to their relevance.
The core operation of the attention mechanism can be encapsulated by the formula:

Attn(Q,K, V ) = softmax
(
QKT

√
dk

)
· V (4.3)

Here, dk denotes the dimension of the query, and the division by
√
dk serves to scale

the dot products, preventing the softmax function from entering regions with extremely
small gradients. This mechanism, known as self-attention when Q, K, and V are
derived from the same input as Q = XWQ, K = XWK and V = XWV , allows the
model to weigh the importance of each part of the input sequence, addressing each
element in relation to the rest. The attention is illustrated in 4.5.

Figure 4.5: Illustration of the attention mechanism.

The causal attention mechanism employs masking to ensure predictions follow a logi-
cal sequence, thereby preventing the model from accessing future tokens prematurely.
Specifically, within the matrix product QKT , the entries that correspond to future to-
kens (non-causal entries) are assigned a value of −∞. This manipulation is crucial
when applying the softmax function, where the exponential of−∞ effectively becomes
zero. Consequently, these entries contribute nothing to the output of the softmax, en-
suring no weight is allocated to future positions as shown in figure 4.6. This strategic
approach directs the model’s attention exclusively to previously seen or current tokens
when predicting subsequent elements in the sequence.

The multi-head attention mechanism significantly enhances the Transformer’s capa-
bility by distributing the attention process across multiple ’heads’, each assigned to
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(a)

(b)

Figure 4.6: Illustration of the attention mechanism.

analyze different segments of the input sequence. This division facilitates a thorough
comprehension of both the positional and contextual nuances within the data, as each
head concentrates on distinct aspects of the sequence. By assessing various aspects
of the sequence in parallel, each attention head provides a unique perspective on the
input’s context, enriching the overall representation of the sequence’s meaning. The
outputs from these heads are subsequently merged and processed through a weight
matrix WO, ensuring consistency with the model’s dimensional requirements.
The MultiHead attention operation is succinctly represented as

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO (4.4)

where each head performs attention on uniquely transformed queries, keys, and val-
ues. This approach empowers the Transformer to identify and synthesize a diverse
range of data interactions, significantly enhancing its proficiency in managing complex
sequence-based challenges.

4.2.2. Training and Generation
Each image is encoded using the VQVAE and represented by a set of discrete tokens
denoted as zq = q(E(x)) which belongs to the set 0, . . . , |Z| − 1. In the Autoregressive
Transformer (AR Transformer), these tokens are transformed into a continuous vector
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through an embedding process. This is further enhanced by combining them with po-
sitional embeddings to integrate the sequence order into the vectors. The transformer
then processes these embedded, positional-encoded tokens through all its layers, ul-
timately generating raw, unnormalized predictions for each token, known as logits.

The logits generated by the transformer are normalized and transformed into probabil-
ities using a softmax layer. The associated loss function, represented by equation 4.5
calculates the conditional probabilities of a subsequent token zi given all previous to-
kens z<i, formulated as p(z) =

∏N
i=1 p(zi|z<i). This model framework depicted in figure

4.7 enables the Transformer to effectively predict the likelihood of future indices based
on accumulated prior information. The cross-entropy loss guide the back-propagation
process, enhancing parameter optimization to improve both predictive accuracy and
learning efficiency of the model in capturing data distributions.

LTransformer = Ex∼p(x)[− log p(z)] (4.5)

Figure 4.7: The cross entropy loss calculated between the actual distribution of the tokens and the
logits.

In the generation phase of an Autoregressive Transformer (AR Transformer) model,
the process starts by inputting a conditioned frame as a sequence of tokens , as de-
picted in figure 4.8a. The model iteratively predicts the logits for the next token and
then slices and concatenates these logits with the preceding tokens. This updated
sequence serves as the input for the subsequent prediction cycle. This iterative pro-
cess continues for a number of steps, determined by the product of the number of
prediction frames and the total number of tokens required to decode a single radar
image.
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Once the logits for all prediction frames have been generated, the selection process
employs advanced techniques such as top-k and top-p sampling to refine the choices.
The final output consists of a series of tokens that are sampled from the predicted prob-
ability distribution through categorical sampling. The output tokens are then passed
to the decoder side of the Vector VQ-VAE, where the discrete tokens are converted
back into continuous vectors retrieved from a pretrained codebook. Subsequently, the
predicted maps are generated based on these vectors. The afermentioned process
is illustrated in fig: 4.8.

(a) Generation phase of the AR transformer. (b) Generated logits and their output

Figure 4.8: An example of the generation phase of the AR transformer where 6 output images are
generated based on 3 input images.

To expedite the generation process, the model utilizes a Key-Value (K-V) cache that
stores the keys and values computed by the attentionmechanism, enabling their reuse
in subsequent prediction steps. This is particularly advantageous in the AR Trans-
former, where outputs are generated sequentially, one token at a time. By leveraging
the precalculated K-V cache from the previous step, the decoder avoids recomputing
the keys and values for the entire sequence during each step. This approach improves
efficiency and reduces computational overhead.

4.3. Model Configuration Details
Due to memory constraints encountered during the training of the VQVAE, radar im-
ages with a spatial resolution of 256× 256 have been downsampled to 128× 128. This
downsampling preserves the semantic integrity of the images, enabling efficient VQ-
VAE training to achieve a reduced latent space representation without overloading the
Graphics Processing Unit (GPU). Figure 4.9 displays examples of these downsampled
images, illustrating how they maintain their essential semantic content.
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(a) (b)

Figure 4.9: Example of downsampled radar images.

The encoder processes downsampled radar images through four successive down-
sampling layers, each composed of two ResNet blocks. An attention layer follows the
final downsampling layer, leading into an intermediate block that includes two addi-
tional ResNet blocks with another attention layer placed between them. This archi-
tecture (illustrated in figure: 4.10) systematically reduces the image resolution from
128X128 down to 8X8 across stages(128 → 64 → 32 → 16 → 8). Concurrently, as the
spatial dimensions decrease, the number of channels increases from 1 to 1024. This
increase aligns with the embedding dimension (nz = 1024) of the codebook, enhanc-
ing the quantization accuracy by facilitating the selection to the nearest token based
on distance.

Figure 4.10: The encoder configuration used in Nowcasting GPT.

The codebook consists of 1024 unique codes, enabling each 128x128 image to be
represented by 64 tokens. Each token, a number ranging between 0 and 1023, corre-
sponds to an embedding dimension of 1024.

The quantization process produces 64 tokens that are feed into the transformer archi-
tecture, as depicted in figure 4.11. These tokens are converted into continuous vectors
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through word embedding and then augmented with sequence context via positional
embeddings. To prevent overfitting, a dropout layer is applied. These prepared vec-
tors then proceed to the core of the transformer, which consists of N uniform blocks.
Each block begins with layer normalization, followed by multi-head attention with a
residual connection. After the attention phase, another layer normalization occurs,
leading into a multi-layer perceptron (MLP ) which introduces nonlinearity, followed
by another residual connection. As the vectors progress through the N blocks, they
undergo further normalization and ultimately produce logits that represents the pre-
diction values. The optimal architecture configurations are determined through a grid
search, explained in detail in the subsequent chapter, 6.

Figure 4.11: The Transformer architecture used in Nowcasting GPT.

The decoder figure 4.12 mirrors the encoder’s structure. It begins with two ResNet
blocks separated by an attention block, followed by four upsampling layers. This con-
figuration facilitates the reconstruction of the image from its compact latent format,
effectively preserving the essential details of the original image.

Figure 4.12: The decoder configuration used in Nowcasting GPT.
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4.4. Conclusion
This chapter has laid out the methodologies that underpin our approach to sophisti-
cated meteorological data analysis using machine learning. By integrating the VQ-
VAE and the AR Transformer, we have established a system capable of efficiently
handling large datasets and predicting weather conditions with improved accuracy.
The next chapter will detail the implementation of these methods, including the opti-
mization of model parameters through grid search and the evaluation metrics used
to assess the performance of the Nowcasting GPT model. This will provide a deeper
understanding of the model’s effectiveness and identify opportunities for further refine-
ments.



5
Verification

To evaluate the accuracy of weather predictions generated by the Vector Quantized
Variational Autoencoder (VQVAE) and the Autoregressive (AR) Transformer models,
this study utilizes a comprehensive set of evaluation metrics. The geographical focus
of this evaluation is the Netherlands, with a particular emphasis on the entire region
and its catchment areas. This analysis offer a robust test for assessing the predictive
capabilities of the models under study. The evaluation metrics are organized into three
main categories to provide a holistic analysis of the model’s performance: Continu-
ous metrics for quantitative accuracy, Categorical metrics for classification precision,
and Spatial metrics for geographical accuracy. This structured approach ensures a
detailed examination of the models’ ability to forecast weather patterns with varying
degrees of complexity and across different spatial scales.

5.1. Continuous metrics
Pearson’s Correlation Coefficient (PCC):
Pearson’s Correlation Coefficient (PCC) is employed to quantify the linear correlation
between the predicted and actual observed radar maps, which are represented as
images of 256*256 pixels. This pixel-level analysis enables a detailed examination of
the model’s accuracy in replicating actual precipitation patterns. The PCC, denoted
as ρ, is calculated using the following equation:

ρ =
1

row ∗ col

row∑
i=1

col∑
j=1

(F [i][j]− µF )(O[i][j]− µO)

σFσO

(5.1)

Here, F [i][j] and O[i][j] represent the predicted and actual precipitation values at the
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ith row and jth column of the radar map, respectively. Given that the radar map di-
mensions are 256x256 pixels, ’row’ and ’col’ refer to these dimensions. µF and µO

denote the mean values of the predicted and actual maps, respectively. σF and σO

represent their respective standard deviations, which are calculated across all pixels
to capture the variability within each map.

For a prediction to be deemed skillful, the PCC value should meet or exceed the
threshold of 1/e, where e is the base of the natural logarithm (approximately 2.718).
This criterion ensures that the correlation between predicted and actual observations
is sufficiently strong to be considered meaningful and useful. A PCC value below this
threshold indicates that the forecast lacks skill and may not provide reliable insights.

To comprehensively assess the predictive skill of our model, PCC will be calculated
at multiple lead times: 30, 60, 90, 120, 150, and 180 minutes. This approach en-
ables us to evaluate the model’s performance and its ability to predict over varying
future intervals, providing a detailed understanding of its effectiveness across differ-
ent timescales.

Mean Square Error and Mean Absolute Error:
To quantify the average discrepancy between predicted and actual precipitation val-
ues, two metrics are utilized: the Mean Square Error (MSE) and the Mean Absolute
Error (MAE). The MAE provides a straightforward measure of the average magni-
tude of errors in the predictions, indicating how close the model’s predictions generally
are to the ground truth across the dataset. A low MAE signifies that the model deliv-
ers reliable results, reflecting its accuracy in forecasting precipitation amounts.

On the other hand, the MSE is particularly sensitive to larger errors in the prediction
set, as it squares the differences before averaging them. Therefore, a low MSE not
only suggests that the model’s predicted intensities are, on average, close to the ac-
tual observations but also indicates that the model is less likely to produce significant
errors in its predictions.

MSE =
1

row× col

row∑
i=1

col∑
j=1

(F [i][j]−O[i][j])2 (5.2)

MAE =
1

row× col

row∑
i=1

col∑
j=1

|F [i][j]−O[i][j]| (5.3)
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5.2. Categorical metrics
Critical Success Index (CSI) and the False Alarm Ratio (FAR):
In this thesis, the categorical metrics employed to evaluate the model’s performance
include the Critical Success Index (CSI) and the False AlarmRatio (FAR). Thesemet-
rics are computed based on a predefined precipitation threshold, where each pixel [i, j]
in both the actual and predicted precipitation maps is classified as ’1’ (indicating pre-
cipitation levels at or above the threshold) or ’0’ (indicating levels below the threshold).

The CSI measures the ratio of correctly predicted precipitation events relative to the
total number of actual events, missed events, and false alarms. This index provides
insight into the model’s effectiveness in accurately predicting significant precipitation
events. The CSI is evaluated for precipitation levels of 1mm, 2mm, and 8mm, as
shown in Eq. 5.4, to determine the model’s accuracy across various precipitation in-
tensities.

CSI = TP

TP + FP + FN
(5.4)

where TP (True Positives) indicates instances where the model correctly predicts pre-
cipitation events that occur, FP (False Positives) refers to incorrect predictions of
precipitation, and FN (False Negatives) refers to instances when the model fails to
predict precipitation that does occur.

Conversely, the FAR calculates the ratio of false positive predictions FP to the total
number of predicted positive precipitation events.This metric, detailed in Eq. 5.5, is
assessed for the same precipitation levels as the CSI. A lower FAR indicates higher
precision in the model’s precipitation forecasts, characterized by fewer false alarms.

FAR =
FP

FP + TP
(5.5)

Both CSI and FAR are crucial for evaluating the model’s ability to categorize precip-
itation intensity accurately. These metrics provide valuable insights into the model’s
reliability and precision in forecasting significant weather events based on specified
precipitation thresholds.

5.3. Spatial metric
Fractional Skill Score:
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The Fractional Skill Score (FSS) is utilized to evaluate the spatial accuracy of our
model. This metric measures the model’s performance relative to specific precipi-
tation thresholds and selected spatial dimensions. For any given rainfall threshold,
pixels within the radar map are categorized as ’1’ if the precipitation level exceeds the
threshold, and ’0’ otherwise. A window of size n× n is then applied across the radar
map to compute the average of pixels that meet or exceed the threshold, yielding new
Observed (On) and Forecasted (Fn) matrices. The FSS is computed using Equation
5.6, while the reference Mean Square Error (MSEref ) is calculated by Equation 5.7.

FSS = 1− MSE(n)
MSEref(n)

(5.6)

MSEref(n) = 1

row× col

(
row∑
i=1

col∑
j=1

On[i][j]
2 +

row∑
i=1

col∑
j=1

Fn[i][j]
2

)
(5.7)

To assess the model’s performance, the Fractional Skill Score (FSS) is calculated at
spatial scales of 1km, 10km, 20km, and 30km. A model at a specific lead time t is
deemed skillful if its forecast accuracy surpasses that of a random forecast, defined
as 0.5 + f0

2
, where f0 represents the fraction of the observed area relative to the total

area of the radar map.



6
Results

In enhancing the prediction accuracy of a deep generative model for rainfall predic-
tion, the synergy between the Vector Quantized Variational Autoencoder (VQVAE) and
the Auto-regressive (AR) Transformer is pivotal. The VQVAE efficiently compresses
radar imagery into a manageable number of discrete tokens, capturing essential spa-
tial information relevant to rainfall patterns. This compression is not just a matter
of efficiency; it ensures that the subsequent AR Transformer can focus on the most
relevant features for rainfall prediction. The AR Transformer’s core strength lies in
its ability to capture temporal dependencies among the compressed tokens. By an-
alyzing the sequence of these tokens, it can make more accurate predictions about
future rainfall events. This capability is crucial because rainfall is often influenced by
weather patterns that develop over long periods. The AR Transformer is efficient at
handling these long range dependencies within sequences, enabling it to identify and
incorporate patterns that significantly affect rainfall into its predictions. Moreover, the
auto-regressive nature of the AR Transformer allows it to generate forecasts based
on past observations. This feature means that as new data becomes available, the
transformer can refine its predictions adaptably, improving accuracy over time. By
leveraging both the spatial compression of the VQVAE and the temporal modelling ca-
pability of the AR Transformer, the deep generative model represents a sophisticated
approach to predicting rainfall, capable of understanding and anticipating the complex
dynamics of weather pattern.
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6.1. Comprehensive Analysis of Optimal Transformer Con-
figuration

To further refine the prediction accuracy of the AR Transformer, optimizing its config-
uration is crucial. The balance between the number of attention heads, the depth of
layers, and the embedding dimension is crucial for addressing the complex spatial and
temporal dependencies inherent in rainfall data. A rigorous hyper-parameter tuning
process is undertaken, employing a comprehensive grid search across various combi-
nations of attention heads (4, 8, 16), layer depths (8, 12, 16, 20, 24), and embedding
dimensions (64, 128, 256, 512). This optimization aims to ascertain the most effec-
tive setup, ensuring the transformer’s capability to accurately capture and forecast
the nuanced dynamics of rainfall patterns, thereby significantly enhancing its forecast-
ing accuracy. The selection of the optimal model configuration is determined through
an exhaustive analysis of performance metrics, aiming to strike an optimal balance
between model complexity and predictive accuracy. The evaluation framework en-
compasses a variety of metrics, including the Pearson Correlation Coefficient (PCC),
Mean Absolute Error (MAE), and Critical Success Index (CSI) at rainfall thresholds of
1mm, 2mm, and 8mm. Additionally, the False Alarm Rate (FAR) at these thresholds,
along with the Fractions Skill Score (FSS) at spatial scales of 1km, 10km, 20km, and
30km, are assessed. These metrics collectively provide a comprehensive view of the
model’s performance, focusing on accuracy, reliability, and spatial precision, thereby
guiding the selection of the most effective model configuration.

6.1.1. Configuration Analysis: 4 Heads
To check the model performance along different configurations, our comparative anal-
ysis is initialized by a transformer model with 4 heads and varying embedding dimen-
sions. For each embedding dimension, we tested different number of layers.

6.1.1.1. Embedding Dimension Analysis: 8 Heads with 64
Initially, we fixed the number of heads (4 heads) and the embedding dimension (64).
We tested 5 different number of layers: 8, 12, 16, 20, and 24 (shown in 6.1). The
8-layer model emerges as the most balanced, excelling in PCC, CSI across all thresh-
olds, and FSS across spatial scales, indicating its superior ability in capturing corre-
lation, detection, and spatial accuracy. However, it shows potential for improvement
in MAE and FAR at the 2mm and 8mm threshold, pointing to a need for refinement in
predicting moderate rainfall more accurately.
Further investigation into configurations with increased layer counts, specifically 16
and 20 layers, yields mixed results. The 16-layer model demonstrates a notable capa-
bility in reducing average errors (MAE) and improving FAR performance at the 2mm
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threshold, highlighting its effectiveness in quantitative predictions and in minimizing
false alarms for light to moderate rainfall. However, it exhibits challenges in consis-
tently achieving high scores in PCC and CSI, pointing to variability in trend consis-
tency and event detection. Conversely, the 20-layer model shows promise in FAR at
the 8mm threshold and matches the 8-layer model’s FSS up to 20km, yet it does not
consistently excel across all metrics, particularly in PCC, CSI at lower thresholds, and
FSS at the 30km scale. This observation suggests that the addition of layers does
not necessarily correlate with universally enhanced model performance, emphasizing
the overall robustness and effectiveness of the 8-layer con-figuration in capturing the
nuances of rainfall patterns, albeit with room for minor improvements.

Figure 6.1: Performance of different layers with 4 heads and 64 embedding dimensions.

6.1.1.2. Embedding Dimension Analysis: 4 Heads with 128
As the analysis progresses to models with 128 embedding dimensions, maintaining
the 4-head architecture, it uncovers that the 16-layer configuration is particularly adept
at spatial pattern recognition and predicting significant rainfall events (6.2). This is
shown by its high FSS and CSI scores. However, this configuration does not achieve
optimal performance in PCC and MAE, suggesting a compromise in accurately pre-
dicting exact rainfall quantities and trend correlation. In comparison, the 8-layer model
outperforms in PCC, FAR (at the 1mm and 2mm thresholds) and MAE. This affirms
that the 8 layers model is superior in quantitative predictions and trend tracking, espe-
cially for light rainfall events. Despite this, it falls short in CSI, presenting a discernible
trade-off between CSI and FAR.
The selection of the optimal layer depth ultimately depends on the application needs
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in balancing quantitative accuracy and spatial forecasting capabilities. For tasks that
prioritize spatial detail and event detection, the 16-layer model (head:4, layer:16, em-
bedding dimension:128) stands out, whereas the 8-layer model (head:4, layer:8, em-
bedding dimension:128) offers a well rounded solution suitable for general forecasting,
with an advantage in accuracy and reduced false alarm rates for lighter rains. Conse-
quently, both the 8 and 16 layers are considered in the final optimal model analysis
for this embedding dimension.

Figure 6.2: Performance of different layers with 4 heads and 128 embedding dimensions.

6.1.1.3. Embedding Dimension Analysis: 4 Heads with 256
Weexplored a 256 embedding dimensionmodel (heads:4, embedding dimensions:256)
along different layers. Among the tested layers (6.3), the 24 layers configuration
stands as a superior model in overall correlation with observed rainfall (PCC), accu-
racy in predicting significant rainfall events at various thresholds (CSI), and accurately
capturing the spatial distribution of rainfall (FSS). This configuration is identified as the
leading choice within its embedding class for applications demanding high precision in
both spatial and intensity aspects of rainfall prediction. In contrast, the 20 layers config-
uration matches the 24-layer model in PCC, indicating a strong linear relationship with
observed data, and shows improvements in MAE and reduced FAR. This suggests a
potential trade-off between precision and general predictive reliability. Nonetheless,
due to the 24-layer model’s exceptional precision in PCC, CSI, and FSS, its capabil-
ity in accurately determining the timing, occurrence, and spatial distribution of rainfall
guarantees its inclusion in the conclusive analysis for the optimal model configuration.



6.1. Comprehensive Analysis of Optimal Transformer Configuration 42

Figure 6.3: Performance of different layers with 4 heads and 256 embedding dimensions.

6.1.1.4. Embedding Dimension Analysis: 4 Heads with 512
We tested the model with fixed 4 heads and fixed 512 embedding dimensions along 5
different layers. The evaluation loss (6.4) shows an increasing trend which indicates
that even with a small number of layers, this configuration is over fitting. This indicates
that the model is too complex for the data at hand. Thus, no further analysis is needed
on this embedding dimension.

Figure 6.4: Evaluation loss of 4 heads and 512 embedding dimensions with different layers.

6.1.1.5. Selection of the optimal model at 4 heads
After analyzing the performance of the model with 4 heads across varying numbers
of layers and embedding dimensions, we identified the four best-performing models
for each embedding dimension (64, 128, 256). These models are 4-8-64, 4-8-128,
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4-16-128, and 4-24-256 (6.5). The next step is to compare how these models perform
using different metrics to identify the optimal model configuration with 4 heads.

Figure 6.5: Performance of different layers with best selected models at 4 heads.

Upon comparing the models, the heat-map analysis reveals that models with lower
complexity generally excel across all evaluated metrics, ranging from the correla-
tion between predicted and real observations to prediction accuracy and spatial skill
scores. Specifically, the model with a configuration of 4-8-64 stands out for its perfor-
mance. It achieves the lowest False Alarm Ratio (FAR) at moderate and low thresh-
olds, although its FAR increases at higher thresholds, particularly in comparison to
the 4-24-256 configuration. Despite this, the latter configuration results in distortion
across other metrics, underscoring a trade-off.
Interestingly, the model with a 128 embedding dimension and 8 layers showcases the
lowest mean absolute error (MAE), indicating a marginal improvement. However, this
comes at the expense of Critical Success Index (CSI) and Fraction Skill Score (FSS)
performance, high-lighting a distortion in these metrics.
The balanced performance of the 4-8-64 model, combined with its computational effi-
ciency, solidifies its position as the optimal choice among all transformers with 4 heads.
This model’s ability to deliver high accuracy and reliability with a streamlined set of pa-
rameters makes it a particularly appealing choice in operational environments where
computational resources are constrained. This efficiency and effectiveness under-
score the significance of selecting a model that not only meets accuracy and reliability
benchmarks but does so in a resource-efficient manner.
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6.1.2. Configuration Analysis: 8 Heads
Exploring the potential of an 8-head configuration represents a logical progression in
our quest for the most effective and efficient model for rainfall prediction. Guided by
careful consideration of the performance trade-offs and computational implications of
varying the number of heads, our analysis dives into the nuanced interplay between
model complexity and predictive accuracy across different embedding dimensions.

6.1.2.1. Embedding Dimension Analysis: 8 Heads with 64
Initially, we fixed the number of heads (8 heads) and the embedding dimension (64).
We tested 5 different number of layers: 8,12,16,20, and 24 (6.6). The 12-layer model
(heads:8, layers:12, embedding:64) consistently outperforms others across all perfor-
mance metrics, except for the FAR at the 8mm threshold. A deeper exploration into
configurations with more layers reveals that the 20-layer model (heads:8, layers:20,
embedding:64)) offers a lower FAR at this threshold, at the expense of diminished
performance in other critical areas such as correlation and event detection. The com-
parison between the models emphasizes the 12-layer model’s suitability for a broad
spectrum of applications, especially those necessitating reliable estimations of both
the quantity and location of rainfall events. Its equilibrium between trend accuracy,
quantitative precision, and spatial detail makes it a comprehensive choice for opera-
tional deployment.

Figure 6.6: Performance of different layers with 8 heads and 64 embedding dimensions.

6.1.2.2. Embedding Dimension Analysis: 8 Heads with 128
Progressing to an embedding dimension of 128 while retaining the 8-head architec-
ture (6.7), we find the 16-layer configuration (heads:8, layers:16, embedding:128) to
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be supremely advantageous. This model configuration not only establishes a strong
correlation with observed rainfall data, but also excels in accurate event detection
at lower thresholds. It effectively pinpoint significant rainfall events with a reduced
False Alarm Rate (FAR), except in comparison to the 8-layer model at the 8mm thresh-
old, where the heads:8, layers:8, embedding:128 model demonstrates superior FAR.
These findings highlight the 16-layer model’s precision and efficiency, making it a piv-
otal consideration in our determination of the optimal model configuration.

Figure 6.7: Performance of different layers with 8 heads and 128 embedding dimensions.

6.1.2.3. Embedding Dimension Analysis: 8 Heads with 256
Expanding the embedding dimension to 256 while maintaining 8 heads (6.8), the 24
layer model (heads:8, layers:24, embedding:256) ascends as the outstanding per-
former. This model was able to achieve the highest PCC and CSI across all thresholds.
This configuration showcases unequal ability in detecting significant rainfall events.
Moreover, its FSS across a range of spatial scales affirms its adeptness in accurately
predicting rainfall’s spatial distribution. However, when refining MAE and minimizing
FAR, the 20-layer model (heads:8, layers:20, embedding:256) presents an improve-
ment, with a notable trade-off in detection capability. This complexity suggests the
(heads:8, layers:24, embedding:256) model as the prime candidate for the 256 em-
bedding dimension, pending a comparative analysis with other distinguished models
from varying embedding dimensions to establish the universally optimal configuration.
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Figure 6.8: Performance of different layers with 8 heads and 256 embedding dimensions.

6.1.2.4. Embedding Dimension Analysis: 8 Heads with 512
Since the model was too complex with 4 heads as shown before (section), increasing
the number of heads to 8 will result in a more complex model. Hence, the model will
over-fit. Therefore, these configurations (heads:8, layers: 8,12,16,20,24, embedding:
512) are excluded from the analysis.

6.1.2.5. Selection of the optimal model at 8 heads
In the pursuit of optimizing a neural network architecture with 8 heads for the task
of predictive modelling, an empirical investigation was conducted to evaluate model
performance across various combinations of layers and embedding dimensions. This
rigorous analysis led to the identification of three candidate models: 8-12-64, 8-16-
128, and 8-24-256, each distinguished by its embedding dimension. The forthcoming
comparative study aims to choose the optimal model configuration when employing 8
heads, by systematically assessing these models against a spectrum of performance
indicators.
The comparative analysis of the models reveals that the configuration comprising 24
layers and an embedding dimension of 256 (8-24-256) emerges as the superior choice.
This model configuration excels in several critical performancemetrics, including PCC,
CSI across all rainfall thresholds, and FSS across different spatial scales. These out-
comes indicate a robust capability in accurately predicting rainfall events and effec-
tively capturing their spatial distribution.
Despite the lower MAE and FAR at lower thresholds, which is achieved by the model
with the lowest complexity (heads: 8, layers:12, embedding:64), this advantage comes
at the cost of a decrease in CSI at lower and medium rainfall thresholds. Addition-
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ally, it exhibits a higher FAR at high intensity thresholds and experiences distortion in
spatial scores across all scales when compared to the (heads:8, layers: 24, embed-
ding:256)configuration. This trade-off highlights the limitations of the simpler model in
maintaining accuracy and reliability across a broader range of conditions.
The medium complexity model (heads:8, layers: 24, embedding:256)stands out as
the optimal choice when prioritizing a configuration with 8 heads. This conclusion is
drawn from its balanced performance, demonstrating both high accuracy in rainfall
event prediction and efficient spatial distribution mapping.

Figure 6.9: Performance of different layers with best selected models at 8 heads.

6.1.3. Configuration Analysis: 16 Heads
Exploring the potential of a 16-head configuration represents a logical progression in
our quest for the most effective and efficient model for rainfall prediction. Guided by
careful consideration of the performance trade-offs and computational implications of
varying the number of heads, our analysis dives into the nuanced interplay between
model complexity and predictive accuracy across different embedding dimensions.

6.1.3.1. Embedding Dimension Analysis: 16 Heads with 64
In our quest to refine a transformer model for rainfall prediction, equipped with 16
heads and a 64-dimensional embedding, our comprehensive grid search has identified
that a configuration with 12 layers stands superior across most of the performance
metrics (6.10). This setup notably excels in PCC and MAE, showcasing a model that
correctly mirrors observed data trends and forecasts rainfall amounts with minimized
average errors. Additionally, this configuration shows an improvement in CSI at all
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evaluated thresholds, and FSS across various spatial scale. This model underscores
its efficiency in event detection and precise mapping of rainfall’s spatial distribution.
However, it is crucial to acknowledge that while the 12-layer model exhibits proficiency
in many aspects, transitioning to a 24-layer configuration yields a slight improvement
in the FAR at the higher rainfall thresholds of 2mm and 8mm. This suggests that
the integration of additional layers may contribute to reducing the over-prediction of
significant rainfall events. Nevertheless, this marginal benefit is counterbalanced by
a decline in other essential metrics, indicating that increasing the complexity of the
models does not consistently translate to enhanced model performance. In particular,
the 24-layer model demonstrates a decrease in the accuracy of rainfall event detection,
spatial distribution precision, and overall correlation with observed data, as reflected
by diminished scores in PCC, CSI, and FSS. The 12-layers model, which provides a
well balanced and high performing solution, emerges as an important configuration
for subsequent comparison to ascertain the most effective model.

Figure 6.10: Performance of different layers with 16 heads and 64 embedding dimensions.

6.1.3.2. Embedding Dimension Analysis: 16 Heads with 128
Increasing the embedding dimension to 128 within the same 16-head transformer
model framework (6.11), the 12-layers setup continues to appear as the best con-
figuration . It upholds superior capability in aligning actual and predicted observations
and excels in the CSI across different thresholds. Yet, an increment to 24 layers leads
to a reduction in MAE and FAR, unveiling a substantial trade-off between CSI and FAR.
Consequently, despite the reduced FAR, the concurrent decline in CSI (which corre-
lates to prediction accuracy) also becomes evident.
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Figure 6.11: Performance of different layers with 16 heads and 128 embedding dimensions.

6.1.3.3. Embedding Dimension Analysis: 16 Heads with 256
Moreover, with an embedding dimension of 256, the model unveils significant findings
regarding performance variation among different layer configurations (6.12). The 24-
layer model asserts dominance by registering the top performance in CSI at all thresh-
olds and FSS across spatial extents, alongside PCC, marking pronounced predictive
strengths. Interestingly, the 20-layer configuration surpasses the 24-layer model in
MAE and FAR but at the cost of diminished capabilities in CSI. Therefore, the model
(heads: 16, layers: 24, embedding: 256) is one of the candidates that will be used
later to select the optimal model.
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Figure 6.12: Performance of different layers with 16 heads and 256 embedding dimensions.

6.1.3.4. Embedding Dimension Analysis: 16 Heads with 512
As mentioned before (section), since the model was too complex with 4 heads, in-
creasing the number of heads to 16 will result in a more complex model. Hence, the
model will over-fit. Therefore, these configurations (heads:16, layers: 8,12,16,20,24,
embedding: 512) are excluded from the analysis.

6.1.3.5. Selection of the optimal model at 16 heads
To identify the most effective model configuration for a transformer architecture featur-
ing 16 heads, an array of configurations has demonstrated notable potential across
various em-bedding dimensions, specifically (heads: 16, layers: 12, embedding: 64),
(heads:16, layers: 12, embedding: 128), and (heads: 16, layers: 24, embedding:256).
A comprehensive evaluation of these configurations is essential to discern the optimal
model (6.13).
In the context of utilizing a higher head count, the analysis reveals that the configura-
tion with the smallest embedding dimension, (heads: 16, layers: 12, embedding: 64),
surpasses its counterparts in performance. This model stands out for its exceptional
PCC, MAE, FSS, FAR, and CSI across both low and high rainfalls intensities.
Nonetheless, it is important to note that, despite its superior overall performance, the
(heads: 16, layers: 12, embedding: 64) model’s CSI at medium rainfall intensities is
better in configurations with different em-bedding dimensions. This advantage, how-
ever, comes with trade-offs, including distortions in spatial scale accuracy, a reduction
in PCC, and an elevation in FAR. This observation highlights the intricate balance re-
quired between maintaining model accuracy and navigating the complexities inherent
in accurately predicting rainfall distribution.
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Figure 6.13: Performance of different layers with best selected models at 16 heads.

6.1.4. Preliminary Results
After meticulous analysis to determine the optimal model configuration by varying the
number of heads, layers, and embedding dimensions, we’ve identified the best config-
uration for each head count: (Heads: 4, layers: 8, embedding: 64), (Heads: 8, layers:
24, embedding: 256), and (Heads: 16, layers: 12, embedding: 64). The subsequent
comparison of these configurations is pivotal in identifying the superior model.
The analysis, guided by a heat-map comparison (6.14), indicates a close competition
primarily between the (Heads: 4, layers: 8, embedding: 64), (Heads: 8, layers: 24,
embedding: 256) models. Even though the (Heads: 16, layers: 12, embedding: 64)
model excelled in MAE compared to its counterparts, it did not lead in all other critical
metrics. Hence, this model falls short and is not the optimal model.
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Figure 6.14: Performance of the best selected models.

The model configured with 8 heads and an embedding dimension of 256 (Heads: 8,
layers: 24, embedding: 256) demonstrates superior performance, especially across
different FSS scales, CSI, and FAR at all thresholds. Notably, this model shows
the most significant advantage at higher rainfall thresholds when compared with the
(Heads: 4, layers: 8, embedding: 64) configuration.
However, it’s crucial to acknowledge that despite the superior performance of the
(Heads: 8, layers: 24, embedding: 256) model over others, the marginal difference
between the (Heads: 4, layers: 8, embedding: 64) and the (Heads: 8, layers: 24,
embedding: 256) configuration remains modest across most metrics. This suggests
that while the (Heads: 8, layers: 24, embedding: 256) model stands out in terms
of accuracy and reliability, the improvement it offers over the (Heads: 4, layers: 8,
embedding: 64) model is not overwhelmingly large considering the computational re-
quirements and the generation time. Based on this analysis, the (Heads: 4, layers:
8, embedding: 64) is considered the preliminary optimal model. Nonetheless, further
analysis will be done to assess the best models found in each head: 4-8-64, 4-8-128,
4-16-128 (section: 6.1.1.5), 8-12-64, 8-16-128, 8-24-256 (section: 6.1.2.5), 16-12-64,
16-12-128 and 16-24-256 (section: 6.1.3.5).

6.2. Analysis of Optimal Transformer Configuration at
Catchment Level

The analysis discussed in the previous section encompasses the entire area of the
Netherlands. The findings indicate that certain model configurations outperform oth-
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ers when evaluated against specific metrics. To acquire a more detailed understand-
ing of the capabilities of the chosen model configuration—4-8-64—an additional ex-
periment has been conducted. This experiment involves isolating selected sections
from precipitation maps predicted by various models to focus specifically on relevant
catchment areas. Each area has a defined extreme rainfall threshold set at the top
1% of historical data, equating to 5 mm of rainfall per 3-hour period, recorded from
2008 to 2014. An extreme rainfall event is defined as any instance where the aver-
age rainfall over a 3-hour period exceeds this threshold. To enhance the assessment
of the models, varying thresholds (thrvarying) are applied across all predictions for the
catchment areas while maintaining the ground truth threshold (thrground−truth) constant.
This methodology evaluates the models’ effectiveness under diverse conditions. The
predicted precipitation, Xpre, and the observed precipitation, Xobs, are calculated as
follows:

Xpre =
(
Xpre

T+30 +Xpre
T+60 + . . .+Xpre

T+180

)
× 1

6
× 3

Xobs =
(
Xobs

T+30 +Xobs
T+60 + . . .+Xobs

T+180

)
× 1

6
× 3

(6.1)

The evaluation of model performance is categorized into four outcomes, with each
variation of the threshold ranging from 10 mm/3hrs to 0.5 mm/3hrs in 0.5 mm/3hrs
decrements (20 data points). This stepwise adjustment of the threshold yields a se-
ries of results that are classified as follows:

True Positive: Obsprecipitation ≥ thrgrdtruth and Predprecipitation ≥ thrvarying

Observed precipitation exceeds the ground truth threshold, and the predicted precipi-
tation also surpasses the varying threshold.

False Negative: Obsprecipitation ≥ thrgrdtruth and Predprecipitation < thrvarying

Observed precipitation exceeds the ground truth threshold, but the predicted precipi-
tation falls below the varying threshold.

True Negative: Obsprecipitation ≤ thrgrdtruth and Predprecipitation < thrvarying

Both the observed and predicted precipitation are below their respective thresholds.

False Positive: Obsprecipitation ≤ thrgrdtruth and Predprecipitation ≥ thrvarying

Observed precipitation is below the ground truth threshold, but the predicted precipi-
tation exceeds the varying threshold.

These outcomes are recorded and subsequently used to plot the Receiver Operating
Characteristic (ROC) curve, which illustrates the relationship between the False Alarm
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Rate (FAR) and the Hit Rate (HR), and the Precision Recall curve, which shows the
relationship between Recall (or Hit Rate) and Precision. These curves enhance our
understanding of the precision and reliability of the rainfall prediction models across
varying thresholds, thereby aiding in the improvement of forecasting andmanagement
strategies for extreme weather events. The matrices used in plotting the ROC and the
PRC.

False Alarm Rate (FAR) : FAR =
FP

FP + TN

Recall or Hit Rate (HR) : Recall = TP

TP + FN

Precision : Precision =
TP

TP + FP

This structured analysis assesses the effectiveness of models in predicting rainfall
events. The results of these experiments are illustrated in fig. 6.15. Both figures
show that the configurations 4-8-64 and 8-12-64 outperform all other configurations
when comparing the Area Under Curve (AUC) . These observations corroborate the
findings in the previous section regarding the selection of the optimal model.

(a) (b)

Figure 6.15: Figure shows the ROC-PRC curve of different configurations, the 4-8-64 and 8-12-64
performs the best among all used configurations.
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6.3. Analysis of the Attention Mechanism
Understanding the attention weight distribution within a Transformer model is cru-
cial for optimizing its performance. By investigating how the model assigns attention
across different parts of a sequence, valuable insights into its operation can be gained,
leading to adjustments in its configurations. Our investigation aimed to discern why
certain model configurations, such as those with 4 heads, 8 layers, and an embed-
ding dimension of 64, outperform others. We hypothesized that the effectiveness of a
Transformer model depends not only on its architectural parameters but also on how
it allocates attention across the input sequence.
Diversity in attention allocation across heads and layers within a Transformer model is
essential for capturing the full spectrum of information present in the input sequence.
Each attention head and layer may focus on different aspects or features of the input,
enriching the overall interpretation of the data. While some level of consistency in
attention patterns may be expected, variations across layers and heads are neces-
sary for comprehensive feature capture. These deviations from uniformity are crucial
for ensuring the model’s efficiency in capturing all relevant features within the input
sequence. Insufficient attention to particular details may compromise the model’s ca-
pacity to fully grasp the input, potentially resulting in the neglect of vital elements within
the sequence.
Cosine similarity analysis provides a detailed method for evaluating the degree of sim-
ilarity between the attention mechanisms of different heads or layers within a trans-
former model. This analysis begins by extracting attention scores from the model,
reflecting where the model focuses within the input data. Each set of scores from the
heads or layers is converted into flat vectors, and the cosine similarity between these
vectors is calculated using the formula:

CosineSimilarity = SC(u, v) =
u · v

∥u∥∥v∥
(6.2)

where u and v are the attention vectors from two different heads or layers.
To assess the performance consistency and diversity of attention mechanisms, we
focused initially on a specific layer, such as layer 1, and calculated the cosine similar-
ity across all heads within this layer. This step helped identify which heads behave
similarly, showing consistency in their attention patterns at this specific level. Subse-
quently, we analyzed a single head across different layers to determine the degree of
similarity in its attention mechanism through various stages of the model. The com-
piled similarities create an overview of how differently parts of the model process in-
formation, visualized to facilitate deeper analysis.
Notably, a high mean cosine similarity coupled with low variance among these values
often indicates redundancy, suggesting that several heads or layers are paying atten-
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tion to the same features without adding unique insights or value. Conversely, a low
mean cosine similarity accompanied by high variance suggests that the model dis-
tributes its attention across various features, indicating diversity in attention allocation
and helping to avoid redundancy. This dual approach − examining both across heads
within a single layer and across layers within a single head − provides crucial insights
that can be used to refine and enhance the model’s interpret-ability and efficiency.
To better understand the distribution of attention weights and to justify the selection of
our model, we initiated our analysis by applying a cosine similarity matrix to a trans-
former featuring 8-24-256. This configuration will be compared with 16-12-64 as well
as the best-performing configurations in the catchment level analysis, featuring 4-8-64
and 8-12-64. By computing and comparing the cosine similarity matrices across each
layer and examining each head, we observed significant redundancy and repetition
in the focus areas of the transformer. This was evident from the repetitive patterns in
the attention mechanisms.

6.3.1. Attention Mechanism Analysis: 8-24-256
An analysis of attention head redundancy across different layers reveals distinct pat-
terns of focus overlap among various heads. In the second layer, attention heads 3
and 6 highlight shared features in their focus areas. In the third layer, heads 2 and
5, heads 3 and 4, and heads 7 and 8 demonstrate shared focus points. The fourth
layer presents an overlap between heads 1 and 2. Moving to the twenty-fourth layer,
overlaps are also seen between heads 1 and 2. These similarities are illustrated in
Fig. 6.16.
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(a) Layer 2: Head 3 vs. Head 6 (b) Layer 3: Head 2 vs. Head 5

(c) Layer 3: Head 3 vs. Head 4 (d) Layer 3: Head 7 vs. Head 8

(e) Layer 4: Head 1 vs. Head 2 (f) Layer 24: Head 1 vs. Head 5

Figure 6.16: Exploring Redundancy Across 8 Attention Heads in Different Layers of configuration
8-24-256.

Similarities also appear in the same heads across different layers. In the first head,
attention layers 3 and 4 exhibit similarities in their focus areas. In the sixth head, at-
tention layers 7 and 9 display similar patterns. The third head presents an overlap
between layers 3 and 4. Moving to the eighth head, overlaps are observed between
layers 22 and 23, and further shared focus points are demonstrated between layers
23 and 24. These similarities are illustrated in Fig. 6.17.
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(a) Head 1: Layer 3 vs. Layer 4 (b) Head 3: Layer 3 vs. Layer 4

(c) Head 6: Layer 7 vs. Layer 9 (d) Head 8: Layer 22 vs. Layer 23

(e) Head 8: Layer 23 vs. Layer 24

Figure 6.17: Exploring Redundancy Across 24 Attention Layers in Different Heads of configuration
8-24-256.

6.3.2. Attention Mechanism Analysis: 16-12-64
Analyzing attention head redundancy across different layers reveals distinct focus
overlap patterns. In the first layer, heads 1 and 10, heads 1 and 14, and heads 10
and 14 exhibit similarities in their focus areas, with heads 10 and 14 notably sharing
overlapping patterns. In the third layer, heads 5 and 15, heads 13 and 14, and heads
6 and 8 show shared focus points. The fourth layer features overlap between heads
2 and 9.
Moving to the fifth layer, overlaps occur between heads 1 and 2, and heads 2 and
16. The seventh layer highlights similarities between heads 4 and 13. In the eighth
layer, heads 6 and 10 exhibit similar focus patterns. By the tenth layer, overlaps be-
tween heads 5 and 13, and heads 5 and 16, indicate a recurring theme of attention
redundancy. These findings are illustrated in Fig. 6.18.
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(a) Layer 1: Head 1 vs. Head 10 (b) Layer 1: Head 14 vs. Head 10

(c) Layer 3: Head 8 vs. Head 6 (d) Layer 4: Head 2 vs. Head 9

(e) Layer 5: Head 1 vs. Head 2 (f) Layer 7: Head 4 vs. Head 13

(g) Layer 8: Head 10 vs. Head 6 (h) Layer 10: Head 16 vs. Head 5

Figure 6.18: Exploring Redundancy Across 16 Attention Heads in Different Layers of configuration
16-12-64.

Similar patterns are observed across heads. The first head shows consistent attention
between layers 10 and 12. The third head displays similar focus in layers 10 and 12.
The ninth head reveals overlaps between layers 2 and 3. For head 12, similarities oc-
cur in layers 2 and 4, while head 13 shows matching patterns in layers 5 and 6. Head
15 highlights attention between layers 4 and 8, and head 16 exhibits redundancy in
layers 1 and 3, as well as layers 5 and 12. Fig. 6.19 illustrates the redundancy of the
12 layers across different heads.
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(a) Head 1: Layer 10 vs. Layer 12 (b) Head 3: Layer 3 vs. Layer 4

(c) Head 5: Layer 3 vs. Layer 4 (d) Head 9: Layer 2 vs. Layer 3

(e) Head 12: Layer 2 vs. Layer 4 (f) Head 13: Layer 5 vs. Layer 6

(g) Head 15: Layer 4 vs. Layer 8 (h) Head 16: Layer 1 vs. Layer 3

(i) Head 16: Layer 5 vs. Layer 12

Figure 6.19: Exploring Redundancy Across 12 Attention Layers in Different Heads of configuration
16-12-64.

6.3.3. Attention Mechanism Analysis: 8-12-64
Further analysis is done with 8-12-64 configuration, as shown in fig. 6.21. The figure
illustrates how different heads exhibit similar behavior when examining a specific layer.
Heads 1 and 7 indicate similar focus at layer 2. Shifting the focus to layer 3, head 6
and 8 reveals parallel attention pattern while heads 4 and 7 demonstrate similar focus
at layer 4. Head 1 and 5 highlighted shared attention areas, and head 2 and 3 present
comparable attention at layer 7.
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(a) Layer 2: Head 1 vs. Head 7 (b) Layer 3: Head 6 vs. Head 8

(c) Layer 4: Head 4 vs. Head 7 (d) Layer 5: Head 1 vs. Head 5

(e) Layer 7: Head 2 vs. Head 3

Figure 6.20: Exploring Redundancy Across 8 Attention Heads in Different Layers of configuration
8-12-64.

Examining the redundant information across layers within specific heads, Figure 6.21
illustrates the redundancy patterns of different heads. Layers 10 and 11 show redun-
dancy in head 1, while layers 6 and 7 display commonalities in head 2. In head 3,
layers 3 and 4 reveal similar patterns. Heads 4 and 7 indicate similar focus between
layers 4 and 5. Comparable attention is found in head 5 across layers 4 and 7, and
head 8 shows similar patterns in layers 8 and 9.

(a) Head 3: Layer 3 vs. Layer 4 (b) Head 4: Layer 4 vs. Layer 5

(c) Head 7: Layer 4 vs. Layer 5 (d) Head 8: Layer 8 vs. Layer 9

Figure 6.21: Exploring Redundancy Across 12 Attention Layers in Different Heads of configuration
8-12-64.
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6.3.4. Attention Mechanism Analysis: 4-8-64
The final analysis involves the best-performing model configuration, 4-8-64, across
both the entire Netherlands and the catchment level. This analysis begins by exam-
ining the behavior of layers across different heads. Heads 2 and 3 exhibit similar
patterns at layer 3, while heads 1 and 3 present comparable attention at layer 5. This
pattern is displayed in figure 6.22.

(a) Layer 3: Head 2 vs. Head 3 (b) Layer 5: Head 1 vs. Head 3

Figure 6.22: Exploring Redundancy Across 4 Attention Heads in Different Layers of configuration
4-8-64.

Exploring redundancy across the same heads but different layers reveals that layers
3 and 4, as well as layers 4 and 5, exhibit similar behavior in head 3 as shown in 6.23.

(a) Head 3: Layer 3 vs. Layer 4 (b) Head 3: Layer 4 vs. Layer 5

Figure 6.23: Exploring Redundancy Across 8 Attention Layers in Different Heads of configuration
4-8-64.

6.4. Results
After analyzing the attention mechanisms of different configurations, it is evident that 8-
24-256 and 16-12-64 exhibit clear attention patterns across different layers and heads.
However, the 8-12-64 configuration shows lower redundancy across layers and heads
compared to the previously mentioned configurations, and the 4-8-64 configuration
exhibits very little redundancy. This illustrates that increasing the complexity of the
model does not always lead to better performance. Large models tend to have re-
dundant parameters that do not contribute significantly to the model’s effectiveness.
In contrast, the 4-8-64 configuration, with fewer parameters, minimizes redundancy
and allows the model to focus on learning more salient features. This improves the
model’s ability to generalize from training to testing data. Additionally, having fewer
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parameters smooths the training process, enabling the model to converge faster and
operate more efficiently.



7
Comparison Between Models

After optimizing the transformer, the best configuration—with 4 heads, 8 layers, and a
64-dimensional embedding—is used to evaluate the Nowcasting-GPT model against
PySTEPS and Nuwa-Pytorch (ref Haoran). These models are selected to assess the
performance of Nowcasting-GPT in comparison to another deep generative model
and a state-of-the-art model. Nuwa-Pytorch, the deep generative model, combines a
Vector-Quantized Generative Adversarial Network (VQGAN) with an auto-regressive
transformer and includes an additional extreme value loss function to detect extreme
events. PySTEPS, on the other hand, serves as a benchmark for evaluating the per-
formance of state-of-the-art models against the deep generative models, Nowcasting-
GPT and Nuwa-Pytorch.
In this chapter, Nowcasting-GPT is evaluated against both models. The first section
assesses the predictions of Nowcasting-GPT for the entire Netherlands using both
continuous and categorical metrics such as PCC, MAE, FSS, CSI, and FAR, as dis-
cussed in chapter 5.
The second section focuses on catchment-level analysis, which is crucial for under-
standing the model’s performance in areas where precipitation accumulates over time.
In this analysis, the average precipitation accumulation over a 3-hour period in specific
catchment areas is calculated using data from the preceding forecasting outcomes.
This calculation is then compared with the established threshold for extreme events,
following the procedure discussed in the previous chapter, section 6.2. The model’s
performance in detecting weather events at specific thresholds is assessed using cat-
egorical metrics for binary classification, including HR, FA, CSI, FAR, the AUC of the
ROC curve, and the Precision-Recall curve.

64



7.1. Nowcasting-GPT Performance Across the Netherlands 65

7.1. Nowcasting-GPT Performance Across the Netherlands
Continuous Metrics Analysis: PCC and MAE
The Pearson Correlation Coefficient (PCC) averaged over time for each model is
shown in figure 7.1. Our Nowcasting-GPT model demonstrates consistently higher
PCC than the other two models, indicating that its predictions align more closely with
the actual data throughout the forecast period. The threshold of 1/e is considered the
benchmark for a nowcast to be deemed skilful. Despite the integration of an extreme
value loss function which is designed to better capture extreme weather conditions
in the Nuwa-Pytorch model, it under-performed compared to the Nowcasting-GPT
model, which does not specifically account for extreme events. The Nowcasting-GPT
model exhibits skilful predictions up to 40 minutes into the future and maintains supe-
rior performance at subsequent lead times relative to the other models.

Figure 7.1: PCC metric evaluation over the 6 lead times. Each point represents the average value for
a specific lead time over the whole dataset. Higher values represent better performance.

Nowcasting-GPT outperformed other models.

Furthermore, Nowcasting-GPT demonstrates a significant reduction in Mean Absolute
Error (MAE) compared to the other two models, both on average and at each lead time
[7.2]. This indicates that the precipitation amounts forecasted by the Nowcasting-GPT
method are, on average, closer to the actual observed amounts than those forecasted
by Nuwa-Pytorch and PySTEPS. This improvement could be attributed to our model’s
approach of treating all tokens equally; however, in Nuwa-Pytorch, the model assigns
more weight to extreme tokens, which may lead to a higher MAE.
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Figure 7.2: MAE metric evaluation over the 6 lead times. Each point represents the average value for
a specific lead time over the whole dataset. Lower values represent better performance.

Nowcasting-GPT outperformed other models.

Critical Success Index and False Alarm Ratio at Different Thresholds:
To assess the model’s performance accurately, we utilized the Critical Success Index
(CSI) and the False Alarm Ratio (FAR) as key metrics. The CSI measures the model’s
ability to accurately forecast rainfall events at predetermined intensity thresholds, high-
lighting its precision. On the other hand, the FAR quantifies the rate at which themodel
incorrectly forecasts non-occurring events. A lower FAR signifies enhanced model re-
liability, suggesting a higher probability that forecasted events will indeed occur.
Our evaluation included examining CSI values at 1mm, 2mm, and 8mm thresholds,
which allowed us to assess the model’s capability in detecting light, moderate, and
heavy rainfall events, respectively. The analysis shows that, on average, the Nowcasting-
GPT model outperformed PySTEPS and Nuwa-Pytorch in identifying light and mod-
erate rainfall events. However, at a 30-minute lead time, it falls short against these
models, potentially due to challenges in quickly adjusting to sudden shifts in rainfall
intensity or in dealing with the initial conditions’ temporal and spatial dependencies.
Yet, at longer lead times, Nowcasting-GPT demonstrates its strength, accurately fore-
casting the progression of weather patterns over time.
Moreover, our FAR analysis reveals that at the 1mm (7.3b) and 2mm (7.4b) thresh-
olds, Nowcasting-GPT’s forecasts aremore reliable than Nuwa-Pytorch’s, consistently
across various lead times. While PySTEPS presents a lower FAR at the 1mm thresh-
old, indicating fewer false alarms, it also shows a reduced CSI, pointing to a decrease
in accurately identifying actual rainfall events. At the 2mm threshold, although PyS-
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TEPS and Nowcasting-GPT exhibit similar FAR values, Nowcasting-GPT achieves a
higher CSI (7.3a), emphasizing its superior accuracy in detecting rainfall events, par-
ticularly for moderate rainfall scenarios.

(a) CSI(1mm): Higher values represent better
performance.

(b) FAR(1mm): Lower values represent better
performance.

Figure 7.3: CSI(1mm) and FAR(1mm) metric evaluation over the 6 lead times. Each point represents
the average value for a specific lead time over the whole dataset.

(a) CSI(2mm): Higher values represent better
performance.

(b) FAR(2mm): Lower values represent better
performance.

Figure 7.4: CSI(2mm) and FAR(2mm) metric evaluation over the 6 lead times. Each point represents
the average value for a specific lead time over the whole dataset.

At the 8mm threshold, an interesting pattern emerges where both PySTEPS and
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Nuwa-Pytorch outperform Nowcasting-GPT in the accuracy of rainfall detection (7.5).
Despite this, they also register a higher FAR compared to Nowcasting-GPT. This in-
dicates that while PySTEPS and Nuwa-Pytorch may be more proficient in detecting
heavy rainfall events, they also tend to predict more non-occurring events, reducing
their overall reliability. Even though Nowcasting-GPT is not as effective in capturing
heavy rainfall events, its predictions show a lower FAR. The difference in the out-
comes highlights the trade-offs between achieving high accuracy in event detection
and maintaining low rates of false alarms in weather forecasting models.

(a) CSI(8mm): Higher values represent better
performance.

(b) FAR(8mm): Lower values represent better
performance.

Figure 7.5: CSI(8mm) and FAR(8mm) metric evaluation over the 6 lead times. Each point represents
the average value for a specific lead time over the whole dataset.

Fractional Skill Score
The Fractional Skill Score (FSS) is a metric for assessing the accuracy of spatial fore-
casts, which is useful for evaluating the performance of model predictions over a given
area. A model is deemed skillful if its FSS exceeds the threshold of 0.5 + 1/f0, where
f0 represents the ratio of the window size to the overall image size. This criterion
emphasizes the intuitive notion that forecasting over smaller areas is inherently more
challenging than over larger areas. Therefore, higher FSS values (with large window
sizes, e.g., 30 km) indicate better model performance.
PySTEPS consistently exhibits skillfulness in FSS at a 30-minute lead time across var-
ious spatial scales. In contrast, Nowcasting-GPT demonstrates superior performance
among all models for lead times beyond 60 minutes, even though it doesn’t always
meet the 0.5+1/f0 criterion. Nowcasting-GPT meets this criterion up to approximately
70 minutes at a 1 km scale, up to 100 minutes at a 10 km scale, and up to 115 minutes
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at a 20 km scale, marking the highest duration of skillfulness across the examined lead
times for any model (7.6).

(a) FSS(1km) (b) FSS(10km)

(c) FSS(20km) (d) FSS(30km)

Figure 7.6: FSS metric evaluation over the 6 lead times at different spatial resolution. Each point
represents the average value for a specific lead time over the whole dataset. Higher value indicates

better performance.

The variation in performance across all models, thresholds, and scales can be at-
tributed to several factors, including the models’ ability to integrate and analyze spatial
and temporal data, their sensitivity to initial conditions, and the underlying algorithms
used to predict the movement and development of weather patterns. The superior
performance of PySTEPS at a 30-minute lead time suggests its effective utilization
of short-term data and initial conditions. Meanwhile, Nowcasting-GPT’s strength at
longer lead times across various scales highlights its robustness in capturing and pre-
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dicting the evolution of weather patterns over extended periods.

Conclusion
In this section, we evaluated Nowcasting-GPT against PySTEPS and Nuwa-Pytorch
using various metrics across the Netherlands. Nowcasting-GPT showed superior per-
formance with higher PCC values and lower MAE, indicating closer alignment with
actual data and more accurate precipitation forecasts. It outperformed the other mod-
els in detecting light andmoderate rainfall events, especially at longer lead times. FAR
analysis revealed that Nowcasting-GPT provided more reliable forecasts at 1mm and
2mm thresholds with fewer false alarms, although PySTEPS had a lower FAR at 1mm
but a reduced CSI. FSS analysis showed PySTEPS’s skillfulness at a 30-minute lead
time, while Nowcasting-GPT excelled at longer lead times, demonstrating robustness
in extended weather pattern prediction. Overall, Nowcasting-GPT offers accurate and
reliable forecasts, particularly for longer lead times and moderate rainfall events, mak-
ing it a valuable tool for weather forecasting in the Netherlands.

7.2. Nowcasting-GPT Performance at the Catchment Level
7.2.1. Effect of Post-processing and Ensemble
Chen et al. [23] developed a post-processing technique to enhance the visibility of
high-intensity precipitation pixels on radar maps from the RT-dataset, which typically
do not display such pixels prominently. This method modifies the initial predictions
(RP) to increase their accuracy, particularly for intense precipitation events, applying
the formula:

TP [i][j] =

(
1 + a

(
RP [i][j]

max(RP )

)b
)

×RP [i][j] (7.1)

where TP and RP represent the post-processed and the original unprocessed pre-
dictions, respectively. The indices (i, j) pinpoint the pixel locations on the prediction
maps. The parameters a and b, fine-tuned to maximize the Gilbert Skills Score (GSS)
on a validation dataset comprising 357 extreme events, were set to 0.66 and 0.81,
respectively, following the approach of Bi et al [3].
This enhancement not only increases the detection rate of high-intensity precipitation
but also raises the false alarm rate. To mitigate this, it is typically used in conjunction
with an ensemble technique to balance sensitivity and accuracy.
To further refine our analysis, we explored a range of ensemble sizes at the catch-
ment level, specifically 3, 5, 7, 10, 12, and 14. We utilized Receiver Operating Char-
acteristic (ROC) and Precision-Recall (PRC) curves to assess how these sizes impact
model performance, with predictions generated through the optimal configuration of
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the transformer for each size. Analysis of the ROC curves (shown in fig: 7.7a) re-
vealed a significant convergence among the ensemble sizes of 10, 12, and 14, with
minimal performance distinctions evident among them. This observation was clarified
by cropping the ROC curve (fig: 7.7b), which emphasized the negligible differences
particularly between sizes 12 and 14.

(a) (b)

Figure 7.7: ROC Curve Analysis for 3-Hour Extreme Event Detection Across Varying Precipitation
Thresholds at Different Ensemble Sizes (a) Complete ROC Curve Showing Thresholds from

10mm/3hrs to 0.5mm/3hrs. (b) Cropped ROC Curve with HR between 0.1 and 0.6 and FAR between
0.4 and 1.

The PRC analysis (fig: 7.8a) mirrored this pattern, showing overlapping performances
for ensemble sizes 12 and 14. A focused examination (fig: 7.8b of the PRC curves
between hit rates of 0.5 and 0.8 showed that although performance was comparable,
ensemble size 12 consistently edged out size 14 in terms of effectiveness. Conse-
quently, ensemble size 12 was selected for Nowcasting GPT in subsequent analyses.
For PySTEPS [6], the ensemble size was set at 20, while for Nuwa-Pytorch, it was set
at 5, following the specifications established by Bi et al. [3].



7.2. Nowcasting-GPT Performance at the Catchment Level 72

(a) (b)

Figure 7.8: PRC Curve Analysis for 3-Hour Extreme Event Detection Across Varying Precipitation
Thresholds at Different Ensemble Sizes (a) Complete PRC Curve Showing Thresholds from

10mm/3hrs to 0.5mm/3hrs. (b) Cropped PRC Curve with HR between 0.5 and 0.8 and FAR between
0.4 and 0.75.

This methodical selection of ensemble sizes ensures a balanced approach to enhanc-
ing both sensitivity and specificity, optimizing the predictive accuracy of the models
for practical applications.

7.2.2. Performance Comparison of Predictive Models in Detecting
Extreme Events

To evaluate the ability of the Nowcasting-GPT model to predict rainfall precipitation
at catchment levels, we compared it with Nuwa-Pytorch and PySTEPS. Selected sec-
tions from predicted precipitation maps were isolated to focus on specific catchment
areas. The average predicted precipitation for each catchment was calculated based
on six predicted radar maps (Xpre+30, . . . , Xpre+180), averaged over 3 hours. The ground
truth threshold was set at 5mm/3hrs, an extreme rainfall threshold based on the top
1% of historical data. Predicted precipitation thresholds varied from 10mm/3hrs to
0.5mm/3hrs, yielding 20 data points.
Model performance was evaluated based on four outcomes: True Positive (TP), False
Negative (FN), False Positive (FP), and True Negative (TN). For a detailed methodol-
ogy explanation, see section 6.2 in Chapter 6. These outcomes facilitated the plotting
of Receiver Operating Characteristic (ROC) curves and Precision-Recall curves, com-
paring the performance of Nowcasting-GPT, PySTEPS, and Nuwa-Pytorch.

ROC CURVE
The ROC curve is instrumental in assessing predictive models in binary classification
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tasks such as extreme event detection. This curve plots the true positive rate (Hit
Rate) against the false positive rate (False Alarm Ratio), emphasizing the trade-offs
between correctly identifying positive events and the consequences of false alarms.In
figure 7.9, Nowcasting-GPT, with an AUC of 0.8584, significantly outperforms Nuwa-
Pytorch and PySTEPS.
Notably, Nowcasting-GPT maintains a hit rate above 0.75 for five out of twenty thresh-
olds, as detailed in Figure 7.9b. This consistent performance indicates an effective
balance of sensitivity and specificity, essential in settings where precise detection of
extreme events is crucial. In contrast, both Nuwa-Pytorch and PySTEPS show lower
hit rates at these thresholds, indicating a weaker ability to distinguish between true
events and false alarms.
As the false alarm ratio approaches 0.5, Nowcasting-GPT’s superior capability be-
comes increasingly apparent. The graphical representation in Figure 7.9a illustrates
that its curve remains consistently higher and closer to the top-left corner, indicating
optimal performance in predicting true events without increasing false alarms. This ro-
bust capability underscores its reliability for critical applications requiring precise event
detection.

(a) (b)

Figure 7.9: (a) The complete ROC curve for 3-hour extreme event detection, the points on the curve
(from left to right) represent thresholds from 10mm to 0.5mm. (b) Cropping of the ROC curve by

limiting the hit rate to be higher than 0.4 and false alarm rate lower than 0.4.

PRC CURVE
The Precision-Recall Curve (PRC) is crucial for models operating in scenarios with
imbalanced classes, as it focuses on the balance between precision and recall. This
graph evaluates how effectively a model can detect relevant events (high recall) while
maintaining accuracy (high precision). In figure 7.10, Nowcasting-GPT achieves the
highest AUC of 0.6071, distinctly outperforming both Nuwa-Pytorch and PySTEPS,
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underscoring its superior capability in managing the precision-recall trade-off.
At a detailed level, fig: 7.10b shows a clear decline in precision as the hit rate in-
creases. This decreasing trend in precision with increasing hit rates is typical, indicat-
ing a trade-off between recall and precision. Despite this trend, the Nowcasting GPT
model maintains the highest precision across various hit rates compared to the other
models. Specifically, Nowcasting GPT maintains a precision approximately 18-22%
higher than Pysteps and about 9-11% higher than Nuwa-Pytorch across various hit
rates.
The gradual decline in precision for Nowcasting-GPT as recall increases further demon-
strates its robustness. Unlike the steeper declines observed for Nuwa-Pytorch and
PySTEPS, Nowcasting-GPT’s precision decreasesmore slowly, ensuring reliable event
detection across a broader range of operational conditions (fig: 7.10a). This con-
sistent performance across varying thresholds makes Nowcasting-GPT exceptionally
valuable in practical applications, particularly in settings where maintaining the accu-
racy of detected events is as crucial as increasing the number of detections.

(a) (b)

Figure 7.10: (a) The complete PRC curve for 3-hour extreme event detection, the points on the curve
(from left to right) represent thresholds from 10mm to 0.5mm. (b) Cropping the PRC curve by limiting

the hit rate to be lower than 0.25 and precision higher than 0.5.

7.2.3. Performance Comparison of Predictive Models in Detecting
Moderate Events

The analysis of Receiver Operating Characteristic (ROC) and Precision-Recall (PRC)
curves for moderate rainfall thresholds (2mm/3hrs) employs methodologies similar to
those used for extreme event detection, albeit with a shift in contextual focus. This
analysis transitions from the realm of extreme rainfall events to moderate ones, which
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occur more frequently and necessitate a distinct approach to predictive accuracy. This
adjustment emphasizes not only the models’ detection capabilities but also their con-
sistency and precision in forecasting more common, moderate rainfall events, ensur-
ing that the methodologies are adapted to reflect the unique challenges posed by
different levels of rainfall severity.

Nowcasting-GPT distinguishes itself by starting with a higher true positive rate at
lower false alarm ratios and consistently maintaining this lead across the full spec-
trum of false alarm ratios depicted in the ROC curve depicted in fig: 7.11a. This
performance consistency, evidenced by a high AUC of 0.8862, underscores its supe-
rior effectiveness in event detection at various thresholds. Such a profile suggests
that Nowcasting-GPT is exceptionally adept at identifying true events across a wide
range of operational conditions, providing reliable outputs that are crucial for effective
decision-making.
In contrast, Nuwa-Pytorch and PySTEPS exhibit capabilities that are comparable at
lower false alarm ratios, yet neither model achieves as high true positive rates as
Nowcasting-GPT at similar false alarm levels (fig: 7.11b). This relative under perfor-
mance may reflect a less robust system in scenarios demanding a precise balance
between detecting true events and minimizing false alarms. Additionally, the ideal
point on an ROC curve, located at the top-left corner representing a perfect true posi-
tive rate with no false positives, is approached more closely by Nowcasting-GPT than
by Nuwa-Pytorch and PySTEPS. This proximity to the ideal point further demonstrates
that Nowcasting-GPT more closely aligns with the optimal performance in event de-
tection.
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(a) (b)

Figure 7.11: (a) The complete ROC curve for 3-hour moderate rainfall event detection, the points on
the curve (from left to right) represent thresholds from 10mm to 0.5mm. (b) Cropping of the ROC

curve by limiting the False Alarm to be between 0.1 and 0.4 and Hit Rate higher between 0.4 and 1.

From the comprehensive analysis of the PRC data, it is evident that Nowcasting-GPT
significantly surpass its competitors with an Area Under the Curve (AUC) of 0.8509,
which is markedly higher than those of Nuwa-Pytorch and PySTEPS (fig: 7.12a). This
superior AUC reflects Nowcasting-GPT’s enhanced ability to effectively discriminate
between positive and negative classifications across various levels of recall. Notably,
Nowcasting GPT maintains a precision approximately 7-10% higher than Pysteps and
about 14-16% higher than Nuwa-Pytorch across hit rates ranging between 0.5 and
0.85.
Furthermore, Nowcasting-GPT exhibits remarkable stability in its precision, maintain-
ing levels at 0.80 even as recall increases to 0.75. In contrast, both Nuwa-Pytorch and
PySTEPS experience steeper declines in precision as recall increases. Those results
are illustrated in fig: 7.12b. The consistent precision of Nowcasting-GPT, particularly
in scenarios involving moderate rainfall, underscores its robust performance and af-
firms the model’s reliability in accurately forecasting moderate rainfall events—crucial
for applications that rely on consistent and dependable weather predictions.
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(a) (b)

Figure 7.12: (a) The complete PRC curve for 3-hour moderate rainfall event detection, the points on
the curve (from left to right) represent thresholds from 10mm to 0.5mm. (b) Cropping of the PRC

curve by limiting the hit rate to be higher than 0.5 and precision higher than 0.6.

Conclusion
The detailed analyses of the ROC and PRC curves distinctly affirm the superiority of
Nowcasting-GPT in extreme event detection, notably in predicting rainfall precipitation
at catchment levels. Although Nuwa-Pytorch is specifically biased towards detecting
extreme tokens through the integration of EVL with the transformer, Nowcasting-GPT
consistently maintains high precision, even as recall increases, far surpassing both
Nuwa-Pytorch and PySTEPS. This exemplary balance of precision and recall estab-
lishes Nowcasting-GPT as the most reliable model for applications that demand mini-
mal false positives while ensuring no true positive events are missed.
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Conclusion and Future Work

This thesis has introduced and scrutinized the Nowcasting-GPT model, an innovative
approach to precipitation nowcasting that integrates a Vector Quantized Variational
Autoencoder (VQ-VAE) with an Auto-regressive (AR) Transformer. The research has
demonstrated significant advancements in forecasting accuracy and computational
efficiency, providing a robust framework for predicting both moderate and extreme
rainfall events.
The AR Transformer component of Nowcasting-GPT has shown marked superiority
over traditional models such as ConvLSTM and RNN. Its proficiency in capturing long-
range dependencies within weather data allows for accurate forecasts over extended
periods, a crucial advantage in meteorological applications. However, this capability
comes at the cost of increased computational demand due to the quadratic complexity
of the attention mechanism. This necessitates optimized configurations of the model
to maintain a balance between computational resources and forecasting efficacy.
Efficiency in training was significantly enhanced through the use of VQ-VAE, inspired
by the work of Esser et al. [18] and Bi et al.[3]. By encoding high-resolution radar
images into a more manageable lower-dimensional latent space and reducing the
spatial resolution of input images from 128x128 to 8x8, the training of the AR Trans-
former was rendered feasible. This configuration facilitated an effective transforma-
tion of compressed latent representations back into detailed precipitation maps using
a pre-trained decoder, showcasing an efficient use of computational resources.
Furthermore, the thesis explored various configurations of the transformer to deter-
mine the most effective setup. This exploration revealed that the optimal configura-
tion significantly impacts the model’s performance, with the best settings focusing on
pertinent features rather than redundant ones, thus preventing computational waste
and enhancing the accuracy of weather feature capture.
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At a national level, the comprehensive performance analysis across the Netherlands
demonstrated that Nowcasting-GPT consistently outperformed other models in terms
of Pearson Correlation Coefficient (PCC) and Mean Absolute Error (MAE), particularly
over longer forecast horizons. This highlights its robustness in operational settings,
where it effectively detected both moderate and extreme rainfall events with remark-
able precision. The application of the Fractional Skill Score (FSS) further illustrated
its capability to capture the spatial distribution of rainfall accurately.
Catchment-level performance evaluation revealed that Nowcasting-GPT also excelled
beyond other advanced models, such as Nuwa-Pytorch, which includes an Extreme
Value Loss (EVL) to enhance detection of extreme weather events. Surprisingly, de-
spite lacking a similar specialization, Nowcasting-GPT’s performance in detecting rain-
fall events was superior, suggesting that its architectural integration of VQ-VAE and
AR Transformer inherently balances the detection of typical and extreme weather pat-
terns effectively.
These findings not only affirm the efficacy of the Nowcasting-GPT model in weather
forecasting but also highlight the potential for further improvements and broader appli-
cations. Future research could focus on integrating additional data sources, applying
more advanced machine learning techniques, and expanding the model’s application
to other geographical regions and climatic conditions. The continued development
and adaptation of this model are poised to significantly advance our capabilities in
weather prediction and analysis, with broad implications for environmental science,
disaster management, agriculture, and beyond.

Future Work
A significant challenge highlighted by this research is the highly imbalanced nature of
the dataset, notably concerning the infrequency of extreme precipitation events which
are critical for detecting hazardous weather conditions like floods. This scarcity leads
to an under-representation of extreme weather tokens, impacting the model’s ability to
forecast severe weather conditions effectively. Future research could address this by
exploring advanced methods to manage data imbalance, such as adaptive sampling
techniques or specialized loss functions designed to emphasize learning from these
rare but significant events.
Further enhancing the model’s capabilities, the application of Extreme Value Loss
(EVL) as demonstrated by Haoran et al. [3]. shows promise in refining predictions of
precipitation maps that include extreme events. By integrating EVL as an additional
loss function alongside the transformer loss in Nowcasting-GPT, the model gains a
robust regularization mechanism tailored to handle data imbalance. This approach
emphasizes extreme events in the loss calculation, improving the model’s sensitivity
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and accuracy in forecasting severe weather conditions and contributing to a more
balanced learning process.
Additionally, the potential integration of a spatial discriminator within the VQ-VAE frame-
work, as discussed by researchers like Esser et al.[12], represents a transformative
enhancement. This would involve adapting the adversarial training component to pro-
vide dynamic feedback to the VQ-VAE, promoting iterative improvements in the gener-
ated outputs. Integrating a spatial discriminator could significantly refine the model’s
capability to process and reconstruct complex spatial patterns in precipitation data,
leading to more detailed and accurate weather forecasts.
An exciting direction for future development is the potential adaptation of the model for
video analysis, as suggested by advancements in VideoGPT by Yan et al.[24]. This
modification would involve integrating 3D convolutions within the VQ-GAN encoder to
capture both spatial features from individual frames and temporal dynamics across
sequences. This capability is ideally suited for analyzing radar map data, which in-
herently forms a time series akin to video sequences. Enhancing the model to better
process these temporal relationships could lead to a more nuanced understanding
and prediction of precipitation patterns over time.
Lastly, embedding physical constraints into the modeling process could profoundly in-
crease the predictive accuracy of the model. By incorporating established physical
laws and atmospheric dynamics into the training process, the model could yield fore-
casts that are not only more precise but also align with theoretical meteorological prin-
ciples [25]. This hybrid approach would merge empirical data-driven techniques with
traditional physically-based forecasting methods, potentially revolutionizing weather
prediction methodologies.
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A
Reconstructions Examples

Figure A.1: Example of reconstruction of precipitation fields by the VQ-VAE. The left column shows
the original radar input images, and the right column shows the reconstructed precipitation fields.
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B
Comparison between Nowcasting

Predictions of different models

Figure B.1: Comparison of Nowcasting results over the entire Netherlands region by different models
(t = 03:00 2019/03/07)
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Figure B.2: Comparison of Nowcasting results over the entire Netherlands region by different models
(t = 05:45 2019/11/28).



C
Comparison of Number of Parameters,

Training and Generation time

Nuwa-PyTorch (VQGAN) Nowcasting-GPT PySTEPS
Number of parameters 772,832 M 704,259 M −
Training time 672 h 210 h −
Generation time 322.86 s 38.90 s 5.5 s

Table C.1: Comparison of training time, generation time, and the number of parameters for different
models.

In table C.1, it is evident that Nowcasting-GPT has the fastest generation time, fol-
lowed by PySTEPS. In contrast, the generation time for Nuwa-PyTorch (VQGAN) is
significantly higher than the others. One key reason for Nowcasting-GPT’s superior
performance is the implementation of KV-caching, which speeds up the generation of
tokens in the autoregressive transformer, thereby enhancing the overall generation
time for prediction frames.

Additionally, to facilitate efficient training of the deep learning model, input radar maps
for all datasets have been converted into NumPy arrays. This optimization, along with
the best transformer configuration, significantly contributes to the improved training
time compared to Nuwa-PyTorch (VQGAN), as highlighted in the table.
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