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Effects of Preview Time on Human Control

Behavior in Rate Tracking Tasks

K. van der El, S. Barendswaard, D.M. Pool and M. Mulder ∗

∗ Faculty of Aerospace Engineering, Delft University of Technology,
Delft, The Netherlands (email:

[K.vanderEl], [S.Barendswaard], [D.M.Pool], [M.Mulder]@tudelft.nl).

Abstract: In many practical control tasks, human controllers (HC) can preview the trajectory
they must follow in the near future. This paper investigates the effects of the length of previewed
target trajectory, or preview time, on HC behavior in rate tracking tasks. To do so, a human-in-
the-loop experiment was performed, consisting of a combined target-tracking and disturbance-
rejection task. Between conditions the preview time was varied between 0, 0.1, 0.25 0.5 0.75
or 1 s, capturing the complete human control-behavioral adaptation from zero- to full-preview
tasks, where the performance remains constant. The measurements were analyzed by fitting
a HC model for preview tracking tasks to the data. Results show that optimal performance is
attained when the displayed preview time is higher than 0.5 s. When the preview time increases,
subjects exhibit more phase lead in their target response dynamics. They respond to a single
point on the target ahead when the preview time is below 0.5 s and generally to two different
points when more preview is displayed. As the model tightly fits to the measurement data, its
validity is extended to different preview times.
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1. INTRODUCTION

Much research has been conducted to increase our un-
derstanding of human manual control behavior since the
1960’s. Despite great advancements for simple tasks, es-
pecially compensatory tracking (McRuer et al., 1965), the
mechanisms underlying manual control behavior in more
complex tasks with preview are still relatively unclear.
Examples of such tasks include car driving, where the
road ahead is visible through the windshield (Kondo and
Ajimine, 1968), and flying an aircraft through a displayed
tunnel-in-the-sky (Mulder and Mulder, 2005). In these
tasks, a human controller (HC) can see and anticipate the
future trajectory to follow, allowing for a more advanced
control strategy that involves both feedforward and feed-
back (Sheridan, 1966; Ito and Ito, 1975; Van der El et al.,
2015). Recently, Van der El et al. (2015) derived a new
HC model for preview tracking with a physical foundation,
enabling a more in-depth analysis on how humans exactly
use preview information for control.

The effect of the previewed target trajectory’s length
(referred to as the preview time) on HC behavior has been
abundantly studied (Reid and Drewell, 1972; Tomizuka
and Whitney, 1973; Poulton, 1974; Ito and Ito, 1975; Van
Lunteren, 1979). These authors report that HCs are able
to track the target much better, and that the optimal
performance in rate tracking tasks is already achieved with
0.5 s preview. The effect of additional preview beyond
this so-called critical preview time is small, and tracking
performance does not improve any further. However, using
their new model, Van der El et al. (2015) found that HCs
respond to a point on the target well beyond this critical

preview time, in rate tracking tasks with 1 s of preview.
It is unclear why HCs respond to the target further ahead
when a similar performance is obtained with lower preview
times.

The goal of this paper is to systematically analyze the
effect of the displayed preview time on HC behavior in rate
tracking tasks. To do so, we performed a human-in-the-
loop experiment with integrator controlled element (CE)
dynamics. Six conditions were tested, presenting 0, 0.1,
0.25, 0.5, 0.75 and 1 s of previewed target on the display,
to capture the full human control-behavioral transition
between situations without any preview to preview well
beyond the reported critical preview time. First, the re-
sults are used to confirm previous findings that tracking
performance improves with higher preview times. Then,
the model from (Van der El et al., 2015) is fitted to the
data to obtain the HC dynamics, including estimates of the
points on the target responded to. These allow us to better
explain how subjects use preview information. Finally, the
Variance Accounted For (VAF) is calculated to confirm
the model’s validity in tasks with different preview times.

This paper is structured as follows. First, the new HC
model for preview tracking is explained in Section 2,
and an introduction to preview tracking is given. The
parameter estimation method, used for fitting the model
to the data, is explained in Section 3. Details of the
experiment and its outcomes are presented in Sections
4 and 5. Finally, a discussion and our conclusions are
presented in Sections 6 and 7.
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2. BACKGROUND

2.1 Manual Preview Tracking

The preview display used for the considered preview track-
ing task is shown in Fig. 1. The amount of preview infor-
mation of the target signal ft([t, t + τp]) that is visible
ahead is characterized by the preview time τp. When τp
equals zero, only the current target ft(t) is visible and the
display reduces to what is referred to as a pursuit display
(Wasicko et al., 1966).

The HC’s task is to give control inputs u(t) that drive
the CE output x(t) as close as possible to the current
value of the target signal. In other words, subjects are
to reduce tracking error, defined by e(t) = ft(t) − x(t).
Only the lateral displacement of the CE is controlled; the
previewed target signal moves down over the screen, so the
current target also moves laterally. The CE (with dynamics
Hce(jω)) is additionally perturbed by a disturbance fd(t).
Fig. 2 shows a schematic overview of the task.

2.2 Human Controller Model for Preview Tracking

Van der El et al. (2015) showed that HCs in preview
tracking tasks can be modeled using a quasi-linear frame-
work. This means that most of the HC’s output is linearly
related to the inputs. The remaining non-linearities and
noise elements are modeled as filtered white noise (referred
to as the remnant n(t)) added to the linear control output.
The complete model is shown in Fig. 3.

The model’s inner loop is similar to McRuer’s simplified
precision model for compensatory tracking task (McRuer
et al., 1965). As such, the HC’s structural adaptation to
the CE dynamics is captured by Hoe⋆ (jω), the internal
error response, which is a pure gain Ke⋆ for an integrator
CE:

Hoe⋆ (jω) = Ke⋆ . (1)

The inner loop further incorporates the human’s physical
limitations: τv represents the HC visual response time
delay and Hnms the neuromuscular system dynamics. The
latter are modeled as:
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Fig. 1. Preview display.
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Hnms(jω) =
ω2
nms

(jω)2 + 2ζnmsωnmsjω + ω2
nms

, (2)

with natural frequency ωnms and damping ratio ζnms.

For preview tracking tasks, the simplified precision model
is extended with two responses with respect to different
points on the previewed target. This near- and far-point
(ft,n(t) and ft,f (t)) are located τn and τf s ahead:

ft,n(t) = ft(t+ τn), ft,f (t) = ft(t+ τf ). (3)

By responding to the target ahead, HCs effectively intro-
duce negative delays into the system, hence corresponding
phase lead. This can be beneficial when used to compensate
for their own response lags and the CE’s inherent lag.

The far point is used to track to the slow changes (low
frequencies) of the target signal. Its filtering dynamics
Hof (jω) thus has low-pass characteristics:

Hof (jω) = Kf

1

Tl,f jω + 1
, (4)

with Kf and Tl,f the far-point gain and lag time-constant,
respectively. From the resulting filtered target signal HCs
calculate the internal error e⋆, which in the frequency
domain is given by

E⋆ = Hof (jω)Ft,f(jω) −X(jω). (5)

The capitals indicate the Fourier transforms of the respec-
tive signals.

The parallel near-point response Hon(jω) was originally
modeled as a high-pass filter. However, its estimated
lag time-constant generally indicated a break frequency
around 10 rad/s for tasks with integrator CE dynamics,
which is in the region where the neuromuscular system dy-
namics also become dominant. Therefore, we omit the lag
filter here, resulting in the following near-point response:

Hon(jω) = Knjω, (6)

with Kn the near-point gain.

Van der El et al. (2015) further showed that the model can
be rewritten into an equivalent two-channel structure (see
Fig. 4), which is more convenient for analytical analysis.
The target and CE output response dynamics in this
model, Hot(jω) and Hox(jω), are given by:

Hot(jω) = [Hof (jω)Hoe⋆ (jω)e
τf jω

+Hon(jω)e
τnjω]Hnms(jω)e

−τvjω, (7)

Hox(jω) = Hoe⋆ (jω)Hnms(jω)e
−τvjω. (8)
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Fig. 4. Simplified control diagram of the preview model.



2.3 Perfect Target-Tracking

From Fig. 4, the closed-loop target-to-CE output dynamics
in the frequency domain can be derived to be

X(jω)

Ft(jω)
=

Hce(jω)Hot(jω)

1 +Hce(jω)Hox(jω)
. (9)

The goal to align the CE output with the target is
equivalent to adopting closed-loop dynamics equal to one.
Substitution of X(jω)/Ft(jω) = 1 in (9) and solving for
the perfect target-tracking dynamics HP

ot
(jω) yields:

HP
ot
(jω) =

1

Hce(jω)
+Hox(jω). (10)

The structure of Hox(jω) is fixed for a given CE in
accordance with (8), so the perfect setting of Hot(jω)
is also fixed. For integrator CE dynamics, 1/Hce is a
differentiator and Hox(jω) can be approximated by a
gain in a large frequency range. Therefore, Hox(jω) will
dominate the perfect target-response dynamics at low
frequencies, where the contribution of 1/Hce is negligible,
while the opposite is true at high frequencies. Interestingly,
the structure of the modeled HC’s target response in (7) is
similar: at low frequencies it is dictated by gainKfKe⋆ and
at high frequencies by differentiator Knjω. This suggests
that HCs indeed attempt to respond to the target in a way
that results in optimal performance.

3. HUMAN CONTROLLER MODEL FITTING

Here, we explain the parameter estimation method, ap-
plied to fit the introduced HC model to experimental
measurements. Additionally, we present the calculation of
the model’s quality-of-fit in terms of the VAF.

3.1 Model Parameter Estimation

To estimate the model parameters, we used a frequency-
domain method that minimizes the difference between
the measured control inputs U(jω) and the simulated

control inputs Û(jω|Θ). The parameter vector Θ is
[Kn τn Kf Tl,f τf Ke⋆ ωnms ζnms τv]. To in-
crease the accuracy of the estimated parameters, the cost
function J only accounts for the modeling error at the 40
input frequencies ωi of the target and disturbance signals
(see Section 4.3 for details), where the signal-to-noise ratio
is generally high:

J =
40
∑

i=1

|U(jωi)− Û(jωi|Θ)|2. (11)

Assuming zero remnant, it follows from Fig. 4 that the
simulated control action can be calculated in the frequency
domain as

Û(jωi|Θ) = Hot(jωi|Θ)Ft(jωi)−Hox(jωi|Θ)X(jωi).
(12)

The optimal parameter set is found by minimizing (11),
using a Nelder-Mead simplex algorithm (Lagarias et al.,
1998) with 100 random initializations.

3.2 Variance Accounted For

The VAF is a measure for the similarity between two
signals. When applied to compare the modeled and the

measured control inputs, it inherently serves as a measure
for the ability of the model to replicate the measured HC
behavior. The VAF can be estimated by

VAF =











1−

Ns
∑

k=1

Pǫuǫu(kωb)

Ns
∑

k=1

Puu(kωb)











× 100%, (13)

with P the estimated periodogram of the respective sub-
scripted signals,Ns the number of samples in the measured
time-traces, and ωb the measurement’s base frequency.
ǫu is the modeling error, or the difference between the
measured and simulated control signals; it is calculated as

Eu(jω) = U(jω)− Û(jω|Θ), (14)

with Û(jω|Θ) according to (12). The maximum value of
the VAF is 100%, indicating that two signals are identical.

4. THE EXPERIMENT

4.1 Experiment and Apparatus

A combined target-tracking and disturbance-rejection task
(see Fig. 2) was performed in the fixed-base, part-task
simulator at the Faculty of Aerospace Engineering, Delft
University of Technology. The experimental set-up is pic-
tured in Fig. 5; however, the experiment was performed
with low ambient light, so the preview display (layout as
in Fig. 1) was clearly visible. It was presented with bright
green lines on the black screen, measuring 36 by 29.5 cm,
and 1280 by 1024 pixels, and it was approximately 80 cm
from the subjects eyes. The side-stick used to generate
control inputs could only move around its roll axis and was
restrained in all other directions. It was electro-hydraulic
servo-controlled and had a moment arm of 9 cm. Its tor-
sional stiffness and damping were set to 3.58 Nm/rad and
0.20 Nm·s/rad, respectively, its mass moment of inertia to
0.01 kg·m2, and its gain to 0.175 inch/deg. The CE was an
integrator with a gain of 1.5 (i.e., Hce = 1.5/s), making
this a rate control task.

4.2 Independent Variables

The experiment had one independent variable with six
levels, namely displayed preview time, which was varied
between 0, 0.1, 0.25, 0.5, 0.75, and 1 s. The first and last
conditions were included to compare the current results

Fig. 5. Experiment setup.



with those reported in (Van der El et al., 2015). The other
values were evenly distributed between these extremes
with steps of 0.25 s. Previous research (Reid and Drewell,
1972; Tomizuka and Whitney, 1973; Ito and Ito, 1975)
reported a rapid performance increase for very low preview
times, motivating the introduction of an extra condition
with 0.1 s of preview. A performance asymptote is reported
above the critical preview time of 0.5 s, so we expected to
capture the complete HC’s behavioral adaption with this
experimental design.

4.3 Forcing Functions

The target and disturbance forcing functions were con-
structed to be quasi-random sums of 20 sinusoids, cus-
tom in manual control experiments (McRuer et al., 1965;
Damveld et al., 2010):

ft(t) =

20
∑

i=1

= At(i) sin(ωbkt(i)t+ φt(i)),

fd(t) =
20
∑

i=1

= Ad(i) sin(ωbkd(i)t+ φd(i)). (15)

The ith sinusoid has amplitude A(i), phase φ(i), and
frequency ωbk(i). To avoid spectral leakage, each sinusoid
exactly fits the measurement time of 120 s, hence their
frequencies are integer multiples k(i) of the base frequency
ωb. This forcing function design ensures high signal-to-
noise ratios at the input frequencies, resulting in accurate
estimates of the model parameters. The input frequencies
were distributed between approximately 0.1 and 16 rad/s.

The used forcing functions are identical to those used in
(Van der El et al., 2015), hence the target and disturbance
signal standard deviations are 0.5 and 0.2 inch, respec-
tively. They had a square spectrum with a bandwidth of
approximately 1.5 rad/s, augmented with a high frequency
shelf, whose amplitudes were attenuated by a factor of
about 4 (target) and 3 (disturbance). We used five different
realizations of the target, to preserve its unpredictable
nature after repeated exposure during the experiment. As
no preview is present on the disturbance, such precautions
were unnecessary for this forcing function and only a single
realization was used. For details on the forcing functions’
frequencies, amplitudes and phases see (Van der El et al.,
2015).

4.4 Participants and Experimental Procedures

Six male volunteers participated in the experiment. They
were instructed to minimize the tracking error, using a
strategy that they thought was best. Each subject was
presented with all six conditions in a randomized order,
according to a balanced latin-square design.

First, subjects were given the opportunity to familiarize
themselves with the experiment by performing each con-
dition at least once. After this the actual measurements
started. A condition was trained until the experimenter
observed that tracking performance stabilized. Then, the
measurements were collected from five consecutive runs,
after which the subjects moved on to the next condition.
After each run, the root-mean-square of the tracking error
signal was reported to the participants as an indication

of their performance. They were challenged to keep im-
proving their scores, to motivate them throughout the
experiment. Breaks were scheduled after each block of two
conditions to reduce possible effects of fatigue. The total
experiment took three hours per subject, on average.

A run-in time of 8 s was added at the beginning of the
120 s runs to eliminate any transients, so these data were
not used in the analysis. The time traces of the error e(t),
CE output x(t), and operator control output u(t) were
sampled at 100 Hz during the experiment.

4.5 Dependent Variables

The variance of the error (σ2
e) was used as measure for

the attained tracking performance. It was calculated in
the frequency domain, so we could identify the individ-
ual contributions of the target, disturbance and remnant
frequencies. The fitted model served as a (parametric)
measure for the subjects’ control behavior. It was fitted
to the frequency-domain average of the measured time
signals over the five runs. The obtained HC dynamics,
Hot(jω) andHox(jω), and two of the model parameters, τn
and τf , were analyzed to learn how HCs use the displayed
preview information for control. The model VAF served as
a measure for the model’s validity, it was also calculated
based on frequency-domain average of the measured time
signals over the five runs. 95% confidence intervals were
all corrected for between-subject variability.

4.6 Hypotheses

With the experiment, we tested the following hypotheses:

I: Tracking performance will improve with increasing
preview, but only up to 0.5 s, after which it stabilizes
(Reid and Drewell, 1972; Ito and Ito, 1975);

II: Conditions with more preview yield HC target re-
sponse dynamics Hot(jω) that better resemble those
required for perfect target-tracking (defined by (10));

III: In conditions with more preview, better performance
is achieved by adopting near- and far-points that are
farther ahead (higher τn and τf ), to acquire more
phase lead.

5. RESULTS

5.1 Tracking Performance

Fig. 6 shows that tracking performance improves consid-
erably with increasing preview time (characterized by a
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Fig. 6. Variance of the tracking error (performance), er-
rorbars indicate the 95% confidence interval.



lower σ2
e). Performance indeed stabilizes for preview times

above 0.5 s, which corresponds well with previous findings
(Reid and Drewell, 1972; Ito and Ito, 1975). The per-
formance increase is achieved mainly at the target input
frequencies (gray portions of the bars); differences at the
disturbance and remnant frequencies are small.

5.2 Human Controller Dynamics

As a representative example, the estimated dynamics for
Subject 1 are shown in Fig. 7. With longer preview times
the magnitude of Hox(jω) becomes slightly lower (Fig. 7
top right), but this effect is small and not consistent over
subjects. Because the differences are small, the theoret-
ically perfect target response HP

ot
(jω) is approximately

equal regardless of the preview time, according to (10).
HP

ot
(jω) is drawn with a solid black line in Fig. 7, based

on the measured Hox(jω) for the condition with 1 s of
preview.

Fig. 7 (bottom left) shows that subjects indeed generate
more phase lead in their target response when the preview
time increases. With more preview, the phase characteris-
tics better resemble those of HP

ot
(jω), which corresponds

to the found performance improvement (Fig. 6). Especially
the 0.75 and 1 s preview conditions, up to frequencies of
about 8 rad/s, have phase characteristics similar to those
of the perfect response. In these two conditions the mea-
sured performance was also similar, suggesting this is the
best possible control strategy and the highest achievable
performance, even with unrestricted preview

For Subject 1, the magnitude of the target response
remains roughly equal, regardless of the preview time.
Substantial between-subject variability is found though,
specifically in conditions with 0.75 and 1 s of preview and
at high frequencies. Van der El et al. (2015) suggested
that a magnitude drop appears at high frequencies when
a subjects ignores the target’s high frequencies, and that
a magnitude peak appears when subjects respond to these
using a near-point.
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5.3 Near- and Far-Point Positions

According to the model, the additional phase lead in the
target response is caused by HCs responding to the target
ahead. The estimated positions of the points responded
to are given by the negative delays τn and τf in Fig. 8.
Indeed, τn and τf increase with displayed preview time,
which is in accordance with the increased phase lead (see
Fig. 7).

For lower preview times, up to 0.5 s, τn and τf are
identical, indicating that subjects responded to a single
point on the target ahead. In conditions with 0.75 and 1 s
preview, the near- and far-point positions clearly separate.
The near point stabilizes at 0.35 s ahead, effectively
compensating for the subjects’ response delay τv (≈ 0.32
s, not shown). The far point continues to move farther
ahead, remaining on the limit of the presented preview.

Although we estimated the parameters without bounds,
both τn and τf are generally lower than the preview time
τp (see Fig. 8). This strengthens the model’s physical
foundation, as it shows that subjects responded to a part
of the previewed target ahead that is explicitly visible.
The nonzero values found for the zero preview (pursuit)
condition result from fitting the full preview model to the
data, which contains more parameters than strictly needed
to describe HC behavior in pursuit tracking tasks (Van der
El et al., 2015).

5.4 Variance Accounted For

The calculated model VAFs are shown in Fig. 9. The
means are well above 80% in all conditions, indicating that
much of the measured control behavior is captured by the
model. These values are similar to those often found in



compensatory manual control studies, like (Damveld et al.,
2010).

6. DISCUSSION

A human-in-the-loop experiment was performed to inves-
tigate the effect of preview time on manual control behav-
ior. Similar to previous studies (Reid and Drewell, 1972;
Ito and Ito, 1975), we found that tracking performance
increases substantially with the introduction of preview,
and that the critical preview time is between 0.5 and 0.75 s.
This confirms our first hypothesis.

By analyzing the results with a new HC model for preview
tracking tasks, we gained a deeper insight in the control
mechanisms that cause this performance increase. With
more preview, the phase of the HC’s target response better
resembles that required for perfect target-tracking. How-
ever, the magnitude does not consistently improve, so our
second hypothesis is only partially confirmed. The addi-
tional phase lead with higher preview time corresponds to
increasingly large look-ahead times τn and τf . By respond-
ing to the target ahead HCs effectively introduce negative
time delays into the system, which compensates for their
response lags and the CE’s inherent lag. This confirms our
third hypothesis.

A transition in control behavior was found when the
preview time increases from 0.5 to 0.75 s. For preview
times below 0.5 s, the near- and far-point are identical,
but they separate with more preview, such that two
distinctly different, parallel responses are initiated. HCs
position the near-point such that they approximately
compensate for their response delay, while the far point
is always positioned at the far limit of the displayed
preview. However, for preview times beyond 1 s the far
point will likely stabilize around this point; because the
target response phase characteristics are nearly perfect, a
higher τf will be of marginal benefit, if any.

The critical preview time is known to depend, at least,
on the CE dynamics (Ito and Ito, 1975; Tomizuka and
Whitney, 1973). Because it is not known if HCs adapt to
the preview time similarly in all tasks, we plan further ex-
periments with other CEs. Nonetheless, this paper proved
the value of the new HC model for preview tracking tasks
from (Van der El et al., 2015), which yielded insights about
HC behavior that have not been matched before. More-
over, our experimental results further extend the model’s
validity, which is promising considering possible extensions
to practical control tasks with preview, like driving.

7. CONCLUSION

In this paper, the effect of preview time on human con-
trol behavior was investigated. The results of a tracking
experiment with integrator dynamics confirmed previous
findings that tracking performance increases substantially
with the first 0.5 s of preview that is displayed. Addi-
tional preview beyond 0.75 s yields no further performance
benefit. A recently derived, quasi-linear human controller
model accurately captures the measured behavior in all
conditions, with preview times ranging from 0 to 1 s. The
human’s response to the target signal resembles the dy-
namics required for “perfect target-tracking” increasingly

better when more preview is available, especially in phase.
Human controllers respond to a point at the far limit of the
previewed target trajectory when up to 1 s of preview is
shown. They initiate an additional parallel response with
respect to a nearer point when the preview time is larger
than 0.5 s.
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