
BEP Roparun
L. Overdevest
M. van Meerten
J. Nieuwdorp
Scheduling an international relay-run
Bachelor thesis

BEP Roparun
by

L. Overdevest
M. van Meerten
J. Nieuwdorp

in partial fulfillment of the requirements for the degree of

Bachelor of Science
in Computer Science & Engineering

at the Delft University of Technology,
To be presented publicly on Friday February 1, 2019.

Project duration: November 12, 2018 – February 1, 2019
Thesis committee: Dr. Ir. H. Wang, TU Delft, Bachelor Project Coordinator

Ir. O. Visser, TU Delft, Bachelor Project Coordinator
Dr. Ir. M. T. J. Spaan, TU Delft, Coach
W. Vloet, Roparun, Client

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Foreword
This report concludes the TI3806 Bachelorproject of the bachelor Computer Science & Engineering
at the Delft University of Technology. Over the course of ten weeks, we, Martijn van Meerten, Jasper
Nieuwdorp and Lennart Overdevest developed a scheduling application for the Roparun Foundation.

Wewould like to thank the people that supported us during the project. The assistance and guidance
offered by Dr. Ir. M.T.J. Spaan was greatly appreciated. The clear and useful feedback received during
our meetings were of great importance to our project. Wewould like to thank ErwinWalraven for sharing
his knowledge with regards to Linear Programming algorithms and taking the time to guide us in that
area. Finally, we would to like to offer our special thanks to everyone of the Roparun Foundation who
was involved during the project. Especially Wiljan Vloet, managing director of the Roparun Foundation
and Max van de Ven, for meeting us every week and providing us with feedback on the product.

L. Overdevest
M. van Meerten
J. Nieuwdorp

Delft, January 2019

i

Contents

1 Summary 1

2 Introduction 2

3 Research 3
3.1 Problem definition . 3
3.2 Current approach . 4
3.3 Input and output . 5
3.4 Formalization . 5

3.4.1 Input formalized. 5
3.4.2 Output formalized. 5
3.4.3 Problem formalized. 6

3.5 Data analysis . 6
3.5.1 Route . 6
3.5.2 Speed statistics . 7
3.5.3 Request data . 9

3.6 Existing solutions . 10
3.6.1 Linear Programming . 10
3.6.2 Brute force algorithm . 10
3.6.3 Greedy algorithm . 10
3.6.4 Genetic algorithm. 10
3.6.5 Neural network . 11

4 Development Strategy 12
4.1 User Stories. 12
4.2 Requirements. 12

4.2.1 Must have. 12
4.2.2 Should have . 13
4.2.3 Could have . 13
4.2.4 Would/Won’t have . 13

4.3 Technical choices. 13
4.3.1 Language . 13
4.3.2 Graphical user interface . 13
4.3.3 Web application or local application . 14

4.4 Product plan . 14

5 Code design 16
5.1 Code architecture. 16

5.1.1 Packages . 16
5.1.2 UML . 16

5.2 Design patterns . 17
5.3 Input & Output . 18

6 Interface Design 19
6.1 Design approach . 19
6.2 Program flow . 20
6.3 Input specification . 21

ii

Contents iii

7 Implementation 22
7.1 Greedy . 22

7.1.1 Linear programming . 23
7.1.2 Speed prediction . 23
7.1.3 Final algorithm . 24

8 Process 25
8.1 Methodology . 25

8.1.1 Code quality . 26
8.1.2 Testing . 26
8.1.3 Stakeholders . 27
8.1.4 Meetings . 27

9 Product evaluation 28
9.1 Code evaluation . 28

9.1.1 SIG . 28
9.1.2 Test evaluation . 29

9.2 Requirements evaluation. 29
9.3 Solution quality . 30

10 Conclusion 33

11 Discussion & Recommendations 34
11.1 Reflection . 34
11.2 Recommendations . 34

11.2.1 Technical . 34
11.2.2 Non-Technical . 35

Bibliography 36

A Info sheet 38

B Original Project Description 40
B.1 Dutch . 40
B.2 English . 41

C SIG Evaluation 42
C.1 First feedback. 42
C.2 Second feedback . 43

D User stories 44

E Speed data 46

F Class Diagrams 47

1
Summary

Roparun, a Foundation that organizes a yearly relay race fromParis, Hamburg and Almelo to Rotterdam
to raise money for a variety of causes related to palliative care, requested for an application that could
create the start schedule of the race. The goal of the application is to create a schedule based on
multiple parameters.

In the research phase, several algorithms were analyzed which would be of value to solving the
problem. Furthermore, a speed prediction model was created to get a more precise estimation of
team’s speeds, and in turn, the course of the race.

During development, a greedy algorithm was chosen as the core of the solution. And an application
was iteratively designed to encompass this solution. Extra features were added to increase the value of
the program to the organization. Modern, proven development methodologies were used to ensure a
reliable and maintainable product was delivered within the project duration. To ensure this, and that the
solution offered meets the clients needs, the application is validated in two ways. Automatic testing and
manual testing. A final manual verification is done, where the schedule generated by the application
is compared to the schedule used in the previous year. The results of the comparison can be found
in this report. This shows that a method was developed to create a schedule that outperforms the
previous method on various levels. However there are more improvements possible, both within the
software product context as in the problem space of the real world. These aspects are discussed and
recommendations are offered in section 11.

1

2
Introduction

The Roparun foundation organizes a yearly relay race called The Roparun. This race was held for the
first time in 1991. It is a relay race with starting locations in Paris and Hamburg, stretching over more
than 500 kilometers with its finish in Rotterdam. People take part as teams in an athletic event to raise
money for a variety of causes related to palliative care. Roparun is also called an adventure for life.
This also becomes clear from the motto, which for years has been: ‘Adding life to days, when days
often can’t be added to life’.

To let the race run smoothly the organization needs to take many different aspects into account.
One of the most important aspects is the schedule for the race. Our task was to develop an application
which automates and assists in this scheduling process. Over the course of ten weeks, we have devel-
oped an application which creates a schedule that considers many different parameters. An overview
of some of the functionality that was implemented includes: uploading teams and route information,
speed prediction based on historical data, incorporating participants’ specific requests and various ex-
port options of the schedule. The final product is measured against the current method by creating a
schedule for the past year. This way the schedule produced by both methods can be compared and
evaluated. The result of this evaluation favors the schedule created by the application.

In this report all information can be found about the process of creating the application and the appli-
cation itself. The results of the two weeks research phase are presented in chapter 3. The development
strategy is elaborated in chapter 4. Chapters 5 and 6 contain the design choices with their justification.
Then, in chapter 7, the implementation of various algorithms are elaborated upon. Chapter 8 describes
the process during the project, containing information about the frameworks and methods used. Then
the product is evaluated, followed by our conclusion, and finally recommendations for the organization
are given.

2

3
Research

The research phase is of great importance for developing a solution to the given problem. In this chapter
the results of the research phase are presented. First the problem is defined, followed by the current
approach the organization uses to solve the problem. Next the requirements of the solution and a way
to measure the quality of the given solution are proposed. The input and output of the algorithm, and
the problem are defined in a formal way. Following this, the key concepts of the problem are laid out.
Next the historical data from previous runs is analyzed. After that, the existing solutions are analyzed
and the technical choices made during the project are substantiated. Finally, a product plan is given.

3.1. Problem definition
Since the birth of Roparun in 1991, scheduling the start times of the teams has been a matter of
intuition and later, using experience from past runs. However, as Roparun has continued to grow over
the years, this method is no longer sufficient for guaranteeing the safety of the participants and the
efficient departure and arrival of the teams. Therefore, the development team is tasked with building
a scheduling tool that will assist the organizers in creating the schedule. The main function of the tool
is to generate a list of start times and predicted finish times for each team, which ensures a timely and
efficient start for all teams, and a finish where all teams arrive in short succession, within the allotted
time frame, and without compromising safety and throughput throughout the run. Spread across the
route are checkpoints where teams register as they pass. Based on this information the organizers
would like to be updated on whether the intended schedule is being followed, and where potential
bottlenecks could occur. In 2018, 309 teams participated in the Roparun, and for 2019, 332 teams
have already enrolled. Starting in Hamburg and Paris, the teams run to Rotterdam (see figure 3.1).
In Barendrecht the two different routes meet and merge into one route to Rotterdam. From 2019 on,
Roparun will organize a half run from Almelo along the Hamburg route.

3

3.2. Current approach 4

Figure 3.1: The route as seen on the map

A team consists of 6-8 runners, and a number of people for support; e.g., cyclists, drivers, caterers
and a team captain. The average size of a team is 25 people. Below are the variables that the tool
should be able to take into account, weighing their importance:

• Average running speed of a team

• Different routes that finish at the same location (starting points in Paris, Hamburg and Almelo)

• Decreases in flow rate due to congestion and crowds

• Requests made by teams for specific start passage or finish times.

• Reduced speeds in certain cities being visited

3.2. Current approach
Currently the organization makes a starting schedule based on insight and experience. The teams
provide their expected average speed, which according to the rules should be between 11 and 15 km/h
(Roparun, 2018, p.8). For the half Roparun, teams are allowed to have an average speed between 10
and 15 km/h, since this is intended for less experienced runners. They will start ahead of the group
coming from Hamburg. Since they run along the same route they are expected to be overtaken. The
teams start in ascending order of speed. They try to let the teams from Paris and Hamburg meet
around the same time in Barendrecht, so they will finish together. To spread out the teams evenly over
the finish time frame, the organization plans for the opposite: congestion for runners at the beginning
of the finish time frame. Experience taught the organization that if they plan for this congestion, it will
not happen. So actually planning for chaos will result in an organized result in the current system. After
this schedule is made, teams can submit their requests by email. Then the organization will try to fulfill

3.3. Input and output 5

the requests by manually changing the starting order. Teams know whether their request is accepted
by looking at the final starting schedule.

3.3. Input and output
The data used by the program needs to be uploaded by the user. To create the schedule, the application
needs the following data: a list of teams, a list of routes and a list of requests. A team consists of a team
number, their average running speed and the route they run. A route contains a distance, locations
of the checkpoints and a flow rate due to congestion and crowds. The last input to our application is
the submitted requests list. A request consists of a team number associated with the team making the
request, the type of request and several optional values related to the type of request. These values
are: requested start time, requested finish time, requested stop time frame, distance to stop location
and combined stop/start team.
The output of the application contains the start time and the predicted finish time for each team.

3.4. Formalization
The input, output and problem are formalized in the following subsections.

3.4.1. Input formalized
The input formalized:

• A set of teams T = {𝑡ኻ, ..., 𝑡፧}

• A team can be formalized using:

– 𝑖𝑑 The team number
– 𝑛𝑎𝑚𝑒 The team name
– 𝑣 the specified average running speed
– 𝑟 the route this team follows

• A set of routes 𝑅 = {𝑟ኻ, ..., 𝑟፧}

• A route consists of:

– An ordered set of starting points of intervals 𝐼 = {𝑖ኻ, ..., 𝑖፧}

• A set of requests 𝑄 = {𝑞ኻ, ..., 𝑞፧}

• A request consists of:

– 𝑖𝑑 the team number that made the request
– 𝑡𝑦𝑝𝑒 the type of request
– 𝑠𝑡𝑎𝑟𝑡 the start time [optional]
– 𝑠𝑡𝑜𝑝 the stop time frame [optional]
– 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 the distance until the planned stop [optional]

3.4.2. Output formalized
The output formalized:

• A set of times E = {𝑒ኻ, ..., 𝑒፧}, where 𝑒። = ⟨𝑠𝑡𝑎𝑟𝑡።, 𝑒𝑛𝑑።⟩ with 𝑠𝑡𝑎𝑟𝑡። the start time of team 𝑖 and 𝑒𝑛𝑑።
the predicted end time of team 𝑖

3.5. Data analysis 6

3.4.3. Problem formalized
The problem can be described as a job shop scheduling problem, where a route is a list of 𝑛 machines
and a team traversing the route is a job. Each job consists of 𝑛 operations, each team needs to traverse
the 𝑛 intervals of the route. Each operation 𝑂። needs to be performed on machine𝑀። and the operations
need to be completed in order; i.e., 𝑂።ዄኻ can only be started after 𝑂። has been completed. A job can
never wait for a machine. A machine 𝑖 has a capacity 𝑐።. The objective is to minimize the operational
time of 𝑀ኻ and 𝑀፧.

The problem can be modeled as a linear programming problem. The decision variables are:

𝑡ኺ,። ∶ Start time of team 𝑖 in minutes

𝑡፣ዄኻ,። = 𝑡፣,። +
𝑑፣,፣ዄኻ
𝑣፣,።

, the predicted time in minutes when team 𝑖 is at interval 𝑗 + 1

𝑇። = 𝑡፧,። − 𝑡ኺ,።, where 𝑛 is the finish interval

𝑥፣,።,፤ = {
1 if 𝑡፣,። ≤ 𝑘 ≤ 𝑡፣ዄኻ,።
0 otherwise

𝐿፣,፤ =∑
።
𝑥፣,።,፤

(3.1)

The objective function:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒max ({𝐿፧,፭ , ..., 𝐿፧,፭፞}), where 𝑛 is the finish interval, (3.2)

The constraints are:
𝐶፣ ∶ The capacity of interval 𝑗

∀፤∀፣𝐿፣,፤ ≤ 𝐶፣
𝑡𝑏 ∶ Opening time of the finish
𝑡𝑒 ∶ Closing time of the finish
𝐿፧,፤ = 0, if 𝑡𝑏 ≥ 𝑘 ≥ 𝑡𝑒
𝑡𝑏 = max (𝑇።) for all 𝑖

(3.3)

3.5. Data analysis
Roparun has saved all data from the 2017 and 2018 runs, including but not limited to: starttime and
finishtime of the teams, predicted finiahtime of the teams, the specified average speed of a team, at
what time a team passed specific checkpoints. In this section a summary of the analyzed data is given.

3.5.1. Route
All information about the route is saved in multiple files. There is the route description, this is a spread-
sheet where the route is divided into small intervals to assist the teams in navigating. Furthermore,
it contains per interval information about: the distance traveled in meters since the last interval, the
total distance traveled, checkpoints, what kinds of vehicles are allowed to drive at what location and
information about toilets. This file does not have a visual representation of the route since only the
distance between points is specified and not the location of the points. In Figure 3.2 a small part of the
route description is shown.

3.5. Data analysis 7

Figure 3.2: Snippet of the route description file

For this purpose other files are supplied. A KMZ file which is a (compressed) list of all coordinates
that form the route (both for runners and for support vehicles). The KMZ file is intended to be loaded
into Google Earth (Google, 2019a). There also is a URL available where the route is laid out in Google
Maps (Google, 2019b), this includes not only the route but also markers for the checkpoints. Finally, the
organization provides the route in a format usable on navigation devices by two major brands: TomTom
and Garmin. These contain the same route data as the other files, enriched with various extra locations
(points of interest). These will not be used for the product as they are heavily dependent on proprietary
file systems and the added value of the data enrichment for our purposes is minimal.

The route description will be used to load the route into our tool as this is the leading document
according to Roparun.

3.5.2. Speed statistics
In order for the tool to give a reliable estimation of the course of the race, it is important to get an
accurate speed of the teams. Currently, the only available metric is the average speed of teams. This
speed is specified by the team itself. Since it is an estimation, the reliability of this estimation has been
an issue (rounding, over-estimation, inexperience, composition of teams, incidents). To improve this
important information, using historic data will be looked into. Historic data is of great value. In the paper
by (Chien and Kuchipudi, 2003) historic data is used to predict travel times in multiple transportation
networks. Answering the following questions will be attempted by analyzing the data:

• Is there a general trend in deviation from the projected average speed?

• At what time was the team under / over the average speed?

• Are there other discernible trends that emerge from the data (e.g. do teams that specify a certain
speed perform differently compared to teams that have other specified speeds)

Teams often participate multiple years in a row, but as teams are usually bound to an organization
or community, these teams change composition every year. Therefore, data from a team that partic-
ipated before cannot be used to more accurately predict that specific team’s actual speed. Also the
organization still sees a growth in participating teams, for which no information is present.

The data that will be attempted to analyze was gathered during the 2017 and 2018 runs. At every
checkpoint, the time a team passed that checkpoint was recorded. From this data it will be possible to
derive the average speed of a particular team between any two checkpoints (including start and finish).
This in turn will allow creating a dataset containing, for each specified speed, at each checkpoint, a set
of actual speeds. Table 3.1 shows a snippet of the original data.

The data from table 3.1 is first filtered by the columns ’FromAct’ and ’Valid’. A ’1’ in the ’FromAct’
column signifies the time is recorded by the organization, and not by the team itself. A ’1’ in the ’Valid’
column signifies the recorded time has been verified as a correct time. This data is then used to
calculate the average speed between checkpoints as shown in table 3.2

The data after filtering on the columns still contains impossible and implausible values such as
negative speed, or speeds of over 20 km/h. This is most likely caused by human error, as the data
was recorded manually. After filtering the data of these impossible values, the data is grouped into

3.5. Data analysis 8

ID Positie Tijdstip FromAct Valid IsRegistered Team
1273 0 5/19/18 19:54 1 1 0 1
1633 441 5/19/18 23:28 1 1 0 1
2202 863 5/20/18 3:03 1 1 0 1
2765 1307 5/20/18 6:35 1 1 0 1
3360 1744 5/20/18 10:07 1 1 0 1
3949 2156 5/20/18 13:33 1 1 0 1

Table 3.1: The original checkpoint-time data

ID Positie Tijdstip FromAct Valid Registr. Team Distance Speed
1273 0 5/19/18 19:54 1 1 0 1 0 12000
1633 441 5/19/18 23:28 1 1 0 1 44,1 12318,435
2202 863 5/20/18 3:03 1 1 0 1 86,3 11799,611
2765 1307 5/20/18 6:35 1 1 0 1 130,7 12537,459
3360 1744 5/20/18 10:07 1 1 0 1 174,4 12411,834
3949 2156 5/20/18 13:33 1 1 0 1 215,6 11992,238

Table 3.2: The calculated speed data

Paris and Hamburg runs according to checkpoint distances, and then grouped into average speed per
specified speed, per distance as shown in figure E.1.

Figure 3.3: The average speed deviation per checkpoint from Paris 2018

3.5. Data analysis 9

Figure 3.4: The average speed deviation per specified speed from Paris 2018

The speed data does not have a general trend in deviation from the projected average speed to
which every team adheres. There is, however, a deviation dependent on time or distance. (See figure
3.3) Teams tend to start quickly, slow down during the night and speed up again in the morning. There
is also a trend related to specified speeds. A team with low specified speed will likely have an even
lower actual speed, while a team with a high specified speed will likely have an even higher actual
speed. (See figure 3.4)

3.5.3. Request data
A large number of teams submit a request regarding the schedule. The requests vary from starting at
a specific time to taking a break at particular location. Last year, 72 of the 309 teams proposed such
a request. The tool must take these requests into account. In order to effectively process these, the
requests of previous years are analyzed and categorized.

Figure 3.5: Statistics about the requests

In figure 3.5, a histogram of the categorized requests from 2018 is shown. Most teams want to
start at a specific time and many teams want to stop at a specific time at a location. The ”specific time

3.6. Existing solutions 10

at location” requests can be translated to ”specific start time” requests, by using the team’s predicted
speed and the distance to the location. Similarly for the requests: early start, afternoon start and
late start. Except that these start times lay within a specific range. The combined start request is
more difficult as this introduces a dependency between two teams. A combined finish also causes this
dependency.

3.6. Existing solutions
In this section, the approaches that could provide a solution to our problem will be analyzed. Starting
with a subsection about the chosen solution and in the following subsections, elaborating on alternative
solutions and why they do not solve our problem. The existing solutions found in literature regarding
related problems were minimal. Information about general schedule systems were found in abundance.
Our problem, however, does not apply to a general scheduling problem because of the constraints.

3.6.1. Linear Programming
It is expected that our problem is solvable using linear programming. M. Goemans from MIT defined
linear programming as follows:

”Linear Programming deals with the problem of optimizing a linear objective function sub-
ject to linear equality and inequality constraints on the decision variables” (Goemans, 2015)

In section 3.4.3, the constraints and decision variables of our problem are defined. The output of
the algorithm will be an optimal schedule which satisfies all the constraints. In the next subsections it
will be discussed why other alternatives do not apply to our problem.

3.6.2. Brute force algorithm
One way of solving a schedule problem is looking at all possible schedule possibilities and choosing
the optimal solution. This method runs in 𝑂(𝑛!) time. Given the fact that that are 330 teams starting,
there will be 330! possible solutions. This will obviously cause problems in terms of time complexity.
(Kleinberg and Tardos, 2006, p.31-32)

3.6.3. Greedy algorithm
A well known algorithm to create optimal schedules is the greedy algorithm (Kleinberg and Tardos,
2006, p. 116-207). The basic concept of greedy algorithms is that the solution found by the algorithms
is built up in small steps. At each step, the algorithm optimizes the solution for a specific criterion.
Since all the intervals of the route must be traversed in the same order, the amount of choices the
greedy algorithm has to make is minimal. Furthermore, the average speed of the teams has a huge
impact on the final schedule. The optimal solution can be found by letting the teams start in increasing
order of average speed. The reason a greedy algorithm is not considered optimal, is that the problem
also specifies constraints that cannot be effectively taken into account by the algorithm, such as the
prevention of bottlenecks in traffic flow. Limiting bottlenecks could lead to an endless switching around
of starting times. A greedy algorithm is therefore not the optimal type of algorithm to solve the problem
as defined.

3.6.4. Genetic algorithm
As mentioned in the last paragraph of subsection 3.4.1 the problem can be described as the job shop
scheduling problem. In (Pezzella et al., 2008) a method is discussed how the job shop scheduling
problem can be solved using a genetic algorithm. The only major difference between our problem
and the problems solvable by the genetic algorithm is that, in job shop, the jobs have to wait when
the machine reached their capacity. In our problem, this is obviously not the case. If the maximum
amount of runners at an interval is reached the average speed of a runner decreases rather than the
runner coming to a compete stop until the amount of runners is below the capacity of that interval. This
means an extra constraint is added: if the maximum capacity is reached the operation speed(average
speed) of a job(runner) must decrease. This makes the job shop scheduling unsuitable to this genetic
algorithm.

3.6. Existing solutions 11

3.6.5. Neural network
In (Sabuncuoglu and Gurgun, 1996) a method is discussed how the job shop scheduling can be solved
using neural networks. However, as elaborated in the subsection above, our problem does not fit with
the job shop scheduling.

4
Development Strategy

This section will highlight strategical choices that were made during the research phase of the project
that provided the blueprint for the rest of the development process. First an outline will be given on
how the requirements were formulated and prioritized, followed by a justification of technical design and
environmental choices. Finally the initial product plan that was formulated at the end of the research
phase is presented.

4.1. User Stories
In order to describe desired functionality in a way that the requirements of all different stakeholders will
be thought out and visible from the start user stories will be utilized (Cohn, 2004).

In accordance with the model proposed by Ron Jeffries the user stories are written on cards. (Jef-
fries, 2001) For the card a standard template has been used:
As a <Role >I want to <Capability >so that <Benefit/Goal >

After a user story card is written, a conversation with the client follows. This includes all interactions
the different stakeholders have concerning a specific user story and does not have a physical form. In
order to document this step a brief summary of the conversation is written.

Finally every user story receives confirmation, which means it will be translated into functionality
that is to be implemented.

For the sake of brevity all roles are reduced to keywords, with a longer description.

User − The roparun employee that will use the final product (end user).
Participant − A member of a participating team.
Roparun − The roparun organisation as a whole entity.

Developer − A member of the development team.

The user stories are defined in appendix D.

4.2. Requirements
During a project it is important to know what the requirements set by the customer are, and how they
prioritize the requirements. The initial requirements came from the user stories (see appendix D) and
where prioritized together with the client. A commonly used method that aides in prioritizing require-
ments is the MoSCoW method (Ghahrai, 2017). This method helps the client and project manager
understand the importance of the requirements. If the importance is known, the requirements can
be prioritized and developed in that specific order. In the following subsections the requirements are
categorized according to the MoSCoW method.

4.2.1. Must have
• The tool must schedule a start time for each team.

12

4.3. Technical choices 13

• The tool must predict the finish time for each team.

• All predicted finish times must be within the time frame stated by the government permit.

• The tool must use historical data to adjust the specified speed to a more realistic speed.

• The tool must be effectively usable by the client.

4.2.2. Should have
• The tool should be able to handle proposed requests.

• The tool should give an insight in the optimal opening times of the checkpoints along the route.

• The tool should be able to limit the amount of traffic on the route based on known bottlenecks.

• The tool should allow the organization to manually change the schedule and adjust accordingly.

• The tool should be durable.

• The tool should be compatible with all operating systems.

4.2.3. Could have
• The tool could have a feature to visualize the density per segment per time frame of the race.

• The tool could update the predicted finish time by using the team’s checkpoint times.

• The data of following years could be used to improve the performance of the tool.

• The tool could provide a list of fulfilled and denied requests.

• The tool could have a formatted pdf export for the schedule.

4.2.4. Would/Won’t have
• Automation of checkpoints and start.

4.3. Technical choices
Below various technical choices are substantiated with regards to choice of language, goals for the
user experience and platform dependencies of the program.

4.3.1. Language
Java provides a flexible basis that allows for implementation of generally all concepts will be encoun-
tered in this project. Execution speed is not a direct requirement, so the ability of Java applications
to run on a wide variety of hardware will offset the performance disadvantages Java has over over
programming languages. The object oriented nature of Java is very suitable for the iterative work flow.
Finally, Java is platform-independent (Arnold et al., 2005), so the Java application can be run on all
operating systems.

4.3.2. Graphical user interface
In this section GUI libraries for Java are compared. The most used libraries to visualize the content of
Java applications are Swing and JavaFX. The latter is seen as the successor of the outdated Swing
(Meidinger et al., 2015, p.526). General major advantages of JavaFX are that is it is has a powerful
runtime and CSS styling can be used (Premkumar and Mohan, 2010). Compared to Swing it is also
more consistent in event handling and code production (Lowe, 2016). For these reasons JavaFX was
chosen to be used in our project.

4.4. Product plan 14

4.3.3. Web application or local application
Currently the client has specified a preference for a local application, however, some lower priority re-
quirements would benefit from a web application. If the project evolves to a web application with Java
it is helpful to use a framework. This will abstract a lot of the details of building web applications and
make developing more efficient. The framework then planned to use is Spring MVC. Spring MVC is
chosen for a multiplicity of reasons; it is the most used framework, with a very complete and extensive
documentation. Furthermore, it enforces a strict distinction of controllers, models and views and pro-
vides various templates to interact with databases (Pandey et al., 2018, p.4). Despite this, Spring MVC
has a steep learning curve, so it takes some time to learn the basics of Spring MVC for team members
not yet familiar with Spring MVC.

4.4. Product plan
• Week 1

– Research report
⋄ Research problem definition
⋄ Request data analysis

• Week 2

– Research report
⋄ Requirements specification
⋄ Existing solution analysis
⋄ Speed data analysis

– UML design

• Week 3 (sprint 1)

– Setup development tools
⋄ Define workflow
⋄ Configure version control system
⋄ Configure test environment

– Create barebones application

• Week 4 (sprint 2)

– Data import
– First rudimentary schedule (greedy)

• Week 5 (sprint 3)

– Model for speed prediction
– First linear programming schedule model

• Week 6 (sprint 4)

– Improve linear programming schedule model
– improve Model for speed prediction
– Handle proposed requests
– Create model for testing solution quality

• Week 7 (sprint 5)

– Implement SIG improvements
– Improve linear programming schedule model

4.4. Product plan 15

– Insight in opening times of checkpoints
– Manual adjustments to schedule

• Week 8 (sprint 6)

– Limit the amount of traffic on certain parts of the route
– Update the predicted finish time by using the team’s checkpoint time

• Week 9 (sprint 7)

– Extend the tool to update data for following years

• Week 10 (sprint 8)

– Export schedule as pdf
– Preparing presentation

5
Code design

In this section all code design choices are elaborated upon. First the general architecture of the code
is given. Then the design patterns used are discussed.

5.1. Code architecture
In this section, the code architecture is elaborated. First the structure of the packages is explained.
Then the dependencies between the packages are visualized using UML.

5.1.1. Packages
The code base is divided into six packages: model, view, controller, core, validator and io. The model
package contains the data classes (e.g. Route, Team, Request). The controller package contains the
classes that interact between the model and the view package. Most of the program’s logic is contained
in the controller package. The view package contains the classes that produces the user interface of the
application. The core package contains the classes that provide the logic not captured in the controller
package. For example: the logic to generate the scheme, speed prediction over specific intervals, and
sorting the teams and schedule based on specific elements. The validator package contains all classes
that validate input. The final package, io, contains all classes that parse the input or export the result.

5.1.2. UML
In this section the architecture of the code is visualized via UML diagrams, and the dependencies
between packages are described and substantiated.

The RopaSchedule class is the primary class (See figure 5.1) that contains the main method of the
application. From here an instance of the application is loaded, the JavaFX stage is created and the
GUIController class in the controller package is created. This class is responsible for program flow
and all other controllers are created from this class. Every screen has a unique controller which is
responsible for showing a correct and updated view. The user input into the view is validated by a
designated input validator class from the validator package, which is then returned to the controller.
These controllers create and modify the required model objects, and call the required core classes for
schedule creation, speed prediction and other processes that should be accessible to both the controller
and model.

A complete overview of the classes can be found in appendix F.

16

5.2. Design patterns 17

Figure 5.1: The package dependency diagram

5.2. Design patterns
Design patterns are used to solve common software engineering problems. (Gamma et al., 1994). This
section will highlight the primary design patterns that have been used in the software.

MVC
One of the design patterns used is the Model-View-Controller (MVC) pattern (Atwood, 2018). This de-
sign pattern is based on three other design patterns: Composite, Strategy and Model. MVC divides the
software application into three interconnected parts: model, controller and view. The model specifies
the structure of the data. The view shows the output to the user. To create the views, JavaFX is used
(Clarke et al., 2009). CSS is used to style the graphical interface created by JavaFX. The controller
acts as an interface between the model and the view. Most logic is included in the controller. The
advantages of this design pattern are briefly discussed. Using this pattern, allows developers to pro-
gram in parallel. This increases the speed of the development process. Furthermore, MVC enables
developers to create multiple views for the same model. Duplication of code is therefore limited since
the logic of the application is separate from the GUI.

Singleton
Singleton is another design pattern that is implemented. The singleton design pattern restricts the
instantiation of a class to at most one instance. (Gamma et al., 1994) The SpeedCalculator class is
implemented in this way. This is done for the following reason: if there are multiple Speedcalculator
instances in the program the calculations for the speed prediction could be mixed up. This would result
in inconsistent and unreliable schedules.

Observer
The observer pattern is a way for observer objects to observe the state of an observable object without
being coupled. (Gamma et al., 1994) JavaFX uses this pattern in the form of observable lists that con-
tain data displayed in a table. Updating the list will therefore also update the table. This pattern was
also used in decoupling the GUIController class from the other controllers.

Strategy
The strategy pattern is used to define a family of algorithms, encapsulate each one, and make them
interchangeable. This lets the algorithm vary independently from clients that use it. (Gamma et al.,
1994) This pattern was implemented in the Parser and Exporter classes. The Parser will be required to

5.3. Input & Output 18

call different methods for parsing route description files and team files. The Exporter classes differ in
the way they fill the cells. The scheme, event info, and checkpoint exporter all implement this method
differently.

5.3. Input & Output
This section describes the design of the input and output code: parsing, exporting and saving data.

Read & write
The organization saves all data about the teams and routes in spreadsheets. Therefore Apache POI
(Apache, 2018) is used. Apache POI is a Java library for reading and writing files in Microsoft Office
formats, to which Excel belongs. The data used in our application, is read and written using Apache
POI. In the previous years, the schedule was provided to the teams in a styled document with PDF
format. Therefore, the same PDF files are able to be generated. The PDF contains the logo of the
organization and the rows of the table are colored depending on the start bucket a team starts in. To
export the schedule to PDF, itextpdf (Itextpdf, 2019) is used. Itextpdf is a Java library for generating
PDFs.

Saving
When the program is closed the user input is saved using Java serialization (Oracle, 2019). The serial-
ized objects are written onto the disk in session files, which are read when the application is restarted to
recreate the objects in memory. The main reason why saving functionality is implemented is usability
of the application. The 2018 edition had 73 requests. Being able to close the program and take a break
is a substantial improvement to the usability of the application. Moreover, this also enables the user to
make last minute changes.

Logging
Loggers are a fundamental part of software applications. Loggers are used to log the actions performed
during run-time. This allows for quicker debugging, as the location of errors or failures is also logged.
It could also provide information about the application (e.g. amount of teams parsed). An example log
by the application is: ”The schedule is successfully exported”.

6
Interface Design

One of the requirements discussed in 4.2 states that the tool must be effectively usable by the client.
Therefore, operating the tool should be as simple and straightforward as possible. To achieve this,
the user interface is built so that the user always knows what to do. The objective is that a user, with
minimal prior knowledge of the task they would like to complete, is able to do so without additional
instructions. How the user interface achieves this objective is described in section 6.1. Next, different
views of the tool are discussed and the associated functionality of the associated steps are elaborated.

6.1. Design approach
Initially a broad idea of the general structure of the user interface was required in order to develop a
consistent and smooth look and feel for the application that meets the prior given criteria. To achieve
this early on in the process each team member created a mock up of their ideas for the design. These
drafts where discussed and the best aspects of each where combined in a final product vision. Con-
sistency and clarity where the most important factors when making design choices.

In figure 6.1 a first version of the user interface is shown.

Figure 6.1: Draft of the GUI of the start screen

Stylistically the goal was to apply the corporate identity of the Roparun and make the application
look modern. Most notably instances of the corporate identity are the colors used in the color scheme,
logos through the application and font selection.

19

6.2. Program flow 20

6.2. Program flow
When the application is started it checks to see if previous sessions are available. If that is the case
the user is prompted to either continue with their previous session or create a new schedule. If the user
selects the option, new schedule, a new screen is shown to the user. This screen can be seen as the
main application, since it displays all elements that are consistent across the process. The style of the
application is the same for each screen.

Figure 6.2: Final version of the first stage

On each screen, the user is guided by a step navigator which can be seen on the bottom in figure
6.2. This ensures that the user always executes the required steps in the correct order. The user
always knows in what phase of the application they are in and what is still to come. Every screen
also has, where applicable, a ’volgende’ and ’vorige’ button that allows the user to progress, to the
next or previous screen respectively. This creates a procedural approach and allows the program to
perform tasks in the backgroundwhile the user suppliesmore input. This greatly improves the perceived
performance. When the user goes to the next page the input given is validated. If information is missing
or incorrect, the user is notified. The input element’s border will color red, and red text will appear to
the right side of the element explaining what went wrong. When the fields are validated correctly the
program will advance to the next screen. When the user presses the previous button they will receive
an alert warning them that going to an earlier stage will discard any changes made in the current stage,
when this is applicable. If the user confirms their decision, or no changes would be discarded the
program goes back to the previous screen.

The decision to discard changes when navigating to a previous stage in the program was made
to ensure consistency of the data. For example, if the user adds two runs, then adds a request for a
team of run 1, and then removes this run. There will now be a request for a non-existent team. This is
prevented by discarding the requests after going to the previous stage.

When the user arrives at the final screen all previous steps have been completed correctly and the
generated scheme will be displayed in a table. The user has various options for exporting the schedule
and related event information.

There are two types of documents that can be exported from the program, spreadsheets and PDF
files. The former is unstyled and the latter conforms to the corporate identity of Roparun. The PDF

6.3. Input specification 21

export is available for both the start and finish schedules of the organized event. An example of such a
document can be seen in figure 6.3. It is formatted in a way that is immediately usable by the Roparun
to redistribute to the teams and combines clarity and a high information density with the font, logo and
styling in line with other documents used in the organization.

Figure 6.3: The schedule exported as a pdf file

6.3. Input specification
In the program, the input required from the user is mostly obtained from GUI elements, which have
validation on the values to ensure the correct values are entered. During the creation of a schedule,
the program also requires two files as input. These files contain the description of the route and the list
of teams that participate. Both files are required for every run, in the following paragraphs the specifi-
cations for both files are given.

Route file
The specifications for the route are based on a file structure that is already present within the roparun,
the so called ”Routerol” (see section 3.5.1). This means that the input file should be a Microsoft Excel
Workbook file with file extension ”.xlxs”. The first row is reserved for headers and will not be read by
the program. Every following row is interpreted as a point on the route, an entry. Column ”A” should
contain the distance to the previous entry in meters, formatted as a whole number. Column ”B” should
contain the distance from the start in kilometers formatted as a number with one decimal place. Column
”G” represents a checkpoint, it should start with ”ROPARUN Checkpoint ” followed by the number of
the checkpoint and a description of the checkpoint in one word separated by a white space. The format
of the column should be general, any styling of the document is not used.
Team file
The input file should be a Microsoft Excel Workbook file with file extension ”.xlxs”. The first row is
reserved for headers and will not be read by the program. Every following row represents a team.
Column ”B” should contain the number of a team formatted as a whole number. Column ”C” should
contain the name of a team formatted as text. Column ”D” should contain the specified speed of a team
formatted as a number with one decimal place. Any styling of the document is not used.

7
Implementation

In this section, the process of the implementation of the scheduling and speed prediction algorithms is
elaborated. The scheduling is performed by a greedy algorithm.

7.1. Greedy
To be able to show the client a valid schedule as soon as possible, a simple greedy algorithm was
implemented. Below, the pseudocode of the algorithm can be found. The algorithm only satisfies the
following requirements: all predicted finish times must be within the time frame stated by the govern-
ment permit and a the teams must finish evenly spread over the time frame. The algorithm does not
take any other requirements into account. For example: the maximum amount of runners allowed per
segment and the requests.

The algorithm works as follows, first the teams are sorted in decreasing order of specified speed.
The amount of time between the finish time of the teams is computed by dividing the amount of hours
between the opening and closing time of the finish by the amount of teams, say timeBetweenTeams.
This results in an even spread at the finish, each team finishes a constant and identical time after the
last team. The starttime of a team is computed using the distance of the race and the specified speed.
In this schedule, the fastest team is planned to finish at the opening time of the finish. The starttime is
computed by subtracting the amount of time a team needs to run the race from the opening time. The
next team needs to finish at the opening time plus the timeBetweenTeams such that a spread at the
finish is achieved. This process is executed until a starttime is assigned to each team.

Algorithm 1 Greedy schedule algorithm

Let 𝑡𝑒𝑎𝑚𝑠 be a List of teams sorted on decreasing specified speed, so 𝑣ኻ ≥ 𝑣ኼ ≥ ...≥ 𝑣፧
schedule ← Map that contains as key, a team, and as value, a Pair of start and finish time
finishOpeningTime ← Opening time of the finish
finishClosingTime ← Closing time of the finish
timeBetweenTeams ← (𝑓𝑖𝑛𝑖𝑠ℎ𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝑇𝑖𝑚𝑒 − 𝑓𝑖𝑛𝑖𝑠ℎ𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒) / 𝑡𝑒𝑎𝑚𝑠.𝑠𝑖𝑧𝑒()
distance ← distance of the route
for (Team curTeam : teams) do

timeRan ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 / 𝑣፮፫ፓ፞ፚ፦
startTime ← 𝑓𝑖𝑛𝑖𝑠ℎ𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒 − 𝑡𝑖𝑚𝑒𝑅𝑎𝑛
add curTeam and Pair(startTime, finishOpeningTime) to schedule
finishOpeningtime ← 𝑓𝑖𝑛𝑖𝑠ℎ𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝑡𝑖𝑚𝑒 + 𝑡𝑖𝑚𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑇𝑒𝑎𝑚𝑠

end for
return schedule

22

7.1. Greedy 23

7.1.1. Linear programming
Contrary to our expectation at the beginning of the project, a linear programming algorithm was not
implemented. There are several reasons for this. First and foremost, during the course of the project,
the client reported a change in priorities on their side. After signals received from stakeholders, the
client decided that avoiding bottlenecks due to high density traffic was no longer an important concern.
This in turn altered the problem to where a linear programming algorithmwould not give a better solution
than an advanced greedy algorithm, since the optimization of the traffic along the route was taken out of
the equation. Secondly, implementing the LP algorithm took more time than anticipated. The amount
of work required to get a simplified version of the problem to yield a solution greatly exceeded the
estimation of the entire problem. This was partly due to the inexperience with the technology. When
the priorities changed the best approach was reassessed and the linear programming approach was
not only essential anymore, it was also unsubstantiated whether it would yield the best results at that
point.

7.1.2. Speed prediction
As analyzed in 3.5.2, the speed specified by the teams is not a very accurate representations of their
actual speed. The historical data analysis shows that teams with a lower specified speed are more
likely to run slower than their specified speed, and teams with a higher specified speed are more likely
to run faster than their specified speed. In order to utilize this information in the tool, a spreadsheet
containing the actual mean speeds per distance per specified speed as shown in figure E.1 is used as
a lookup table in the application.

The method findLookupSpeed(oldSpeed) returns the closest speed to oldSpeed for which there
are entries in the table. findLookupDistance(oldDistance) returns the first distance rounded up from
oldDistance for which there are entries in the table. lookup(lSpeed, lDistance) returns the speed value
found in the table at lSpeed and lDistance. The speed prediction algorithm can be found in algorithm
2.

Algorithm 2 Speed prediction algorithm

1: specifiedSpeed ← the speed specified by the team
2: fromDistance ← the distance the team will travel from
3: toDistance ← the distance the team will travel to
4: totalDistance ← 𝑡𝑜𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑓𝑟𝑜𝑚𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
5: lookupSpeed ← 𝑓𝑖𝑛𝑑𝐿𝑜𝑜𝑘𝑢𝑝𝑆𝑝𝑒𝑒𝑑(𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑𝑆𝑝𝑒𝑒𝑑)
6: lookupFromDistance ← 𝑓𝑖𝑛𝑑𝐿𝑜𝑜𝑘𝑢𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑓𝑟𝑜𝑚𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
7: lookupToDistance ← 𝑓𝑖𝑛𝑑𝐿𝑜𝑜𝑘𝑢𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡𝑜𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
8: while lookupFromDistance != lookupToDistance do
9: distance ← 𝑙𝑜𝑜𝑘𝑢𝑝𝐹𝑟𝑜𝑚𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑓𝑟𝑜𝑚𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
10: predictedSpeed += 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 𝑙𝑜𝑜𝑘𝑢𝑝(𝑙𝑜𝑜𝑘𝑢𝑝𝑆𝑝𝑒𝑒𝑑, 𝑙𝑜𝑜𝑘𝑢𝑝𝐹𝑟𝑜𝑚𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
11: fromDistance ← 𝑓𝑖𝑛𝑑𝐿𝑜𝑜𝑘𝑢𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑓𝑟𝑜𝑚𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
12: lookupFromDistance ← 𝑓𝑖𝑛𝑑𝐿𝑜𝑜𝑘𝑢𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑙𝑜𝑜𝑘𝑢𝑝𝐹𝑟𝑜𝑚𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
13: end while
14: predictedSpeed += (𝑡𝑜𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑓𝑟𝑜𝑚𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒) ∗ 𝑙𝑜𝑜𝑘𝑢𝑝(𝑙𝑜𝑜𝑘𝑢𝑝𝑆𝑝𝑒𝑒𝑑, 𝑙𝑜𝑜𝑘𝑢𝑝𝑇𝑜𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
15: predictedSpeed += (𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑𝑆𝑝𝑒𝑒𝑑 − 𝑙𝑜𝑜𝑘𝑢𝑝𝑆𝑝𝑒𝑒𝑑)
16: predictedSpeed /= 𝑡𝑜𝑡𝑎𝑙𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
17: return predictedSpeed

The data that is used for the speed prediction depends on the data label given to the route a team
follows. If a team runs on the Paris route, the Paris data label will be used, and only Paris data files will
be used in the prediction of the speed. If no data label is assigned, a combined data file will be used in
the prediction. Furthermore, data from different years is weighted by geometric progression, devaluing
older data over more recent data. In order to keep the speed prediction data accurate, the user has
the ability to add new data files to the system.

7.1. Greedy 24

7.1.3. Final algorithm
In section 7.1.1 several reasons are provided for why the linear programming formulation of 3.4.3 was
not implemented. Instead, it was decided to improve the greedy algorithm.

Start buckets
The first improvement made to the algorithm was the creation of starttime buckets. This was imple-
mented to minimize the number of teams that start separately. The main reason is safety. The Paris
route starts by passing through a Banlieue, which are known for their high crime rates. Running in
bigger groups is therefore safer. Furthermore, the teams find starting together more enjoyable. This
results in competition between the teams. Thirdly, having fewer starting moments reduces the workload
of the organization.

After the creation of the schedule, a method createBuckets is called. This method creates the start
buckets for each route. First the teams are filtered by route to prevent mixing teams from different
routes in the same bucket. Then the teams are sorted on starttime. Next the buckets are created and
filled based on two conditions. If the difference between the starttime of a team and the bucket start-
time is greater than 5 minutes or the maximum bucket size is reached, a new bucket is created. If this
condition is not met, the team is added to the current bucket. This process is executed until each team
is assigned to a bucket.

Requests
In section 3.5.3 an overview is given of the amount and types of requests proposed by the teams. In the
previous year’s event, approximately 23% of teams proposed such a request. Therefore, functionality
was added to automate this. The user is able to add the most common types of requests. The first type
is a request to start at a specific time, the second type is a request to finish at a specific finish time,
and the last type is a request to stop at a location at a specific time for a particular duration. Before the
request is incorporated in the schedule, the feasibility of the request is verified.

For the specific starttime request, the predicted finish time is computed. If the computed finish time
is within the permitted time frame, the request is deemed feasible. If not, the request is denied and
the user is informed of this decision. For the specific finish time request, the finish time is once again
compared to the permitted time frame, and handled like the starttime request.

The last type of request, stop request, has two different checks. First the program requires as input
the stop date, arrival time, distance and duration of the stop. These inputs are then used to verify
whether the team is able to finish within the permitted time frame. By adding the stop duration and the
time the team needs to run from the given location to the finish, the new finish time is computed The
second check validates whether the computed starttime, 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒 − (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝑆𝑡𝑜𝑝/𝑠𝑝𝑒𝑒𝑑), is
greater than the minimal starttime(slowest team finishes first). If both checks pass, the request is added
to the list of requests.

If the organization is not allowed to add the request for the reasons mentioned above and the
organization wants to add the request regardless the organization is able to manually change the start
or finish time in the edit screen.

Before the the schedule is generated, the requests are handled. Each handled request has a com-
puted start and finish time. The request information is anchored in the schedule. When the schedule
is generated, the teams for which a request is added are skipped such that the request information is
not overwritten by the generation of the schedule.

The edit screen comes after the schedule is created and allows the user to edit the schedule without
restriction. This is the first time the user is presented with the schedule.

All computed times for verification and handling of the requests use predicted speeds by the speed
calculation algorithm found in algorithm 2

8
Process

This section describes the process that has been used to arrive at the solution. The process provides
the framework to support the applications’ development and ensure effectiveness of the team. The
process should also make the project transparent and reproducible.

8.1. Methodology
Over the course of the project various methodologies have been applied in order to facilitate the devel-
opment. In the selection of methodologies various aspects have been considered, such as size of the
team, scope of the assignment and duration of the project.

Scrum
The scrum framework was utilized as it is focused on maximizing work efficiency and has a clear di-
vision of responsibility (Maximini, 2015). Based on the duration of the project, weekly sprints were
chosen. As a consequence of the sprint duration the frequency of various meetings was determined.
Scrum meetings were held daily, and sprint meetings were held weekly. In the latter the sprint review,
retrospective and planning of the next sprint were combined.

Each sprint started with the sprint planning. This entails assigning issues to team members, as
they are prioritized on the issue backlog. It is worth noting that estimation was done purely on the
teams’ notion of manageable workload. The short duration of the project meant that there was not
enough time to measure an accurate velocity, which is required for most common estimation methods.
In order to keep track of progress on the issues, daily scrum meetings where held where each team
member could raise issues they were facing. At the end of each sprint a new version of the program
was released. This was followed by a sprint review where the team looked back on the issues they
closed and which remained open. Finally the sprint is concluded by a sprint retrospective. The purpose
of the retrospective is to identify organizational, personal and teamwork issues the team might face.
Consequently, possible resolutions for these issues are discussed.

Within the scrum teammultiple roles are to be fulfilled, since the agile/scrum methodology is utilized
and the team consists of 3 people, only the vital roles required for scrum are assigned.

• Scrum master - Jasper Nieuwdorp

• Product Owner - Martijn van Meerten

• Scrum Team - Everybody

CI/CD
As the size of the team is relatively small and the development rate is high it is preferable to automate as
much as possible of the development process. With continuous integration the building, packaging and
testing of an application is automated. This was implemented Using Github (Github, 2019) with Travis
CI (CI, 2019) This also meant there always was a working version ready and a consistent, reproducible

25

8.1. Methodology 26

environment was available. In order to locally build, package and test the application frequently Maven
(Maven, 2019) was used. Since there was only one real delivery moment at the end of the project, it
was decided to not utilize continuous delivery.

Agile
Agile was used in order to fully benefit from incremental development and iterative life cycles. (”Project
Management Institute”, 2017). This allowed the team to adapt to changes in priority or demands as
well as to technical limitations that occurred. In the research phase of the project a plethora of user
stories were written down and later translated to requirements, both functional and non-functional.

MoSCoW
In order to prioritize the backlog of requirements and to make sure the most important demands by
the client were fulfilled the MoSCoW methodology was used. All requirements were classified within
the following four categories: Must have, Should have, Could have and Would/Won’t have. During the
project certain priorities and requirements would shift which lead to placing it in a different category.
At the start of the project a project plan was created mapping out when certain requirements where
expected to be incorporated in the final solution.

UML Diagrams
To visualize the program in its current state and the envisioned final solution, various UML Diagrams
were made. For the former, package/class diagrams were maintained in order to give a clear view of
the programs’ architecture. For the final product, and to create an idea how the actors would use the
program, use case diagrams were made.

8.1.1. Code quality
To keep the code understandable and maintainable, Javadoc (OrcaleCorporation, 2018) was added to
the codebase. This provides an explanation about the input, output and functionality of every compo-
nent. If the level of complexity of the method is high, regular comments can be added to increase the
understandability of the method to the developers, although this should be an indication that perhaps
refactoring the code is on order.

Different static code analysis tools were used to increase the code quality, namely Checkstyle
(Sourceforge, 2018), PMD (& CPD) (PMD, 2018) and SonarLint (SonarLint, 2019). These plugins
report on a range of potential issues with your code, such as unnecessary spaces, missing break
statements in switches, but also information about infinite loops. Moreover, these tools also gives an
indication of the complexity of the code in the application, which is very useful for developers.

To ensure a high code quality was maintained, code would not be allowed into the final product if any
of the static analysis tools reported issues (as per the configuration). In addition, at least one manual
review was required. A second team member would read and understand the code, and if applicable,
request changes where deemed necessary. The reviewer would also confirm that the code was tested
adequately (line and branch coverage shouldn’t drop, and the quality of tests should be sufficient).

8.1.2. Testing
To make sure the program works as intended (verification), but also to make sure the program delivers
what the client expected (validation), different methods of testing were utilized.

Unit Testing
To verify the software functions as specified, unit testing was utilized. sections of the code were tested
individually by writing test cases in JUnit (JUnit, 2019). As a way to quantify the amount of tests, line
coverage and branch coverage were measured by the tool JaCoCo (EclEmma, 2019). This tool only
reports the quantity of test code in relation to the functional code, not the exhaustiveness or quality of
the test code. To combat this, code reviews were carried out to judge the quality of the tests.

Functional Testing
To validate that the software performs as expected and desired by the client, weekly acceptance test-
ing meetings with the client where held. During these meetings, the progress on the application was
showcased, a potential end-user was asked to try out the application, and all stakeholders on the client

8.1. Methodology 27

side were asked for their opinion. These meetings were also used to make notes about how the end
user interacted with the application in order to test the usability of the software. Based on the feedback
received from the client, requirements were added, removed or adjusted to reflect the new insights.

8.1.3. Stakeholders
This project had several stakeholders. These can be individuals representing either themselves or
(groups of) other people. The following people were the project’s stakeholders:

• Managing Director of the Roparun Foundation, representing the entirety of the organization.

• Employee of the Roparun Foundation, representing the end-user.

• Volunteer, In charge of the the schedule in previous years.

• Volunteer, In charge of the route and safety, representing the runners.

It is interesting to note that the various stakeholders each had their own demands and priorities. As
developers it was our task to weigh those and make sure the most optimal overall solution would be
delivered for all parties involved.

The stakeholder representing the Roparun foundation as a whole had a more long term view of the
product and concerned itself less with details of the program that the end-user stakeholder found to
be important. The person that made the schedule in previous years would prefer a fully automated
implementation of their own method and experience most. The stakeholder that represented the run-
ners was very important for the overall acceptance of the final product. Trust and acceptance are key
aspects to the smooth introduction of any product.

8.1.4. Meetings
Over the course of the project there was a variety of meetings. Some focused completely on the
development, some focused on the overall progress or on the client.

• Scrum meeting: Review, retrospective and planning (Weekly)

• Stand up (Daily)

• Client meeting (Weekly)

• Client acceptance testing (Weekly)

• Coach meeting (as needed)

9
Product evaluation

In this chapter, the product is evaluated on the grounds of different aspects. First the software aspect
is analyzed. Then the final product is compared to the requirements of the product set at the start of
the project. Finally, the quality of the solution is compared to schedules of previous years.

9.1. Code evaluation
Software Improvement Group (SIG) is the company that measured the quality of the code base. SIG
uses several metrics to give the maintainability of code a rating between one and five stars. Some of
the metrics used to rate the maintainability of our code are: module coupling, code duplication, quantity
of code, unit interfacing, unit size, unit complexity and test coverage. In week six and nine of the project
the code base was sent to SIG. The feedback provided by SIG after the first upload will be elaborated
in the following subsection.

9.1.1. SIG
The code scored four out of five stars for the maintainability of the code. An above average grade,
which means that the code was built and designed in such a way that it is easily extendable in the
future. Nevertheless, some improvements could be made. SIG points out that the reason why the
code did not get five out of five stars was because of unit interfacing. The score of unit interfacing
depends on the percentage code in units with an above average amount of parameters. Methods
with many parameters could lead to confusing method calls and frequently results in complex and long
methods. Furthermore, it indicates a lack of abstraction. Several reasons are given why unit interfacing
in the code needs to improve.

In our code two different constructors were implemented with an above average amount of param-
eters (five), relative to our code base. The constructor for the SchemeData class and the constructor
for the Route class. SchemeData is a data class for one row in the schedule table. The Route class is
a data class representing a route.

The problem has two possible solutions. One solution is to convert the class to a bean. A bean
has an empty constructor and all fields have a get and a set method. The other solution is to make the
class immutable. An immutable object is an object that will not change after it is created. An immutable
class does not contain any set methods for its fields, only get methods. The advice from SIG was to
transform the classes into beans, since the set methods were already implemented. It was, however,
decided to convert the classes to immutable classes, since objects of these classes were not meant to
change after creation.

The feedback on the quantity of test code was positive. At the time of the first submission to SIG,
the branch test coverage was 66%. The goal was to maintain a level of test coverage between 65-70%.

To conclude, the code base scored above average at the time of the first submission. For the
remainder of the project, the code base was checked for unit interfacing in the hopes of improving the
code quality. In the feedback on the second submission, it was noted that the issue with unit interfacing
was resolved, and that the overall code quality had improved. Furthermore, the amount of duplicate

28

9.2. Requirements evaluation 29

code had decreased, and the test coverage remained at a sufficient level. The full SIG feedback can
be found in appendix C.

9.1.2. Test evaluation
In figure 9.1 the statistics about the test coverage are shown. As can be seen the io, core, model,
validator and view packages are extensively tested (using Mockito). However, the controller package
has a branch coverage of 21%. The reason why this package has a relative low test coverage, is
that these classes contain a lot of methods which use EventHandlers (e.g. button click actions) and
methods related to the user interface (JavaFX). To increase the test coverage TestFX (TestFX) can be
used. TestFX is able to simulate user interactions which can be used to test the methods which require
user interaction. Due to time limitation, TestFX is not used to test these classes.

Figure 9.1: Test coverage

9.2. Requirements evaluation
At the beginning of the project, the requirements were prioritized according to the MoSCoW method
(see 8.1). These requirements can be found in section 4.2. In this section, The product is evaluated
by whether these requirements have or have not been met.

Must haves
The product meets all of the Must haves. Four out of the five Must haves had been implemented by
then end of sprint three. The last Must have: ”The application must be effectively usable by the client”,
was a very broad requirement. Initially this requirement would have been met by a clear and intuitive
GUI, but later on, saving functionality was added, which caused a delay in meeting this requirement.
This last Must have was implemented after sprint five. In the following sprints, the functionality satisfy-
ing the Must haves was improved upon and implementation of the Should and Could haves was started.

Should haves
The product meets five out of the six Should haves. The requirement: ”The tool should be able to
limit the amount of traffic on the route based on known bottlenecks”, has not been met, because this
requirement became invalid. The bottlenecks along the route were deemed no longer important by the
client (see subsection 7.1.1).

Could haves
Our product meets three out of the five Could haves. The requirement: ”The tool could have a feature
to visualize the density per segment per time frame of the race”, has not been met. The density along
the route can be found in the logger of the program. Due to time limitation, the density is only textually
visualized. A graph in the GUI would be a more suitable way to visualize the density. This could be
implemented relatively easily in next versions of our application. The other requirement not met is, ”The
tool could update the predicted finish time by using the team’s checkpoint times.”. One way to to meet
this requirement, is to rewrite the application to a web application, where predicted finish times are
automatically updated when a team passes a checkpoint. Another way would be to add functionality
for uploading a list of checkpoint passage times. Then, using the speed calculator, the new finish times

9.3. Solution quality 30

can be calculated. Due to time constraints, this was not implemented.

Would/Won’t haves
Our product fulfills none of the Would haves. The requirement, ”Automation of checkpoints and start.”,
is one for a different product. Not only limited time but, also the equipment needed to realize this re-
quirement are the reason this requirement is not met. Nevertheless, meetings with the stakeholders
have shown that the Roparun is very interested in automating the checkpoints and the start of the race.

9.3. Solution quality
One way of checking the quality is to use the data of previous years’ runs and generate the schedule
with exactly the same data as what was present at the time and compare this to the schedule used
that year. However, it should be noted that schedules are always a prediction. Different properties
can be used to compare schedules. When comparing the schedule created by the application and the
schedule that was created for the race in 2018, two different aspects will be compared.

Formula
Following from the problem specification, a solution that is considered good will have the following
aspects:

• Ensured safety of all teams

• Minimized time frame for the start of the run (teams leave in quick succession)

• Ensure a good spread of teams at the finish, within the permit

• Adherence to team requests.

A scoring system of these aspects is introduced below. A solution is considered invalid if the gov-
ernment permit times are predicted to be violated. In order to weigh all aspects of a good solution,
the following parameters should be minimized. To ensure a start in quick succession is the duration
of the start (ℎ𝑠); the time from the start of the first team until the last team in hours. To make sure
there is a good spread at the finish the maximum of the number of people finishing every hour (𝑛𝑓)
should be as low as possible. The number of requests fulfilled (𝑛𝑟) should be as high as possible, and
will therefore be subtracted from the result. Finally two of the three objectives get their own weight so
that the importance of the aspects can be adjusted, relative to each other, as to better represent the
real-world significance of those objectives.

minimize (ℎ𝑠 + (𝑤፟ ∗ 𝑛𝑓) − (𝑤፫ ∗ 𝑛𝑟))
such that The finish time frame does not exceed the time stated by the government permit

given

ℎ𝑠 = start time frame in hours
𝑛𝑓 = max(number of people finishing every hour)
𝑛𝑟 = number of requests honored
𝑤፟ = the weight assigned to the finish spread
𝑤፫ = the weight assigned to the number of requests honored

(9.1)

When using this formula the schedule used in 2018 has parameters: ℎ𝑠 = 14.4 𝑛𝑓 = 68 𝑛𝑟 = 72
(not known, so it is assumed that all request have been fulfilled) and the schedule created with the
application has parameters: ℎ𝑠 = 13.6 𝑛𝑓 = 56 𝑛𝑟 = 69. Naturally the weights of both calculations
should be equal, since the number of request fulfilled in 2018 is unknown this was gaven a relatively
low weight of 0,25 compared to 1 for the weight of the finish spread. Since the weights are relative the
weight for the duration of the start is fixed at 1. This gives the 2018 schedule a score of 64.4 and the
schedule created by the program scores 52.35. The goal was to minimize the outcome so it can be
said that the software solution performs significantly better on this aspect.

9.3. Solution quality 31

Finish spread
The spread of the teams arriving at the finish is already incorporated in the formula presented in sec-
tion 9.3. It is, however, still noteworthy to visualize this spread. This has been done by creating a
histogram of the number of teams arriving every hour for the schedule that has been used and the
schedule created by the application. This yields the following results:

Figure 9.2: A histogram representing the number of teams finishing every hour, for the schedule used in 2018

Figure 9.3: A histogram representing the number of teams finishing every hour, for the generated schedule

It becomes apparent that the schedule that the application created has a more consistent distribu-
tion that has a much lower maximum than the schedule used in 2018. This is also because in previous
years the first hour and last two hours of the finish time frame where not used in order to account for
uncertainty. Since this uncertainty has been reduced by the speed prediction model it is possible to
utilize more of the finish time frame (but still with a safety margin).

Checkpoint opening hours
Another factor that would constitute a good schedule in the eyes of the Roparun is one where the
checkpoints have to be open for a short amount of time. Again the schedule used in 2018 is compared
to the schedule created by our program with the same parameters. This results in the following table:

9.3. Solution quality 32

In the generated schedule every checkpoint has to be open significantly shorter, so this metric also
indicates that the program creates a better schedule.

Checkpoint Hours open generated schedule Hours open schedule 2018
CH01 Start Parijs 13:41:00 14:40:00
CH02 FONTAINE-CHAALIS 12:33:00 14:40:00
CH03 COUDUN 11:26:00 14:40:00
CH04 HOMBLEUX 10:05:00 14:00:00
CH05 RAMICOURT 8:52:00 13:30:00
CH06 VERTAIN 7:34:00 12:50:00
CH07 THULIN 6:31:00 12:10:00
CH08 SILLYCH08 SILLY 5:52:00 11:40:00
CH09 OPWIJK 5:42:00 11:00:00
CH10 TEMSE 5:25:00 10:30:00
CH11 OSSENDRECHT 5:05:00 9:40:00
CH12 DINTELOORD 5:07:00 9:00:00
CH13 BARENDRECHT 5:49:00 8:20:00
CH14 WILLEMSBRUG 6:07:00 8:00:00

Table 9.1: Amount of hours opened per checkpoint

10
Conclusion

The project began with a clear objective: create a scheduling tool that automates and assists the
Roparun foundation in creating the schedule. During the research phase, the problem was formulated
as a job-shop scheduling problem, existing solutions to scheduling problems were studied, and at that
point a linear programming solution was thought of as the best option. During the project the benefits
of the iterative approach to software development were discovered, as the carefully formulated require-
ments changed and a linear programming solution was no longer deemed to be the best option. Based
on the research there was an immediate alternative approach that would meet the new requirements.
A successful project would mean that the organization of the Roparun receives a functional application
that allows them to create a schedule for their relay-run event, that outperforms the current method of
scheduling.

The application is considered to be a good solution to the problem if it is able to generate a list
of starttimes and predicted finishtimes for each team, which ensures a timely and efficient start for
all teams, and a predicted finish where all teams arrive in short succession, within the allotted time
frame. The created application contains this functionality and more, and is therefore accepted as a
good solution.

This software development project was very interesting as the initial problem seemed very straight
forward, but learning more about the context, problem space and requirements there were various
obstacles to overcome. It was also made clear that not every aspect of the organizations wishes
would be solvable by a better schedule. There were certain teams that consistently ran faster than
the allowed speed and the organization wanted to accommodate this rather than restrict it by rules,
as that is not within the spirit of the event. However, without changing the event itself there is a limit
to accommodating this as there are legal constraints such as permits that force the race to be within
a certain time frame. Various solutions for this where thought of, that were not necessarily part of
the software development project, but with the goal of offering the best possible solution these were
suggested to the organization for their consideration.

Delivering a complete solution that will actually be used to contribute to a charity and make an
impact that matters was very motivating. In the end it can be concluded that meaningful software has
been delivered that meets the current requirements but also is extendable and maintainable for the
future.

33

11
Discussion & Recommendations

In this section, the obstacles we ran into are discussed and an overall reflection on our work is given.
Furthermore recommendations are given to the organization of the Roparun on what could be imple-
mented or improved in later iterations of our application.

11.1. Reflection
During the first two weeks of the project, we searched for a lot of papers to use in our report. However,
no problems were found in the literature that could be considered similar enough. We formalized
the problem and created a linear programming formalization to solve our problem. In week three we
wanted to show something to the client as soon as possible. Therefore we decided to implement a
basic greedy algorithm that creates a schedule. After sprint one, the application was able to import the
teams and route and create a basic schedule. The first three sprints all progressed according to our
expectations. In sprint four, we planned to start improving the scheduling algorithm by converting the
greedy algorithm to a linear programming algorithm. This was the main issue we encountered during
the project. Linear programming was new to all members of the team, as it is not part of the curriculum
of the Bachelor of Computer Science. We reached out to Erwin Walraven, PhD candidate within the
Algorithmic group of the TU Delft, to help us move in the right direction. While making slow progress
for two weeks on the linear programming solution, the requirements changed which made the linear
programming approach no longer required. The last three weeks there were no major setbacks. The
saving functionality was more complex to implement than expected, which caused it to take longer.
However, since we accounted for some delays in the planning this didn’t cause issues.

11.2. Recommendations
In this section technical and non technical recommendations are given to increase the quality and
pleasantness of the race.

11.2.1. Technical
Although most of the requirements were met, and some of the ”Should-” and ”Could Haves” were im-
plemented, the product can always be improved and extended upon. An extra feature which makes it
possible to update the predicted finish times based on the passage times of teams at checkpoints would
be of great value to the organization. It would provide a more accurate planning of the finish during
the race. This gives the organization a change to anticipate, if needed. If this feature is implemented
and the application would most likely be converted to a Web Application where it would be convenient
for supporters of the teams to see when ”their” team is going to finish. However, security problems
might arise when the application is rewritten to a web application. As a benefit, a connection between
a database used by the Roparun to store their data and the application would make the manual up-
loading of the teams unnecessary.

34

11.2. Recommendations 35

11.2.2. Non-Technical
Some problems discovered during the project can not be solved by adjusting the schedule. Teams
who run above the maximum allowed speed are one of these problems. These teams run 5-7 km/h
faster than the teams who run at the minimum speed. On a race of 530km, this has a very large
impact. The run duration of the teams could reach a difference of 20 hours. This is a burden on the
entire organization of the race, as time is an important factor when requesting permits and looking for
volunteers. During meetings with the client, this problem was discussed multiple times. The managing
director of the Roparun was very curious if we had any creative ideas on how to increase the duration
of the race for the fastest teams. Therefore the solutions we proposed are discussed below.

Since increasing the velocity of the slowest teams is not achievable without creating unfairness,
increasing the run duration of the fastest teams is the best option. There are two approaches to do
this are: decreasing the velocity and increasing the distance. Below, several examples are given to
achieve this.

Decrease velocity
This could be done by holding up the teams. This could be achieved by creating an activity where the
teams need to do a specific exercise(e.g. helping the organization along the route). Another approach
to reach this result would be to slow down the teams by increasing the intensity, for example giving
them extra baggage to carry with them. This is not favourable, since this introduces a different kind of
challenge that is not necessarily in line with the physical strains of long distance running.

Increase distance
Another way to increase the run duration is to increase the length of the route. The fastest team could
start at a location further back from the start. A requirement for this is that it should be possible for teams
to register themselves at automated checkpoints which don’t require a physical set-up. Finally, a com-
petitive event could be added to the race for the teams who run above a specified speed. Examples of
such an event could be: an optional extra segment of the route (detour). Furthermore, treadmills could
be placed at the finish. The team that runs the highest distance on the treadmill wins the competition.
This would also increase the audiences interest at the finish, as it is an extra activity taking place. The
treadmills have the benefit of combining the time increase of an extra activity (since the team won’t
progress along the route), and a distance increase (competition for highest distance), which can be
easily put into context in relation to the original achievement of running a long distance.

Bibliography
Apache. Apache poi, 2018. [Retrieved from: https://poi.apache.org/ Accessed: 22/11/2018].

Ken Arnold, James Gosling, and David Holmes. The Java programming language. Addison Wesley
Professional, 2005.

Jeff Atwood. Understanding model-view-controller, 2018. [Retrieved from: https://blog.
codinghorror.com/understanding-model-view-controller/.

Steven I-Jy Chien and Chandra Mouly Kuchipudi. Dynamic travel time prediction with real-time and
historic data. Journal of transportation engineering, 129(6):608–616, 2003.

Travis CI. Travis ci, 2019. [Retrieved from: https://travis-ci.org/ Accessed: 22/11/2018].

Jim Clarke, Jim Connors, and Eric J Bruno. JavaFX: Developing Rich Internet Applications. Pearson
Education, 2009.

Mike Cohn. User stories applied : for agile software development. Addison-Wesley, Boston, 2004.

EclEmma. Eclemma, 2019. [Retrieved from: https://www.eclemma.org/jacoco/ Accessed:
22/11/2018].

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994. ISBN 0-201-63361-2.

Amir Ghahrai. Moscow prioritization in software testing, Jul 2017. URL https://www.
testingexcellence.com/moscow-prioritization/. [Accessed: 14/11/2018].

Github. Github, inc, 2019. [Retrieved from: https://github.com/ Accessed: 10/01/2019].

Michel Goemans. Lecture notes in linear programming, 18.310. Massachusetts Institute of Technology,
march 2015.

Google. Google earth, 2019a. [Retrieved from: https://www.google.com/earth Accessed:
22/01/2019].

Google. Google maps, 2019b. [Retrieved from: https://www.maps.google.com/ Accessed:
22/01/2019].

Itextpdf. Itext pdf, 2019. [Retrieved from: https://itextpdf.com/en Accessed: 22/11/2018].

Ron Jeffries. Essential xp: Card, conversation, confirmation, 2001. [Retrieved from: https:
//xprogramming.com/articles/expcardconversationconfirmation/].

JUnit. Junit, 2019. [Retrieved from: https://junit.org/junit5/ Accessed: 22/11/2018].

Jon Kleinberg and Eva Tardos. Algorithm design. Pearson Education India, 2006.

Doug Lowe. 10 Differences between JavaFX and Swing, 2016. https://www.dummies.
com/programming/java/10-differences-between-javafx-and-swing/ [Accessed:
19/11/2018].

Maven. Apache maven, 2019. [Retrieved from: https://maven.apache.org/ Accessed:
22/11/2018].

Dominik Maximini. Why a Scrum Culture Is Important, pages 3–7. Springer International Publishing,
Cham, 2015. ISBN 978-3-319-11827-7. doi: 10.1007/978-3-319-11827-7-1.

36

https://poi.apache.org/
https://blog.codinghorror.com/understanding-model-view-controller/
https://blog.codinghorror.com/understanding-model-view-controller/
https://travis-ci.org/
https://www.eclemma.org/jacoco/
https://www.testingexcellence.com/moscow-prioritization/
https://www.testingexcellence.com/moscow-prioritization/
https://github.com/
https://www.google.com/earth
https://www.maps.google.com/
https://itextpdf.com/en
https://xprogramming.com/articles/expcardconversationconfirmation/
https://xprogramming.com/articles/expcardconversationconfirmation/
https://junit.org/junit5/
https://www.dummies.com/programming/java/10-differences-between-javafx-and-swing/
https://www.dummies.com/programming/java/10-differences-between-javafx-and-swing/
https://maven.apache.org/

Bibliography 37

Matthias Meidinger, Hendrik Ebbers, and Christian Reimann. Aerofx - native themes for javafx. In
Giedre Dregvaite and Robertas Damasevicius, editors, Information and Software Technologies,
pages 526–536, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24770-0.

Oracle. Java serializable, 2019. [Retrieved from: https://docs.oracle.com/javase/7/docs/
api/java/io/Serializable.html Accessed: 22/11/2018].

OrcaleCorporation. Javadoc, 2018. [Retrieved from: https://docs.oracle.com/javase/8/
docs/technotes/tools/windows/javadoc.html Accessed: 21/11/2018].

H. Pandey, H. Rastogi, C. Gupta, and Anuja. Web-based network management system im-
plemented using hibernate, jboss and spring framework. In 2nd International Conference on
Telecommunication and Networks, TEL-NET 2017, volume 2018-January, pages 1–5, 2018.
doi: 10.1109/TEL-NET.2017.8343499. URL https://www.scopus.com/inward/record.
uri?eid=2-s2.0-85049206450&doi=10.1109%2fTEL-NET.2017.8343499&partnerID=
40&md5=2a7b6b9386b1971836c2258abee83324. [Accessed: 15/11/2018].

F Pezzella, G Morganti, and G Ciaschetti. A genetic algorithm for the flexible job-shop scheduling
problem. Computers & Operations Research, 35(10):3202–3212, 2008.

PMD. Pmd, 2018. [Retrieved from: https://pmd.github.io/pmd-6.10.0/].

Lawrence Premkumar and Praveen Mohan. Introduction to javafx. Beginning JavaFX™, pages 9–31,
2010.

”Agile Alliance” ”Project Management Institute”. Agile practice guide., 2017.

Stichting Roparun. Roparun regelement 2018, 2018. [Retrieved from: https://www.roparun.nl/
wp-content/uploads/2018/04/Roparunreglement-2018-v-1.0-def.pdf Accessed:
15/11/2018].

Ihsan Sabuncuoglu and Burckaan Gurgun. A neural network model for scheduling problems. European
Journal of Operational Research, 93(2):288–299, 1996.

SonarLint. Sonarlint, 2019. [Retrieved from: https://www.sonarlint.org/ Accessed:
22/11/2018].

Sourceforge. Checkstyle, 2018. [Retrieved from: http://checkstyle.sourceforge.net/ Ac-
cessed: 22/11/2018].

TestFX. Testfx. [Retrieved from: https://github.com/TestFX/TestFX Accessed: 25/01/2019].

https://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html
https://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049206450&doi=10.1109%2fTEL-NET.2017.8343499&partnerID=40&md5=2a7b6b9386b1971836c2258abee83324
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049206450&doi=10.1109%2fTEL-NET.2017.8343499&partnerID=40&md5=2a7b6b9386b1971836c2258abee83324
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049206450&doi=10.1109%2fTEL-NET.2017.8343499&partnerID=40&md5=2a7b6b9386b1971836c2258abee83324
https://pmd.github.io/pmd-6.10.0/
https://www.roparun.nl/wp-content/uploads/2018/04/Roparunreglement-2018-v-1.0-def.pdf
https://www.roparun.nl/wp-content/uploads/2018/04/Roparunreglement-2018-v-1.0-def.pdf
https://www.sonarlint.org/
http://checkstyle.sourceforge.net/
https://github.com/TestFX/TestFX

A
Info sheet

This page is intentionally left blank.

38

39

Title: Roparun: 8000 people travel more than 500 kilometers for a good cause
Client: Roparun
Final presentation Date: 1 February 2019

Description
Short description: Roparun is a foundation that organizes a yearly relay race from Paris, Hamburg
and Almelo to Rotterdam to raise money for a variety of causes related to palliative care. The Roparun
wanted an application that would help them with creating a starting schedule for the event, that will
ensure a safe race and a smooth finish.
Challenge: Our challenge was to create an optimal schedule which takes several parameters into
account: spread between the teams at the finish, incorporating participants’ specific requests and ac-
curate predictions, and combine these parameters in an accessible application.
Research: In our research phase, we considered different ways to solve our problem(brute force,
greedy algorithm, linear programming, etc.). We analyzed the data of previous years and found valu-
able results about the specified speed by the teams. This resulted in ideas on how to improve upon
the current method of scheduling.
Process: Our goal was to show a working version as early as possible to the client, so an agile ap-
proach was taken. Each week we planned to improve the quality of the algorithm. A linear programming
algorithm was planned as the core mechanism, however due a change in requirements on the clients’
side a greedy algorithm was deemed more suitable.
Product: The final product is a java application capable of creating schedules based on the uploaded
team lists, routes and requests. The organization is able to change the schedule manually if needed.
The schedules generated by the application can be exported in different formats. Also other valuable
information (e.g. checkpoint opening and closing times) can be exported.
Outlook: The Roparun looks forward to use the application for the race of 2020. User guides are writ-
ten such that data of coming years can be used as input to the program which increases the precision
of the speed prediction, and in turn the schedule. When new routes are added to the event, it can easily
be added to the program which makes the application future-orientated. This year the tool will be used
together with the current method as a pilot.

Team Members
Name: Jasper Nieuwdorp
Interests: Methodology, Bridging the gap between computer science and real world problems
Contributions: Scrum master, GUI, tooling, parsing and session storage.

Name: Martijn van Meerten
Interests: Statistics, Software Engineering Methods
Contributions: Product owner, speed prediction, data analysis, GUI, editing functionality

Name: Lennart Overdevest
Interests: Algorithm Design, Big Data
Contributions: Schedule algorithm, request handling and exporting schedules

Project Affiliates
Client: Wiljan Vloet
TU Coach: Matthijs Spaan
Contact Person: Lennart Overdevest Lennart.overdevest@gmail.com

The final report for this project can be found at: http://repository.tudelft.nl

http://repository.tudelft.nl

B
Original Project Description

B.1. Dutch
De organisatie van de Roparun is op zoek naar een routetool die gaat helpen om een juiste planning
te maken van de run. Met de routetool die ontwikkeld wordt, wil Stichting Roparun de veiligheid van de
lopers en fietsers kunnen blijven garanderen. Dus door middel van het werken met deze routetool moet
de organisatie de vertrek- en finishtijden van alle teams zodanig kunnen plannen, dat er afhankelijk
van het parcours (de ene plek kan meer of minder mensen tegelijk behelzen) geen opeenhopingen
ontstaan en er een gestroomlijnde run plaatsvindt. Daarbij rekening houdend met de nodige variabelen
afgestemd op de wensen van ieder afzonderlijk team.

De variabelen waar aan gedacht moet worden, kunnen onder andere zijn;

• Gemiddelde loopsnelheid

• Afstand

– Parijs, Hamburg, Almelo (halve)
– Bij de grotere doorkomststeden ontstaat oponthoud c.q. vertraging op de loopsnelheid

• Individuele pauze momenten (door de teams zelf aan te geven)

– Extra lange tijd in een bepaalde doorkomststad
– Gezamenlijke koffie- of eetpauze
– Komst van familie of sponsor op een bepaalde plek op de route

Door gebruik van deze routetool wil Stichting Roparun een lijst kunnen genereren die aangeeft welk
team op welke tijd start en ook op welke tijd finisht, rekening houdend met vertrektijden die niet te ver
uit elkaar liggen en een binnenkomst in Rotterdam van alle teams gezamenlijk, die veilig en soepel
moet verlopen.

Op de route zijn diverse checkpoints (cp’s). Het is wenselijk via die cp’s te kunnen registreren en
controleren of het beoogde schema wordt gevolgd en/of waar er knelpunten verwacht worden. Op
die manier heeft de organisatie zicht op waar de teams zich bevinden en kan zij proactief acteren op
mogelijke onveilige situaties. Na afloop van de run kan de organisatie dan ook per team de beoogde
en daadwerkelijke route naast elkaar leggen en er lering uit trekken voor een volgende run.

Een bijkomende vraagstelling is de mogelijkheid van het toevoegen van een wedstrijdelement op
een gedeelte van de route. Dit kan bijvoorbeeld voor een deel van de teams gelden, maar dan wel op
een zodanige manier dat het passend is in de totale run. Verder moet de routetool door de organisatie
zelf te hanteren zijn en moet worden voldaan aan alle hedendaagse eisen en moderne technologie.

40

B.2. English 41

B.2. English
The organization of the Roparun is looking for a scheduling tool that will assist the organizers in creating
the planning of the run. With the scheduling tool that will be developed the organization can continue to
guarantee the safety of the participants (i.e. runners and cyclist). The tool should allow for coordinating
the start and finish times of all teams in a manner that allows for the smoothest flow of traffic (since
some parts of the route allow for more activity than others). There are many variables originating from
the personal preferences of every team to take into account Examples of such variables include:

• Average running speed

• Distance

– Paris, hamburg, Almelo (halve)
– There is congestion in the larger cities, in which case the running speed decreases

• Individual breaks (determined by the teams)

– Extended stay in a particular city
– A joint coffee/tea break
– Family members visiting on a particular part of the route

The main goal of the tool is to generate a list of starting times for each team (with predicted finish
times) which ensures a timely and efficient start for all teams, and a finish of all teams close to each
other in Rotterdam that should go over smooth and safe.

Along the route there are various checkpoints (cp’s). It might be desirable to register, verify and
adjust the schedule based on the check-ins at those checkpoints. This could give the organization an
insight in projected bottlenecks and makes it possible to act proactively on dangerous situations. After
the run the organization can compare the prediction for the run to the actual times to study and improve
for future runs.

A possible addition to the project could be a competition-element into (parts of) the run. This doesn’t
have to include all teams, but it should match the character of the event.

The tool should be easily usable for the organization and should utilize modern standards and
demands of modern technology

C
SIG Evaluation

In this chapter the feedback that was received from the Software Improvement Group after submitting
our code in week six and nine can be found.

C.1. First feedback
De code van het systeem scoort 4 sterren in ons onderhoudbaarheidsmodel, wat betekent dat de code
bovengemiddeld onderhoudbaar is. De hoogste score is niet behaald door een lagere score voor Unit
Interfacing.

Voor Unit Interfacing wordt er gekeken naar het percentage code in units met een bovengemiddeld
aantal parameters. Doorgaans duidt een bovengemiddeld aantal parameters op een gebrek aan ab-
stractie. Daarnaast leidt een groot aantal parameters nogal eens tot verwarring in het aanroepen van
de methode en in de meeste gevallen ook tot langere en complexere methoden.

In jullie geval zitten de meeste parameters in een paar constructors. Dat is een patroon dat we vaker
tegenkomen. Let op dat in jullie geval ”veel parameters” relatief is, omdat jullie qua score al behoorlijk
hoog zitten gaat het hier om constructors met 5 parameters, namelijk die van SchemeData en Route.
Bij dit soort classes zijn er in Java grofweg twee patronen:

• De class is een ”bean”, en alle velden hebben getters en setters

• De class is immutable, alle velden worden in de constructor meegegeven, en er zijn alleen getters
(en dus geen setters)

In de twee genoemde voorbeelden doen jullie een soort combinatie van allebei. Het is beter om
expliciet een keuze te maken. Gezien het aantal velden en het feit dat jullie toch al setters hebben
zou ik adviseren om voor de eerste aanpak te gaan, en dus een constructor zonder parameters te
gebruiken en alle velden met de setters een waarde te geven.

De aanwezigheid van testcode is in ieder geval veelbelovend. De hoeveelheid testcode ziet er ook
goed uit, hopelijk lukt het om naast toevoegen van nieuwe productiecode ook nieuwe tests te blijven
schrijven.

Over het algemeen scoort de code dus bovengemiddeld, hopelijk lukt het om dit niveau te behouden
tijdens de rest van de ontwikkelfase.

42

C.2. Second feedback 43

C.2. Second feedback
In de tweede upload zien we dat het codevolume is gegroeid, terwijl de score voor onderhoudbaarheid
met 4 sterren ongeveer gelijk is gebleven. Wel zien we een duidelijke verbetering op het gebied van
Unit Interfacing, dat in de feedback op de eerste upload nog als verbeterpunt werd aangemerkt. Ook
is het goed om te zien dat er andere verbeteringen in de onderhoudbaarheid zijn doorgevoerd, zon-
der dat deze expliciet genoemd werden in de feedback. Zo is er bijvoorbeeld wat gedupliceerde code
opgeruimd. Deze verbeteringen zijn echter niet groot genoeg om de totaalscore naar de 5 sterren te
laten stijgen.

Naast nieuwe productiecode is er ook nieuwe testcode toegevoegd. Het is positief dat het gelukt is
om de verhouding tussen productie- en testcode stabiel te houden, vaak lukt dit minder op het moment
dat de deadline in zicht komt.

Uit deze observaties kunnen we concluderen dat de aanbevelingen uit de feedback zijn meegenomen
in het vervolg van het ontwikkeltraject.

D
User stories

User story 1 As the Roparun I want a scheduling tool so that I can plan for a safe and well organized
event.

User story 2 As a user I want to add teams to the program so that they can be included in the
schedule.

User story 3 As a user I want to add the route to the program so that it can be taken into account
in the schedule

User story 4 As a participant I want to add a request so that it can be taken into account in the
schedule

User story 5 As a user I want to be able to input request so that they can be incorporated in the
schedule if possible

User story 6 As a user I want to be able to decide exactly between what times the finish should be
so that we can comply with the government permit.

User story 7 As a user I want to have a (visual) prediction of the entire race so that I can get an
idea where certain risks will occur and I can react to them.

User story 8 As a participant I want to know if my request has been fulfilled so that it can plan
accordingly.

User story 9 As a user I want to have the option to save the schedule so that I can distribute it to
the participants.

User story 10 As a user I want to be able to change the schedule manually. So that special re-
quests can be incorporated in the schedule.

User story 11 As a participant I want to know my start time so that I can plan accordingly.

User story 12 As a participant I want to know my predicted finish time so that I can communicate
this with people who want to see me finish.

User story 13 As a participant I want to know at what time I will be where along the route so that I
can plan accordingly.

User story 14 As a user I want to have insight in how the schedule came to be so that I can explain
this to the participants and gain a better understanding.

44

45

User story 15 As a user I want to be able to prioritize certain requests so that the importance of a
request can be decided in accordance with the view of the organization.

User story 16 As a user I want to see the impact a request has on the schedule so that I can weigh
it with the priority and decide if it should be fulfilled.

User story 17 As a user I want to have a schedule that includes the start times of all teams so that
I can communicate this with the participants.

User story 18 As a user I want to have a schedule that includes the predicted finish times of all
teams so that I know how busy the finish will be at a certain time.

User story 19 As the Roparun I want to have an optimal spread at the finish line so that crowds will
be limited and the event will proceed smoothly.

User story 20 As a user I want to make a schedule for all three races we organize so that they can
be incorporated with each other.

User story 21 As a developer I want to be able to compare my solution with previous years so that
I can prove the benefits of our approach.

User story 22 As the Roparun I want a scheduling tool that produces a better schedule than our
current approach so that we can improve our organization.

User story 23 As the Roparun I want a scheduling tool that will still work accurately in the coming
years.

User story 24 As the Roparun I want to be able to update the prediction of the race, during the race
so that I can have a more accurate prediction of the traffic at the finish.

User story 25 As a user I want to make sure the schedule tool takes known bottlenecks on the
route into account so that they can be managed safely.

User story 26 As the Roparun I want a solution for teams that are faster than 15 km/h so that they
can still participate without causing the organization too much extra work.

E
Speed data

The first column contains the specified speeds in meters per hour. The first row contains the distance
from the start in kilometers. These distances are to checkpoints. The following columns (130.70,
215.60, 296.40, 342.30, 425.80, 518.40) have been left out for formatting reasons.

44.1 86.3 174.4 257.1 381.9 465 529.4
11000 11507.57 11100.96 10413.82 9601.26 9965.55 10618.46 10519.74
11100 11618.61 11454.29 10672.82 9426.43 10056.74 10735.88 10466.01
11200 11664.20 11435.54 10518.15 9395.21 9982.26 10420.77 10729.28
11300 12005.70 11691.88 11152.85 9888.374 10421.54 10561.49 11128.58
11400 12258.71 11832.00 10544.56 10274.00 10359.47 10663.75 11178.39
11500 12204.34 11501.39 11083.29 10014.35 10296.71 10943.52 10872.99
11600 12398.38 11810.19 12178.01 10105.76 10597.84 11255.72 11658.14
11700 12269.18 11642.67 12143.15 10965.18 11017.74 11895.06 11573.54
11800 12196.31 12205.57 12285.08 10268.81 11121.34 11680.18 11093.56
11900 12411.85 11316.90 9716.344 11382.94 11379.60 11247.31 12064.49
12000 12920.91 12380.14 12433.02 10866.61 11558.24 12289.48 12052.87
12100 12905.20 12599.70 12311.17 11374.65 11188.00 12064.00 12275.43
12300 13487.30 13120.41 12965.66 12120.15 12079.90 12424.74 12599.29
12400 13996.29 11233.39 12549.28 13029.88 12703.15 13377.57 15100.91
12700 12502.86 13630.48 12839.93 12792.73 12575.69 13498.02 12979.43
12800 13203.59 12745.39 9902.526 13623.85 13093.62 14363.35 12274.04
12900 13798.01 14314.88 14269.77 13034.65 12989.23 14237.28 13801.08
13000 14164.91 13827.68 13461.47 12893.78 12737.97 13889.11 13686.21
13500 14057.02 14536.19 13908.47 13446.51 13152.46 14394.12 13911.77
15000 16318.34 16514.76 15215.66 14756.94 14587.28 14542.57 16627.05

Table E.1: Speed analysis Paris, 2018

46

F
Class Diagrams

Figure F.1: Class diagram of the controller package

Figure F.2: Class diagram of the core package

47

48

Figure F.3: Class diagram of the io package

Figure F.4: Class diagram of the model package

49

Figure F.5: Class diagram of the validator package

	Summary
	Introduction
	Research
	Problem definition
	Current approach
	Input and output
	Formalization
	Input formalized
	Output formalized
	Problem formalized

	Data analysis
	Route
	Speed statistics
	Request data

	Existing solutions
	Linear Programming
	Brute force algorithm
	Greedy algorithm
	Genetic algorithm
	Neural network

	Development Strategy
	User Stories
	Requirements
	Must have
	Should have
	Could have
	Would/Won't have

	Technical choices
	Language
	Graphical user interface
	Web application or local application

	Product plan

	Code design
	Code architecture
	Packages
	UML

	Design patterns
	Input & Output

	Interface Design
	Design approach
	Program flow
	Input specification

	Implementation
	Greedy
	Linear programming
	Speed prediction
	Final algorithm

	Process
	Methodology
	Code quality
	Testing
	Stakeholders
	Meetings

	Product evaluation
	Code evaluation
	SIG
	Test evaluation

	Requirements evaluation
	Solution quality

	Conclusion
	Discussion & Recommendations
	Reflection
	Recommendations
	Technical
	Non-Technical

	Bibliography
	Info sheet
	Original Project Description
	Dutch
	English

	SIG Evaluation
	First feedback
	Second feedback

	User stories
	Speed data
	Class Diagrams

