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Summary
In the past years, the safety of steel railway bridges has been questioned due to the coped beam
connection sensitivity to fatigue and fatigue crack appearance. To ensure the safety of these railway
bridges, the propagation of the fatigue crack needs to be analysed by performing regular inspection on
the bridges. The frequency of these is required by the defined inspection intervals, which are based
on the critical crack length and the number of loading cycles leading to this crack length. Laboratory
tests and measurements on the bridges have been performed in the past to define inspection intervals,
but had given only an approximation of the real situation. By creating a finite element model of a
coped beam, a crack initiation and propagation analysis can be performed. This analysis provides
an indication after how many loading cycles the crack will reach a critical length and guides towards
revised inspection intervals.

In this thesis, the objective is to take the first steps towards the revised inspection interval by per­
forming a finite element analysis of the crack propagation of steel railway bridges. More specifically,
this means an finite element analysis of the coped beam with extended finite element method.

To achieve this goal, first, the location of the fatigue crack initiation has been investigated to un­
derstand where exactly in the cope the crack starts. This was performed by creating a local 3D linear
elastic FE­model of the coped beam based on the boundary conditions, geometry, and loading from
laboratory tests performed by Michael C.H. Yam and J.J. Roger Cheng. The the longitudinal stresses of
the model were compared with stresses measured during the laboratory test to validate the crack initia­
tion model. After the model was validated, the location of crack initiation was determined by identifying
the location of the peak stresses.

After completion of the crack initiation analysis, the crack propagation analysis can commence.
For this, the FE­model was transformed from the crack initiation to the crack propagation model. In the
samemanner as with the crack initiationmodel, the propagationmodel has been based on the boundary
conditions, geometry, and loading from the laboratory test. Since no path of the crack was registered
during these laboratory tests, and thus could not be implemented in the model, a method for crack
propagation analysis called extended finite element method (XFEM) has been used. The accuracy
of this method has been confirmed by validating the stress intensity factor (SIF) values obtained for
stationary cracks with three different mesh topologies and comparing the results with results from two
established methods; J­integral and VCCT.

After the validation of the crack propagation model, a sensitivity study was performed to understand
the potential influence of modelling decisions on the number of load cycles versus crack length relation.
With the mesh sensitivity analysis, a linear trend has been obtained for models with matching number of
elements through the thickness. For the initial crack size sensitivity analysis, the effect of the number of
elements through the thickness and the effect of mesh topology have been investigated. One element
through the thickness and parallel mesh topology led to lower variation in the results.

Additionally, a new value for the previously assumed Paris law coefficient C has been obtained by
calibrating the number of cycles versus the crack length curve from FE­model to match the laboratory
test results.

In conclusion, this research provides recommendations for modelling crack propagation in a coped
beam. The results are more reliable when keeping at least five finely meshed elements around the
crack tip, using a parallel mesh topology, and using one element through the thickness. New value for
the C coefficient from the Paris law has been suggested based on this research.

The next step in this research is a continuation of the crack propagation model analysis to reduce the
variation in the results. Furthermore, different loading positions and expansion from a simply supported
beam model to a model with multiple spans should be analysed to bring us one step closer to the
ultimate goal of redefining the inspection interval for coped beam steel bridges based on the models.
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1
Introduction

1.1. Problem Background
For a long time, steel structures have been designed without the knowledge of the fatigue limit state

[46]. Fatigue was first mentioned in 1837 when the first fatigue test was performed by W. A. J. Albert
[54]. Till then, the calculations only ensured that the applied load did not exceed the material yield
stress limit. However, for some of the structures, cracks were detected when subjected to loads that
were way below the load limit that they were designed for [27, 51]. In Canada, the United States, and
Japan, even a full collapse of bridges has occurred due to fatigue cracks [18]. The described weakness
introduction in the steel material by repeated loading that can lead to a fracture even under the allowed
stress level is called steel fatigue [63].

When a structure is subjected to cyclic tensile stresses, microcracks can initiate and grow, resulting
in a failure due to fatigue. These microcracks can also already be in the material due to the material
flaws and due to the manufacturing processes.

Typical structures that are subjected to fatigue problems are bridges. The cars, trucks, and/or trains
that pass the bridge every day cause the previously mentioned cyclic loading. Some parts of the bridge
are sensitive to these stress ranges and that lead to fatigue problems.

As many research papers indicate [27, 35, 44, 67], coped beams, that can be seen in figure 1.1, are
susceptible to fatigue damage. The cope in the beam creates a geometrical discontinuity that results in
a high stress concentration in the web at the rounding of the cope. Moreover, the strength and torsional
stiffness are reduced at the ends of coped beams [52].

Figure 1.1: Coped beam [27].

In the past, beams needed to be coped to provide enough clearance for the connections. An ex­
ample of such a connection is when two perpendicular beams with an I­shape cross­section are at the
same elevation and need to be connected, as can be seen in figure 1.2. Then the flanges of one of
the beams need to be cut away. In bridges, the ends of longitudinal beams are coped to connect them
to the cross­beams. Nowadays, engineers are aware of the fatigue damage issue when using coped
beams. Therefore, connections, like shown in figure 1.2, are not being used anymore.

1



1.1. Problem Background 2

Figure 1.2: Coped beam connection [37] with notes in Dutch:
langsdrager ­ longitudinal beam

dwarsdrager ­ cross­beam
scheur ­ tear/ crack
raveling ­ coped part.

However, such a connection was often used in railway bridges in the past. These bridges are still
functioning today, and to ensure the structural safety of the coped beam connection with respect to the
fatigue life, inspections on the bridges are being performed. During these inspections, new cracks are
being registered and existing crack lengths are measured and compared to earlier inspections. The
size and location of the cracks determines the predicted remaining fatigue life.

Recurrence of inspection is based on the fatigue life estimation, which indicates after how many
loading cycles a certain length of the crack should be obtained. By knowing the intensity of the traffic,
inspections can be planned and the possible increase of crack length can be measured. Conservative
results of the fatigue life estimation can lead to an insufficient number of inspections and introduce
the risk of collapse of the bridge. Therefore, it is important to find an effective and reliable method
for determining the fatigue life, and hence the inspection interval, of such a connection. However, too
much inspection is also undesired due to time, costs, and traffic disturbance.
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1.2. Research Question
In the 1980s and 1990s, a fatigue crack propagation analysis in the coped zone has been performed.

Tests in laboratories were done by ProRail [37], Washington State Department of Transportation [51]
and as a research for a Masters’ thesis by Michael C. H. Yam [65, 66]. The simplified tests done in
the laboratory gave only an approximation of the real situation on the bridge. ProRail also analysed
measurements done on the existing railway bridges [37]. However, the test results from the coped
zones differ strongly between measurements, as is explained in section 2.3, and additionally the data
registered from the tests is incomplete.

In this thesis, the crack propagation in a coped beam connection has been analysed by performing
a finite element analysis to take the first steps towards the goal of obtaining the inspection intervals
of the coped beam connection. This particular research focused on the possibility of creating a finite
element model for such a connection without the need of additional information, such as the crack path.
The path is usually derived from the laboratory test, but since these are time consuming and expensive,
an alternative way of determining the crack path is desired. To this end, the numerical technique within
the FE­model called XFEM has been used, where the crack path can be unknown. The main question
that has been answered is:

How to accurately model fatigue crack propagation for railway bridges with coped beam connec­
tions?

The process of answering the main research question has been divided into three sub­questions
that have been answered subsequently. First, the location of the crack initiation has been found.

Sub­q. 1: What is the location of the fatigue crack initiation?

At this location, an initial crack has been modelled by transforming the initiation model into the
propagation model. By making this transition, the most influencing factors for a crack propagation
model in XFEM have been investigated, allowing to answer sub­q 2:

Sub­q. 2: Which parameters dominate the crack propagation in Abaqus when using the XFEM
method?

And finally, sub­question 3 was answered by running analysis of the crack propagation model and
obtaining the necessary relation between the crack length and the number of load cycles.

Sub­q. 3: What is the relationship between the crack length and the accumulated number of loading
cycles?

A more in­depth explanation of each question is given in the following section, where the methodol­
ogy and stepwise approach have been explained.

1.3. Methodology
This research has been based on the information that can be found in the literature in combination

with the use of a commercial software called Abaqus. A literature review is presented to gather the
necessary background information and observe already existing knowledge on the topic. Research
paper containing laboratory test results has been used to validate the results obtained by the software
for sub­question 1 and to calibrate the results for sub­question 3.

As stated in section 1.2, the main research question has been answered by subsequently answering
the sub­questions. The flowchart in figure 1.3 schematically shows the steps taken to achieve the
answer.
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Figure 1.3: Flowchart to answer the main research question.

1.3.1. Research Sub­question 1
Before going into the fatigue crack propagation phase, it was necessary to determine the location of
the crack initiation. Therefore, the first question that needed to be answered was:

Sub­question 1: What is the location of the fatigue crack initiation?
A 3D linear elastic FE­model of a simply supported, statically loaded beam has been made by using

the computer software Abaqus. The boundary conditions, geometry and loading have been replicated
from the laboratory test [67] to be able to validate the results. The laboratory test setup is described in
section 3.1.

Validation of the model has been done by comparing the longitudinal stresses obtained from the
FE­model with the values registered during the laboratory tests.

The location of the fatigue crack has been found by reading the results of the stresses on the curve
of the cope from the FE­model. The location of the peak stresses indicates where on the curve the
crack will initiate. This gives the answer to sub­question 1.

1.3.2. Research Sub­question 2
Constructing a successful propagation model has turned out to be dependent on certain parameters,
such as the mesh of the model. To obtain a reliable propagation model, sensitivity analysis on the
parameters has been performed and the influence of each of them has been discussed when answering
the sub­question 2.
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Sub­question 2: Which parameters dominate the crack propagation in Abaqus when using the
XFEM method?

The fatigue crack initiation and propagation stage have very different characteristics, as is described
in sections 2.2.1 and 2.2.2. Therefore, the transition from a FE­model where the crack initiation has
been analysed for sub­question 1 to an XFEMmodel that allows to perform crack propagation simulation
for sub­question 3 involved significant changes in the model. Some of these changes had a distinctive
influence on the results, which have been described in detail in chapter 4.

To answer sub­question 2, the FE­model of a simply supported, statically loaded beam from sub­
question 1 has been used and further adjusted. An initial crack has been implemented at the location
found in sub­question 1 and cyclic loading has been applied.

Crack propagation has been then modelled by using the extended finite element method (XFEM).
Herewith, a crack path has been obtained through numerical analysis by use of the enriched displacement­
based approximation, see section 2.4.

Crack propagation is mainly dependent on the stress intensity factor (SIF). Therefore, to verify the
results from XFEM and to indicate more influencing factors in the model, two well­known and reliable
methods, J­integral and VCCT, briefly described in section 2.2.3 and 2.4.1, have been additionally
used. With all three methods, stationary cracks of the same length have been modelled and the stress
intensity factors at the tip of the crack have been compared.

Additionally, the sensitivity analysis has been performed to spot the inconsistencies in the results
and to determine more influencing parameters to take into consideration when modelling a crack prop­
agation model.

1.3.3. Research Sub­question 3
Sub­question 3: What is the relationship between the crack length and the accumulated number of
loading cycles?

Sub­question 2 has provided a model that can perform a crack propagation analysis. From this
model, a graph with crack length dependency on the number of load cycles has been obtained.

A comparison has been made between the numerical results from the XFEM analysis and the exper­
imental results from the laboratory tests. The constants from the Paris law, i.e., C and m, see section
2.1.2, have been calibrated by using the experimental results from the laboratory tests. More infor­
mation regarding the laboratory tests done in the past with cyclic loading can be found in section 4.1.
Sub­question 3 has been answered with the calibrated FE­model. This model is an accurate tool to
model fatigue crack propagation in a coped beam as it occurs in railway bridges, therefore, it answers
the main research question.

1.4. Structure of the Report
Chapter 2 provides the necessary knowledge obtained by the literature review. It explains the

relevance of this research by spotting the gaps in the literature. It provides theoretical knowledge
for the reader to be able to follow and understand the progression of this research.

Chapter 3 contains information on the crack initiation under the effect of static loading. In section
3.1 laboratory tests done in the past are presented. Then the FE­model developed to reconstruct these
tests is described. Finally, the comparison of the results of the FE­model and the laboratory tests is
being discussed.

In chapter 4, similar to chapter 3, the details about the laboratory tests are first introduced, but this
time for the crack propagation under the effect of cyclic loading. Then the modelling process in Abaqus
is explained and the results presented.

Chapter 5 and 6 finalizes the paper by presenting conclusions, discussion and recommendations,
respectively.



2
Literature Review

This chapter gathers information found in the literature that is relevant for this research. Each of the
sections is referred to a certain part of the flowchart presented in figure 1.3 to create a clear transition
from the literature towards this research.

Firstly, section 2.1 introduces the theory behind the fatigue cracks by presenting the fatigue life
stages and the influencing parameters. Then, section 2.2 introduces the theory of Linear Elastic Frac­
ture mechanics, which is the basic theory of fracture. These two sections are relevant for all parts of
the flowchart.

Section 2.3 tells about the attempts to solve coped beam fatigue problems by analysing measure­
ments on bridges and tests in the laboratory. It also indicates why the obtained results from these
measurements and tests can be only used as an approximation. This section represents the two grey
boxes in the flowchart in figure 1.3 and reasons why the third approach with detailed finite element
analysis needs to be performed.

Lastly, section 2.4 explains an approach within the finite element software that allows to model crack
propagation with no information about the crack path. This section refers to the sub­question 2 and 3
in the flowchart when the crack propagation has been modelled.

2.1. Fatigue cracks
The term fatigue comes from the Latin word ”fatīgāre” which in translation means ”to weary, to

tire” [59]. Most of the time this term is associated with a physical and mental feeling of tiredness. In
the engineering vocabulary, however, it describes a degradation mechanism in the material due to
the cyclic loading and becomes visible in the form of cracks [46]. Even very small stress cycle from
repeated loading or vibrations causes an incremental growth of the crack [60]. Fatigue crack growth
can lead to a complete failure of the structure at the end of fatigue life called fracture [20]. Therefore,
it is important to predict the number of load cycles that a structure can withstand before the fatigue life
is reached.

It is important to distinguish two different periods in the fatigue life of a crack, which are crack
initiation and crack propagation [22]. First, the crack initiation occurs. This phase has been investigated
when answering the sub­question 1 and refers to the crack initiation investigation box in figure 1.3. In
this stage, the crack growth has a slow pace. Crack initiation is based on the cyclic slip mechanism,
explained in detail in section 2.1.1. When the crack grows further into the material, the cyclic slip is
restrained by the surrounding material. The crack growth mechanism changes and the second period
of the fatigue life begins, which is called crack propagation or crack growth and is introduced in section
2.1.2. Crack propagation is characterized by an increasing crack growth rate. Crack propagation
investigation has been performed to answer sub­question 2 and 3, see figure 1.3. This period ends
when the crack has grown such that fracture toughness has been reached and a brittle failure due to
the fracture occurs [53], see section 2.1.3.

Figure 2.1 illustrates the fatigue life periods within a schematic graph of the crack length over time.
This figure is a schematic presentation of the fatigue life since the crack length can increase or stay

6



2.1. Fatigue cracks 7

constant and the propagation rate can increase, stay constant, and even decrease depending on the
detail.

Figure 2.1: Fatigue life periods within a schematic graph of crack length dependency of the time.

The periods, also called phases, must be considered separately [54] because they depend on dif­
ferent properties, and additionally some properties have different effects on each of the periods [53].
For example, the crack initiation depends on the surface conditions like roughness [19], but the crack
propagation depends on the material properties [28]. However, a corrosive environment will affect both
periods but with a different magnitude of the effect [53]. Crack initiation is related to the stress concen­
tration factorKt, crack propagation to the stress intensity factorK, and the final failure is related to the
fracture toughnessKIc. Fracture and failure are used as synonyms in the remainder of the text. Figure
2.2 shows the fatigue life periods and the corresponding coefficients.

Figure 2.2: Periods of the fatigue life [53].

2.1.1. Crack initiation phase
In the material subjected to cyclic loading, a small number of grains are subjected to plastic deformation
[53]. These are usually the grains that are located close to the surface and are restrained by the rest of
the material only from one side. This plastic deformation phenomenon is called cyclic slip and occurs
when the cyclic shear stress amplitude is lower than the yield stress of the material. The result of a
cyclic slip is a slip step that can initiate a microcrack in the surface of the material. Other causes for
crack initiation are surface roughness, damage and treatment, environmental effects like corrosion pits,
etc. It is important to understand that the fatigue problem most of the time starts at the surface of the
material and depends on the surface conditions.

The initiation stage can take a long time if there are no surface flaws in the material or a short time
if there are already flaws present. This difference in initiation time exists because the surface flaws are
geometric discontinuities that increase the stress value in the material. To obtain the actual maximum
stress value σmax at the discontinuity, the nominal stress σnom needs to be multiplied with the stress
concentration factor (SCF) Kt, as can be seen in equation 2.1 [47] .

σmax = Ktσnom (2.1)

Different types of discontinuities have their own stress concentration factors. Some values are well
known based on previous experiments and are reported in literature [58]. Other SCFs can be obtained
by laboratory tests, measurements, or FE­model. An example of a discontinuity increasing the stress
in the material, is the cope at the end of the beam considered in this thesis. FE­model has been used
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in sub­question 1 to obtain the maximum stress values along the cope of the beam to find the location
of the crack initiation.

2.1.2. Crack propagation phase
When the crack continues to propagate further in the structure, more material will surround the crack
tip and prevent the possibility of a cyclic slip in the original direction. The crack will change its direction
to the one perpendicular to the applied loading and will continue propagating throughout the material.
That is because the crack growth now is no longer dependent on the surface conditions, but depends
on the material properties around the crack tip [53].

To define the crack growth rate in sub­question 2 and 3, the Paris law has been used, see equation
2.2 [26]. a is the crack length in mm, N the number of cycles, ∆K is the stress intensity factor in
MPa m−1/2, and C andm are empirical coefficients that are found experimentally [51]. Recommended
values for coefficients C and m for common steels, aluminium, titanium and other metals are given
in the British standard [57]. The Paris law assumes elastic crack growth even though minor yielding
always occurs at the crack tip.

da

dN
= C(∆K)m (2.2)

Figure 2.3 shows the relation between the crack growth and the stress intensity factor on a loga­
rithmic scale. The previously described Paris law holds only for region II where the growth is linearly
dependent on the stress intensity factor range on a log­log scale and is called the Paris region. If re­
gion I or III needs to be included in the analysis, there are additional formulas available in literature
[2]. Region I describes a quick increase in the crack growth once the threshold stress intensity factor
range ∆Kth is reached. Below this value, no crack growth occurs. Region III shows a steep increase
in the crack growth as well, that will lead to the fracture of the material once the stress intensity factor
reaches the critical stress intensity factor value of Kc [37].

Figure 2.3: Crack growth representation on a logarithmic scale [2].

2.1.3. Failure due to fracture
The fatigue life of a material has been reached when the crack has weakened the structure so far that
the fracture of the material occurs [20]. It happens when the stress intensity factor has grown to the
level of critical stress intensity factor Kc, also known as fracture toughness [7]. The value of critical
stress intensity factor is amongst others dependent on the type of material, the thickness of the member
and the loading rate [20, 23]. Figure 2.4 presents that the thicker the member, the lower the critical
stress intensity factor is observed [24]. Therefore, the most critical situation occurs under the plane



2.2. Linear Elastic Fracture Mechanics 9

strain condition with the critical stress intensity factor equal to the fracture toughnessKIc and therefore
in most of the cases this value is assumed to be the critical stress intensity factor Kc [7].

Figure 2.4: Critical stress intensity factor dependency on the thickness of the member [24].

2.2. Linear Elastic Fracture Mechanics
Linear Elastic Fracture Mechanics (LEFM) is a simplified basic theory of fracture [64] that defines the
material’s resistance to fracture. It characterizes the crack propagation starting from an initial crack
size, but also allows to predict the moment of fracture. The investigation of crack propagation in sub­
question 2 and 3 has been based on this theory. LEFM can be used in cases where an elastic global
behaviour can be assumed. Elastic materials can be brittle or ductile. Brittle materials are fully elastic
and no plasticity occurs. For ductile materials, however, relatively low yielding occurs at the tip of the
crack, but that can be neglected [2]. Although elastic elements can be anisotropic, for simplicity, only
isotropic materials will be further considered [41].

There are two approaches described in the LEFM to define the stress level at which the fracture
occurs. One is through stresses and the other is through the energy balance.

2.2.1. Fracture due to the stresses
The fracture can be described by the atomic separation. The material undergoes fracture when the
applied stress σA is larger than the material’s cohesive strength σc and breaks the bond between the
atoms. The cohesive strength is equal to equation 2.3 [2], where E is Young’s modulus, x0 is spacing
between the atoms and γs is the surface energy per unit area. This surface energy is only half of the
fracture energy because two new surfaces are created by the crack.

σc =
E

π
=

√
Eγs
x0

(2.3)

However, laboratory test results have proven that the material will undergo fracture before the frac­
ture stress σf from the applied load reaches the limit of cohesive stress σc [58]. That is due to the
flaws in the material [2]. Inglis did a research on an elliptical holes in a flat plate with the crack length of
2a and the crack width of 2b [29]. He proved that the material flaws create high stress concentrations,
therefore, less stresses can be applied on the material. This relation was already stated in equation 2.1
of this report, when introducing the stress concentration factorKt, but now is elaborated in the equation
2.4 with the geometrical parameters a and b of the crack.

σA = σfKt = σf

(
1 +

2a

b

)
(2.4)

In the case of a longer crack with a > b and a sharp crack tip, the stress level at the crack tip will go
to infinity. However, in real material, there will always be a rounding of the crack tip ρ . The smallest
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value of the radius of the crack tip is close to the radius of the atom, therefore equality between ρ = xo

can be assumed. Equation 2.4 can now be rewritten as follows:

ρ =
b2

a
(2.5)

ρ = xo (2.6)

σA = σfKt = σf

(
1 +

2a
√
aρ

)
= σf

(
1 + 2

√
a

ρ

)
= σf

(
1 + 2

√
a

xo

)
(2.7)

This is true for very brittle materials that have no plasticity properties. However, ductile materials
will first experience yielding at the crack tip, also known as crack tip blunting.

Equation 2.7 needs to be adjusted when the crack length becomes much longer than the width
a >> b:

σA = 2σf

√
a

xo
(2.8)

As stated in the beginning of section 2.2.1, fracture will occur when the applied stresses in the
material will reach the cohesive stresses σA = σc. To find an approximation of the stress value from
the applied load that will cause the fracture, equation 2.3 and 2.8 have been set equal [2] and the
fatigue stresses have been obtained.

σf =

√
Eγs
4a

(2.9)

2.2.2. Fracture due to the energy balance
Another method to obtain the fracture stresses is through Griffith’s energy balance [25]. This model
states that for the fracture to occur, the potential energy Π coming from the internal strain energy and
external force needs to be at a level equal or greater than the surface energy Ws.

− dΠ

dA
=

dWs

dA
(2.10)

Further elaboration leads to equation 2.11 for the calculation of the fracture stress.

σf =

(
2Eγs
πa

)1/2

(2.11)

Results of the stress intensity and energy balance method for a sharp crack tip case in a brittle
material give less than 40% difference, therefore they are comparable [2]. This is not the case when
the radius of the crack tip ρ is significantly larger than the atomic radius x0. In the case of the Griffith’s
energy balance, the radius of the crack tip ρ is not influencing the calculation and thus underestimates
the fracture stress. However, in the case of the Inglis stresses model, the inclusion of ρ overestimates
the fracture stress. Therefore, the true value is in between these two models. Irwin and Orowan
modified the equation 2.11 from Griffith to account for the additional energy dissipation. The new term
γp is included to add the plastic work per unit area to the previously prescribed surface energy per unit
area γs.

σf =

(
2E(γs + γp)

πa

)1/2

(2.12)
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2.2.3. Elastic stress field
Stresses in the body close to the crack tip with a finite radius, that follow a linear elastic material
behaviour, can be obtained by defining a polar coordinate system as shown in figure 2.5.

Figure 2.5: Polar coordinate axis defined at the crack tip [2].

Furthermore, a distinction between the three loading types needs to be made with the help of figure
2.6. Mode I is loading normal to the crack plane, mode II and III are the shear modes where mode II
is the in­plane shear loading and mode III is the out­of­plane shear loading. In engineering practice,
mode I is the most common, however, there can also be mixed­mode cases with two or even three of
the modes combined.

Figure 2.6: Three modes of the loading of the crack [41].

For each of the loading modes, Creager and Paris [12] have derived equations 2.13 till equation
2.20 for the elastic stress field at the tip of the crack.

Mode I:
σx =

KI√
2πr

cos
θ

2
[1− sin

θ

2
sin

3θ

2
]− KI√

2πr

ρ

2r
cos

3θ

2
(2.13)

σy =
KI√
2πr

cos
θ

2
[1 + sin

θ

2
sin

3θ

2
] +

KI√
2πr

ρ

2r
cos

3θ

2
(2.14)

τxy =
KI√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
− KI√

2πr

ρ

2r
sin

3θ

2
(2.15)

Mode II:
σx = − KII√

2πr
sin

θ

2
[2 + cos

θ

2
cos

3θ

2
] +

KII√
2πr

ρ

2r
sin

3θ

2
(2.16)

σy =
KII√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
− KII√

2πr

ρ

2r
sin

3θ

2
(2.17)
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τxy =
KII√
2πr

cos
θ

2
[1− sin

θ

2
sin

3θ

2
]− KII√

2πr

ρ

2r
cos

3θ

2
(2.18)

Mode II:
τxz = − KIII√

2πr
sin

θ

2
(2.19)

τyz =
KIII√
2πr

cos
θ

2
(2.20)

In these equations ρ and θ are the polar coordinates. Factor
√
2πr in the denominator shows that

the stress field has a singular nature, meaning that with decreasing size of the radius of the crack tip
ρ, stress values approach infinity. KI , KII and KIII are the stress intensity factors for the loading
mode I, II and III. Stress intensity factor K is the characteristic parameter for the stress field that is
around the tip of the crack [37] and is a very important parameter in the fracture mechanic calculations.
The stress intensity factor is dependent on the local stresses and the structural and crack dimensions,
therefore this factor has units of Pa

√
m.

There are two terms that need to be presented to obtain the stress intensity factor K. Those are the
energy release rate G and J­Integral.

Energy release rate
In 1956, Irwin created a definition of the energy release rate G [31], also known as crack extension
or driving force. He based his approach on Griffith’s model but made it more suitable for engineering
problems. Energy release rate G measures the energy needed to grow an increment of the crack as
shown in the equation 2.21.

G = −dΠ

dA
(2.21)

If the energy release rate is known, the stress intensity factors for all three loading modes can be
expressed by equations 2.22, 2.23 and 2.24 [41], where ν is the Poisson’s ratio and E′ is the Young’s
modulus. Different Young’s modulus values for plain stress and plain strain situations are presented in
equation 2.25 [13].

GI =
K2

I

E′ (2.22)

GII =
K2

II

E′ (2.23)

GIII =
K2

III(1 + ν)

E′ (2.24)

E′ =

{
E for plane stress

E
1− ν2

for plane strain (2.25)

If one of the loading modes is many times larger than the rest, it can be assumed that only this one
mode is active. In the rest of the cases, the loading mode combines all three of the modes. This mixed
mode behaviour can be analysed with one of the three formulas [4, 8, 15, 48]:

• the BK law
GequivC = GIC + (GIIC −GIC)

(
GII +GIII

GI +GII +GIII

)η

(2.26)

• the Power law
GequivC =

Gequiv(
GI

GIC

)am

+

(
GII

GIIC

)an

+

(
GIII

GIIIC

)ao
(2.27)
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• or the Reeder law

GequivC = GIC + (GIIC −GIC)

(
GII +GIII

GI +GII +GIII

)η

+ (GIIIC −GIIC)

(
GIII

GII +GIII

)(
GII +GIII

GI +GII +GIII

)η

GIC , GIIC and GIIIC are critical energy release rates and am, an, ao, η and n are the exponents
that need to be defined when setting up the fracture criterion.

J­Integral
J­integral is a parameter in fracture mechanics, introduced by Chereoanov [11] and Rice [50]. It intro­
duces a general approach for analysing the stress field around the crack tip. J­integral, also known as
contour integral, is a line integral Γ calculated from the strain energy work W that is needed to cause
a deformation per one unit of volume, the reaction vector T , the displacement vector u and ds that is
an element of arch length along Γ [10], see equation 2.28 [50].

J =

∫
Γ

(
Wdy − T

δu

δx
ds
)

(2.28)

This equation presents an integral that is defined around the tip of the crack and has a counterclock­
wise positive direction. It starts from the lower crack surface, goes around the crack tip, and ends at
the upper surface of the crack [10], as can be seen in figure 2.7. J­integral is path independent and
should give the same value independently of the path that has been chosen. This characteristic gives
freedom in the calculations to choose the most convenient path to obtain the value of the integral.

Figure 2.7: Visualization of the J­integral [41].

This parameter opens the possibility to extend the LEFM further to inelastic materials. However, in
a simple case of elastic material, J­integral is equal to the energy release rate.

J = G = −dΠ

dA
(2.29)

Once the value of the J­integral in an elastic material is evaluated, the stress intensity factor can
also be obtained, which is the needed parameter for the crack growth investigation. Finite element
analysis software like Abaqus can perform the calculation of the J­integral and provide the value of the
stress intensity factor [16]. Therefore, this software is suitable for crack propagation analysis and will
be used in this research.
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2.3. Attempts to measure fatigue crack propagation
Existing steel bridges have longitudinal beams that support the rails. The longitudinal beams are

coped at the joints with the cross­beams [27, 37, 51, 66]. These copes are prone to fatigue cracking
[51]. As explained in the introduction, fatigue crack development in this connection due to dynamic
loading by the passing trains could lead to a complete collapse of the structure [18].

Two ways to analyse the fatigue life of such a connection have been used in the past, being labo­
ratory tests and measurements on bridges. They are marked with grey boxes in the beginning of the
flowchart presented in figure 1.3. Both of these methods will be discussed in this section.

When performing measurements on bridges, strain gauges are being applied to the bridge to obtain
measurements of the stresses due to normal traffic loads. Herewith, stress ranges are determined
which can be used in fatigue analyses. However, in most cases, the locations of the connections are
hard to reach, which makes the procedure costly. Additionally, this connection is located on both sides
of each of the cross­beams, which are located at every end of every longitudinal beam. This leads to
a great number of connections to be checked and explains the high expenses for such an approach.
Despite these obstacles, ProRail has performed strain measurements on six existing bridges in the
Netherlands in the 1980s and 1990s [37].

Another method to analyse the fatigue life and to get a better estimation of the stresses in the
connection is by performing tests in a laboratory. These laboratory tests were performed by ProRail
during their investigations in the 1980s and 1990s [37]. Also, master thesis research at the University
of Alberta in 1988 [67] contains laboratory tests on a coped beam. Results of the latter of the two have
been used as the validation material for the FE­models in this research. The report of the research
done at the University of Alberta contains detailed information on their performed tests, as presented
in the section 3.1 and 4.1. Therefore, this laboratory test setup has been chosen to reproduce the
FE­model.

Based on the obtained results both from the measurements on the bridges and the tests in the
laboratory by ProRail, advice for inspection intervals was established. However, these measurements
and tests had some flaws that are described in section 2.3.1.

2.3.1. Flaws in the attempts
In 2014, TNO was asked to look into the laboratory tests done in the 1980s and 1990s by ProRail and
evaluate the inspection advice for bridges. It was concluded that the performed tests only gave an
approximation of the real situation [37]. The reasons for this conclusion were:

• Some of the tests had the tension plate and some did not, which changes the load path. Visualiza­
tion of a connection with and without the tension plate can be seen in figure 2.8. The tension plate
changes the load path. It transfers the moment present in the connection through this plate and
then only shear forces need to be transferred through the coped area of the beam. Connection
with or without the tension plate gives different stresses in the curve of the notch and therefore
they cannot be compared.

Figure 2.8: Cross­section of the connection with (left) and without (right) tension and compression plates [37].

• The load applied in the tests was a static load, while in reality, it is a dynamic load from the passing
trains. Dynamic factors were calculated to convert the static loading to dynamic loading, but these
are only an approximation of the dynamic factors in reality.
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• Laboratory tests show that the stress level at the bottom cope is larger than the stress at the top
cope. That opposes the data collected from the measurements on the bridge where the stress
level at the top cope is larger. This difference was not explained in the report [37].

Apart from the limitations in the laboratory tests, there are also limitations in the measurements on
bridges and in the reporting of it. Results can differ strongly per measurement [37] due to one or both
the following reasons:

• The stress gradient at the curve of the cope is much higher than close to the cope. Therefore,
the exact location of the strain gauge is essential. Unfortunately, the precise location of the strain
gauges was not mentioned in the reports.

• If the rail is not located exactly on top of the longitudinal beam, torsion is introduced into the top
flange. This creates different stress values on the two sides of the web of the longitudinal beam.
Report [37] does not contain information on the rail location.

The conclusion of the paper written in 2014 [37] is that to ensure the safety of railway bridges with
coped steel beam connections with respect to the fatigue life, a detailed finite element analysis should
be performed for the connection between the coped longitudinal girders and the transverse supporting
system. This finite element analysis model will give a revised relation between the crack length and the
number of load cycles. Based on that, revised inspection intervals should be given to prevent fatigue
failure. This is the main motivation behind this thesis research.

2.4. XFEM model
It used to be hard to capture moving discontinuities like cracks by the ordinary finite element method
as the mesh needed to match the geometry of the crack after each step of its growth. Hence, a lot of
remeshing was needed [43]. This complicated meshing can be seen in the left picture from figure 2.9.

Figure 2.9: Visualization of the mesh with:
ordinary FEM on the left

eXtended Finite Element Method on the right side [49].

The discretization by ordinary FEM can be expressed with equation 2.30 [39] where uh is a dis­
placement vector function, ui are degrees of freedom at the node iϵI and ϕ are the shape functions.
Displacement in the finite element analysis software Abaqus is expressed in millimeter mm.

uh =
∑
iϵI

uiϕi (2.30)

To fix the complicated mesh alignment problem and move from the left picture to the right one in fig­
ure 2.9, the partition of unity finite element method (PUFEM) is used in Abaqus. It allows modifying the
information in the finite element space with the previously known analytical information that is known
in advance and can ease the process of finding the solution for the software [42]. In the extended finite
element method (XFEM) development process, it allows enriching the displacement­based approxima­
tion seen in the equation 2.30 by implementing additional functions. In other words, to include more
knowledge about the crack. The only difference between PUFEM and XFEM is that the extended finite
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element method has only a local enrichment of the displacement field [1]. It is only applied in the area
of cracks and others discontinuities.

First, Belytschko and Black suggested the implementation of the asymptotic function Fα at the
crack tip [3] that deals with the singularity present at the crack tip. Later, this approximation was further
improved with the discontinuous function, or “jump” function H(x), introduced by Möes, Dolbow and
Belytschko [43] that allows the crack to propagate through the elements and split them in two parts.
Figure 2.10 has an arbitrary crack in the XFEM mesh. Tip enriched elements present those elements
that will be enriched by the asymptotic function, and split elements by the jump function.

Figure 2.10: An arbitrary crack with the XFEM mesh [39].

After these adjustments, the discretization of XFEM in one dimension can be expressed with equa­
tion 2.31 [55], which applies only to isotropic and elastic materials [21].

uh =
∑
iϵI

uiϕi +
∑
jϵJ

bjϕjH(x) +
∑
kϵK

ϕk[

4∑
l=1

clkFl(x)] (2.31)

uh is a displacement vector function, ui, bj and ck are degrees of freedom at the node iϵI, jϵJ and
kϵK respectively. j are the nodes that the crack surpasses and k contains the crack tip. ϕ are the
shape functions. H(x) and Fα are the previously described jump functions and asymptotic functions.
I is the set of all nodes that contain J andK nodes. The crack goes through the J nodes but the crack
tip is at the K nodes [55].

The “jump” functions H(x), also known as the Heaviside functions, are applied to the fully cracked
elements. The asymptotic function Fα however is needed for the partially cracked elements at the ends
of the crack [38]. This function spots the singularity introduced by the tip of the crack with the

√
r term,

but is only considered when a stationary crack is modelled. The exact formulation of the asymptotic
function Fα is given by equation 2.32 [5, 34, 38, 43, 55].

Fα(r, θ) =
{√

rsin(
θ

2
),
√
rcos(

θ

2
),
√
rsin(

θ

2
)sin(θ),

√
rcos(

θ

2
)sin(θ)

}
(2.32)

The finite element analysis software Abaqus has incorporated these enrichment functions and en­
abled the possibility to model the crack propagation without the need for re­meshing. Therefore, this
tool has been used when modelling crack propagation for sub­question 2 and 3.

2.4.1. Fracture criterion in Abaqus
In section 2.2 LEFMwas introduced and in sub­section 2.2.1 and 2.2.2 the two approaches for obtaining
the fracture criterion, through the stresses and through the energy balance, were presented. When
the crack propagation analysis is being performed through the computer software Abaqus, these two
approaches are further elaborated and a choice between six different fracture criteria can be made [56].
These six criteria are critical stress, critical crack opening displacement, crack length versus time, the
Virtual Crack Closure Technique (VCCT), enhanced VCCT, and the low­cycle fatigue criterion. In this
research, two of the possible options are used and therefore these are explained more in detail.
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VCCT
The Virtual Crack Closure Technique (VCCT) has been used in this research when answering sub­
question 2. It is one of the two methods for stationary crack modelling that were used to verify the
results obtained by the XFEM. This method is also known as the crack closure method and has been
developed based on the work done by Irwin [30]. He defined the crack closure integral, presented in
equation 2.33, where strain energy release rate GI is expressed though the virtual crack extension δa,
normal stress distribution at the crack tip σy and the displacements for the crack opening v(r) [17].

GI = lim
δa→∞

1

2δa

∫ δa

0

v(r)σy(r) dr (2.33)

Irwin’s integral was later modified and currently the VCCT technique is based on the energy balance
criterion. This technique states that there has to be an equality between the energy that is needed to
be able to close a crack of a certain length and the strain energy that is released when the same length
crack is being opened [33]. The first part of equation 2.34 shows the criterion for the fracture to occur
for a simplified situation where only Mode I is taking place [15]. It presents that the energy release
rate GI for Mode I needs to be larger than the critical Mode I energy release rate GIC for the crack to
propagate.

f =
GI

GIC
=

1

2

(v1,6Fv,2,5

bd

) 1

GIC
≥ 1, 0 (2.34)

Figure 2.11 helps to explain the second part of equation 2.34 where the energy release rate for
Mode I, GI , is further elaborated through the vertical force Fv,2,5 present between node 5 and 2, the
distance v1,6 between node 1 and 6 and width b and the length d of the element located at the tip of the
crack [15]. This method is applicable when a brittle fatigue crack growth occurs.

Figure 2.11: VCCT visualization for the Mode I [15].

Low­cycle fatigue criterion
The second analysis option fromAbaqus, i.e., the low­cycle fatigue criterion, is used when a progressive
damage needs to be investigated and the failure needs to be determined for bulk ductile materials by
using a direct cyclic approach [15]. Since the coped beam connections are subjected to cyclic loading
conditions and the aim is to analyse the crack propagation, the low­cycle fatigue criterion is used.

2.4.2. Prediction of the direction of crack propagation in Abaqus
There are many prediction methods to determine the angle in which the crack will propagate. Abaqus
software has implemented three of them: maximum tangential stress, maximum energy release rate,
and KII = 0 criterion [15]. When using these criteria, the loading mode KIII is not considered since
the generally accepted theory for the crack propagation when KIII is not equal to zero, which is still
not developed in Abaqus [15].
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Maximum tangential stress
In this research, the maximum tangential stress criterion has been used to predict the direction of the
crack propagation in sub­question 2 and 3. It is based on the stress field description in front of the crack
tip defined by Williams in 1957 [36] presented in the equation 2.35 [40].

σθθ =
1√
2πr

cos
θ

2

(
KIcos

2 θ

2
− 3

2
KIIsinθ

)
+ Tsin2θ (2.35)

In this equation, KI andKII are the stress intensity factors for modes I and II. θ and r are the polar
coordinates. θ is the crack propagation angle measured with respect to the crack plane and is derived
by differentiating equation 2.35 with respect to θ, see equation 2.36.

θ = cos−1

(
3K2

II +
√
KI

4
+ 8K2

IK
2
II

K2
I + 9K2

II

)
(2.36)



3
Fatigue crack initiation in a coped beam

The fatigue life of a crack starts with the crack initiation. In this chapter, FEM software, Abaqus, has
been used to perform a static loading test of a coped beam to analyse the stress concentrations in the
curve of the cope. The location with the highest stress level has been obtained and therefore the point
where the crack starts initiating has been found. This location is the answer to sub­question 1. The
model has been validated by comparing the longitudinal stresses along the web with laboratory test
results.

First section 3.1 explains the details about the laboratory test performed by Michael C.H. Yam and
J.J. Roger Cheng. Then section 3.2 describes the finite element model made in Abaqus software in
more detail. This model is designed such that it best matches the laboratory test described in section
3.1. In section 3.3 the results of the FEM analysis have been compared to the laboratory test results
performed by Michael C.H. Yam and J.J. Roger Cheng.

3.1. Reference data from the laboratory tests
In 1988, the fatigue strength of coped beams was investigated by Michael C.H. Yam and J.J. Roger
Cheng [65, 67]. They performed static and cyclic loading tests in the laboratory to investigate the fatigue
behaviour of coped beams and to compare the results with existing S­N curves in the Canadian design
standard. The static loading test was done to remove the residual stresses near the cope and to ensure
its elastic response for when the cyclic loading will be applied. During this static loading, longitudinal
stresses along the web were registered. The tests as performed by Yam and Cheng are described in
more detail in this section.

3.1.1. Test setup
Nine steel beams with a length of 4876 mm were prepared from three steel sections CB­1, CB­2, CB­3,
and coped at both ends with a varying radius of 0 mm, 10 mm, 20 mm and 30 mm. These beams
had a steel W410 x 54 CSA G40.21­M81 300W profile, where W410 x 54 indicates the geometrical
parameters of the cross section, CSA G40.21 stands for Standard for Structural Steel Issued by Cana­
dian Standards Association and 300W is the steel grade representing a weldable steels for general
construction with the yield strength of 235 MPa [9]. Steel beam as an end product from a steel man­
ufacturer always has a deviation from the intended geometrical parameters, therefore, measurements
of the true beam’s cross sections sizes were measured and are gathered in figure 3.1

19
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Figure 3.1: Measured dimensions of the cross section for the three steel sections [67].

All specimens were simply supported with a rocker for free rotation and with rollers for no vertical
movement. On the right side, the support is connected to the web of the beam by two bolted clip angles
ensuring the load transfer to the support. The tested beams had a span of 3670 mm and they were
loaded with a point load in the middle of the span, see figure 3.2.

Figure 3.2: Laboratory test setup [67].

The lateral stability was obtained by the lateral constrain at the location of the load application
to analyse the in­plane behaviour of the beam. Material properties (modulus of elasticity, yield, and
ultimate strength) were obtained by the coupon tests performed on two coupons cut out of each end of
the steel section.

The copes had a depth of 60 mm and a length of 230 mm, measured from the support, and these
dimensions were kept constant in all specimens. The geometry of the cope can be seen in figure 3.3.
Three different cutting techniques were used to cut the copes, flame cutting, smooth grinding after flame
cutting, and hole drilling accompanied with tangent removal by flame cutting. However, in this thesis,
no distinction between them has been made and all nine specimens with different cutting techniques
have been analysed.
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Figure 3.3: Location of rosettes and the strain gauges [67].

The static loading test was performed until the maximum load for the dynamic test was reached.
However, the stress distribution for all specimens was measured and presented at 100 kN loading.
Therefore, validation of the FE­model for the crack initiation analysis has been done based on the
stress values at the rosettes from when the static load of 100 kN has been applied.

Two rosettes were located side­by­side next to the cope such that one of them was placed on the
theoretical tangent of the cope radius. They were used to measure the introduced stresses in the steel
due to the cope’s geometry. The rosettes were located as close as possible to the edge of the cope,
however, not exactly on the edge. This observation may be of importance when the data from the
laboratory will be compared with the results from the FE­model made in this thesis. These distances
from the rosettes to the geometry of the cope, dR, can be seen in figure 3.3 and are gathered in table
3.1 together with the nominal and actual cope radii. Different letters in the specimen designations stand
for different surface preparations. A, B, C and no letter stand for flame cutting (F in table 3.1), D for
grounded smooth after flame cutting (FG), and E indicates hole drilling accompanied by the tangent
removal with fire cutting (D). As previously stated, different surface conditions have not been considered
in this thesis.

Strain measurements were obtained by strain gauges that were located on a vertical line starting
between the two rosettes. The placement of the rosettes and strain gauges can be seen in figure 3.3.
Two additional strain gauges were placed on the top and bottom flange of the beam 720 mm away from
the cope line. This is the location with the least effect caused by the support and load application zones
and can be used to measure and maintain the nominal mean stress during the laboratory test.

Specimen
Designation

Nominal Cope
Radius (mm)

Actual Cope
Radius (mm)

Rosettes Location
dR (mm)

Cutting
Technique

CB­0 0 0 3 F
CB­10A 10 15 4 F
CB­20B 20 25 5 FG
CB­20A 20 25 2 F
CB­30 30 32 3 F
CB­10B 10 15 4 F
CB­10C 10 15 3 F
CB­10D 10 15 3 FG
CB­10E 10 10 4 D

Table 3.1: Description of the specimens [67] with different cutting techniques:
F ­ flame cutting technique,

FG ­ grounded smooth after flame cutting,
D ­ hole drilling accompanied by the tangent removal with fire cutting.
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3.1.2. Obtained results
The coupon test results for each steel beam, which was later cut into three separate specimens, are
summarised in table 3.2. They provided the necessary material properties.

Beam
Static Yield
Strength
(MPa)

Ultimate
Strength
(MPa)

Modulus of
Elasticity
(MPa)

Percent
Elongation
at Rupture

CB­1 375 498 198600 33
CB­2 369 490 200600 32
CB­3 366 490 202300 31

Table 3.2: Material properties obtained by the coupon test [67].

At the location of the cope, stresses were measured throughout the height of the web of all nine
beams. These results were presented in separate graphs. One of these is presented in figure 3.4,
showing the stresses at different strain gauges when a constant load of 100 kN is applied. The other
eight graphs can be found in appendix A. Exact stresses were not registered in the report, but approx­
imate values can be extracted from the presented graphs. From these results, it was obtained that
a smaller radius of the cope leads to higher stress concentrations. Accordingly, coped beams with
smaller cope radius are more prone to crack initiation and is therefore the reason to choose the result
with the smallest cope radius of 10 mm to be presented in figure 3.4.

Figure 3.4: Stress distribution in the web of the beam above the cope under 100 kN loading for the specimen CB­10A [67].

After static loading, all nine specimens were further cyclically loaded to investigate crack propa­
gation until full collapse of the beam. This data has been further used in section 4.1, when crack
propagation is modelled.

After full collapse of the beam, it was possible to obtain the precise location of the crack initiation.
In all nine samples, the crack initiated in the curve of the cope. To present the location of the crack
initiation, a new variable Fd was introduced, which is the horizontal distance from the end of the curve
until the location of crack initiation as shown in figure 3.5. The obtained location of the crack initiation
is summarised in table 3.3. When analysing the results for the specimens with a 10 mm cope radius,
it can be seen in table 3.3 that the location of the crack initiation for of 9.98 mm for specimen CB­10A
is considerably larger than for the other samples. This result needs to be disregarded in the future
analysis due to the discovery of a preexisting 1 mm deep notch in the surface. This surface damage
enforces the crack to initiate at the location of the notch and therefore this result has been excluded
from in the table 3.3.

With the information presented in this section, being the stress values along the height of the beam
and the location of the crack initiation, FE­model has been validated in section 3.3.
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Figure 3.5: Location of the crack initiation [67].

Specimen
Designation

Crack Initiation
Fd (mm)

CB­0 at corner
CB­10A 9.98
CB­10B 4.81
CB­10C 6.47
CB­10D 7.53
CB­10E 4.00
CB­20A 16.23
CB­20B 12.09
CB­30 24.87

Table 3.3: Location of the crack initiation [67].
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3.2. Test simulation with model in Abaqus

3.2.1. Geometry, material properties, and loading
To be able to compare the modelling results for the crack initiation point with the laboratory test results,
a linear elastic 3D finite element model has been created according to the laboratory test setup by
using the same geometry, material properties, boundary conditions, and loading parameters described
in section 3.1.1 and visualized in figures 3.2 and 3.3. The chosen geometry of the cross section can
be seen in figure 3.6 and has been obtained by averaging the measurements from the members used
in the laboratory test that were presented in figure 3.1.

Figure 3.6: Geometry of the cross section in FE­model.

The geometry has been created with a solid extruded part. The rounding between the flanges and
the web of the beam has been neglected for the simplicity of the model, but might have an influence for
the cases when the cope has a large radius. The beam has been coped by removing part of the web
and the bottom flange at both ends of the beam. The corner of the cope has been rounded to a radius
that varies between 10, 20, and 30 mm.

Material properties have been defined by assigning the modulus of elasticity and the Poisson’s
ration for a linear elastic material. Based on the coupon test results presented in table 3.1, an average
value of 200500 MPa for the modulus of elasticity has been used. The material has been defined to be
isotropic with Poisson’s ratio of 0.3 in an elastic stage [45].

Boundary conditions, described in section 3.1.1, represented a simply supported beam where both
supports had a roller and rocker assembly. The right support additionally had two bolt clip angle. As
presented in figure 3.7, these boundary conditions have been reproduced in the FE­model by fixing
the displacement in all three directions at the right side support and keeping the movement in the x
direction free at the left side support.

Figure 3.7: Boundary condition transition from the laboratory test setup to the FE­model explained through the static scheme.
Laboratory test visualization is stretched to match the location of the supports and has no true dimensions.
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A static load of 100 kN was applied to the beams during the laboratory tests when the longitudinal
stresses over the height of the web were measured. To be able to compare the stresses in the FE­
model with the stresses from the laboratory test, the same loading of 100 kN needed to be applied to
the model. Load has been applied in the middle of the beam, 1835 mm away from each of the supports.
Instead of a point load, an additional steel plate has been modelled to distribute the load over a 100 x
100 mm area to avoid singularities in the results [6]. Load has been applied under the static, general
step in Abaqus.

Figure 3.8 summarizes the described geometry, loading, and boundary conditions of the model.

Figure 3.8: Geometry, loading and the boundary conditions of the beam from Abaqus.

3.2.2. Meshing
8­node linear brick elements C3D8 have been used to mesh the model. This choice of element type
is not a mandatory requirement for the crack initiation analysis. However, this model has been further
updated and used in chapter 4 for the crack propagation analysis. There it is required to have linear
elements for the crack to propagate when using XFEM [62]. To save time on remodeling and to reduce
the amount of changes needed during the transition from the crack initiation model to the propagation
model, C3D8 elements have been already applied in the crack initiation model.

As can be seen in figure 3.9, mesh refinement has been applied at the area close to the cope
radius, which is the area of interest. A quarter of a spider mesh has been sketched around the curve
by partitioning the face of the web in Abaqus.

Figure 3.9: Meshing of the beam from Abaqus.
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3.3. Comparison of the results

3.3.1. Longitudinal stresses
Comparison of the FE­model and laboratory test was done by comparing the longitudinal stresses along
the height of the web of the beam that were registered during the laboratory tests in figure 3.4 and the
appendix A, with the stresses that have been calculated by the finite element model. A vertical path
starting from the tangent of the cope has been created in the model and is presented in figure 3.10.
This path aligns with the location of the rosettes in the laboratory test setup that were presented in
figure 3.3.

Figure 3.10: Visualization of the vertical path from the tangent of the cope. Additionally, the longitudinal stress values can be
observed.

From this path, the principal stresses have been computed along the height of the web and are
presented in the graphs of longitudinal stresses versus distance from the cope edge, see figure 3.11,
figure 3.12 and figure 3.13 for 10 mm, 20 mm, and 30 mm cope radius, respectively. Results from the
laboratory test results are plotted in the same figures.

Figure 3.11: The longitudinal stress dependency on the distance from the cope edge for beams with cope radius of r = 10 mm.
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Figure 3.12: The longitudinal stress dependency on the distance from the cope edge for beams with cope radius of r = 20 mm.

Figure 3.13: The longitudinal stress dependency on the distance from the cope edge for beams with cope radius of r = 30 mm.
Only one laboratory test was performed with cope radius of 30 mm.

An option to reduce the computational time was investigated by using elements with reduced inte­
gration. However, the FE­model result curves were not as smooth as the curves presented in figures
3.11 up to 3.13. Therefore, it has been decided to continue working with elements without reduced
integration.

Figure 3.14 shows the difference between the obtained longitudinal stress results from the FE­model
and the data from the laboratory tests. Greater deviation has been observed closer to the edge of the
cope, showing the large variation in the laboratory test results. The results from the FE­model lay in
between the results from the laboratory tests. Hereby, the FE­model is validated and can be applied
for further analysis.
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Figure 3.14: Difference between longitudinal stresses obtained from the laboratory test and the FE­model for the cope radius
of 10 mm, 20 mm and 30 mm.

3.3.2. Location of the crack initiation
The location of crack initiation has been determined by looking at the stress levels at the rounding
of the cope when a 100 kN load has been applied and by identifying the location of the peak stresses
measured from the cope line. This location has been compared to the measured crack initiation location
from the test results and this comparison is presented in table 3.4 where A, B, and C stand for flame
cutting technique, D for grounded smooth after flame cutting, and E indicates hole drilling accompanied
by the tangent removal with fire cutting. As explained in section 3.1.2, results for for specimen CB­A
have been disregarded due to a preexisting notch.

As explained in chapter 3.1, it has been expected to find some deviation between the laboratory test
results and the results from the model due to the location of the stress measuring rosettes. Although
the reported crack location from the laboratory tests is assumed to be the distance from the edge of
the cope to the crack location, it is expected that in reality this is not exactly the distance to the edge of
the cope therefore creating some mismatch in comparison to the FE­model. However, the analysis still
shows comparable results as FE­model results lay in the range of the laboratory test results with 10
and 20 mm cope radius. Only one laboratory test has been performed with a cope radius of 30 mm, so
there is no range within which the results should lay in, nonetheless the difference in the crack location
from the laboratory test and the peak stress location from FE­model is only 3.61 mm for 30 mm cope
radius.

Fd r=10mm r=20mm r=30mm
Laboratory test CB­A 9.98 16.23 24.87
Laboratory test CB­B 4.81 12.09
Laboratory test CB­C 6.47
Laboratory test CB­D 7.53
Laboratory test CB­E 4.00
Range from lab. t. 4.00 to 7.53 12.09 to 16.23 24.87

FE­model 7.09 14.18 21.26
Withing the range ✓ ✓
Difference in % 14.52
Difference in mm 3.61

Table 3.4: Location of the crack initiation Fd measured from the cope line both from the
laboratory tests and the FE­model

Figure 3.15: Example of
FE­model results for Fd and

r from table 3.4.
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The result shows a good comparison between the laboratory test results and the results from the
FE­model. That shows that the FE­model with the assumed boundary conditions, load application, and
the chosen mesh is a reliable model for coped beam analysis when a static load has been applied. The
location of the crack initiation has been obtained, therefore, sub­question 1 has been answered.

3.4. Conclusions for the crack initiation
The crack initiation investigation presented in chapter 3 has provided a starting point for the crack
propagation analysis described in chapter 4.

Firstly, a verified FE­model has been created in section 3.2 and 3.3.1 and further has served the pur­
pose of a base model. By implementing the changes described in section 4.2, it has been transformed
into a crack propagation model.

And secondly, the location of the crack initiation has been determined and is presented in table 3.4.
Based on this information, an initial crack has been modelled at a distance of 7.09 mm from the cope
line when the cope radius is 10 mm as is described in section 4.2.



4
Fatigue crack propagation in a coped

beam
In chapter 3, the crack initiation phase of the fatigue life was investigated to find the location where the
crack starts to initiate. Chapter 4 presents the investigation of the next phase of the fatigue life which
is crack propagation.

The FE­model that has been created for the crack initiation, has been further modified by applying
an initial crack and, instead of static loading, cyclic loading has been applied. This model has been
calibrated to match the results from the laboratory tests performed by Michael C.H. Yam and J.J. Roger
Cheng regarding cyclic loading [65, 67]. The path of the crack was not registered during the tests,
therefore, the extended finite element method (XFEM) has been used to propagate the crack without
predefining the path of the crack.

4.1. Reference data from the laboratory tests

4.1.1. Test setup
The geometry parameters of the laboratory test, presented in this section, are the same as described
in section 3.1. However, now a cyclic loading has been applied, instead of a static load of 100 kN, to
investigate the crack propagation in the web of the beam. During the tests, a nominal mean stress of
70 MPa has been maintained at the location of the cope that is marked with a red dot in figure 4.1.

Due to the incomplete explanation of the load applied in the laboratory test report [67], an extensive
analysis is given in this section on the load applied to the beam. Here, the bending moment distribution
for a simply supported beam with a force applied at the middle of the span is presented in figure 4.1.
This distribution is presented to show the calculation of the force that needs to be applied to maintain
the nominal mean stress value of 70 MPa at the location of the cope.

Firstly, it is determined what load needs to be applied to reach this nominal stress of 70 MPa at the
cope. Hereto, the moment M3 at the location of the cope line should be obtained by using equation
4.1. In this equation, cross­sectional properties, I3 and y3, of the incomplete cross section of the beam
have been considered due to the cope of the beam. This cross­section is visualized in the figure 4.1
with the section A­A.

M3 =
σ3I3
y3

=
70MPa ∗ 5, 79 ∗ 107mm4

238, 3mm
= 17kNm (4.1)

I3 stands for the second moment of area. y3 is the distance from the elastic neutral axis to the
physical outer fibre, calculated as shown in equation 4.2.

y3 =

∑
yjAj∑
Aj

= 238, 3mm (4.2)

30
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A is the cross­sectional area and y the distance from the elastic neutral axis to the physical outer
bottom fibre of each j­th cross­sectional element (j = 1 the web and j = 2 top flange).

Figure 4.1: A scheme of a simply supported coped beam together with it’s static scheme of moment distribution. Section A­A
and B­B presents the cross sections of the beam at two locations indicated in the scheme.

After obtaining the bending moment value at the location of the cope, and knowing that the bending
moment at the support of a simply supported beam is equal to 0 kNm, the complete bending moment
diagram for the beam has been illustrated. From this diagram, themoment values at the load application
point M1 have been obtained, see equation 4.3.

M1 =
M3l1
l3

=
17kNm ∗ 1.835m

0.23m
= 136kNm (4.3)

Furthermore, the load that needs to be applied in the middle of the beam has been calculated
by using equation 4.4, where l is the span of the simply supported beam. With this calculation, all
necessary loading information for the FE­model has been obtained.

F =
4M1

l
=

4 ∗ 136kNm

3.67
= 148kN (4.4)

To complete the story of how the applied load was measured during the laboratory tests, forces
at the strain gauge location needed to be investigated. Strain gauges were used to monitor the load
application during the laboratory tests and to ensure correct stress values at the cope [67]. They were
placed on the top and bottom flanges of the beam 720 mm away from the cope line. This location
was chosen to register the strains with the least disturbing influence from the point load and the sup­
port. Therefore, the moment values at the strain gauge location M2 have also been obtained from the
moment diagram, see equation 4.5.

M2 =
M3l2
l3

=
17kNm ∗ 0.720m

0.23m
= 53kNm (4.5)

The determination of the strains is similar as the method described above but includes the Hook’s
law to determine the strains from the stresses, see equation 4.6 and 4.7.

σ2 =
M2y2
I2

(4.6)

ϵ2 =
σ2

E
(4.7)
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In [67] it is defined that the stress range at the location of the cope hole differed per test between 40,
50, and 70 MPa. Following the same analogy as above, the forces applied at the middle of the beam
were determined to reach the desired stress range at the location of the cope.

The beams were cyclically loaded until complete failure due to fatigue crack propagation.

4.1.2. Laboratory test results
Results of the crack propagation phase have been obtained by manually measuring length of the crack
at convenient intervals and have been presented by depicting the relation between the crack length
and the number of load cycles. They have been grouped in three graphs to present the outcome of
different cope cutting methods (figure 4.2); the different radius of the cope (figure 4.3) and different
stress ranges (figure 4.4). Similar as in section 3.1, the exact numbers of load cycles or the length
of the crack have not been mentioned in the laboratory test report [67]. Approximate numbers have
been extracted from the graphs from figure A.9 to A.11, see appendix A, and the new data has been
presented in figure 4.2, 4.3 and 4.4.

Figure 4.2: Crack length dependency of the number of the load cycles for different cope cutting methods [67].

Figure 4.3: Crack length dependency of the number of the load cycles for different cope radius of the cope [67].
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Figure 4.4: Crack length dependency of the number of the load cycles for different stress ranges [67].

Unfortunately, the path of the crack propagation was not registered during the testing in the labora­
tory and remains unknown. Only a few low quality pictures as shown in figure 4.5 have been presented
in the laboratory test report that can not be used for detailed analysis.

Figure 4.5: Path of the crack propagation [67].
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4.2. Transition from crack initiation model to propagation model
In chapter 3 the crack initiation model was introduced and delivered reliable results for the location

of the crack initiation. In this section, this statically loaded crack initiation model has been modified to
replicate the laboratory test described in section 4.1 and to perform crack propagation analysis with
cyclic loading. The transition from a statically loaded crack initiation model to a crack propagation
model with cyclic loading includes multiple essential changes that will be described in this section.

Results for the laboratory tests in section 4.1 were obtained for three types of stress ranges, 40
MPa, 50 MPa, and 70 MPa, but the crack propagation analyses have only been investigated for the
test with the highest stress range of 70 MPa to sharpen the scope. In a similar manner, only one size
of radius of the cope has been analysed. The size of a 10 mm radius has been chosen based on the
findings from the laboratory test described in section 3.1 stating that a smaller radius of the cope leads
to higher stress concentrations and is therefore more prone to crack initiation.

The following sections describe different aspects of the crack propagation model.

Initial crack
First, a separate part has been modelled to represent the initial crack from which the propagating crack
would further grow. This part has been modelled as a 3D extruded shell. This extruded part has been
added to the assembly and has been located 7.09 mm away from the cope line based on the results
from the crack initiation model for the 10 mm cope radius presented in table 3.15. Orientation of the
part has been based on observations from the laboratory test [67] when the crack was propagating with
a 35 degree angle from the vertical. An initial crack size of 8 mm x 10 mm (width through thickness
x length) has been chosen, and the crack plane additionally sticks 2 mm out of the model at all three
sides of the web as has been recommended by multiple authors [32, 34, 38]. Implementation of the
recommendation leads to the final geometry of the initial crack part of 12 mm x 12 mm, see figures 4.6
and 4.7.

Figure 4.6: Initial crack in the assembly. Figure 4.7: Initial crack zoomed in.

XFEM crack
After the initial crack has been successfully modelled with preferable dimensions and orientation, the
crack has been assigned as XFEM crack with certain contact properties between the initial crack and
the web of the beam. Contact properties have been created under the Interaction Property Manager
in the Interaction module in Abaqus. Contact property allows to define the fracture criterion based
on which the crack will propagate through each of the mesh elements. The chosen fracture criterion
VCCT is described in section 2.4.1. The direction of crack growth has been analysed with the maximum
tangential stresses as introduced in section 2.4.2 and the mixed mode behaviour has been captured
with the Power law as described in section 2.2.3. Critical energy release rates for modes I, II, and III
have been assigned to be GI = GII = GIII = 100 and the exponent parameters for the mixed mode
behaviour have been assigned to be am = an = ao = 1.

Once the contact properties have been created, the initial crack can be assigned to propagate as
XFEM crack through the web based on the contact properties by selecting Special/ Crack/ Create.
Important condition for the crack to propagate is the box that needs to be ticked to allow the crack
growth. Without this setting, the analysis on a stationary crack will be performed.
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Periodic loading
When performing the loading condition transition from the crack initiation model to crack propagation,
first, the 100 kN loading used in section 3.2.1 needs to be changed. Laboratory tests for crack propa­
gation kept the nominal stress at 70 MPa at the cope. Load that would guarantee this condition in the
FE­model has been calculated in section 4.1.1 and therefore a loading of 148 kN has been applied as
a distributed load over a 100 x 100 mm area.

Furthermore, the transition from the crack initiation model to the crack propagation model includes
the change of the loading type from static loading to cyclic loading. The step module in Abaqus needs
to be changed from ”Static, General” to ”Direct cyclic”. This change enabled the possibility of using
low­cycle fatigue analysis described in section 2.4.1. With this option, it is possible to analyse a model
with applied periodic loading with a certain number of cycles, while still performing static stress analysis
instead of a more complicated dynamic stress analysis.

Once the cyclic loading has been enabled by changing the step module, a sinusoidal loading am­
plitude can be created in Abaqus to implement the stress range of 70 MPa. A stabilized response is
obtained for the structure by using the Fourier series in combination with time integration of the nonlin­
ear material behavior [14]. This is the most appropriate approach in Abaqus when the goal is to obtain
a graph of the number of cycles versus the crack length based on the Paris law, described in section
2.2.2. When assigning a periodic amplitude, Fourier series equation 4.8 [56, 61] can be used, where
a is the amplitude, A0 is the initial amplitude, N is the number of terms, ω is the circular frequency, t is
time, t0 is the starting time, and An and Bn are the amplitudes for cos and sin function respectively.

a = A0 +

N∑
n=1

[Ancosnω(t− t0) +Bnsinnω(t− t0)] (4.8)

For the cyclic loading applied in this test, the amplitude has been assigned by using N = 1 as only
one loading cycle has been created, by having An = 0 to create the sinusoidal loading amplitude and
by having circular frequency equal to ω = 2π to account for one cyclic loading. No initial amplitude
has been assigned (A0 = 0). However, this periodic loading will fluctuate on top of the previously
implemented 148 kN loading that ensured 70 MPa nominal stress at the cope. This loading can be
considered as an arbitrary initial amplitude and in the plot of the amplitude by Abaqus in figure 4.8 has
the magnitude equal to 1. If the 70 MPa nominal stress at the cope is represented with a magnitude of
1, then to achieve the stress range of 70 MPa the load needs to fluctuate from a magnitude of 0.5 to
1.5 (from 35 MPa to 105 MPa). Sinusoidal amplitude of Fourier series has been set to vary between
these limits by assigning the coefficient Bn equal to 0.5.

Figure 4.8: Applied loading amplitude of 70 MPa starting from 70 MPa nominal stress.

Load application by using amplitude has been chosen to be able to visualize the cyclic loading in
the result tab and make sure that the model is undergoing the intended loading. However, this model
is linear and no plasticity occurs, therefore, a simple point load could have also been modelled and
repeatedly applied to simulate the cyclic loading.
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Paris law parameters
For the crack to propagate through the web, there are two fracture criteria that need to be assigned.
The first criterion is the VCCT criterion for the fracture of each of the elements. It was already assigned
when defining the XFEM crack.

The second criterion, called Paris law, determines the rate at which the crack would propagate
through the elements. Theory about this criterion was described in section 2.1.2 and the crack growth
rate was expressed by equation 2.2. Abaqus software uses a different notation for this equation and
expresses C and m coefficients with different constants c3 and c4, see equations 4.9, 4.10 and 4.11
[5, 15] where a is the crack length, N the number of cycles, ∆K the stress intensity factor, ∆G is the
relative fracture energy release rate and E′ is the Young’s modulus from equation 2.25.

da

dN
= C(∆K)m = c3(∆G)c4 (4.9)

c3 = CE
′m/2 (4.10)

c4 = m/2 (4.11)

∆G =
∆K2

E′ (4.12)

To implement Paris law in the model, the coefficients c3 and c4 need to be predefined. It is not yet
implemented in Abaqus to define these coefficients in the user interface, but it can be done through the
keywords of the program. Keywords is the location where all actions performed while modelling the
structure are being saved and can be viewed under the Model tab and the Edit Keywords option. Not
only the keywords save the actions requested during the modelling, but they also allow to script these
actions straight into the keywords sheet. This option allows to script additional lines in the keywords
and include the c3 and c4 coefficients that are essential for the XFEM to propagate through the web of
the beam. Lines that have been added to the keywords under the interaction properties section contain
the following information [32]:

*Fracture Criterion, type=fatigue, mixed mode behavior=POWER
<c1>,<c2>,<c3>,<c4>,<r1>,<r2>,<GIc>,<GIIc>
<GIIIc>,<eta1>,<eta2>,<eta3>
Nominal values for the coefficients C = 3.98∗10−13 andm = 2.88 have been chosen from the British

standard [57] and have been kept constant through all models tomake comparisons between the results
without the influence of the Paris law. Corresponding coefficients that have been implemented in the
model are c3 = 1.717622715 ∗ 10−5 and c4 = 1.44.

Meshing
When using XFEM for crack propagation, it is required to assign linear mesh elements. This require­
ment has been already fulfilled in section 3.2.2 when creating the crack initiation model and using the
8­node linear brick elements C3D8. Therefore, no changes of the element type need to be made.

Topology of the mesh was initially kept the same as for the crack initiation model where a quarter
of the spiderweb­like mesh has been used to mesh the area next to the cope, see figure 4.9.

Figure 4.9: Combination of the spiderweb like
mesh and the unstructured mesh.

Figure 4.10: Structured mesh perpendicular to the
initial crack.
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However, when plotting the result of crack length dependency on the number of loading cycles for
a model with the spiderweb­like mesh, it was obtained that the curve flattened at a crack length of ca.
200 mm, resulting in a shift in the number of cycles of ca. 50.000. These results are presented in figure
4.11 with the blue curve. The crack length where the curve flattens coincides with the location where
the mesh topology changes from the spiderweb­like mesh to the unstructured mesh, therefore such a
change needs to be avoided. To solve this influence on the crack propagation, a zone with a structured
mesh perpendicular to the initial crack has been created (see figure 4.10). The grey curve in figure
4.11 shows that this change to a consistent mesh topology has improved the results, leading to a more
fluid curve.

Figure 4.11: Crack length dependency of the number of loading cycles when spiderweb like mesh and a diagonal structured
mesh has been used.

Additionally, this rectangular zone has been modelled as a separate part connected to the rest of
the beam with tie constraints. This division has allowed to assign more elements through the thickness
for the rectangular part (see figure 4.10) while keeping one element through the thickness for the rest
of the beam, and therefore avoid a large increase of the number of elements for the whole model.

Results
Another difference between the crack initiation and the crack propagation model is the procedure to ob­
tain results. For the crack initiation, longitudinal stresses were the necessary output. Abaqus contains
a well­developed output for stresses where results can be both visualized and quantified.

When investigating crack propagation, the main data that needs to be obtained from the software
is the crack length dependency on the number of loading cycles. There is an available output for half
of the necessary information which is the number of load cycles per incremental crack growth that can
be found under Results/ Step/ Frame tab.

However, when using XFEM method for crack propagation, Abaqus users face some difficulties
when trying to obtain the incremental length of the XFEM crack. There is only one output available
for the XFEM crack that can only visualise the crack path as shown in figure 4.12 and is called STA­
TUSXFEM. The necessary incremental length of the crack can not be obtained also by measuring the
length manually, as no coordinates of the crack path can be plotted. Abaqus’ help­desk has suggested
to either manually query the coordinates or do some scripting. However, only the coordinates of the
mesh nodes can be queried.

While Abaqus is working on implementing an output for the incremental XFEM crack length, a
temporary solution has been found and used in this thesis by using AutoCAD computer software and
Microsoft Excel. Figure 4.13 shows the step­wise procedure performed in AutoCAD.

First, as only the mesh nodes can be queried in Abaqus, the coordinates of the mesh element
nodes that have been affected by the XFEM crack have been replicated in AutoCAD, see the left part
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of figure 4.13. The next step, shown in the middle part of figure 4.13, has been to create screenshots
from STATUSXFEM output containing the crack path and to place them in AutoCAD to match the mesh
element node coordinates from the first step. This has been done to be able to perform the third step,
presented on the right part of figure 4.13 which is to replicate the crack path in AutoCAD by drawing a
polyline based on the crack path in the screenshots. By using LIST command, the coordinates of each
increment of the path can be obtained and postprocessed in Microsoft Excel to obtain the incremental
length of the XFEM fatigue crack.

Figure 4.12: Visualization of the STATUSXFEM
results from Abaqus.

Figure 4.13: Procedure in AutoCAD to obtain incremental
length of the XFEM crack:

left ­ coordinates of the mesh nodes
middle ­ alignment of the screenshots form STATUSXFEM

output
right ­ obtained XFEM crack path

This postprocessing technique is a time­consuming procedure that requires manual work. There­
fore, a higher possibility of inaccuracy in the results is obtained when compared to an automated pro­
cedure.

After obtaining the incremental length of the XFEM crack, crack length dependency of the number
of loading cycles can be plotted. When using Abaqus data for the number of cycles, it does not include
the loading cycles that are needed to initiate the crack, since the crack propagation analysis starts from
the tip of the predefined initial crack. Therefore, additional loading cycles need to be added. Table 4.1
shows results from the laboratory test for a cyclically loaded coped beam CB­10C with a flame cut cope
radius of 10 mm. These results have been used as the reference for the additional loading cycles that
need to be added for the crack propagation analysis.

FE­models have been modelled with different initial crack sizes and in­plane mesh sizes, therefore,
leading to crack paths that have different incremental growth. To account for this variate, table 4.1
contains four crack lengths from the laboratory tests and allows to choose the closest crack length in
different FE­models to which the additional number of cycles have been added. After this adjustment,
all data for presenting a graph of crack length dependency on the accumulated number of loading
cycles have been prepared.

Crack length,
mm

Number of cycles,
N x 1000

18.95 274.53
19.87 282.03
20.50 284.04
24.29 285.00

Table 4.1: Number of cycles that are necessary to initiate a crack of a certain length [67].
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4.3. SIF with stationary cracks
Chapter 4.2 presented many changes that need to be implemented in the crack initiation model for

the transition to crack propagation model. These procedures present the complexity of the model and
emphasize the importance of sub­question 2 where investigation of the most dominant parameters has
been required. Section 4.3 and 4.4 present the parameters investigated during this thesis and quantify
the variety that they create, and therefore answer sub­question 2.

One of the dominant parameters is the SIF. When looking at the Paris law (equation 2.2), the crack
growth rate depends on three parameters, being the C and m coefficients, and the SIF. As stated in
section 4.2, C and m coefficients have been set constant for all models in this thesis. Therefore, the
only variable in this Paris law equation that influences the crack growth rate and therefore the crack
propagation is the SIF.

To ensure that the crack propagation is being modelled correctly, SIFs have been obtained for the
stationary cracks when using XFEM. Additionally, the comparison with two well­known methods, VCCT
and J­integral, has been made to determine the variation in the results of these three methods.

4.3.1. SIF with XFEM
When creating the crack propagation model described in section 4.2, under Interaction module, it is
important to select the option Special/ Crack/ Create that allows the crack to grow. This option, however,
excludes the SIF output since this output is available only for stationary XFEM cracks. To compute a
SIF with XFEM, a separate model for stationary crack analysis has been created.

First, a crack propagation analysis has been performed with a 5 mm in­plane (structured) mesh
size, two elements through the thickness, and an 8 mm long initial crack to obtain the path of the
crack. By postprocessing the results through AutoCAD, as described in section 4.2, coordinates of
each incremental step of crack growth have been found. Based on these coordinates, the originally
modelled initial XFEM crack has been extended till a crack length of 50 mm, 100 mm, 150 mm, 180
mm, and 200 mm, as can be seen in figure 4.14.

Figure 4.14: Stationary XFEM cracks with 50 mm, 100 mm, 150 mm, 180 mm and 200 mm length.

Furthermore, a direct cyclic loading analysis, described in section 4.2, has been performed for each
of these five stationary crack lengths and the SIF at the crack tip has been obtained from the Data File.
An example of the SIF output from Abaqus can be seen in figure 4.15 and the way how to subtract the
necessary information from this SIF output is explained next.

From figure 4.15 it has been observed that the stress intensity factors for loading modes 2 and
3 are relatively small in comparison with mode 1. Therefore, this crack propagated in the dominant
mode 1 (see figure 2.6). Columns 1 to 5 show that the SIF has been calculated from five contour
integrals. From the example in figure 4.15, it can be seen that the first contour integral for loading
mode 1 shows deviation from the rest of the results. This inaccurate first contour integral has been
observed by various researchers [62] and is therefore neglected and only an average of the second till
the fifth contour integral has been considered. Sections XFEM_1, XFEM_2 and XFEM_3 present
the SIF results for each element node through the thickness at the tip of the crack and an average of
these results has been calculated.
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Figure 4.15: SIF output for 100 mm long stationary crack from the first set of in­plane mesh topology.

After the SIF has been subtracted from Abaqus, the stationary crack length dependency of the SIF
has been plotted in figure 4.17. Results from the first set of stationary cracks show a sharp increase
of the SIF at the crack length of 200 mm. By looking at the most right picture from figure 4.14, it was
observed that the crack tip for the 200 mm stationary crack has been located very close to the end
of the finely meshed zone. As the SIF has been calculated by using five contour integrals around the
crack tip, but in this case only two of the integrals can be calculated within the finely meshed area, an
inaccurate result of SIF at 200 mm crack length has been obtained.

This assumption of the cause of the SIF increase has been checked by two other sets of stationary
cracks with modified in­plane mesh topology. A second dataset has been created with reduced width
of the finely meshed area for 25 mm from the left side and 35 mm from the right side and with increased
length of the finely meshed area for 50 mm. For the third set of stationary cracks, the width of this area
has been reduced even further when an additional 10 mm has been removed from both the left and the
right side of the finely meshed area. Adjustment of the in­plane mesh topology has been presented in
figure 4.16 for the crack length of 200 mm.

Figure 4.16: Stationary 200 mm long XFEM crack with different geometry of the fine mesh zone:
left ­ set one with wide and short zone

middle ­ set two with 25 mm and 35 mm narrower and 50 mm longer zone
right ­ set three with 20 mm narrower zone zone than in the middle figure
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From figure 4.17 it has been concluded that the extension of the finely meshed zone has improved
the results and a gradual increase of the SIF is now being obtained for the second and the third set of in­
plane mesh topologies. Therefore, when modelling stationary cracks with XFEMmethod, it is important
to have at least five fine size mesh elements around the crack tip when evaluating five contours for
accurate SIF estimation.

Figure 4.17: Results of SIF by using XFEM method for three different in­plane mesh topologies visualized in figure 4.16.

4.3.2. SIF comparison with different methods
In this section, the results from mesh topology set 2 have been compared with two other well­known
methods, J­integral and VCCT. With this comparison, it can be shown that the SIF’s found using all
methods are similar and all methods can thus be used.

Both methods, J­integral and VCCT, have been applied to set one of the mesh topologies from
figure 4.16 with in­plane mesh size of 5 mm, two elements through the thickness, and an 8 mm long
initial crack. At this moment in the research, only results from set 1 of XFEM were performed, and the
inaccuracy of this set was yet unknown. However, already from set 1 results for J­integral and VCCT
methods conclusions were made, therefore, the analysis with sets 2 and 3 has not been performed.

For both methods, adjustments to the Abaqus model need to be implemented and these changes
are described in the upcoming subsections.

J­integral
J­integral does not require a separate part in the assembly to define the crack path as in the XFEM
method. Instead, the obtained crack path from the propagation analysis has been implemented as the
partition of the finely meshed zone. Partitioning is a function in Abaqus that allows dividing parts into
regions. Additionally, rings of 5 mm radius have been partitioned at the tip of the stationary cracks, as
can be seen in figure 4.18, to indicate the region of the first contour integral. All partitions have been
performed through the thickness of the web. Same as for the XFEM method, the crack length of 50
mm, 100 mm, 150 mm, 180 mm, and 200 mm has been modelled.

Figure 4.18: Stationary J­integral cracks with 50 mm, 100 mm, 150 mm, 180 mm and 200 mm length.
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The crack type definition of contour integral has been set under the interaction module when cre­
ating the crack definition under Special/ Crack/ Create. The crack extension vector, that indicates the
direction of further crack propagation, has been assigned to the q vector and aligns with the direction
of the last increment of the crack path.

Values for the SIF have been obtained by using the same SIF output as for the XFEM method
described in section 4.3.1 and the obtained SIF dependency on the length of the crack can be seen in
figure 4.24.

VCCT
VCCT method can be applied when the crack path is created by two separate parts in Abaqus model.
Therefore, coordinates of the crack path have been used to split the finely meshed zone into two parts,
as can be seen in figure 4.19.

Figure 4.19: Finely meshed zone
split in two separate parts.

Figure 4.20: Interaction zone
between the two new parts.

Figure 4.21: Bonded zone for 50 mm
long stationary crack.

Previously defined tie constraints between the finely meshed zone and the rest of the beam have
been revised to account for the newly created parts. At the location of the crack path, highlighted
in figure 4.20, interaction between the two new parts has been assigned under Interaction Manager
in Abaqus. Surface­to­surface interaction has been implemented by defining the master and slave
surfaces and by applying VCCT fracture criterion between the parts.

To obtain a SIF for certain lengths of the crack, bonding has been assigned to the part of the crack
path that needs to say bonded. Figure 4.21 shows an example of SIF determination for a 50 mm long
crack where the rest of the crack path, marked in red, has been assigned to stay bonded.

Same as for XFEM and J­integral methods, the analysis of 50 mm, 100 mm, 150 mm, 180 mm, and
200 mm long stationary cracks has been performed.

Figure 4.22: Stationary VCCT cracks with 50 mm, 100 mm, 150 mm, 180 mm and 200 mm length.

The SIF is not a direct output in Abaqus, however, ENRRT field output has been used to compute
the strain energy release rate. By using equation 2.22 for loading mode I, a SIF has been calculated.
Results can be seen in figure 4.24.
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Comparison
After obtaining SIF’s with three different methods, a comparison between them has been made. Figure
4.23 shows the results from all three methods when the first set of in­plane mesh topology has been
applied. Good alignment can be observed for the crack length of 50, 100, and 150 mm. Only a small
variation of 2.2% is obtained for the crack length of 50 mm. A large variation in results has been
obtained for the crack length of 180 and 200 mm. However, it is known from section 4.3.1 that the
results from XFEM are not reliable at these crack lengths.

Figure 4.23: SIF comparison between XFEM, J­integral and VCCT method with the first set of mesh topology.

As stated in section 4.3.1, the results for SIF’s with XFEM are more aligned with what is expected
when using the second and third mesh topology. Therefore, in the previous comparison, the results
from the XFEM method from the first set have been replaced with results from the second set of mesh
topology, see figure 4.24. Analyses with J­integral and VCCT methods have been kept with the results
from the first mesh topology, as it is already possible to draw conclusions from them. The comparison
shows well­aligned results where only J­integral results for the crack length of 200 mm deviate from
XFEM and VCCT results. The variation between the results at the crack length of 50 mm is 3.4% and
8.5% for 200 mm crack length.

Figure 4.24: SIF comparison between J­integral, VCCT with the first set of mesh topology and XFEM with the second set.

This comparison has led to two conclusions. First, the XFEM method produces well­aligned results
with the well­known J­integral and VCCTmethods. And secondly, as the results from the XFEMmethod
with the second set of in­plane mesh topology match the VCCT and J­integral results way better than
when using the first set of mesh topology, it is recommended that, when evaluating five contours around
the crack tip, at least five fine size mesh elements surround the crack path.
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4.4. Mesh parameters
After the stationary crack analysis has shown a good comparison between the three methods, a

study of the propagating crack has been performed to further investigate the most dominant parameters
and their influence on the variability of the results.

Two sensitivity analysis, mesh sensitivity and initial crack size sensitivity analysis, have been per­
formed and are described in section 4.4.1 and 4.4.2. Both of these analysis have shown a certain
influence of mesh parameters on the variability of the results.

4.4.1. Mesh sensitivity analysis
Mesh sensitivity analysis is an often used verification procedure for the FE­model. When performing
mesh sensitivity analysis, the mesh size is reduced stepwise, leading to a change in the number of
cycles needed. At a certain point, further reduction of the mesh size does not lead to changes anymore.
The gradual reduction of mesh size, presented in a graph showing the mesh size versus the number
of cycles, is thus expected to have a parabolic decaying curve.

In this thesis, mesh sensitivity analysis has been performed on the second set of mesh topologies
from figure 4.17, with an initial crack size of 8 mm. Mesh size has been varied both in plane and through
the thickness at the same time. The performed variations have been gathered in table 4.2.

In­plane mesh size,
mm x mm

Element size through
the thickness, mm

8x8 8
6x6 8
5x5 4

4.5x4.5 4
4x4 4

3.8x3.8 2.7
3.6x3.6 4
3x3 2.7

Table 4.2: Variation of the in­plane and through the thickness mesh size for the mesh sensitivity analysis.

Results of the mesh sensitivity analysis have been presented in a graph for the crack length depen­
dency on the number of cycles in figure 4.25. It was expected that the curve representing the largest
size of the mesh would be placed on the right side of the graph, and the larger the decrease of the
mesh, the further to the left the curve would shift.

Figure 4.25: Mesh sensitivity analysis presented in crack length dependency on the number of cycles.
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This expectation is true for a decrease up to 4.5 mm mesh size. However, the curve resulting from
a mesh size of of 4x4x4 mm is placed more to the left than the curve belonging to a mesh size of
3.8x3.8x2.7 mm.

To have a better understanding of the convergence of the results, the in­plane mesh size has been
plotted versus the number of cycles corresponding to a crack length of 200 and 250 mm in figure 4.26.
It was expected to see a parabolic decaying curve. However, no parabolic shape has been observed
and a decaying trend is present only for the mesh size from 8 to 4 mm.

Figure 4.26: Mesh sensitivity analysis presented in in­plane mesh size dependency on the number of cycles.

However, a different observation has been made when dividing the data in results for a certain
number of elements through the thickness. Results for two elements through the thickness have been
presented in figure 4.27. The expected parabolic shape is not visible, however, a decreasing trend
has been observed. Similar results have been obtained when plotting the results for one and three
elements through the thickness, but the slopes of the trend lines are different.

Figure 4.27: Mesh sensitivity analysis results for the models with two elements through the thickness.

To conclude section 4.4.1, the expected mesh convergence has not been obtained. However, a
linear trend with different slopes has been obtained for models with matching number of elements
through the thickness. As the decaying trend was observed until the in­plane mesh size of 4 mm and a
clear linear relation has been observed with the two elements through the thickness, further sensitivity
analysis has been based on a model with 4x4x4 mm mesh size.
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4.4.2. Initial crack size sensitivity analysis
For the first crack propagation model, the initial crack was modelled to be 10 mm long, from which 2 mm
was located outside of the web of the beam, leaving only 8mm for the initial crack in the beam. More
detailed explanation can be found in section 4.2. However, way smaller initial cracks can be detected
nowadays with advanced technologies. To check the applicability of the model for different sizes of the
measured crack, it was decided to perform an initial crack size sensitivity analysis.

Initial crack size sensitivity analysis has been based on the model from the mesh sensitivity analysis
in section 4.4.1 with the in­plane mesh size of 4x4 mm and two elements through the thickness. This
choice has been based on section 4.4.1, figure 4.26 where the expected decaying trend for the mesh
sensitivity analysis was observed until themesh size of 4mm. Initial crack size has been varied between
2 and 8 mm and the results (crack length versus number of cycles) can be seen in figure 4.28.

Figure 4.28: Number of cycle dependency on the crack length for different initial crack sizes with two elements through the
thickness and parallel mesh topology.

Figure 4.28 shows an unexpected variation in results for the relation between the crack length and
the number of cycles when different initial crack lengths have been modelled. Two distinct bundles of
results have been observed for the initial crack size of 2, 2.1, 3, 5 mm and 2.3, 2.5, 4 mm. All results
vary by 9.9% for the crack length of 50 mm and by 10.0% for the 200 mm crack.

Further sections describe the attempts to reduce the variation between the results by changing
two mesh parameters, being the number of elements through the thickness and the mesh topology
(unstructured mesh topology instead of parallel mesh topology).
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Number of elements through the thickness
When searching for possible improvements of the model, to reduce the variation in the initial crack size
sensitivity analysis results, the crack path has been investigated, as can be seen in figure 4.29. It was
expected to see an incremental growth of the crack with changes in the direction of the path only at the
boundaries of the mesh elements. However, changes of the path’s direction have been found within
the element boundaries. This change has created kinks in the crack path that can be seen in the left
and middle part of figure 4.30.

When looking at figure 4.28, a pattern between the location of the curve and the size of kinks has
been discovered. The most right located curves are for the initial crack size of 2.1, 3, 5, and 2 mm. The
crack paths for these results contain large kinks with a sharp change of the crack propagation angle as
shown in the left part of figure 4.30. The crack path of the model with an initial crack of 6 mm only has
a medium size kink. Small kinks, as visualized in the middle part of figure 4.30, have been observed
for the crack paths of the results with 2.3, 2.5, and 4 mm initial cracks, indicating one of the bundles of
results in figure 4.28. The crack path of the model with an 8 mm initial crack contains no kinks as shown
in the right picture of figure 4.30, and its curve is located the most left in figure 4.28. The observed
pattern shows that the smaller the kinks that are present in the crack path, the more to the left the curve
of the number of cycles versus crack length is.

Figure 4.29: Visualization of the crack paths with locations of images from figure 4.30
left ­ crack path for FE­model with 2.1 mm initial crack

middle ­ crack path for FE­model with 2.3 mm initial crack
right ­ crack path for FE­model with 8 mm initial crack.

Figure 4.30: Visualization of the kinks within an element boundaries
left ­ large kink at 45 mm long crack from 2.1 mm initial crack path

middle ­ small kink at 45 mm long crack from 2.3 mm initial crack path
right ­ no kink at 45 mm long crack from 8 mm initial crack path.

When investigating the exact locations of the kinks, it has been observed that one location matches
with the 45 mm crack length in figure 4.28 and 4.31, where eight of the nine curves stop having a
matching result and start to deviate, and another location matches with the 170 mm crack length, where
the bundle with results from 2.1, 3, and 5 mm initial crack size starts to spread. These locations and
kinks are presented in figure 4.31.
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Figure 4.31: Location and visualization of the kinks:
first kink at 45 mm crack length

second king at 170 mm crack length.

When searching for the possible origin of kinks in the crack paths, a clear cause has not been found
by looking only at the initial crack size sensitivity analysis. To have more data to base the assumptions
on the crack paths from the mesh sensitivity analysis have been looked at. Conclusions of section
4.4.1 indicated that different number of elements through the thickness causes a different trend line. A
similar relation has been found when looking at the crack paths: more kinks have been observed for
the models with more elements through the thickness.

Based on this observation, it was expected that by reducing the number of elements through the
thickness from two to one element for the initial crack size sensitivity analysis, the variation in the results
would decrease. Figure 4.32 shows the results of the initial crack size sensitivity analysis for the in­
plane mesh size of 4x4 mm and one element through the thickness. It can be seen that the variation
of the results has decreased for the crack lengths above 100 mm and there are only three separate
result branches while there were five before when analysis with two elements through the thickness
has been performed.

Figure 4.32: Number of cycle dependency on the crack length for different initial crack sizes with one elements through the
thickness and parallel mesh topology.
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To compare the results with two and one elements through the thickness, the variation of the number
of cycles at certain crack lengths for different initial crack sizes has been plotted in figure 4.33. As the
variation of the results is larger at every plotted crack length for two elements through the thickness
than for one element, it has been concluded to recommend using one element through the thickness.
The number of cycles varies by 1.0% for the crack length of 50 mm instead of 9.9% and by 2.8% for 200
mm crack length instead of 10.0%. It is important to note that this recommendation is only based on the
reduction of the number of kinks along the crack path, however, it still remains unclear why these kinks
appear and what is the best way to avoid them. The suggested recommendation to use one element
through the thickness that improves the results of this model has been further used in this thesis.

Figure 4.33: Variation of initial crack sensitivity analysis results with structured mesh topology for one or two elements through
the thickness.
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Parallel and unstructured mesh
The second attempt to reduce the variation of the initial crack size sensitivity analysis results has been
realised by changing the in­plane mesh topology from parallel to an unstructured mesh. Both mesh
topologies are presented in figure 4.34 and 4.35. The change to unstructured mesh has been applied
to see if the variation of the results has been caused by the crack path’s alignment with the structured
mesh.

Figure 4.34: Parallel structured mesh topology. Figure 4.35: Unstructured mesh topology.

For the models run in the previous sections, the in­plane mesh topology of the parallel mesh con­
tained a structured finely meshed zone. Based on the rectangular geometry of this zone, it has not
been possible to assign the unstructured mesh topology. Therefore, this zone has been rotated at an
angle of 45 degrees as shown in figure 4.35 and has been extended to ensure that the newly made
zone covers the finely meshed area from the previous models. An unstructured mesh with a size of
4x4 mm has been assigned and the initial crack size sensitivity analysis has been performed. Results
can be seen in figure 4.36.

Figure 4.36: Number of cycle dependency on the crack length for different initial crack sizes with one elements through the
thickness and unstructured mesh topology.

Same as with the parallel mesh topology, the results for the unstructured mesh topology are scat­
tered and now lead to three bundles of results. However, unstructured mesh results have larger varia­
tion in the number of cycles than for the parallel mesh topology. It can be seen from figure 4.37, where
the variation for the unstructured mesh is larger for at least 90000 number of cycles for any of the crack
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lengths larger than 45 mm. To give a comparison in percentage, the number of cycles obtained with
parallel mesh topology varies by 1.0% and 2.8% for 50 mm and 200 mm long cracks, respectively,
which in the case of unstructured mesh becomes 33.0% for the crack length of 50 mm and 20.5% for
200 mm crack.

Figure 4.37: Variation of initial crack sensitivity analysis results with one element through the thickness for parallel and
unstructured mesh topology.

To conclude this section, it is recommended to use the parallel mesh topology instead of unstruc­
tured mesh as it results in smaller deviation in the initial crack size sensitivity analysis results.

4.4.3. Conclusions from mesh parameters
From the mesh sensitivity analysis in section 4.4.1 and initial crack size sensitivity analysis in section
4.4.2 it has been concluded that the element size through the thickness and the in­plane mesh topology
are one of the dominant parameters for the crack propagation. Based on the results from the analysis,
it is recommended to use a parallel mesh topology instead of unstructured and to use one element
through the thickness.



4.5. Crack propagation model comparison with the laboratory test results 52

4.5. Crack propagation model comparison with the laboratory test
results

In section 3.3.1 the crack initiation model has been compared with the laboratory test results to
validate the FE­model. For the crack propagation, however, the results from the FE­model have not
been validated with laboratory tests. Instead FE­model has been compared with the laboratory test
results to calibrate the C coefficient from the Paris law. Two calibrations have been performed, one
by keeping the coefficient m equal to the assumed 2.88 value, the second by changing it to a value of
3.00.

First, the choice of the most reliable model to use for the comparison has to be made. The model
with the 4x4 in­plane mesh size has been chosen based on the mesh sensitivity analysis and the
decaying trend of the results until the mesh size of 4 mm in section 4.4.1. Initial crack size sensitivity
analysis in section 4.4.2 showed that it is recommended to use one element through the thickness and
parallel mesh topology. When choosing the initial crack size, an initial crack size of 2.1 mm has been
randomly chosen from figure 4.32. Results from the chosen FE­model can be seen in figure 4.38 as
the most right­placed curve.

The choice of the laboratory test has been already made when the postprocessing of Abaqus results
has been established through the AutoCAD and Excel in section 4.2, as it was needed to account for the
number of cycles for the crack initiation. The beam with 10 mm radius has been chosen as in section
4.2 it has been explained that a smaller radius of the cope leads to higher stress concentrations and
is therefore more prone to crack initiation. Instead of a cope that has been flame cut and grounded
smooth or the one that has been drilled, the result from figure 4.2 form cope CB­10C with a flame cut
cope hole has been chosen as it has been the most common cutting technique of these three. Results
from the chosen laboratory test can be seen in figure 4.38 as the most left­placed curve.

After the FE­model and the laboratory test for comparison have been chosen, the C coefficient has
been calibrated by using the Paris law (equation 2.2).

First, the postprocessed data (fromAutoCAD and Excel) of the incremental crack length and number
of cycles has been used to compute the crack growth rate da/dN . By dividing the crack growth rate
with the assumed C value of 3.89 ∗ 10−13, the stress intensity factor with the power of the assumed
coefficient m has been obtained. This equality can be seen in equation 4.13 where coefficient m has
been kept equal to the assumed value of 2.88.

da

dNCassumed
= (∆K)massumed (4.13)

Multiplying the result with the calibrated C coefficient, a new crack growth rate has been obtained,
see equation 4.14. By using the same change of the crack length da, new changes in the number of
cycles and therefore new crack growth curves have been obtained.

(∆K)massumed ∗ Ccalibrated =

(
da

dN

)
new

(4.14)

Calibration of the coefficient C has been performed by gradually increasing the assumed value of
3.89∗10−13. Results for the intermediate coefficient C values of 4.25∗10−13, 4.5∗10−13 and 4.75∗10−13

have been plotted in figure 4.38. The best alignment of the calibrated model with the laboratory test
results when keeping the coefficient m to the assumed value of 2.88 has been observed at the value
of Ccalibrated = 5.10 ∗ 10−13.
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Figure 4.38: Crack length dependency from the number of cycles for the laboratory test of flame cut coped beam CB­10C,
most reliable FE­model and for the calibrated models with m=2.88.

Second calibration has been performed by changing the coefficient m from the assumed value
2.88 to the new value of 3.00. This change has been performed to compare the calibrated value of the
coefficient C with the values in the literature. The procedure of calibration is similar to the one described
above. Except the equation 4.13 needs to be further elaborated as shown in equation 4.15 to change
the assumed value of coefficient m to the new value of 3.00 as shown in equation 4.16.(

da

dNCassumed

)1/massumed

= ∆K (4.15)

da

dNCassumed
= (∆K)mnew (4.16)

After these additional changes, the calibration procedure continues similarly as described in equa­
tion 4.14, but now with the new value of the m coefficient, see equation 4.17

(∆K)mnew ∗ Ccalibrated =

(
da

dN

)
new

(4.17)

From figure 4.39 it can be seen that the change of the coefficient m from 2.88 to 3.00 has shifted
the result curve to the far left side of the graph. Furthermore, a gradual decrease in the C coefficient
has been performed, and results for the intermediate coefficient C values of 2.7 ∗ 10−13 and 2.0 ∗ 10−13

have been plotted, leading to a result curve that matches the laboratory test result the best with the
value of Ccalibrated = 1.62 ∗ 10−13.
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Figure 4.39: Crack length dependency from the number of cycles for the laboratory test of flame cut coped beam CB­10C,
most reliable FE­model and for the calibrated models with m=3.00.



5
Conclusions

When determining fatigue crack inspection intervals, crack propagation analysis is of great importance.
The reliability of the inspection intervals will depend on the variability of crack propagation. In this
research, the variability of crack propagation analysis using XFEM with respect to mesh parameters
and methods to determine stress intensity factors has been investigated.

Crack propagation analysis has been performed for the coped steel beam of 406 mm height with 8
mm thickness of the web and 10 mm radius of the cope by using the computer software Abaqus with
regular XFEM, VCCT and J­integral methods. Location of the crack initiation has been determined
by looking at the stress levels at the rounding of the cope and comparing them to the laboratory test
results. In­plane mesh size has been varied between 3 to 8mm, two mesh orientations have been
examined, being a mesh parallel to the crack propagation direction and an unstructured mesh, and the
initial crack length has been varied between 2 to 8 mm. Crack growth has been based on Paris law
using the recommended C and m coefficients of 3.98E­13 and 2.88 from the British Standard 7910.

Based on the performed propagation analysis, the following conclusions can be drawn:

• SIF’s for stationary cracks found when using XFEM were compared to the SIF’s found when
using the VCCT and J­integral method. Results varied by 3.4% for a crack length of 50 mm and
by 8.5% for a crack length of 200 mm when using a parallel mesh size of 5 mm. At least five
fine size mesh elements need to be surrounding the crack tip to get reliable results. Using fewer
elements increased the difference for the 200 mm crack to 52.3%.

• Mesh sensitivity analysis shows that, when keeping the number of elements through the thickness
constant, decreasing the mesh size leads to a decrease in the number of cycles, as expected.
The decreasing trend changes when a different number of elements through thickness is used.

• Initial crack size sensitivity analysis (using a parallel mesh of 4x4 mm) shows less kinks in the
crack path and therefore a smaller variation in the number of cycles between different initial cracks
when using one element through thickness than when using two elements through thickness.
When using two elements through the thickness, the number of cycles corresponding to a crack
length of 50 or 200 mm varies by 10% between a 4 and 8 mm initial crack. When using only one
element, this percentage reduces to 1.0% between 5 and 8 mm and 2.8% between 2.5 and 4 mm,
respectively.

• The parallel mesh topology gives less variability in the number of cycles than the unstructured
mesh topology when varying the initial crack size. When using one element through thickness,
the number of cycles with parallel mesh varies by 1.0% between 5 and 8 mm initial crack results
and 2.8% between 2.5 and 4 mm initial crack results for 50 mm and 200 mm cracks, respectively,
which in the case of unstructured mesh becomes 33.0% between 2.3 and 8 mm for the crack
length of 50 mm and 20.5% between 2.3 and 6 mm for 200 mm crack.
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Gathering the results together, the number of cycles can have a variation ranging from 5.4% to
46.3% for the crack length of 50 mm and from 14.2% to 39.0% for the crack length of 200 mm. Based
on this research, when modelling crack growth in coped beams, the following is recommended:

• Keep at least five finely meshed elements around the crack tip
• Use parallel mesh topology
• And use one element through the thickness to reduce kinks in the crack path

A certain crack growth curve has been chosen by following the recommendations of using a parallel
mesh topology and one element through the thickness, by choosing in­plane mesh size of 4x4 mm,
based on the smallest element size with the decreasing trend of the mesh sensitivity analysis, and by
randomly choosing the initial crack size of 2.1 mm. Based on this curve, two calibrations of the Paris
law parameter C have been performed. While keeping the m­factor constant at the value of m = 2.88,
a value of C = 5.10−13 showed the best fit to the experimental data. When changing m­factor to a
value of m = 3.00, a value of C = 1.62−13 showed the best fit. Choice of different initial crack sizes,
however, might have led to different C coefficients.

Suggested recommendations are the conclusions from this thesis that indicates steps to reduce
variation of the results obtained by the computer software Abaqus. However, they do not guarantee
the attainment of a reliable model. Results still show variation that has not been explained, therefore,
further research is required for the achievement of a reliable model.



6
Discussion and Recommendations

During this thesis, the main research question that had to be answered was: How to accurately model
fatigue crack propagation for railway bridges with coped beam connections?

When creating a FE­model, the validation needs to be performed. In this thesis this has been done
with laboratory tests, however, there are very few tests performed on coped beams. This limitation led
to validation of the model with laboratory tests with no data about the crack path. Thus, a method that
does not need a predefined crack path needs to be used and thus XFEM method has been used.

From one side, many positive aspects of the XFEM method have been observed during this the­
sis. The XFEM method is capable of generating the crack path without any preknowledge about it.
Furthermore, SIF evaluation for stationary cracks by comparing XFEM method results with well­known
J­integral and VCCT method showed matching results, therefore, verifying how the XFEM method
calculates the most important parameter for the crack propagation, SIF. In addition, the crack length
dependency on the number of load cycles curve had a similar shape to the laboratory test results.

From the other side, the study of the dominant parameters for crack propagation, performed to
answer sub­question 2, indicated a variation in the results of the number of cycles presented in chapter
5. Further research needs to be performed to try to reduce this variation in this crack propagation model.
Suggestions for further actions are:

• As the variation of the results has been low for the first 45 mm of the crack length, the suggestion
is to investigate the model around the crack length of 45 mm where the deviation has begun.
Stationary crack analysis should be performed right before and right after the crack length of 45
mm to see if the SIFs are changing and causing the variation in results. Suggestion is to partition
the crack path until the last increment of the crack and assign the XFEM crack only for this last
increment.

• Speed of the further analysis can be greatly improved by optimizing the postprocessing procedure
through AutoCAD and Excel.

• It is suggested to perform sensitivity analysis with different cope radius and stress range to have
more insight in the variation of the results, as the laboratory test used for validation in this thesis
has data for coped beams with 20 and 30 mm cope radius and stress ranges of 40 and 50 MPa.

Another discussion point is the C coefficient from Paris law. After calibration of the C coefficient,
the FE­model curve matched well with the laboratory test curve. However, it is odd that the calibrated
value is larger than the value suggested in the British Standard 7910 as all standard has been created
on the safe side by using certain safety factors. A literature study could be performed to investigate C
coefficients that have been obtained in different research.

This thesis has contributed to the ultimate goal of obtaining inspection intervals for the coped beam
connection by setting the first step towards it and creating a simply supported beam model with one
location of loading. While working on this model, some thinking has been done for possible further
steps to achieve the inspection intervals. Recommended further actions are:

• Analysis of different loading positions should be performed to account for the moving train load.
• Expansion from a simply supported beam model to a model with multiple spans should be anal­
ysed to account for the global behaviour of the bridge.
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A
Figures from lab report [67]

Figure A.1: Stress distribution in the web of the beam above the cope under 100 kN loading for the specimen CB­0 [67].

Figure A.2: Stress distribution in the web of the beam above the cope under 100 kN loading for the specimen CB­10B [67].
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Figure A.3: Stress distribution in the web of the beam above the cope under 100 kN loading for the specimen CB­10C [67].

Figure A.4: Stress distribution in the web of the beam above the cope under 100 kN loading for the specimen CB­10D [67].

Figure A.5: Stress distribution in the web of the beam above the cope under 100 kN loading for the specimen CB­10E [67].



64

Figure A.6: Stress distribution in the web of the beam above the cope under 100 kN loading for the specimen CB­20A [67].

Figure A.7: Stress distribution in the web of the beam above the cope under 100 kN loading for the specimen CB­20B [67].

Figure A.8: Stress distribution in the web of the beam above the cope under 100 kN loading for the specimen CB­30 [67].
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Figure A.9: Crack length dependency of the number of the load cycles for different cope cutting methods [67].

Figure A.10: Crack length dependency of the number of the load cycles for different cope radius of the cope [67].

Figure A.11: Crack length dependency of the number of the load cycles for different stress ranges [67].


