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Abstract

Quantum computing is a promising means of satisfying the ever­increasing need for more and faster
computations. While some specific applications can already benefit from quantum computing today, a
large­scale general­purpose quantum computer is yet to be developed. Many different technologies
are being explored to reach this goal, color centers in diamond being a promising candidate. This
thesis focuses on a specific kind of color center: the nitrogen­vacancy center (NV center).

Building on top of existing work, a quantum instruction set architecture (QISA) for a quantum computer
based on NV centers is designed. A compiler targeting this QISA is designed and implemented using
the OpenQL framework. In this process alternative approaches are also explored and contributions
useful outside the context of NV centers are made. The final compiler is able to take a quantum circuit
operating on logical qubits and transform it into a sequence of QISA instructions operating on physical
qubits. This functionality integrates seamlessly with the existing passes in OpenQL, allowing for further
extension and the possibility to make use of future developments.

Additional functionality includes optimization, scheduling, and hardware­oriented features such as quan­
tization of operands. Each step is easily configurable using a multitude of scripts and data files, and
additional steps can be added in the future if needed.

The functionality of the developed compiler is demonstrated by compiling several circuits, some of
which are validated by passing their output through a simulator. The compiler configuration as used in
these tests is able to transform logical circuit into simple physical circuits, but the compiler provides all
the functionality to use more complicated logical qubits which incorporate quantum error correction.
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means the world to me. Thank you.

Matti Dreef
Delft, April 2023

ii



Notation

The Glossary lists important terms and their definitions in the scope of this thesis. This is intended both
as a reference while reading and to avoid any confusion when certain terms have a different meaning
in other fields or inconsistent meaning within the field of quantum computing. When such a term is first
introduced it is accompanied by a definition such as the following.

Definition: Example

Example of a definition. This text is also found in the glossary.

Furthermore, this thesis uses colored text to distinguish cross­references, citations, and URLs. In the
electronic version these references can be followed by clicking the text.
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1Introduction

Quantum computing is a promising means of satisfying the ever­increasing need for more and faster
computations. By utilizing superposition and entanglement of quantum mechanical systems, certain
computations can be carried out exponentially faster than classical computers.

While some specific applications can already benefit from quantum computing today [1], a large­scale
general­purpose quantum computer is yet to be developed. Many different technologies are being
explored to reach this goal, color centers in diamond being a promising candidate. This thesis focuses
on a specific kind of color center: the nitrogen­vacancy center (NV center).

1.1. Fujitsu Project
To further explore the possibilities of NV center­based quantum computing, Fujitsu Limited and Delft
University of Technology have started a collaboration with the Fujitsu Project. The goal of this project is
to develop a scalable quantum computer architecture using color centers. More specifically, the focus
at this point in time is on NV centers, while in the future also tin­vacancy centers are to be utilized.

1.2. Problem Statement
As with classical computers, at the lowest level quantum computers work with basic operations that
have practical use only when combined into more complex algorithms. Additionally, the qubits a quan­
tum computer operates on are inherently analog. The inevitable noise limits the usability of a single
qubit, requiring multiple to be combined for practical quantum algorithms.

This motivates the use of a compiler that can translate a high­level quantum algorithm to the corre­
sponding low­level operations. The goal of this thesis is to design and implement a compiler capable of
performing this translation for a quantum computer utilizing NV center qubits. Additionally, this requires
defining a quantum instruction set architecture (QISA) serving as an interface between the quantum
software and hardware. These requirements are summarized in the main research question of this
thesis:

Can we design and implement a functional compiler that targets a quantum instruction
set architecture for quantum computers based on NV centers?

1.3. Methodology
In order to answer the research question the following subtasks have been identified:

1. Identify how NV centers need to be controlled.
This encompasses defining the low­level operations that can be applied directly to NV centers.

2. Design and extend a QISA for a quantum computer based on NV centers.
This requires defining high­level instructions that can be implemented using the available low­
level operations.

3. Design and implement a compiler targeting this QISA.
This consists of identifying NV center­specific features, formulating and designing the required

1



1.4. Thesis Overview 2

compiler functionality, and implementing it using a new or existing compiler framework.
4. Verify the functionality of the compiler.

This involves comparing the compiler output to the expected output for simple cases, as well as
evaluating the scalability of the implementation with more complex situations.

The focus in this thesis is on making the compiler functional, and not necessarily directly usable for
large­scale applications. The compiler should however be able to adapt and scale to accommodate
these applications in the future. A similar approach will be taken for the QISA; it should be designed
for the current outlook of the quantum hardware while also taking the possibility of future extensions
into consideration.

1.4. Thesis Overview
The remainder of this thesis is structured as follows; Chapter 2 introduces the quantum theory and
NV center physics relevant to the scope of this thesis, as well as outlining the state­of­the­art on quan­
tum compilers and control systems. In Chapter 3 the design of a new control architecture and compiler
is discussed. The implementation of the compiler is described in Chapter 4, after which Chapter 5
shows how the compiler can be used in practice. Finally, Chapter 6 concludes this thesis and suggests
potential improvements and future work.



2Background

This chapter provides background information and introduces existing work relevant to this thesis. A
theoretical background of quantum computing is given in Section 2.1. Section 2.2 introduces NV cen­
ters, the qubit technology that is the focus of this thesis. Section 2.3 describes existing work related to
the classical digital control system surrounding a quantum computer. A comparison of existing compiler
techniques, full compiler toolchains, and how these can be applied to NV centers is given in Section 2.4.

2.1. Quantum Computing Theory
The following sections first introduce individual qubits and their mathematical notation, followed by
multiple qubits and quantum gates. Subsequently quantum circuits are discussed, and finally how
qubits are used in practice with quantum error correction. Focus is given to the aspects relevant to this
thesis. Many resources are available for a more complete background of quantum computing, as for
example provided by QuTech Academy [2].

2.1.1. Qubits
Where a classical bit can represent either 0 or 1, a quantum bit (qubit) can represent not just these
states but also a superposition of both. This can be seen as the probabilities that the qubit is in one
specific state, such as 30% 0 and 70% 1. The possibility of being in a superposition is one of the key
features that gives quantum computing an advantage over classical computing.

The state of a single qubit can be represented by a column vector
[
α β

]T with α and β complex
numbers. The ‘probabilities’ of the qubit being in the 0 or 1 state are P0 = ||α||2 and P1 = ||β||2. These
probabilities must add up to 100% which translates to the vector having to be being normalized, i.e., it
must have length 1.

Ket Notation & Basis Vectors

As will become clear later, when multiple qubits are introduced the vector notation becomes unwieldy
very quickly. As alternative the ket notation is commonly used, which denotes a qubit state as |ψ⟩where
ψ is a distinguishing identifier. Kets are actually only half of what is known as bra­ket notation, but only
kets are of interest for the purpose of this thesis.

While the ket notation theoretically allows for any description to be used as identifier, a number of
standard qubit states known as the basis vectors can be defined which are shown below. Each pair
forms an orthogonal basis of the qubit state space. The pairs are each named after a Cartesian axis,
the reason for which will become clear in the next section. Note how the identifiers for the basis vectors
are based on the value of their second component, while the first component is kept as simple as
possible.

Z­basis

|0⟩ =
[
1
0

]
|1⟩ =

[
0
1

]
X­basis

|+⟩ = 1√
2

[
1
1

]
|−⟩ = 1√

2

[
1
−1

]
Y­basis

|+i⟩ = 1√
2

[
1
i

]
|−i⟩ = 1√

2

[
1
−i

]
3



2.1. Quantum Computing Theory 4

Arbitrary qubit states can now be written as linear combinations of these basis vectors, for example the
qubit state shown previously can be written as

|ψ⟩ =
[
α
β

]
= α

[
1
0

]
+ β

[
0
1

]
= α |0⟩+ β |1⟩ .

It is also possible to use other basis vectors here, or use combinations of arbitrary qubit states. This
suggests these other vectors can also be used as ‘default’ basis. Indeed, the qubit state

[
α β

]T is
only a representation in the Z­basis. The same state can be written as a column vector with coefficients
corresponding to the X­ or Y­basis as well, although the Z­basis is the most common.

The Bloch Sphere

An alternative but very useful representation of a qubit state is the Bloch vector. Using the polar form
of the complex numbers α and β, the representation used in the previous section can be written as

|ψ⟩ = α |0⟩+ β |1⟩ = eiδ0r0 |0⟩+ eiδ1r1 |1⟩ .

As mentioned previously the length of the vector must be 1, which is the same as requiring the point
(r0, r1) to lie on a unit circle. This constraint means the values of r0 and r1 can be represented using
a single angle θ as r0 = cos(θ/2) and r1 = sin(θ/2). The reason for dividing θ by 2 will become clear
later. This gives

|ψ⟩ = eiδ0 cos(θ/2) |0⟩+ eiδ1 sin(θ/2) |1⟩ .

Taking out the common factor in the complex angles allows them to be written as

eiδ0 + eiδ1 = eiδ0(1 + ei(δ1−δ0)).

Applying this to the qubit state with ϕ = δ1 − δ0 gives

|ψ⟩ = eiδ
(
cos(θ/2) |0⟩+ eiϕ sin(θ/2) |1⟩

)
This finally leads to the Bloch vector, which represents a qubit state as a point on the surface of a radius­
1 sphere with θ ∈ [0, π] the polar angle and ϕ ∈ [0, 2π] the azimuthal angle as shown in Figure 2.1. The
common factor δ known as the global phase turns out to have no physical effect, so it is ignored in the
Bloch vector representation. The range of θ together with the division by 2 limits the sine and cosine
argument to a single quadrant; other quadrants are merely sign changes which get absorbed by the
exponents.

Figure 2.2 shows the basis vectors introduced previously as Bloch vectors. It can be seen that each pair
of vectors aligns with an axis which corresponds to their basis. More generally, any two opposing Bloch
vectors are orthogonal to each other in Cartesian form, allowing such a pair to be used as orthogonal
basis.

x y

z

r⃗θ

ϕ

Figure 2.1: Angles representing a point on the surface of a sphere.



2.1. Quantum Computing Theory 5

x

y

z

1√
2
(|0⟩+ |1⟩) ≡ |+⟩

1√
2
(|0⟩ − |1⟩) ≡ |−⟩

1√
2
(|0⟩+ i |1⟩) ≡ |+i⟩1√

2
(|0⟩ − i |1⟩) ≡ |−i⟩

|0⟩

|1⟩

Figure 2.2: Bloch sphere visualization of a single qubit.

When applying these theoretical concepts to real physical qubits, the frame of reference can be chosen
arbitrarily. Since the Z­basis is most often used it is usually chosen as the most convenient physical
axis to work with.

Multiple Qubits

Just by itself, introducing another qubit to a quantum system does not do much. Without any interaction
each qubit can still be represented individually using a vector, ket notation, or as Bloch vector. The two
qubits can also be represented in a combined state, which can be obtained by taking the tensor product
of their individual states. This is represented in ket notation as

(α0 |0⟩+ β0 |1⟩)⊗ (α1 |0⟩+ β1 |1⟩) = α0α1 |00⟩+ α0β1 |01⟩+ β0α1 |10⟩+ β0β1 |11⟩

and in vector form as [
α0

β0

]
⊗
[
α1

β1

]
=


α0α1

α0β1
β0α1

β0β1

 .
The Bloch vector representation can also be extended to multiple qubits but is less useful than in the
single qubit case, so it will not be discussed here,

These examples show how adding a qubit to a quantum systemmultiplies the number of terms required
to represent that system by 2. Thus, adding a third qubit results in a total of 8 terms, a fourth in 16
terms, and so on continuing with exponential growth.

So far the combined state of the qubits is nothing more than a very tedious and redundant way of
representing the individual qubit states, since they can be separated again back into their original
components. This changes however when qubits start to interact with each other.

2.1.2. Quantum Gates
To be able to perform computations using qubits it is necessary to manipulate them somehow using
quantum gates.
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The term ‘gate’ suggests a similarity with classical gates such as AND, OR, and NOT, but this is only
partially true. First, a quantum gate can not consume or create qubits, and as such the number of
outputs must be equal to the number of inputs. Secondly, a quantum gate must be reversible, meaning
each input produces a unique output such that the input can be reconstructed.

Using the vector notation, quantum gates can be represented by a matrix that is multiplied with the
quantum state to produce an output vector. Arbitrary gates can be represented by matrices, but to
comply with the reversibility requirement the matrix must be unitary, meaning its conjugate transpose
is equal to its inverse. That is, a matrix U is unitary if

UU † = UU−1 = I.

Definition: Gate

A reversible, unitary operation on any number of qubits. Depending on the context it can also
be specifically referred to as a quantum gate.

Single­qubit Gates

Regardless of the physical implementation of a qubit and its control system, any quantum gate on a
single qubit effectively ‘rotates’ the Bloch vector some angle along a specified axis. For this reason
single­qubit gates are also called rotations, and in this thesis this term is used specifically for single­
qubit gates only.

Definition: Rotation

A single­qubit gate, for example an 180° X or 90° Y rotation.

Using vector notation, the Pauli matrices σx, σy, σz represent rotations of 180° along the X, Y, and Z
axes, respectively.

σx =

[
0 1
1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

]

Besides the Pauli matrices a number of other single­qubit rotations are commonplace, a notable exam­
ple being the Hadamard or H­gate. This gate performs a 180° rotation around the axis 45° between
the +Z and +X directions. Its matrix representation is

Ĥ =
1√
2

[
1 1
1 −1

]
.

As an example, applying the Hadamard gate to the |0⟩­state gives

Ĥ |0⟩ = 1√
2

[
1 1
1 −1

] [
1
0

]
=

1√
2

[
1
1

]
= |+⟩ .

Gates can also be applied based on some external condition, performing the gate only if the condition
evaluates to true. These are referred to as conditional gates.

Definition: Conditional gate

A gate with classical control, likewise for a conditional rotation.
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Multi­qubit Gates

As with single­qubit gates, multi­qubit gates can be represented by a matrix. The controlled NOT gate
(CNOT) for example, is a 2­qubit gate that performs an X­rotation on one qubit based on the state of
another with a matrix representation as shown in (2.1). The first qubit is also referred to as the ‘target’,
while the second is the ‘source’ or ‘control’ qubit. This makes the CNOT a controlled gate, or more
specifically a controlled X­gate. Controlled gates should not be confused with a conditional gates; a
controlled gate has qubit control, while a conditional gate has classical control.

Definition: Controlled gate

A gate with qubit control, for example a CNOT.

Using a qubit as control works identical to classical control when the qubit is in the |0⟩ or |1⟩ state. When
the control qubit is in a superposition however, performing the CNOT gives rise to entanglement. To
illustrate what happens, we start with two qubits: one as control in the |+⟩ state and one as target in
the |0⟩ state. Their combined state is

1√
2

[
1
1

]
⊗
[
1
0

]
=

1√
2


1
0
1
0

 .
Multiplying this with the matrix representation of the CNOT gate gives

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 1√
2


1
0
1
0

 =
1√
2


1
0
0
1

 . (2.1)

Unlike the initial combined qubit state, this outcome can not be written as the product of two separate
states anymore. At this point the qubits are said to be entangled. Extending entanglement to even
more qubits, the number of terms required to represent the combined state grows exponentially as
mentioned in Section 2.1.1. Additionally, a measure of exactly how entangled two qubits are can be
defined. This is given by the concurrence

C (|ψ⟩) = 2 |α00α11 − α01α10| ,

which is nonzero for entangled states. When C = 1 the two qubits are maximally entangled, as for
example is the case for the result of (2.1).

Where single qubits have the X­, Y­, and Z­basis, there is also a commonly used 2­qubit basis known
as the Bell basis, the basis vectors of which represent pairs of maximally entangled qubits.

|Φ+⟩ =
1√
2
(|00⟩+ |11⟩) = 1√

2

[
1 0 0 1

]T
|Φ−⟩ =

1√
2
(|00⟩ − |11⟩) = 1√

2

[
1 0 0 −1

]T
|Ψ+⟩ =

1√
2
(|01⟩+ |10⟩) = 1√

2

[
0 1 1 0

]T
|Ψ−⟩ =

1√
2
(|01⟩ − |10⟩) = 1√

2

[
0 1 −1 0

]T
Other single­qubit gates also have controlled counterparts, such as the controlled Y­ or Z­gates or
even controlled arbitrary rotations. Another common 2­qubit gate is the swap gate, which as the name
implies simply swaps the states of two qubits.

Going beyond 2 qubits there are only few standard or common gates. A notable example is the 3­qubit
Toffoli gate, also known as the CCNOT or CCX gate. This is an extension of the 2­qubit CNOT gate
with multiple control qubits. Only if both control qubits are in the |1⟩­state is the target qubit fully flipped.
This can be extended to any number of control qubits.
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2.1.3. Quantum Operations
Unitary gates are just one kind of operation that can be performed on qubits. There are also non­
unitary operations which by definition are non­reversible and destroy (part of) the existing qubit state.
Nevertheless they are vital for useful quantum algorithms.

Definition: Quantum operation

Any action that can be performed on qubits, including gates, non­unitaries, and platform­specific
operations.

Initialization

For a quantum circuit to be useful the initial state of the qubits has to be defined. So far any qubits used
in examples were already in a given state without further consideration of how they got there. In reality,
physical qubits can often be initialized only in a limited number of states. Generally the reference frame
is picked such that at least initialization in |0⟩ can be performed natively. Initialization in other states
can then be achieved by rotating the qubits from |0⟩ into the desired state.

Initialization is not a unitary quantum gate since it forces the qubit into a specific state regardless of the
previous state, making the operation irreversible.

Measurement

Unfortunately, the complete state of a qubit can not be measured directly. Instead it is only possible to
measure a qubit in a chosen basis, and the measurement itself causes the qubit state to collapse into
one of the basis vectors. The only way to get more information about a qubit state is to repeat the steps
that got it there and measuring again, repeating this process until the desired accuracy is achieved.

Platform­specific Operations

While initialization and measurement are universally present in practical quantum computers, certain
qubit technologies or even specific implementations may require their own platform­specific operations.

An example of such an operation is entanglement generation when using NV centers. Instead of per­
forming 2­qubit gates to entangle the qubits in 2 different NV centers, a special procedure can generate
a Bell­pair directly called an ebit.

Definition: Ebit

A pair of maximally entangled qubits.

Similar to single­qubit initialization, the previous qubit state has no effect on the outcome, making this
a non­unitary operation. The ebit generation procedure for NV centers is explained in more detail in
Section 2.2.3.

2.1.4. Quantum Circuits
As with classical computing, quantum operations can be performed in sequence to implement a quan­
tum algorithm. This sequence of operations is referred to as a quantum circuit.

Definition: Quantum circuit

A specific type of quantum algorithm that consists of a sequence of quantum operations.
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|q0⟩ T

|q1⟩ T † T † S

|q2⟩ H T † T T † T H

Figure 2.3: Decomposition of the 3­qubit Toffoli gate into rotations and CNOTs.

Since individual gates are reversible, a quantum circuit or portion thereof consisting purely of quantum
gates is also reversible as a whole. Theoretically, these gate sequences are just a large and complex
gate, with a single matrix representing its operation. This concept is the basis of gate synthesis, where
a complex gate is broken down into (usually) 1­ and 2­qubit gates that can be performed in practice.

More generally the processes of breaking down complex operations into simpler ones is called decom­
position. An example of this is shown in Figure 2.3 for the 3­qubit Toffoli gate.

2.1.5. Quantum Error Correction
Real physical qubits are inherently analog. As a result, they suffer from errors caused by noise. This
originates from multiple sources such as the control electronics or other qubits.

To counter these errors, quantum error correction (QEC) can be used. Much like classical error correc­
tion, QEC allows for detection and correction of errors. By making use of some peculiarities of quantum
mechanics, this can even go beyond what is possible with classical analog signals.

Classical Error Correction

Consider the most basic classical digital error correcting code: the repetition code. A single bit can be
encoded by repeating its value over for example 3 bits. This way, if one bit experiences an error, the
other 2 can be used to detect and correct this error through a majority vote. Essentially, a single logical
bit is represented by multiple physical bits.

With analog electronics a similar approach can be used, for example by applying the same input to
multiple identical circuits and averaging the outputs. However, any common­mode noise will not be
filtered out this way. The total error is reduced, but not completely eliminated.

Improved Quantum Error Correction

At first glance qubits might seem to face the same fate as classical analog electronics, but more pressing
is the inherent property of qubits that they can not be copied or cloned [3]. Instead, a close alternative is
to perform a controlled NOT gate from the source qubit onto the target qubits that have been initialized
in the |0⟩ state. While this does result in the target qubits being identical for purposes of measurement
or as source qubits, it also means the 3 qubits may now be entangled depending on their initial state.
As a result, measuring one qubit will not only collapse its own superposition but also (partially) collapse
the superposition of the others, making a direct majority vote impossible. However, quantum error
correction is still possible by making use of indirect parity measurements.

‘Indirect’ means that the qubits are not measured directly but rather through additional qubits. A dis­
tinction can be made between data qubits that store a quantum state for longer periods of time, and
auxiliary qubits that are used for indirect measurements or other short­term procedures. Multiple data
and auxiliary qubits then make up a single logical qubit.
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Z

Z

dq0 |0⟩ X

source/dq1 |ϕ⟩ X

dq2 |0⟩ X

aq0 |0⟩

aq1 |0⟩

Figure 2.4: Quantum repetition code with 3 data qubits.

Definition: Auxiliary qubit

A qubit used to perform indirect operations such as measurements, as opposed to a data qubit.
Also known as an ancilla qubit.

‘Parity’ means that instead of trying to measure a single qubit, a parity check of two qubits is performed.
This process is illustrated in Figure 2.4. After initializing the data qubits, two CNOTs are performed on
each of the auxiliary qubits after which they aremeasured in the Z­basis. Because thesemeasurements
only give information on the combined state of two or more qubits rather than of an individual one, the
superposition of the data qubits is preserved.

Even without knowledge of the exact states of the data qubits, the parity measurements still provide
enough information to detect and correct errors. For classical bits this is illustrated in the following table.
Note that only single­bit errors can be correctly detected, since a 2­ or 3­qubit error is indistinguishable
from a 1­qubit error or no error at all.

aq0 aq1 Single­bit error
0 0 None
0 1 dq2
1 0 dq0
1 1 dq1

This shows the process with digital values, however superposition of qubits is an analog phenomenon.
This is where the peculiarities of quantum mechanics come to help: the auxiliary qubits are still entan­
gled with the data qubits, and measuring them will discretize the error on the data qubits. After applying
the conditional gates, this results in the error being fully corrected. It should be noted however that this
simple repetition code can only correct unwanted X­rotations.

Better Quantum Error Correction

To correct all possible errors in a logical qubit, more advanced error correction is necessary. An example
of such a QEC are the surface codes [4] , which perform both X and Z­parity measurements on the
data qubits as opposed to only X­parity with the repetition code. Additionally, as the name suggest the
data and auxiliary qubits are laid out in a 2D plane and interaction edges between qubits do not cross
each other. This simplifies the requirements for the physical qubit system.

Different kinds of surface codes exist with different advantages and disadvantages, implementation
requirements, and other properties that might make one more suitable for a specific use case. Some
examples are color codes [5], holographic codes [6], and lattice surgery [7]–[9]. QEC is an active
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field of research with novel ideas, combinations of existing work, and specific implementations being
introduced regularly.

2.2. NV Center Physics
While many different qubit technologies exist, the current focus of the Fujitsu project and therefore also
of this thesis are nitrogen­vacancy center (NV center)s.

A nitrogen­vacancy center is a point defect in diamond, formed by a nitrogen substitution and carbon
vacancy next to each other. The negatively charged NV− state, which occurs when an additional
electron from the environment is captured, is of primary interest for this thesis. The neutrally charged
NV0 state also has its uses [10], but these are limited. A short description of the NV center qubits from a
control perspective is provided next. For more details on the underlying physics, the reader is referred
to [11]–[15].

2.2.1. Qubits
Central to the operation of an NV center­based quantum system is the qubit associated with the electron
(e−) spin in the NV center. This qubit is highly controllable through radio­frequency electromagnetic
fields and photons. However, this comes at the cost of being susceptible to noise.

Additionally, nuclear spins from naturally occurring Carbon­13 (13C) isotopes within the diamond can
be used as qubits. These spins cannot be controlled directly, instead they interact with the electron spin
and can be controlled indirectly. The carbon spin qubits have the advantage of being less susceptible
to noise and decoherence. This motivates their use as data qubits, storing quantum states for longer
periods of time while the e− qubit performs most operations [15]. Control of a single NV center with up
to 8 of these qubits has been demonstrated [16], however an increasing number of carbon spin qubits
is only useful up to a point due to increased runtime and decreased control. What amount of qubits is
useful in practice remains to be seen.

Finally, the nuclear spin of the nitrogen atom itself can be used as qubit, in a way similar to the 13C qubits
[16], [17]. However, other types of color centers do not necessarily have a usable nuclear spin like
nitrogen does, so for the purpose of generality this qubit is not treated as a special case.

A schematic overview of an NV center with 4 13C qubits is shown in Figure 2.5.

C1 C2

C3 C4

e

Figure 2.5: A nitrogen­vacancy center with 4 carbon spin qubits. The lines extending outwards from the electron spin qubit
represent connections with other NV centers.



2.2. NV Center Physics 12

2.2.2. Control
As mentioned, only the electron spin qubit in an NV center can be controlled directly. This can be done
using either an AC magnetic field or photons.

The magnetic field can be used to perform gates on a single NV center. Starting from single­qubit
rotations on the e− qubit, controlled and uncontrolled rotations of the 13C qubit can also be achieved
[13]–[15].

Different photon wavelengths can be used for different operations as described below. The NV center
can also (re­)emit photons which have to be detected. This requires single­photon detectors, which
can be designed using for example superconducting nanowires [18].

Initialization is done with a procedure known as charge pumping, where photons are continuously fired
upon the NV center until they are not absorbed anymore, indicating initialization has been achieved.
Measurement is done in a similar fashion, where the number of photons absorbed is indicative of the
qubit state [11].

Photons can also be used to entangle the electron spin qubits in two different NV centers. This involves
exciting the NV center with a photon, resulting in another photon being emitted. Interfering the photons
emitted by two NV centers and measuring the outcome results in the e− qubits to be entangled. Since
this procedure is not 100% guaranteed to be successful, it can be repeated and combined with single­
qubit rotations to improve the entanglement fidelity [13], [19], [20].

2.2.3. Connectivity
A major advantage of the photon­based entanglement described in the previous section is that photons
can be easily transported. On a small scale, on­chip wave guides could be used to allow interactions
not limited to neighboring NV centers. Ignoring photon losses any arbitrary network would be possible
only under the constraints of the waveguides. On a larger scale, fiber optic cable could be used to
connect NV centers across longer distances of several meters [21] or even hundreds of meters [22].
This would allow multiple quantum computers to work together using the same or similar entanglement
procedures as used internally.

A peculiarity of this photon­based entanglement is that it does not allow one to perform unitary gates
between NV centers. Instead, the only operation possible is to initialize the two e− qubits in a maximally
entangled Bell pair state. This means that if the desired action is to perform a unitary gate, some extra
steps are required. However, if maximum entanglement itself is the desired result this can thus be
performed as a single operation.

Figure 2.6 shows an example of 6 NV centers connected in a 2D nearest­neighbor grid, illustrating both
connectivity within a single NV center and between multiple. A 2D grid is used here just for simplicity,
but as mentioned the NV center connections can be arbitrary.

C1 C2

C3 C4
e

C1 C2

C3 C4
e

C1 C2

C3 C4
e

C1 C2

C3 C4
e

C1 C2

C3 C4
e

C1 C2

C3 C4
e

Figure 2.6: Connectivity of multiple NV centers, here shown with 4 13C qubits each.
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2.2.4. Comparison with Other Technologies
Quantum hardware based onNV centers or other color centers has a number of features that distinguish
it from other qubit technologies. This section discusses these differences and their implications on
higher­level systems such as the digital control system and compiler.

Stability

The stability of NV centers make them useful at temperatures higher than other commonly used qubit
technologies. Even at room temperature some features of NV centers are usable. This mainly applies
to quantum sensing [23], [24], but also unitary gates and entanglement have been demonstrated at
ambient conditions [25], [26].

Hybrid Qubits

Within a single NV center, the two qubit types have distinctly different properties resulting in a hybrid
qubit system. The e− qubits are highly controllable but vulnerable to decoherence, while the 13C qubits
are stable for relatively long periods of time. This motivates their use as auxiliary and data qubits
respectively.

Additionally, the 13C qubits cannot be controlled or interact with each other directly, only through the
e− qubit. Figure 2.6 shows an example for six NV centers. This contrasts with for example supercon­
ducting and trapped ion technologies where each qubit functions the same, and connectivity is more
uniform [27], [28].

Connectivity

The possibility of arbitrary connections between NV centers as described in Section 2.2.3 is in stark
contrast with for example superconducting qubits, which even in state­of­the­art implementations are
limited to nearest­neighbor connectivity [29]. The prevalence of superconducting qubit systems is re­
flected in the large amount of work being done towards surface codes which are inherently planar.
There is an advantage to be gained with higher­connectivity systems however [27], [30], and some
possibilities for superconducting systems have already been explored [31], [32].

The native connectivity possibility of NV centers may give them an edge over superconducting qubits.
While trapped­ion qubits provide high connectivity as well, the shared control electronics limits the
number of simultaneous operations, while NV centerscan also operate individually when required.

2.3. Digital control
To execute a quantum program, the analog control hardware described in Section 2.2.2 needs to per­
form the required operations in the correct order. This can be handled by a digital control system which
executes a quantum program as a sequence of instructions, much like a classical computer.

In the context of the Fujitsu project, a layered control architecture is envisioned. The lower layer consists
of local controllers responsible for one NV center each, and the upper layer consists of a single global
controller which orchestrates the operation of the lower layer. By separating the control architecture in
this way, the local controllers can directly manage the analog control electronics of individual NV centers
in a highly parallel manner, while these details are kept away from the global controller which can
operate on much higher­level instructions.

This contrasts with existing work where a single controller is directly responsible for many physical
qubits, as for example shown in [33]. An example of a more separated control architecture is presented
in [34], but also here there is a certain degree of global control at the lower layers. A control architecture
with 2 fully separated layers is presented in [35], which implements quantum error correction on the
lower layer.
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Based on the layered concept, in [36] a version of such a QISA has already been designed. However,
this QISA does not clearly distinguish between the two levels. Additionally, further developments in
other areas of the Fujitsu project have brought new possibilities to light.

2.4. Compiler
While the basic instructions described in the previous section provide all necessary control over the
quantum hardware, they are very fine­grained. This makes writing a full algorithm in assembly a tedious
and error­prone task. For this reason software is typically written in a high­level programming language.

Since the control electronics only understands the lower­level instructions, it is necessary to convert
these high­level languages down to assembly language. This is done by a compiler. The process
is typically divided into several passes, each responsible for a certain kind of transformation. These
passes are performed on an intermediate representation (IR) that represents the code in an abstract
way suitable for the compiler.

Passes can be categorized into being fully internal or being part of the frontend or backend. The
internal passes are more generic, performing actions on the IR with little to no assumptions about how
and where the program was written or what will happen to the output. Passes belonging to the frontend
are specific to a certain type of input such as an input programming language. Similarly the backend
passes perform actions specific to the target platform.

Definition: Execution platform

Something which can execute a quantum algorithm, be it a simulator or real quantum computer.
In this thesis a platform is assumed to be compatible with quantum circuits.

A classical compiler can include passes such as optimization, analysis, and code generation. A quan­
tum compiler can include passes with similar functionality, but will have some passes specific to quan­
tum computing as well. The following sections describe several passes in detail, how they apply to
NV centers, and the resulting compiler requirements.

2.4.1. Frontend
The frontend is how the main user input enters the compiler. This can be in the form of files written in a
dedicated programming language such as cQASM [37], but also as a generic programming language
extended with a library such as Qiskit[38]. In both cases the frontend converts the user input into an
intermediate representation used by the internal compiler passes.

2.4.2. Decomposition
Decomposition is the process of ‘taking apart’ complex operations. This is needed if not all quantum
operations can be applied directly to the hardware. For example, a certain quantum system might have
CNOTs as the only 2­qubit gate, requiring other operations involving 2 or more qubits to be decomposed
into a sequence of CNOTs and single qubit gates. Since many existing qubit technologies allow for 2­
qubit gates at most, decompositions such as these can be generally applicable.

Decompositions can also target a certain technology or even specific implementation. For example,
rotations could be limited to some specific axes, requiring rotations in other axes to be decomposed
into multiple rotations over valid axes.
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2.4.3. Optimization
Optimization is the process of transforming a quantum circuit into a ‘better’ equivalent, usually optimiz­
ing for execution time. This can be done by for example reorganizing and combining gates or removing
redundant operations [39]. Similar to decomposition it can be generic or tuned to a specific technology
or implementation.

A basic optimization for a quantum compiler is to combine Clifford gates which act on just a single qubit.
Sequences of Clifford gates can sometimes be merged into fewer gates, although this does depend on
the gates supported by the target platform.

2.4.4. Scheduling
If the output of one operation is used as an input for the next they must be executed sequentially. If
there is no such dependency they can be executed in parallel, decreasing execution time. A scheduler
pass performs this dependency analysis and schedules instructions accordingly.

Information about how long each instruction takes can help increase the effectiveness of this process.
Additionally, there may be other constraints to consider, for example when some control electronics are
shared between multiple qubits.

2.4.5. Mapping
A generic quantum algorithm with logical qubits has no knowledge of the platform it will be executed
on. Especially hardware platforms however can have constraints that limit the possible operations. For
example, connectivity can be limited and allow gates only on neighboring physical qubits. To be able to
execute the algorithm these constraints have to be satisfied by mapping qubits and operations to their
equivalents available on the platform.

Definition: Mapping

Transforming qubits and quantum operations into closer­to­hardware equivalents. In this the­
sis mapping specifically refers to transforming logical qubits and operations into their physical
counterparts. Outside of this thesis ‘mapping’ often refers to just place & route.

The input of the mapping process is a sequence of instructions on logical qubits with no knowledge
or assumptions about the hardware. The output is a sequence of instructions on physical qubits that
conform to the available connectivity. Instructions that are not directly executable are still allowed as
long as they can be decomposed into executable instructions without requiring any other qubits.

The mapping pass includes subpasses for initial placement and routing, and can encapsulate more
subpasses such as logical to physical decomposition.

Place & Route

While theoretical quantum circuits can perform arbitrary gates on any selection of qubits, in practice
connectivity between physical qubits is limited. This poses restrictions on which qubits can interact with
each other [40]. Satisfying these constraints is handled by a place and route (P&R) pass.

Definition: Place & route

Initial placement and routing of qubits based on the required interaction and available topology.

The goal of a P&R pass is to first assign each qubit a location so that it is connected to the qubits it
needs to interact with. It is however not always possible to find an exact placement that satisfies all
interactions, in which case routing is also necessary. Routing can for example use swap to move qubits



2.4. Compiler 16

around during execution of the circuit. Moving qubits around to perform one operation takes time and
can affect subsequent operations, so careful planning is necessary to ensure the resulting circuit is fast
and correct.

Besides physical P&R it can also be useful to perform this procedure on logical qubits. The connectivity
available here can be arbitrary, but can also originate from some underlying physical connectivity.

Physical Synthesis

As previously stated in Section 2.1.5, a single logical qubit can consist of multiple physical qubits. Even
when no QEC is used there may not be a one­to­one correspondence between logical and physical
qubits, for example due to physical qubits reserved for another purpose such as routing. Operations
performed on the logical qubit thus need to be transformed into the corresponding operations on phys­
ical qubits.

This process can be seen as a form of decomposition, where in addition to new instructions also new
qubit references are inserted. In this thesis, physical synthesis is considered part of mapping as men­
tioned in Section 2.4.5.

2.4.6. Code Generation
Once all internal passes are completed, the internal representation used by a compiler needs to be
converted to a format suitable for the target platform. While instructions that directly act on data such
as qubits or classical registers are usually present directly, features such as control flow, parallelism,
and timing may all be represented in an abstract manner suitable for the compiler but not understood
by the platform.

The code generation pass is thus responsible for extracting all information required by the target plat­
form and writing it to a format such as assembly or binary machine code. This output can then be fed
into another tool for further processing or directly into the platform.

2.4.7. NV Center­specific Details for Compiler Passes
While the previous sections introduced quantum compiler passes for generic platforms, the following
sections discuss if and what NV center­specific adaptions need to be made for several passes.

Decomposition

With NV centers, 2­qubit gates have some limitations since they can only be performed with an e− qubit
as control and 13Cqubit in the sameNV center as target. Performing for example a CNOT from 13Cqubit
to e− qubit requires a sequence of gates, in this case the direction of the CNOT can be reversed by
surrounding it with Hadamard gates as shown in Figure 2.7

|e⟩ H H

=
|c⟩ H H

Figure 2.7: Reversing the direction of a CNOT by surrounding it with Hadamard gates.

Scheduling

The e− qubit and 13C qubits belonging to the same NV center share control electronics, thus only one
instruction can be executed on each of these qubits at any point in time.
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Additionally, the execution time of some operations is not fixed. Initialization of an e− qubit for example
is probabilistic as mentioned in Section 2.2.2, although an expected upper bound could be determined.
Furthermore, rotations are performed by applying a magnetic field, where the duration determines the
angle of rotation.

Mapping

Connectivity between qubits in NV centers is not uniform. Within an NV center a 13C qubit can only
interact through the e− qubit, while between NV centers it is possible to have flexible or even arbitrary
connections as mentioned in Section 2.2.3. This contrasts with more common qubit technologies which
are restricted to nearest­neighbor interactions across the whole system. On the other hand, the inter­
actions within an NV center allow for 2­qubit gates to be performed, while between NV centers it is only
possibly to generate an ebit.

This implies that 2­qubit gates between NV centers will always require a sequence of operations involv­
ing at least 2 each of e− qubits and 13C qubits, for example as shown in [41], [42]. The generation of
an ebit also destroys the current state of the e− qubits. If these are to be preserved, they have to be
saved by swapping them to spare 13C qubits. Possible implementations of NV center­specific mappers
that take above properties into account are discussed in Section 3.2.

Additionally, single­qubit operations performed on a 13C qubit take more instructions and time than the
same gates on an e− qubit. This might mean longer sequences of gates should preferably be executed
on an e− qubit.

2.4.8. Complete Compiler Toolchains
This thesis is centered around the instruction set level which ties in with the compiler backend. Thus,
it is preferable to use an existing compiler for the frontend and intermediate steps to save on develop­
ment costs, effort, and time. Table 2.1 lists a number of available quantum compilers and their features.
Special attention is given to the creation of backends. Additionally, as Section 2.2.4 has shown, NV cen­
ters have a number of features that distinguish them from other qubit technologies. The compiler for
NV centers should at least be able to work with these features, and preferably be able to make good
use of them with for example specific mapping or optimization steps.

From these compilers, Qiskit and OpenQL were noticed to both promote modifications and be used
frequently in existing research environments. For these reasons only the potential use of these two
have been explored.

Qiskit

Qiskit is a compiler developed by IBM. Its main frontend is a Python SDK and it has backends for simu­
lators and IBM’s own hardware. This hardware uses superconducting qubits with grid­like connectivity.
Only routing protocols based on swaps are available [39].

OpenQL (QuTech/TU Delft)

OpenQL is a modular quantum compiler framework developed by TU Delft. It provides frontends for
C++ and Python, and allows compiling to any target using custom backends. Its modular design and
configuration options allow for easy adaptation to different technologies and experimentation with new
compiler passes. A wide variety of passes are readily available such as place and route, decomposition,
optimization, and scheduling [59].

2.4.9. Comparison
From the current state of available compilers, none of them stand out as being particularly well­suited
for the envisioned NV center architecture. Therefore, since multiple passes and a new backend has to



2.5. Conclusion 18

Name Developer(s) Frontends Backends References
Qiskit IBM Python Simulator

Superconducting
Source: [43]
[38]

QuilC Rigetti Python
Java
JavaScript
Haskell

Simulator
Superconducting

Source: [44]
[45], [46]

QDK Microsoft Q#
Python

Simulator
Superconducting
Trapped­ion

Source: [47]
[48]

ProjectQ ETH Zurich Python Simulator
Superconducting

Source: [49]
[50], [51]

ScaffCC University of Chicago Scaffold Simulator Source: [52]
[53]

Cirq Google Python Simulator
Superconducting
Trapped­ion
Generic

Source: [54]
[55]

PennyLane Xanadu Python Simulator
Photonics

Source: [56]
[57]

OpenQL TU Delft C++
Python

Simulator
Superconducting
Generic

Source: [58]
[59]

Table 2.1: Overview of several open­source quantum compiler toolchains.

be created, the technical flexibility and ease of implementation is considered, including the availability
of documentation. TheOpenQL compiler stands out in providing a clearly defined modular framework
with many highly configurable passes. Additionally, since OpenQL is being developed here at TU Delft,
it is considered easier to get support and feedback on modifying and working with OpenQL than it would
be for other compilers. This motivates the decision to use OpenQL as the compiler to work with for this
thesis. OpenQL has also been used by the prior work in [36] on a compiler for NV centers.

2.5. Conclusion
This chapter introduced the reader to quantum information theory, NV center physics, existing control
systems, and quantum compilers relevant to the scope of this thesis.

A number of existing quantum compilers have been compared, after which the OpenQL compiler frame­
work has been selected as base for the compiler for NV centers for its generality and ease of extensi­
bility.



3Design

To execute a quantum program, the analog control hardware described in Section 2.2.2 needs to per­
form the required operations in the correct order. This can be handled by a digital control system which
executes a quantum program as a sequence of instructions, much like a classical computer. Before
the digital control hardware can be implemented, a quantum instruction set architecture (QISA) needs
to be defined which acts as the interface between hardware and software.

The envisioned digital control hardware operates only on physical qubits. However, an algorithm to be
executed on a quantum computer is often written for logical qubits. This means some way of mapping
logical qubits to physical qubits is necessary. Given an algorithm that operates on logical qubits, the
mapping pass needs to be able to generate a program that implements this algorithm with valid opera­
tions on physical qubits. Valid operations refers to the operations being actually possible in the target
system, satisfying for example connectivity and control system constraints.

This chapter starts with describing the design of the QISA of the digital control system in Section 3.1.
Subsequently, an exploration of compiler design choices is described in Section 3.2. Details of the
chosen method are then worked out in Section 3.3.

3.1. Hardware Architecture
This section describes the design of the quantum instruction set architecture for a quantum computer
based on NV centers. In the scope of this thesis, the primary purpose of designing the QISA is to
provide a compilation target for the compiler. The underlying hardware has been explored and partially
designed to aid in designing the QISA but no hard decisions have been made in this area. The work
presented in this thesis can be used as a starting point for future work however.

It should be noted that the layered architecture concept has already been conceived earlier in the
Fujitsu project, and the design process in this thesis builds on top of this concept. For this reason, no
extensive exploration of alternatives has been performed.

3.1.1. Overview
The envisioned control hardware architecture is divided into two layers as depicted in Figure 3.1. Clos­
est to the quantum system, each NV center is controlled by a dedicated local controller (LC). The LCs
in turn receive their instructions from the global controller (GC) which executes the quantum algorithm.

The following sections go through these layers from the quantum instruction set architecture (QISA) in
the GC at the top, through the micro­ISA (µISA) in the LC, down to the physical quantum system at the
bottom.

3.1.2. Global Controller QISA
The global controller is the central component from which the rest of the system is controlled. As input it
takes a program written in the QISA, and based on these instruction it performs computations or sends
commands to the local controllers.

A first version of a QISA designed for NV centers is presented in [36]. This work improves on this in

19



3.1. Hardware Architecture 20

G
lo
ba

lC
on

tr
ol
le
r

Lo
ca

lC
on

tr
ol
le
r

Instruction
Memory

Execute

QISA

Sequencer

Control Store Execute
µISA

Quantum
Compiler

Host

Physical
Interface

300K

4K

Figure 3.1: Overview of the envisioned hardware architecture.

several ways, most importantly by establishing a clear distinction between the QISA and µISA. How
this has been achieved is illustrated in the following sections, each focussing on a specific group of
instructions. A full listing of the QISA instructions can be found in Appendix B.1.

Single­qubit Gates

In the new QISA, just 4 instructions can represent all single­qubit gates. The qgateE instruction per­
forms a rotation on an e− qubit with an arbitrary angle around a rotation vector anywhere on the XY
plane. The instruction specifies both the vector and angle as illustrated in Figure 3.2. The qgateUC
instruction (from Uncontrolled Carbon) provides the same functionality for the 13C qubits. Both are
implemented in the LC with a sequence of micro­instructions that control the physical system.

x

y

z

φ θ

Figure 3.2: Rotation around a vector on the XY plane.

This contrasts with old QISA which specifies a large number of specific gates in both the QISA and
µISA, as well as exposing the low­level excite_mw instruction to the QISA. The new QISA abstracts
these implementation details away.
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Z­rotations are implemented in the new QISA using the qgateZE and qgateZC instructions for the
e− qubits and 13C qubits, respectively. These are dedicated instructions because in the envisioned
LC hardware Z­rotations can be performed by incrementing a classical register rather than physically
affecting the qubit. In the time the old QISA was designed this possibility had not been considered yet.

Old QISA
1 x
2 y
3 z

New QISA
1 qgateE 0, pi
2 qgateE pi/2, pi
3 qgateZE pi

Figure 3.3: Comparison of the old and new QISA single­qubit instructions on an e− qubit.

Two­qubit Gates

A pattern similar to the single­qubit gates can be observed here. The primary 2­qubit gate in new QISA
is the qgateCC instruction, from Controlled Carbon. This instruction performs a controlled rotation on
the specified 13C qubit with the corresponding e− qubit as control qubit.

On a lower level, the qgateCC instruction can actually be constructed from an uncontrolled qgateUC
instruction followed by a controlled gate. This more primitive gate is also useful on its own and is thus
made available in the QISA as the qgateDIR instruction.

Additionally, to facilitate the common operation of swapping the state of two qubits, the swapEC and
swapCE perform a ‘half­swap’ from the e− qubit to the 13C qubit and vice­versa. Contrasting with a full
swap, the half­swap moves the state from the source qubit to the target qubit but leaves the source
qubit in a maximally mixed state. A full swap can be performed using additional instructions. While
the two swap instructions can be implemented using the qgate instructions as well, using a dedicated
instruction can reduce the total number of instructions in a program, reducing the load on the global
controller.

Other Quantum Operations

Besides quantum gates, other operations need to be performed as well. Initialization of an e− qubit is
achieved with the initialize instruction. Initialization a 13C qubit can be done by first initializing its
corresponding e− qubit and then performing a swap using the swapEC instruction.

Measurement follows a similar pattern; the state of an e− qubit can be measured using the measureE
instruction, and measuring a 13C qubit requires preceding this with a swapCE instruction.

Calibration

To accommodate for the variation in physical qubit properties between NV centers or even the same
NV center at another time, the analog control electronics have to be calibrated. Collecting the data
necessary for these calibrations is done by the instructions detectCarbon, magbias, rabicheck, and
crc. Details of the operation of these instructions can be found in [60].

From the data collected through these calibration instructions, either the global controller or host system
can calculate the required calibration parameters. These can then be sent to the local controllers using
the set instruction.

Classical Instructions

In addition to controlling the quantum system, the global controller also needs to be able to perform
classical calculations, for example for error­correcting codes. No specific operations have been iden­
tified here yet, thus a RISC­like ensemble of classical instructions is assumed to be available. This
includes functionality to load from and store to memory, perform basic arithmetic, and branch and jump
to different sections of the program.
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Finally, the global controller needs to be able to communicate with the local controllers. A generic send
and receive instruction provide this functionality.

3.1.3. Local Controller Micro­ISA
The local controller is responsible for controlling a single NV center. It receives commands from the
global controller and executes the corresponding microcode, i.e., a sequence of microinstructions.

Controlling the analog control electronics is done in the local controller by making use of the micro­ISA.
As with the QISA the µISA consists of a few groups of instructions.

• The quantummicro­instructions directly correspond to an action performed by the analog control
electronics. This consists of the mw and rf instructions for controlling the variable electromagnetic
fields, and the switchOn and switchOff instructions for routing photons both from lasers to the
NV centers as well as between NV centers for entanglement.

• The communication micro­instructions allow each LC to communicate with the GC using the
send and receive instructions. Additionally, the sync instruction has been reserved for potential
use in the entangling scheme. Its function is to synchronize two LCs to allow for interference
between photons emitted by the corresponding NV centers.

• Similar to the QISA, a number of classical micro­instructions are required to handle for example
arithmetic and control flow. As with the QISA no definitive decisions have been made in this
regard.

A full listing of the micro­instructions can be found in Appendix B.3.

Microcode

A sequence of micro­instructions can be stored as microcode to implement more complex functionality.
Microcode implementing all the above QISA instructions has been designed in [60]. A full listing of
these sequences can be found in Appendix B.2.

In the hardware design as currently envisioned, each local controller has its own control store memory
where the microcode is stored. This does mean the microcode is duplicated for every LC and will
always be stored even if some sequences are not used for a certain algorithm. Other options to be
explored in future work are using a smaller control store which only contains microcode that will be
used, or sharing memory blocks between multiple LCs.

Ports and Registers

To interface with the analog control electronics connected to the LC, a number of input and output ports
have been defined. Some ports are register­mapped and can be written to and read from as such,
while other ports are accessible only indirectly through a microinstruction.

A full listing of the ports and registers currently envisioned can be found in Appendix B.4.
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3.2. NV Mapping Exploration
In the process of mapping logical qubits to physical qubits in NV centers, two actionsmust be performed:
place and route (P&R) and logical to physical transformation.

P&R is the process of assigning qubits a location, as previously described in Section 2.4.5. It has also
been mentioned that NV centers may require a different kind of P&R method than other types of qubits
due to their unique properties.

Logical to physical transformation has two sides. First, the topology of logical and physical qubits is
not the same, and secondly a single operation on a logical qubit may consist of many operations on
the underlying physical qubits.

What is not established is in what order to perform these steps. This section explores the following
mapping methods:

Section 3.2.1 ­ NVP: first performs P&R on logical qubit, then logical to physical transformation.
Section 3.2.2 ­ NVD: first performs logical to physical transformation, then P&R on physical qubits.
Section 3.2.3 ­ NVC: is a hybrid approach that performs a partial transformation, then P&R, and then

a final transformation.

As the names suggest the methods originate from NV centers which are the main point of interest.
Some of the ideas presented can be useful to other qubit technologies as well however, so more general
applicability is also considered.

3.2.1. NVP

Physical
decompositionLogical P&R

Figure 3.4: Passes in the NVP method.

The NVP method gets its name from patch­based mapping. This is inspired by existing work such as
lattice surgery [7]–[9]. An overview of the compiler passes for this method is shown in Figure 3.4.

Passes

NVP starts with a logical P&R pass. This can be a generic algorithm or a more advanced method, as
long as it respects the connectivity of the logical qubits. This pass may output specialized operations,
for example as sometimes required by the routing for lattice­surgery gates. The workload of the P&R
pass is proportional only to the number of logical qubits used, regardless of physical qubits and the
QEC used.

This is followed by a decomposition pass, which translates the logical operations into physical oper­
ations. These decompositions have to specify the operations down to assignment of physical qubits.
This allows for high flexibility in the physical structure of a logical qubit at the cost of having to supply
highly detailed decompositions. Since the decomposition rules themselves contain all information re­
lated to NV centers, the compiler pass itself can be generic and also work with other qubit technologies.

Notation

The exact functioning of the NVP method depends on the size and internal layout of the logical qubits.
To distinguish between these specializations the notation NVPS­C is proposed where C specifies the
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Figure 3.5: Qubit organization for an NVP2x1­4 system. Logical qubits (patches) are outlined in red.
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Figure 3.6: An example of NVP mapping of a circuit.

number of 13C qubits per NV center and S specifies the number and configuration of NV centers per
logical qubit. The simplest case would be S = 1 and C = 1, which specifies logical qubits consisting
of 1 NV center with 1 13C qubit. Using this notation this will be written as NVP1­1. The value of S is
not limited to a single number however. The notation S=MxN is proposed for a 2D nearest­neighbor
connected patch consisting ofM byN NV centers. Figure 3.5 illustrates this for NVP2x1­4, i.e., patches
of 2 by 1 NV centers with 4 13C qubits per NV center.

Note that this notation does not specify the physical operations necessary to implement a logical opera­
tion. Which (if any) QEC method is used and if any 13C qubits are reserved for other purposes such as
routing is left to the decomposition rules. These rules can be specified outside of the compiler, allowing
for quick changes without having to completely recompile the compiler. This notation also does not
reflect the possibility of different amounts of 13C qubits per NV center.

Examples

To illustrate the NVP mapping process, the circuit shown in Figure 3.6a is mapped using an NVP1­1
configuration. As the result shows in Figure 3.6b, the 13C qubits store the logical qubit state while
the e− qubits are used to perform the 2­qubit gates. Note that the figure shows a physical topology
with 4 13C qubits per NV center, illustrating how NVP cannot make use of extra physical qubits without
explicitly being configured to do so.

Conclusion

As long as the physical NV center connections always align with the logical qubits it is possible to use
a single, generic NVP implementation for many different qubit technologies. This comes at the cost of
having to manually specify all possible logical to physical decompositions. Irregular physical connec­
tivity or mixed types of logical qubits may also be mapped using NVP, but require a more advanced
implementation.
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Figure 3.8: Qubit organization for an NVD­4 system. Note the lack of logical qubit boundaries.

3.2.2. NVD

Physical P&RPhysical
decomposition

Figure 3.7: Passes in the NVD method.

With the NVD method, first the logical operations are decomposed into physical operations, and only
then is P&R performed on a physical level. This gives the mapper direct control over both the e− qubits
and 13C qubits, lending this method its name. An overview of the compiler passes for this method is
shown in Figure 3.7.

Passes

NVD starts with a decomposition pass with decomposition rules very similar to those used for NVP. The
main difference is the lack of physical qubit assignment, which is to be handled by the the P&R pass
instead. The decomposition rules therefore also do not need to specify routing operations, meaning
this pass can be skipped if no QEC is used.

Placement of the physical qubits can be performed freely without patch boundaries to adhere to. This al­
lows for irregular physical topology and a logical layout optimized to the quantum circuit. Which e− qubit
and 13C qubits should be assigned to the same NV center is strongly implied by the decomposition, but
not necessarily made explicit. Some means of explicitly assigning qubits could be advantageous how­
ever.

Since the decomposition rules do not specify the locations of the physical qubits, they also can not
specify full ebit generation schemes. Instead, ebits are generated by the routing pass when necessary.
This poses two problems however. First, if the e− qubit state is needed again at a later point in time, it
has to be stored in an available 13C qubit. Second, routing through an NV center with long ebits also
requires a 13C qubitfor the intermediary state. This requires either reserving up to 2 13C qubit in each
NV center for routing even if it turns out to be unnecessary, or a more advanced implementation where
the need and availability of 13C qubits is tracked per NV center.

Notation

Similar to the NVP method, the notation NVD­C is proposed to specify an NVD method configured for
C 13C qubits per NV center. Since NVD makes no assumptions about the physical layout of a logical
qubit, there is no need for a specification similar to S.



3.2. NV Mapping Exploration 26

C1 C2

C3 C4
e

C1 C2
e

q0 q2

q1

(a) NVD­4

C1
e

C1
e

q0 q2

q1

(b) NVD­1

Figure 3.9: An example of NVD mapping of a circuit.

Examples

To illustrate the NVD mapping process, the circuit shown in Figure 3.6a is mapped again using NVD
this time. The result shown in Figure 3.9a shows how NVD is able to fit this circuit in just a single
NV center by assigning q1 to an e− qubit. If just a single 13C qubit is available, the result will be as
shown in Figure 3.9b. In this case still only 2 NV centers are necessary since q1 can be mapped to the
combined state of the e− qubits after initializing them as ebit.

Conclusion

The NVD method is highly flexible and can optimize physical placement based on the input circuit. It
does however require a specialized P&R implementation to handle the specifics of NV centers.

3.2.3. NVC

Carbon
decompositionCarbon P&R

Physical
decomposition

Figure 3.10: Passes in the NVC method.

The NVC method moves the focus to individual carbon qubits. A distinction is made between data
qubits and auxiliary qubits as introduced in Section 2.1.5. Following the NV center properties described
in Section 2.2.1, data qubits are assigned to 13C qubits and auxiliary qubits to e− qubits. An overview
of the compiler passes for this method is shown in Figure 3.10.

Passes

The first pass is decomposition of logical operations into operations on the data qubits of a QEC. This
level can contain higher­level operations such as parity measurement without explicitly specifying the
use of auxiliary qubits. Simply the presence of such an operation already implies the use of an auxiliary
qubit and the required connectivity. As with the NVD method, the decomposition rules in this pass do
not need to specify routing operations, meaning it can be skipped if no QEC is used.

Next is a P&R pass which assigns data qubits to 13C qubits. Assuming the physical data qubits that
make up a logical one frequently interact with each other, they are expected to cluster together forming
‘patches’ similar to the NVP method. However, just like the NVD method, NVC allows for an irregular
logical qubit layout without being bound to the regular structure enforced by the NVP method.

Also like NVD, it is possible for a single NV center to contain data qubits from more than one logical
qubit, as illustrated in Figure 3.12a.

Routing in the NVC method is again similar to what is required for NVD. While NVC lacks explicit
e− qubit operations, they are still necessary for both routing and performing qubit operations. Tracking
the availability of e− qubits and 13C qubits is thus still necessary.
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Figure 3.11: Qubit organization for an NVC­4 system. Note the direct connections between 13C qubits.
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Figure 3.12: An example of NVC mapping of a circuit.

Finally, another decomposition pass is performed which expands the high­level operations into the re­
quired operations on the e− qubit and 13C qubits. These decompositions can be shared among different
QECs given the similar kinds of operations performed such as basic gates and parity measurement.

Notation

Similar to the NVD method, the notation NVC­C is proposed to specify an NVC method configured for
with C 13C qubits per NV center. Again, since there is no predefined number of NV centers per logical
qubit there is no need for a specification similar to S.

Examples

The circuit from Figure 3.6a is mapped again, this time using the NVC method. In the case of NVC­4
shown in Figure 3.12a, the result is close to NVD­4, but using an additional 13C qubit since input qubits
must be mapped to 13C qubits. For the same reason, having only a single 13C qubit available per
NV center implies using 3 NV centers as shown in Figure 3.12b, with the final result being the same as
the NVP method.

Conclusion

The NVC method provides similar flexibility as the NVD method while allowing for higher­level decom­
position rules, simplifying the required input to the compiler. This does require the decompositions to
be tailored specifically to NV centers, in addition to also requiring an NV center­specific P&R pass.

3.2.4. Comparison
Having explored some of the possibilities of NVmapping, this section compares the methods discussed.
The figures of the topology and mapping examples can also be found side­by­side in Appendix A.1 and
Appendix A.2 to easily compare the methods visually.
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Scalability

NVP performs P&R on the level of logical qubits. This makes the runtime complexity of the this pass
independent of the QEC used. In contrast, both NVC and NVD perform some form of decomposition
before P&R, requiring this pass to handle more instructions and more qubits. This makes NVP more
suitable for future quantum computers with large QECs and thousands of logical qubits such as for
example envisioned in [61]. Targeting fault­tolerant applications rather than smaller NISQ applications
also aligns with the interests of the Fujitsu project which this work is a part of.

External input

All methods require the decomposition from logical to physical qubits to be specified somehow. In the
case of NVP this decomposition needs to described in detail, down to which operations have to be
performed between which physical qubits. The decomposition for NVD needs to be just as detailed but
without assignment of physical qubits. NVC allows the use of higher­level operations in the specification
while also not requiring physical qubit assignment. In general, NVC thus requires the least amount of
external input.

For all methods the amount of external input depends on the QEC complexity. Simple or no QEC for
example will require only little input, as less physical operations are necessary to implement a logical
operation. It is also expected that the decomposition rules can be at least partially generated for highly
structured or repetitive QECs. Similarly, symmetry in the qubit layout can be taken advantage of.

Implementation

The NVP method can use existing P&R algorithms, requiring only the NV center­aware decomposition
to be added for a basic implementation. The OpenQL compiler used for this work already features a
compatible P&R pass, as well as a decomposition pass which can be used as starting point for the
logical to physical decomposition. Using an existing P&R pass also makes it possible to benefit from
its future improvements.

NVD on the other hand requires both a decomposition pass as well as a specialized P&R algorithm.
The NVC method lies somewhere in between, but still closer to NVD. For initial placement it might
be possible to reuse an existing algorithm, but routing will again require a specialized implementation.
NVC also requires a second decomposition pass.

The NVP method is thus considered the best choice for implementation.

Flexibility

The available physical topology may not always be the best case for the desired logical topology. Both
NVD and NVC can adapt the shape of individual logical qubits to match the underlying physical qubits,
making them more suitable for irregular topologies. NVP on the other hand assumes a fixed layout of
patches to which the logical qubit can be assigned, although differently­sized patches can be used.

While NVD and NVC are more flexible than NVP in this regard, most current work on QEC assumes a
regular physical topology anyway [62] . This can be seen with for example surface codes and its usage
in lattice surgery on which NVP is based.

Generality

The target technology of this work is NV centers, but more generic applicability can also have its advan­
tages. Reuse of algorithms and implementations can be beneficial both ways, also allowing advances
in other areas to be useful for an NV center architecture.

The NVPmethod is the most general option, as it can easily work with different types of P&R algorithms
and the logical to physical decomposition can be implemented in a generic way as well. NVD uses a
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similarly generic decomposition pass but requires specialized P&R, and for NVC all passes have some
NV center­specific functionality.

3.2.5. Conclusion
Table 3.1 summarizes the differences discussed above. Since the Fujitsu project targets large­scale
quantum computers and not necessarily NISQ applications, scalability is an important factor to consider
making NVP a good option. Simultaneously the fine­grained flexibility offered by NVD and NVC has
less utility in large systems. While NVP does require the most manual input, it is also expected to be
the least complex to implement. Finally, while not of direct interest to this project, the NVP method is
the most generic and can on its own benefit other quantum technologies.

Based on this comparison, NVP mapping is chosen to be implemented for this work. More specifi­
cally, the initial goal is to implement the features necessary for an NVP1­1 configuration but with future
extensions in mind.

Scalability External input Implementation Flexibility Generality
NVP Patches + ­ + 0 +
NVD Direct ­ 0 ­ + 0
NVC Carbon ­ + ­ + ­

Table 3.1: Comparison of the 3 different NV mapping methods.

The NVD and NVC methods can be useful as well, especially for NISQ systems. The Fujitsu project
aims for fault­tolerant quantum computing however, making the more suitable method. It might also
prove useful to combine two methods; for example by specifying an unmapped QEC, using NVC to
convert this into more detailed decompositions, and then making use of those in an NVP mapper.

3.3. NVP Mapping Design
This section describes the detailed design of the NVP method outlined in Section 3.2.1. During the
design process it became clear that while inspired by NV centers, the concept of NVP mapping can be
applied to other qubit technologies as well. For this reason, first the generic design is described and
only then are NV center­specific details introduced. The generic design starts with describing the logical
to physical topology transformation, which is not an actual compiler pass but explains the NVP concept
without the details of qubit operations. Next the logical P&R and decomposition pass are explained,
followed by how NVP can be applied to NV centers and some practical examples.

3.3.1. Topology Transformation
This section describes the process of transforming a logical topology into a physical topology. Parts
of this topology transformation have their use in the compiler passes, either directly or by generating
some external input. The primary input of this transformation is a logical topology. An example of a 2x2
grid is shown in Figure 3.14a, where each circle represents a logical qubit. The qubits are numbered
for reference, and the edge labels will become useful later.

Internal Layout

The first step of the topology transformation is to specify the internal physical layout of the logical
qubits. An example of this is shown in Figure 3.13a. Note that this represents a generic logical qubit,
not specifically one using NV centers. For NVP, the only information the compiler needs from this is the
number of physical qubits in a logical qubit. The decompositionsmust comply with the physical topology,
but they are themselves an input for the compiler. It is up to the user or program that generates the
decompositions outside of the NVPmapping process to guarantee they are valid. The physical topology
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Figure 3.13: Physical qubits in a logical qubit.
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Figure 3.14: Logical 2x2 grid and corresponding physical topology.

is still shown here for illustration purposes and is also required for for example NVD.

External Connectivity

Connections between logical qubits also need to be transformed into their physical counterparts. In
doing so, a distinction needs to be made between different connection types. For example, in a 2D grid
only the physical qubits on the edge of a logical qubit connect with the neighboring logical qubit. Which
physical qubits these are depends on in which cardinal direction the logical connection is pointed.

Edge types are introduced to distinguish these different connections, indicated by the numbers 1 and
2 along the edges in Figure 3.14a. In this example an edge is considered to be bidirectional, but it can
be split up into unidirectional edges with different edge types if required.

Figure 3.13b shows which physical connections are made for which edge type. As with the internal
layout, the compiler actually does not need any information about the exact physical connectivity of
edges. This information is instead implied by the decomposition rules, and it is up to the provider of
these rules to assure they conform to the physical connectivity.

Constructing the full topology

With both the internal layout and external connectivity of logical qubits specified, the full physical topol­
ogy can be constructed. Figure 3.14b shows this for the 2x2 grid mentioned previously. To illustrate
more different edge types, Figure 3.15a shows a logical topology with a diagonal edge. This is then
transformed into the physical topology shown in Figure 3.15b.

Using different edge types also allows for different logical qubit types. Figure 3.16a extends the logical
topology with a larger logical qubit and additional edge types that specify a connection between a small
and large qubit. A corresponding physical topology is shown in Figure 3.16b.



3.3. NVP Mapping Design 31

1 2

3 4

1

1

2 2
3

(a) Logical

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

(b) Physical

Figure 3.15: Logical to physical topology with a diagonal connection.
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Figure 3.16: Logical to physical topology with a larger qubit.
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3.3.2. Logical P&R
The actual NVP mapping process starts with a logical place and route (P&R) pass. Due to its design,
NVP mapping does not require a specific logical P&R method to produce a valid output. While target­
specific optimizations may be possible here, they are considered to be out of the scope of this thesis.

3.3.3. Instruction Decomposition
The second pass performs decomposition from logical to physical operations. Each logical instruction
must be decomposed into its corresponding physical instructions. For multi­qubit gates, a different
decomposition can be specified for each edge type.

3.3.4. Application to NV centers
Applying the NVP mapping method to NV centers, a natural grouping is already present in the form of
an individual NV center. Handling logical qubit boundaries within a single NV centerdoes not align well
with the NVP method, leading to the assumption that logical qubits consist of one or more NV centers.
This results in the structure introduced in Section 3.2.1.

Figure 3.17 shows an example of a full NVP mapping process from logical circuit to physical operations.

|q0⟩
A

|q1⟩

e

e

q0

q1

C1
e

C1
e

q0

q1

P&R Decomposition

Figure 3.17: NVP1­1 mapping steps.

3.4. Conclusion
In this chapter the design of the quantum instruction set architecture (QISA), micro­ISA, and a com­
piler for NV centers has been presented. The µISA is designed to provide low­level control over the
NV center qubits, to be executed by local controllers each responsible for one NV center. The QISA is
designed as a layer between this low­level control and high­level algorithms, and is to be executed on
a single global controller. It provides instructions for basic quantum gates as well as NV center­specific
instructions for for example calibration.

Three methods of performing logical to physical qubit mapping and transformation have been explored.
The NVP method was considered most suitable for this work and has been discussed and designed
with greater detail. The NVD and NVC methods may also have a use in the future as a means of
generating NVP decomposition rules.



4Implementation

This chapter describes the implementation of the compiler as designed in Chapter 3. As determined in
Section 2.4.9 the compiler OpenQL framework is used for this. The compiler passes are organized in
3 groups:

1. Section 4.1 describes the implementation of the NV mapping pass group, which entails the NVP
mapping passes as designed in Section 3.3. These transform the logical instructions into physical
instructions. These passes can be replaced by the NVD and NVC mapping passes if those are
implemented in the future.

2. In Section 3.3 the design and implementation of the common passes is described. These passes
perform further processing of instructions on the quantum level. These are common to each of
the NV mapping methods.

3. Section 4.3 describes the development of the backend. The backend passes translate the
generic quantum instructions to the QISA designed in Section 3.1. For reasons to be discussed
in this section the backend is implemented outside of OpenQL.

4.1. NVP Mapping Implementation
This section describes the implementation of the NVP mapping approach as designed in Section 3.3 in
OpenQL. First the qubit organization in OpenQL is defined, and then the implementations of the place
and route and decomposition passes are described.

4.1.1. Internal Qubit Organization
OpenQL has no direct option to distinguish between logical and physical qubits; all qubits are organized
in a single list with a single index to specify the qubit. One option to make this distinction is to add native
support for it in OpenQL, using two different lists for the different types of qubits. This would however
require adapting all existing passes and other components in OpenQL to this new representation.

While this option might be the most scalable and adaptable in the long term, for the purpose of this
thesis an alternative solution is used where the distinction between logical and physical qubits is made
purely by index: for a quantum system with N logical qubits each consisting ofM physical qubits, the
first N qubits are designated as logical and the next N ·M as physical. Truly distinguishing between
the different qubits is left to how they are used by the passes. Figure 4.1 gives an example of how the
qubits are numbered.

33
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0 1

2 3

Logical Qubits

4 5 60

7 8 91

10 11 122

13 14 153

e− Qubits C13 Qubits

Figure 4.1: Qubit organization in OpenQL for logical qubits consisting of 1 NV center with 2 13C qubits. The 4 bottom rows
each correspond to a logical qubit.

4.1.2. Place & Route

Physical
decompositionLogical P&R

As mentioned in Section 3.3.2, an existing P&R method can be used for the NVP approach. The built­
in map.qubits.Map pass of OpenQL can perform initial placement and routing for 2­qubit gates on
arbitrarily connected qubits, making it suitable for the purpose of NVP mapping.

The existing P&R requires as input the full connectivity graph of the qubits, specifying both qubit lo­
cations and connecting edges. The ‘physical’ qubit locations can be used by OpenQL to more easily
determine which qubits are close together. For NVP the locations are specified for the logical qubits
corresponding to the logical topology, since that is what P&R is performed on.

Since P&R only happens on logical qubits, location and connectivity information is not necessary for
the physical qubits as far as NVP is concerned. OpenQL does however require these values for a
valid platform configuration. In the current implementation, the locations given for physical qubits are
placeholders, but the connectivity is fully specified. Specifying the full physical connectivity as well
allows for inserting specific physical operations in the input circuit. This has shown to be useful during
development and may continue to be used for similar purposes.

To facilitate the construction of a regular 2D grid with nearest­neighbor connectivity, a script has been
created which generates exactly this given just the grid size. This script generates the logical topol­
ogy with location and connectivity, and the physical qubits with placeholder location and full physical
connectivity. The layout generated by this script is as shown in Figure 4.1.
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4.1.3. Decomposition

Physical
decompositionLogical P&R

The NVP decomposition pass translates operations on logical qubits into operations on the physical
qubits present in NV centers as described in Section 3.3.3.

The existing decomposition pass dec.Instructions from OpenQL has been used as a starting point
for this pass. The existing pass provides the op(n) function to refer to instruction operands from within
a decomposition. The example in Figure 4.2 shows how a Hadamard gate can be decomposed into
two other gates using this notation. Note that operand counting starts at 0.

Input instruction
1 h q[2]

Decomposition rule
1 y90 op(0)
2 x op(0)

Output instructions
1 y90 q[2]
2 x q[2]

Figure 4.2: Applying a decomposition rule in OpenQL.

For the logical to physical decomposition pass, several modifications have been made to the built­in
decomposition pass to make it suit the needs of NVP mapping.

To start with, the input operations refer to logical qubits, while the output operations need to refer to
physical qubits. To facilitate this the function phys(n,m) has been added to OpenQL, which refers to the
mth physical qubit of the logical qubit provide as nth operand. Note that due to the nature of the NVP
method this function is not specific to NV centers and can thus be easily adopted for generic usage.

If the nth operand refers to logical qubiist l, then for a quantum system with N logical qubits each
consisting ofM physical qubits the internal index of the physical qubit referred to by phys(n,m) can be
computed as

p = N +M · l +m.

Figure 4.3 shows an example of how the qubit indices are computed when using a qubit organization
as shown in Figure 4.1. In this situation N = 4 andM = 3.

Input instruction
1 h q[2]

Decomposition rule
1 y90 phys(0,1)
2 x phys(0,1)
3 y90 phys(0,2)
4 x phys(0,2)

Output instructions
1 y90 q[11]
2 x q[11]
3 y90 q[12]
4 x q[12]

Figure 4.3: Applying an NVP decomposition rule on the system shown in Figure 4.1.

Next, different decompositions for each edge type can be specified in the platform configuration. The
original decomposition pass can select which decomposition rule to use based on a predicate function
taking just the rule itself into account. This has been extended to also include the instruction parameters
to be able to determine the edge type of each instruction. The implemented predicate function accepts
a decomposition rule if it is labelled as ‘nvp’ and the rule edge type matches the instruction edge type.

Since especially for simple or regular logical qubit layouts some amount symmetry is expected, a script
has been written that can generate a complete specification given the decomposition for one edge and
duplicate it to other edges.

Finally, the original decomposition pass feeds the decomposition output back into itself to allow for
further decomposition if possible. Since for NVP the decomposition rules always convert logical opera­
tions into physical operations, the resulting physical operations do not need further processing by this
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pass therefore this recursive approach is not necessary. In fact, disabling recursion completely allows
for using the same instruction name for both logical and physical operations without their meanings
getting mixed up.

NVP1­1 Decompositions

A full listing of the implemented logical to physical decomposition rules for an NVP1­1 system with 1
NV center with 1 13C qubit per logical qubit can be found in Appendix C.1. More rules can easily be
added using a configuration file.

4.2. Common Compiler Passes
The program generated by the NV mapping passes operates on physical qubits. Several steps still
need to be taken to arrive at the hardware level though. This starts with a number of passes that
operate purely on a quantum system level, without taking into account control hardware details. These
passes are common to all the NV mapping methods described in Section 3.2.

This section describes the design and implementation of 3 such compiler passes shown in Figure 4.4:
decomposition (Section 4.2.1), optimization (Section 4.2.2), and scheduling (Section 4.2.3).

Physical
decomposition Optimization Scheduling

Figure 4.4: Overview of the common passes.

4.2.1. Physical Decomposition
This pass performs decomposition of physical operations, bringing them closer to the gates supported
by NV centers. This allows prior passes to work on operations at a higher level, thus for example
reducing the amount of input required in the NVP decomposition pass. The platform configuration
needs to specify the possible decompositions.

To implement this pass, the improved version of the built­in decomposition pass as modified for NVP
decomposition in Section 4.1.3 is reused. In the code itself both of these passes use the same base
class but with a different configuration.

First, the original op(n) function for referring to input operands can be used again in this pass, since
both the input as output instructions operate on physical qubits. Next, while for NVP decomposition
recursion was not desired, for this pass again the original setting is used. This allows the physical
decomposition rules to be expanded recursively.

Finally, a different kind of predicate function is required to select the correct decomposition rule. For
this pass this is determined by the type (e− qubits and 13C qubits) and ordering of physical qubits used
by the instruction. Each decomposition rule specifies which types of qubits it can be applied to. The
implemented predicate function then accepts a decomposition rule if it is labelled as ‘phys’ and the rule
qubit types matches the instruction qubit types.

Examples

The native controlled gate in an NV center always has the e− qubit as control and 13C qubit as target.
If a CNOT in the other direction is required it has to be decomposed into a CNOT from e− qubit to
13C qubit surrounded by Hadamard gates as shown in Figure 4.5.
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|e⟩ H H

=
|c⟩ H H

Figure 4.5: Reversing the direction of a CNOT using Hadamard gates.

|q0⟩ Y 90 Y 90

=
Y

|q1⟩ X X

Figure 4.6: Optimization of single­qubit Clifford gates.

4.2.2. Optimization
This pass performs optimization of operations. Currently only the built­in opt.clifford.Optimize pass
is used to implement this functionality, minimizing the amount of single­qubit Clifford gates.

Examples

The example illustrated in Figure 4.6 shows how two Y90 gates will merge into a single Y gate with a
rotation angle of 180°, and two X gates will cancel each other out.

4.2.3. Scheduling
This pass performs scheduling of instructions, arranging them to be executed in parallel where possible
and inserting delays where needed. This is implemented using the built­in sch.ListSchedule pass,
which requires the platform configuration to specify the duration of each instruction.

Additionally, the scheduler can manage shared resources and schedule instructions without clashing.
As described in Section 3.1, the envisioned hardware architecture has one local controller and other
control electronics per NV center, making these a shared resource between the e− qubit and 13C qubits.
OpenQL allows for defining a resource which is utilized by the scheduler. The resource is required to
define a function that is called for every instruction schedule considered, allowing the resource to keep
track of what is in use at which point in time. If the schedule results in overlapping resource usage it is
discarded.

A scheduling task that has not been solved with the current implementation has been found to occur with
initialization of the 13C qubits. On the hardware level, this involves first initializing the corresponding
e− qubit and then swapping that with the 13C qubit. If an 13C qubit initialization is scheduled in between
some e− qubit operations in the same NV center, this leaves the e− qubit in an unknown state.

4.3. Classical Backend
With processing of instructions on the quantum level complete, the next step is to transform them into the
QISA instructions described in Section 3.1.2 making the program suitable for execution on a hardware
controller or with a simulator. This process is handled by the backend, for which a custom framework
has been developed as will be discussed in Section 4.3.1. Inspired by OpenQL, this framework is
modular and allows for custom compiler passes to be defined. Figure 4.7 gives an overview of the
implemented backend passes.
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Figure 4.7: Passes in the classical backend.

4.3.1. Design and Functionality
While OpenQL has so far been very useful for implementing passes acting on quantum operations, it
has been found to be less flexible than desired when it comes to instructions at the hardware architec­
ture level.

For this reason, a custom ‘mini compiler framework’ has been developed in the Lua programming
language to function as backend. The overall design of this backend is based heavily on OpenQL,
but is more flexible and where needed more specifically targeted to handling classical instructions. It
should be noted however that, as a custom non­production tool, the increased flexibility comes at the
price of less strict data structures and error handling.

The backend framework is centered around the backend function, as shown in Listing 4.1. This function
can be invoked with two arguments; the initial contents of the IR and an order list of passes. The passes
themselves are again functions taking the IR as single argument. This function can be specified directly
as illustrated by pass1. All the implemented however use an indirect approach such as pass2, using a
generator function that takes additional arguments to configure the pass.

Listing 4.1: Invoking the backend function.
1 backend{
2 ir = {
3 -- initial IR contents
4 },
5 passes = {
6 pass1 = function (ir)
7 -- pass implementation
8 end,
9

10 pass2 = pass2_gen(arguments)
11 }
12 }

4.3.2. ISA Decomposition
The backend starts with yet another decomposition pass, converting the quantum operations into the
QISA instructions as specified in Appendix B.1. Similar to the physical decomposition pass described
in Section 4.2.1, the qubit type and ordering in the instruction determines which decomposition rule
is selected. The decomposition rules in turn need to specify on which input qubit types they can be
applied.

Due to the hardware organization with a single local controller per NV center, the qubit index needs to
be adjusted to this format. Every quantum instruction has an index that specifies the NV center and
corresponding local controller, and instructions operating on a 13C qubit have an additional index that
specifies the 13C qubit.

To specify these values in a decomposition rule, the functions nv(n) and ci(n) are introduced. In
both cases n is the instruction operand index just as with the op(n) and phys(n,m) function used in
earlier decomposition passes. In the ISA decomposition pass nv(n) is then replaced by the index of
the NV center the qubit is part of, and ci(n) is the 13C qubit index within its NV center.

Due to the way OpenQL represents conditional instructions, the phys(n,m) function as implemented
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in Section 4.1.3 can not be used to refer to measurement results of physical qubits. As a workaround,
for every instruction accepted by the ISA decomposition pass, a conditional version is generated. The
conditional version’s name is prefixed by if_ and has an additional argument specifying the controlling
physical qubit. Converting from the native OpenQL conditional instruction to this format has to be done
in prior passes.

Examples

Listing 4.2 shows how the ISA decomposition pass can be instantiated in the backend framework. The
decompositions argument is a list of decomposition rules structured as shown in Listing 4.3. This
example is of an X­gate, for which two different decompositions are specified depending on the qubit
type. This decomposition also shows how the nv(n) and ci(n) functions are used in practice.

Listing 4.2: ISA decomposition pass instantiation.
1 pass.dec_qtype{
2 decompositions = dec_isa
3 },

Listing 4.3: ISA decomposition rule for an X­gate.
1 {
2 name = "x",
3 dec = {{
4 qtype = {"e"},
5 into = "qgatee nv(0), 0.0, pi"
6 },{
7 qtype = {"c"},
8 into = "qgateuc nv(0), ci(0),

0.0, pi, 1"
9 }}
10 };

Figure 4.8 shows how a y instruction operating on the system shown in Figure 4.1 is decomposed into
a single qgateUC instruction.

A notable ISA decomposition is that for a cnot operation. The NV center­native controlled gate im­
plemented by the qgateCC instruction, besides performing the desired X/Y rotation, also introduces a
phase shift (i.e., a Z­rotation) on the 13C qubit. Thus, to implement a CNOT as desired, this phase shift
has to be removed by an opposing Z­rotation.

A full listing of the implemented ISA decomposition rules can be found in Appendix C.3, for each rule
listing the instruction format, qubit types, and decomposition. A single example of the generated con­
ditional instructions is given with if_x; others follow the same pattern.

Input
1 y q[8]

Decomposition rule
1 qgateUC nv(0), ci(0), pi/2, pi, 1

Output
1 qgateUC 1, 0, pi/2, pi, 1

Figure 4.8: Applying a single­qubit ISA decomposition rule on the system shown in Figure 4.1.

|e⟩
=

|c⟩ RXY RZ

= 1 qgateCC nv(0), ci(1), 0.0, pi
2 qgateZC nv(0), ci(1), pi/2

Figure 4.9: QISA decomposition of a controlled NOT gate.

4.3.3. Operand Evaluation & Quantization
Qubit rotations are most often performed with angles that are fractions of π. For this reason it is ad­
vantageous to be able to use a symbolic expression for operands, allowing for example a value of π/2
to be represented exactly. The implemented operand evaluation pass computes the value of a sym­
bolic expression including constants such as pi and stores it as a single double­precision floating­point
number.
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Furthermore, in a hardware controller only a limited number of bits can be used to represent each
operand. The envisioned design represents operands as a 16­bit ‘integer­like’ value, which requires
quantizing the 64­bit floats. This quantization step is implemented in another pass.

To make use of this pass, the QISA instruction definition is required to specify a quantization function.
An example of such a function is limiting the possible values to a fixed number of options spaced
equally between a minimum and maximum. A generator function is provided to easily construct such
quantization functions. The pass can also be configured to replace operands by the 16­bit integer value
that will be used by the hardware.

In the backend as currently configured, the operand evaluation and quantization passes directly follow
each other, and the angle operands are quantized to steps of π/2−15 in the range ⟨−π;π]. Since in
practice the symbolic expressions are usually of the form π/n with n = 1, 2, 4, the two passes effectively
cancel each others’ effect. It would be possible to merge the passes into one and potentially increase
accuracy and compilation performance. However, the current approach is more modular and allows
for more complex expressions and non­aligned quantization if so desired. Additionally, in practice
performance has not been a concern and the double­precision floats provide enough precision to not
cause any problems.

Examples

Listing 4.4 shows how the expression evaluation passes can be instantiated. The evaluation pass takes
as argument a list of constants to replace, in this example instances of the symbolic pi are replaced by
the floating­point constant. The quantization pass makes use of the quantization functions specified in
the QISA.

Listing 4.4: Expression evaluation and quantization pass instantiation.
1 pass.eval_expr{
2 constants = {pi = math.pi}
3 },
4 pass.quantize{
5 instructions = isa_ucode
6 },

Figure 4.10 shows how both passes operate on an instruction. In this example, and what is also
expected in practice, the operands are quantized to some multiple of π resulting in no effect for most
gates.

Input
1 qgateE q[3], pi/2, pi

Output
1 qgateE q[3], 1.5707963267949, 3.1415926535898

Figure 4.10: Applying expression evaluation and quantization to an instruction.

4.3.4. Periodic Instructions
The original compiler implementation from [36] has the ability to insert instructions periodically, more
specifically it inserts a charge­resonance check every 10 instructions. While this exact functionality is in
fact not desired since the check destroys the quantum state of the e− qubit, it has been reimplemented
for this work primarily as a proof of concept.

Improving on the original implementation, this version inserts instruction after a specific amount of time
rather than instructions, taking into account the duration of each instruction. This information is already
required by OpenQL but has been extended for the purpose of NV centers. Instead of allowing only
fixed instruction durations, a function can be specified that takes the actual instruction operands and
returns a duration based on those values. For example, in the case of qubit rotations on NV centers,
larger rotation angles directly correspond to a longer instruction duration, which this system can take
into account.
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Examples

Listing 4.5 shows how the periodic instruction pass can be instantiated. The pass requires information
about the instruction duration from the QISA. The instructions to be inserted can then be specified
together with their period.

Listing 4.5: Periodic instruction pass instantiation.
1 pass.periodic{
2 instructions = isa_ucode ,
3 scheduled = {{
4 period = 200,
5 into = "crc"
6 }}
7 },

4.3.5. Output
As the very last step, the finalized list of instructions has to be written to an output. Depending on
which passes were executed the output may still contain symbolic expressions which are handled by
the writer pass as well. Three output passes have been implemented for different purposes.

The first is closest to the internal representation and thus doubles as debugging output. Other output
generators can be derived from this by disabling output that is not needed by the target, or for example
renaming or reordering information.

One such derived writer pass has been made tailored for a quantum simulator implemented in [60].
The simulator expects a certain formatting for operands and does for example not handle parallel in­
structions. Output produced by this pass will be discussed in Section 5.1.

Finally, a ‘non­functional’ writer pass has been implemented that writes the microcode corresponding
to each instruction to the output. This output is not functional as­is, but is intended as an aid in more
precisely defining the hardware requirements of the local controller as outlined in Section 3.1.3.

4.3.6. Future Extensions
While the implemented passes are deemed sufficient for use with the simulator, a number of changes
are required to make it functional for an actual hardware implementation.

Firstly, the writer passes currently implemented are for either human readability or the simulator. When
the hardware from Section 3.1.2 is implemented, a form of binary output will be required as well.

Next, since yet another decomposition step has been performed in the backend, rescheduling of the
new instructions might be beneficial. This will require a scheduler that takes into account not just the
quantum system and local control electronics, but the global control system as well.

Finally, implementation of the global controller and communication systemwill most likely lead to a need
for additional passes and modifications. Specifically the communication is expected to be a shared
resource that the instruction scheduling must consider or at least can optimize for.

4.4. Conclusion
In this chapter the NVP mapping method has been implemented in OpenQL. This consits of an exsit­
ing place and route pass applied to the logical qubits, followed by a custom decomposition pass that
transforms the logical operations into physical operations. This required adding new functionality to
OpenQL and modifying it to work with both logical and physical qubits simultaneously.

Additionally, several compiler passes common to the different NV mapping methods have been identi­
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fied. A physical decomposition pass has been implemented, an existing optimization pass reused, and
a scheduling pass has been extended with NV center­specific functionality.

Finally, a backend has been implemented separate from OpenQL. The backend transforms generic
quantum instructions to QISA instructions making use of symbolic decomposition specifications. Its
modular design has been demonstrated by the implementation of an operand quantization and periodic
scheduling pass.

Figure 4.11 illustrates the complete compilation flow with all utilized passes.

NVP

Common

Classical

Physical
decompositionLogical P&R

Physical
decomposition Optimization Scheduling

ISA
decomposition

Expression
evaluation Quantization Periodic

instructions

Figure 4.11: Overview of the implemented compiler passes.



5Results

With the compiler designed and implemented, its functionality can be verified. The complete compilation
process for is discussed for multiple circuits in Section 5.1, followed by the simulation results of two
simple circuits in Section 5.2.

5.1. Compilation Results
This section presents the compilation process of 3 circuits from algorithm input to QISA output. First two
simple circuits are compiled, both consisting of just 2 logical operations. Next, a circuit implementing
Grover’s algorithm is compiled to demonstrate the compiler can handle larger circuits as well.

5.1.1. Single­Qubit Circuit
The first circuit consists of just two operations on a single logical qubit. Figure 5.1 shows the logical
circuit consisting of initializing the qubit and applying a Hadamard gate.

|0⟩ H

Figure 5.1: Logical circuit performing initialization and a H­gate.

Listing 5.1 shows the Python code implementing this circuit. For brevity, the configuration and initial­
ization code has been left out. Complete Python inputs and their corresponding outputs can be found
in Appendix D.

Listing 5.1: Python code for the H­gate circuit.
1 kernel.prepz(0)
2 kernel.gate('h', 0)

To compile this using the NVP method, details of the physical system have to be specified as well. This
circuit is compiled for a physical system consisting of 2 NV centers with one 13C qubit each, with each
NV center representing 1 logical qubit. The corresponding qubit organization of this system in OpenQL
is illustrated in Figure 5.2.

0

1

Logical

2 3

4 5

Physical

e− C13

Figure 5.2: Qubit organization for a small NV center system.
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The cQASM output produced by OpenQL is shown in Listing 5.2. As with the Python code, the header
and other non­instruction lines have been omitted for brevity. Note the qubit index is 3 here, corre­
sponding to the first 13C qubit of the first NV center as seen in Figure 5.2.

Listing 5.2: cQASM code for the H­gate circuit.
1 prep_z q[3]
2 y90 q[3]
3 x180 q[3]
4 skip 1

Figure 5.3 shows a visual representation of the physical circuit. Note how the 13C qubit is initialized by
first initializing the e− qubit and then moving the |0⟩ state using the swapEC instruction.

|NV 0e⟩ |0⟩

|NV 0c1⟩ H

swapEC

Figure 5.3: Physical circuit implementing the H­gate circuit.

Finally, passing this through the backend gives the NV assembly shown in Listing 5.3.

Listing 5.3: NV assembly for the H­gate circuit.
1 initialize q0
2 swapec q0 0
3 qgateuc q0 0 1.5707963267949 1.5707963267949 1
4 qgateuc q0 0 0.0 3.1415926535898 1

5.1.2. Two­Qubit Circuit
As a more complex example, the next circuit involves a Hadamard gate and a controlled NOT gate.
Depending on the initial conditions this will entangle the two logical qubits to form a Bell pair. Since
this circuit involves a two­qubit gate, place and route on the logical qubit level is required. The logical
circuit is visualized in Figure 5.4.

|q0⟩ H

|q1⟩

Figure 5.4: Logical circuit performing a H­gate and CNOT.

The corresponding abbreviated Python code is shown in Listing 5.4. The full code can again be found
in Appendix D.

Listing 5.4: Python code for the entangle circuit.
1 kernel.gate('h', 0)
2 kernel.cnot(0, 1)

This logical circuit is compiled to the same physical system using the same configuration as the previous
circuit. The intermediate cQASM output from OpenQL is shown in Listing 5.5.
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Listing 5.5: cQASM code for the entanglement circuit.
1 nventangle q[2], q[4]
2 y90 q[2]
3 x180 q[2]
4 cnot q[2], q[3]
5 y90 q[2]
6 x180 q[2]
7 measure q[2]
8 if_x q[4], q[2]
9 cnot q[4], q[5]
10 y90 q[4]
11 x180 q[4]
12 measure q[4]
13 y90 q[3]
14 x180 q[3]
15 if_z q[3], q[4]

The physical circuit is visualized in Figure 5.5. This visualization shows how the CNOT between two
logical qubits is performed; first the 13C qubit in the source qubit is entangled with the e− qubit in the
target qubit, then the actual 2­qubit gate is performed, and finally the physical qubits are disentangled
again to complete the circuit.

Additionally, the entangling procedure introduces multiple H­gates, one of which is applied to the same
physical qubit that the logical H­gate directly maps to. These two gates outlined in gray in Figure 5.5
cancel each other out, which is reflected in the compiler output.

|NV 0e⟩ H H

|NV 0c1⟩ H H H Z

|NV 1e⟩ X H

|NV 1c1⟩

Entangle

Disentangle

Figure 5.5: Physical circuit implementing the entanglement circuit.

Finally, the decomposed and optimized circuit can be passed through the backend, producing the NV
assembly shown in Listing 5.6. Note how the CNOT is further decomposed into QISA instructions
as detailed in Section 4.3.2. On the other hand the nventangle instruction is not decomposed as its
implementation is still uncertain at this point. The required QISA instructions are available however,
most importantly the entangle instruction.
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Listing 5.6: NV assembly for the entanglement circuit.
1 nventangle q0 q1
2 qgatee q0 1.5707963267949 1.5707963267949
3 qgatee q0 0.0 3.1415926535898
4 qgatecc q0 0 0.0 3.1415926535898
5 qgatezc q0 0 1.5707963267949
6 qgatee q0 1.5707963267949 1.5707963267949
7 qgatee q0 0.0 3.1415926535898
8 measuree q0
9 br MeasureResultRegNVnode0 > 0 x_11
10 qgatee q1 0.0 3.1415926535898
11 x_11:
12 qgatecc q1 0 0.0 3.1415926535898
13 qgatezc q1 0 1.5707963267949
14 qgatee q1 1.5707963267949 1.5707963267949
15 qgatee q1 0.0 3.1415926535898
16 measuree q1
17 qgateuc q0 0 1.5707963267949 1.5707963267949 1
18 qgateuc q0 0 0.0 3.1415926535898 1
19 br MeasureResultRegNVnode1 > 0 z_18
20 wait 2
21 z_18:

5.1.3. Grover’s Algorithm
To verify the compiler also works with larger scale quantum algorithms, a circuit implementing Grover’s
search algorithm has been compiled, of which the full Python code can be found in Appendix D. The
original code is taken from the example circuits included with OpenQL. To facilitate the use of Toffoli
gates in the input circuit, the built­in decomposition pass has been instantiated in OpenQL to decom­
pose these gates into sequences of 1­ and 2­qubit gates prior to the NVP mapping passes. This shows
how the newly developed passes seamlessly integrate into the existing OpenQL framework.

In the code for the quantum algorithm itself, the only partially functional change made was the removal
of the ‘display’ gates, which produced an error in OpenQL for unknown reasons. The ‘display’ gate
is however non­functional in a real quantum computer as it prints out the full quantum state. While
it can be useful to debug circuits using a simulator, it has been removed for this test to focus on the
compilation results.

With this slight modification and several organizational changes, the code compiles into a program
consisting of nearly 4000 NV assembly instructions on 18 qubits across 9 NV centers. The exact
number of instructions varies between 3500 to 4100 instructions on different compilation runs due to
variations in the P&R pass in OpenQL. This compilation result exposed a simplification taken in the
backend where different subprograms are combined into one without taking into consideration their
order. This can however be remedied outside of the compiler by either compiling the subprograms
separately or merging them in the desired order beforehand.

5.2. Simulation of Compiled Programs
Using the simulator developed in [60], the first two smaller circuits have been simulated.

The simulator result of the Hadamard circuit from Section 5.1.1 is shown in Figure 5.6a. The figure
only shows the state of the 13C qubit, as this directly corresponds to the state of the logical qubit. The
outcome is the expected result of the 13C qubit being in the |+⟩ state.

For the entanglement circuit from Section 5.1.2 the qubits have been initialized in the |0⟩ state. The
expected outcome is thus a |Φ+⟩ state of the logical qubits, which as with the Hadamard circuit cor­
responds to the state of the 13C qubits. Figure 5.6b shows the simulation result, which is again the
expected outcome.
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(a) Simulator output for the H­gate circuit.
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(b) Simulator output for the entanglement circuit.

Figure 5.6

5.3. Conclusion
In this chapter the functionality of the compiler has been verified by compiling several circuits. Two
simple circuits have been compiled and simulated showing the expected results across all steps in the
process. A more complex circuit implementing Grover’s search algorithm has been compiled as well
demonstrating the scalability of the implemented compiler.
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This chapter concludes this thesis. Section 6.1 summarizes the work discussed in each chapter, fol­
lowed by the main contributions of this thesis in Section 6.2. Finally, Section 6.3 gives several recom­
mendations for future work that can further contribute to the field of quantum computing.

6.1. Summary
• Chapter 2 introduced the reader to quantum information theory, NV center physics, existing
control systems, and quantum compilers relevant to the scope of this thesis.
A number of existing quantum compilers have been compared, after which the OpenQL compiler
framework has been selected as base for the compiler for NV centers for its generality and ease
of extensibility.

• In Chapter 3 the design of the quantum instruction set architecture (QISA), micro­ISA, and a
compiler for NV centers has been presented. The µISA is designed to provide low­level control
over the NV center qubits, to be executed by local controllers each responsible for one NV center.
The QISA is designed as a layer between this low­level control and high­level algorithms, and is
to be executed on a single global controller. It provides instructions for basic quantum gates as
well as NV center­specific instructions for for example calibration.
Three methods of performing logical to physical qubit mapping and transformation have been
explored. The NVP method was considered most suitable for this work and has been discussed
and designed with greater detail. The NVD and NVC methods may also have a use in the future
as a means of generating NVP decomposition rules.

• In Chapter 4 the NVP mapping method has been implemented in OpenQL. This consits of an
exsiting place and route pass applied to the logical qubits, followed by a custom decomposition
pass that transforms the logical operations into physical operations. This required adding new
functionality to OpenQL and modifying it to work with both logical and physical qubits simultane­
ously.
Additionally, several compiler passes common to the different NV mapping methods have been
identified. A physical decomposition pass has been implemented, an existing optimization pass
reused, and a scheduling pass has been extended with NV center­specific functionality.
Finally, a backend has been implemented separate fromOpenQL. The backend transforms generic
quantum instructions to QISA instructions making use of symbolic decomposition specifications.
Its modular design has been demonstrated by the implementation of an operand quantization and
periodic scheduling pass.

• In Chapter 5 the functionality of the compiler has been verified by compiling several circuits.
Two simple circuits have been compiled and simulated showing the expected results across all
steps in the process. A more complex circuit implementing Grover’s search algorithm has been
compiled as well demonstrating the scalability of the implemented compiler.

6.2. Contributions
The main contributions of this thesis are:

48
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1. The specification of a micro­ISA that can perform quantum operations on NV centers.
The specification of a µISA has been achieved by making an inventory of how the physical quan­
tum system and control electronics must be controlled. Micro­instructions have been defined for
physical operations as well as supporting instructions.

2. The specification of a high­level QISA targeting NV centers that acts as an interface be­
tween software and hardware.
The QISA has been specified on top of the µISA, making use of the microcode from [60] and build­
ing upon the work from [36]. While the QISA has been designed for NV centers, many aspects
of it are directly applicable to other types of colors centers as well.

3. Agenericmethod of transforming a logical quantumcircuit into a physical quantumcircuit.
The NVP mapping method introduced in Section 3.2.1 can transform a logical quantum circuit
into a physical quantum circuit. While it has been designed with NV centers in mind, the general
approach is applicable to any kind of qubit technology. Two other mapping methods have also
been explored.

4. A functional compiler that can transform a quantum algorithm written in Python into a
sequence of QISA instructions.
Making use of NVP mapping and a newly designed backend, a functional compiler has been
implemented that can transform a logical circuit into a sequence of QISA instructions. Making use
of the OpenQL compiler framework, new passes have been implemented which seamlessly
integrate with existing passes. This allows the compiler to take advantage of prior and future
work on OpenQL, such as the possibility to specify input circuits in Python, C++, and cQASM.

5. Direct and indirect improvements of the OpenQL compiler framework.
Finally, implementing the compiler in OpenQL revealed several limitations for which a solution or
workaround had to be found. Some of the implemented solutions can be incorporated to directly
contribute to the development of OpenQL, and the workarounds can guide future developments
to help resolve them.

6.3. Future Work
While this thesis focuses on NV centers, significant portions of the work done in this thesis is applicable
to other types of color centers as well. However, the context in which which this thesis is done focuses
on NV centers. Whether a certain idea or implementation works for NV centers specifically is thus of the
highest importance. Any coincidental applicability to other types of color centers is taken as a positive
result, but considered not worth validating for every idea and for all types of color centers. Since the
future plans of the Fujitsu project include tin­vacancy centers, this is the first candidate for verifying the
more generic applicability of this work.

The goal of this thesis as defined in Chapter 1 is to create a compiler capable of handling larger logi­
cal qubits, possibly with error detection and correction. The implemented NVP method has only been
verified using simple logical qubit layouts however. Creating the required configuration files and ver­
ifying the compiler with such a larger qubit is thus still to be done. Additionally, given the often reg­
ular structure of large logical qubits, the configuration files can most likely be partially or even fully
computer­generated. Identifying the structure and creating such a generator can prove useful for fu­
ture large­scale quantum computers.

Of the 3 different mapping methods discussed in Section 3.2, only the NVP method has been imple­
mented. However, both the NVC and NVD methods may have their uses in certain situations as well.
In particular, using one of these methods to optimize the physical operations within a logical qubit may
be a promising use case. The NVC and NVD methods may also be useful in the short term for NISQ
applications where little to no quantum error correction is used.

A generator script that has already proven its worth in this project is one for creating regular qubit
topologies. This has been used in Section 4.1.1 to generate a combined logical and physical qubit
topology. Providing similar functionality natively in OpenQL would simplify the topology specification
required for the platform configuration files.



6.3. Future Work 50

As mentioned in Section 4.3.1, the custom compiler framework designed for the backend has been
made mostly for easier and faster prototyping by removing several restrictions that OpenQL poses.
The limitations found can however be used as starting point for further extending the capabilities of
OpenQL, at which point the functionality of the backend could be moved into the OpenQL framework.

Finally, verifying the design of the QISA and µISA will require the hardware discussed in Section 3.1 to
be designed and implemented. While both ISAs have been carefully designed to match the hardware
on one side and software on the other, there is the possibility that implementing them will expose
shortcomings in the ISAs and compiler. Parallelism and other hardware optimizations can be explored
as well, possibly requiring further modifications to the compiler as well.
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Glossary

Auxiliary qubit
p9

A qubit used to perform indirect operations such as measurements, as opposed to a
data qubit. Also known as an ancilla qubit.

Conditional gate
p6

A gate with classical control, likewise for a conditional rotation.

Controlled gate
p7

A gate with qubit control, for example a CNOT.

Ebit
p16

A pair of maximally entangled qubits.

Execution platform Something which can execute a quantum algorithm, be it a simulator or real quantum
computer. In this thesis a platform is assumed to be compatible with quantum circuits.

Gate
p5

A reversible, unitary operation on any number of qubits. Depending on the context it
can also be specifically referred to as a quantum gate.

Instruction
p13, p19, p37

What a compiler operates on. An instruction can be on the hardware level such as
what is executed by control electronics, including quantum operations but also for ex­
ample classical addition and comparison or waiting for a specific time. An instruction
can also be on on a higher level, representing a sequence of lower­level quantum
and classical instructions.

Kernel A sequence of instructions. In this thesis a kernel is assumed to implement a quantum
circuit and surrounding necessary classical computations.

Mapping
p15

Transforming qubits and quantum operations into closer­to­hardware equivalents. In
this thesis mapping specifically refers to transforming logical qubits and operations
into their physical counterparts. Outside of this thesis ‘mapping’ often refers to just
place & route.

Place & route Initial placement and routing of qubits based on the required interaction and available
topology.

Quantum algorithm An algorithm that uses any type of quantum computation.

Quantum circuit
p8

A specific type of quantum algorithm that consists of a sequence of quantum opera­
tions.

Quantum computer A device capable of performing quantum computations. In general this can be any
quantum algorithm, but in this thesis it is used for quantum circuits specifically.

Quantum operation
p8

Any action that can be performed on qubits, including gates, non­unitaries, and
platform­specific operations.

Rotation
p6

A single­qubit gate, for example an 180° X or 90° Y rotation.
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A.1. NVx Topology
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Figure A.1: Qubit organization of a 4x2 physical topology for the different compiler approaches.
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A.2. NVx Mapping Example
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Figure A.2: A quantum circuit with 2 generic 2­qubit gates.
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Figure A.3: NVx­1 codes mapped to an NVx­1 (left) and NVx­4 (right) physical topology.



BISA Reference

This chapter describes the proposed quantum instruction set architecture (QISA) for a quantum com­
puter based on NV centers. Included are the top­level QISA itself, microcode stored on the local con­
troller, the micro­ISA, and the local controller registers.
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B.1. Global Instruction Set
The following table contains all instructions supported by the global controller. Following that a detailed description
of each instruction is provided.

Classical
ldi dest, value Load immediate
addi dest, source, value Add immediate
st source, address Store in memory
ld dest, address Load from memory
br (condition), label Branch conditionally
jump label Jump unconditionally
Communication
send NV, source Send data to local controller
receive NV, dest Receive data from local controller
Quantum
set NV, register, value Set local register
qgateE NV, phase, angle Apply electron gate
qgateZE NV, angle Apply Z­rotation on electron
qgateZC NV, C13, angle Apply Z­rotation on C13
qgateCC NV, C13, phase, angle Apply conditional C13 gate
qgateUC NV, C13, phase, angle, preserve Apply unconditional C13 gate
qgateDIR NV, C13, phase, angle, dir Rotate C13 in conditional direction
initialize NV Initialize NV center
measureE NV Measure electron state
swapEC NV, C13 Half­swap of electron to C13 qubit
swapCE NV, C13, basis Half­swap of C13 to electron qubit
entangle NV, direction Entangle with other NV center
detectCarbon NV, sweepStart, sweepStep, sweepStop, measMax Perform carbon detection
magbias NV, sweepStart, sweepStep, sweepStop Perform magnetic biasing check
rabicheck NV, sweepStart, sweepStep, sweepStop, measMax Perform Rabi check
crc NV Perform charge resonance check

ldi
Format: ldi dest, value

Load immediate value in register.

addi
Format: addi dest, source, value

Add immediate value to register.

st
Format: st source, address

Store value from register in memory.

ld
Format: ld dest, address

Load value from memory in register.

br
Format: br (condition), label

Branch to label or position based on condition.
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jump
Format: jump label

Jump unconditionally to label or position.

send
Format: send NV, source

Send data from register source to local controller NV.

receive
Format: receive NV, dest

Receive data from local controller NV and store in register dest. If the destination register is omitted the received
value is discarded (like r0 in MIPS; something does still have to be received).

TBD: results are read per NV using a FIFO on global controller side, in the same order as the corresponding send
instruction. It is up to the global controller/microprograms to balance sends and receives.

set
Format: set NV, register, value

Send command set and its arguments to the specified local controller. Receive confirmation and return data.

Set the value of a local register. Intended use is setting local calibration values that are calculated on the global
controller/host.

qgateE
Format: qgateE NV, phase, angle

Send command qgateE and its arguments to the specified local controller. Receive confirmation and return data.

Apply a gate on the e− qubit. phase specifies the axis of rotation in the XY plane. angle specifies the angle of
rotation around that axis.

qgateZE
Format: qgateZE NV, angle

Send command qgateZE and its arguments to the specified local controller. Receive confirmation and return data.

Apply a Z­rotation to the specified e− qubit. angle specifies the angle of rotation.

qgateZC
Format: qgateZC NV, C13, angle

Send command qgateZC and its arguments to the specified local controller. Receive confirmation and return data.

Apply a Z­rotation to the specified 13C qubit. angle specifies the angle of rotation.

qgateCC
Format: qgateCC NV, C13, phase, angle

Send command qgateCC and its arguments to the specified local controller. Receive confirmation and return data.

Apply a conditional gate on the specified 13C qubit based on the e− qubit state. phase specifies the axis of rotation
in the XY plane. angle specifies the angle of rotation around that axis.
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qgateUC
Format: qgateUC NV, C13, phase, angle, preserve

Send command qgateUC and its arguments to the specified local controller. Receive confirmation and return data.

Apply an unconditional gate on the specified 13C qubit. phase specifies the axis of rotation in the XY plane. angle
specifies the angle of rotation around that axis.

If preserve is true, the e− qubit state is preserved.

qgateDIR
Format: qgateDIR NV, C13, phase, angle, dir

Send command qgateDIR and its arguments to the specified local controller. Receive confirmation and return
data.

Apply a gate on the specified 13C qubit. phase specifies the axis of rotation in the XY plane. angle specifies the
angle of rotation around that axis. Based on dir the qubit is rotated in the positive or negative direction.

initialize
Format: initialize NV

Send command initialize and its arguments to the specified local controller. Receive confirmation and return
data.

Initialize the e− qubit in the |0⟩­state.

measureE
Format: measureE NV

Send command measureE and its arguments to the specified local controller. Receive confirmation and return
data.

Measure the e− qubit state and send the result to the global controller.

swapEC
Format: swapEC NV, C13

Send command swapEC and its arguments to the specified local controller. Receive confirmation and return data.

Swap the quantum state of the e− qubit to the specified 13C qubit. After the operation the e− qubit is left in the
maximally mixed state.

swapCE
Format: swapCE NV, C13, basis

Send command swapCE and its arguments to the specified local controller. Receive confirmation and return data.

Swap the state of the specified 13C qubit to the e− qubit in the specified basis. After the operation the 13C qubit
is left in an unknown non­entangled state.

entangle
Format: entangle NV, direction

Send command entangle and its arguments to the specified local controller. Receive confirmation and return
data.

Perform an optical entanglement routine between the e− qubit of this NV center with that of another. The
direction argument determines which neighboring NV center is targeted. The global controller is expected
to send the same instruction with opposite direction to the other NV center.
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detectCarbon
Format: detectCarbon NV, sweepStart, sweepStep, sweepStop, measMax

Send command detectCarbon and its arguments to the specified local controller. Receive confirmation and return
data.

Perform measurements to detect 13C qubit frequencies.

magbias
Format: magbias NV, sweepStart, sweepStep, sweepStop

Send command magbias and its arguments to the specified local controller. Receive confirmation and return data.

Perform measurements to calibrate the magnetic biasing.

rabicheck
Format: rabicheck NV, sweepStart, sweepStep, sweepStop, measMax

Send command rabicheck and its arguments to the specified local controller. Receive confirmation and return
data.

Perform a Rabi oscillation check to calibrate the duration of MW pulses.

crc
Format: crc NV

Send command crc and its arguments to the specified local controller. Receive confirmation and return data.

Perform a charge resonance check.
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B.2. Local Microcode
The following microcode provides higher­level functionality to the local controller. These programs are present in
a hardware control store and get executed according to commands received from the global controller.

set NV, register, value Set local register
qgateE NV, phase, angle Apply electron gate
qgateZE NV, angle Apply Z­rotation on electron
qgateZC NV, C13, angle Apply Z­rotation on C13
qgateCC NV, C13, phase, angle Apply conditional C13 gate
qgateUC NV, C13, phase, angle, preserve Apply unconditional C13 gate
qgateDIR NV, C13, phase, angle, dir Rotate C13 in conditional direction
initialize NV Initialize NV center
measureE NV Measure electron state
swapEC NV, C13 Half­swap of electron to C13 qubit
swapCE NV, C13, basis Half­swap of C13 to electron qubit
entangle NV, direction Entangle with other NV center
detectCarbon NV, sweepStart, sweepStep, sweepStop, measMax Perform carbon detection
magbias NV, sweepStart, sweepStep, sweepStop Perform magnetic biasing check
rabicheck NV, sweepStart, sweepStep, sweepStop, measMax Perform Rabi check
crc NV Perform charge resonance check

set
Format: set NV, register, value

Set the value of a local register. Intended use is setting local calibration values that are calculated on the global
controller/host.

Requires indexing a register with a variable, ie like memory. This might require a dedicated local instruction.

.alias register = r1

.alias value = r2

receive $register, $value

mov [$register], $value

qgateE
Format: qgateE NV, phase, angle

Apply a gate on the e− qubit. phase specifies the axis of rotation in the XY plane. angle specifies the angle of
rotation around that axis.

Microwave pulse parameters are calculated based on local calibration.

Rotation time is calculated with the angle and erabifreq.

.alias phase = r1

.alias angle = r2

.alias time = r2

receive $phase, $angle

# Calculate rotation time, to be replaced with mult by inverse
div $time, $angle, $erabifreq

mw $time, $phase
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qgateZE
Format: qgateZE NV, angle

Apply a Z­rotation to the specified e− qubit. angle specifies the angle of rotation.

No physical gate is applied, instead only the phase tracking oscillator is shifted by the specified angle.

.alias angle = r1

receive $angle

% Convert to numerical phase?

add $ephase, $ephase, $angle

qgateZC
Format: qgateZC NV, C13, angle

Apply a Z­rotation to the specified 13C qubit. angle specifies the angle of rotation.

No physical gate is applied, instead only the phase tracking oscillator is shifted by the specified angle.

.alias C13 = r1

.alias angle = r2

receive $C13, $angle

% Convert to numerical phase?

add $cphase[$C13], $cphase[$C13], $angle
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qgateCC
Format: qgateCC NV, C13, phase, angle

Apply a conditional gate on the specified 13C qubit based on the e− qubit state. phase specifies the axis of rotation
in the XY plane. angle specifies the angle of rotation around that axis.

RF pulse parameters are calculated based on local calibration.

.alias C13 = r1

.alias phase = r2

.alias angle = r3

.alias ctime = r3

.alias etime = r4

.alias phaseppi = r5

receive $C13, $phase, $angle

# Calculate carbon rotation time, to be replaced with mult by inverse
div $ctime, $angle, $crabifreq[$C13]

# Calculate electron rotation time, to be replaced with mult by inverse
div $etime, PI, $erabifreq

add $phaseppi, $phase, PI

rf $C13, $ctime, $phase
mw $etime, 0
rf $C13, $ctime, $phase
mw $etime, 0

rf $C13, $ctime, $phase
mw $etime, 0
rf $C13, $ctime, $phaseppi
mw $etime, 0
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qgateUC
Format: qgateUC NV, C13, phase, angle, preserve

Apply an unconditional gate on the specified 13C qubit. phase specifies the axis of rotation in the XY plane. angle
specifies the angle of rotation around that axis.

If preserve is true, the e− qubit state is preserved.

Microwave parameters are calculated based on local calibration. The optional e− qubit state preservation is
implemented by use of flips on the e− qubit.

.alias C13 = r1

.alias phase = r2

.alias angle = r3

.alias ctime = r3

.alias presv = r4

.alias etime = r5

receive $C13, $phase, $angle, $presv

# Calculate carbon rotation time, to be replaced with mult by inverse
div $ctime, $angle, $crabifreq[$C13]

# Calculate electron rotation time, to be replaced with mult by inverse
div $etime, PI, $erabifreq

br $presv == 1, preserve

# QgateUC, not preserved
initialize
mw $etime, 0
rf $ctime, $carbonfreq[C13], $phase

jump end

# QgateUC, preserved
preserve:
rf $C13, $ctime, $phase
mw $etime, 0
rf $C13, $ctime, $phase
mw $etime, 0

end:
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qgateDIR
Format: qgateDIR NV, C13, phase, angle, dir

Apply a gate on the specified 13C qubit. phase specifies the axis of rotation in the XY plane. angle specifies the
angle of rotation around that axis. Based on dir the qubit is rotated in the positive or negative direction.

Microwave parameters are calculated based on local calibration.

.alias C13 = r1

.alias phase1 = r2

.alias angle = r3

.alias ctime = r3

.alias dir = r4

.alias etime = r5

.alias phase2 = r6

receive $C13, $phase1, $angle, $dir

# Calculate carbon rotation time, to be replaced with mult by inverse
div $ctime, $angle, $crabifreq[$C13]

# Calculate electron rotation time, to be replaced with mult by inverse
div $etime, PI, $erabifreq

# Rotate other direction with phase2
add $phase2, $phase1, PI

# Swap phase1 and phase2 if dir == 1
br $dir == 0, noswap
mov $r7, $phase1
mov $phase1, $phase2
mov $phase2, $r7
noswap:

rf $C13, $ctime, $phase1
mw $etime, 0
rf $C13, $ctime, $phase2
mw $etime, 0

initialize
Format: initialize NV

Initialize the e− qubit in the |0⟩­state.

loop:
ldi $phcount, 0
switchOn INIT
wait (time)
switchOff
br $phcount > 0, loop
(send done)
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measureE
Format: measureE NV

Measure the e− qubit state and send the result to the global controller.

ldi $phcount, 0
switchOn RO
wait (time)
switchOff
compare $phcount > $phthres
(send result)

swapEC
Format: swapEC NV, C13

Swap the quantum state of the e− qubit to the specified 13C qubit. After the operation the e− qubit is left in the
maximally mixed state.

.alias C13 = r1

.alias etime = r2

.alias ctime = r3

receive $C13

# To be replaced with mult by inverse
div $ctime, PI, $crabifreq
div $etime, PI, $erabifreq

mult $etime2, $etime, 0.5

mw $etime2, PI/2
rf $C13, $ctime, 0
mw $etime, 0
rf $C13, $ctime, PI
mw $etime, 0
mw $etime2, 0
rf $C13, $ctime, PI*3/2
mw $etime, 0
rf $C13, $ctime, PI/2
mw $etime, 0
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swapCE
Format: swapCE NV, C13, basis

Swap the state of the specified 13C qubit to the e− qubit in the specified basis. After the operation the 13C qubit
is left in an unknown non­entangled state.

The different basis swaps are implemented separately.

.alias C13 = r1

.alias etime = r2

.alias ctime = r3

receive $C13, basis

# To be replace by mult with inverse
div $etime, PI, $erabifreq
div $ctime, PI, $crabifreq

mult $etime2, $etime, 0.5
mult $ctime2, $ctime, 0.5

branch (basis = y), swapy
branch (basis = z), swapz

# Swap in X basis
swapx:
mw $etime2, PI/2
rf $C13, $ctime2, PI
mw $etime, 0
rf $C13, $ctime2, 0
mw $etime, 0
mw $etime2, 0

jump end

# Swap in Y basis
swapy:
mw $etime2, PI/2
rf $C13, $ctime2, PI*3/2
mw $etime, 0
rf $C13, $ctime2, PI/2
mw $etime, 0
mw $etime2, 0

jump end

# Swap in Z basis
swapz:
rf $C13, $ctime2, 0
mw $etime, 0
rf $C13, $ctime2, PI
mw $etime, 0
mw $etime2, PI/2
rf $C13, $ctime2, PI*3/2
mw $etime, 0
rf $C13, $ctime2, PI/2
mw $etime, 0
mw $etime2, 0

end:
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entangle
Format: entangle NV, direction

Perform an optical entanglement routine between the e− qubit of this NV center with that of another. The
direction argument determines which neighboring NV center is targeted. The global controller is expected
to send the same instruction with opposite direction to the other NV center.

(sync with other Q)
ldi $phent? # phent corresponding to other Q
switchOn ENTANGLE, (to other Q)
wait 100
switchOff
wait 50
send $phent?
(send entangleReg value)
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detectCarbon
Format: detectCarbon NV, sweepStart, sweepStep, sweepStop, measMax

Perform measurements to detect 13C qubit frequencies.

.alias sweep = r1

.alias sweepStep = r2

.alias sweepStop = r3

.alias measMax = r4

.alias phtotal = r5

.alias meascount = r6

receive $sweep, $sweepStep, $sweepStop, $measMax

# To be replace by mult with inverse
div $etime, PI, $erabifreq
div $ctime, PI, $crabifreq

mult $etime2, $etime, 0.5

ldi $meascount, 0
loop:
ldi $phcount, 0
switchOn INIT
wait (time)
switchOff
br $phcount > $phthres, loop

mov $sweep, $cresfreq[0]

mw $etime2, PI/2
rf 0, $ctime, 0
mw $etime, 0
rf 0, $ctime, PI
mw $etime, 0
mw $etime2, PI*3/2

ldi $phcount, 0
switchOn RO
wait (time)
switchOff
add $phtotal, $phtotal, $phcount
add $meascount, $meascount, 1
br $meascount < $measMax, loop
send $phtotal
send $sweep # should not be necessary since sweep is known in global

add $sweep, $sweep, $sweepStep
ldi $meascount, 0
br $sweep < $sweepStop, loop
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magbias
Format: magbias NV, sweepStart, sweepStep, sweepStop

Perform measurements to calibrate the magnetic biasing.

.alias sweep = r1

.alias sweepStep = r2

.alias sweepStop = r3

receive $sweep, $sweepStep, $sweepStop

loop:
ldi $phcount, 0
switchOn RO
mov $eresfreq, $sweep
mw (time), 0
switchOff
send $phcount
send $sweep # should not be necessary since sweep is known in global
add $sweep, $sweep, $sweepStep
br $sweep < $sweepStop, loop
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rabicheck
Format: rabicheck NV, sweepStart, sweepStep, sweepStop, measMax

Perform a Rabi oscillation check to calibrate the duration of MW pulses.

.alias count = r1

.alias measMax = r2

.alias sweep = r3

.alias sweepStep = r4

.alias sweepStop = r5

.alias measureSum = r6

receive $sweep, $sweepStep, $sweepStop, $measMax

ldi $count, 0
ldi $measureSum, 0

loop:
# initialize
initloop:
ldi $phcount, 0
switchOn INIT
wait (time)
switchOff
br $phcount > 0, initloop

mw $sweep, 0

# measure
ldi $phcount, 0
switchOn RO
wait (time)
switchOff
add $measureSum, $measureSum, $phcount

send $measureSum
send $sweep # should not be necessary since sweep is known in global

addi $count, 1
br $count < $countMax, loop
addi $sweep, $sweepStep
br $sweep < $sweepStop, loop
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crc
Format: crc NV

Perform a charge resonance check.

loop:
ldi $phcount, 0
switchOn RO, INIT
wait (time)
switchOff
br $phcount > $phthres, done
switchOn PUMP
wait (time)
switchOff
jump loop
done:
(send done)
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B.3. Local Microinstruction Set
The following table contains all microinstructions supported by the local controller. Following that a detailed de­
scription of each instruction is provided.

Classical
ldi dest, value Load immediate
compare (condition) Compare values
br (condition), label Branch conditionally
jump label Jump unconditionally
wait n Wait
Communication
sync unknown Synchronize local controllers
send source Send data to global
receive dest Receive data from global
Quantum
mw duration, phase Apply a microwave pulse
rf c13, duration, phase Apply a radio­frequency pulse
switchOn sw... Enable optical switches
switchOff sw... Disable optical switches

ldi
Format: ldi dest, value

Load immediate value in register.

compare
Format: compare (condition)

Compare register contents.

TBD: what comparisons, use of immediates

br
Format: br (condition), label

Branch to label based on condition.

jump
Format: jump label

Jump unconditionally to label.

wait
Format: wait n

Wait for n clock cycles.

sync
Format: sync unknown

Synchronize this local controller with another one. Necessary for entanglement.

TBD: how will this be implemented in actual hardware?
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send
Format: send source

Send data from register source to the global controller.

receive
Format: receive dest

Receive data from the global controller and store in register dest.

mw
Format: mw duration, phase

Apply a microwave pulse to the NV center to rotate the e− qubit.

Set registers mwdur, mwphase. Implicit use of registers elarmorfreq, mwenv, mwampl.

rf
Format: rf c13, duration, phase

Apply a radio­frequency pulse to the NV center to apply a 2­qubit gate on the e− qubit and specified 13C qubit.

Set registers rfindex, rfdur, rfphase. Implicit use of registers rfenv, rfampl.

switchOn
Format: switchOn sw...

Enable the specified optical switches. Allowed values are:

RO Readout laser
INIT Initialize laser

PUMP Charge pump laser
ENTANGLE Variable­frequency laser
(directions) Optical links to other (neighboring) NV centers

Set sw.

switchOff
Format: switchOff sw...

Switch off the specified optical switches. Allowed values are the same as for switchOn, or none to disable all
switches.

Set sw.



B.4. Local Registers 77

B.4. Local Registers
The following table lists all registers and register­mapped IO ports in the local controller. Following that a detailed
description of each register/port is provided.

General Purpose
r0 Constant 0 register
r1-15 General purpose registers
Calibration
erabifreq Electron Rabi frequency
crabifreq[16] Carbon Rabi frequency
eresfreq Electron resonance frequency
cresfreq[16] Carbon resonance frequencies
efield Electric field voltage
bfield Magnetic field strength
voa[4] Variable optical attenuator tuning
mwenv Microwave envelope
mwampl Microwave pulse amplitude
rfenv RF pulse envelope
rfampl RF pulse amplitude
phcurrent SNSPD bias current
phthres Photon threshold
Control
ephaseinc Electron phase increment
cphaseinc[16] Carbon phase increments
mwdur Microwave pulse duration
mwphase Microwave pulse phase
rfindex RF 13C qubit index
rfdur RF pulse duration
rfphase RF pulse phase
sw Optical switches
Readout
phcount Photon count

r0
Reading from this register always returns 0. Writing to this register has no effect.

r1­15
Registers for general purposes.

erabifreq
Rabi frequency of the e− qubit. This is the frequency at which the qubit oscillates between the |0⟩ and |1⟩ states.

This parameter is calibrated by the rabicheck instruction.

crabifreq[16]
Rabi frequency of the 13C qubit. This is the frequency at which the qubit oscillates between the |0⟩ and |1⟩ states.

For this parameter no calibration instruction is implemented yet.

eresfreq
Resonance (ie. Larmor) frequency of the e− qubit.

This parameter is calibrated by the magbias instruction.
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cresfreq[16]
Resonance (ie. spin precession) frequencies for the 13C qubits.

This parameter is calibrated by the detectCarbon instruction.

efield
Constant voltage that determines the electric field strength. This electric field separates the energy states of the
e− qubit.

For this parameter no calibration instruction is implemented yet.

bfield
Controls the local magnetic field strength.

For this parameter no calibration instruction is implemented yet.

voa[4]
Tuning of optical power allowed to pass through the VOA of different laser sources.

For this parameter no calibration instruction is implemented yet.

mwenv
Envelope (ie. shape) of the microwave generator output.

For this parameter no calibration instruction is implemented yet.

mwampl
Amplitude of the microwave generator output.

For this parameter no calibration instruction is implemented yet.

rfenv
Envelope (ie. shape) of the radio­frequency generator output.

For this parameter no calibration instruction is implemented yet.

rfampl
Amplitude of the radio­frequency generator output.

For this parameter no calibration instruction is implemented yet.

phcurrent
Bias current for the superconducting nanowire single­photon detecter (SNSPD).

For this parameter no calibration instruction is implemented yet.

phthres
Threshold for the photon count to determine whether a |0⟩ or |1⟩ is measured.

For this parameter no calibration instruction is implemented yet.

ephaseinc

cphaseinc[16]



B.4. Local Registers 79

mwdur
Pulse duration of the microwave generator output.

mwphase
Phase of the microwave generator output.

rfindex
Index to select a specific 13C qubit for the radio­frequency generator.

rfdur
Pulse duration of the radio­frequency generator output.

rfphase
Phase of the radio­frequency generator output.

sw
State of the optical switches. Each bit represents one switch.

phcount
Photon counter coupled to the single­photon detector.



CDecomposition Reference

This chapter describes the decomposition rules proposed for a compiler targeting a quantum com­
puter based on NV centers. Included are the logical to physical decomposition for an NVP1 system,
NV center­specific physical decomposition rules, and finally the translation from generic quantum in­
structions to architecture­specific ones.

C.1. NVP1 Decomposition Rules
The following decomposition rules transform operations on logical qubits to operations on the underlying
physical qubits, following an ‘NVP1’ logical qubit layout. The phys(n,m) syntax refers to physical qubit
m of the logical qubit referred to by the nth instruction operand.

x
Format: x q

Decomposition

x phys(0,1)

x90
Format: x90 q

Decomposition

x90 phys(0,1)

mx90
Format: mx90 q

Decomposition

mx90 phys(0,1)

x180
Format: x180 q

Decomposition

x180 phys(0,1)

80
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y
Format: y q

Decomposition

y phys(0,1)

y90
Format: y90 q

Decomposition

y90 phys(0,1)

my90
Format: my90 q

Decomposition

my90 phys(0,1)

y180
Format: y180 q

Decomposition

y180 phys(0,1)

z
Format: z q

Decomposition

z phys(0,1)

s
Format: s q

Decomposition

s phys(0,1)
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sdag
Format: sdag q

Decomposition

sdag phys(0,1)

t
Format: t q

Decomposition

t phys(0,1)

tdag
Format: tdag q

Decomposition

tdag phys(0,1)

h
Format: h q

Decomposition

h phys(0,1)

cnot
Format: cnot control, target

Based on martinez2019

Decomposition: symmetry=all

nventangle phys(0,0), phys(1,0)

cnot phys(0,1), phys(0,0)
measure phys(0,0)
if_x phys(1,0), phys(0,0)

cnot phys(1,0), phys(1,1)

h phys(1,0)
measure phys(1,0)
if_z phys(0,1), phys(1,0)
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prep_z
Format: prep_z q

Decomposition

prep_z phys(0,1)

measure
Format: measure q

Decomposition

measure phys(0,1)

move
Format: move q0, q1

Decomposition: symmetry=all

nventangle phys(0,0), phys(1,0)

cnot phys(0,1), phys(0,0)
measure phys(0,0)
if_x phys(1,0), phys(0,0)

cnot phys(1,0), phys(1,1)
cnot phys(1,1), phys(1,0)

h phys(1,0)
measure phys(1,0)
if_z phys(0,1), phys(1,0)

swap
Format: swap q0, q1

Decomposition: symmetry=all

nventangle phys(0,0), phys(1,0)

cnot phys(0,1), phys(0,0)
measure phys(0,0)
if_x phys(1,0), phys(0,0)

cnot phys(1,0), phys(1,1)
cnot phys(1,1), phys(1,0)
cnot phys(1,0), phys(1,1)

h phys(1,0)
measure phys(1,0)
if_z phys(0,1), phys(1,0)
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C.2. Physical Decomposition Rules
The following decomposition rules allow for higher­level instructions in prior compiler passes such as
the NVP decomposition. They are decomposed by the compiler into their corresponding sequences of
instructions.

h
Format: h q

Hadamard gate into y90 x180

Decomposition: qtype=[e]

y90 op(0)
x op(0)

Decomposition: qtype=[c]

y90 op(0)
x op(0)

cnot
Format: cnot control, target

Reverse CNOT­direction by surrounding it with Hadamard gates.

Decomposition: qtype=[c, e]

h op(0)
h op(1)
cnot op(1), op(0)
h op(0)
h op(1)
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C.3. ISA Decomposition Rules
The following decomposition rules convert generic quantum instructions and higher­level instructions
into the ISA as required by the hardware and simulator platforms. They are decomposed by the compiler
into their corresponding sequences of instructions.

A conditional version of each decomposition is also generated. This renames an instruction from instr
to if_instr, adds an extra argument which indicates the measured qubit, and wraps the decomposition
in a branch that tests for this qubit. An example is provided for x and if_x and other conditional
decompositions are constructed similarly.

x
Format: x q

Decomposition: qtype=[e]

qgatee nv(0), 0.0, pi

Decomposition: qtype=[c]

qgateuc nv(0), ci(0), 0.0, pi, 1

if_x
Format: if_x q_test, q

Decomposition: qtype=[e, e]

br MeasureResultRegNVnode[nvi(1)] > 0, line(x)
qgatee nv(0), 0.0, pi
line(x):

Decomposition: qtype=[c, e]

br MeasureResultRegNVnode[nvi(1)] > 0, line(x)
qgateuc nv(0), ci(0), 0.0, pi, 1
line(x):

x90
Format: x90 q

Decomposition: qtype=[e]

qgatee nv(0), 0.0, pi/2

Decomposition: qtype=[c]

qgateuc nv(0), ci(0), 0.0, pi/2, 1
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mx90
Format: mx90 q

Decomposition: qtype=[e]

qgatee nv(0), 0.0, -pi/2

Decomposition: qtype=[c]

qgateuc nv(0), ci(0), 0.0, -pi/2, 1

x180
Format: x180 q

Decomposition: qtype=[e]

qgatee nv(0), 0.0, pi

Decomposition: qtype=[c]

qgateuc nv(0), ci(0), 0.0, pi, 1

rx
Format: rx q, angle

Decomposition: qtype=[e]

qgateee nv(0), 0.0, op(1)

Decomposition: qtype=[c]

qgateuc nv(0), ci(0), 0.0, op(1), 1

y
Format: y q

Decomposition: qtype=[e]

qgatee nv(0), pi/2, pi

Decomposition: qtype=[c]

qgateuc nv(0), ci(0), pi/2, pi, 1
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y90
Format: y90 q

Decomposition: qtype=[e]

qgatee nv(0), pi/2, pi/2

Decomposition: qtype=[c]

qgateuc nv(0), ci(0), pi/2, pi/2, 1

my90
Format: my90 q

Decomposition: qtype=[e]

qgatee nv(0), pi/2, -pi/2

Decomposition: qtype=[c]

qgateuc nv(0), ci(0), pi/2, -pi/2, 1

y180
Format: y180 q

Decomposition: qtype=[e]

qgatee nv(0), pi/2, pi

Decomposition: qtype=[c]

qgateuc nv(0), ci(0), pi/2, pi, 1

z
Format: z q

Decomposition: qtype=[e]

qgateze nv(0), pi

Decomposition: qtype=[c]

qgatezc nv(0), ci(0), pi
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s
Format: s q

Decomposition: qtype=[e]

qgateze nv(0), pi/2

Decomposition: qtype=[c]

qgatezc nv(0), ci(0), pi/2

sdag
Format: sdag q

Decomposition: qtype=[e]

qgateze nv(0), -pi/2

Decomposition: qtype=[c]

qgatezc nv(0), ci(0), -pi/2

t
Format: t q

Decomposition: qtype=[e]

qgateze nv(0), pi/4

Decomposition: qtype=[c]

qgatezc nv(0), ci(0), pi/4

tdag
Format: tdag q

Decomposition: qtype=[e]

qgateze nv(0), -pi/4

Decomposition: qtype=[c]

qgatezc nv(0), ci(0), -pi/4
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cnot
Format: cnot control, target

Decomposition: qtype=[e, c]

qgatecc nv(0), ci(1), 0.0, pi
qgatezc nv(0), ci(1), pi/2

prep_z
Format: prep_z q

Decomposition: qtype=[e]

initialize nv(0)

Decomposition: qtype=[c]

initialize nv(0)
swapec nv(0), ci(0)

measure
Format: measure q

Decomposition: qtype=[e]

measuree nv(0)

Decomposition: qtype=[c]

swapce nv(0), ci(0), z
measuree nv(0)

nventangle
Format: nventangle eq0, eq1

Decomposition: qtype=[e, e]

nventangle nv(0), nv(1)



DCircuits

D.1. Circuit: hgate
A single logical qubit is initialized in the |0⟩ state, followed by a Hadamard gate.

Python Input
1 import openql as ql
2

3 ql.initialize()
4

5 ql.set_option('output_dir', 'output')
6 ql.set_option('log_level', 'LOG_DEBUG')
7

8 platform = ql.Platform('basic_platform', 'nvhwconf.json', 'nvcconfig.json')
9

10 nqubits = 2
11 program = ql.Program('hgate', platform , nqubits)
12 kernel = ql.Kernel('basic_kernel', platform , nqubits)
13

14 kernel.prepz(0)
15

16 kernel.gate('h', 0)
17

18 program.add_kernel(kernel)
19

20 program.compile()

cQASM Intermediate
1 # Generated by OpenQL 0.11.1 for program hgate
2 version 1.2
3

4 pragma @ql.name("hgate")
5

6

7 .basic_kernel
8 prep_z q[3]
9 y90 q[3]
10 x180 q[3]
11 skip 1

NV Assembly Output
1 initialize q0
2 swapec q0 0
3 qgateuc q0 0 1.5707963267949 1.5707963267949 1
4 qgateuc q0 0 0.0 3.1415926535898 1

90
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D.2. Circuit: bpair
A Hadamard and controlled NOT gate are applied to two logical qubits. No initialization is performed
prior.

Python Input
1 import openql as ql
2

3 ql.initialize()
4

5 ql.set_option('output_dir', 'output')
6 ql.set_option('log_level', 'LOG_DEBUG')
7

8 platform = ql.Platform('basic_platform', 'nvhwconf.json', 'nvcconfig.json')
9

10 nqubits = 2
11 program = ql.Program('bpair', platform , nqubits)
12 kernel = ql.Kernel('basic_kernel', platform , nqubits)
13

14 kernel.gate('h', 0)
15 kernel.cnot(0, 1)
16

17 program.add_kernel(kernel)
18

19 program.compile()

cQASM Intermediate
1 # Generated by OpenQL 0.11.1 for program bpair
2 version 1.2
3

4 pragma @ql.name("bpair")
5

6

7 .basic_kernel
8 nventangle q[2], q[4]
9 y90 q[2]
10 x180 q[2]
11 cnot q[2], q[3]
12 y90 q[2]
13 x180 q[2]
14 measure q[2]
15 if_x q[4], q[2]
16 cnot q[4], q[5]
17 y90 q[4]
18 x180 q[4]
19 measure q[4]
20 y90 q[3]
21 x180 q[3]
22 if_z q[3], q[4]
23 skip 1

NV Assembly Output
1 nventangle q0 q1
2 qgatee q0 1.5707963267949 1.5707963267949
3 qgatee q0 0.0 3.1415926535898
4 qgatecc q0 0 0.0 3.1415926535898
5 qgatezc q0 0 1.5707963267949
6 qgatee q0 1.5707963267949 1.5707963267949
7 qgatee q0 0.0 3.1415926535898
8 measuree q0
9 br MeasureResultRegNVnode0 > 0 x_11
10 qgatee q1 0.0 3.1415926535898
11 x_11:
12 qgatecc q1 0 0.0 3.1415926535898
13 qgatezc q1 0 1.5707963267949
14 qgatee q1 1.5707963267949 1.5707963267949
15 qgatee q1 0.0 3.1415926535898
16 measuree q1
17 qgateuc q0 0 1.5707963267949 1.5707963267949 1
18 qgateuc q0 0 0.0 3.1415926535898 1
19 br MeasureResultRegNVnode1 > 0 z_18
20 qgatezc q0 0 3.1415926535898
21 z_18:
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D.3. Circuit: Grover’s Algorithm
Python Input

1 import os
2 import unittest
3 from openql import openql as ql
4 import numpy as np
5

6 rootDir = os.path.dirname(os.path.realpath(__file__))
7 curdir = os.path.dirname(__file__)
8 output_dir = curdir #os.path.join(curdir, 'test_output')
9 num_qubits = 9
10

11

12 '''
13 grover algorithm implementation
14 '''
15

16 def init(platform):
17 init_k = ql.Kernel('init', platform , num_qubits)
18

19 # oracle qubit
20 oracle = 4
21

22 # init
23 init_k.x(oracle)
24 init_k.hadamard(oracle)
25

26 # Hn search space
27 for i in range(4):
28 init_k.hadamard(i)
29

30 return init_k
31

32

33 def grover(platform):
34 grover_k = ql.Kernel('grover', platform , num_qubits)
35 # oracle qubit
36 oracle = 4
37 # name search space
38 s0 = 0
39 s1 = 1
40 s2 = 2
41 s3 = 3
42

43 # oracle
44 grover_k.x(s0)
45 grover_k.x(s1)
46 grover_k.toffoli(s0,s1, 5)
47 grover_k.toffoli(s1, 5, 6)
48 grover_k.toffoli(s2, 6, 7)
49 grover_k.toffoli(s3, 7, 8)
50 grover_k.cnot(8, oracle)
51 grover_k.toffoli(s3,7,8)
52 grover_k.toffoli(s2,6,7)
53 grover_k.toffoli(s1,5,6)
54 grover_k.toffoli(s0,1,5)
55

56 # restore ss
57 grover_k.x(s0)
58 grover_k.x(s1)
59

60 # diffusion
61 for i in range(4):
62 grover_k.hadamard(i)
63

64 for i in range(4):
65 grover_k.x(i)
66

67 # controlled -phase shift
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68 grover_k.hadamard(s3)
69 grover_k.toffoli(s0,s1,5)
70 grover_k.toffoli(s1,5,6)
71 grover_k.toffoli(s2,6,7)
72 grover_k.cnot(7,s3)
73 grover_k.toffoli(s2,6,7)
74 grover_k.toffoli(s1,5,6)
75 grover_k.toffoli(s0,s1,5)
76 grover_k.hadamard(s3)
77

78 # restore search space
79 for i in range(4):
80 grover_k.x(i)
81 for i in range(4):
82 grover_k.hadamard(i)
83

84 # grover_k.gate('display ',[])
85

86 return grover_k
87

88

89

90 def grover_algorithm():
91 ql.set_option('output_dir', output_dir)
92 ql.set_option('optimize', 'no')
93 ql.set_option('scheduler', 'ASAP')
94 ql.set_option('log_level', 'LOG_DEBUG')
95 ql.set_option('write_qasm_files', 'yes')
96

97 platform = ql.Platform('grover_platform', 'nvhwconf.json', '../nvcconfig.json')
98 # num_qubits = 9
99 # oracle qubit
100 oracle = 4
101

102 # create a grover program
103 p = ql.Program('grover', platform , num_qubits , 0)
104

105 # kernels
106 init_k = init(platform)
107 grover_k = grover(platform)
108 result_k = ql.Kernel('result', platform , num_qubits)
109

110 # result
111 result_k.hadamard(oracle)
112 result_k.measure(oracle)
113 # result_k.gate("display",[])
114

115 result_k.measure(0)
116 result_k.measure(1)
117 result_k.measure(2)
118 result_k.measure(3)
119 # result_k.gate("display_binary",[])
120

121 # build the program
122 p.add_kernel(init_k)
123 p.add_kernel(grover_k)
124 p.add_kernel(result_k)
125 ql.set_option('decompose_toffoli', 'NC')
126 p.compile()
127

128 if __name__ == '__main__':
129 grover_algorithm()
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