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Summary

The current Hardening Soil small-strain (HSsmall) model, developed by Benz (2007), is capable of cap-
turing the behaviour of a wide range of soil types, including their small-strain response. However, under
specific conditions, the model exhibits overshooting, which is the overestimation of the material’s elastic
stiffness upon the closure of a small unloading–reloading (UL–RL) cycle interrupting monotonic load-
ing, rather than recovering the stiffness corresponding to the onset of the cycle, as observed in real soil
behaviour. Overshooting leads to underestimated deformations and consequently non-conservative
results.

To address this issue, PLAXIS (part of Seequent, the Bentley Subsurface company) proposed two for-
mulations: the Continuous Brick (CB) formulation, which replaces the small-strain component of the
HSsmall model, and a Memory-Surface-Based (MSB) formulation, which extends it. Both have been
implemented in the source code of the existing HSsmall constitutive model. However, their implementa-
tions had not yet been verified in the literature, nor had an assessment of overshooting, the motivation
behind their development, been conducted.

This research aims to close that gap and to determine which of the two formulations provides the most
suitable approach. Implementing the best-performing formulation into the HSsmall model results in a
new more robust state-of-the-art model.

Accordingly, the following research question is posed:

‘To what extent do the Continuous Brick formulation, as a new formulation for small-strain stiffness,
and the Memory-Surface-based formulation, as an extension to the existing small-strain stiffness for-
mulation within the Hardening Soil small-strain model, reduce the overshooting observed in the current
formulation?’

This question is addressed through a structured test plan consisting of two main components: (i) single
stress point simulations to verify whether the formulations behave as expected at the most fundamen-
tal level, and (ii) a boundary value problem to evaluate their performance under more numerically de-
manding conditions representative of practical applications in the pre-failure range, where small strain
stiffness strongly influences the magnitude of deformations.

It was found that both formulations reduce overshooting to a negligible level. However, their effective-
ness decreases in simulations involving nested cycles, as both formulations exhibit the limitation of
retaining the memory of only a single UL–RL cycle. Although both formulations perform well, the MSB
formulation proves to be the most suitable approach: it is easier to interpret, appears more robust, re-
tains the small-strain component of the original HSsmall model, and yields a response consistent with
the HSsmall model under monotonic loading.

One of the main challenges of this study was identifying the cause of the unloading-reloading cycles
in the boundary value problem, as the initial assumption was found to be incorrect. This challenge
was tackled by systematically reducing the complexity of the problem, which led to the discovery that
redistributions of stresses were the cause.

Extending the HSsmall model with theMSB formulation leads to more accurate deformation estimations
in geotechnical problems especially within the pre-failure range, as deformations will no longer be
underestimated, without introducing additional model parameters. Moreover, adopting this formulation
will not have major consequences for the end user, since its behaviour is consistent with that of the
HSsmall model, except that overshooting no longer occurs.
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Introduction

1.1. Research Context
The incorporation of small-strain stiffness in the constitutive models of soils has been widely recognized
and supported in the literature (Cudny & Truty, 2020). Accurately predicting displacements requires
incorporating small-strain stiffness and its non-linear dependency on strain amplitude (Benz, 2007).
However, existing constitutive models often fall short, either because incorporating a proper formulation
of small-strain stiffness makes them overly complex and less user-friendly for practical applications, or
because of their limitations in accurately capturing behaviour in the small-strain range. Therefore, there
was a need to develop a model that effectively describes small-strain stiffness while remaining simple
for practical engineering applications (Benz, 2007).

1.2. Research Problem
The Hardening Soil (HS) model, initially introduced by Schanz et al. (1999), is widely used because its
parameters can be easily identified through standard laboratory tests and/or field tests and/or empirical
correlations. However, it lacks the capability to accurately describe small-strain behaviour, as it does
not account for strain-dependency of stiffness. To address this shortcoming, Benz (2007) proposed an
extension to the model by incorporating a small-strain stiffness formulation, resulting in the Hardening
Soil small-strain (HSsmall) model.

Over time, a significant drawback of the HSsmall model became evident referred to as overshooting
in the literature, which is the over prediction of the material’s elastic stiffness upon closure of a small
unloading–reloading (UL–RL) cycle interrupting a monotonic loading path, rather than recovering the
stiffness corresponding to the onset of the cycle, as is observed in real soil behaviour (Niemunis &
Cudny, 2018). When a soil undergoes a strain reversal (SR), the elastic shear modulus, representing
the elastic stiffness of the material under shear stress, is reset to its high initial value. Less stiffness
reduction occurs during reloading compared to that occurring during initial loading, leading to a higher
stiffness upon closure of the cycle. These UL–RL cycles can be either caused by small numerical
inconsistencies or physically induced, which, given their small magnitude, would likely have no effect
on the soil’s response (Cudny & Truty, 2020).

Overshooting results in underestimated deformations, consequently, non-conservative results. This
highlights a critical limitation in the model’s ability to accurately predict small-strain behaviour, and due
to its popularity, it is even more important that overshooting is addressed (Niemunis & Cudny, 2018).

To solve this problem, two formulations, aiming to improve robustness of the small-strain stiffness com-
ponent of the HSsmall model, have been implemented in the source code of the existing HSsmall
constitutive model of PLAXIS (part of Seequent, the Bentley Subsurface company) and are discussed
in more detail in chapter 2:

1. Memory-Surface-Based (MSB) formulation

1
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2. Continuous Brick (CB) formulation

1.3. Research Objectives
The main objective of this study was to assess whether the MSB formulation and the CB formulation
effectively reduce overshooting. Both formulations are theoretically capable of describing the evolution
of small-strain stiffness. However, it was determined whether their numerical implementations also ef-
fectively mitigate overshooting. To this end, it was essential to verify that they have been implemented
in such a way that they correctly reproduce their underlying analytical formulations. This verification
included assessing whether the numerical tolerances have been properly defined and identifying po-
tential errors in the source code.

Furthermore, the study identified possible modifications that could improve or refine the two proposed
formulations, thereby improving their ability to reduce overshooting and enhance their robustness.

An additional objective was to evaluate whether the results obtained with the two proposed formulations
under monotonic loading are consistent with that of the original HSsmall model. If the results deviated
significantly, this could influence which of the two formulations is preferred, as larger deviations have
greater consequences for end users.

Finally, this study determined which of the two formulations provides the most suitable approach, not
only in terms of minimising overshooting but also in terms of robustness of the formulations. If both
formulations were found to be ineffective in reducing overshooting, the literature was consulted to find
alternative solutions.

1.4. Research Questions
Based on the research problem and objectives, the following research question was formulated and
addressed throughout this study:

“To what extent do the Continuous Brick formulation, as a new formulation for small-strain stiffness,
and the Memory-Surface-based formulation, as an extension to the existing small-strain stiffness for-
mulation within the Hardening Soil small-strain model, reduce the overshooting observed in the current
formulation?”

The research question was addressed by answering the following sub-questions:

1. What factors influence the extent of overshooting, and how?
2. To what extent do the numerical implementations of the two proposed formulations correctly re-

produce their underlying analytical formulation?
3. What potential changes can be identified to improve or refine the two proposed formulations?
4. How do the results obtained with the two proposed formulations differ from those obtained with

the original Hardening Soil small-strain model?
5. To what extent do the two proposed formulations effectively reduce overshooting at a single stress

point level?
6. How effective are the two proposed formulations in reducing overshooting when applied to a

boundary value problem?

1.5. Research theory and methods
The verification and assessment of overshooting were performed by conducting a structured test plan.
This test plan consisted of two components, in which stress path analysis was frequently adopted:

1. Single stress point simulations to assess whether the formulations behave as expected at the
most fundamental level

2. Two-dimensional (2D) boundary value problem (BVP) to assess overshooting not only at the level
of single stress point simulations, but also within numerical simulations of practical 2D problems



2
Literature Review

The HS model, initially introduced by Schanz et al. (1999), is considered one of the leading constitutive
models in geotechnical engineering, primarily because its parameters can be easily identified through
standard laboratory tests and/or field tests and/or empirical correlations. The model is capable of
simulating the behaviour of a wide range of soil types, including granular soils, fine grained-soils, and, to
some extent, soft organic soils, as well as capturing numerous essential features of soil behaviour, such
as stress-dependency, dilatancy and shear strength. Despite its broad adoption, the HS model lacks
the capability of describing small-strain behaviour, including strain-induced elastic stiffness reduction
during monotonic loading, the recovery of the high initial elastic stiffness after the occurrence of a SR
and hysteretic behaviour under cyclic loading.

To address this shortcoming, (Benz, 2007) proposed the HSsmall model, which extends the original
HS model by introducing strain-dependent stiffness behaviour. However, a shortcoming of the HSsmall
model was identified by Niemunis and Cudny (2018), commonly referred to as overshooting, which is
the overestimation of the material’s elastic stiffness upon closure of a small UL–RL cycle interrupting a
monotonic loading path.

To address this shortcoming, Cudny and Truty (2020) proposed the Hardening Soil Brick model, which
reproduces the stiffness reduction relationship of the HSsmall model (in a discrete, stepwise manner).

The first section of this literature review discusses the historical development of small-strain stiffness in
the HS model, beginning with a brief explanation of the HS model itself. The second section presents
two formulations currently under development, proposed by PLAXIS (part of Seequent, the Bentley
Subsurface company) to address overshooting, which form the main focus of this research.

2.1. Historical development of small-strain stiffness in the Harden-
ing Soil model

This section first provides a brief description of the HS model, followed by an explanation of the small-
strain component proposed by Benz (2007). The overshooting issue is then discussed, after which the
Hardening Soil Brick model proposed by Cudny and Truty (2020) is explained.

2.1.1. Hardening Soil model
The HS model is a double hardening elasto-plastic constitutive model that includes a stress-dependent
stiffness formulation for primary loading and for UL–RL conditions based on a power law formulation
(Schanz et al., 1999). Within the elastic domain, i.e., UL–RL conditions, the model assumes isotropic
elasticity, governed by a power law function including a stress-dependent unloading-reloading Young’s
modulus and a constant Poisson’s ratio.

The model incorporates two hardening mechanisms: shear hardening, which is associated with the
generation of plastic strains along deviatoric loading paths, and cap hardening, which occurs due to
the development of plastic strains during isotropic compression. Together, these mechanisms capture

3
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the non-linear stress–strain behaviour of soils. Both yield surfaces are always active from the onset of
loading, unless pre-loading is applied, meaning that the initial response is always elasto-plastic. Shear
hardening can continue until the stress state reaches theMohr-Coulomb failure envelope, which defines
the onset of failure. As the material undergoes hardening, both its elastic domain and shear strength
increase. The conceptual behaviour of the HS model is illustrated in Figure 2.1. For further information
on the HS model, the reader is referred to Schanz et al. (1999).

Figure 2.1: Conceptual behaviour of the HS model including the elastic range, cap hardening yield surface, shear hardening
yield surface and the Mohr-Coulomb shear strength envelope (Cudny & Truty, 2020).

2.1.2. Hardening Soil small-strain model
The small-strain component of the HSsmall model, developed by Benz (2007) and referred to as the
Small Strain Overlay (SSO) model, extends the original HS model by introducing strain-dependent
stiffness behaviour at small strains. The SSO model is a non-linear elastic model in which the non-
linearity is represented by an elastic modulus reduction curve. This curve describes the reduction of
the elastic shear modulus with an increasing shear strain measure and follows Formula 2.1.

Gs =
G0

1 + a
N

γ
γref

(2.1)

where:

G0 initial elastic shear modulus [kPa]
a curve-shaping parameter [−]

γ shear strain measure [−]

N scaling factor [−]

γref reference shear strain measure [−]

The elastic modulus reduction curve is derived from a so-called modified hyperbolic backbone curve,
which relates shear stress to shear strain at small strain levels and is described by Formula 2.2 (Hardin
& Drnevich, 1972).

τ = G0
1

1 + a
N

γ
γref

γ (2.2)
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The elastic modulus reduction curve is defined by threematerial parameters: the initial maximum elastic
shear modulus at small strains G0, the curve-shaping parameter a, and a reference shear strain level
γref . The parameters a and γref control the shape of the reduction curve. In the HSsmall model within
PLAXIS, a constant value of 0.385 is adopted for a, which implies that γref represents the shear strain
level at which the secant elastic shear modulus Gs is reduced to approximately 70% of G0. Therefore,
γref is denoted as γ0.7 (Santos & Correia, 2001). Furthermore, γ is replaced with γHist in the HSsmall
model, which represents the projection of the strain history tensor H onto the direction of the current
deviatoric strain increment (Benz, 2007).

Soils exhibit hysteretic behaviour (Seed & Idriss, 1970), meaning that under cyclic loading, the stress-
strain response forms closed loops. Masing (1926) described this behaviour through two rules. Accord-
ing to the second Masing rule, the UL–RL curves follow the same shape as the initial loading curve,
but their scale is doubled. In the SSO model, this second Masing rule is implemented by scaling the
parameter γ0.7 by a factor of 2 (Benz, 2007) (see the scaling factor N in Formulas 2.1 and 2.2). As
noted by Benz (2007) ”in combination with the HS model, the threshold shear strain γ0.7 in the Small-
Strain Overlay model is always doubled for reloading. If a primary loading conditions exists, this will
be accounted for by plastic hardening of the yield locus” (p. 85). Consequently, in the PLAXIS imple-
mentation of the SSO model, it is assumed that N = 2 for both primary loading and UL–RL conditions
(Plaxis, 2025c).

Once the shear strain measure exceeds a certain threshold, i.e., γcut−off , the tangent shear modulus
reaches its lower bound, defined as the UL–RL shear modulus Gur (Benz, 2007). In most soil consti-
tutive models, the stiffness under elastic (i.e., UL–RL) conditions is considered constant and equal to
Gur. However, when taking into account small-strain behaviour, the maximum (initial) elastic stiffness
at small strains is even higher and gradually reduces with increasing shear strain, as discussed, until
it reaches Gur, where it remains constant until a SR occurs (Benz, 2007). This strain dependency of
stiffness was recognised early in dynamic soil analyses (see for example Seed and Idriss (1970)), but
was long disregarded in static analyses. However, over time it became clear that small-strain stiffness
is also highly important for static analyses, because the majority of strains in the serviceability limit state
of geotechnical problems are very small (Burland, 1989).

Accurate determination of the elastic shear modulus requires tracking of the deviatoric strain history. In
the HSsmall model, this is achieved by using the second-order deviatoric strain history tensor H (Benz,
2007). Unlike most elasto-plastic models, where evolution is based on plastic strain increments, H
evolves based on total strain increments (Niemunis & Cudny, 2018). Consequently, even infinitesimally
small elastic strain increments can influence the tensor. Each time a SR occurs, H is erased and, as a
result, the elastic shear modulus returns to its high initial value.

For further information on the HSsmall model, the reader is referred to Benz (2007).

2.1.3. Overshooting
A shortcoming of the HSsmall model was identified by Niemunis and Cudny (2018), commonly referred
to as overshooting in literature, which is the overestimation of the material’s elastic stiffness upon the
closure of a small UL–RL cycle interrupting monotonic loading. When a soil undergoes a SR, the
elastic shear modulus, representing the elastic stiffness of the material under shear stress, is reset to
its high initial value. Less stiffness reduction occurs during reloading of an UL-RL cycle compared to
that occurring during initial loading, leading to a higher stiffness upon the closure of the cycle. This
phenomenon is clearly illustrated with Figure 2.2 retrieved from Kan and Taiebat (2014). Overshooting
is not only inherent to the HSsmall model, but also occurs in other constitutive models (Kan & Taiebat,
2014) (Tafili et al., 2024).

In real soil behaviour, the stiffness corresponding to the onset of an UL–RL cycle is recovered upon
its closure, implying that the response during continuation of the initial loading remains identical to
that without the interruption. In other words, the soil does not ”feel” the small UL–RL cycle. This
overestimation is triggered by small numerical inconsistencies and by physically induced UL–RL cycles,
that, given their small magnitude, would likely have no effect on the soil’s response (Cudny & Truty,
2020).

Overshooting results in underestimated deformations, consequently, non-conservative results. This
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highlights a critical limitation in the model’s ability to accurately predict small-strain behaviour.

 

Figure 2.2: The overshooting issue (Kan & Taiebat, 2014).

As discussed in Section 2.1.2, the elastic shear modulus has a lower bound (cut-off value) equal to
Gur (see Figure 2.3), and corresponds to a user defined cut-off shear strain measure. When shear
strains exceed this cut-off value, the small-strain stiffness formulation becomes inactive, i.e., the elastic
shear modulus no longer reduces, but still keeps track of the strain loading history. Consequently, an
accumulated shear strain measure larger than the cut-off value can be considered large.

Overshooting only occurs if during reloading in a UL–RL cycle less reduction takes place than what
already occurred during the initial monotonic loading phase. Typically, the lower bound of the elastic
shear modulus is reached quickly during monotonic loading. In other words, it is assumed that over-
shooting only occurs when this lower bound is not reached during reloading. If the UL–RL cycle is
sufficiently large to reach the lower bound during reloading, the cycle can be considered large, and
overshooting does not occur.

Figure 2.3: Elastic modulus reduction curve including the lower limit of the elastic shear modulus, GUR, and the corresponding
shear strain measure γc (Benz, 2007).

2.1.4. Hardening Soil Brick model
The Hardening Soil Brick model proposed by Cudny and Truty (2020) is derived from the Simpson’s
brick model (Simpson, 1992). The model adopts an analogy in which a soil element is represented
by a person connected to several bricks via strings of various lengths. The movement of the person
represents deviatoric strain, while the lengths of the strings represent radii of circular yield surfaces in
the deviatoric strain space. Initially, all the strings are slack. As the person begins to move, the strings
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become taut one by one. Once a string becomes taut, the corresponding brick is being pulled, resulting
in a reduction of the stiffness in a discrete, stepwise manner. A simple representation of the described
analogy is shown in Figure 2.4.

Upon a SR, all strings become slack and the initial high elastic shear modulus,G0, is recovered. A small
amount of unloading results in a slight loosening of the strings, allowing for a quick reactivation of the
bricks upon reloading. Each activation corresponds to a drop in the elastic shear modulus. Since the
same bricks become active as were active prior to the UL-RL cycle, the same elastic shear modulus
is obtained. Thus, the locations of the bricks in the deviatoric strain space implicitly represent the
deviatoric strain history. As a result, the elastic shear modulus corresponding to the strain level just
before the SR is restored more quickly, without having to traverse the entire elastic region (Cudny &
Truty, 2020).

This formulation reproduces the elastic modulus reduction relationship of the HSsmall model (in a dis-
crete, stepwise manner), while effectively addressing the overshooting issue.

Figure 2.4: Visual representation of the brick analogy. Left: all the strings are taut.
Right: change of loading direction resulting in slack strings and recovery of the high initial stiffness (Benz, 2007).

2.2. Formulations proposed by Plaxis
To address the issue of overshooting, PLAXIS (part of Seequent, the Bentley Subsurface company)
proposed two formulations that are currently under development: a formulation incorporating a Memory
Surface (Plaxis, 2025a) and the CB formulation (Plaxis, 2025b). This research focuses on these two
formulations, whose concepts are described in this section.

2.2.1. Memory-Surface-Based formulation
The MSB formulation extends the current small-strain stiffness formulation of the HSsmall model while
employing the same elastic modulus reduction curve. In conventional soil mechanics, a Memory Sur-
face is typically associated with the plastic component of a constitutive model, particularly within the
Bounding Surface plasticity framework (Li & Liu, 2020), although with a different objective1. In the
present context, however, the Memory Surface is applied to the elastic component. It encloses the
recently experienced deviatoric stress states, and reaching the Memory Surface implies reaching a de-
viatoric stress state not recently experienced by the material (Plaxis, 2025a). The formulation does not
require additional model parameters but introduces new elastic state variables. This section explains
the principles of the MSB formulation and how it tackles overshooting.

The Memory Surface is defined by Formula 2.3:

F = |s−α| −m, (2.3)

where:

F Memory Surface value [kPa]
s current deviatoric stress (tensor) [kPa]
α centre of the Memory Surface (tensor) [kPa]

1To simulate ratcheting behaviour
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m radius of the Memory Surface (scalar) [kPa]

The following situations can occur and are illustrated in Figure 2.5:

1. F < 0: this condition implies that the norm of the difference between s and α is smaller than the
radius of the Memory Surface, indicating that the current deviatoric stress point lies inside the
Memory Surface.

2. F = 0: this condition implies that the norm of the difference between s andα is equal to the radius
of the Memory Surface, indicating that the current deviatoric stress point lies on the Memory
Surface, within a given tolerance.

3. F > 0: this condition implies that the norm of the difference between s and α is larger than the
radius of the Memory Surface, indicating that the current deviatoric stress point lies outside the
Memory Surface. However, when this situation occurs, the Memory Surface should expand. Re-
call that the Memory Surface encloses the recently experienced deviatoric stress states. Having
a stress point outside of the Memory Surface would contradict this. This behaviour is analogous
to that of a yield surface.

1

3

s1

s2s3

2

Figure 2.5: Possible scenarios of the Memory Surface value F in the deviatoric stress space. Point 1 is located inside the
Memory Surface (F < 0). Point 2 is located on the Memory Surface within a given tolerance (F = 0). Point 3 is located outside

the Memory Surface (F > 0).

The evolution of the Memory Surface is as follows:

a) During initial loading, theMemory Surface expands. The deviatoric strain history tensorH remains
equal to the current deviatoric strain tensor. At the onset of loadingH is equal to zero (Figure 2.6a).

b) Upon a SR triggering unloading, the expansion halts and the deviatoric stress point moves into the
small-strain domain. When a SR triggering unloading occurs, the corresponding H is stored in the
elastic state variableHSR,UL (deviatoric strain history tensor at the last SR triggering unloading).
Subsequently, H is reset such that the maximum elastic small-strain stiffness, G0, is restored and
starts accumulating the deviatoric strain history until a new SR is detected. Note that G0 is also
restored upon a SR triggering reloading (Figure 2.6b).

c) The Memory Surface resumes its evolution when a SR triggering reloading occurs. Its centre
relocates to the point where the reversal took place (point 3 in Figure 2.6c), a process referred to
as kinematic evolution, and its radius is defined by the distance between the two reversal points
(points 2 and 3 in Figure 2.6c), i.e., the norm of the difference between the deviatoric stress states
corresponding to the SRs triggering unloading and reloading, effectively representing the amount
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of unloading (Figure 2.6c). It should be noted, to avoid confusion, that in Figure 2.6c the updated
Memory Surface appears to coincide with point 1, however, this is not the case.

d) The expansion is halted once more until the deviatoric stress point reaches the updated Memory
Surface. Upon reaching the Memory Surface, H is reset to the value stored at the most recent
SR triggering unloading (point 2), i.e., the value stored in the elastic state variable HSR,UL. This
recovers the elastic shear modulus corresponding to the onset of the UL–RL cycle and thereby
reducing overshooting. (Figure 2.6d) (Plaxis, 2025a)

The procedure for detecting a SR is in accordance with that of the HSsmall model (Benz, 2007).
However, unlike in the HSsmall model, theMSB formulationmust distinguish whether the detected
SR triggers unloading or reloading. To this end, the inner product between the deviatoric stress
at the beginning of a calculation step,s0, and the deviatoric stress increment, ds, is computed.
A negative value indicates a SR triggering unloading, whereas a positive value indicates a SR
triggering reloading (Plaxis, 2025a).

Overshooting
In conclusion, overshooting is mitigated by restoring elastic state variable H, the deviatoric strain
history tensor, corresponding to the onset of an UL–RL cycle upon its closure. As explained in
Section 2.1.2, this elastic state variable is used to determine the elastic shear modulus.

Figure 2.6: Memory Surface evolution. a) Isotropic expansion of the Memory Surface during monotonic, initial loading b)
Expansion halts upon a reversal triggering unloading and the stress points moves into the small-strain domain c) Relocation of

the Memory Surface to the reversal triggering reloading point and adjustment of the radius of the Memory Surface to the
distance between the deviatoric stresses at which the SRs triggering unloading and reloading occurred d) Expansion is halted

until the stress point reaches the updated Memory Surface (Plaxis, 2025a).

2.2.2. Continuous Brick formulation
A continuous representation of stiffness reduction provides a more realistic description of soil behaviour
than a stepwise approach. If the Hardening Soil Brick model (see Section 2.1.4) were to be used for
this purpose, an infinite number of bricks would be required to represent the reduction curve. Each
brick consists of a second-order symmetric deviatoric strain tensor, referred to as deviatoric strain
points, introducing six elastic state variables. These deviatoric strain points store information about the
previous deviatoric strain loading history. An excessive number of state variables would be needed for
a continuous representation, leading to substantial computer memory consumption (Plaxis, 2025b).

The CB formulation provides a continuous representation of stiffness reduction while reducing computer
memory consumption. It uses the Hardening Soil Brick model developed by Cudny and Truty (2020)
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as a starting point, which itself is based on the concepts of Simpson’s Brick model (Simpson, 1992).
Like the Hardening Soil Brick model, the CB formulation retrieves the elastic stiffness corresponding to
the onset of an UL–RL cycle upon its closure, indicating its ability to track the deviatoric strain loading
history and detection of SRs. However, two important modifications have been introduced. First, elastic
stiffness reduction occurs continuously by incorporating additional parameters in the form of scalar
state descriptors of the strain loading history. Second, the formulation requires fewer bricks, which is
made possible by the additional parameters, and significantly reduces computer memory consumption
(Plaxis, 2025b).

The last brick to be activated, referred to as the cut-off brick, is placed at the lower bound, serving as a
reference point. Beyond this cut-off point (lower bound), no further reduction occurs, and the stiffness
remains constant and equal to the UL–RL elastic shear modulus. Together with other bricks (at least
one brick in addition to the cut-off brick) and the scalar descriptors required by the continuous part, the
formulation can determine the elastic shear modulus corresponding to the current shear strain measure
(Plaxis, 2025b).

As each brick is defined by six state variables, the use of only two bricks results in twelve state variables,
excluding those required for the continuous small-strain formulation (Plaxis, 2025b) and those inherited
from the original HSsmall model (Benz, 2007). The formulation entirely replaces the second-order
deviatoric strain history tensor H, which is used in the HSsmall model, and does not introduce new
model parameters (Plaxis, 2025b).

The functioning of the model is explained with reference to Figure 2.7, considering only two bricks: the
cut-off brick and one additional brick.

a) At the start of the simulation, each brick, including the cut-off brick, and the current deviatoric
strain point are located at the origin of the deviatoric strain space. The actual (current) elastic
shear modulus, Gact, is equal to the initial elastic shear modulus G0. Upon deviatoric loading,
the elastic state variable ∆γ, which is the accumulated shear strain measure from the onset of
loading (either initial loading or reloading), brick activation, or a SR, begins to accumulate. The
total shear strain measure accumulation required to activate the next brick is defined by the elastic
state variable ∆γactv, which is updated at each step.

b) The first brick is activated when∆γ = ∆γactv. Under initial loading, brick activation corresponds to
reaching a specific value of the elastic shear modulus on the elastic modulus reduction curve (see
Figure 2.8). Between the activation of bricks, the value of the elastic shear modulus is determined
with γHist, which is the current shear strain measure. γHist is determined by Formula 2.4, and
consequently, Gact is determined by Formula 2.5:

γHist = γBrickLast +
∆γ

∆γactv
(γBrickNext − γBrickLast) (2.4)

Gact = G0 ∗

(
1

1 + 0.385
N

γHist

γ0.7

)2

(2.5)

The value of the scaling factor N adopted in the CB formulation is different from that adopted in
the HSsmall model and is discussed later in this section.

c) A SR triggering unloading is detected. The formulation makes use of two conditions to detect
SRs:

a. A check whether a brick becomes inactive given the current deviatoric strain increment
b. If no brick is active, a check whether the deviatoric strain point is moving away from the

cut-off brick while it was initially moving towards it, and vice versa

At each SR, the initial elastic shear modulus, G0, is recovered. Additionally, it is determined
whether the SR triggers unloading or reloading. This is evaluated by computing the inner product
of the deviatoric stress at the start of the calculation step, s0, and the deviatoric strain increment,
de. If the inner product is negative, a SR triggering unloading is detected, otherwise, a SR trig-
gering reloading.



2.2. Formulations proposed by Plaxis 11

d) A SR triggering reloading is detected. Recall that the previous SR triggered unloading. Therefore,
the deviatoric strain point is nowmoving towards the point where that SR occurred, i.e., the UL–RL
cycle is in reloading conditions.

e) Brick one is activated during reloading and, subsequently, ∆γ is set equal to ∆γSR,UL. Thereby,
restoring the shear strain measure accumulated prior to the UL-RL cycle and resuming the elastic
shear stiffness reduction from the point where it was interrupted, and thus, retrieving the elastic
shear modulus at the start of the UL-RL cycle. If a brick becomes active during unloading, ∆γ
won’t be set equal to ∆γSR,UL, but equal to zero

f) The cut-off brick is activated, meaning that the lower bound of the elastic shear modulus, GUR, is
reached and remains constant until the brick is deactivated (Plaxis, 2025b)

In the CB formulation, a scaling factor of 1 is applied to the elastic modulus reduction curve for both
primary loading and UL–RL conditions (Formula 2.5), whereas a value of 2 is used in the HSsmall model
(Section 2.1.2). Consequently, the CB formulation yields a softer response, but only under elasto-plastic
conditions. Under elastic (UL–RL) conditions, the CB formulation inherently behaves stiffer, because
the current deviatoric strain point must move more than one brick’s string length to activate it, having
already moved to some extent in the opposite direction (assuming a linear strain path). This results in a
larger ∆γactv (Formula 2.4) and consequently a larger Gact (Formula 2.5). For example, in Figure 2.7f,
the cut-off brick is being activated. If a SR were to occur subsequently, the current deviatoric strain
point would first have to move to the position of the cut-off brick and then the same distance further to
activate brick 1.

The softer response in primary loading can be partially counteracted by multiplying the user-defined
γ0.7 by a factor of 2. In an indirect manner, the response in primary loading is thus scaled by a factor
of 2 and becomes closer to that of the HSsmall model, while the scaling factor itself remains 1. Recall
that the HSsmall model applies a scaling factor of 2 for primary loading.

However, this solution is not ideal, as it will not always produce exactly the same results as the HSsmall
model. Both the HSsmall model and the CB formulation use a scaling factor of 1 for a different operation
that involves the yield functions. When γ0.7 is scaled by a factor of 2, this factor is indirectly scaled as
well, which causes a deviation from the HSsmall model.

Overshooting
In conclusion, overshooting is mitigated by restoring the elastic state variable ∆γ, the accumulated
shear strain measure, corresponding to the onset of an UL-RL cycle, upon its closure. As discussed in
this section, this elastic state variable is used for the determination of the elastic shear modulus.
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Figure 2.7: Functioning of the CB Formulation: a) Initial configuration, b) Start of deviatoric loading, c) Activation of brick one,
d) Unloading, e) Reloading up to reactivation of brick one, f) Activation of the cut-off brick.

Figure 2.8: Elastic modulus reduction curve with the cut-off brick corresponding to the unloading-reloading elastic shear
modulus and one additional brick, corresponding to a specific value of the elastic shear modulus.

2.3. Research gap
The CB formulation and the MSB formulation have been proposed to address overshooting. However,
these formulations have not yet been verified in literature, nor has an assessment of overshooting, the
motivation behind their implementation, been carried out. If the study demonstrates that overshooting
is effectively reduced, implementing the best-performing formulation into the HSsmall model will result
in a new, more robust, state-of-the-art model. Conversely, if overshooting is not effectively reduced,
this study rules out these alternatives.



3
Methodology

This chapter outlines the methodology adopted to answer the main research question and the corre-
sponding sub-questions. It consists of three phases, each of which is described in more detail in the
sections below:

1. In-depth study of the HSsmall model, the MSB formulation, and the CB formulation.
2. Analysis of factors influencing the extent of overshooting
3. Verification and assessment of overshooting through a structured test plan

The first two phasesmainly provide the background information required to interpret the results obtained
in the third part. The third phase forms the basis on which the conclusions of this study are drawn.

This study requires the use of PLAXIS software. Given that the thesis is conducted at PLAXIS, access
to the required software is available.

3.1. In-depth study of the Hardening Soil small-strain model, the
Memory-Surface-Based formulation, and the Continuous Brick
formulation

The small-strain stiffness component of the HSsmall model is studied in detail to gain a thorough un-
derstanding of how small-strain behaviour is currently formulated, which is required to interpret results
obtained with the HSsmall model, particularly with respect to the model’s response upon closing an
UL–RL cycle.

PLAXIS internal documentation (see Plaxis (2025a) and Plaxis (2025b)) is consulted to gain under-
standing of the MSB formulation and the CB formulation. Additionally, test results in terms of deviatoric
stresses and deviatoric strains, as well as the evolution of the elastic state variables, from a stress-
controlled consolidated drained (CD) triaxial compression test simulation conducted with SoilTest, are
analysed to examine the formulations in detail. A thorough understanding enables the correct verifica-
tion of the formulations, the identification of potential improvements, the assessment of overshooting,
and the analysis of differences in results when compared with the HSsmall model.

Explanations of the HSsmall model and the two proposed formulations are provided in Chapter 2.

Although laboratory tests are typically strain-controlled, all laboratory test simulations presented in this
study are stress-controlled, since overshooting, which results from UL–RL cycles, is being assessed.
Stress-controlled simulations allow for the specification of clear UL–RL cycles, making them easier to
visualise.

SoilTest is a tool developed by PLAXIS that enables numerical simulations of various laboratory tests,
such as the triaxial test, the direct simple shear (DSS) test, the oedometer (OED) test and a general
test. All laboratory test simulations presented in this study are conducted using SoilTest.

13
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SoilTest does not require the creation of a finite element model, as it uses a single-point algorithm,
which means that the numerical calculations are restricted to a single stress point. This enables the
analysis of the constitutive behaviour of the simulated material according to the applied constitutive
model. The simplified way in which soil laboratory tests are simulated in SoilTest involves applying
stress and strain boundary conditions representative of real laboratory testing on small soil specimens.
The self-weight of the specimen is neglected, as the applied stresses are much higher than its own
weight. Single stress point simulations ensure that the results reflect only the constitutive response of
the material, independent of local variations in loading conditions or displacements, making them ideal
for verification purposes.

3.2. Analysis of factors influencing the extent of overshooting
To visualise overshooting in the HSsmall model and to demonstrate its impact on the deviatoric stress-
deviatoric strain response, two CD triaxial compression tests are simulated and compared: (i) mono-
tonic loading up to a deviatoric stress of 150 kPa, and (ii) loading up to a deviatoric stress of 150 kPa,
interrupted by UL–RL cycles with a deviatoric stress amplitude, ∆q, of 0.5 kPa, applied at intervals of
25 kPa. The loading sequences are provided in Table 3.1.

Case Description Loading sequence (deviatoric stress q in kPa)
1 Monotonic loading 0 → 150

2 Loading with UL–RL cycles 0 → 25 → 24.5 → 25 → 50 → 49.5 → 50

→ 75 → 74.5 → 75 → 100 → 99.5 → 100

→ 125 → 124.5 → 125 → 150

Table 3.1: Loading sequences corresponding to the simulations.

Unless stated otherwise, the pre-loading listed in Table 3.2 is applied in each simulation to ensure purely
elastic behaviour during the shearing phase, since overshooting is associated with the elastic compo-
nent of the HSsmall model. The pre-loading is simulated with CD triaxial compression test conditions.
The stress state at the start of the shearing phase is an isotropic stress of −100 kPa.

Pre-loading Value Unit

Isotropic -300 kPa

Deviatoric 195 kPa

Table 3.2: Pre-loading conditions for purely elastic conditions

Subsequently, different factors potentially influencing the extent of overshooting are analysed to gain
further insight into overshooting. The factors considered include:

1. Amplitude of UL–RL cycles
UL–RL cycles are applied at intervals of 25 kPa, with deviatoric stress amplitudes of 0.5 kPa and
5 kPa. The corresponding loading sequences are provided in Table 3.3

2. Timing of UL–RL cycles along the deviatoric stress-deviatoric strain response
UL–RL cycles with a deviatoric stress amplitude of 0.5 kPa are introduced either at the beginning
of the simulation (i.e., the first UL–RL cycle is applied at a deviatoric stress of 5 kPa) or at the
end of the simulation (i.e., the first UL–RL cycle is applied at a deviatoric stress of 125 kPa). The
cycles are applied at intervals of 5 kPa. The corresponding loading sequences are provided in
Table 3.4

3. Elasto-plasticity
The sample is not subjected to isotropic and deviatoric pre-loading, meaning that the shearing
is applied to the sample from the start, resulting in an elasto-plastic response. Note that, in the
HSsmall model, the shear hardening yield surface is always active from the onset of loading,
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leading to an elasto-plastic response until the first unloading takes place (Schanz et al., 1999).
The same loading sequences as listed in Table 3.4 are used.

It should be noted that the factors analysed do not exclusively influence the extent of overshooting.
Other factors may also play a role, but lie outside the scope of this study.

Case Description Loading sequence (deviatoric stress q in kPa)
1 Monotonic loading 0 → 150

2 UL–RL cycles with ∆q = 0.5 kPa 0 → 25 → 24.5 → 25 → 50 → 49.5 → 50

→ 75 → 74.5 → 75 → 100 → 99.5 → 100

→ 125 → 124.5 → 125 → 150

3 UL–RL cycles with ∆q = 5kPa 0 → 25 → 20 → 25 → 50 → 45 → 50

→ 75 → 70 → 75 → 100 → 95 → 100

→ 125 → 120 → 125 → 150

Table 3.3: Loading sequences for the analysis of the amplitude of UL–RL cycles

Case Description Loading sequence (deviatoric stress q in kPa)
1 Monotonic loading 0 → 150

2 UL–RL cycles applied at beginning 0 → 5 → 4.5 → 5 → 10 → 9.5 → 10

→ 15 → 14.5 → 15 → 20 → 19.5 → 20

→ 25 → 24.5 → 25 → 150

3 UL–RL cycles applied at end 0 → 125 → 124.5 → 125 → 130 → 129.5 → 130

→ 135 → 134.5 → 135 → 140 → 139.5 → 140

→ 145 → 144.5 → 145 → 150

Table 3.4: Loading sequences for the analysis of the timing of UL–RL cycles along the deviatoric stress–deviatoric strain
response

3.3. Verification and assessment of overshooting through a struc-
tured test plan

This section presents the test plan adopted to verify the MSB formulation and the CB formulation and
to evaluate the extent of overshooting within these formulations.

The test plan consists of two phases:

1. Single stress point simulations
2. Boundary value problem (BVP)

These phases are described in more detail in the following sections.

3.3.1. Single stress point simulations
Several single stress point simulations are performed to verify whether the formulations behave as
expected at the most fundamental level. Recall that PLAXIS’s tool SoilTest is used for this purpose. The
simulations are designed to enable analysis of small-strain behaviour, such as elastic shear stiffness
reduction. To this end, deviatoric strains must develop during the simulations, since the elastic shear
modulus decreases with increasing shear strain measure.

According to Cudny and Truty (2020), overshooting is generally independent of the material parameter
set (i.e., model parameter set). Therefore, a standard set can be used for all tests. The material
parameter set of the silty sand layer reported by Amorosi et al. (2016) is adopted. The silty sand layer
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is the top layer of the soil profile at the Lotung Large-Scale Test site (LSST) in Lotung, Taiwan. The
material parameter set is provided in Table 3.5:

Parameter Symbol Unit Value

(Effective) cohesion c′ kPa 0

(Effective) angle of internal friction φ′ ◦ 30

K0-value(1) for normal consolidation Knc
0 – 0.5

Reference shear modulus at very small strains Gref
0 MPa 90

Threshold shear strain at which Gs
(2) = 0.722G0 γ0.7 % 0.011

Power for stress-level dependency of stiffness m – 0.54

Poisson’s ratio for unloading-reloading νur – 0.3

Unloading/Reloading modulus from drained triaxial test Eref
ur MPa 60

Secant stiffness in standard drained triaxial test Eref
50 MPa 20

Tangent stiffness for primary oedometer loading Eref
oed MPa 20

Table 3.5: Material parameter set single stress point simulations

Five laboratory test simulations are performed. The first three are specifically designed to evaluate
overshooting and represent fundamental laboratory tests: (i) the CD triaxial compression test, (ii) the
undrained DSS test, and (iii) the OED test. They are performed under both stress-independent, purely
elastic conditions to isolate small-strain behaviour, and stress-dependent, elasto-plastic conditions to
simulate more realistic soil behaviour:

1. Stress-independent, purely elastic conditions
The verification process should primarily focus on the small-strain formulation rather than the
entire constitutive model, as the main objective is to ensure the correct implementation of this for-
mulation. When testing the full model, both elastic and plastic strains are generated and cannot
be easily isolated. This complicates the verification process, as the small-strain stiffness formula-
tion is based on elasticity rather than plasticity, making plastic strains undesirable in this context.
Therefore, deviatoric and isotropic pre-loading, as listed in Table 3.2, are applied to the sample
prior to the shearing phase to ensure that the soil’s constitutive response remains purely elas-
tic. Otherwise, hardening could occur and plastic strains may develop. Similar to the procedure
described in Section 3.2, pre-loading is simulated under CD triaxial compression test conditions.
The stress state at the start of the shearing phase is an isotropic stress of −100 kPa.

Stress-dependency is deactivated by setting themodel parameterm equal to zero. This model pa-
rameter governs the amount of stress-dependency. A value of zero means no stress-dependency.
Stress-dependency is deactivated to isolate strain-dependent behaviour.

2. stress-dependent, elasto-plastic conditions
No pre-loading is applied to the sample prior to the shearing phase, ensuring that the soil’s re-
sponse is elasto-plastic. The model parameter m is set equal to 0.54, consistent with the value
used for the silty sand layer in Amorosi et al. (2016), thereby introducing stress-dependency of
stiffness.

The final two laboratory test simulations are CD triaxial tests, designed to investigate specific aspects
of the formulations: (i) CD triaxial compression test simulation with nested UL–RL cycles to assess
the formulations’ ability to retain memory and, (ii) CD triaxial test to investigate the detection of SRs in
triaxial extension and compression. Recall from Sections 2.2.1 and 2.2.2 that the correct classification

1Coefficient of lateral earth pressure at rest.
2Secant elastic shear modulus.
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of a SR as triggering either unloading or reloading strongly depends on the sign of the stress state,
which reverses when changing between triaxial compression and extension. Only stress-independent,
purely elastic conditions are considered in these simulations.

A brief description of the test specifications is provided below. Note that only the shearing phase is
described, since under stress-independent, purely elastic conditions, the pre-loading conditions have
already been detailed in Section 3.2. The first three tests include two cases: one with monotonic
loading, serving as a reference, and one with small UL–RL cycles.

1. CD triaxial compression test simulation
Case 1: monotonic loading up to a deviatoric stress of 150 kPa.
Case 2: loading up to a deviatoric stress of 150 kPa, interrupted by UL–RL cycles with a deviatoric
stress amplitude of 0.5 kPa, applied at intervals of 25 kPa.
For this test, the loading sequences are identical as those listed in Table 3.1 in Section 3.2.

2. Undrained DSS test simulation
Case 1: monotonic loading up to a shear stress of 35 kPa.
Case 2: loading up to a shear stress of 35 kPa, interrupted by UL–RL cycles with a shear stress
amplitude of 0.5 kPa, applied at intervals of 5 kPa.
The loading sequences are listed in Table 3.6.

Case Description Loading sequence (shear stress τxy in kPa)
1 Monotonic loading 0 → 35

2 Loading with UL–RL cycles 0 → 5 → 4.5 → 5 → 10 → 9.5 → 10

→ 15 → 14.5 → 15 → 20 → 19.5 → 20

→ 25 → 24.5 → 25 → 30 → 29.5 → 30 → 35

Table 3.6: Loading sequences of the undrained DSS test simulations.

3. Drained OED test simulation
Case 1: monotonic loading up to an axial stress of −135 kPa (i.e., a deviatoric axial stress of
35 kPa).
Case 2: loading up to an axial stress of −135 kPa (i.e., a deviatoric axial stress of 35 kPa), inter-
rupted by UL–RL cycles with a deviatoric stress amplitude of 0.5 kPa, applied at intervals of 5 kPa.
The loading sequences are listed in Table 3.7

Case Description Loading sequence (axial stress σyy in kPa)
1 Monotonic loading 0 → −135

2 Loading with UL–RL cycles −100 → −105 → −104.5 → −105 → −110

→ −109.5 → −110 → −115 → −114.5 → −115

→ −120 → −119.5 → −120 → −125 → −124.5

→ −125 → −130 → −129.5 → −130 → −135

Table 3.7: Loading sequences of the OED test simulations.

4. Tailored CD triaxial compression test simulation with nested UL–RL cycles to assess the
formulations’ ability to retain memory
Loading sequence in terms of deviatoric stress level: 0 → 20 → 5 → 10 → 9.5 → 10 →
20 → 25 → 24.5 → 25 → 35 kPa

5. Tailored CD triaxial test simulation to investigate the detection of SRs in triaxial extension
and compression
Loading sequence in terms of deviatoric stress level: 0 → −20 → −10 → −10.5 → −10 →
20 → 10 → 10.5 → 10 → −20 kPa
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Deviatoric stress is an invariant that, in principle, can only take positive values. However, in this
context its absolute value is not taken and, therefore, positive values represent triaxial extension
and negative values triaxial compression.

Appendix A can be consulted for further details on the test conditions (e.g., boundary conditions, number
of phases, etc.).

Three main aspects of the laboratory test simulations are considered:

1. Unexpected results
Unexpected results are identified and analysed mainly by examining the evolution of the elas-
tic shear modulus throughout the simulations. They are classified as either consistent with the
ingredients of the formulation, indicating that the observed behaviour is in accordance with the
formulation but there is potentially room for improvement, or inconsistent with the ingredients of
the formulation, and therefore relevant to the verification process.

2. Comparison between monotonic loading and loading with small UL–RL cycles
This comparison evaluates whether the CB formulation and the MSB formulation effectively re-
duce overshooting. This conclusion is supported if, upon the closure of an UL–RL cycle, the
deviatoric stress-deviatoric strain response, continues in accordance with the monotonic loading
case.

3. Comparison between the HSsmall model, CB Formulation and MSB Formulation
This comparison examines the implications of the newly implemented formulations on the devi-
atoric stress-deviatoric strain response relative to that obtained with the original HSsmall model.
The comparison is carried out only under stress-independent, purely elastic conditions.

Note that only the first aspect is considered in the analyses of the two tailored CD triaxial tests.

3.3.2. Boundary Value Problem
According to Cudny and Truty (2020), it is important to assess overshooting not only at the level of single
stress point simulations but also within numerical analyses of practical 2D geotechnical problems. This
is because, in practical applications concerning the pre-failure range (serviceability limit states), the
small-strain stiffness strongly influences the magnitude of deformations.

Overshooting is not observed in every numerical analysis of practical 2D geotechnical problems. It
occurs only under specific conditions. Cudny and Truty (2020) present three cases that were specifically
designed to assess overshooting: (i) a loading case involving a shallow foundation, (ii) an unloading
case involving an excavation, and (iii) a dynamic case. Therefore, one of these cases is adopted for
the BVP analysed in this study

The unloading case involving an excavation is repeated in this study, as the HSsmall model was orig-
inally proposed for excavation-type of problems (Benz, 2007). Moreover, the small UL–RL cycles
observed in the simulation are assumed to result from short breaks in the excavation that allow for
consolidation. It is therefore considered that the overshooting observed in the BVP arises from the
modelling sequence, but it represents a realistic sequence. The model parameter set reported by
Cudny and Truty (2020) is used for this BVP. It should be noted that the dilatancy angle, ψ, and the
coefficient of lateral earth pressure at rest for normal consolidation, Knc

0 , were chosen to have different
values. The dilatancy angle was set to zero to avoid the generation of excess pore water pressures
due to dilatancy, which would complicate the interpretation of the BVP, whereas Knc

0 was assigned a
value of 0.63, as this was the closest possible value to that reported in Cudny and Truty (2020) within
the constraints of the PLAXIS 2D software. The parameter set is provided in Table 3.8.
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Parameter Symbol Unit Value

(Effective) cohesion c′ kPa 6

(Effective) angle of internal friction φ′ ◦ 28

Dilatancy angle ψ′ ◦ 0

K0-value for normal consolidation Knc
0 – 0.63

Reference shear modulus at very small strains Gref
0 MPa 60

Threshold shear strain at which Gs = 0.722G0 γ0.7 % 0.0003

Power for stress-level dependency of stiffness m – 0.7

Poisson’s ratio for unloading-reloading νur – 0.29

Unloading/Reloading modulus from drained triaxial test Eref
ur MPa 25.75

Secant stiffness in standard drained triaxial test Eref
50 MPa 8.5

Tangent stiffness for primary oedometer loading Eref
oed MPa 6.15

Horizontal permeability kx ms−1 1.16× 10−10

Vertical permeability ky ms−1 1.16× 10−10

Table 3.8: Material parameter set BVP

The case involves a four-metre-deep excavation, executed in four phases of one metre each. Two
modelling sequences are considered:

1. Monotonic excavation with simultaneous consolidation in four phases, followed by a final consol-
idation phase

2. Excavation in four phases with simultaneous consolidation, each phase separated by a short
intermediate consolidation phase, followed by a final consolidation phase

The results under monotonic loading (excavation without intermediate consolidation phases) serves
as a reference, as no overshooting is expected in the absence of intermediate consolidation phases.
The reference case is compared to the case including UL–RL cycles (excavation with intermediate
consolidation phases), to assess whether overshooting is effectively reduced when using the proposed
formulations. The UL–RL cycles are unlikely to affect the soil’s primary loading response, as their
magnitude is expected to be small due to the very short duration of the intermediate consolidation
phases.

A numerical simulation of an excavation with simultaneous consolidation can be performed using a fully
coupled flow-deformation (FCFD) analysis in PLAXIS 2D. An FCFD analysis is characterised by the
coupling of flow and deformation, which yields more realistic behaviour but makes interpretation more
challenging. In such analyses, the correct specification of hydraulic boundary conditions is crucial, as
the pore water pressure distribution is computed on the basis of these conditions. For a more detailed
explanation of this type of analysis, the reader is referred to Bentley Systems (2024).

The hydraulic boundary conditions specified for this BVP are as follows:

1. Neumann boundary condition at the axis of symmetry (see y = 0m in Figure 3.1) and at the
bottom of the model (see x = 0m in Figure 3.1), where the groundwater flow q is set to 0md−1.

2. Dirichlet boundary condition at the ground surface (see y = 20m in Figure 3.1), where the hy-
draulic head h is determined from the GWL. However, since the top layer is modelled as dry,
h = 0m.

3. Dirichlet boundary condition at the right outer boundary of the model (see x = 35m in Figure
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3.1), where the hydraulic head h along the height is determined from the GWL. Above the GWL,
h = 0m, as the top layer is modelled as dry.

The groundwater level (GWL) is located one metre below the ground surface (see y = 19m in Figure
3.1). As each excavation phase removes one metre of soil, the first phase involves a dry excavation,
and the hydraulic boundary conditions therefore remain unchanged. During the second, third and fourth
excavation phases, the excavation is dewatered by lowering the water level by onemetre in each phase.
This is achieved by adjusting the hydraulic boundary condition at the bottom of the current excavation.
This boundary condition is defined as a Dirichlet boundary condition, where the groundwater head h
is set equal to the height of the bottom of the current excavation with respect to the reference system
of the model. Consequently, the pore water pressure at the bottom of the current excavation equals
0 kPa.

4x
1 
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4 

m

10 m 25 m
strut sheet pile wall

GWL
top layer simulated with Mohr-Coulomb 1

m
19 m

(0, 0)

y

x Glacial till simulated with HSsmall, MSB or CB

Figure 3.1: Overview of the model and generated mesh.

A detailed description of the two modelling sequences is provided in Tables 3.9 and 3.10. An overview
of the BVP and the adopted mesh is presented in Figure 3.1. The mesh consists of 15-noded triangular
elements and is refined along the sheet pile wall, within the excavation area, and beneath its base.
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Phase Duration [days]

Initial 0

Installation of the sheet pile wall 1.5

First excavation and installation of struts 0.5

Second excavation with simultaneous dewatering 0.5

Third excavation with simultaneous dewatering 0.5

Fourth excavation with simultaneous dewatering 0.5

Final consolidation 50,000

Table 3.9: Modelling sequence of the monotonic excavation.

Phase Duration [days]

Initial 0

Installation of the sheet pile wall 1.5

First excavation and installation of struts 0.5

First intermediate consolidation phase 0.1

Second excavation with simultaneous dewatering 0.5

Second intermediate consolidation phase 0.1

Third excavation with simultaneous dewatering 0.5

Third intermediate consolidation phase 0.1

Fourth excavation with simultaneous dewatering 0.5

Final consolidation 50,000

Table 3.10: Modelling sequence of the excavation including short intermediate consolidation phases.

It should be noted that the end of the final consolidation phase does not exactly coincide with the end of
consolidation. For the assessment of overshooting, the exact moment is not important. What matters
is that the change in excess pore pressure, and consequently for instance in vertical displacement, is
negligible. Therefore, a very long duration is adopted for the final consolidation phase. The actual time
required to reach the end of consolidation is shorter.

The analysis of the BVP consists of the following three main components:

1. Cause of the UL–RL cycles
Results obtained with the original HSsmall model are examined to verify whether the assumption
that the UL–RL cycles responsible for overshooting are caused by short intermediate consolida-
tion phases is valid. Understanding where the UL-RL cycles originate in this specific practical
case provides valuable insights into the types of geotechnical problems for which settlement pre-
dictions can be improved by employing a small-strain stiffness formulation that does not exhibit
overshooting. It should be noted that these insights do not imply that the identified cause is solely
responsible for the UL-RL cycles observed in the presented case, nor that overshooting will not
occur in other types of geotechnical problems. The extent of overshooting in the simulations is
evaluated by analysing the time-dependent vertical displacement of node 225, i.e., the node lo-
cated at the centre of the final excavation bottom, indicated in Figure 3.2. In addition, stress point
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10083, also shown in Figure 3.2, is used in this investigation.
2. Analysis of the results obtained with the MSB formulation

Results obtained with the MSB formulation are analysed with the aim of verifying the formulation,
assessing whether the extent of overshooting is reduced, identifying potential improvements, and
comparing the results both with the original HSsmall model and with the formulation proposed by
Cudny and Truty (2020).

3. Analysis of the results obtained with the CB formulation
Results obtained with the CB formulation are analysed with the same objectives as those defined
for the MSB formulation.

4. Bending moments in the sheet pile wall
The influence of overshooting on the sheet pile wall is evaluated by analysing the bending mo-
ments. In the loading case with UL–RL cycles, the soil response becomes stiffer due to over-
shooting. The stiffer a material, the larger the share of the load it carries. Therefore, the bending
moments in the wall are expected to be smaller than in the monotonic reference case, as a larger
portion of the load is taken by the soil. The results obtained with the MSB formulation and the CB
formulation are also presented to assess whether the reduction in bending moments is no longer
observed.

(0, 0)

y

x

Node 225

Stress point 10083 

Figure 3.2: Selected node and stress point in the model used for investigating the cause of the UL-RL cycle.

The second and third parts each consist of the following four steps:

1. Analysis of the vertical displacement of the node located at the centre of the final excava-
tion bottom
The first step addresses the vertical displacement of node 225 (Figure 3.2). Although overshoot-
ing is the most straightforward to assess from the deviatoric stress-deviatoric strain response,
analysing the vertical displacement at the final excavation bottom provides a more practical per-
spective. Moreover, since Cudny and Truty (2020) presented their results in terms of vertical
displacements, this approach allows for a comparison with the model proposed in their study.
The results obtained with the HSsmall model are presented in the same figures in order to evalu-
ate differences between the formulations.
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Although the final consolidation phase has a total duration of 50 000 d, the results are presented
up to 100 d to enable a comparison with the results reported by Cudny and Truty (2020), which
were also limited to 100 d.

2. Examination of the deviatoric stress-deviatoric strain response at three stress points se-
lected in the model
The deviatoric stress-deviatoric strain response at three stress points selected in the model is
examined to assess overshooting: (i) a point on the final excavation bottom between the axis of
symmetry and the sheet pile wall, where overshooting is expected to be most pronounced (stress
point 9757 indicated in Figure 3.3), (ii) a point near the ground surface on the right side of the sheet
pile wall where a building could potentially exist (stress point 9188 indicated in Figure 3.3), and
(iii) a point on the right side of the sheet pile wall where deformation of the wall is approximately
largest (stress point 10181 indicated in Figure 3.3). The results obtained with the HSsmall model
are presented in the same figures in order to evaluate differences between the formulations.

(0, 0)

y

x

Stress point 9757
Stress point 10181 

Stress point 9188 

Figure 3.3: Selected stress points in the model for the analysis of deviatoric stress-deviatoric strain responses.

In contrast to the previous step, these results include the entire final consolidation phase of
50 000 d, allowing for the evaluation of the ultimate difference in the extent of overshooting be-
tween the monotonic (reference) case and the case with UL–RL cycles. Nevertheless, presenting
the results up to 100 d already provides a sufficient assessment of overshooting, as overshooting
is generated during the excavation period, assuming that the UL–RL cycles originate from the
intermediate consolidation phases.

3. Detailed analysis of the soil response at the first selected stress point
A detailed analysis of the soil response at the first selected stress point (stress point 9757 indi-
cated in Figure 3.3) is provided, with two objectives: (i) verification of the formulations and (ii)
identification of potential improvements.

4. Comparison with the results reported by Cudny and Truty (2020)
The results obtained with the CB and MSB formulations are compared with those reported by
Cudny and Truty (2020) to evaluate whether they show improvement or are at least of comparable
quality. If not, consideration should be given to whether these formulations are the most effective
approach to mitigate overshooting. The same scale is applied in the figures showing the results
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of the MSB and CB formulations as in the figure showing the results of the model proposed by
Cudny and Truty (2020), enabling a comparison.

Once an unexpected result is encountered in the analyses, the evolution of the elastic state variables
and debug files will be consulted to determine whether the behaviour is consistent or inconsistent
with the ingredients of the formulation, as in the single stress point simulations. If the behaviour is
inconsistent, it will be explained how it should have behaved, whereas if the behaviour is consistent
but nevertheless unexpected, possible improvements will be discussed.



4
Overshooting analyses

The first part of this chapter presents and discusses the results of simulations conducted to visualise
overshooting in the HSsmall model, whereas the second part examines the influence of different factors
on the extent of overshooting.

For each simulation, three plots are presented: (i) the deviatoric stress-deviatoric strain response, (ii)
the elastic shear modulus versus loading step, and (iii) the applied deviatoric stress versus loading step.
Note that the loading steps represent the modelling sequence. To improve readability of the figures,
a baseline correction was applied to both the loading step and the deviatoric strain by subtracting
their values at the onset of the shearing phase. The pre-loading phase is not included in the results.
Recall that each simulation includes a pre-loading phase, except for those investigating the influence
of elasto-plasticity on overshooting.

4.1. Overshooting in the Hardening Soil small-strain model
In Figure 4.1a, a clear difference is observed between the deviatoric stress-deviatoric strain response
under monotonic loading and that under loading with UL–RL cycles. The attained deviatoric strain level,
and consequently the resulting deformation, under loading with UL–RL cycles is much smaller than that
under monotonic loading, as expected (see 2.1.3).

The elastic shear modulus at the beginning of an UL–RL cycle is not recovered upon its closure. For in-
stance, the elastic shear modulus at loading step 4 is not recovered at loading step 6 in Figure 4.1b. Be-
cause the elastic shear modulus is not recovered and, since stiffness reduction is strain-dependent, less
stiffness reduction occurs during reloading than during initial loading, the deviatoric stress-deviatoric
strain response becomes stiffer from the moment the cycle closes compared to that under monotonic
loading.

25



4.2. Factors influencing the extent of overshooting 26

 

0

25

50

75

100

125

150

175

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018 0.002

D
e

vi
at

or
ic

 s
tr

es
s,

 q
 (

kP
a)

Deviatoric strain, εq (-)

Deviatoric stress-deviatoric strain response:
obtained with the HSsmall model

Monotonic loading Loading with UL-RL cycles

(a)

 

0

20000

40000

60000

80000

100000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

E
la

st
ic

 s
he

ar
 m

od
ul

us
, G

 (
kP

a)

Loading step (-)

Elastic shear modulus versus loading step:
obtained with the HSsmall model

Monotonic loading Loading with UL-RL cycles

(b)

 

0

25

50

75

100

125

150

175

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

D
e

vi
at

or
ic

 s
tr

es
s,

 q
 (

kP
a)

Loading step (-)

Applied deviatoric stress versus loading step

Monotonic loading Loading with UL-RL cycles

(c)

Figure 4.1: Overshooting in the HSsmall model

4.2. Factors influencing the extent of overshooting
Amplitude of UL–RL cycles
The amplitude of the UL–RL cycles has a strong influence on the extent of overshooting, as clearly
shown in Figure 4.2a. The extent of overshooting in the red dashed case, which has a smaller UL–RL
cycle amplitude than the black dotted case, is greater. The larger the amplitude of the cycle, the greater
the stiffness reduction during reloading, resulting in smaller difference between the value of the elastic
shear modulus at the onset and at the closure of an UL–RL cycle. This trend is also observed in Figure
4.1b: at loading step 1, an UL–RL cycle starts, while at loading step 3, it closes. The elastic shear
modulus at loading step 3 of the black dotted case is clearly closer to its value at the beginning of the
cycle than that of the red dashed case.

Note that, in the particular case where the amplitude of the UL–RL cycle would be equal to that of
the initial loading, there would be no overshooting, meaning that the deviatoric stress-deviatoric strain
response of the initial loading and that of reloading would be identical (a case not shown in the figure
for brevity of the presentation). Note that this is only true when the response of the soil is purely elastic
(i.e., when pre-loading has been previously applied).
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Figure 4.2: Influence of the amplitude of an UL–RL cycle on the extent of overshooting

Timing of UL–RL cycles along the deviatoric stress-deviatoric strain response
Figure 4.3 shows that the timing of the UL–RL cycles along the deviatoric stress-deviatoric response
does not influence the extent of overshooting when the response is fully elastic. Both the case in which
the UL–RL cycles occur at the beginning of the response and in which they occur at the end show
approximately the same extent of overshooting. As detailed later, a different conclusion is obtained
when the modelled response is elasto-plastic (i.e., with no pre-loading). Figure 4.3b demonstrates that
the evolution of the elastic shear modulus is very similar in both cases.

Elasto-plasticity
Figure 4.4 shows the influence of elasto-plasticity on the extent of overshooting. Further along the
deviatoric stress-deviatoric strain response, i.e., towards the end of the simulation, the plastic compo-
nent becomes more dominant than the elastic component. Consequently, overshooting of the elastic
component becomes less pronounced when the cycles are applied at the end. At the beginning of the
simulation, the elastic component has a greater contribution, resulting in more evident overshooting of
the elastic component. Figure B.2 indeed demonstrates that the elastic shear modulus remains much
higher in the red dashed case.

4.3. Sub–conclusion
It was found that both the amplitude of an UL–RL cycle and the degree of elasto-plastic behaviour
influence the extent of overshooting. Specifically, a larger amplitude results in a smaller extent of over-
shooting, and the more dominant the plastic component of the HSsmall model becomes, the smaller
the extent of overshooting. When the response is fully elastic, the timing of the UL–RL cycles along
the deviatoric stress-deviatoric strain path did not influence the extent of overshooting.
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Figure 4.3: Influence of the timing of UL–RL cycles along the deviatoric stress-deviatoric strain response on the extent of
overshooting.
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Figure 4.4: Influence of elasto-plasticity on the extent of overshooting.



5
Single stress point simulations

This chapter presents and discusses the results of the single stress point simulations. The first three
sections focus on three fundamental soil laboratory tests: (i) the CD triaxial compression test, (ii) the
undrained DSS test, and (iii) the drained OED test. The final two sections each focus on a specific
aspect of the formulations: (i) a CD triaxial compression test simulation with nested UL–RL cycles to
assess the formulations’ ability to retain memory, and (ii) a CD triaxial test simulations to investigate
the detection of SRs in triaxial extension and compression.

For brevity of the presentation, only the results under stress-independent, purely elastic (i.e., includ-
ing pre-loading) conditions are presented. The figures of the CD triaxial compression test simulation
obtained with the MSB formulation are discussed in detail to clarify their interpretation. These figures
are repeated for each test, unless they do not give any new information. The graphical results un-
der stress-dependent, elasto-plastic conditions are provided in Appendix B for conciseness, while the
relevant findings are discussed in Section 5.4 to demonstrate whether the formulations also perform
reliably under such conditions.

5.1. Consolidated drained triaxial compression test simulation
5.1.1. Results obtained with the Memory-Surface-Based formulation
Figure 5.1 presents the stress-independent, purely elastic results of the CD triaxial compression test
simulation using the MSB formulation. Both the results under monotonic loading conditions (blue solid
line) and under loading with small UL–RL cycles (red dashed line) are included. Specifically, the fol-
lowing figures are presented:

1. Figure 5.1a shows the stress-strain response, consisting of the deviatoric pre-loading and unload-
ing phases, followed by the purely elastic shearing phase. UL–RL cycles are introduced during
the shearing phase.

2. Figure 5.1b provides a zoomed-in view of the shearing phase in the stress-strain figure to better
visualise the section where overshooting is assessed.

3. Figure 5.1c shows the applied loading throughout the simulation, including the isotropic decom-
pression phase zero, the deviatoric pre-loading and unloading phases, and the subsequent shear-
ing phase. The type of stress on the vertical axis depends on the simulated test.

4. Figure 5.1d provides a detailed view of an UL–RL cycle from 5.1c, clearly illustrating how such
cycles are simulated.

5. Figure 5.1e shows the effective stress path in terms of deviatoric stress versus mean effective
stress, including both isotropic and deviatoric pre-loading and unloading, as well as the subse-
quent shearing phase. In this test, the stress path of the shearing phase coincides with that of
the deviatoric pre-loading.

6. Figure 5.1f presents the elastic shear modulus as a function of the loading step. Note that the

29
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loading steps represent the modelling sequence. From loading step 0 to 1, isotropic decompres-
sion is simulated. Between loading step 1 and 2, deviatoric pre-loading takes place. Deviatoric
unloading occurs from loading step 2 to 3, after which the shearing phase begins. Each time the
elastic shear modulus becomes constant, it means that its lower bound (i.e., the UL–RL elastic
shear modulus) has been reached. Generally, a jump to (approximately) its initial value (i.e., its
maximum value) indicates the occurrence of a SR, whereas a sudden and sharp drop to a lower
value indicates the closure of an UL–RL cycle. Any deviation from this general pattern is explicitly
explained.
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Figure 5.1: Results of the CD triaxial compression test simulation under stress-independent, purely elastic conditions obtained
with the MSB formulation.

Figure 5.1f clearly demonstrates that the results are consistent with the ingredients of the formulation.
At each SR, the high initial elastic shear modulus is restored (at loading steps 2, 3, 4, 5, 7, etc.). Addi-
tionally, upon the closing of each UL–RL cycle, the stiffness at the start of that cycle is recovered. For
instance, the stiffness at loading step 4 and 6 is identical, as intended. Moreover, the deviatoric stress-
deviatoric strain response obtained in the monotonic simulation coincides with that of the simulation
with UL–RL cycles, indicating that overshooting does not occur.
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5.1.2. Results obtained with the Continuous Brick formulation
The results obtained with the CB formulation are presented in Figure 5.2, with the figures having the
same meaning as those presented for the MSB formulation in the previous section. Unexpected be-
haviour was identified, as detailed below. The improvements implemented by PLAXIS are subsequently
explained.
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Figure 5.2: Results of the CD triaxial compression test simulation under stress-independent, purely elastic conditions obtained
with the CB formulation.

Unexpected results
False detection of a SR triggering unloading at loading step 3
By examining the evolution of the elastic state variables, an inaccuracy in the results became apparent,
which cannot be inferred from Figure 5.2. Figure 5.3 shows that, at loading step 3, the elastic state
variable ∆γSR,UL is updated, which only happens when a SR triggering unloading is detected. This
means that the formulation failed to detect a SR triggering reloading (note that, at loading step 3, the
deviatoric stress starts increasing once again).

To find the root cause of this inaccuracy, the criterion for detecting a SR triggering unloading is analysed,
which is explained in Section 2.2.2: a SR triggering unloading is detected whenever the inner product
of the deviatoric stress at the start of the step, s0, and the deviatoric strain increment, de, is negative
(s0 : de < 0). After debugging, it became apparent that the result of the inner product at loading step
3 was not exactly zero, but a small negative number (−0.209E-014), resulting in the detection of a SR
triggering unloading. To conclude: the unexpected behaviour is consistent with the ingredients of the
formulation, but there is room for improvement. This type of corner cases mostly arise from numerical
inaccuracies. The implemented strategy will be presented later.
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Figure 5.3: Shear strain measure accumulation since the activation of the last brick until a SR triggering unloading has
occurred as a function of loading step.

Drop of the elastic shear modulus during reloading when the first brick is being activated
Figure 5.2c shows a sudden drop in the elastic shear modulus between loading steps 3 and 4. The
elastic state variable iBrickNext indicates which brick is to be activated next. Figure 5.4 shows that the
drop in the elastic shear modulus coincides with the activation of the first brick (note that the sign of
iBrickNext is not important in this context).

According to the formulation, when a brick is activated during reloading, the accumulated shear strain
measure accumulated prior to the UL–RL cycle is restored, resulting in a drop of the elastic shear
modulus, as its value is dependent on this measure. Thus, the behaviour observed in Figure 5.4 is
consistent with the ingredients of the formulation. However, it would be logical that a drop in the elastic
shear stiffness would only happen if a brick were activated upon the closure of an UL–RL, which is not
the case. In fact, the UL–RL cycle associated with the restored shear strain measure corresponds to
the start of deviatoric unloading following the deviatoric pre-loading. This means that, between loading
step 3 and 4, the reloading has not yet reached the deviatoric stress level at the start of unloading and,
consequently, the cycle is not yet closed. Thus, there is room for improving the formulation, as detailed
later.

Drops in the elastic shear modulus after the detection of a SR while no brick is active
Figure 5.2c shows sudden drops in the elastic shear modulus at loading steps 8, 11, 14 and 17. These
drops are the result of a bug in the code. A variable involved in the check for SRs when no brick
is active was being incorrectly initialised prior to this check. This behaviour is naturally inconsistent
with the ingredients of the formulation, as no drops in the elastic shear modulus should occur after the
detection of a SR.
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Figure 5.4: Drop of the elastic shear modulus during reloading when the first brick is being activated in between loading steps
3 and 4.

Improvements
False detection of a SR triggering unloading at loading step 3
To prevent the detection of false SRs triggering unloading, the criterion for its detection is changed
to determining whether the inner product of the current deviatoric stress, s, and the deviatoric strain
increment, de, is negative (s : de < 0), rather than s0 : de < 0. After implementing this new criterion,
∆γSR,UL is no longer updated at loading step 3, as can be seen in Figure 5.5, meaning that a SR
triggering reloading is detected, rather than a SR triggering unloading.
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Figure 5.5: Shear strain measure accumulation since the activation of the last brick until a SR triggering unloading has
occurred as a function of loading step after implementing the discussed improvement.

Jump of the elastic shear modulus during reloading when the first brick is being activated
To ensure that the shear strain measure accumulated prior to an UL–RL cycle is only restored when a
cycle is closed, two new elastic state variables are added to the formulation:
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1. ∆γtot: the total shear strain accumulation since the last SR
2. ∆γtot,SR,UL−SR,RL: the total shear strain measure accumulation from the last SR triggering un-

loading to the last SR triggering reloading

Upon activation of a brick during reloading, the accumulated shear strain measure since the start of
reloading is compared to ∆γtot,SR,UL−SR,RL. If the difference is smaller than a certain tolerance, the
cycle is considered closed and the accumulated shear strain measure accumulated prior to the corre-
sponding cycle is restored. Otherwise, the cycle is considered not to be closed and the elastic shear
modulus reduction proceeds continuously. In other words, the “distances” in the deviatoric strain space
(i.e., measures of the shear strain accumulation) are compared.

Drops in the elastic shear modulus after the detection of a SR while no brick is active
As previously mentioned, an error in the code was identified involving a variable used to check for a
SR when no brick is active. This issue was resolved by correctly initializing that variable.

Figure 5.6 shows the results obtained after implementing all the discussed improvements. From Figure
5.6c, it is evident that the sudden drop in the elastic shear modulus between loading step 3 and 4, as
well as the drops at loading steps 8, 11, 14 and 17, no longer occur.
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Figure 5.6: Results of the CD triaxial compression test simulation under stress-independent, purely elastic conditions obtained
with the CB formulation after implementing the discussed improvements.

Comparison between monotonic loading and loading with unloading–reloading cycles
No overshooting is observed in the deviatoric stress-deviatoric strain response obtained with the version
of the CB formulation that does not yet include the discussed improvements (see Figure 5.2b). However,
as discussed, the loading case with UL–RL cycles exhibits a sudden drop in the elastic shear modulus
during the first reloading phase following pre-loading (i.e., between loading steps 3 and 4). This drop
occurs not only in the loading case with UL–Rl cycles but also in the monotonic loading case. As a
result, the response in both cases is softer compared to that obtained with the version in which the
discussed improvements are implemented.

For the improved version, it is evident that the deviatoric stress-deviatoric strain response obtained
under loading with UL–RL cycles also coincides with that under monotonic loading (see Figure 5.6b).
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5.1.3. Comparison between the results obtained with the HSsmall model, the
Continuous Brick formulation and the Memory-Surface-Based formulation

Figures 5.7a and 5.7b compare the original HSsmall model, the MSB formulation, and the CB formula-
tion. Figure 5.7c shows the applied deviatoric stress throughout the simulations, which is independent
of the model or formulation used. Note that in Figures 5.7a and 5.7b, the blue solid, black dotted, and
yellow dotted/dashed lines coincide.

The loading case with UL–RL cycles of the HS small model deviates from its monotonic loading case,
as expected due to the overshooting inherent to this model. In contrast, Figures 5.7a and 5.7b clearly
show that both the MSB formulation and the CB formulation reproduce the monotonic response of the
HSsmall model. It should be noted that these responses are obtained under purely elastic conditions.
If the response were elasto-plastic, the CB formulation would exhibit a softer response, as discussed
in Section 2.2.2, while still preventing overshooting.
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Figure 5.7: Comparison between the results obtained with the HSsmall model with the MSB formulation and the CB
formulation for the CD triaxial compression test simulation.

5.2. Undrained direct simple shear test simulation
5.2.1. Results obtained with the Memory-Surface-Based formulation
The results obtained with the MSB formulation are presented in Figure 5.8. One unexpected aspect
was identified, as detailed below.
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Figure 5.8: Results of the undrained DSS test simulation under stress-independent, purely elastic conditions obtained with the
MSB formulation.

Unexpected results
The drained isotropic decompression and drained deviatoric triaxial compression pre-loading (note that
these phases are not shown in Figures 5.8a and 5.8c) are followed by a shearing phase simulated under
undrained DSS test conditions. The transition from triaxial decompression to DSS conditions at loading
step 3 results in a change in the deviatoric loading direction, as illustrated in Figure 5.8b. However, this
change in loading direction does not induce a SR,and consequently, the elastic shear modulus is not
reset to its high initial value, as shown in Figure 5.8e.

Although no SR occurs, the change in loading direction affects the deviatoric strain loading direction,
i.e., the direction of the current deviatoric strain increment de, which in turn affects the value of the shear
strain measure γHist and, consequently, the elastic shear modulus, as discussed in Section 2.1.2. As
a result, a jump in the elastic shear modulus would be expected at loading step 3. Nonetheless, such
a jump is not observed in Figure 5.8e.

Note that SRs in this study may refer to either full or partial SRs. If not specified, a full SR is implied.
According to the SR detection algorithm proposed by Benz (2007), a SR is detected whenever a reversal
occurs in any of the three eigen directions of de. The detected SR may be partial, when a reversal
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occurs in only one or two of the three eigen directions, or full, when a reversal occurs in all three eigen
directions. In both cases, the SR results from a rotation of the deviatoric strain path.

The reason why a jump in the elastic shear modulus does not occur at loading step 3 was assessed by
inspecting the values of γHist at the end of the triaxial decompression and at the onset of the shearing
phase. It was observed that, although γHist decreases at loading step 3, it remains above the cut-off
value (see Section 2.1.2), thereby retaining an elastic shear modulus equal to GUR. This behaviour is
consistent with the ingredients of the formulation, and no improvements are required.

Comparison between monotonic loading and loading with unloading–reloading cycles
According to Figure 5.8a, the shear stress-shear strain response obtained under monotonic loading
conditions closely coincides with that obtained under loading with UL–RL cycles, indicating that over-
shooting does not occur.

5.2.2. Results obtained with the Continuous Brick formulation
The results obtained with the CB formulation are presented in Figure 5.9. One unexpected aspect was
identified, as detailed below, followed by an explanation of the improvement implemented by PLAXIS.

 

0

5

10

15

20

25

30

35

40

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016

S
h

ea
r 

st
re

ss
,τ

xy
 
(k

P
a)

Shear strain, γxy (-)

Shear stress-shear strain response:
Continuous Brick formulation

Monotonic loading Loading with UL-RL cycles

(a)
 

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

E
la

st
ic

 s
he

ar
 m

od
ul

us
, G

 (
kP

a)

Loading step (-)

Elastic shear modulus as a function of loading step:
Continuous Brick formulation

Monotonic loading Loading with UL-RL cycles

(b)

Figure 5.9: Results of the undrained DSS test simulation under stress-independent, purely elastic conditions obtained with the
CB formulation.

Unexpected results
In contrast to the results obtained with the MSB formulation, Figure 5.9b shows a sudden increase in
the elastic shear modulus at loading step 3, prior to which all bricks, including the cut-off brick, are
active. This increase is unexpected, as no SR is detected. Consequently, all brick strings remain taut,
i.e., all previously activated bricks remain active, implying that the elastic shear modulus should remain
equal to its lower bound GUR.

However, the elastic shear modulus increases because, similarly to the behaviour described in Section
5.2.1, the deviatoric strain loading direction changes at loading step 3. In the CB formulation, the elastic
state variable ∆γactv, which represents the shear strain measure accumulation required to activate
the next brick, is updated upon such a change in deviatoric strain loading direction. (note that, if the
deviatoric strain loading direction changes, it is only logical that the shear strain measure needed to
activate the next brick changes).

As explained in Section 2.2.2, ∆γactv is a component of the formula used to determine γhist (Formula
2.4). Therefore, when∆γactv is updated, γhist will also be updated, which in turn results in a new value
for the elastic shear modulus according to Formula 2.5, also presented in Section 2.2.2.

The idea behind this approach (which, as explained later, was slightly redefined) was to induce a change
in the elastic shear stiffness upon a change in deviatoric strain loading direction, similar to the behaviour
in the HSsmall model and MSB formulation (recall the partial SRs discussed in Section 5.2.1).

However, it is illogical to continue accumulating shear strain measure required for the activation of the
next brick when all bricks are already active. Thus, while the observed behaviour is consistent with the
ingredients of the formulation, there remains room for improvement.
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Additionally, this flaw resulted in inconsistent behaviour at loading step 6, where the elastic shear mod-
ulus at the start of the UL–RL cycle at loading step 4 is not recovered.

Improvements
To prevent this undesired update of the elastic shear modulus from occurring, an improvement was
implemented: ∆γactv is now updated only if there is at least one brick remaining to be activated. The
new results are consistent with the improved formulation and no longer exhibit a sudden increase in
the elastic shear modulus at loading step 3, as illustrated in Figure 5.10b.

 

0

5

10

15

20

25

30

35

40

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016

S
h

ea
r 

st
re

ss
,τ

xy
 
(k

P
a)

Shear strain, γxy (-)

Shear stress-shear strain response:
Continuous Brick formulation

Monotonic loading Loading with UL-RL cycles

(a)
 

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
la

st
ic

 s
he

ar
 m

od
ul

us
, G

 (
kP

a)

Loading step (-)

Elastic shear modulus as a function of loading step:
Continuous Brick formulation

Monotonic loading Loading with UL-RL cycles

(b)

Figure 5.10: Results of the undrained DSS test simulation under stress-independent, purely elastic conditions obtained with
the CB formulation after implementing the discussed improvement.

Comparison between monotonic loading and loading with unloading–reloading cycles
Figure 5.9a illustrates that the shear stress-shear strain response obtained under loading with small
UL–RL cycles is softer than that under monotonic loading conditions. This behaviour is caused by
the fact that a lower stiffness is obtained when closing the UL–RL cycle at loading step 6, instead of
recovering the higher stiffness present at the onset of the UL–RL cycle. Figure 5.10a demonstrates
that this “undershooting” no longer occurs after implementation of the discussed improvement.

5.2.3. Comparison between the results obtained with the HSsmall model, the
Continuous Brick formulation and the Memory-Surface-Based formulation

Figures 5.11a and 5.11b show that both the MSB formulation and the CB formulation are able to pre-
vent overshooting from happening, while the current version of the HSsmall model shows significant
overshooting, as can be inferred from the deviation between the red dashed line and the other lines.
Note that the red dashed, black dotted, and yellow dashed/dotted lines coincide in Figures 5.11a and
5.11b. Moreover, both the MSB formulation and the CB formulation are consistent with the monotonic
response of the HSsmall model. The applied shear stress (Figure 5.11c throughout the simulation is
independent of the model or formulation used. Note that the results were obtained using the improved
version of the CB formulation.

In the UL–RL case of the HSsmall model, the initial part, up to a shear stress of 5 kPa, has a stiffness
equal to the UL–RL elastic shear modulus, as explained Sections 5.2.1 and 5.2.2. At 5 kPa, the first
UL–RL cycle occurs (see Figure 5.11c), and the stiffness at the onset of the UL–RL cycle is not restored
upon its closure, i.e., overshooting, which explains the change in slope.
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Figure 5.11: Comparison between the results obtained with the HSsmall model with the MSB formulation and the CB
formulation for the undrained DSS test simulation.

5.3. Drained oedometer test simulation
5.3.1. Results obtained with the MSB formulation
The results obtained with the MSB formulation are presented in Figure 5.12. Figure 5.12e clearly
demonstrates that the results are consistent with the ingredients of the formulation. At each SR, the
high initial elastic shear modulus is recovered (at loading steps 2, 3, 4, 5, 7, etc.). Additionally, upon the
closure of each UL–RL cycle, the elastic shear stiffness at the onset of the that cycle is recovered. For
instance, the stiffness at loading step 4 and 6 is identical, as intended. Moreover, the axial stress-axial
strain response obtained under monotonic loading conditions coincides with that under loading with
UL–RL cycles, indicating that overshooting does not occur. Note that the axial strains shown in Figures
5.12a to 5.12d are deviatoric rather than total axial strains.
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Figure 5.12: Results of the OED test simulation under stress-independent, purely elastic conditions obtained with the MSB
formulation.

5.3.2. Results obtained with the CB formulation
The results obtained with the CB formulation are presented in Figure 5.13. One unexpected aspect was
identified, as detailed below. The improvement implemented by PLAXIS is subsequently explained.

Unexpected results
Figure 5.13c shows a sudden decrease in the elastic shear modulus just after loading step 15. At
this point, the first brick is activated during reloading. According to the formulation, the accumulated
shear strain measure is then reset to the value stored at the last SR triggering unloading, as explained
in Section 2.2.2. In this case, the value stored at loading step is used, because no brick was active
between loading 3 and 15. In fact, when no brick is active upon a SR triggering unloading, the previously
stored accumulated shear strain measure is retained, an assumption redefined, as detailed below. In
such case, the shear strain measure accumulated prior to the larger UL–RL cycle (in this case, the
cycle associated with the pre-loading) would be kept in memory. As a result, when the first brick would
be finally activated, the current accumulated shear strain measure would be set equal to the large value
stored in memory, therefore leading to a sudden drop in the elastic shear modulus. However, the larger
UL–RL cycle has not yet been closed at that point, leading to a too small elastic shear stiffness. In
conclusion, although the behaviour is consistent with the ingredients of the formulation, the formulation
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requires improvement.
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Figure 5.13: Results of the CD triaxial compression test simulation under stress-independent, purely elastic conditions
obtained with the CB formulation after implementing the discussed improvements.

Improvements
Rather than retaining the previously stored accumulated shear strain measure at a SR triggering un-
loading when no brick is active, the stored value is now reset to zero. Consequently, when the first brick
is activated just after loading step 15 in Figure 5.14c, a sudden decrease in the elastic shear modulus
no longer occurs.

Note that before the activation of the first brick (just after loading step 15), the elastic shear modulus
obtained at the onset of an UL–RL cycle is not restored upon its closure (for instance the stiffness at
loading step 7 and 9 is not identical in Figure 5.14c). This is due to the fact that the shear strain measure
at the last SR triggering unloading is no longer stored when no brick is activated. After activation of
the first brick, the shear strain measure at a SR triggering unloading is stored and the elastic shear
modulus at the onset of the UL–RL cycle is recovered upon its closure (see loading steps 16 and 18 in
Figure 5.14c).

In conclusion, as a consequence of this needed improvement, the formulation no longer retains the
shear strain measure corresponding to larger previous UL–RL cycles in memory, even when no brick
is activated during a small UL–RL cycle. This may result in non-negligible overshooting under certain
conditions. However, this drawback can easily be resolved by shortening the string length of the first
brick, i.e., placing the first brick higher on the elastic modulus reduction curve. This will lead to an
activation of the first brick at smaller shear strains. Testing this solution lies outside the scope of this
study. Note that this improvement does not affect the previously obtained results.
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Figure 5.14: Results of the CD triaxial compression test simulation under stress-independent, purely elastic conditions
obtained with the CB formulation after implementing the discussed improvements after implementing the discussed

improvements.

Comparison between monotonic loading and loading with unloading–reloading cycles
Figure 5.13b shows that the axial stress-axial strain response obtained under loading with small UL–
RL cycles is softer than that under monotonic loading when using the version of the CB formulation
that does not include the discussed improvement. This behaviour is caused by the drop in the elas-
tic shear modulus when activating the first brick, as discussed. Figure 5.14b demonstrates that this
“undershooting” no longer occurs when using the improved version.

The improved results may show very slight overshooting caused by the drawback discussed in the
previous paragraph: the elastic shear modulus at the onset of an UL–RL cycle is no longer recovered
upon its closure when no brick is active (between loading steps 3 and 15). However, in this specific
case, the extent of overshooting caused by this drawback is of a negligible level.

5.3.3. Comparison between results obtained with the Hardening Soil small-strain
model, the Continuous Brick formulation and the Memory-Surface-Based
formulation

Figure 5.15a shows that the results obtainedwith theMSB formulation are consistent with themonotonic
response of the HSsmall model, as the blue solid, black dotted, and yellow dashed/dotted lines coincide.
For the CB formulation (Figure 5.15b), only the black dotted and yellow dashed/dotted lines coincide,
indicating that its response remains consistent with the HSsmall model under monotonic loading (this
does not hold under elasto-plastic conditions, as discussed in Section 2.2.2), but that overshooting
occurs, as the yellow dashed/dotted line deviates. The overshooting observed in the CB formulation
results from the drawback described in Section 5.3.2. The applied (deviatoric) axial stress (Figure
5.15c) is independent of the model or formulation used. Note that the results were obtained using the
improved version of the CB formulation.
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Figure 5.15: Comparison between the results obtained with the HSsmall model with the MSB formulation and the CB
formulation for the OED test simulation.

5.4. Simulations under elasto-plastic, stress-dependent conditions
This section briefly presents the findings obtained from the simulations of the CD triaxial compres-
sion test, the undrained DSS test, and the drained OED test under stress-dependent, elasto-plastic
conditions, i.e., without pre-loading. These simulations were performed using the final version of the
proposed formulations, namely the version incorporating all previously discussed improvements. The
figures presenting the results are provided in Appendix B.

For almost all test simulations, the deviatoric stress-deviatoric strain response under monotonic loading
coincides with that of the loading case including UL–RL cycles, indicating that overshooting does not
occur. This demonstrates that the formulations effectively mitigate overshooting under elasto-plastic,
stress-dependent conditions at a single stress point level.

Unexpected behaviour was identified only in the CD triaxial compression test simulation using the MSB
formulation. The formulation failed to recover the elastic shear modulus at the onset of the first UL–RL
cycle upon its closure, which is inconsistent with the ingredients of the formulation. This inconsistency
was resolved by reducing a numerical tolerance. The improved version no longer exhibits this inaccu-
racy. A more detailed explanation of the unexpected behaviour is provided in Appendix B.

5.5. Tailored consolidated drained triaxial compression test simu-
lation with nested unloading–reloading cycles to assess the
formulations' ability to retain memory

This section presents the results of the tailored CD triaxial compression test simulations that include
nested UL–RL cycles, specifically designed to assess whether the formulations are capable of retaining
the memory of more than a single cycle. Recall from Section 3.3.1 that stress-independent, purely
elastic (i.e., including pre-loading) conditions apply.

In Section 3.3.1, the modelling sequence was briefly introduced. However, it is discussed here in more
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detail to provide a clearer understanding of the test setup and the obtained findings. Figure 5.16 shows
the applied deviatoric loading throughout the simulation.
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Figure 5.16: Applied deviatoric loading throughout the simulations.

Pre-loading occurs from loading steps 0 to 3, followed by a shearing phase. A SR triggering unloading
occurs at loading step 4. At this point, both formulations store the variable required to reproduce the
corresponding elastic shear modulus upon closure of the corresponding cycle, either the accumulated
shear strain measure in the CB formulation, or the deviatoric strain history tensor in theMSB formulation.
Reloading begins at loading step 5. From loading steps 6 to 8, a smaller UL–RL cycle occurs before
the larger cycle is closed at loading step 9. Note that when referring to the larger UL–RL cycle in this
section, the cycle starting at loading step 4 is meant, rather than the one associated with the pre-loading
(starting at loading step 2).

Figures 5.17 and 5.18 show the test results obtained with the MSB formulation and the CB formulation,
respectively. For both formulations, the results demonstrate that, when the larger cycle is closed, the
elastic shear modulus at the onset of that UL–RL cycle is not restored. This is inferred from the fact
that the stiffness at loading steps 4 and 9 is not identical (see Figures 5.17d and 5.18d. This behaviour
results from the overwriting of the previously stored memory (that at loading step 4) when a new SR
triggering unloading occurs (in this case, the one at loading step 6). In conclusion, neither formulation
is capable of retaining the memory of more than a single cycle, which can potentially result in non-
negligible overshooting.

For the MSB formulation, a slight difference in the slope of the deviatoric stress-deviatoric strain re-
sponse is observed between overloading and initial loading, i.e., when the larger cycle is closed, at a
deviatoric stress of 20 kPa (see the point indicated with the black arrow in Figures 5.17b and 5.17c).
This occurs because the stiffness at the onset of the cycle is not recovered upon its closure, as previ-
ously explained, indicating overshooting. If overshooting did not occur, overloading would continue to
follow the same trend as the initial loading.

For the CB formulation, no difference in the slope of the deviatoric stress-deviatoric strain response is
observed when closing the larger cycle (see the point indicated with the black arrow in Figures 5.18b
and 5.18c). However, if the formulation were able to memorise the larger cycle, the deviatoric stress-
deviatoric strain response would show a reduction in the slope at that point, as the lower stiffness at
the onset of the UL–RL cycle would then be recovered.

Although the difference in stiffness between the onset and closure of the larger UL–RL cycle is small
in this specific case for both the MSB formulation and the CB formulation, it could become more pro-
nounced under different test conditions, potentially leading to more significant overshooting effects.
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Figure 5.17: Results of the tailored CD triaxial compression test with nested UL-RL cycles obtained with the MSB formulation.
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Figure 5.18: Results of the tailored CD triaxial compression test with nested UL-RL cycles obtained with the CB formulation.

Looking more closely at the smaller UL–RL cycle (from loading steps 6 to 8):

1. In the MSB formulation, the elastic shear modulus at loading step 6 is identical to that at loading
step 8 (see Figure 5.17d), indicating that the stiffness at the onset of the smaller UL–RL cycle is
restored upon its closure. Therefore, this cycle does not result in overshooting.
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2. In the CB formulation, the shear moduli at loading steps 6 and 8 are not identical (see Figure
5.18d). This difference was expected to result from the drawback within the CB formulation ex-
plained in Section 5.3.2, namely that the shear strain measure accumulated prior to a cycle is not
stored when no brick is active at its onset, resulting in overshooting. The overshooting caused by
this drawback is clearly visible in Figures 5.18b and 5.18c as the difference between the overload-
ing (top line) and the initial loading (second line from top), indicated by the red line. It should be
noted that this overshooting is therefore not caused by the drawback addressed in this section,
i.e., the inability to retain the memory of more than a single cycle, but rather by the drawback
discussed in Section 5.3.2.

5.6. Tailored consolidated drained triaxial test simulation
to investigate the detection of strain reversals in triaxial exten-
sion and compression

Since no unexpected behaviour was identified in this test, the detailed interpretation of the results
is provided in Appendix C for conciseness. However, the main findings are briefly discussed in this
Section.

Under triaxial compression conditions, a decreasing deviatoric stress indicates loading/reloading, whereas
an increasing value indicates unloading. Under triaxial extension conditions, these interpretations are
reversed. Both the MSB formulation and the CB formulation correctly capture this behaviour by accu-
rately classifying SRs as triggering unloading or reloading in triaxial compression and extension.

Note that the criterion for this classification was refined for the CB formulation in Section 5.1.2. For the
MSB formulation, the criterion remains unchanged from that described in Section 2.2.1.

5.7. Sub-conclusion
At the single stress point level, both formulations are effective in preventing or minimising overshooting
under both stress-independent, purely elastic conditions and stress-dependent, elasto-plastic condi-
tions. Moreover, under purely elastic conditions, they yield a response consistent with that of the HSs-
mall model under monotonic loading. No noticeable difference in computational efficiency between the
two formulations was observed in terms of runtime.

However, differences were identified in their robustness and the simplicity of their frameworks. In
addition, in both formulations a drawback related to retaining the memory of only a single UL–RL was
identified, along with a second drawback that applies only to the CB formulation.

A summary of all the issues encountered in the single stress point simulations together with their solu-
tions is provided in Appendix D, except for the two drawbacks as no solution is implemented.

Finally, it was observed that both formulations adjust their elastic shear modulus upon a change in the
deviatoric strain loading direction, which will become of greater importance in Chapter 6.

Robustness and simplicity
The MSB formulation appears to be more robust and easier to interpret than the CB formulation. While
almost no improvements were required for the MSB formulation, improvements were necessary for
the CB formulation at each fundamental laboratory soil test simulation. This suggests that the CB
formulation is more sensitive to specific test conditions, likely due to its more complex framework.

Drawback: nested UL–RL cycles
Both the CB formulation and the MSB formulation are capable of memorising only a single UL–RL
cycle: the one associated with the most recent SR triggering unloading.
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Figure 5.19: Visualisation of the drawback exhibited by both formulations: inability to retain the memory of more than a single
cycle.

Under specific circumstances, this memory constraint can result in overshooting, as illustrated in Fig-
ure 5.19. In this figure, monotonic loading is interrupted by an UL–RL cycle at point 1. At point 2, a SR
triggering reloading occurs, and the high initial elastic shear modulus is restored. At point 3, reloading
is interrupted by a smaller UL–RL cycle. As a result, the memory stored at the reversal at point 1 is
overwritten by that at point 3. When the smaller UL–RL cycle is closed (i.e., when the deviatoric stress-
deviatoric strain response returns to point 3), the formulation restores the stiffness corresponding to
that at the onset of this smaller cycle. Consequently, the formulation can no longer restore the elastic
shear modulus associated with the onset the larger cycle (i.e., starting at point 1) upon its closure. Nev-
ertheless, the response is still improved compared to the original HSsmall model, where overshooting
would already occur at point 3 (and therefore earlier than point 4), which would mean that the response
at point four would be even stiffer.

The described behaviour becomes more problematic when the UL–RL cycle starting at point 1 has
a small magnitude (see Section 4), as only minimal reduction could have occurred during reloading.
Consequently, the difference between the stiffness at the onset of the larger UL–RL cycle (at point 1)
and upon its closure (at point 4) becomes larger. In other words, when a situation such as that shown in
Figure 5.19 occurs when using the MSB or CB formulation, overshooting behaviour similar to that of the
HSsmall model would be observed if, in that case, the smaller UL–RL cycle were absent. The nested
cycle therefore effectively counteracts the intended improvement. Moreover, the issue becomes more
pronounced when multiple nested cycles occur.

While this problem could theoretically be resolved by memorising multiple cycles, doing so would re-
quire a substantial increase in the number of elastic state variables, consequently in computer memory
consumption.

An advantage of the CB formulation is that this approach has already been implemented, as a user
option, in its source code. The number of UL–RL cycles for which the formulation can retain memory is
governed by a model parameter that specifies the number of bricks to be used, which was hard-coded
as 2 in this study: the cut-off brick and one additional brick. Six elastic state variables are introduced per
each additional brick. However, the effectiveness of this approach in mitigating the identified drawback
has not yet been assessed.

For the MSB formulation, the drawback could be addressed by introducing multiple Memory Surfaces.
However, its source code would firstly need to be generalised to be able to use any user-defined number
of Memory Surfaces. Moreover, note that per each additional Memory Surface, more than just six elastic
state variables would be needed, which means that adding additional memory is more expensive for
the MSB formulation than for the CB formulation.

In conclusion, for the MSB formulation, the solution would still need to be both generalised and tested,
whereas for the CB formulation, only testing is still required. Before doing so, it should first be assessed,
by performing additional test cases, whether this drawback can not be considered negligible in practical
geotechnical analyses.
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Drawback: overshooting due to inactive brick during UL–RL cycles
Within the CB formulation, at least one brick must be active for the formulation to store the memory
when a SR triggering unloading occurs. Consequently, overshooting arises when UL–RL cycles occur
while no brick is active. This is not considered a major drawback, as it can theoretically be resolved
by shortening the string length of the first brick, i.e., by positioning the first brick higher on the elastic
modulus reduction curve. This adjustment would lead to the activation of the first brick at smaller shear
strains. However, it should be verified whether this proposed approach effectively resolves the issue,
and the optimal string length of the first brick should be determined.



6
Boundary value problem

This chapter presents and discusses the results of the BVP introduced in Section 3.3.2. The first sec-
tion examines the results obtained with the original HSsmall model, with the aim of identifying the cause
of the UL–RL cycles responsible for overshooting. The second and third sections discuss the results
obtained with the MSB formulation and the CB formulation, respectively. The fourth section demon-
strates the impact of nested UL–RL cycles on the extent of overshooting in the BVP. These nested
cycles reveal a limitation of both formulations, as discussed in Section 5.7. The chapter concludes with
final remarks on the BVP.

6.1. Cause of the unloading–reloading cycles
The BVP involves two physical processes that occur simultaneously. However, they are described
separately below, with each process considered independently:

1. Excavation
Excavation on the left side of the sheet pile wall removes part of the overburden, thereby reducing
the load on the subsoil. More specifically, the total stress distribution in the subsoil changes: the
total stresses in the underlying soil decrease, leading to unloading of the surrounding soil. When
soil is unloaded, it tends to expand. However, due to the extremely low permeability of the glacial
till, this expansion is partly constrained because the availability of water is required for soil to swell.
The tendency to expand is counteracted by a decrease in pore water pressure. From a physical
perspective, the pore water effectively exerts a tensile force on the soil skeleton. Because the
hydraulic boundary conditions remain unchanged, the steady-state pore pressure profile does not
change. Consequently, when the pore water pressure decreases, a deviation from the steady-
state profile is introduced. This deviation is referred to as excess pore water suction, i.e., positive
excess pore water stress. Note that compression is negative in PLAXIS 2D.

Part of the reduction in total stress is directly transferred to the soil skeleton, leading to a reduction
in effective stress and resulting in some instantaneous heave.

Over time, water may flow towards areas prone to swelling, leading to an increase in pore wa-
ter pressure and a gradual restoration of the steady-state profile. This increase in pore water
pressure reduces the effective stress, which in turn causes additional heave. In other words,
the portion of the total stress reduction that was initially carried by the pore water is gradually
transferred to the effective stress over time.

The evolution of stresses due to excavation can be expressed by the following equations:

49
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σ = σ′ + u (6.1)
σ −∆σ = (σ′ − β∆σ) + (u− η∆σ) (6.2)
σ −∆σ = (σ′ − (η + β)∆σ) + u (6.3)

η + β = 1 (6.4)

where:

σ total stress vector [kPa]
∆σ total stress change due to excavation [kPa]
σ′ effective stress vector [kPa]
u pore water pressure [kPa]
η, β dimensionless coefficients satisfying η + β = 1

Equation 6.1 represents the initial stress state prior to excavation. Although a fully coupled flow-
deformation analysis in PLAXIS uses Bishop’s definition of effective stress , Terzaghi’s definition
is used in this explanation for simplicity (Bentley Systems, 2024). Although in a Equation 6.2
describes the stress state immediately after excavation. The parameter η denotes the portion of
the total stress reduction that is instantaneously carried by the pore water, whereas β denotes
the portion carried by the soil skeleton. Equation 6.3 represents the stress state at the end of
consolidation, when the portion of the total stress reduction initially carried by the pore water has
been fully transferred to the soil skeleton. Finally, Equation 6.4 provides the condition that the
parameters η and β must satisfy.

2. Dewatering
As explained in Section 3.3.2, the excavation is simulated as dry by prescribing the hydraulic
head at the bottom of the excavation corresponding to the current excavation phase such that
the pore water pressure equals 0 kPa. In other words, the water level inside the excavation is
lowered, thereby modifying the hydraulic boundary conditions and establishing a new steady-
state pore water pressure distribution. Due to the very low permeability of the glacial till, the
soil requires time to adjust to this new steady-state profile, which results in temporary negative
excess pore water pressures. Over time, these excess pore water pressures gradually dissipate
and are transferred to the soil skeleton. Consequently, the effective stresses increase, leading to
settlement.

The evolution of stresses due to dewatering can be expressed by the following equations:

σ = σ′ + u (6.5)
σ = (usteady-state + uexcess) + σ′ (6.6)
σ = usteady-state + (σ′ + uexcess) (6.7)

where:

usteady state steady-state pore water pressure [kPa]
uexcess excess pore water pressure [kPa]

Equation 6.5 represents the initial stress state prior to dewatering. Equation 6.6 describes the
stress state immediately after dewatering. Finally, Equation 6.7 represents the stress state at the
end of consolidation, when the negative excess pore pressures have been fully transferred to the
soil skeleton.

During the intermediate consolidation phases, the hydraulic boundary conditions remain unchanged
and no additional overburden is removed from the subsoil, allowing the soil to adjust to the new equi-
librium. To assess whether consolidation induced by dewatering could be responsible for the minor
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settlements observed during the intermediate consolidation phases, it must be verified whether the
development of negative excess pore water pressures caused by dewatering outweighs the positive
excess pore water pressures generated by excavation. If this condition is not met, only heave will occur
during the intermediate consolidation phases, as the effective stress keeps decreasing.

Figure 6.1 shows that the excess pore water pressure is positive during the calculation step in which
one of the minor settlements is observed at node 225 (indicated with the red arrow in Figure 6.1). The
excess pore water pressure is positive not only at node 225 but also throughout the entire domain on
the left side of the sheet pile wall. This demonstrates that the development of negative excess pore
water pressures due to dewatering does not dominate over the positive excess pore water pressures
generated by excavation. Therefore, it is highly unlikely that dewatering-induced consolidation is the
cause of the UL–RL cycles.

Figure 6.1: Excess pore water pressure for the calculation step associated with the minor settlement at node 225 (scaled up
0.02 times, pressure = negative, t = 3.23 d).

Several simulations were performed to further investigate the origin of the UL–RL cycles. By applying
different types of analysis and model configurations, the factors that have the greatest influence on the
extent of overshooting, and thus are likely responsible for the UL–RL cycles, could be identified.

Three types of analysis available in PLAXIS 2D were considered:

1. Fully coupled flow-deformation (FCFD) analysis
If the excavation phases are simulated using a fully coupled flow-deformation analysis, the in-
termediate consolidation phases and the final consolidation phase are simulated using a fully
coupled flow-deformation analysis as well. A short description of a fully coupled flow-deformation
analysis is provided in Section 3.3.2.

2. Plastic undrained (PU) analysis
The excavation phases are simulated using a Plastic undrained analysis. In a Plastic analysis,
elasto-plastic deformations are calculated while time-dependent changes in pore water pressures
are not considered. Because the analysis is undrained, excess pore water pressures are gener-
ated instantaneously and no volume change is allowed.

3. Consolidation (C) analysis
If the excavation phases are simulated using a Plastic undrained analysis, the intermediate con-
solidation phases and the final consolidation phase are simulated using a Consolidation analysis.
In a consolidation analysis, the generation and dissipation of excess pore water pressures are
calculated over time for soils whose behaviour lies between fully drained and fully undrained
conditions.

For a more detailed description of each type of analysis, the reader is referred to Bentley Systems
(2024).
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The analysis types were combined with two sets of modifications: (i) to the construction sequence,
namely excavation and dewatering or excavation only, and (ii) to the sheet pile wall behaviour, namely
a fixed wall or a wall that can deform.

Table 6.1: Simulations performed to identify the cause of the UL–RL cycles.

Type of analysis Construction sequence Sheet pile wall behaviour Overshooting [%]
FCFD Excavation and dewatering Free 14.0
FCFD Excavation Free 10.7
FCFD Excavation and dewatering Fixed 3.1
PU + C Excavation and dewatering Free 10.9
PU + C Excavation and dewatering Fixed 0.7

Table 6.1 summarises the applied combinations and the corresponding extents of overshooting. The
extent of overshooting is quantified as a percentage: the difference in vertical displacement at node
225 (see Figure 3.2) between the monotonic loading case and the loading case including intermediate
consolidation phases, after a final consolidation phase of 50 000 d, divided by the vertical displacement
of the monotonic loading case, multiplied by 100%.

It should be noted that differences in the extent of overshooting cannot be solely attributed to the
number of UL–RL cycles, as they also depend on the amplitude and the timing of the cycles along
the deviatoric stress-deviatoric strain response (see Section 4. The timing matters because the soil
exhibits elasto-plastic rather than purely elastic behaviour. As discussed in Section 4, overshooting
becomes less pronounced further along the deviatoric stress-deviatoric strain response, where the
plastic component increasingly dominates over the elastic component. This is because, overshooting
is associated with the elastic part of the response. Even so, the simulations reveal several interesting
trends.

The main trend identified is the significant reduction in overshooting when the sheet pile wall is fixed.
Since consolidation during the intermediate consolidation phases does not cause the UL–RL cycles, as
demonstrated in this section, and newly imposed loading or hydraulic conditions cannot be responsible
because both dewatering and excavation are paused, and the model conditions therefore remain un-
changed, the UL–RL cycles are most likely caused by numerical redistributions of stresses. This effect
appears to become more pronounced as model complexity increases, for instance when both excava-
tion and dewatering are simulated instead of excavation only, when flow and deformation are coupled,
and when deformation of the wall is allowed. Among these factors, it is evident that deformation of the
wall has the strongest influence.

In general, these stress redistributions become apparent when the model is allowed time to resolve
stress imbalances and adjust to a new equilibrium, i.e., when no changes to the model conditions are
imposed.

This indicates that these stress redistributions, and consequently UL–RL cycles, are not confined to
the intermediate consolidation phases but may also occur during the final consolidation phase, which
is included in both the monotonic modelling sequence and the modelling sequence with intermediate
consolidation phases.

6.2. Results obtained with the Memory-Surface-Based formulation
This section presents the results of the BVP simulated with the MSB formulation.

6.2.1. Vertical displacement at node 225
Figure 6.2 illustrates how the vertical displacement at node 225 evolves over time for both themonotonic
loading case and the loading case with intermediate consolidation phases. Figure 6.2a presents the
results over a period of 100 d, while Figure 6.2b provides a detailed view of the excavation period starting
at 1.5 d. The monotonic excavation is completed at t = 3.5 d, whereas the excavation with intermediate
consolidation phases reaches completion at t = 3.8 d.
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Figure 6.2: Evolution of the vertical displacement at the centre of the final excavation bottom (node 225) simulated with the
HSsmall model and MSB formulation, for both the monotonic loading case and the loading case with UL–RL cycles.

It has been demonstrated in Section 6.1 that the UL–RL cycles are not necessarily confined to the
intermediate consolidation phases but may also occur during the final consolidation phase, as they
result from numerical redistribution of stresses. Consequently, additional overshooting can arise during
the final consolidation phase, not only in the loading case with intermediate consolidation phases but
also in the monotonic loading case. The more UL–RL cycles occur in the monotonic loading case, the
less suitable it becomes as a reference case. This provides an additional justification for limiting the
time span to 100 d, which is nevertheless sufficient to evaluate whether the MSB formulation improves
the results, alongside the ability to make a comparison with the work of Cudny and Truty (2020), as
already discussed in Section 3.3.2. The same reasoning applies to the results presented in Section
6.3.

Figures 6.2a and 6.2b clearly demonstrate that overshooting is still observed in the MSB formulation,
as the monotonic loading case and the loading case with UL–RL cycles deviate significantly from one
another. The results are comparable to those obtained with the original HSsmall model, indicating
that only limited improvement has been achieved. However, the response under monotonic loading
obtained with the MSB formulation coincides with that obtained with HSsmall model.

To investigate why the MSB formulation did not produce the desired outcome, the deviatoric stress-
deviatoric strain response at stress point 10083 during the first intermediate consolidation phase is
analysed in combination with the debug files. The location of stress point 10083 is shown in Figure
3.2 in Section 3.3.2. Figure 6.3 indicates the position of the first intermediate consolidation phase on
the stress-strain response. Figure 6.4a presents the stress-strain response during the first intermediate
consolidation phase, while Figures 6.4b, 6.4c, and 6.4d each provide a detailed view of one of the three
points highlighted in 6.4a.

Recall from Section 5.2.1 that, according to the SR detection algorithm proposed by Benz (2007), a
SR is detected whenever a reversal occurs in any of the three eigen directions of the current deviatoric
strain increment de, and that the detected SR may be partial, when a reversal occurs in only one or
two of the three eigen directions, or full, when a reversal occurs in all three eigen directions. In both
cases, the SR arises from a rotation of the deviatoric strain path.

The MSB formulation adopts the same SR detection algorithm as proposed by Benz (2007) (Plaxis,
2025a). This implies that the Memory Surface also evolves when a partial SR is detected during
reloading, and that the deviatoric strain history tensor H is stored when a partial SR is detected during
unloading 2.2.1.
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Figure 6.3: Deviatoric stress-deviatoric strain response at stress point 10083.
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Figure 6.4: Deviatoric stress-deviatoric strain response at stress point 10083 during the first intermediate consolidation phase
for both monotonic loading and loading with UL–RL cycles.

At point 1 in Figure 6.4, a partial SR is detected. Following the criterion used to determine whether the
SR corresponds to unloading or reloading, as described in Section 2.2.1, reloading conditions apply.
These reloading conditions were already applicable prior to this partial SR, as can be verified from
Figure 6.3. Therefore, no UL–RL cycle is initiated at this point, and no update of the Memory Surface
should be required. Even though, such an update does occur. At points 2 and 3, full SRs occur,
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triggering unloading and reloading, respectively. In these cases, the loading conditions do change
after the SR, and consequently an UL–RL cycle occurs, resulting in a correct update of H in memory
and of the Memory Surface.

Thus, adopting the SR detection algorithm proposed by Benz (2007) in the MSB formulation results
either in an excessive number of relocations and size readjustments of the Memory Surface, or in
wrongfully overwriting H, and consequently in an incorrect memory. This behaviour is consistent with
the ingredients of the formulation, however, their is room for improvement.

To avoid such incorrect updates, a different SR detection algorithm is implemented in the MSB formu-
lation. This algorithm builds on ideas originally proposed by Papadimitriou and Bouckovalas (2002).
The check for a SR compares the distance between the deviatoric strain point at the last SR, eSR, and
the deviatoric strain point at the start of the step, e0, i.e. ||e0 - eSR||, with the distance between eSR and
the deviatoric strain point at the end of the step, e, i.e. ||e - eSR||. A deviatoric SR is detected if

∥e− eSR∥ < ∥e0 − eSR∥ (6.8)

Here, eSR serves as a reference point. A schematic representation of the algorithm is provided in Figure
6.5.

By employing this algorithm, only full SRs are detected in the MSB formulation. It should be noted
that this adjustment only applies to the MSB formulation. The existing small-strain component of the
HSsmall model, of which the MSB formulation is an extension, remains unchanged and continues to
use the algorithm proposed by Benz (2007). As a result, partial SRs, resulting from changes in the
direction of the deviatoric strain path, still lead to sudden changes of the elastic shear modulus, as
explained in Section 5.2.1.

(a) (b)

Figure 6.5: Proposed SR detection algorithm applied to the MSB formulation: (a) No SR detected and (b) SR detected.

Figure 6.6a compares the results obtained before and after implementing the improved SR detection
algorithm. Although the results show improvement, a substantial extent of overshooting is still observed.
The original MSB formulation is defined in the deviatoric stress space (see Section 2.2.1), however, it
was found that the formulation performs more effectively when formulated in the deviatoric strain space
(see Figure 6.6b). Therefore, unless stated otherwise, the MSB formulation defined in the strain space,
including the new SR detection algorithm, is used from this point onwards. Chapter 7 discusses the
results of an investigation into the underlying cause of this improvement.
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Figure 6.6: Evolution of the vertical displacement at the centre of the final excavation bottom (node 225): (a) comparison
between the MSB formulation in the deviatoric stress space with and without the new SR detection algorithm, and (b)

comparison between the MSB formulation in the stress space using the old SR detection algorithm and the MSB formulation in
the strain space using the new algorithm.

6.2.2. Assessment of overshooting at three stress points
Figure 6.7 shows the deviatoric stress-deviatoric strain response at three stress points selected in the
model. The locations of these stress points are shown in Figure 3.3 in Section 3.3.2. By plotting each
graph on the same scale, it becomes evident that at some stress points the stress-strain response
reaches relatively small stress and strain levels, and the overshooting observed in the original HSsmall
model can therefore be regarded as negligible.

The entire final consolidation phase of 50 000 d is included in the graph, as explained in Section 3.3.2.
Although a counterargument was presented in 6.2.1 against showing the entire phase, it is nevertheless
displayed here in order to illustrate its impact. The irregularity observed during the final consolidation
phase, caused by the numerical redistribution of stresses (see Section 6.1) becomes especially evident
in Figure 6.7a, where the final consolidation phase begins at the point where the response exhibits an
abrupt change. This irregularity occurs in both the monotonic loading cases and the loading cases with
intermediate consolidation phases. The same reasoning applies to the results presented in Section
6.3.

Figure 6.7a demonstrates a significant improvement in the results, as the extent of overshooting is con-
siderably reduced when using the MSB formulation compared to the HSsmall model. However, over-
shooting is still observed to some extent, the origin of which is investigated in Section 6.2.3. In Figure
6.7b, the attained stress and strain levels are so limited that overshooting can be considered negligi-
ble, although closer inspection still reveals improvements. Figure 6.7c shows a small but nonetheless
clearly visible improvement in the results.

The stress-strain response under monotonic loading at each node obtained with the MSB formulation
coincides with that obtained with the original HSsmall model (except for the final consolidation phase).
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Figure 6.7: Comparison between the deviatoric stress-deviatoric strain response obtained with the MSB formulation and the
original HSsmall model.

6.2.3. Detailed analysis of stress point 9757
Figure 6.8 shows the evolution of the elastic shear modulus and the deviatoric strain at stress point 9757
over time, for both the monotonic loading case and the loading case with intermediate consolidation
phases. Figures 6.8a and 6.8b include the intermediate consolidation phases, whereas Figures 6.8c
and 6.8d omit them while maintaining a continuous time axis. The intermediate consolidation phases,
each with a duration of 0.1 d, occur at t = 2d, t = 2.6 d, and t = 3.2 d. Figures 6.8c and 6.8d show
a similar evolution up to approximately t = 3.1 d, which corresponds to the end of the first calculation
step of the fourth excavation phase (t = 3.4 d in Figures 6.8a and 6.8b). This indicates that the error
originates in the third intermediate consolidation phase.

A detailed view of the third intermediate consolidation phase is provided in Figure 6.9. It was found that
the full SR triggering reloading at t = 3.3 d was not detected (Figure 6.9b). As a result, the Memory
Surface was neither relocated nor readjusted. Consequently, the reset of the deviatoric strain history
tensor H was based on the location and size of the Memory Surface at the last deviatoric SR triggering
unloading, which in this case coincides with t = 3.2 d (see Figure 6.9b).
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Figure 6.8: Evolution of the elastic shear modulus and the deviatoric strain at stress point 9757 for both monotonic loading and
loading with UL–RL cycles.
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Figure 6.9: Detailed view of the evolution of the elastic shear modulus and the deviatoric strain at stress point 9757 during the
third intermediate consolidation phase, for both monotonic loading and loading with UL–RL cycles.

The SR detection algorithm is described by Formula 6.8 in Section 6.2.1. Figure 6.10 illustrates a
situation in which this algorithm fails to detect the SR. Although a SR occurs, the current deviatoric
strain increment de is sufficiently large that the algorithm fails to capture the interval where the criterion
described by Formula 6.8 is satisfied.

The observed behaviour is consistent with the ingredients of the formulation but their is room for im-
provement.

To address this shortcoming, the algorithm is modified to evaluate whether fractions of de satisfy the
criterion described by Formula 6.8. In this way, a SR can still be detected if one occurs but is missed
due to the situation shown in Figure 6.10.
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Figure 6.10: Failed detection of deviatoric SR

Figure 6.11 presents a comparison between the results obtained using the MSB formulation, with and
without the implemented modification. MSB0 corresponds to the original version without the modifica-
tion, while MSB1 corresponds to the modified version. When using the modified version, less over-
shooting is observed: the evolution of the elastic shear modulus, deviatoric strain, and stress-strain
response all align more closely with the monotonic reference case. Unless stated otherwise, all subse-
quent analyses use the improved formulation.
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Figure 6.11
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6.2.4. Comparison with the results reported by Cudny and Truty (2020)
Figure 6.12a presents the results reported by Cudny and Truty (2020), whereas Figure 6.12b shows
the results obtained with the MSB formulation analysed in this study. It is evident that the MSB formu-
lation produces results of a similar quality to those obtained with the model proposed by Cudny and
Truty (2020), since the monotonic loading case and the loading case with UL–RL cycles show close
agreement.

Furthermore, the results of the Hardening Soil Brick model proposed by Cudny and Truty (2020), de-
viate more from the monotonic loading case of the HSsmall model (referred to as HSS in Cudny and
Truty (2020)) than those of the MSB formulation. A smaller deviation is preferred, as it implies less
consequences for the end user of the model.

It should be noted that Figure 6.12b was obtained using the version of the MSB formulation without the
modification discussed in Section 6.2.3. Although implementing this modification improved the results
at stress point 9757, it negatively affected the results at other stress points and nodes, including node
225. For brevity of the presentation, figures illustrating this decline in performance are not included.
The investigation into the cause of the observed degradation in the results at other stress points and
nodes is ongoing and is not regarded as part of this thesis.
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Figure 6.12: Comparison between the results reported by Cudny and Truty (2020) and those obtained with the MSB
formulation.

6.3. Results obtained with the Continuous Brick formulation
This section presents the results of the BVP simulated with the CB formulation.

6.3.1. Vertical displacement at node 225
Figure 6.13 illustrates the evolution of the vertical displacement at node 225 over time for both the
monotonic loading case and the loading case with intermediate consolidation phases. Figure 6.13a
presents the results over a period of 100 d, while Figure 6.13b provides a detailed view of the excavation
period starting at 1.5 d. The monotonic excavation is completed at t = 3.5 d, whereas the excavation
with intermediate consolidation phases reaches completion at t = 3.8 d.

Figures 6.13a and 6.13b demonstrate that the monotonic loading case and the loading case with inter-
mediate consolidation phases nearly coincide, indicating that the extent of overshooting is reduced to
a negligible level. However, the monotonic case differs from that obtained with the original HSsmall
model.
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Figure 6.13: Evolution of the vertical displacement at the centre of the final excavation bottom (node 225) simulated using the
HSsmall model and CB formulation, for both the monotonic loading case and the loading case with UL–RL cycles)

As explained in Section 2.2.2, the primary (elasto-plastic) response is softer than that of the HSsmall
model, as shown in Figures 6.13a and 6.13b, because the backbone curve used in the CB formulation is
not scaled by a factor of two. Recall that this softer response can be partially compensated by doubling
the model parameter γ0.7, as shown in Figures 6.14a and 6.14b. From this point onwards the results
are shown for a doubled γ0.7.
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Figure 6.14: Evolution of the vertical displacement at the centre of the final excavation bottom (node 225) simulated using the
HSsmall model and CB formulation with γ0.7 scaled by a factor of two, for both the monotonic loading case and the loading

case with UL–RL cycles

6.3.2. Assessment of overshooting at three stress points
Figure 6.15 shows the deviatoric stress-deviatoric strain response at three stress points selected in
the model. The locations of these stress points are shown in Figure 3.3 in Section 3.3.2. Results are
provided for both the CB formulation and the HSsmall model. By plotting each graph on the same
scale, it becomes evident that at some stress points the stress-strain response reaches relatively small
stress and strain levels, and the overshooting observed in the original HSsmall model can therefore be
regarded as negligible.

Figure 6.15a demonstrates that the extent of overshooting is reduced to a negligible level. In Figure
6.15b, the attained stress and strain levels are so limited that overshooting can be considered negligible,
although closer inspection still reveals improvements. Figure 6.15c shows a small but nonetheless
clearly visible improvement in the results.

In each case, the results obtained under monotonic loading using the CB formulation differ from those of
the HSsmall model, as expected given the explanation in 2.2.2, concerning the application of a different
scaling factor.
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Figure 6.15: Deviatoric stress-deviatoric strain response at three stress points in the model simulated using the original
HSsmall model and the CB formulation, for both the monotonic loading case and the case with UL–RL cycles.

6.3.3. Detailed analysis of stress point 9757
Figure 6.16 illustrates the evolution of the elastic shear modulus and the deviatoric strain at stress point
9757 over time, for both the monotonic loading case and the loading case with intermediate consolida-
tion phases. Figures 6.16a and 6.16b include the intermediate consolidation phases, whereas Figures
6.16c and 6.16d omit them while maintaining a continuous time axis. The intermediate consolidation
phases, each with a duration of 0.1 d, occur at t = 2.0 d, t = 2.6 d, and t = 3.2 d. Figures 6.16c and
6.16d show an error over the interval t = 2.0 d to 2.4 d. Since t = 2.0 d corresponds to the onset of the
first intermediate consolidation phase (corresponding to t = 2.0 d in Figures 6.16a and 6.16b as well),
this indicates that the error originates in that break.

A detailed view of the first intermediate consolidation phase is provided in Figure 6.17. It was found
that no brick was active during the SR triggering unloading at t = 2.03 d (Figure 6.17b). As discussed in
Section 5.3.2, the formulation does not store the memory upon a SR triggering unloading when no brick
is active. Consequently, the elastic shear modulus at the onset of an UL–RL cycle cannot be restored
upon its closure, which may lead to overshooting, although in this simulation being of a negligible level.
This behaviour is consistent with the ingredients of the formulation.
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Figure 6.16: Evolution of the elastic shear modulus and the deviatoric strain at stress point 9757 for both the monotonic
loading case and the loading case with UL–RL cycles using the CB formulation.
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Figure 6.17: Detailed view of the evolution of the elastic shear modulus and the deviatoric strain at stress point 9757 during
the first intermediate consolidation phase, for both the monotonic loading case and the loading case with UL–RL cycles.

6.3.4. Comparison with the results reported by Cudny and Truty (2020)
Figure 6.18a presents the results reported by Cudny and Truty (2020), whereas Figure 6.18b shows
the results obtained using the CB formulation analysed in this study. The monotonic loading case and
the loading case with UL–RL cycles of the CB formulation do not coincide exactly, but the difference
is negligible. Therefore, it is evident that the CB formulation produces results of comparable quality to
those obtained with the model proposed by Cudny and Truty (2020).

Furthermore, the results of the Hardening Soil Brick model proposed by Cudny and Truty (2020), de-
viate more from the monotonic loading case of the HSsmall model (referred to as HSS in Cudny and
Truty (2020)) than those of the CB formulation. A smaller deviation is preferred, as it implies less
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consequences for the end user of the model.
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Figure 6.18: Comparison between the results reported by Cudny and Truty (2020) and those obtained with the CB formulation.

6.3.5. Bending moments in the sheet pile wall
Figure 6.19 shows the bending moments in the sheet pile wall along its length for both the MSB formu-
lation and the CB formulation. In both Figures, the results obtained with the HSsmall model are also
presented.

As explained in Section 3.3.2, overshooting in the HSsmall model causes the soil to behave stiffer
in the loading case with UL–RL cycles compared to the monotonic loading case, which results in a
larger portion of the load being carried by the soil. This hypothesis is confirmed in Figure 6.19, where,
over a large part of the sheet pile wall, the bending moment is smaller in the loading case with UL–RL
cycles than in the monotonic loading case. Note that the monotonic loading case of the HSsmall model
coincides with that of the CB formulation. It should be noted that in this specific case this difference is
not extremely large. According to Cudny and Truty (2020), this difference may become larger in more
complicated real-world scenarios.

For both the MSB formulation (Figure 6.19a) and the CB formulation (Figure 6.19b), the bending mo-
ments are no longer smaller in the loading casewith UL–RL cycles, indicating that overshooting reduced
to a negligible level.
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Figure 6.19: Bending moment in the sheet pile wall for both the MSB formulation and the CB formulation, compared to the
HSsmall model

6.4. Drawback: nested cycles
It was found in Section 5.7 that both the MSB formulation and the CB formulation exhibit a drawback:
both formulations are unable to memorise more than a single UL–RL cycle. If a smaller UL-RL cycle
occurs within a larger one, the memory associated with the larger cycle is overwritten by that of the
smaller cycle. Consequently, when closing the larger, initial cycle, the formulations are unable to restore
the corresponding elastic shear modulus.

In the simulation presented in this section, numerous nested UL–RL cycles appeared unintentionally in
the deviatoric stress-deviatoric strain response due to poorly specified numerical control parameters:
the load step of the numerical calculation scheme had been reduced by a great amount. Reducing
the load step was neither part of the original plan nor a methodological refinement adopted during the
investigation, and the fact that it leads to numerous nested UL–RL cycles was discovered by accident.
This behaviour does not occur when the default numerical control settings are used, which are applied
throughout the remainder of the BVP analysis.

Figures 6.20a and 6.20b show the deviatoric stress-deviatoric strain response at stress point 9757
for the MSB and CB formulation, respectively. In the reference case, the load step is not reduced.
Therefore, nested cycles are most likely absent. It is evident that, when nested cycles occur, the extent
of overshooting is much larger for both formulations. However, it should still be assessed whether such
nested cycles also occur in practical geotechnical analyses, since the ones in this simulation are not
that likely to occur.
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Figure 6.20: Deviatoric stress-deviatoric strain response at stress point 9757 to assess the impact of nested cycles on the
extent of overshooting: (a) MSB formulation and (b) CB formulation.

Figure 6.21a illustrates the extent of overshooting introduced during the first intermediate consolidation
phase for both the reference case and the case with nested cycles obtained using the MSB formulation.
In the reference case, the monotonic loading curve and the curve with UL–RL cycles nearly coincide,
indicating that no overshooting occurs. In contrast, for the case with nested cycles, a clear deviation
is observed, demonstrating the occurrence of overshooting. As mentioned earlier, this overshooting
is introduced during the first intermediate consolidation phase. Figure 6.21b shows the nested cycles
occurring during this phase. At points 1, 2, 3, and 4 SRs triggering unloading occur successively,
respectively. Each time, the memory stored at the previous point is overwritten by that of the next.
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Figure 6.21: Detail around the first intermediate consolidation phase showing the extent of overshooting and nested cycles for
the MSB formulation.

6.5. Sub-conclusion
The UL–RL cycles observed in the BVP presented in this study are mainly caused by numerical redis-
tributions of stresses triggered by physical deformation mechanisms and increased model complexity,
leading to stress imbalances that are resolved when the model is allowed time to adjust to a new equi-
librium, i.e., when no additional changes to the model conditions are imposed. This insight is highly
valuable, as it implies that such cycles may occur in any numerical analysis of practical two-dimensional
geotechnical problems, especially when deformation mechanisms greatly disturb the soil, i.e., strong
plastic straining.

It was found that the MSB formulation required two improvements before overshooting was significantly
reduced: (i) the SR detection algorithm had to be changed, and (ii) the formulation had to be defined in
the deviatoric strain space rather than in the deviatoric stress space. At a later stage, an extension was
added to the SR detection algorithm to improve the results even further. This improvement is, however,
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still under investigation, as the results either improved or worsened at different stress points and nodes.

The response of the MSB formulation under monotonic loading coincides with that of the original HSs-
mall model, except for the deviatoric stress-deviatoric strain response of the final consolidation phase,
which is due to numerical redistributions of stresses occurring during this phase.

Overall, the MSB formulation can effectively reduce overshooting. When compared with the results
reported by Cudny and Truty (2020), the results are of similar quality.

The CB formulation did not require any improvements, and overshooting was significantly reduced.
When compared with the results reported by Cudny and Truty (2020), the results are of similar quality.
However, the response of the CB formulation does not coincide with that of the original HSsmall model
under monotonic loading, due to the use of a different scaling factor in the backbone curve that de-
scribes the deviatoric stress-deviatoric strain response. This discrepancy can be partially counteracted
by multiplying the model parameter γ0.7 by a factor of two. Nevertheless, this adjustment does not
reproduce an identical response.

A summary of all the issues encountered in the boundary value problem together with their solutions is
provided in Appendix D.

Both the MSB formulation and the CB formulation exhibit a drawback which was identified in the single
stress point simulations: they are unable to memorise more than a single UL–RL cycle. However,
the severity of this drawback was not yet established. Although the nested cycles observed in the
BVP analysed in Section 6.4 were the result of numerical instabilities due to poorly specified numerical
control parameters, it is evident that they have a significant impact on the extent of overshooting. A
realistic scenario in which nested cycles are more likely to occur and could therefore increase the extent
of overshooting, thereby leading to inaccurate deformation predictions, is dynamic loading.

As a final note, no noticeable difference in computational efficiency between the two formulations was
observed in terms of run time.



7
Why the Memory-Surface-Based

formulation performs better in the
deviatoric strain space than in the

deviatoric stress space

In Section 6.2.1, it was shown that the MSB formulation performs more effectively when defined in the
deviatoric strain space than in the deviatoric stress space, as less overshooting was observed. The
first part of this chapter clarifies the underlying reason for the formulation’s improved performance in the
deviatoric strain space. This chapter does not aim to make the formulation work in the stress space, but
rather to highlight and explain the differences between the two spaces. The second part summarises
the main findings in a brief sub-conclusion.

7.1. Underlying mechanism
7.1.1. Differences between the deviatoric stress and strain space
Defining the formulation in the deviatoric strain space rather than in the deviatoric stress space means
that the evolution of the Memory Surface is governed by deviatoric strains instead of deviatoric stresses.
As explained in Section 2.2.1, the radius of the Memory Surface, m, is used to establish when an UL–
RL cycle is closed. Upon a SR triggering reloading, the radius is set equal to the distance between
the SR triggering unloading and SR triggering reloading corresponding to that UL–RL cycle. One of
the main implications of defining the formulation in the strain space is that this distance is expressed in
terms of strains rather than stresses. Consequently, the closure of an UL–RL cycle is now defined in
terms of strains. For a detailed explanation of the Memory Surface formulated in the deviatoric stress
space, the reader is referred to 2.2.1.

Figure 7.1 shows the evolution of the shear stiffness reduction factor, Rg over time for both the MSB
formulation defined in the stress space and in the strain space, using the same BVP as in Section 6.
The shear stiffness reduction factor represents the current shear modulus normalised by its initial value,
G0. The figure provides a detailed view of the three intermediate consolidation phases, and includes a
monotonic loading case that serves as a reference. During the first and third intermediate consolidation
phases, an UL–RL cycle occurred. It is evident that both versions of the formulation capture these UL–
RL cycles, as the elastic shear modulus suddenly increases to its high initial value and is subsequently
reset to a lower value at a specific time instance, i.e., when the formulation detects that the Memory
Surface has been reached. However, a clear trend is observed: the formulation in the stress space
lags one step behind in resetting the elastic shear modulus (specifically, resetting the deviatoric strain
history tensor H) compared to the formulation in the strain space.

68
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Figure 7.1: Evolution of the shear stiffness reduction factor over time during the excavation period for both the MSB
formulation defined in the deviatoric stress space and defined in the deviatoric strain space.

7.1.2. Origin of the one-step lag in the deviatoric stress space
The HSsmall model employs an implicit integration scheme (Benz, 2007). As a consequence, an elastic
trial is performed to estimate the stress state at the end of each calculation step based on elasticity.
This may result in stress states beyond the shear and cap hardening yield surfaces, which is physically
impossible. Therefore, a plastic correction is applied to return the stress state to the yield surfaces.
For further information on the yield surfaces, the reader is referred to Section 2.1.1 and Schanz et al.
(1999).

Because the elastic state variables are updated during the elastic trial, the final deviatoric stress state
at the end of the calculation step is not yet known during this update. An example of such an elastic
state variable ism, the radius of the Memory Surface, which is used to determine whether the Memory
Surface has been reached and, consequently, whether the deviatoric strain history tensor H must be
reset (Plaxis, 2025a).

To address this issue, the elastic state variables could, in principle, be updated during the plastic cor-
rection. However, this approach is complex and computationally demanding. Therefore, a simpler
approach is adopted: the position of the Memory Surface is updated based on the stress state of the
previous calculation step rather than that of the current one, i.e., the Memory-Surface lags one step
(Plaxis, 2025a).

7.1.3. Explanation of the one-step lag approach
During each calculation step, a check is performed to determine whether the Memory Surface has
been reached and, consequently, whether it is necessary to reset H. The one-step lag approach is
illustrated in Figure 7.2. During calculation step 2, the Memory Surface values from calculation step
1 are used. Recall that the Memory Surface value is defined as the distance between the centre of
the Memory Surface and the current deviatoric stress point, minus the radius of the Memory Surface.
When this value is approximately equal to one, the Memory Surface has been reached. To make it
possible to use the values from the previous step, the Memory Surface value at the start of calculation
step 1 is stored (FStV ar), and the stress state at the start of calculation step 2 is used to compute the
Memory Surface value at the end of calculation step 1 (F = f(s0)) (note that the stress state at the
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end of calculation step 1 is equal to that at the start of calculation step 2). Hence, if a reset should
have occurred during calculation step 1 because an UL–RL cycle was closed, it is only detected during
calculation step 2,thereby introducing a one-step lag.

Such an approach is not required when the MSB formulation is defined in the deviatoric strain space,
since the deviatoric strain increment de, corresponding to a calculation step, and consequently the
deviatoric strain state at the end of the calculation step, is known.

Figure 7.2: Schematisation of the ”lag” approach implemented in the MSB formulation in the stress space.

7.1.4. Effect of the one-step lag approach on overshooting
The one-step lag approach introduces an additional step (calculation step 1 in Figure 7.2) before re-
setting H, during which the elastic shear modulus reduces. During this step, the elastic shear modulus
of the monotonic response also decreases, but this additional decrease is not stored in the memory of
the response with UL–RL cycles. As a result, when H is reset upon closure of the UL–RL cycle in an
attempt to continue following the monotonic response, the monotonic response is already further along
the elastic modulus reduction curve, which leads to overshooting. This additional step will be referred
to as the extra step in the remainder of this study.

To support this explanation, a simple stress-controlled CD triaxial compression test is simulated, in-
corporating a single UL–RL cycle of 0.5 kPa, using both the MSB formulation defined in the deviatoric
stress space and in the deviatoric strain space. Preloading is applied and stress-dependency is deac-
tivated to ensure that only elastic, strain-dependent behaviour is captured. The extra step, discussed
in the previous paragraph, is simulated with three magnitudes: 0.25 kPa, 5 kPa, and 15 kPa (note that
these steps are not extra when the formulation is defined in the strain space). A monotonic loading
case is included in the figures as a reference. Figures 7.3a and 7.3b present the results including the
UL–RL cycle, whereas Figures 7.3c and 7.3d present the results with the UL–RL cycle omitted while
maintaining a continuous loading step sequence. The loading steps are defined such that each loading
step corresponds to 1 kPa.

At loading step 43, a SR triggering unloading occurs, causing the elastic shear modulus to increase
to its high initial value and the current deviatoric strain history tensor H to be stored. At loading step
43.5, a SR triggering reloading occurs, again increasing the elastic shear modulus to its high initial
value, this time with the Memory Surface relocated and its size readjusted. The subsequent step in the
modelling sequence is 43.75, after which the extra step begins. At loading step 44 (note that this is not
a loading step explicitly defined in the modelling sequence when the extra step is 5 kPa or 15 kPa, and
therefore occurs within a calculation step), the UL–RL cycle is closed, i.e., the Memory Surface has
been reached. For the formulation defined in the strain space (7.3b), H is reset during the step in which
the cycle is closed, whereas for the formulation in the stress space (7.3a), H is reset in the following
step.

From Figures 7.3a and 7.3b, the one-step lag inherent to the formulation in the stress space becomes
evident. It is clear that H resets one step later compared to the formulation in the strain space, for
instance, at loading step 53.75 for the black dotted case in Figure 7.3a and at loading step 48.75 for
the black dotted case in Figure 7.3b. It is also apparent that, during the extra step, the elastic shear
modulus of the monotonic loading case continues to decrease.
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Figure 7.3: Evolution of the shear stiffness reduction factor over time for the MSB formulation defined in both the deviatoric
stress space and in the deviatoric strain space involving one UL–RL cycle for different different magnitudes of the extra step:

(a) formulation defined in the stress space (b) formulation defined in the strain space (c) formulation defined in the stress space.
The UL–RL cycle is omitted in the figure, while maintaining a continuous loading step sequence (d) formulation defined in the

strain space. The UL–RL cycle is omitted in the figure, while maintaining a continuous loading step sequence.

Figure 7.3c clearly shows that the elastic shear modulus obtained upon resetting H (at loading step
44 for the red dashed case, 48 for the black dotted case and, 58 for the orange dotted/dashed line)
deviates from the monotonic loading case. In Figure 7.3d, this deviation is much smaller. The cause
of the remaining deviation lies outside the scope of this study.

This lag, when the MSB formulation is defined in the deviatoric stress space, was difficult to identify in
the single stress point simulations presented in Chapter 5, since the magnitude of the extra step was
very small and the UL–RL cycles were always closed at the end of a step. For instance, in Figure 7.3c,
the results are of good quality when the extra step is equal to 0.25 kPa (red dashed line). When the UL–
RL cycle is closed at the end of a step, the peak observed in Figure 7.3c for the yellow dashed/dotted
case and black dotted case does not appear (as illustrated by the red dashed case). In BVPs, however,
these conditions are generally not met, thereby revealing the drawback.

The impact of the lag on the extent of overshooting becomes more pronounced (a) when the magnitude
of the extra step increases, allowing for more reduction of the elastic shear modulus of the monotonic
loading case, (b) when multiple UL–RL cycles occur, as the effect is cumulative, and (c) when the extra
step occurs at deviatoric strain levels corresponding to the part of the elastic modulus reduction curve
where the elastic shear modulus decreases more rapidly, leading to greater reduction of the elastic
shear modulus in the monotonic loading case during the extra step.
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Figure 7.4: Comparison of the extent of overshooting when using the MSB formulation defined in the deviatoric stress space
and in the deviatoric strain space.

As overshooting is most effectively evaluated through the deviatoric stress-deviatoric strain response
(see 2), Figure 7.4 presents these responses. Figure 7.4a shows the results obtained with the MSB for-
mulation defined in the stress space, whereas Figure 7.4b those obtained with the formulation defined
in the strain space. The black arrows indicate the direction of the response. It is evident that overshoot-
ing is observed when the formulation is defined in the stress space, as the attained deviatoric strain
is smaller. Moreover, the results confirm once again that a larger extra step amplifies overshooting.
When the extra step is 0.25 kPa, no overshooting is observed, as its magnitude is sufficiently small and
the cycle closes at the end of a calculation step.

7.2. Sub-conclusion
When the MSB formulation is defined in the deviatoric stress space, the position of the Memory Surface
lags one step behind the current deviatoric stress state. This is because, the stress states of the
previous step are used to check whether the Memory Surface has been reached, i.e., whether an UL–
RL cycle has been closed. Therefore, although an UL–RL cycle is actually closed in the previous step,
it is only detected in the current step. The stress states of the previous step are used because the
deviatoric stress state at the end of the current calculation step is unknown.

Due to this lag, an extra step is introduced during which the elastic shear modulus of the monotonic
loading case continues to decrease. Since this additional decrease is not stored in the memory of the
response with the UL–RL cycles, the elastic shear modulus obtained upon resetting H is larger than
that of the monotonic loading case at the same time instance, resulting in overshooting. To prevent this
overshooting, a formulation defined in the deviatoric strain space is a better approach, as the deviatoric
strain state at the end of a calculation step is known.

This one-step lag was not identified in the single stress point simulations presented in Chapter 5, since
the magnitude of the extra step was very small and the UL–RL cycles were always closed at the end
of a calculation step. In BVPs, however, these conditions are generally not met, thereby revealing the
drawback.

One could argue why a formulation in the stress space was considered in the first place. The reason
for this stems from the early stages of the formulation’s development and falls outside the scope of this
study.
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Discussion

This chapter first discusses difficulties encountered in the interpretation of overshooting in the presented
BVP. The final part of the chapter considers factors that, while not directly affecting the obtained results,
should be taken into account when interpreting the conclusions of this study.

Difficulties in the interpretation of overshooting in the BVP
Reference case
In this study, overshooting is assessed by comparing the material response under monotonic loading
conditions with that under loading including small UL–RL cycles. The monotonic response serves as a
reference, as no overshooting is assumed to occur in the absence of UL–RL cycles. Overshooting is
quantified as the deviation between the monotonic response and the response including UL–RL cycles.

This paragraph explains why themonotonic response cannot strictly be considered a reference. Nonethe-
less, it is regarded as sufficiently reliable to serve as a reference in this study and is therefore used to
draw conclusions on overshooting behaviour. Two factors limit the suitability of the monotonic loading
case as an ideal reference:

1. Adjustment of the elastic shear modulus upon a change in the deviatoric strain loading
direction
Both the MSB formulation and the CB formulation adjust the elastic shear modulus upon a change
in the deviatoric strain loading direction. Such changes in direction may occur in both the mono-
tonic loading case and the case with UL–RL cycles. Once a change occurs in one of these cases,
its deviatoric strain loading history, and consequently its material response, begins deviating from
that of the other case (assuming that an exact same change in deviatoric strain loading direction
does not occur at the exact same time instance in both cases). This has two implications:

(a) A deviation between the responses under monotonic loading and loading with small UL–RL
cycles can no longer be attributed solely to overshooting once a change in the deviatoric
strain loading direction occurs in either the monotonic loading case or the loading case with
UL-RL cycles.

(b) When a change in deviatoric strain loading direction occurs in the monotonic loading case,
it can no longer strictly serve as a reference for the assessment of overshooting.

2. The occurrence of UL–RL cycles during the final consolidation phase
In this study, it was found that the UL–RL cycles observed in the BVP are mainly caused by
numerical redistributions of stresses, especially when deformation mechanisms greatly disturb
the soil. These stress redistributions occur not only during the intermediate consolidation phases,
as initially expected, but also during the final consolidation phase, which is included in both the
monotonic loading sequence and the sequence with short intermediate consolidation phases.
Once a small UL–RL cycle occurs during the final consolidation phase of the monotonic loading
sequence, it can no longer strictly serve as a reference, as overshooting could potentially also

73



74

occur in this case. Prior to this cycle, however, the monotonic loading case could serve as an
ideal reference if the first factor limiting its suitability as a reference is disregarded.

The first limitation cannot easily be resolved, as it is inherent to both the MSB formulation and the
CB formulation. However, its consequences are assumed to be minor. Nonetheless, it complicates
the assessment of whether the potentially remaining difference between the monotonic response and
the response including UL–RL cycles is caused solely by overshooting, which would indicate that the
formulations could still be improved, by this limitation, suggesting that overshooting may no longer
occur, or by a combination of both.

The second limitation cannot be resolved either, as numerical stress redistributions cannot be pre-
vented. However, this limitation can partly be mitigated by showing only a small part of the final con-
solidation phase in the presented results, a strategy that was also adopted in some analyses in this
study.

In the single stress point simulations, these limitations were not evident due to the following two reasons:
(i) numerical redistributions of stresses did not occur in either the monotonic case or the case with UL–
RL cycles, and (ii) changes in the deviatoric strain loading direction mainly occur in multi-directional
stress paths, which are not present in the single stress point simulations performed in this study.

Extent of overshooting dependent on location and time in the BVP
The observed extent of overshooting in the BVP depends on the location within the model and time
instance during the simulation. Stress paths and deviatoric stress-deviatoric strain responses can vary
significantly between different stress points. Only a limited number of stress points (and nodes) were
considered in this study. Therefore, stress points (and nodes) may have been missed where overshoot-
ing still occurs when using the MSB formulation and the CB formulation. However, the analysed stress
points (and node) were selected because they were either located at practically relevant positions or
at a location where overshooting was expected to be most significant.

Node and stress point chosen on the axis of symmetry for analysis purposes
For the analysis of the BVP presented in this study, nodes and stress points were selected in the model
to evaluate their vertical displacement over time and deviatoric stress-deviatoric strain response. Two
of these points, one node and one stress point, were selected at and very close to the axis of symmetry
of the model. The axis of symmetry is a model boundary where boundary conditions are imposed. It
is undesirable to select nodes or stress points on the axis of symmetry for analysis purposes, since
they are forced to exhibit behaviour corresponding to the imposed boundary conditions rather than
behaviour that follows from the physical principles on which the model is based.

However, this limitation only concerns the sections related to the evaluation of the vertical displacement
at the centre of the final excavation bottom and the comparison with the results reported by Cudny and
Truty (2020). The centre of the final excavation bottom was chosen to enable a comparison with the
results reported by Cudny and Truty (2020).

Applicability of the drawn conclusions
Study part of ongoing research
This study is part of ongoing research into optimisation of the MSB formulation and the CB formulation.
This implies that the final version of the formulations used in this study is not necessarily the same as
the version that will eventually be released. Therefore, the findings presented in this study are only
applicable to the versions considered here.

Limited number of tests and BVPs
Due to the limited time available for this study, only a limited number of tests and BVPs could be
considered. This inherently means that the formulations were not tested under all possible conditions.
Clearly, it is not realistic to perform an infinite number of tests and BVPs. Nonetheless, only one BVP
was considered: a static, two-dimensional, dewatering excavation case. Some potentially detrimental
loading conditions were not included, such as dynamic (cyclic) loading or a three-dimensional analysis.
Therefore, it should be kept in mind that the conclusions drawn in this study cannot necessarily be
considered true for all other cases.
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Conclusions

The purpose of this chapter is to present the conclusions drawn from this study. The first section ad-
dresses the main research question by reflecting on the corresponding sub-questions. The second
section discusses which of the two formulations provides the most suitable approach to mitigate over-
shooting. The third and final section summarises additional findings obtained from this study.

9.1. Main research question
The main research question addressed in this study was as follows:

To what extent do the Continuous Brick formulation, as a new formulation for small-strain stiffness, and
the Memory-Surface-based formulation, as an extension to the existing small-strain stiffness formu-
lation within the Hardening Soil small-strain model, reduce the overshooting observed in the current
formulation?

This question is addressed by reflecting on the corresponding sub-questions, which are discussed
below.

What factors influence the extent of overshooting, and how?
Among other factors, it was found that both the amplitude of an UL–RL cycle and the degree of elasto-
plastic behaviour influence the extent of overshooting. Specifically, a larger amplitude results in a
smaller extent of overshooting, and the more dominant the plastic component of the HSsmall model
becomes, the smaller the extent of overshooting.

To what extent do the numerical implementations of the two proposed formulations correctly
reproduce their underlying analytical formulation?
In order to assess whether the proposed formulations are effective in reducing overshooting, it was
first verified that their numerical implementations correctly reproduce their underlying analytical formu-
lations. If this is not the case, the observed material response could be the result of an error in the
source code, making it difficult to determine whether any observed overshooting is inherent to the
formulations themselves.

In the single stress point simulations, the numerical implementation of the MSB formulation was found
to correctly reproduce the underlying analytical formulation in almost all cases. Only in the CD triaxial
compression test simulation under stress-dependent, elasto-plastic conditions an inconsistency was
identified. In principle, this inconsistency could lead to overshooting, however it was negligible in this
specific simulation and was easily resolved. In the numerical implementation of the CB formulation,
two inconsistencies became apparent. Although these inconsistencies did not cause overshooting,
they resulted in an incorrect material response and therefore had to be resolved.

In the BVP, no inconsistencies were encountered for the CB formulation, whereas one was identified
for the MSB formulation. The formulation was implemented such that the elastic shear modulus would
reset one step later than the actual closure of an UL–RL cycle, in order to avoid complex and compu-
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tationally demanding procedures to obtain the deviatoric stress state at the end of a calculation step.
However, in the BVP it became evident that this strategy may result in overshooting. This issue was
not identified in the single stress point simulations because the calculation step sizes were too small
and because each UL–RL cycle always closed at the end of a calculation step. Conditions that are
generally not met in a BVP, thereby revealing the limitation. The problem was resolved by defining the
formulation in the deviatoric strain space, where the deviatoric strain state at the end of a calculation
step is known.

In conclusion, both the MSB formulation and the CB formulation correctly reproduce their underlying
analytical formulations once the identified inconsistencies were resolved, based on the laboratory test
simulations and BVP performed in this study.

What potential changes can be identified to improve or refine the two proposed formulations?
When unexpected behaviour was observed in the material response, and the underlying analytical
formulation was confirmed to be correctly reproduced, it was assessed whether there was room for
improvement, either to make it more consistent with the expected physical behaviour or to reduce
overshooting. The latter directly contributes to the main research question.

In the single stress point simulations, no potential improvements were identified for the MSB formu-
lation, whereas several were identified and subsequently implemented for the CB formulation: (i) the
criterion for classifying a SR as corresponding to either unloading or reloading conditions was improved.
Previously, this criterion could result in loading conditions being detected opposite to what they actu-
ally were. This could have a detrimental effect on the memory, as the current elastic shear modulus is
stored upon a SR triggering unloading, which should correspond to the onset of an UL–RL cycle, (ii) it
was ensured that, upon the activation of a brick, the elastic shear modulus is reset only when an UL–
RL cycle is closed. Previously, the reset could occur too soon, which is inconsistent with the expected
physical behaviour where the monotonic material response is continued after an UL–RL cycle is closed,
(iii) it was ensured that the elastic shear modulus was no longer updated upon a change in the strain
loading direction when all bricks were are already activated, thereby correctly retaining its lower bound,
the UL–RL elastic shear modulus, and (iv) it was ensured that the formulation would no longer retain
the memory of a larger cycle when a sequence of smaller cycles occurs within it during which no brick
is active. Otherwise, when the first brick is activated, the memory of the larger cycle would be used.
Although it could be desirable for the formulation to memorise the larger cycle, it would not be possible
to determine whether this larger cycle would actually be closed when the first brick is activated. As a
result, the elastic shear modulus could be reset before the larger UL–RL cycle being closed.

In the BVP, the situation was reversed. No potential changes were identified for the CB formulation,
whereas two were identified and implemented for the MSB formulation: (i) the SR detection algorithm
was modified to ensure that only full SRs are captured by the MSB formulation and, (ii) an extension
was added to the SR detection algorithm to ensure that SRs are detected when they are masked by
large deviatoric strain increments.

How do the results obtained with the two proposed formulations differ from those obtained with
the original Hardening Soil small-strain model?
The monotonic response, both purely elastic and elasto-plastic, obtained with the MSB formulation co-
incides with that of the original HSsmall model. For the CB formulation, the monotonic elasto-plastic re-
sponse was observed to be softer, while the elastic response coincides with that of the original HSsmall
model. This softer response can be counteracted to a large extent by multiplying the model parameter
γ0.7 by a factor of two. However, in some simulations, a softer response was still observed.

The responses with UL–RL cycles differ, as expected, since overshooting is inherent to the HSsmall
model, whereas both theMSB formulation and the CB formulation were specifically designed to mitigate
this behaviour.

To what extent do the two proposed formulations effectively reduce overshooting at a single
stress point level?
The MSB formulation and the CB formulation reduce overshooting to a negligible level in the labora-
tory test simulations performed in this study, both under purely elastic, stress-independent conditions
and under elasto-plastic, stress-dependent conditions. In all cases, the material response under mono-
tonic loading approximately coincides with that under loading with UL–RL cycles, demonstrating that
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overshooting has been effectively reduced.

Two drawbacks were identified that can potentially result in overshooting: (i) both formulations are
capable of memorising only a single UL-RL cycle, which could become problematic when nested cycles
occur, and (ii) the CB formulation stores the memory of an UL-RL cycle only if a brick was active at the
onset of that cycle.

The second drawback could potentially be resolved by shortening the string length of the first brick.
However, this was not tested in this study. The first drawback is more difficult to address, as resolving
it would require a substantial increase in the number of elastic state variables and consequently in
computational memory usage, and is therefore considered a significant limitation that should be taken
into account.

How effective are the two proposed formulations in reducing overshooting when applied to a
boundary value problem?
Both the MSB formulation and the CB formulation were found to effectively reduce overshooting. When
compared with the results reported by Cudny and Truty (2020), the results are of similar quality.

The two drawbacks identified in the single stress point simulations also became apparent in the analysis
of the BVP. It was observed that the first drawback can result in a substantial amount of overshooting,
whereas the overshooting caused by the second drawback was negligible.

Returning to the main research question

The main research question can now be answered as follows: both the MSB formulation and the CB for-
mulation effectively reduce overshooting to a negligible level, provided that nested cycles do not occur.
The occurrence of nested cycles in simulations reduces the effectiveness of both formulations. Further
research is needed to determine whether the consequences of these nested cycles can be neglected
in practical geotechnical analyses, and to identify the conditions, both numerical and physical, under
which such nested cycles arise. If their consequences cannot be considered negligible, the formula-
tions are not sufficiently robust and a further improvement to the formulations would be required. If their
consequences can be regarded as negligible, both formulations can be considered sufficiently robust,
and there is no need to consult additional literature for alternative approaches to mitigate overshooting;
instead, a choice must be made between the two formulations.

9.2. Most suitable approach
A summary of the main advantages and disadvantages of both formulations is presented in Table 9.1.
Both formulations have comparable runtimes in both the single stress point simulations and the BVP,
and both share the limitation of retaining the memory of only a single UL-RL cycle. Therefore, these
aspects are omitted from the table, as they do not lead to any differences between the two formulations.
From the table, it is evident that the MSB formulation offers considerably more advantages than the
CB formulation. Therefore, based on the performed simulations, this study concludes that the MSB
formulation is the most suitable approach to mitigate overshooting in the HSsmall model. If a follow-up
study demonstrates that the limitation exhibited by both formulations to retain the memory of only a
single UL–RL cycle cannot be considered negligible in practical geotechnical analyses, the adoption of
the CB formulation may be reconsidered, since a potential solution has already been implemented in
its source code.
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MSB formulation CB formulation
Advantages

• Easier to interpret
• Seems more robust
• Retains the small-strain com-
ponent of the HSsmall model

• Slightly less elastic state vari-
ables

• Easily extendable to poten-
tially address the memory limi-
tation of a single UL–RL cycle
(by using more bricks)

Disadvantages
• Only stores the previousmem-
ory if at least one brick
is active at the onset of the cor-
responding UL–RL cycle

• Results may differ from those
obtained with the
current version of HSsmall un-
der elasto-plastic conditions

Table 9.1: Comparison between the MSB formulation and the CB formulation.

9.3. Additional findings
Influence of overshooting on the sheet pile wall
This study shows that overshooting in the HSsmall model affects not only the soil but also the sheet pile
wall. It leads to smaller calculated bending moments and, consequently, smaller horizontal deforma-
tions. This is caused by the fact that the soil behaves stiffer due to overshooting, and a stiffer material
carries a larger share of the load, resulting in less load being transferred to the sheet pile wall. When
using the MSB or CB formulation, a reduced bending moment is no longer observed.

Cause of the UL–RL cycles in the boundary value problem
The UL–RL cycles observed in the BVP presented in this study are mainly caused by numerical redis-
tributions of stresses triggered by physical deformation mechanisms and increased model complexity,
leading to stress imbalances that are resolved when the model is allowed time to adjust to a new equi-
librium, i.e., when no additional changes to the model conditions are imposed.
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Recommendations

From a practical perspective, extending the HSsmall model with the MSB formulation will lead to more
accurate deformation estimations in geotechnical problems especially within the pre-failure range (ser-
viceability limit states). Specifically, deformations will no longer be underestimated, which is quite
significant in practical applications, at no cost of additional model parameters. This is true not only
for the soil itself but also for structural elements such as a sheet pile wall. By implementing the MSB
formulation, less load is transferred to the soil and a larger portion to the structural element, as the soil
behaviour is no longer overly stiff due to overshooting.

Furthermore, the material response under monotonic loading conditions obtained with the MSB formu-
lation does not deviate from that of the original HSsmall model. Therefore, adopting this formulation
will not have major implications for the end user, as previously obtained results will remain unchanged,
except for those that exhibit overshooting.

Finally, since the UL–RL cycles observed in the BVP presented in this study were found to be mainly
caused by numerical redistributions of stresses, a phenomenon that can occur in any numerical sim-
ulation, especially where deformation mechanisms greatly disturb the soil, the MSB formulation could
potentially improve the results in many numerical simulations of geotechnical problems.

This study suggests several possibilities for follow-up research:

1. Dynamic loading case
In this study, the ability of the two proposed formulations to reduce overshooting was not evaluated
under dynamic loading conditions. However, as became evident in this study, such conditions
could result in overshooting, since both formulations retain the memory of only one UL–RL cycle,
and nested cycles are more likely to occur under these loading conditions. Therefore, a follow-up
study is recommended to evaluate the performance of both formulations under such conditions,
for instance, in a seismic loading case. If this limitation proves to cause a significant extent of
overshooting, versions of the MSB and CB formulations that are capable of memorising more than
a single cycle should be tested and it should be assessed whether they do not require excessive
computer memory storage.

2. Three-dimensional simulation
Only 1D and 2D cases were considered in this study. It is recommended to perform also a 3D
analysis, as such an analysis would include the influence of the out-of-plane conditions and there-
fore yield a more realistic stress path. Since the computational efficiency of both formulations
appeared to be similar, a 3D analysis may reveal whether one formulation is computationally less
efficient than the other.

3. Validation
Both the MSB formulation and the CB formulation were not validated in this study. Validation is
recommended to assess whether their results are consistent with real physical behaviour, partic-
ularly for the CB formulation, as its monotonic response under elasto-plastic conditions deviates
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from that of the original HSsmall model.
4. Partial SRs in the MSB formulation

A follow-up study could investigate whether adjusting the elastic shear modulus upon changes
in the strain loading direction is consistent with physical behaviour. Furthermore, it could be
examined whether the results of the MSB formulation align more closely with physical reality if
the Memory Surface tracks UL–RL cycles separately for each of the three eigen directions of the
current deviatoric strain increment.
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A
Test specifications single stress

point simulations

This appendix provides an overview of the input used for the single stress point simulations. An
example lay-out is shown below:

100 = number of steps in phase 1
1 = phase duration for phase 1

0 0 0 0 0 0 = strain increments for phase 1
200 200 200 0 0 0 = stress increments for phase 1
1 1 1 1 0 0 = boundary conditions

Each row corresponds to a stress or strain vector in the following order:

σxx σyy σzz σxy σyz σzx

εxx εyy εzz εxy εyz εzx

The boundary condition value determines whether, in a specific simulation phase, the stress or
strain component is controlled:

(a) A value of 0 means the strain is being controlled
(b) A value of 1 means the stress is being controlled

The input for the elasto-plastic simulations is not provided, as it is nearly identical to that of the
elastic simulations. The only differences are:

(a) Phases 1, 2, and 3 (pre-loading) are omitted
(b) The initial stresses are defined as follows:

-100 -100 -100 0 0 0
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Consolidated drained triaxial compression test simulation – monotonic loading

-300 -300 -300 0 0 0 = initial stresses

4 = number of phases

100 = number of steps in phase 1
1 = phase duration for phase 1

0 0 0 0 0 0 = strain increments for phase 1
200 200 200 0 0 0 = stress increments for phase 1
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 2
1 = phase duration for phase 2

0 0 0 0 0 0 = strain increments for phase 2
0 -195 0 0 0 0 = stress increments for phase 2
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 3
1 = phase duration for phase 3

0 0 0 0 0 0 = strain increments for phase 3
0 195 0 0 0 0 = stress increments for phase 3
1 1 1 1 0 0 = boundary conditions

600 = number of steps in phase 4
16 = phase duration for phase 4

0 0 0 0 0 0 = strain increments for phase 4
0 -150 0 0 0 0 = stress increments for phase 4
1 1 1 1 0 0 = boundary conditions

Consolidated drained triaxial compression test simulation – loading with small unloading–
reloading cycles

-300 -300 -300 0 0 0 = initial stresses

19 = number of phases

100 = number of steps in phase 1
1 = phase duration for phase 1

0 0 0 0 0 0 = strain increments for phase 1
200 200 200 0 0 0 = stress increments for phase 1
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 2
1 = phase duration for phase 2

0 0 0 0 0 0 = strain increments for phase 2
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0 -195 0 0 0 0 = stress increments for phase 2
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 3
1 = phase duration for phase 3

0 0 0 0 0 0 = strain increments for phase 3
0 195 0 0 0 0 = stress increments for phase 3
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 4
1 = phase duration for phase 4

0 0 0 0 0 0 = strain increments for phase 4
0 -25 0 0 0 0 = stress increments for phase 4
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 5
1 = phase duration for phase 5

0 0 0 0 0 0 = strain increments for phase 5
0 0.5 0 0 0 0 = stress increments for phase 5
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 6
1 = phase duration for phase 6

0 0 0 0 0 0 = strain increments for phase 6
0 -0.5 0 0 0 0 = stress increments for phase 6
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 7
1 = phase duration for phase 7

0 0 0 0 0 0 = strain increments for phase 7
0 -25 0 0 0 0 = stress increments for phase 7
1 1 1 1 0 0 = boundary conditions

The last three phases are repeated four more times

Undrained direct simple shear test simulation – monotonic loading

-300 -300 -300 0 0 0 = initial stresses

4 = number of phases

100 = number of steps in phase 1
1 = phase duration for phase 1

0 0 0 0 0 0 = strain increments for phase 1
200 200 200 0 0 0 = stress increments for phase 1
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1 1 1 0 0 0 = boundary conditions

100 = number of steps in phase 2
1 = phase duration for phase 2

0 0 0 0 0 0 = strain increments for phase 2
0 -195 0 0 0 0 = stress increments for phase 2
1 1 1 0 0 0 = boundary conditions

100 = number of steps in phase 3
1 = phase duration for phase 3

0 0 0 0 0 0 = strain increments for phase 3
0 195 0 0 0 0 = stress increments for phase 3
1 1 1 0 0 0 = boundary conditions

700 = number of steps in phase 4
19 = phase duration for phase 4

0 0 0 0 0 0 = strain increments for phase 4
0 0 0 35 0 0 = stress increments for phase 4
0 0 0 1 0 0 = boundary conditions

Undrained direct simple shear test simulation – loading with small unloading–reloading
cycles

-300 -300 -300 0 0 0 = initial stresses

22 = number of phases

100 = number of steps in phase 1
1 = phase duration for phase 1

0 0 0 0 0 0 = strain increments for phase 1
200 200 200 0 0 0 = stress increments for phase 1
1 1 1 0 0 0 = boundary conditions

100 = number of steps in phase 2
1 = phase duration for phase 2

0 0 0 0 0 0 = strain increments for phase 2
0 -195 0 0 0 0 = stress increments for phase 2
1 1 1 0 0 0 = boundary conditions

100 = number of steps in phase 3
1 = phase duration for phase 3

0 0 0 0 0 0 = strain increments for phase 3
0 195 0 0 0 0 = stress increments for phase 3
1 1 1 0 0 0 = boundary conditions

100 = number of steps in phase 4
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1 = phase duration for phase 4

0 0 0 0 0 0 = strain increments for phase 4
0 0 0 5 0 0 = stress increments for phase 4
0 0 0 1 0 0 = boundary conditions

100 = number of steps in phase 5
1 = phase duration for phase 5

0 0 0 0 0 0 = strain increments for phase 5
0 0 0 -0.5 0 0 = stress increments for phase 5
0 0 0 1 0 0 = boundary conditions

100 = number of steps in phase 6
1 = phase duration for phase 6

0 0 0 0 0 0 = strain increments for phase 6
0 0 0 0.5 0 0 = stress increments for phase 6
0 0 0 1 0 0 = boundary conditions

100 = number of steps in phase 7
1 = phase duration for phase 7

0 0 0 0 0 0 = strain increments for phase 7
0 0 0 5 0 0 = stress increments for phase 7
0 0 0 1 0 0 = boundary conditions

The last three phases are repeated for five more times

Drained oedometer test simulation – monotonic loading

-300 -300 -300 0 0 0 = initial stresses

4 = number of phases

100 = number of steps in phase 1
1 = phase duration for phase 1

0 0 0 0 0 0 = strain increments for phase 1
200 200 200 0 0 0 = stress increments for phase 1
1 1 1 0 0 0 = boundary conditions

100 = number of steps in phase 2
1 = phase duration for phase 2

0 0 0 0 0 0 = strain increments for phase 2
0 -195 0 0 0 0 = stress increments for phase 2
1 1 1 0 0 0 = boundary conditions

100 = number of steps in phase 3
1 = phase duration for phase 3

0 0 0 0 0 0 = strain increments for phase 3
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0 195 0 0 0 0 = stress increments for phase 3
1 1 1 0 0 0 = boundary conditions

700 = number of steps in phase 4
22 = phase duration for phase 4

0 0 0 0 0 0 = strain increments for phase 4
0 -35 0 0 0 0 = stress increments for phase 4
0 1 0 0 0 0 = boundary conditions

Drained oedometer test simulation – loading with small unloading–reloading cycles

-300 -300 -300 0 0 0 = initial stresses

22 = number of phases

100 = number of steps in phase 1
1 = phase duration for phase 1

0 0 0 0 0 0 = strain increments for phase 1
200 200 200 0 0 0 = stress increments for phase 1
1 1 1 0 0 0 = boundary conditions

100 = number of steps in phase 2
1 = phase duration for phase 2

0 0 0 0 0 0 = strain increments for phase 2
0 -195 0 0 0 0 = stress increments for phase 2
1 1 1 0 0 0 = boundary conditions

100 = number of steps in phase 3
1 = phase duration for phase 3

0 0 0 0 0 0 = strain increments for phase 3
0 195 0 0 0 0 = stress increments for phase 3
1 1 1 0 0 0 = boundary conditions

100 = number of steps in phase 4
1 = phase duration for phase 4

0 0 0 0 0 0 = strain increments for phase 4
0 -5 0 0 0 0 = stress increments for phase 4
0 1 0 0 0 0 = boundary conditions

100 = number of steps in phase 5
1 = phase duration for phase 5

0 0 0 0 0 0 = strain increments for phase 5
0 0.5 0 0 0 0 = stress increments for phase 5
0 1 0 0 0 0 = boundary conditions
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100 = number of steps in phase 6
1 = phase duration for phase 6

0 0 0 0 0 0 = strain increments for phase 6
0 -0.5 0 0 0 0 = stress increments for phase 6
0 1 0 0 0 0 = boundary conditions

100 = number of steps in phase 7
1 = phase duration for phase 7

0 0 0 0 0 0 = strain increments for phase 7
0 -5 0 0 0 0 = stress increments for phase 7
0 1 0 0 0 0 = boundary conditions

The last three phases are repeated five more times.

Tailored consolidated drained triaxial compression test simulation with nested UL-RL cy-
cles

-300 -300 -300 0 0 0 = initial stresses

13 = number of phases

100 = number of steps in phase 1
1 = phase duration for phase 1

0 0 0 0 0 0 = strain increments for phase 1
200 200 200 0 0 0 = stress increments for phase 1
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 2
1 = phase duration for phase 2

0 0 0 0 0 0 = strain increments for phase 2
0 -195 0 0 0 0 = stress increments for phase 2
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 3
1 = phase duration for phase 3

0 0 0 0 0 0 = strain increments for phase 3
0 195 0 0 0 0 = stress increments for phase 3
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 4
1 = phase duration for phase 4

0 0 0 0 0 0 = strain increments for phase 4
0 -20 0 0 0 0 = stress increments for phase 4
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 5
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1 = phase duration for phase 5

0 0 0 0 0 0 = strain increments for phase 5
0 15 0 0 0 0 = stress increments for phase 5
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 6
1 = phase duration for phase 6

0 0 0 0 0 0 = strain increments for phase 6
0 -5 0 0 0 0 = stress increments for phase 6
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 7
1 = phase duration for phase 7

0 0 0 0 0 0 = strain increments for phase 7
0 0.5 0 0 0 0 = stress increments for phase 7
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 8
1 = phase duration for phase 8

0 0 0 0 0 0 = strain increments for phase 8
0 -0.5 0 0 0 0 = stress increments for phase 8
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 9
1 = phase duration for phase 9

0 0 0 0 0 0 = strain increments for phase 9
0 -10 0 0 0 0 = stress increments for phase 9
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 10
1 = phase duration for phase 10

0 0 0 0 0 0 = strain increments for phase 10
0 -5 0 0 0 0 = stress increments for phase 10
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 11
1 = phase duration for phase 11

0 0 0 0 0 0 = strain increments for phase 11
0 0.5 0 0 0 0 = stress increments for phase 11
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 12
1 = phase duration for phase 12

0 0 0 0 0 0 = strain increments for phase 12
0 -0.5 0 0 0 0 = stress increments for phase 12
1 1 1 1 0 0 = boundary conditions
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100 = number of steps in phase 13
1 = phase duration for phase 13

0 0 0 0 0 0 = strain increments for phase 13
0 -10 0 0 0 0 = stress increments for phase 13
1 1 1 1 0 0 = boundary conditions

Tailored consolidated drained triaxial test simulation to investigation the detection of strain
reversal in triaxial extension and compression

-300 -300 -300 0 0 0 = initial stresses

13 = number of phases

100 = number of steps in phase 1
1 = phase duration for phase 1

0 0 0 0 0 0 = strain increments for phase 1
200 200 200 0 0 0 = stress increments for phase 1
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 2
1 = phase duration for phase 2

0 0 0 0 0 0 = strain increments for phase 2
0 -195 0 0 0 0 = stress increments for phase 2
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 3
1 = phase duration for phase 3

0 0 0 0 0 0 = strain increments for phase 3
0 195 0 0 0 0 = stress increments for phase 3
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 4
1 = phase duration for phase 4

0 0 0 0 0 0 = strain increments for phase 4
0 -20 0 0 0 0 = stress increments for phase 4
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 5
1 = phase duration for phase 5

0 0 0 0 0 0 = strain increments for phase 5
0 10 0 0 0 0 = stress increments for phase 5
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 6
1 = phase duration for phase 6



92

0 0 0 0 0 0 = strain increments for phase 6
0 -0.5 0 0 0 0 = stress increments for phase 6
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 7
1 = phase duration for phase 7

0 0 0 0 0 0 = strain increments for phase 7
0 0.5 0 0 0 0 = stress increments for phase 7
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 8
1 = phase duration for phase 8

0 0 0 0 0 0 = strain increments for phase 8
0 30 0 0 0 0 = stress increments for phase 8
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 9
1 = phase duration for phase 9

0 0 0 0 0 0 = strain increments for phase 9
0 -10 0 0 0 0 = stress increments for phase 9
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 10
1 = phase duration for phase 10

0 0 0 0 0 0 = strain increments for phase 10
0 0.5 0 0 0 0 = stress increments for phase 10
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 11
1 = phase duration for phase 11

0 0 0 0 0 0 = strain increments for phase 11
0 -0.5 0 0 0 0 = stress increments for phase 11
1 1 1 1 0 0 = boundary conditions

100 = number of steps in phase 12
1 = phase duration for phase 12

0 0 0 0 0 0 = strain increments for phase 12
0 -30 0 0 0 0 = stress increments for phase 12
1 1 1 1 0 0 = boundary conditions



B
Results of the single stress point

simulations under
stress-dependent, elasto-plastic

conditions

Consolidated drained triaxial compression test simulation – Memory-Surface-Based for-
mulation

Unexpected behaviour is observed in this test. An unloading–reloading (UL–RL) cycle occurs
from loading steps 1 to 3 (see Figure B.1c). From figure B.1e, it becomes evident that the Memory-
Surface-Based (MSB) formulation failed to recover the elastic shear modulus at the onset of the
UL–RL cycle upon its closure. This is inferred from the fact that the stiffness at loading steps
1 and 3 is not identical. The MSB formulation failed to detect the strain reversal (SR) triggering
unloading at loading step 1. As a result, the formulation did not store the corresponding deviatoric
strain history tensor and the elastic shear modulus upon closure of the cycle at loading step 3
could not be restored. It should be noted that the small-strain component of the HSsmall model did
detect a SR at loading step 1, therefore the elastic shear modulus does increase to its maximum
value. A different tolerance was adopted for the small-strain component of the HSsmall model
and the MSB formulation. The tolerance of the MSB formulation was changed in order to detect
the SR triggering unloading. Figure B.2b demonstrates that the issue is resolved as the elastic
shear modulus at loading steps 1 and 3 is identical.
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Figure B.1: Results of the CD triaxial compression test simulation under stress-dependent, elasto-plastic conditions obtained
with the MSB formulation.
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Figure B.2: Results of the CD triaxial compression test simulation under stress-dependent, elasto-plastic conditions obtained
with the MSB formulation after implementing the discussed improvement.

Consolidated drained triaxial compression test simulation – Continuous Brick formulation
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Figure B.3: Results of the CD triaxial compression test simulation under stress-dependent, elasto-plastic conditions obtained
with the CB formulation.

Undrained direct simple shear test simulation – Memory-Surface-Based formulation
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Figure B.4: Results of the undrained DSS test simulation under stress-dependent, elasto-plastic conditions obtained with the
MSB formulation.
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Undrained direct simple shear test simulation – Continuous Brick formulation
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Figure B.5: Results of the undrained DSS compression test simulation under stress-dependent, elasto-plastic conditions
obtained with the CB formulation.

Drained oedometer test simulation – Memory-Surface-Based formulation
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Figure B.6: Results of the drained OED test simulation under stress-dependent, elasto-plastic conditions obtained with the
MSB formulation.

Drained oedometer test simulation – Continuous Brick formulation
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Figure B.7: Results of the drained OED test simulation under stress-dependent, elasto-plastic conditions obtained with the CB
formulation.



C
Tailored consolidated drained

triaxial test simulation to
investigate the detection of strain
reversals in triaxial extension and

compression

This appendix discusses the results of the tailored consolidated drained (CD) triaxial test simu-
lation designed to investigate whether strain reversals are correctly detected and classified as
triggering either unloading or reloading in triaxial extension and compression.

Figure C.1a shows the applied deviatoric loading throughout the entire simulation, whereas Figure
C.1b presents a detailed view of the shearing phase following the pre-loading phases.

The deviatoric stress is a stress invariant that, in principle, can only take positive values. However,
in Figures C.1a and C.1b, its absolute value is not taken. As a results, negative values are
also shown, which is necessary to visualise triaxial extension and compression in the figures.
A negative deviatoric stress represents triaxial compression, while a positive value represents
triaxial extension.

Under triaxial compression conditions (from loading step 1 to approximately loading step 7.5), a
decreasing deviatoric stress indicates loading/reloading, whereas an increasing value indicates
unloading. Under triaxial extension conditions (from approximately loading step 7.5 to loading
step 12), these interpretations are reversed.

Thus, strain reversals triggering unloading should be detected at loading steps 2, 4, 6, 8, and 10,
whereas strain reversals triggering reloading at loading steps 3, 5, and 9. Note that, although
difficult to distinguish in the figures, strain reversals occur at loading steps 5, 6, 9, and 10.
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Figure C.1: Applied deviatoric loading throughout the simulation.

Figure C.2 presents the results obtained with the Memory-Surface-Based formulation. Four fig-
ures are shown: (i) the elastic shear modulus as a function of loading step (see Figure C.2a),
(ii) the radius of the Memory Surface as a function of loading step (see Figure C.2b), (iii) the de-
viatoric strain history tensor HSR,UL as a function of loading step (see Figure C.2c) and, (iv) a
detailed view of the shearing phase of HSR,UL as a function of loading step (see Figure C.2d).

Recall from Section 2.2.1 that, upon a strain reversal triggering unloading, the elastic state vari-
able HSR,UL is updated. Figures C.2c and C.2d confirm that this indeed occurs at the expected
loading steps. When a strain reversal triggering reloading occurs, the size of the Memory Sur-
face adjusts to the amplitude of the corresponding unloading–reloading cycle, resulting in sudden
decrease of its radius. Figure C.2b shows that this is indeed the case at loading steps 5 and 9.
Note that at loading step 3, although a strain reversal triggering reloading occurs, no significant
change in radius is observed, as the unloading is of the same magnitude as the initial loading.

Figure C.2a demonstrates that, at each strain reversal, the elastic shear modulus resets to its
high initial value, as expected.

Figure C.3 presents the results obtained with the Continuous Brick formulation. Three figures
are shown: (i) the shear strain measure accumulation since the activation of the last brick until a
strain reversal triggering unloading occurs, ∆γSR,UL as a function of loading step, (ii) the number
of strain reversals, NSR, as a function of loading step and, (iii) the elastic shear modulus as a
function of loading step.

Recall from Section 2.2.2 that, upon a strain reversal triggering unloading, the elastic state vari-
able ∆γSR,UL is updated. Figure C.3a confirms that this indeed occurs at the expected loading
steps. The loading steps at which strain reversals triggering reloading are expected correspond
to the strain reversals shown in Figure C.3b (at loading steps 3, 5, and 9) that were not classified
as triggering unloading. Hence, it can be inferred that they are correctly identified as triggering
reloading.

Figure C.3c demonstrates that, at each strain reversal, the elastic shear modulus resets to its
high initial value, as expected.

It should be noted that, for both formulations, the elastic shear modulus is never reset to a value
different from its high initial value, as no unloading–reloading cycles is ever closed.

In conclusion, both formulations are capable of correctly detecting and classifying strain reversals
as triggering either unloading or reloading in triaxial compression and extension.
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Figure C.2: Results obtained with the Memory-Surface-Based formulation: (a) Elastic shear modulus as a function of loading
step, (b) Radius of the Memory Surface as a function of loading step, (c) Deviatoric strain history tensor H as a function of

loading step and, (d) Detail around the shearing phase of H as a function of loading step.
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Figure C.3: Results obtained with the Continuous Brick formulation: (a) The shear strain measure accumulation since the
activation of the last brick until a strain reversal triggering unloading occurs, ∆γSR,UL as a function of loading step, (b) Number

of strain reversals, NSR, as a function of loading step and, (c) Elastic shear modulus as a function of loading step.



D
Summary of the encountered issues

and their solutions

This appendix provides a summary of the issues encountered in the single stress point simulations
and the boundary value problem. The column Type of issue distinguishes between implementa-
tion issues, indicating that the numerical implementation did not correctly reproduce its underlying
analytical formulation, or formulation issues, indicating that the formulation was correctly imple-
mented but that the underlying formulation itself required improvement. Table D.1 provides a
summary for the MSB formulation and Table D.2 for the CB formulation.
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Table D.1: Summary of the encountered issues and their solutions in the single stress point simulations and the boundary
value problem for the MSB formulation

Type of issue Issue Solution
Single stress
point simulations

Implementation The formulation failed to store
the memory at the onset of an
UL–RL cycle

The tolerance for storing
the memory is changed

Formulation - -
Boundary value
problem

Implementation The formulation defined in the
stress space uses the stress
state from the previous
calculation step, because the
final stress state of the current
step is not yet available.
Therefore, it notices the closure
of an UL–RL cycle one step too
late, and the stiffness is
recovered one step later than it
should be.

The formulation is
defined in the strain
space because the final
strain state of the current
step is available

Formulation The Memory Surface was also
updated when the formulation
detected strain reversals that
were not part of UL–RL cycles.

The strain reversal
detection algorithm is
therefore modified so that
it only detects reversals
that are part of an UL–RL
cycle.

The formulation failed to detect
strain reversals when they were
followed by strain increments
that were too large for the
detection algorithm to flag the
reversal.

The strain reversal
detection algorithm is
updated to also evaluate
fractions of the current
strain increment.
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Table D.2: Summary of the encountered issues and their solutions in the single stress point simulations and the boundary
value problem for the CB formulation

Type of issue Issue Solution
Single stress
point simulations

Implementation An elastic state variable was
incorrectly initialised, which
caused sudden drops in elastic
stiffness under specific
conditions.

This elastic state variable
is now initialised
correctly.

Formulation In a corner case, the loading
conditions were identified
opposite to what they actually
were.

The criterion used to
classify a strain reversal
as corresponding to
either unloading or
reloading is therefore
refined.

The elastic stiffness stored in
memory could be reset too
early, i.e., before the
corresponding UL–RL cycle had
actually been closed.

Two new elastic state
variables are introduced
to check whether a cycle
is actually closed at the
moment the formulation
would normally restore
the stiffness. If this is not
the case, the stiffness is
not restored.

The elastic stiffness was
updated when the strain
direction changed, even in
cases where the stiffness
should have remained equal to
its lower bound, namely, when
all bricks remained active after
the change in direction.

It is now ensured that the
elastic stiffness only
updates upon a change
in strain direction when
not all bricks are active.

The formulation retained the
memory of a larger cycle when
smaller UL–RL cycles occurred
inside it during which no bricks
were active. Because the
formulation cannot determine
whether the larger cycle has
closed, this led to restoring its
memory at an incorrect
moment.

The formulation now
reset the memory to zero
whenever UL–RL cycles
occur when no brick is
active.

Boundary value
problem

Implementation - -

Formulation - -
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