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Summary
Explainable artificial intelligence has in recent years allowed us to investigate how many machine learn-
ing methods are creating its predictions. This is especially useful in scenarios where the goal is not to
predict a variable, but to explain what influences that variable. However, the methods that have been
created thus far do not focus on specific domains and only give scientific relations between variables.
In the case of a production process, there exist a multitude of related variables, constrained in differ-
ent ways, thus requiring a more sophisticated method than those which are universally applicable. The
target of this research is a bottle filling machine at a large carbonated drink manufacturer, of which a
great amount of data has been stored. The product quality, in this case the amount of CO2 in the filled
bottles, is subject to high amounts of fluctuation, leading to a lot of waste. To further contextualize the
problem of bottle filling, an artificial dataset is created to serve as a basis for visualization and evaluation.
Using literature on carbonated drink filling, multiple hypotheses were then formulated, independently
from the thesis company, as a target for the evaluation process. To address the problem of determining
what factors influence bottle CO2, a methodology is proposed which aims to provide explainable quality
prediction of production process output, while using available domain knowledge to increase the plau-
sibility of explanations. The methodology makes use of counterfactual explanations for tree ensembles
and process state forecasting to show how a process state can be changed to yield better product quality.
Evaluation on the artificial and real datasets show that the methodology is able to effectively predict the
amount of CO2 in a bottle, while giving changes to the current process state which improve the product
quality. It is also shown that the results produced by the methodology are in line with the formulated
hypotheses. Bottle CO2 is influenced greatly by temperature changes in the filler and these temperature
changes are caused by flow of cooled lemonade through the process. As these flows are dependent on
the filling speed, irregular filling is suspected to be the root cause for the bottle CO2 fluctuations.
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1
Introduction

With Machine Learning (ML) being at the forefront of the Industry 4.0 revolution [16], more companies
will want to invest into optimizing their industrial pipelines using ML models, as they are able to make
automated predictions using the large amount of data they are currently generating. These predictions
can range from determining when machine parts will fail (Predictive Maintenance), to automated ware-
housing as done by Tesla1. A specific area in industrial settings where ML can be beneficial is in the
modelling of production processes [69]. In some cases these processes are monitored by thousands of
sensors measuring temperatures, pressures, flows, chemical contents, etc., creating complex multivariate
time series problems [60].

Creating hard models of such processes, models based on the physical nature of the system, requires
extensive knowledge about the many physical laws that apply to such processes and therefore this is
very difficult to approach for non-experts [24]. Even if the knowledge is available, the cost of creating
such intricate methods already asks for a more convenient solution. If this knowledge is not available,
for instance due to retiring expert modellers [6], soft models are able model the process using the many
data sources from processes which are usually already stored, such as process parameters, alarms, and
sensors (e.g. temperature, pressure, flow) [19]. This is not without problems as in a production process,
such as the bottle filling machine targeted by this research, setting measuring the quality of a sample
may be destructive, making excessive sampling undesirable. This lack of samples prevents the use of
very flexible ML (e.g. time series-based prediction or neural network) models which would overfit [77,
18].

Furthermore, in an industrial process setting soft models can quickly become a black-boxmodel when
they get more complex. Black-box models are ubiquitous opaque decision systems which do not show how
its predictions are created. While such a model perfectly predicting the quality of a final product can
be beneficial, it will never indicate that there is something inherently wrong with the process itself, as
that cannot be conveyed through only an indicator for the quality of a product. Even worse, the model
could be right for the wrong reasons, which will not become clear without further investigation. Ideally,
the model can give explanations to how its predictions are constructed, in this case allowing its users to
determine possible faults in the modelled production processes.

All models are wrong, but some are useful. G. E. P. Box [5]

The field of Explainable Artificial Intelligence (XAI) aims to create ML models which are able to show
how it is creating its predictions [17]. These models can then be used to uncover the hidden workings
of the modelled process and allow for process optimization [69]. This will also allow companies to deal
with situations where there is not enough knowledge transferring between retiring experts and new
personnel, as new personnel can potentially learn the workings of machines through the model.

While being able to create a model from only data obtained from process monitoring is useful, it is
not necessarily true that there is no prior knowledge of the process at all. In this case, we may want to be
able to use this domain knowledge to improve the model, perhaps in a combined effort with data analysts
and process engineers. Furthermore, there are circumstances where purely data-driven approaches do

1https://www.mouser.com/blog/industry-40-supported-by-machine-learning
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not lead to satisfactory results in the first place. This can occur when not enough data is available,
or when predictions do not adhere to logical constraints [58]. The field of Informed Machine Learning
(IML) aims to incorporate prior knowledge about the problem into a ML model to improve its predictions
and explanations [58].

1.1. Problem Statement
When one desires to create explainable ML models to a production process there is a problem which is
highlighted by recent studies: there is a disconnect between the development of XAI methods and the
stakeholders’ desiderata, i.e., their goals, expectations, needs, and demands [34]. Instead of providing
scientific explanations, more focus should be laid on giving everyday explanationswhich can be understood
by the stakeholders outside of the field of ML [46, 34, 71]. In the case of this research the stakeholders
should be the process engineers which have the knowledge about the process, enabling the methodology
to harness their knowledge directly and provide explanations which they can directly understand.

Current staples in XAI such as SHapley Additive Values (SHAP) [41] and its model-specific variants
[42] may be easily applied in projects, but are limited due to their very general nature in that they
only provide exactly those scientific relations which on their own may not be useful enough to other
stakeholders than model developers. An example where SHAP is applied to power grid data states that
SHAP is able to show unexpected non-linear relationships between variables, but that it needs to be
combined with domain knowledge to create real scientific discoveries. For explanations to be persuasive,
i.e., be useful to the user, explanations need to be presented in a way that they can understand, and this
is currently not researched enough [74, 46].

1.2. Domain Knowledge Driven XAI
The objective of this research is therefore to create a methodology that when applied to a production
process uses the domain knowledge of that process to improve performance of the model explanations
and, more importantly, give explanations which are aimed at the process engineers instead of the model
developers.

1.3. Research Questions
Main Research Question

How can a machine learning model be developed which predicts product quality, while giv-
ing production-process-specific explanations that domain-specific stakeholders can under-
stand?

Sub-questions
• Can random forests be used to indicate what variables influence product quality?
• Can counterfactual explanations be used to suggest a better production process state?
• Can time series forecasting be used to forecast the influence of process parameter changes?
• Can domain knowledge be used to make counterfactual explanations more plausible with respect

to production processes?

1.4. Reading Guide
After this introduction we will first be covering the context of the project in Chapter 2 by introducing the
thesis company and the problem this research addresses. In Chapter 3 we revisit the three fields of pro-
cess modeling, explainable artificial intelligence, and domain knowledge integration, we established in
the introduction, and go over the recent literature done and the research gaps that need to be addressed.
We will also cover the literature that is closest to this research and determine what it is missing. We then
discuss the preliminaries in Chapter 4 by more formally introducing production processes, quality model-
ing, random forests, and counterfactual explanations. This then serves as a basis when the contributions
by this research are introduced in Chapter 5, where we will also formulate some hypotheses regarding
the target bottle filling machine. In Chapter 6 the results of applying the proposed methodology to the
artificial and real datasets introduced in Chapter 2 are given and discussed and we will try to confirm the
previously stated hypotheses. Finally, Chapter 7 concludes this research and gives directions for future
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work to based on the findings and limitations of this research, while also taking the time to give the
thesis company directions on where to look for improvements to their process.



2
Context

We will now discuss the context in which this research has been executed. First we will introduce the
thesis company, being a large soft drink manufacturer in the Netherlands, aiming to reduce its waste
using better quality control. We will then discuss the aspects we need to consider when trying to improve
production quality in a drink manufacturing setting, as well as the prior knowledge about such processes.
Then an artificial dataset is introduced to illustrate the issue this research is aimed to resolve. Lastly, the
available data is discussed together with some preliminary data exploration.

2.1. Soft Drink Supplier
The thesis company is a large soft drink supplier that produces and bottles carbonated soft drinks in-
house. They are interested in how they can improve the efficiency and reduce the waste of their processes
using state of the art data driven technologies. The initial target of this project is one individual bottle-
filling process of which a simplified schematic is shown in Figure 2.1. This process consists of a stage
where the lemonade is made, a carbonation stage where lemonade is mixed with CO2, and the filling
stage where the carbonated lemonade is filled into bottles.

2.2. The Problem of Bottle Filling
However, the filling of bottles is subject to many variables, mostly unknown to the thesis company before
the start of this project, that induce fluctuations in the amount of CO2 that ends up in the bottles. This
is bad as the accepted amount of CO2 lays within narrow bounds. Furthermore, determining the CO2

of a bottle is a manual and destructive process and thus bottle samples are usually taken only hourly,
which is too great of a window to stay on top of possible changes in bottle CO2. The goal of this project

Figure 2.1: A simplified schematic of the bottle filling machine that supplied the data to test the methodology proposed in this
research.

4
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is then to create a methodology predicting the bottle CO2 while aiding the process engineers by giving
explanations that expose the inner workings of the bottle-filling process.

2.2.1. What is Known About Bottle Filling
There are a number of facts known about the problem. First of all, the calculation of the amount of CO2 in
a bottle is a function of its temperature and pressure. Higher temperature and lower pressure yield lower
CO2 measurements, while lower temperature and higher pressure yield higher CO2 measurements [66].
Besides CO2 setpoints, the amount CO2 in bottles should therefore be sensitive to changes in temperature
and pressure as well which is important to keep in mind.

2.2.2. Unique To The Target Process
When considering the bottle filling machine at the company there are a number of aspects that may be
of influence. First of all, the lemonade is only cooled before the carbonation process, meaning that the
lemonade in the process will generally increase in temperature after that point. The faster lemonade
flows through the process, the less of an effect this aspect will have, but it seems logical to assume
that when the bottle filler has been idling for a long time the temperature increase can be a problem.
Furthermore, no measurement of CO2 levels is done directly before bottles are filled, making it more
difficult to determine exactly where problems lie. Unfortunately, the company has no process models
and has only performed parameter optimization through physical testing.

2.2.3. Illustration Using a Toy Example
In order to illustrate the problem of lemonade increasing in temperature when stationary in the process,
we will use a manually constructed artificial dataset. The structure of this hypothetical bottle filling
machine is incoming lemonade → carbonation tank → filler tank, essentially the carbonation tank
and filler from Figure 2.1. Thus, it is assumed that the carbonation has already happened. For a given
time step t a value (e.g. temperature) xi,t of section i (carbonation tank or filler tank) is determined
using the previous value xi,t−1 and the previous value xj,i−1 for the section j preceding it.

It is assumed that because the carbonation tank has a larger volume than the filler tank, it will take
longer to warm up and cool down to room temperature. The CO2 in a section is determined by the
following (non-factual) function inspired by the relations between CO2, temperature, and pressure as
described in [66]:

bottleCO2(T, p,m, Tideal, pideal) = max(0,m · (1− 0.1

(
T

Tideal

)3

+ 0.2

(
p

pideal

) 1
3

)), (2.1)

where T is the temperature, p the pressure, m the amount of CO2, and Tideal and pideal are the
ideal temperature and pressure at which the amount of CO2 should be maximized. A section of the
resulting data can be viewed in Figure 2.2. Say we now have a trained a black-box ML model creating
the predictions in Figure 2.3. Although the predictions of the model can be used to roughly estimate the
current amount of CO2 in the produced bottles, we have gained no knowledge about the process we are
studying. Ideally we have a model which, for example, explains what causes the small fluctuations in the
quality predictions around 300 time steps, or why the prediction suddenly drops around 440 time steps,
or how we get the quality predictions up again when we find ourselves in a situation such as at 550 time
steps. An example of a more transparent model is the very simple hand-made decision tree model seen
in Figure 2.4. For each prediction, the exact reasoning of the model can be easily followed, in contrast
to black-box models where that reasoning is not that easily known. In this case, the high filler and room
temperatures are the cause for the low prediction. Ideally, this model is automatically generated so that
the model decisions can be extracted, giving insight into the workings of the process. However, it is
also important to keep in mind that we do not have this amount of samples in the real dataset due the
destructive nature of bottle sampling.
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Figure 2.2: Time-series data of the manually constructed toy dataset viewing the temperatures (T) and pressures (p) of the
incoming lemonade, carbonation tank, and filler tank, room temperature, bottle CO2, and whether filling is done.
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Figure 2.3: Example predictions created using the hand made model from Figure 2.4.
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def simple_predictor(x):
if x['filler_T'] > 20:

if x['room_T'] > 27:
return 2.5

else:
return 3.3

else:
if x['filling'] > 0.5:

return 4.5
else:

return 4.2

Figure 2.4: Example decision tree model (top), with Python syntax (bottom), for predicting the bottle CO2 on the artificial
dataset.

2.3. Data
The data available consists of time-series data of many temperature, pressure, and flow sensors, as well
as when valves open and close, and process set points. In this report the names of the parameters
and sensors are used as they appear in the dataset. Table 2.1 gives clarification on what each of the
names represents. Important in this work is the distinction between process parameters and sensors. We
consider as process parameters all measurements of flow (FT or FC) and the temperature measurement
directly following the cooling of lemonade (TT_031_130_033), as these values can be adjusted. We then
have hourly bottle samples as target data. All data is separated in batches as the bottle filling machine is
usually only producing for at most two days before it changes recipe or stops for cleaning. In this project
we will be focusing on time series data with a resolution of 10 seconds, where each batch is defined as
the slice of data from 15 minutes before the first bottle sample to 15 minutes after the last bottle sample.
Appendix A contains a number of plots of raw values of one batch. In this section we will perform some
data analysis to determine whether the data shows any strong relations, or if it may be easily separable.

Sensor Measurement
F* Flow measurement sensor. SETPOINT indicates the process variable set during production.
PT* Pressure sensor.
T* Temperature sensor.
V* Valve state. Either closed (0) or open (1).

Table 2.1: Meaning for each of the parameter and sensor name types.
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Name Description
xx_031_xxx_xxx Carbonation section of the process
xx_051_xxx_xxx Filling section of the process
FT_031_140_037 Incoming CO2 flow to the mixer
FT_031_130_001 Lemonade flow to the cooler
FT_031_160_041 Lemonade flow to the mixer
FT_031_135_041 Lemonade flow to the filler
FC_031_140_010 Lemonade flow to carbonation tank
bottle_co2 Target. Volume percentage CO2 in a bottle.
last_bottle_co2 Target. Previous bottle sample in the same batch (-1 if none yet).
QT_031_140_083 Multi-purpose inline CO2, temperature, and pressure measurement

between the carbonation tank and filler.

Table 2.2: Descriptions for some important names in the dataset.

2.3.1. Demonstration of Noisiness in the Bottle Sample Data
To further clarify why predicting the bottle CO2 is not trivial, figures are created which plot the bottle
sample CO2 values against the inline CO2, temperature, and pressure measurements in Figure 2.5. Ac-
cording to the fact that bottle CO2 is a calculated as function of those aspects of the lemonade, this means
that we could expect to see a pattern in these plots. However, this is not the case as none of the plots
show any clear relations between the variables. This means that we need to look further to determine
why the bottle CO2 fluctuates.
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Figure 2.5: Bottle CO2 plotted against the three inline measurements. The points are coloured with the batch index which is
equal to seconds since batch start

10
. The fact that there are no clear patterns indicates that the prediction of bottle CO2 is subject to

other factors yet to be determined.
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2.3.2. Correlation Analysis
Due to the structure of the bottle filling machine we can expect that some sensors are highly correlated.
To determine whether the data has any strong correlations between its variables, a correlation matrix
was generated which can be seen in Figure 2.6. Immediately clear is the positive correlation between all
the temperature sensors and the negative correlation between the pressure sensors and the temperature
sensors. There is also very strong correlation between the flow into the reservoir tank (FC_031_140_010)
and the incoming lemonade flow (FC_031_160_041) which can be explained by the fact that the sensors
closely follow each other. Also interesting is the fact that incoming flow of CO2 (FC_031_140_037)
positively correlates with all temperature sensors. A possible explanation is that due to the negative
relation between temperature and bottle CO2, operators will notice the drop in bottle CO2 due to higher
temperatures and compensate with higher CO2 setpoints. An interesting observation can be made is
that all three inline measurements seem to correlate very similarly to other sensors, even though they
are supposed to be measuring different aspects of the lemonade. This may indicate that this sensor may
not be working as we would expect. For instance, the inline temperature seems to correlate negatively
with all other temperature measurements which does not seem logical. Finally, the level of the buffer
tank (LT_031_160_016) is negatively correlated with most of the temperatures, which can be explained
by the idea that when this tank is being emptied, cold lemonade flow is being run through the process,
lowering temperatures in the pipes and tanks.
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Figure 2.6: Correlation matrix for all of the variables in the dataset.

2.3.3. Regression Analysis
In order to determine whether the prediction of bottle CO2 can be trivially predicted or that prediction
requires more complex models we perform linear regression analysis using the statsmodels library [61].
From the correlation matrix in Figure 2.6 it was clear that some features are highly correlated. To reduce
this multicollinearity in the dataset, features with a Variance Inflation Factor (VIF) greater than 10 are
removed one at a time until all features have a VIF less or equal to 10 [45]. The results of fitting a linear
regression model to the remaining features can be seen in Table 2.3 and the effects of each feature can be
seen in Figure 2.4. With a low R-squared of 0.265 it is apparent that more complicated non-linear models
should be considered to capture more of the variance in the bottle samples. The significant effects are
(in order): flow into the carbonation tank and cooler, the pressure coming out of the cooler and to the
filler, the buffer tank level, and multiple temperatures on lemonade pipes and CO2 flow for filler tank
pressurization. The fact that the buffer tank level is heavily negatively correlated with the bottle CO2

is an interesting observation. As we discussed before, filling speed lowers the level of this tank, which
in turn lowers temperatures across the bottle filling machine, which should then in theory increase the
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bottle CO2 and it seems that the linear model agrees with this theory. In Chapter 5 we will go over these
points again and formulate hypotheses to be tested by the proposed methodology.

Dep. Variable: bottle_co2 R-squared: 0.265
Model: OLS Adj. R-squared: 0.256
Method: Least Squares F-statistic: 29.65

Prob (F-statistic): 2.77e-118
Log-Likelihood: -2634.6

No. Observations: 2083 AIC: 5321.
Df Residuals: 2057 BIC: 5468.
Df Model: 25
Covariance Type: nonrobust

Table 2.3: OLS Regression Results on the complete dataset with features subject to collinearity removed.

coef std err t P> |t| [0.025 0.975]
Intercept 6.898e-14 0.019 3.65e-12 1.000 -0.037 0.037
FC_031_140_010 0.1009 0.044 2.316 0.021 0.015 0.186
FT_031_130_001 -0.0526 0.022 -2.413 0.016 -0.095 -0.010
FT_031_140_037 0.0388 0.058 0.673 0.501 -0.074 0.152
FT_031_160_041 0.0154 0.019 0.814 0.416 -0.022 0.053
QT_031_140_083_bar 0.4266 0.053 8.075 0.000 0.323 0.530
PT_031_130_031 0.1796 0.024 7.345 0.000 0.132 0.228
PT_031_140_004 0.0016 0.023 0.070 0.944 -0.044 0.048
PT_051_100_130 0.1456 0.029 5.090 0.000 0.090 0.202
PT_051_100_120 -0.0652 0.021 -3.162 0.002 -0.106 -0.025
PT_051_100_121 0.0143 0.021 0.674 0.501 -0.027 0.056
vuller_snelheid_per_uur -0.0097 0.019 -0.499 0.618 -0.048 0.028
LT_031_160_016 -0.2120 0.025 -8.356 0.000 -0.262 -0.162
LT_031_140_016 0.0509 0.040 1.276 0.202 -0.027 0.129
TT_031_130_033 -0.0430 0.033 -1.318 0.188 -0.107 0.021
TT_031_140_021 0.1083 0.055 1.960 0.050 -7.02e-05 0.217
TT_051_100_100 0.0564 0.039 1.441 0.150 -0.020 0.133
TX_031_160_901 0.0899 0.052 1.745 0.081 -0.011 0.191
TX_031_135_901 -0.1258 0.054 -2.334 0.020 -0.231 -0.020
TX_031_140_904 0.1237 0.043 2.850 0.004 0.039 0.209
TX_031_140_907 0.1153 0.039 2.944 0.003 0.038 0.192
TX_031_140_911 -0.1013 0.037 -2.723 0.007 -0.174 -0.028
TX_051_100_905 0.0873 0.040 2.184 0.029 0.009 0.166
TX_051_100_906 -0.0254 0.041 -0.619 0.536 -0.106 0.055
TX_051_100_910 0.0832 0.056 1.476 0.140 -0.027 0.194
TX_051_100_913 -0.5096 0.058 -8.755 0.000 -0.624 -0.395

Table 2.4: The effects of each feature on the regression model. Significant (P < 0.05) effects have been made bold.



3
Literature Review

In this literature review we will be investigating relevant literature with respect to the three fields that
this research aims to bridge: production process quality prediction, explainable artificial intelligence,
and domain knowledge integration. Finally, we will investigate the literature that comes closest to the
goals we set out in this project.

3.1. Production Process Quality Prediction
Predicting the produced quality of a production process can be done in three ways: modelling using
a priori physical and mathematical knowledge about the process, modelling using observed using data
obtained from the process (e.g. sensor data), and hybrid modelling which combines both methods [76].
While there is great progress in the field of simulating multiphysics problems, creating these models is
often a very complex process [54, 68] and may even be impossible in the case of missing, gappy or noisy
boundary conditions [30]. Data-driven approaches eliminate the need for this complex knowledge and
allow for the extraction of the needed process information directly from the recorded process data [76].

In [68], a methodology using the popular Partial Least Squares (PLS) regression on sensor data is
proposed for predicting quality of diesel distillation. It was shown that their method can obtain similar
performance to a Neural Network (NN) based model while being more transparent due to its ability to
determine variables which contribute to better quality. However, the methodology or hyper-parameters
used to construct the NN were not given. Another widely used regression method is Multiple Linear
Regression (MLR) which relates the input variables to the target variable in a linear polynomial fashion,
but it fails if the input data is poorly designed, for instance, due to multicollinearity [68]. Therefore
extensions such as Principal Component Regression (PCR), which focuses more on the variance of the
input variables, and Ridge Regression (RR), which focuses more on regression coefficients, can be used
[44].

However, a problem with these models is that they do not consider the dynamic properties of pro-
cesses, which led to the creation of Dynamic PCA (DPCA) which considers time-lagged features to incor-
porate process dynamics into its target predictions [36].

More recently, work has been done to deal with the fact that quality variables are hard to measure,
for example, due to lab analysis time and cost, leading to large amounts of unlabelled data. Supervised
methods which expect fully labelled data can therefore not be used on the entire dataset. Manifold
Regularization (MR) was created to allow supervised methods to be used on partially labelled datasets,
turning them into semi-supervised methods by assuming that if data points are close to each other,
their respective labels should be similar as well. Semi-supervised Probabilistic Principal Component
Regression (SSPPCR) [15], Co-training Partial Least Square (Co-PLS) [2], Semi-Supervised Hierarchical
Extreme Learning Machine (SS-HELM) [75], and SS-PdeepFM [54] were then developed to apply MR
in a product quality setting.

The Dynamic Probabilistic Latent Variable Model (DPLVM) was created to model dynamic processes
by extending Dynamic Bayesian Networks (DNBs), used to model stochastic nature of the process, with
Linear Dynamic Systems (LDSs) which describe dynamic relationships between process variables [14].

13
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3.2. Explainable Artificial Intelligence
When discussing explainability or interpretability of models it is important to first determine the differ-
ence between them. In [57] explainable models create details or reasons to explain its behaviour, while
interpretable models are transparent in their functioning by design. Explainability is needed when the
task at hand requires models which are too complex to be interpretable [57]. Both interpretable and
explainable models can be very beneficial for many reasons. Firstly, interpretable models are useful to
model builders as they give greater insight into the training process, allowing the tuning of the model to
better fit the task, and secondly, model explanations allow end-users to guide their future actions [38].
An example in the context of this project can be that a model indicates certain sensors as being very
important to its decisions, giving technical personnel reason to further investigate. When the goal is
to create a model which gives explainable decisions there are two approaches: post-hoc interpretability
and inherent interpretability. Post-hoc interpretable methods can be used to obtain explanations from
a previously trained existing (black-box) model, while inherently interpretable models are able to give
explanations due to their interpretable design and functionality [38].

3.2.1. Post-hoc Explainability
Post-hoc methods aim to extract information from already learned models and do not precisely depend
on how the models work, i.e., they consider the model to be black-box. These methods are therefore
useful if the model’s complexity limits the ability of to trace the logic behind predictions [11].

LIME One of the first model explanation frameworks is Local Interpretable Model-agnostic Explana-
tions (LIME) [55] which is able to explain a classifier or regressor by explaining a subset of individual
instances. LIME builds on the idea that a model can be locally approximated using an explainable linear
model (e.g. K-LASSO in their work) and thus it is model-agnostic. An explanation then consists of the fea-
ture importances for each feature used in the prediction of a single model input [10]. A trustworthiness
metric is then given as the amount of predefined ‘untrustworthy’ features present in an explanation and
it was shown that LIME performs better than some existing explainable models [55]. Although LIME has
limitations with respect to models which are hard to linearly approximate locally, it paved the way for
further advances in explainable artificial intelligence. Furthermore, more work is needed to make the ex-
planations LIME gives more explainable, as understanding them can be a frustrating process, especially
considering that the explanations are prone to misinterpretation [10]. Regardless of these limitations,
LIME has been successfully used in an industrial setting to explain the prediction of remaining useful
life of test beds [64].

SHAP A very popular example-based post-hoc method is SHAP [41]. This method calculates, indepen-
dently of the structure model, the Shapley values [70] of each subset of features to determine feature
importance to the output of that model. Furthermore, SHAP was created such that it satisfies missing-
ness, consistency, and local accuracy [41] and it is the only feature attribution method to do so [63].
After its inception, SHAP has been applied to many time series forecasting problems [49, 33, 28, 31]
where the built in visualization and explanation tools of the SHAP framework1 were used to explain
predictions and show relations between features. However, a downside of the SHAP method is that for
one prediction it has to evaluate the model on every subset of features, which can be costly [33]. Fur-
thermore, feature importances and attributions may be useful to the model developer, but if the goal of
the explanations is to inform domain experts more steps are needed to fit these explanations to their
needs and understanding.

3.2.2. Inherent Explainability
While post-hoc methods aim to extract explanations from a model by observing its predictions, there
are also methods that build upon the fact that the model itself is transparent. The advantage of these
methods is that there is a guarantee that the explanations represent the actual decision making process
of the model.

Explanations for Tree-based Models Decision trees, which will be covered in more depth in Chapter
4, are an interpretable, yet flexible and robust machine learning method which are constructed by repeat-

1https://github.com/slundberg/shap

https://github.com/slundberg/shap
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edly splitting data into more homogeneous groups [9]. An example decision tree can be seen in Figure
2.4. Due to this graphic nature of these trees, small trees can be easily interpreted. Larger trees can still
be analysed using SHAP and its model-specific implementation called TreeSHAP, which is specifically
made for decision tree methods such as XGBoost or scikit-learn’s tree-based models [42]. TreeSHAP
uses the actual structure of the decision trees to determine how explanations are made, in contrast to
SHAP which only considers the model predictions themselves. Currently, TreeSHAP supports feature
contribution, feature importance, feature dependence, and interaction plots for a number of tree-based
libraries.

In [26] MaxSAT solvers are used to generate Prime Implicant (PI) explanations for tree ensemble
predictions f(x), which represent the minimal subset X ⊆ F such that for a different x′ the prediction
f(x′)will be the same as f(x) long as they share the values for each feature in X . A similar SAT approach
is proposed in [27] where tree ensemble predictions f(x) are instead explained using ‘contrastive expla-
nations’ which, for feature set F , are defined as the minimal subset Y ⊆ F such that allowing Y to take
an arbitrary value changes the prediction. It was proven in [25] that PI-explanations and contrastive
explanations are minimal hitting sets of each other. A downside of this exact approach is that in sce-
narios where there are a lot of classes, such as in a regression setting, the PI-explanation X may be too
large to be useful as very small changes in x may already result in another class. In similar fashion, the
contrastive explanation Y may be too small to really give any insight into the decision-making process
of the tree.

Counterfactual Explanations When the goal is to explain undesired predictions, counterfactual expla-
nations can be used, which explains a prediction f(x̂) by giving an alternative, perturbed model input
x = x̂+ ϵ such that f(x) has a more desired outcome [65]. In recent years, work has been done to make
use of the transparent structure of the decision tree and ensembles of trees when creating counterfactual
explanations. In [29] counterfactuals of decision trees are generated by first converting the tree into a
characteristic formula and then using a satisfiability solver to find model input that satisfies that formula
under the desired constraints. In [51] a methodology was then created which aims to increase the effi-
ciency of generating counterfactual explanations by making the search complexity independent of the
size of the feature space, resulting in much better scalability than previous methods.

Temporal Saliency Maps The idea of saliency maps on images2 has also been applied to time series.
Heatmaps can be created to show the relevance of features, either enriching a line plot of a time series
[59, 60, 1, 50], or showing the feature importance of all features with temporal information [52, 20]. It
is important to know, however, that it is challenging to interpret these visualizations, requiring domain
or expert knowledge [59].

Layer-Wise Relevance Propagation Another possible explanation technique is Layer-wise Relevance
Propagation (LRP) which propagates predictions backwards through a neural network, highlighting
which neurons were relevant in activating neurons deeper into the network [47]. With respect to time
series, RLP has been applied to Long-Short Term Memory networks (LSTMs) [47, 72] and Convolutional
Neural Networks (CNNs) [7].

3.2.3. XAI in Industrial Settings
Relatively little research exists which covers the use of XAI in industrial scenarios. In [63] XAI is applied
in a manufacturing process setting by using SHAP to extract from ML models explanations to which
machines attribute to better wafer quality. From these feature attributions an improvement plan was
created for resource optimization. In Section 3.4 two more examples of XAI used in industrial settings
will be given.

3.3. Domain Knowledge Integration
Many domain knowledge integration methods exist, but they are not always suited for our specific use
case. Some are physics based, which is not possible due to an assumed lack of physics knowledge, while
others have never been applied to production processes.

2https://analyticsindiamag.com/what-are-saliency-maps-in-deep-learning/

https://analyticsindiamag.com/what-are-saliency-maps-in-deep-learning/
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Figure 3.1: Taxonomy of Informed Machine Learning by Rueden et al. [58]. The width of the links represents the amount of
papers using the linked approaches. Highlighted paths (darker grey) represent central approaches of IML.

Informed Machine Learning Using purely data-driven approaches when applying machine learning
can lead to problems in scenarios where the available data is not enough to create sufficiently generalized
models, or scenarios where models need to adhere to constraints dictated by (natural) laws and guide-
lines [58]. The act of integrating prior knowledge into the training process of a ML model to address
these issues is called Informed Machine Learning (IML). In [58] IML approaches are classified by deter-
mining the source, representation, and integration of knowledge. This led to a ‘Taxonomy of Informed
Machine Learning’, which can be seen in Figure 3.1, that summarizes the findings. A popular method
of teaching prior knowledge to a model is by augmenting the loss function with terms that penalize a
model when it produces output which is not in line with that prior knowledge [58, 56, 8].

Physics-Informed Machine Learning A sub-field of IML is Physics-informed Machine Learning which
busies itself with modelling and forecasting of the dynamics of multiphysics and multiscale systems [30].
Most ML approaches currently are unable to extract interpretable information and knowledge from the
vast amounts of data present in scientific domains, or are physically inconsistent. As prior knowledge
(e.g. observational, empirical, physical, or mathematical) about the problem at hand is usually available
in scientific settings, the ability to use this in models is needed [30]. One recent popular method to incor-
porate prior knowledge in the form of Nonlinear Partial Differential Equations is the Physics-Informed
Neural Network [53] which uses regularization that penalizes a neural network if partial differential
equations are not satisfied. In [43] a method aimed at learning physics-constrained LSTMs is proposed
for the forecasting of photovoltaic power generation. The LSTM is extended with a data filtering module
in front of the input layer, a clipping module before the output layer, and the loss function is extended
with a loss penalty module that penalizes the model when physical bounds are not satisfied. The data
filtering module is aimed at eliminating unreasonable forecasts (e.g. positive power generation at mid-
night), the clipping module is used to restrict the output of the model to eliminate physically unreason-
able forecasts (e.g. negative power generation), and the modified loss function is used to penalize the
model when upper and lower bounds on the expected output are exceeded [43].
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Monotonic Constraints Another approach not covered in [58] is proposed by [78]. The goal is to
implement prior knowledge in the form of monotonistic constraints by using lattices [21] in a model. A
lattice is an interpolated look-up table which can be constrained to be monotonic and can be trained in
standard empirical risk minimization frameworks to create deep lattice models [78]. Monotonicity can
also be implemented through semi-infinite optimization as shown in the approach in [32] where expert
knowledge is used to improve a model for a press hardening process with limited data. However, the
given approach is limited to regression problems.

Improving Counterfactual Explanations When generating counterfactual explanations of tree-based
models, one wants to guarantee the feasibility and plausibility of the resulting counterfactuals [51].
When generating counterfactual explanations of a model through optimization or satisfiability (as dis-
cussed in Section 3.2.2), domain knowledge constraints can be added which enforce known facts to
hold. In [51] a methodology is proposed which allows the constraining of fixed and monotonic features,
known linear relations, known logical implications, and resource constraints. They enforce plausibility
through the assumption that a counterfactual explanation should be typical of 90% of the cases of the
target class. Even though the domain knowledge integration constraints are promising, the focus of this
paper lies more on the performance gains between the existing and proposed method, and less on the
now available use cases.

3.4. Related Work
Having discussed the work in the different areas this research builds on, we will now review the limited
amount of work that resembles the goals set out for this project, i.e. methodologies aimed at providing
domain-knowledge driven explanations of production processes.

Domain-Knowledge-Based Feature Construction in Ironmakinging In [37] a methodology is pro-
posed which uses genetic algorithm-based feature construction to predict the quality of an industrial
production process. The genetic algorithm tries to find a function, using a pre-determined set of opera-
tors, which best maps the process variables to the quality of the final product. Domain knowledge in the
form of additional operators can then be used to guide the genetic algorithm into finding more accurate
solutions. With respect to the ironmaking process the method was applied to, an example of domain
knowledge as given by the paper was that the ‘shift’ operator was added as the authors expected the
effect of adding certain minerals to the process would show a delayed effect on the target variable. The
explainability of this methodology follows from the fact that after training the most common components
(relations between variables) observed in the different models will explain what influences the process
quality. The methodology seems very promising, but the domain knowledge integration is only briefly
discussed and limited to the adding of additional operators. It may be very useful to add the integration
of domain knowledge specific to certain variables in the target problem, as this may reduce the search
space or increase the plausibility.

Remaining Useful Life Estimation using XAI and Domain Knowledge In [64] a methodology is
proposed for the explainable and domain knowledge driven prediction of the Remaining Useful Life
(RUL) of a fatigue test bed. Domain knowledge, along with multiple feature selection techniques, was
used to determine important features on which a random forest was trained. ELI5 and LIME were then
used for global and local explanations of the RUL predictions. A clustering method was finally used to
divide the data into different groups, with the goal of investigating the difference in feature relevance
for the different groups. The methodology seems to accurately predict the RUL, but the feature selection
techniques do not seem to improve the performance of the already most accurate tree-based models. This
is to be expected as tree-based models have inherent feature selection (as will be discussed in Chapter 4).
This means that the domain knowledge used in this paper does not really account for the performance
of the methodology. Using ELI5 and LIME for explanations also seems to explain the important features
of the model, but it the paper does not cover how this information can be used to, for instance, improve
the RUL of the test bed.
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3.5. Summary
In this literature review we divided the work supporting this research into three categories: production
process modeling, explainable artificial intelligence, and domain knowledge integration. With respect to
production process modeling we can conclude that many methods exist that allow for the accurate mod-
elling of processes, and some even focus on the problem of unbalanced datasets, such as in the case of this
research where we assume that there is a relatively low amount of labelled data samples due to varying
sampling restrictions. However, these methods are not explainable and usually do not offer more than a
pure estimation of the target variable. Recent explainable methods are able to show which features are
important to the prediction of a target variable, but they have only been sparingly applied to production
processes. In the few cases that cover production processes such as in this research the methodology
usually comes down to applying out-of-the-box methods such as SHAP or LIME. Domain knowledge in-
tegration has been applied much more to the field of process modeling, but is usually implemented with
physics based knowledge or the natural laws applying to the process, which are mostly unknown in the
setting of this research. Other methods allow for the generation of counterfactual explanations with con-
straints, but these have not yet been applied to production processes and further research should prove
whether these methods are able to generate plausible explanations in a production process setting.



4
Preliminaries

Before we discuss the contributions of this research in the next chapter, we need to cover the preliminar-
ies. These are the methods on which this research builds which are taken directly from previous works,
and they are divided into three categories: production processes, quality prediction, and model explana-
tions. First, a formal definition of production processes is introduced. Then quality prediction is covered,
together with the random forest model which is the model of choice in this research for predicting the
quality of the production process. Lastly, we discuss tree-based explanations, such as counterfactual
explanations for tree-based methods, and how we can generate those counterfactual explanations using
optimization.

4.1. Production Process
Consider again the schematic in Figure 2.1. We formally define a production process to be a process
producing some product whose quality yt is defined as the quality of a sample produced at time step
t. In the specific context of this project the quality indicator would be the amount of CO2 in a filled
carbonated drink bottle. Besides the quality of the product the process is assumed to be monitored by
ns sensors S where si,t represents the value of sensor i at time step t. Lastly, we consider np process
parameters P where pi,t represents the value of parameter i at time step t. These process parameters are
assumed to be set manually to influence the quality of the product. We then denote the process state to
be xt = [p,t s,t] at time step t.

4.2. Quality Prediction
In Section 3 ML methods for quality prediction were discussed. As production processes can be very
complex due to the number of sensors, there is a requirement for flexible models such as deep learning
or ensemble methods. However, for this project it is very important that models are transparent and
explainable and thus deep learning methods are not suited due to their opaque nature. Tree-based
methods are a much better fit due to their interpretable structure which can be used to create model
explanations, as we will cover in later sections, while retaining the flexibility of complex models.

4.2.1. Tree-based Models
Consider training data X = (x1, ..., xn), targets y = (y1, ..., yn), and possible classes C = (c1, ..., cn). The
decision tree modelling the training data can then be constructed using the CART algorithm which has
the following pseudocode [40]:

1. Start at the root node with Xnode = X .
2. Using exhaustive search, find the feature f and value v that splits Xnode and minimizes the sum

of node impurities for each resulting split. Create a child node for each data split, setting Xnode to
that split.

3. Repeat the previous step for each child node until the stopping criterion is met (e.g. minimum size
of Xnode, maximum depth).

19
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4. Use minimum cost-complexity pruning to reduce the resulting tree to the desired size [67]. This
involves removing nodes from the tree such that the training set error of the original tree is least
affected.

The decision tree is constructed by recursively determining the best way to split the data based on
a node impurity criterion. The impurity of a node is minimal when it perfectly splits data, i.e. each leaf
node contains samples of one class only. Two examples of this are the Gini Impurity Index,

g(p) = 1−
J∑

j=1

p2j , (4.1)

and the entropy function,

h(p) = −
J∑

j=1

pj log pj . (4.2)

However, as the latter is dependent on the computation of logarithms, which are computationally
expensive, the former is usually chosen. When the optimal split is found, the process is repeated for each
of the two generated splits until either a node has an impurity of 0 or the maximum depth is reached.
The resulting leaf nodes are then assigned a value determined by a majority vote of the samples reaching
that leaf. In the end a decision tree is obtained which is able to capture complex relationships within
data and, if sufficiently deep, has a relatively low bias [23].

In this research regression trees are used, which only differ from classification trees in the sense that
the targets y and classes C are nominal instead of ordinal [67]. We denote this regression tree as a
function f : Rn → R.

4.2.2. Random Forests
The central idea of random forests, which is a type of tree ensembles, is to average the predictions of a
set of many noisy decision trees F such that the variance decreases while the bias stays the same [23].
A random forest prediction then comes down to

f(x) = 1

|F |
∑
fi∈F

fi(x). (4.3)

Additionally, the individual trees are trained using a procedure called bootstrapping which trains
each tree on a subset of the dataset X , created by choosing n times from n points with replacement [3].
Aggregating predictors trained using bootstrapping is called bagging (bootstrap-aggregating) [3].

4.2.3. Random Forest for Quality Prediction
In order to then use the random forest to predict product quality yt at time step t we use as input the
sensor data Si,t and process parameters Pi,t. This then gives the training data X = [P S].

4.3. Model Explanations
Given that we are using decision tree-based models, there are multiple ways to generate explanations.
We will first discuss explanations that follow from the interpretability of the model, and then we will
discuss counterfactual explanations which locally explain a prediction by giving alternative model input
which yields a more desirable model prediction.

4.3.1. Decision Tree Interpretability
As the functioning of a decision tree is transparent, we can give explanations which are directly related
to the way the predictions are generated. An obvious local explanation given the structure of a decision
tree is the decision path for a given input, which gives the nodes along which the input passed when the
decision tree generated the result. If we take the example decision tree from Figure 4.1 and pass it the
input x = (1, 1, 1), this would result in the following decision path:

(x1 = 1) → (x3 > 0) → y = 0. (4.4)
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Figure 4.1: Decision tree represented graphically (left), in python (middle), and by its characteristic formula (right) [29].

A global formulation of this explanation would be the decision clauses which give for each leaf node
of the decision tree the clauses that must hold for the input to reach said leaf node. Again, using the
decision tree from Figure 4.1, an input will reach the left leaf node iff it satisfies the following condition:

x1 = 1 ∧ x3 > 0. (4.5)

4.3.2. Counterfactual Explanations for Decision Trees
Another method of explaining model predictions is using a Counterfactual Explanation (CFE). Using the
terminology used in [29], we can define the set of counterfactual explanations for an input x̂ ∈ X and a
predictive model f : x → R as:

CFf (x̂) = {x ∈ X |f(x) ̸= f(x̂)}. (4.6)
In other words, a CFE explains a model prediction by giving alternative model input that the model clas-
sifies with a different label. However, in the case of this project, we are more interested in explanations
that show why the given process is producing products with quality y instead of the desired quality ȳ,
by giving the most efficient transition from the current state of the production process x̂ to another state
x. This results in the following optimization problem [22]:

min
x∈X

C(x, x̂) s.t. f(x) = ȳ, (4.7)

where C(x, x̂) defines the cost function of moving from process state x̂ to x. In [22], the ℓ2 distance
was used to define cost, but it should be argued that vector distance does not reflect difficulty of state
changing in a production process.

In order to generate counterfactuals for decision tree predictions we can use the fact that the exact
structure of the decision tree is known to construct the characteristic formula ϕf of the model [29]. The
characteristic formula ϕf (x, y) is satisfied (i.e. it returns true), iff f(x) = y. An example of a decision
tree and its characteristic formula is shown in Figure 4.1. Finding a counterfactual explanation for model
input x̂ and desired label ȳ that minimizes the cost function C then equates to finding the solution to
the following minimization problem:

min
x∈X

C(x, x̂) s.t. ϕf (x, ȳ). (4.8)

4.3.3. Generating Counterfactual Explanations
Finding the solutions to the minimization problem from Equation 4.8 then requires optimization by, for
example, Mixed Integer Programming (MIP) and related solvers such as Gurobi1 [51]. However, when
the model gets more complex, it may take too much time to always compute the optimal counterfactual
explanations. Therefore, one may opt to sacrifice accuracy in favour of computational cost by rewriting
the problem as a satisfiability problem as proposed in [29]:

x ∈ X . C(x, x̂) < C(x∗, x̂) + δ ∧ ϕf (x, ȳ), (4.9)
where x∗ is the optimal counterfactual explanation (i.e. with the smallest distance to x̂) and δ is the
maximum accepted distance between x and x∗. Finding the solution to this equation then requires a

1https://www.gurobi.com/documentation/9.5/quickstart_mac/cs_grbpy_the_gurobi_python.html

https://www.gurobi.com/documentation/9.5/quickstart_mac/cs_grbpy_the_gurobi_python.html


4.3. Model Explanations 22

satisfiability solver such as Satisfiability Modulo Theory (SMT) solvers, which generalize boolean satis-
fiability (SAT) by adding quality reasoning, arithmetic, arrays, and other useful first order logic [48].
In [29] a focus was laid on PySMT [13] as it is an off-the-shelf solver that allows easy deployment, but
other libraries exist, such as Z3Py2 and GekkoPy3.

2https://ericpony.github.io/z3py-tutorial/guide-examples.htm
3https://github.com/mariushelf/gekkopy

https://ericpony.github.io/z3py-tutorial/guide-examples.htm
https://github.com/mariushelf/gekkopy


5
Combining Quality Prediction,

Explainability, and Domain Knowledge
Integration

Having discussed the preliminaries in the previous chapter, we will now discuss the methodology pro-
posed by this thesis that builds on top of that work, which consists of two parts. The first is a CFE
generation method built on top of the random forest target prediction model which, given the (current)
process state, gives an alternative process state which should be more desirable according to domain-
knowledge based global and local constraints. The second part is a process state forecasting method used
to forecast the impact of process parameter changes suggested by the CFEs generated using the first part.
This process state forecast can then also be used as input to the target prediction model, circumventing
the problem of a low number of samples preventing the use of complex time series prediction models.
The goal of this two-part system is to enable process engineers to analyse a process by inspecting the
suggested process state changes as proposed by the CFEs and analysing how variables react to those
changes. A schematic for this methodology can be seen in Figure 5.1.

5.1. Counterfactual Explanations for Tree Ensembles
In Section 4.3.2 we discussed counterfactual explanations for decision trees. However, as we are using
tree ensembles in which the predictions of multiple trees are averaged, we need to create a characteristic
formula for tree ensembles. This can be done by considering the characteristic formula of a tree ensemble
to be a conjunction of the characteristic formulas of the individual trees. As the prediction of the tree
ensemble is usually defined as the mean of the predictions of the individual trees, this gives us the
following formula:

ϕf (x, y) =
[ ∧
i∈1...n

ϕfi(x, yi)
]
∧

[
1

n

∑
i∈1...n

yi = y

]
, (5.1)

where n is the number of trees in the ensemble and yi is defined as the prediction of tree i. This charac-
teristic function is now satisfied iff x is predicted to have label y.

Ideally, optimal counterfactual explanations are then generated by finding the minimum described
by equation 4.8. However, this may take too much time when the size of ensembles increases. If we do
not care about small gains in the cost function when that means that we get a solution much quicker,
we can find satisfactory solutions by setting a maximum acceptable dmax (or finding better solutions by
iteratively lowering dmax):

x ∈ X s.t. (5.2)
C(x, x̂) < dmax (5.3)
ϕf (x, ȳ). (5.4)

23
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Figure 5.1: Structure of the proposed methodology.



5.2. Improved Counterfactual Explanations 25

Constraint Predicate
Set variable i to a fixed set of values V ∨

j xi = vj
Bound variable i to [u, l] xi ≥ l ∧ xi ≤ u
Condition between two variables i and j xi > xj → xi > v, xi < xj →

xi < v, etc.
Link variable i and j to have the same value xi = xj

Function relation between three variables i, j, and k xi + xj = xk, xi ∗ xj = xk, etc.
Aggregation Bound the maximum possible change of aggregation
variable i that the variable j it aggregates allows, given aggregation
window size d, allowed time t, and time series data z of variable j
for the last d time steps. We assume xj stays constant for t time
steps.

∑d
i=t zi − txjxi <=

∑d
i=t zi +

txj

Table 5.1: The relation between constraints on variables and how those constraints can be added to the counterfactual
explanation solving process.

5.2. Improved Counterfactual Explanations
In [51] it is proposed that domain knowledge can be used in the form of constraints which are placed
on the optimization or solving process. In this research their method is adapted to be more specific for
production processes, with the aim of creating counterfactual explanations which are more plausible
with respect to known facts about the target process.

5.2.1. Constraint Types
In order to express domain knowledge in the form of constraints we must first define what types of
constraints we can apply to the generation of counterfactual explanations. These constraints must be
defined such that they can be expressed as predicates so that they can be used with the SMT solver. Table
5.1 shows the constraints considered in this research from which the domain knowledge integration
constraints can be built. The Set constraint allows us to fix variables to predetermined values (e.g. 0
and 1), the Bound constraint bounds a variable between an upper and lower bound, the Condition
constraint allows for the encoding of causal relations between variables, the Link constraint fixes two
variables to have the same value, and the Function constraint encodes known relations in the variables.
The Aggregation constraint is defined specifically for aggregation variables constructed to give the model
additional information about the past by summing the values of the aggregated variable over the past d
time steps. This is important in situations where important variables show great amounts of fluctuation,
creating scenarios where a value at one time step is too different from surrounding values, thereby
limiting the ability of models to learn using that variable. When we know the minimum and maximum
of the aggregated variable, we know the maximum amount the aggregation variable can change in a
given window. This is important if we want to generate an alternative process state which should be
reachable within reasonable time.

5.2.2. Use Cases
These building blocks can then be used in two main ways: incorporating known facts about the target
process, and the investigation of specific scenarios. In Chapter 6 we will discuss what constraints we can
extract in the context of the bottle filling machine.

Known Facts
When incorporating known facts about the target process we can formulate the constraints shown in
Table 5.2. These constraints make sure that the generated counterfactual explanations do not violate
logical relations due to the structure of the process. These constraints can also be used to incorporate
certain expectations about the target process, but this should be done with caution as this restricts the
ability of the model to show unexpected workings within the process.

Investigating Specific Scenarios
Another use case of constraints is that specific scenarios can be explored, which is best explained by an
example. Consider a hypothetical bottle filling machine with quality indicator y and three process param-
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Domain Knowledge As Constraint
Limits on variables due to current scenarios Set or Bound
Direct link between variable values due to process structure Link
Relations between variables due to process structure Condition or Function

Table 5.2: The relation between domain knowledge about the target process and what constraints are required to apply the
knowledge to the generation of counterfactual explanations.

eters, a, b, and c. If y is currently 0.3, and we would like it to be 0.7 we could generate a counterfactual
explanation such that:

x ∈ X . ϕf (x, 0.7), (5.5)
which could, for instance, recommend setting (a, b, c) to (0.1, 0.6, 0.7). But consider now that we

cannot set parameter c higher than 0.5, perhaps due to a malfunction or an ingredient shortage. If we
then restrict c to be less than 0.5 for this specific case we can force the model to generate counterfactual
explanations which are more plausible in the current context.

5.3. The Cost of Changing Process State
In Section 4.3.2 a cost function C(x̂, x) which defines the cost of moving from the original process state
x̂ to the suggested new process state x (i.e. the CFE) was introduced. However, the ℓ2 norm used in
previous work is not a good indicator of that cost and therefore not meaningful to process engineers.
With respect to the bottle filling problem, we can argue that stopping with filling can be done instantly,
meaning that the associated cost should be zero, while increasing the temperature of a lemonade tank
can take many minutes, equating to a high cost. If we therefore want to make this cost more reflective
of the problem of moving between process states, the cost function should defined as T (x, x̂) ∈ R, being
the amount of time steps it takes to get from process state x̂ to x. In order to determine the amount of
time it takes for a change in process parameters to take the desired effect on the process we could try
and determine this manually by analysing existing data and then specify this as domain knowledge, but
this may be tedious and inaccurate. Another option is to use the fact that we have high-resolution data
of the process sensors and parameters to forecast the process state over the changes in parameters.

5.3.1. Forecasting Process State
We define the forecasting model to forecast the process state at the current time step t until time step
t+ nf . As input, it will take all data nw time steps before the current time step t, as well as the process
parameters from time step t until t+nf , as it is assumed they can be determined beforehand. The output
will then be all remaining process variables from time step t until t+nf . This will result in the following
input matrix:

xt−nw,t+nf
=



p0,t−nw
p0,t−nw+1 ... p0,t−1 p0,t p0,t+1 ... p0,t+nf−1 p0,t+nf

p1,t−nw
...

... ...
p|P|−1,t−nw

...
p|P|,t−nw

s0,t−nw
s0,t−nw+1 ... s0,t−1 s0,t x ... x x

s1,t−nw
...

... ...
s|S|−1,t−nw

...
s|S|,t−nw


, (5.6)

where x defines the values that need to be forecast, pi,j defines the value of the i-th process parameter
at time step j, and si,j defines the value of the remaining process variable (sensor) i at time step j. The
problem is now that we do not know yet how to obtain the process parameters for the forecast.
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5.3.2. Generating Forecast Process Parameters
Consider again the current state x̂t = [p̂,t ŝ,t] at time step t as discussed in Section 4.1. Obtaining the
process parameters for the forecast input requires a path from the current process parameters p̂,t to
the parameters p suggested by the CFE x = [p s]. It may not be possible to change all the parameters
instantly due to time-related variables, such as aggregation variables, being restricted in change per time
step. Determining the input features can therefore be turned into the following optimization problem
over new process parameters Q ∈ Rnp×nf :

min
Q

∑
i

t+nf∑
j=t

|qi,j − pi| (5.7)

s.t. qi,k = pi ∃k∀i (5.8)
qi,0 = p̂i,t ∀i (5.9)
c ∈ C, (5.10)

where C defines the same set of constraints applied to the generation of CFEs. This optimization
over the difference between the old and new parameters ensures that the new parameters are as close
as possible to those suggested by the CFE.

5.3.3. The Forecast Model
For the sake of simplicity, in this research a NNmodel predicting each of the values individually was used.
Using more sophisticated (deep learning based) multivariate time series forecasting models, as in [4, 12,
62, 50, 39] is therefore directed to future work. The input to the NN model forecasting the process state
at time t then becomes the concatenation of the rows of Xt, with the output being the individual missing
values marked x in Equation 5.6.

We can then calculate f(xk) for all k ∈ {t, ..., t+ nf} to obtain the target variable forecast using the
process state forecast, and the amount of time steps it takes for f(xk) to reach ȳ to determine the cost
of changing from x̂ to x. Note that this has allowed us to indirectly forecast the target variable without
explicitly training a time-series forecasting model on the sample data. This circumvents the problem of
the limited number of samples that are assumed to be available.

5.4. Hypotheses and Expectations Before Applying the Methodology
to the Data

Before we apply the methodology to the data discussed in Chapter 2, we should first discuss expectations
and hypotheses. It is important to note that these hypotheses have been formulated independently from
the thesis company.

5.4.1. Hypothesized Relations
1. First of all, we know that the amount of carbonation is regulated by a CO2 setpoint, which directly

influences the amount of CO2 injected into the lemonade. A direct expected relation is then that the
balance between the amount of incoming CO2 and incoming lemonade will be a logically important
hypothesized relation to the target model.

2. As discussed in Chapter 2 and in [66] the amount of bottle CO2 is influenced by filling temperature.
We can therefore hypothesize that the proposed methodology will therefore require temperatures
to increase when wanting to lower bottle CO2 and vice-versa.

3. We discussed the fact that the lemonade is cooled before the carbonation process, but not anymore
thereafter. We can therefore hypothesize that if the filling stops the temperature of all sections af-
ter the cooling section of the filling process will start to increase, however slow, which can in turn
influence the CO2 levels in bottles in line with Hypothesis 2. The linear regression analysis per-
formed in Section 2.3.3 has shown that the buffer tank level, controlled by filling speeds, negatively
correlates with the temperatures in the bottle filling machine, further adding to this theory.

4. Room temperature is also expected to influence the filling process in other ways. First of all higher
temperatures in different mechanical parts of the process may negatively affect the direct amount
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of carbonation before the carbonated lemonade enters the carbonation tank. Secondly, it may be
possible that higher room temperature increases the temperature of the empty bottles, increasing
the temperature of the filled lemonade, but this could be negligible. Discussing the results with
process experts before and after they are obtained may reveal these points to be true or not.

5. Another relation described in [66] is the one between bottle CO2 and filling pressure, as a higher
filling pressure equates to a higher bottle CO2. We can therefore also hypothesize that pressure
sensors will also have a positive contribution into determining the bottle CO2.

5.4.2. Expectations with Respect to Performance of the Methodology
1. First of all, the random forest model will itself select the features which it has determined to be

most important, as it will always select the features which split the data the best. This can create
the possibility that if a leaf can be reached without splitting on a specific variable, the value for that
variable may be arbitrary, i.e., its accepted value interval is very large. This is no problem when
using the model for direct prediction only, but when counterfactual explanations are generated
based on the intervals directly obtained from the splits it means that the value will remain the
same as in the original process state, as counterfactual explanation generation optimizes over the
vector distance.

2. However, the importance of a variable to the target prediction model may be different than to the
process state forecasting model, meaning that the process forecasting model may not receive plau-
sible process parameters if the target prediction model deems some parameters to not be important.
This again highlights the importance of incorporating domain knowledge into the counterfactual
explanation generation process, as this will also improve the forecasting accuracy of the process
forecaster.



6
Results

The results of applying the methodology to the artificial and real data introduced in Chapter 2 will be
discussed in detail in this chapter. We will first go over the methodology used for preparing the data
so that it is ready for use with the different models. Secondly, we will discuss the domain knowledge
based constraints obtained through logic and expert judgement. Then, as a verification of the explana-
tion performance, the methodology is first applied to the artificial dataset to determine its effectiveness
in a setting where the relations between the process variables is known. Ideally, this signalizes that the
methodology is able to pick out the important process variables from the dataset and provides, through
CFEs, alternative process parameters which allow for optimization in a real setting. Following a discus-
sion of those results, the methodology is applied to the real-world dataset, the results will be discussed,
and we will go over the hypotheses stated in the previous chapters to determine whether they can be
confirmed. We close off with going over the key notes from a discussion of the results with a company
expert.

6.1. Data Preparation
For the data to be used in a methodology it has to be cleaned and prepared first, after which additional
feature processing steps can be taken. Finally, normalization may be done to prepare the data for meth-
ods which are sensitive to feature scaling.

Data Cleaning In order to clean the data, rows with missing values were removed from the dataset.
Multiple sensors in the dataset have been non-operational for some periods and thus those related
batches are not used.

Clipping of Features Some sensors reported values outside of their expected range, sometimes by a
very large margin, for varying reasons. It is important that these values are clipped back as they can
influence data normalization techniques.

De-trending of Features A combination of observation and discussion with experts revealed that a
number of sensors showed linear trends where they are not expected. This was explained to be an issue
with the calibration or rather a lack thereof. These trends have been removed via removal of the straight
line best fit using linear regression provided by scikit-learn1. This is a relatively simplistic method but
it suffices in this scenario where we are only looking to remove linear trends rather than complicated
non-linear or recurring trends [73].

Converting Aggregation Features A number of features represented the sum of an underlying variable
at time step t as follows:

V (t) =

∫ t

t0

v(t)dt, (6.1)

1https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
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and we can convert this back by differentiation:

v(t) =
d

dt
V (t). (6.2)

But, due to the fact that the time steps are discrete, this comes down to

v(t) = V (t)− V (t− 1). (6.3)

Compensating for Sample Lab Analysis Delay As it takes some time for the analyses of bottle samples
to register in the database, the samples have been shifted back in time to compensate. This delay was
determined by the graduation company to be between three and five minutes.

Creating Aggregation Features As some features show high degrees of fluctuation between close time
steps, additional features encoding the summation over a period [t− n, t] have been created as follows:

V (t, n) =

t∑
x=t−n

v(x). (6.4)

This allows the model to predict based on the number of bottles filled in the past n time steps, which
may hold more information in cases where filling speeds are highly variant. Aggregation features have
been created for the filling speed, as it shows great fluctuations, and incoming CO2 flow.

Data Normalization An advantage of tree-based models is that they are invariant to feature scaling as
scaling the features differently does not change the way the splits are determined. However, this is the
case with NN-based methods [35] and other methods assuming 0 mean and unit variance. Therefore,
before using the data with such methods it is scaled to unit variance (using scikit-learn2) as follows:

X ′ =
X − µ

σ
, (6.5)

where X represents the original data, X ′ the scaled data, µ the vector of feature means, and σ the vector
of feature standard deviations.

Train-test splitting When splitting the data into train and test sets, it is important to consider the fact
that predicting the value of a sample based on the two samples that come before and after it in a batch is
much easier than predicting that sample using two samples from another product batch. If train and test
sets are created by randomly sampling from all samples the performance of a trained model on the test
set may be skewed, as the model had knowledge about the batch the test samples came from. Therefore,
the splitting of train and test data was done based on product batches instead, ensuring that the model
has no knowledge of the product batches the samples in the test set originate from.

6.2. Determining Constraints
Before we can determine the effectiveness the proposed methodology, we need to put together all the
domain knowledge we have on the bottle filling process so that we can express them as constraints. In
this process we can differentiate between global constraints, which apply to all scenarios of the filling
process, and situational constraints, constraints which only apply in specific cases we want to explore.

6.2.1. Global Constraints
Global constraints are the constraints which follow directly from the structure of the bottle filling process
and thus always hold.

Bounding Variables For most of the sensors we know rough bounds in which we expect values to lie.
These bounds can be applied as Bound constraints to the CFE and forecast input generation.

2https://scikit-learn.org/stable/index.html
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Relation Between Carbonation Tank and Flow We know that when the carbonation tank is com-
pletely full, there is no flow possible into the tank. We can therefore limit the incoming flow to be very
low when the level of the carbonation tank is too high using a Condition constraint.

Limiting Aggregation Variables Using Aggregation constraints we can limit the aggregation features
defined in Section 6.1 using AggregationBound constraints.

6.2.2. Situational Constraints
Situational constraints can be used to explore specific scenarios in the bottle filling process, specifically
when the set of explanations should be limited to be more plausible given knowledge about the current
state of the bottle filling machine.

Filling Speed If there are arbitrary problems with the filling of bottles the maximum filling speed may
be limited which can be encoded with a Bound constraint.

Flow and Filling Speed If we want to investigate the influence of different filling speeds or flow speeds
throughout the process we can limit them using Bound constraints.

6.3. Models
The methodology consists of a target prediction model and a process state forecasting model. We will
now discuss for each of the models how they have been constructed and how their hyperparameters were
chosen.

6.3.1. Target Prediction Model
As discussed in Chapter 4, random forests were used to predict the quality of the production process.
Specifically, scikit-learn’s implementation of random forests3 was used. Grid-based hyperparameter op-
timization was done to determine the optimal maximum depth and number of trees in the forest.

6.3.2. Process State Forecasting Model
As we also discussed in Chapter 4, for process state forecasting a neural network model was constructed.
As its implementation the scikit-learn multi-layer perceptron regressor4 was used. Determining the opti-
mal hyperparameters for this neural network is much more time-consuming (60+ minutes per network
instance) due to the large amount of data present to train on, making grid-based hyperparameter search
not realistic. The exact methodology is different for the artificial and real datasets and will therefore be
discussed in each related section.

6.4. Performance on Artificial Data
In order to determine the effectiveness of the methodology we can first analyse its performance on the
artificial data introduced in Chapter 2. We will explore the accuracy of the model and explore the
plausibility of the generated explanations.

Additional Variables Introduced
In order to give model more information about the filling done in the past 50 time steps, an aggregation
variable filling_50_sum is introduced which sums the filling done over said period.

Constraints Used
In order to make the results more plausible a number of constraints were used. First the aforementioned
aggregation variable filling_50_sum is bounded using an Aggregation Bound constraint which bounds
the value of filling_50_sum in the generated CFEs so that it cannot change more than the value for
filling in the CFE. Furthermore, if not otherwise stated, the minimum filling speed has been restricted
to be greater than 0.5, as (logically) we require some filling to be done at least. For each scenario we

3https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
4https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
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will view the generated CFE, the generated input for the process state forecaster, the forecast process
state, and the CO2 predictions for the each of the forecast time steps.

6.4.1. Hyperparameters
Before evaluating the explanations we will first cover how the hyperparameters for the target prediction
and process state forecast models have been determined. For the target prediction model grid search
yielded an optimal number of trees of 20 with a maximum depth of 8. The results can be seen in Figure
6.2. Predictions of this model on the test set, where it achieved a MAE of 0.047, can be seen in Figure
6.1. In order to determine the optimal number of layers and neurons per layer, results were extrapolated
using the figures in Figure 6.3. Taking overfitting into account, a singular layer of 50 neurons was chosen.
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Figure 6.1: Predictions of the target prediction model on the test set of the artificial data, which achieved a MAE of 0.047.
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Figure 6.2: Results of using grid search to find the optimal hyperparameters for the random forest model on the artificial dataset.



6.4. Performance on Artificial Data 33

0 10 20 30 40
8
9

0.1

2

3

4

5

6
7
8
9

Model
[5]
[10]
[20]
[50]
[100]
[200]
[500]
[1000]

Mean Absolute Error for Different Layer Sizes

Forecast Step

M
ea

n 
Ab

so
lu

te
 E

rr
or

0 10 20 30 40

0.1

0.2

0.3

0.4

0.5
0.6 Model

[50]
[50, 50]
[50, 50, 50]
[50, 50, 50, 50]
[50, 50, 50, 50, 50]

Mean Absolute Error for Different Number of Layers

Forecast Step

M
ea

n 
Ab

so
lu

te
 E

rr
or

Figure 6.3: Test scores on the artificial dataset for different layer sizes (top) and number of layers (bottom).

6.4.2. Scenario 1: Lowering CO2

In the first scenario the goal is to lower the bottle CO2 from between 4.0 and 4.1 to between 2.9 and
3.1. The generated CFE shown in Table B.1 requires that the CO2 setpoint should be lowered, the
current filling speed greatly decreased, and the filler temperature should increase. In Figure 6.4 it can
be seen that the suggested parameter changes (i.e. the changes to filling speed and the CO2 setpoint)
can be reached in 23 time steps and, according to the process state forecasting model, the changes
cause temperatures to increase as desired. The forecast of the bottle CO2 shows that there indeed is
the desired decrease and it even goes lower than 3. From this first scenario we can conclude that the
methodology is working as intended, highlighting that temperatures are a very important indicator of
bottle CO2. Important to note is that around the 545th time step the bottle CO2 forecast increases again
which seems to be correlated with an increase in filling speed and decrease in temperature. Future
work could put more effort in making sure in the forecast parameter optimization that such jumps are
minimized.



6.4. Performance on Artificial Data 34

500 510 520 530 540 550

0

5

10

15

20

25

30
Variable

inc_lem_T
inc_lem_p
inc_co2_gl
filling
filling_50_sum
room_T
last_bottle_co2

Lowering CO2 - Generated Input, CF reached at 500+23 TSs

Forecast Step

Va
lu

e

500 510 520 530 540 550

5

10

15

20

25
Variable

tank_T
tank_p
tank_co2_gl
filler_T
filler_p
filler_co2_gl

Lowering CO2 - Forecast Process State

Forecast Step

Va
lu

e

500 510 520 530 540 550

3

3.5

4 Pred

Lowering CO2 - CO2 Predictions

Forecast Step

CO
2

Figure 6.4: The generated CFE, forecast input, forecast process state, and corresponding CO2 predictions for scenario 1. The
teal and blue line indicate the start of the forecast and the point where the forecast input reaches the values suggested by the

CFE respectively.

6.4.3. Scenario 2: Increasing CO2

In the second scenario the goal is to increase the bottle CO2 from a value lower than 3.5 to a value
between 4.0 and 4.2. Table B.2 shows that the CFE requires that mainly the filler tank temperature
should decrease greatly, while the current filling speed should increase. Figure 6.5 shows that the desired
process parameters are reached right at the end of the forecast, but that the desired bottle CO2 has already
been reached around the 515th time step. We can see that the filler tank temperature is decreasing, as
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well as its pressure.
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Figure 6.5: The generated CFE, forecast input, forecast process state, and corresponding CO2 predictions for scenario 2. The
teal and blue line indicate the start of the forecast and the point where the forecast input reaches the values suggested by the

CFE respectively.

6.4.4. Scenario 3: Keeping CO2 Constant
In the third scenario the goal is to keep the bottle CO2 constant between 4.0 and 4.2. Table B.3 shows
that the CFE requires a lower filling speed, higher filler aggregated sum, and slightly higher filler tank
temperature. From Figure 6.6 it is clear that the bottle CO2 is staying above 3.75 which is slightly lower
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than the desired bounds. The fact that it does not stay within the desired bounds may be attributed
to the fact that the filling tank temperature is increasing too much, most likely due to the filling speed
being too low.
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Figure 6.6: The generated CFE, forecast input, forecast process state, and corresponding CO2 predictions for scenario 3. The
teal and blue line indicate the start of the forecast and the point where the forecast input reaches the values suggested by the

CFE respectively.
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6.4.5. Scenario 4: Increasing CO2 With Low Filling Speed
The fourth scenario tries to determine how the bottle CO2 can be increased without increasing the filling
speed above 0.25. The CFE shown in Table B.4 requires that the CO2 setpoint and filler tank temperature
need to decrease. Interestingly enough, the model does not require the filling speed to be much greater
than zero even though it could be 0.25. The forecast seen in Figure 6.7 shows that the bottle CO2 lowers
to around 2.4 instead of increasing, indicating that it is probably not realistic to increase the temperature
to the desired bounds without filling, which is to be expected when the filling tank temperature is so
highly dependent on the filling speed.



6.4. Performance on Artificial Data 38

500 510 520 530 540 550

0

5

10

15

20

25
Variable

inc_lem_T
inc_lem_p
inc_co2_gl
filling
filling_50_sum
room_T
last_bottle_co2

Increase CO2, Filling<0.25 - Generated Input, CF reached at 500+48 TSs

Forecast Step

Va
lu

e

500 510 520 530 540 550

5

10

15

20

25
Variable

tank_T
tank_p
tank_co2_gl
filler_T
filler_p
filler_co2_gl

Increase CO2, Filling<0.25 - Forecast Process State

Forecast Step

Va
lu

e

500 510 520 530 540 550

2.4

2.6

2.8

3

3.2

3.4
Pred

Increase CO2, Filling<0.25 - CO2 Predictions

Forecast Step

CO
2

Figure 6.7: The generated CFE, forecast input, forecast process state, and corresponding CO2 predictions for scenario 4. The
teal and blue line indicate the start of the forecast and the point where the forecast input reaches the values suggested by the

CFE respectively.

6.4.6. Scenario 5: Keeping CO2 Constant While Reducing CO2 Setpoint
The final scenario involves keeping the CO2 between 4.0 and 4.2 while reducing the CO2 setpoint to
determine how the reduction of the setpoint can be compensated for. The CFE seen in Table B.5 requires
that the filler tank temperature increases slightly and that the CO2 setpoint is lowered to 3.57, which
is lower than it is maximally allowed to be. Although it predicts that this would keep the bottle CO2

constant, we can see in the forecast that this is not the case, as the bottle CO2 drops off to around 3.8



6.4. Performance on Artificial Data 39

while the rest of the process variables stay relatively constant. This indicates that the incoming CO2

is probably set too low to maintain the required CO2. This scenario also shows the importance of the
process forecast, as the target prediction model by itself was not able to indicate the fact that the bottle
CO2 would decrease when applying the process parameters from the CFE.
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Figure 6.8: The generated CFE, forecast input, forecast process state, and corresponding CO2 predictions for scenario 5. The
teal and blue line indicate the start of the forecast and the point where the forecast input reaches the values suggested by the
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6.4.7. Discussion
The different scenarios show that the methodology is able to effectively give CFEs to process states under
varying restrictions, as well as forecast the influence of the changes to the process in terms of not only
the target variable but also the process variables. The CFEs are more transparent than a direct forecast
of the bottle CO2 and due to the optimization in both the CFE generation and process parameter input
generation only the necessary changes according to the target prediction model are provided.

But the methodology also shows limitations. The bottle CO2 seems to mostly only react to the filler
tank temperature. We can confirm this by viewing the feature importances5 of the target prediction
model in Table 6.1. It shows that the model really only uses filling speed and filler CO2 for the prediction
of the bottle CO2. Therefore the generated CFEs do not require changes in the other variables as they
do not influence the decision making of the model. On one hand this is a downside as the CFEs are
less plausible (e.g. when suggesting higher filler tank temperature while not suggesting a higher tank
temperature), but, on the other hand, this indicates that the solution to problems with bottle CO2 need
to be found in the filler tank temperature which is an important result on its own. Another minor issue
with the forecast parameter generation is the fact that the optimization seems to have difficulties with
keeping the filling aggregated sum to the value required by the CFE.

Feature Importance
filler_T 1.658 ± 0.009
filler_co2_gl 0.122 ± 0.001
tank_co2_gl 0.03 ± 0.0
inc_co2_gl 0.002 ± 0.0
filler_p 0.0 ± 0.0
room_T 0.0 ± 0.0
tank_T 0.0 ± 0.0
filling_50_sum 0.0 ± 0.0
tank_p 0.0 ± 0.0
last_bottle_co2 0.0 ± 0.0
filling 0.0 ± 0.0
inc_lem_T 0.0 ± 0.0
inc_lem_p 0.0 ± 0.0

Table 6.1: Feature importances for the target prediction model trained on the artificial dataset.

6.5. Explanation Performance
Before evaluating the performance of the proposed methodology on the real-world dataset, the results
of training both the target prediction model and process state forecasting model is discussed. Then,
the evaluation of the explanations is done in two stages. First, we will explore generated explanations
in similar scenarios as on the artificial data to determine whether the objective of the explanation has
been fulfilled and whether they are plausible. In each scenario the original process state is hand picked
according to the requirements specified by the scenario, where the original CO2 value of the process
state is taken to be the known sample value from the dataset. Then the results of an expert evaluation
of the explanations will be discussed.

6.5.1. Training the Target Prediction Model
Hyperparameter tuning via grid search yielded an optimal number of trees of 40 with a maximum depth
of 6. Predictions of this model on a test set can be seen in Figure 6.9. To demonstrate that this model does
not merely output an approximation of the mean bottle CO2 the distribution of train and test predictions
can be seen in Figure 6.10, while a plot of the predictions can be seen in Figure 6.11. It is clear that
the model has difficulties with accurately predicting strong deviations in normal bottle CO2 labels. This
could become a problem when generating CFEs for process states from which bottles are produced with

5Feature importances were generated using scikit-learn permutation importances: https://scikit-learn.org/
stable/modules/generated/sklearn.inspection.permutation_importance.html#sklearn.inspection.permutation_
importance

https://scikit-learn.org/stable/modules/generated/sklearn.inspection.permutation_importance.html#sklearn.inspection.permutation_importance
https://scikit-learn.org/stable/modules/generated/sklearn.inspection.permutation_importance.html#sklearn.inspection.permutation_importance
https://scikit-learn.org/stable/modules/generated/sklearn.inspection.permutation_importance.html#sklearn.inspection.permutation_importance
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Figure 6.9: MAE for different combinations of random forest hyper parameters.

a significant difference from the average values, as the model may predict this process state to be normal
and thus give no required changes in the CFE. This will be analysed in later sections.
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Figure 6.11: Predictions on all test set samples using two random forests for comparison. The first with 40 trees of depth 6
obtained a MAE of 0.0040, while the second with 10 trees of depth 15 achieved a MAE of 0.0044.

3.5 4 4.5 5
0

200

400

600

800

1000 bottle_co2

Bottle Sample Distribution

CO2

co
un

t

4 4.5
0

200

400

600

800

Train

Train Prediction Distribution

CO2

co
un

t

4.1 4.2 4.3 4.4
0

50

100

150 Test

Test Prediction Distribution

CO2

co
un

t

Figure 6.10: Distributions for the entire dataset and predictions on the train and test set, demonstrating that the model does not
merely output the general mean of the target values.

6.5.2. Training the Process State Forecasting Model
To recap: the process state forecasting model takes as input the previous nw time steps of sensor data
and process parameters, as well as the nf generated process parameters. The output of the model then
becomes the nf forecast steps containing the forecast values for each sensor other than the process
parameters. Similarly to the artificial dataset, nw = 10 and nf = 50 (500 seconds). Training data
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Figure 6.12: Different forecast window sizes.

was created by extracting sliding time series windows for each batch, ensuring that a window does not
contain samples from two separate batches. In order to reduce complexity, the forecast was divided into
smaller windows. The mean absolute error for each forecast step over different forecast sizes can be seen
in Figure 6.12. It is not clear why in the error during the first forecast steps is very high, as the forecasts
later on in this evaluation do not show abnormalities.

0 10 20 30 40

1

10

100

1000

10k Model
[50]
[100]
[200]
[500]
[1000]

Mean Absolute Error for Different Layer Sizes

Forecast Step

M
ea

n 
Ab

so
lu

te
 E

rr
or

0 10 20 30 40

1

10

100

1000

10k Model
[50]
[50, 50]
[50, 50, 50]
[50, 50, 50, 50]
[50, 50, 50, 50, 50]

Mean Absolute Error for Different Layer Amounts

Forecast Step

M
ea

n 
Ab

so
lu

te
 E

rr
or

Figure 6.13: Test set losses for different layer sizes (top) and number of layers (bottom).
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6.5.3. Scenarios
We will now discuss for each scenario what the goal is and whether the proposed methodology is able
to correctly predict that the old process state does not produce bottles with a desired amount of CO2,
and whether it has achieved presenting a better process state. Whether the observations align with our
expectations and hypotheses will then be discussed in the Discussion in Section 6.6.

Scenario 1: Lowering CO2

In the first scenario the goal is to lower the CO2 from above the specified upper limit (4.3) to be-
tween 3.95 and 4.05. The generated forecast input and CFE are shown in Figure 6.14, the process
state forecast is shown in Figure 6.15, and the values for each variable in the CFE can be seen in Ta-
ble B.6. The process parameters suggested by the CFE show that a decrease in flow into the cooler
(FT_031_130_031), an increase in lemonade flow into the mixer (FT_031_160_041), a decrease in in-
coming CO2 (FT_031_140_037), and a higher filling speed is required. Temperatures should increase
in a number of sensors on pipes not used in production which could indicate that higher room tem-
perature is needed, but this may also be due to a desire for a more stable production, as those pipes
are used during start up or at the end of production which are more volatile stages. More importantly
though an increase is required at the buffer tank (TX_031_160_901) and the temperature of incoming
CO2 (TX_031_140_905), indicating a required increase in lemonade and CO2 temperature. The fore-
cast shows that, as expected, the inline CO2 measurement (QT_031_140_083_PV) decreases and that the
CO2 temperature increases. However, the other temperatures seem mostly to decrease, which could
be the result of the increased filling speed and lemonade flow into the mixer. The CO2 forecast de-
creases as expected, but increases again near the end. Possibly related to the fact that the buffer tank
(LT_031_160_901) is empty at that point. This is unrealistic as the tanks may not run dry during pro-
duction and could have been resolved with extra constraints defining the exact relations between the
flows.
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Figure 6.14: The generated CFE, forecast input, for Scenario 1. The teal and blue line indicate the start of the forecast and the
point where the forecast input reaches the values suggested by the CFE respectively.
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Figure 6.15: The forecast for all of the variables in Scenario 1. The teal and blue line indicate the start of the forecast and the
point where the forecast input reaches the values suggested by the CFE respectively.
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Scenario 2: Increasing CO2

In the second scenario the goal was to increase CO2 from below (<4.1) to within acceptable bounds
(4.15-4.25). The generated forecast input and CFE are shown in Figure 6.16, the process state forecast
is shown in Figure 6.17, and all the values for the CFE are shown in in Table B.7. The CFE suggested
that the aggregated filling speed over the last 20 minutes and flow into the cooler and carbonation tank
decrease, while incoming CO2 flow and current filling speed increase, which we can expect to indeed
increase bottle CO2. Furthermore, an increase in temperatures is required in the filler tank and two
temperature sensors on pipes related to bottle cleaning. The higher temperatures in cleaning pipes would
suggest a lower filling speed, which could also explain the required higher filler tank temperature. The
forecast shows an expected increase in the inline CO2 measurement, as well as a decrease in buffer tank
level which is expected when the flow into the cooler is lowered and the filling speed is increased. The
forecast shows an increase in pressure as well which is in line with the idea that pressure increases bottle
CO2. While the CFE required an increase in filler tank temperature (TT_051_100_100), the temperature
decreases in the forecast which is actually more in line with our expectations when the lemonade flow
to the filler increases, and also more desired as a lower temperature should increase bottle CO2. The
pressures from the carbonation tank to the filler also increase, possibly also due to the increase in flow,
which should also contribute to higher bottle CO2.
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Figure 6.16: The generated CFE, forecast input, for Scenario 2. The teal and blue line indicate the start of the forecast and the
point where the forecast input reaches the values suggested by the CFE respectively.

Scenario 3: Constant CO2

For the third scenario the goal was to keep the CO2 levels within the acceptable bounds (4.15-4.25).
The generated forecast input and CFE are shown in Figure 6.18, the process state forecast is shown in
Figure 6.19, and all the values for the CFE are shown in in Table B.8. The CFE suggests decreasing the
flow into the buffer tank and cooler, while increasing the lemonade flow into the mixer and CO2 while
also increasing the amount of flow to the filler. It also required an increase in a number of temperature
sensors, including the filling tank temperature. The resulting forecast shows an increase in inline CO2

and pressures, with most temperatures dropping as well. We would associate that with an increase in
CO2 rather than keeping it consistent and that is what we are seeing in the CO2 prediction as well. This



6.5. Explanation Performance 47

130 140 150 160 170

4.2

4.25

4.3

4.35

4.4 Pred

Increasing CO2 - CO2 Predictions

Forecast Step

CO
2

130 140 150 160 170

4.8

5

5.2

5.4

5.6

Variable
QT_031_140_083_PV

Increasing CO2 - Forecast Inline CO2

Forecast Step

Va
lu

e

130 140 150 160 170
0

2k

4k

6k

8k

10k
Variable

LT_031_160_016
LT_031_140_016

Increasing CO2 - Forecast LT

Forecast Step

Va
lu

e

130 140 150 160 170

16

18

20

22

Variable
QT_031_140_083_DegC
TT_031_140_021
TX_031_160_901
TX_031_135_901
TX_031_135_902
TX_031_140_901
TX_031_140_904
TX_031_140_905
TX_031_140_907
TX_031_140_911
TX_031_140_914

Increasing CO2 - Forecast Process Temperatures (031)

Forecast Step

Va
lu

e

130 140 150 160 170

15

16

17

18

19

20

21 Variable
TT_051_100_100
TX_051_100_901
TX_051_100_902
TX_051_100_905
TX_051_100_906
TX_051_100_907
TX_051_100_908
TX_051_100_910
TX_051_100_913

Increasing CO2 - Forecast Process Temperatures (051)

Forecast Step

Va
lu

e

130 140 150 160 170

0

2

4

6

8
Variable

QT_031_140_083_bar
PT_031_130_031
PT_031_140_004
PT_051_100_130
PT_051_100_120
PT_051_100_121

Increasing CO2 - Forecast Pressures

Forecast Step

Va
lu

e

Figure 6.17: The forecast for all of the variables in Scenario 2. The teal and blue line indicate the start of the forecast and the
point where the forecast input reaches the values suggested by the CFE respectively.
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could be due to the fact that, in theory, no changes were needed as the process was already producing
bottles with the correct amount of CO2, while the CFE generation still generated a new process state
which was different. This is probably due to the fact that, as discussed in Section 5.1, we are not in fact
running an optimization to find the CFE, but iteratively trying to find a CFE with a smaller distance to
the original and stopping at a certain threshold. In this specific case, the process parameters did not
make it so that the required temperature changes were achieved to let the CO2 stay constant, but rather
decreased the temperatures which increased the CO2 greatly.
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Figure 6.18: The generated CFE, forecast input, for Scenario 3. The teal and blue line indicate the start of the forecast and the
point where the forecast input reaches the values suggested by the CFE respectively.

Scenario 4: Increasing CO2 Without Increasing Filling
In the fourth scenario the goal is to increase the CO2 from below bounds (<4.1) to within bounds (4.15-
4.25) without increasing the filling speed, as we stated in Hypothesis 3 that low filling speed may cause
a lower CO2 due to warming of the lemonade. This scenario may therefore highlight what can be done
to the process to counteract the many stops in production. The generated forecast input and CFE are
shown in Figure 6.20, the process state forecast is shown in Figure 6.21, and all the values for the CFE
are shown in in Table B.9. The CFE suggests decreasing lemonade flow into the mixer, carbonation tank,
cooler, and filler, and decreasing incoming CO2 flow to almost zero. Furthermore, an increase is required
in inline pressure and temperature. The forecast shows an eventual increase in inline CO2, which may
not be realistic given the fact that the incoming CO2 flow is set to almost zero. In the carbonation section
most temperatures increase except for the temperature of the buffer tank and carbonation tank. In the
filling section temperatures increase as well, except one pipe for cleaning and one for keeping filler
tank pressure constant. These temperature changes seem so slowly increase bottle CO2 while the sharp
increase near the end seems to come from the large increase in both inline CO2 and pressure.
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Figure 6.19: The forecast for all of the variables in Scenario 3. The teal and blue line indicate the start of the forecast and the
point where the forecast input reaches the values suggested by the CFE respectively.
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Figure 6.20: The generated CFE, forecast input, for Scenario 4. The teal and blue line indicate the start of the forecast and the
point where the forecast input reaches the values suggested by the CFE respectively.

Scenario 5: Decreasing CO2 Setpoint
The fifth scenario involves keeping the CO2 within bounds (4.15-4.25) while lowering the CO2 setpoint.
We hypothesized that there are more factors to the prediction of CO2 than only the CO2 setpoint, and the
suggestions made by the CFE may highlight which improvements may be made to improve bottle CO2

without increasing the setpoint. The generated forecast input and CFE are shown in Figure 6.22, the
process state forecast is shown in Figure 6.23, and all the values for the CFE are shown in in Table B.10.
The CFE requires, in conjunction with the lower incoming CO2, an increase in lemonade flow into the
cooler, buffer tank, and mixer, while decreasing flow to the filler. The forecast then shows an expected
decrease in inline CO2 due to the decrease in CO2 setpoint. The temperatures in the carbonation section
most temperatures stay constant or show a slight decrease and then an increase, while in the filler section
all temperatures slightly decrease, except for the filler tank temperature which increases slightly. It is
likely that the CO2 increase at the end of the forecast is caused by the decrease in temperatures, but it is
probably not realistic that the CO2 is able to stay high while the inline CO2 drops to below 3.
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Figure 6.21: The forecast for all of the variables in Scenario 4. The teal and blue line indicate the start of the forecast and the
point where the forecast input reaches the values suggested by the CFE respectively.
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Figure 6.22: The generated CFE, forecast input, for Scenario 5. The teal and blue line indicate the start of the forecast and the
point where the forecast input reaches the values suggested by the CFE respectively.

Scenario 6: Lowering CO2 below specified lower limit.
For the last scenario we try to lower the CO2 to below the specified bounds to a value lower than 4,
as purposely generating CFEs to obtain ‘bad’ process states may reveal what factors worsen bottle CO2.
The generated forecast input and CFE are shown in Figure 6.24, the process state forecast is shown in
Figure 6.25, and all the values for the CFE are shown in in Table B.11. The CFE suggests increasing
lemonade flow into the cooler, mixer, and carbonation tank, while reducing filling speed and incoming
CO2. Furthermore, temperature increases are required in many sensors, such as the temperature from
the cooler (TT_031_130_033) and the temperature going into the carbonation tank (TT_031_140_021) as
expectedwhen trying to lower bottle CO2. The inline CO2 measurement decreases and the inline pressure
and temperature measurements increase as they should. The temperature of the buffer tank increases as
well, likely due to the reduced flow of lemonade into the cooler and an increase in temperature from the
cooler. However, the other temperatures and pressures are forecast to decrease and increase respectively,
likely due to the increase in flow of lemonade in the carbonation section making it so that the CO2

forecast is increasing rather than decreasing. This means that there is still a disconnect between the
requirements set by the CFE for the sensor changes and the forecast sensor changes when using the new
process parameters given by the CFE.
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Figure 6.23: The forecast for all of the variables in Scenario 5. The teal and blue line indicate the start of the forecast and the
point where the forecast input reaches the values suggested by the CFE respectively.
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Figure 6.24: The generated CFE, forecast input, for Scenario 6. The teal and blue line indicate the start of the forecast and the
point where the forecast input reaches the values suggested by the CFE respectively.

6.6. Discussion
We will now discuss the results obtained by applying the proposed methodology to the real-world data
set by going over the performance of each of the three components of the method, after which we try to
confirm or reject the hypotheses we formulated in Section 5.4.

6.6.1. Target Prediction
Analysing the results reveals that the target prediction model is able to predict the amount of CO2 in a
bottle with a mean absolute deviation of 0.0050 compared to the mean value of 4.2022 in the dataset. It
is clear from the plots of the predictions in Figure 6.11 that the model is able to follow the general trends
of the test samples quite clearly. However, themodel still has difficulties with the larger fluctuations in the
test set. The primary reason for this issue is probably that the dataset is too imbalanced for the random
forest to determine the cause of these spikes, as demonstrated by the sample value distributions seen in
Figure 6.10. However, it is also important to note that the labels may not represent the problem very well,
as the raw CO2 values are entered manually by operators after a measurement. These operators are held
personally accountable if the values are too high or too low, which may lead to them entering incorrect
values in their own best interest. This means that the model can create a wrong association between a
bad process state and a good bottle CO2 value. Furthermore, some sensors have a low resolution, such
as TT_051_100_100 which denotes the filling tank temperature and only has a resolution of 1º. When a
change of a few degrees can have a high impact on the result, this could mean that the random forest
had a harder time creating conclusions based on this sensor.

6.6.2. CFEs
From the CFEs generated in the scenarios we can conclude that they are able to effectively show what
variables need to be changed for the target prediction model to predict the desired values. In Scenarios
1 and 6 the goal was to lower the CO2 the CFEs suggested to decrease the CO2 flow and increase the
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Figure 6.25: The forecast for all of the variables in Scenario 6. The teal and blue line indicate the start of the forecast and the
point where the forecast input reaches the values suggested by the CFE respectively.
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lemonade flow into themixer, which is in line with Hypothesis 1. Furthermore, temperatures are required
to increase in sensors on lemonade pipes, such as TX_031_135_901, but also on TX_051_100_908, residing
on a filler pipe used for transport of bottle cleaning fluid. This pipe will increase in temperature when
not used, and thus this increase can be interpreted as a desired decrease in filling speed. which is in line
with Hypothesis 3. An increase is also required in temperature sensor TX_051_100_913 which related
pipe is used for the transport of CO2 gas to keep the filler tank pressurized, and thus an increase in
temperature means a reduction in added gas. This could mean that the desire is to reduce the pressure
in the tank, or that the system is more stable such that the adding of gas is not needed, but as we do not
have pressure information on the filler tank it is hard to make any conclusions.

In Scenarios 2 and 4 the goal was to increase the CO2. Both CFEs required a decrease in aggregated
filling speed and in lemonade flow into the carbonation tank and cooler. The fact that Scenario 2 did not
require an aggregated filling speed increase goes against Hypothesis 3 and it is unclear why this is not
required. The fact that the CO2 was forecast to increase to 4.4 may indicate that a further filling speed
increase may have increased the CO2 too much. While in Scenario 2 the incoming CO2 was required to
increase in accordance with Hypothesis 1, this was not the case in Scenario 4 where the restrictions in
filling speed may have prevented an increase in incoming CO2 in the CFE. However, the CFE did contain
a required increase in inline pressure which agrees with Hypothesis 5. It is unclear why in both scenarios
temperature increases were required in lemonade pipes and tanks, as this disagrees with Hypothesis 2,
but this could be due to the decrease in lemonade flow being correlated with higher temperatures. The
same holds for the required temperature increase in the gas pipe for cleaning bottles which is likely in
correlation with the filling speed which is required to decrease in both scenarios.

In Scenario 3 the goal was to keep the CO2 constant but the changes by the CFE do not seem to be
in line with expectations. First of all, the amount of lemonade fed into the process and filling speed are
decreased while the amount of incoming CO2 is increased. According to hypotheses 1 we would expect
the changes to increase the bottle CO2 more than the temperature changes would counteract. But then
again, it would be more logical for the CFE to give no changes at all as the original prediction for bottle
CO2 was within the accepted bounds already. The fact that changes were still required is probably a
result of the fact that the CFE returned is not optimal but the result of finding a solution with a bounded
distance to the current process state.

Lastly, in Scenario 5 the goal was to determine how the effects of lowering the amount of incoming
CO2 could be counteracted. The CFE required increased lemonade flow into the cooler, carbonation
tank, and mixer, while reducing flow to the filler. Considering Hypothesis 1, we would expect the bottle
CO2 to decrease rather than increase, but it could also be the case that the effects of increased lemonade
flow would decrease temperatures and thus increase bottle CO2 in line with Hypothesis 2. The CFE also
requires an increase in the inline pressuremeasurement, which agrees with Hypothesis 5, and an increase
in inline CO2, but this seems unrealistic as the amount of incoming CO2 is being lowered, preventing an
increase in inline measurements. Finally, the CFE requires an increase in temperatures in pipes related
to filling while an increase can only be realized with a decrease in filling speed, which is not required by
the CFE. This again suggests that the generated CFEs do not fully capture causality within the process.

Considering all CFEs together it is clear that the target predictionmodel does not consider all variables
to be important. We can confirm this by considering the permutation importances for the model in Table
6.2, where we can see that there is a very steep drop off of importance to where only the first twelve
features have an importance of at least 0.01. The only pressure sensor actually subject to a required
change was the inline pressure measurement, which could be due to the fact that the pressure in all
pipes is well regulated as can be seen in Figure A.4. Therefore, the model probably has not attributed
change in bottle CO2 to changes in pressure in the other sensors and thus did not create splits on these
features. The same can be said for many of the temperature sensors, but this is to be expected as the
TX sensors are placed on the outside of pipes, making them react slowly to changes within said pipes,
as well as the fact that many pipes are used only during cleaning or draining rather than during filling.
Thus, these sensors only provide limited information on the prediction of bottle CO2, making the target
prediction model split based on other variables instead. The fact that some sensors are ignored and
thus never subject to a required change can be misleading, or even an issue, as the reality may be that
those sensors are correlated with other sensors and thus would take another value if the new process
parameters from the CFE would be applied to the process. This could result in the bottle CO2 being
predicted differently. Finally, we were able to confirm multiple hypotheses stated in Section 5.4 apart
from Hypothesis 3 and 4. We hypothesized that lower filling speed and higher room temperature would
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lead to increased temperatures across all sensors, but were unable to confirm this using the CFEs. This
could be due to the fact that the CFEs struggle to capture causality between different variables in the
process.

6.6.3. Process State Forecasting
Considering our analyses of the different scenarios in Section 6.6.2, we can now discuss whether the
results of the process state forecasting are in line with what we would expect from applying the process
parameters changes required by the CFEs.

In Scenario 1 and 6 the goal was to lower bottle CO2. This was partially achieved in the first scenario
as the CO2 started increasing again after 40 time steps. It is unclear why this is the case but it could
potentially be due to the fact that the filler tank temperature is decreasing and multiple pressures are
increasing which would lead to increased bottle CO2 according to Hypothesis 2 and 5, even though the
inline CO2 is decreasing as expected. A similar pattern is seen in Scenario 6 where the bottle CO2 is
never forecast to decrease. Furthermore, the fact that the level of the buffer tank decreases to zero is
unrealistic as this is not allowed to happen, indicating that the forecasting model does not capture all
facts about the bottle filling machine.

In Scenario 2 and 4 the goal was to increase bottle CO2 and the CO2 indeed shows an increase
in both cases. In both Scenarios the inline CO2 measurement is forecast to increase but this seems
unrealistic for Scenario 4, as the incoming CO2 was reduced by the CFE, especially when considering
that the carbonation tank was almost completely run dry, guaranteeing that there is a low amount of
CO2 in the system left. In both cases filling speed is decreased and lemonade flow is reduced across the
system which was hypothesized in Hypothesis 3 to increase temperatures. In the forecast of Scenario 2
temperatures did not seem to decrease, however. Even though flow into the carbonation tank is set to
almost zero the temperature of that tank is still decreasing as if it was still receiving flow. This could also
be due to the fact that its temperature was high in the first place and is now being decreased due to the
lemonade in it. We can see an increase in the inline temperature measurement and another temperature
sensor on a pipe to the filler (TX_100_100_901), but then one would expect an effect on filler tank
temperature which is not present. In Scenario 4 the results are more according to expectations as most
temperatures are increasing except for some temperatures related to drainage (TX_031_140_901) and
filling (TX_051_100_906, TX_051_100_908, and TX_051_100_913). Pressures in the forecast of Scenario
2 are all increasing, probably due to the consistent filling speed, which would be desired according to
Hypothesis 5. In Scenario 4 the inline pressure is increasing as well, which is logical as barely any filling
is done and still flow is provided to the filler. Another important aspect to consider is the fact that the
inline measurements seem to be highly correlated, which could be a sign of multicollinearity. This could
make the forecast less realistic as it is not logical that CO2, pressure, and temperature are so strongly
correlated.

In Scenario 3 the goal was to keep the CO2 constant, but the forecast is almost the same as the forecast
of Scenario 2, probably due to the fact that in both cases the CFE required an increase in CO2, increasing
in both the inline CO2 forecast.

Lastly, in Scenario 5 the goal was to determine how to counteract the influence of decreasing the
amount of incoming CO2. The forecast indeed shows a gradual decrease in inline CO2, while the CO2

forecast stays relatively constant. Except for the flow to the filler, the CFE required all flows to increase
which caused a global decrease in temperatures in line with Hypothesis 3. In the bottle CO2 forecast we
can first see a decrease and then an increase which can be attributed to the fact that the pressures also
first decrease and then increase again. This pattern can be seen in multiple variables, such as the buffer
tank level, but there is not a good reason for this sudden change as the flows stay the same. It seems that
the forecast model has captured the preferred lower bound on the level of the buffer tank, but logically
it is not possible to maintain this without altering the flows in the process. This signals that future work
should focus on better constraining the flows and levels in the process in order to make the results more
plausible.

Considering all scenarios together we were able to show that we are able to effectively forecast the
process state and that the results generally in line with our hypotheses stated in 5.4, apart from Hypothe-
ses 4 as we could not confirm whether room temperature is of effect on the process state. The forecast
tends to be unrealistic when it comes to flows and tank levels, indicating that future work is needed
to further integrate domain knowledge on this aspect into the methodology. Furthermore, the model
seems to be subject to multicollinearity, indicating that feature selection may also be done to ensure that
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Feature Importance (µ±σ)
QT_031_140_083_PV 0.524 ± 0.018
FT_031_140_037_20m_sum 0.267 ± 0.013
LT_031_160_016 0.112 ± 0.013
TX_051_100_907 0.109 ± 0.006
TX_051_100_913 0.093 ± 0.008
QT_031_140_083_bar 0.063 ± 0.002
TX_051_100_908 0.023 ± 0.002
TX_051_100_905 0.019 ± 0.003
FT_031_140_037 0.016 ± 0.001
PT_051_100_121 0.014 ± 0.001
TX_031_135_901 0.012 ± 0.001
PT_051_100_130 0.01 ± 0.001
TT_031_130_033 0.009 ± 0.001
TX_051_100_906 0.009 ± 0.001
TX_031_140_905 0.008 ± 0.001
TX_031_160_901 0.008 ± 0.001
TX_031_140_907 0.007 ± 0.001
vuller_20m_sum 0.007 ± 0.001
TX_051_100_910 0.007 ± 0.0
TX_031_140_901 0.007 ± 0.001
PT_051_100_120 0.006 ± 0.0
TX_051_100_902 0.006 ± 0.002
FT_031_130_001 0.005 ± 0.0
PT_031_130_031 0.004 ± 0.0
LT_031_140_016 0.003 ± 0.0
TX_031_140_914 0.003 ± 0.0
TX_031_140_911 0.003 ± 0.0
FT_031_135_041 0.003 ± 0.0
TT_031_140_021 0.002 ± 0.0
vuller_snelheid_per_uur 0.002 ± 0.0
PT_031_140_004 0.001 ± 0.0
TX_051_100_901 0.001 ± 0.0
FT_031_160_041 0.001 ± 0.0
QT_031_140_083_DegC 0.001 ± 0.0
FC_031_140_010 0.001 ± 0.0
TX_031_140_904 0.001 ± 0.0
TT_051_100_100 0.001 ± 0.0
TX_031_135_902 0.001 ± 0.0

Table 6.2: Permutation importances for the target prediction model trained on the real dataset.
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the model does not learn erroneous relations between variables.

6.6.4. Discussion with the Thesis Company Expert
In a brief evaluation with a thesis company expert some of the results were discussed in order to deter-
mine whether they are realistic. First of all, the fact that CFEs suggest lower lemonade flow to increase
the CO2 to lemonade ratio could be confirmed by the expert to be true. Furthermore, the idea of an idling
bottle filler increasing the temperatures in the process, formulated in Hypothesis 3, did also seem realis-
tic and this is an aspect the company wants to further investigate. A problem highlighted by the expert
was, however, that it is not always possible to further reduce filling temperatures as this may result in
condensation on the bottles which is undesirable for multiple reasons. An interesting domain knowledge-
related point is that this means that filling temperature can be lower in the winter than in the summer.
Another idea uncovered by the model, that higher temperatures in drain (e.g. TX_031_140_902) and
filler tank pressure gas (TX_051_100_913) pipes equate to higher bottle CO2, also seemed logical to the
expert, as these pipes are only used, and thus low in temperature during the start up of the process and
when the filler is idling. An interesting point raised by the expert was that he was able to recognize the
step-based pattern in the forecast, which is also visible in the real data, but could also be mistaken for
a quirk of the neural network predictions. In the real data this pattern is the result of the carbonation
tank being kept at the right pressure in bursts.

Although the forecasts seem to be mostly in line with expectations, temperatures 30ºC and up during
production are not realistic. Furthermore, the method sometimes reduces flow to zero, which is not
allowed in the first place, but then also forecasts the tank at the end of that flow to stay at a continuous
level while still giving off flow itself. This is not realistic and shows a need for further integration of
domain knowledge.



7
Conclusion

The goal of this thesis was to create a novel approach to quality prediction for production processes
with the ability of giving explanations to its predictions aimed at uncovering the hidden workings of a
production process. In order to increase the plausibility of the explanations, domain knowledge in the
form of constraints can be applied. The main research question this thesis sought out to answer was:

How can a Machine Learning model be developed which predicts product quality, while
giving production-process-specific explanations that domain-specific stakeholders can un-
derstand?

To answer this question a methodology was developed which combines three separate fields of re-
search: product quality prediction, explainable artificial intelligence, and domain knowledge integration.
For product quality prediction, random forests were used as they are not only flexible and transparent
in their functionality, but also resilient to overfitting. Counterfactual explanations were then used to
exploit the structure of the random forest to determine changes to the current process state to increase
the product quality. Finally, process forecasting is used to determine the impact of the proposed process
parameter changes. This methodology was then used to answer the following sub-questions:

• Can random forests be used to indicate what variables influence product quality?
• Can counterfactual explanations be used to suggest a better production process state?
• Can time series forecasting be used to forecast the influence of process parameter changes?
• Can domain knowledge be used to make counterfactual explanations more plausible with respect

to production processes?

7.1. Summary of this Thesis
After the introduction, this thesis started off with a sketch of the project’s context in Chapter 2. The
problem of bottle filling was introduced, together with exploration of the target bottle filling machine and
the data that it produces. We also explored an artificially created dataset with the purpose of highlighting
what the methodology could achieve. The related literature with respect to product quality prediction,
explainable artificial intelligence, and domain knowledge integration was discussed in Chapter 3. It was
noted that little research exists which come close to the goals set out for this thesis, but that the necessary
methods exist to bridge the gap. These methods, i.e. the preliminaries, were introduced in Chapter 4.
Product quality prediction was formally introduced and it was shown how random forests can be used
for quality prediction. Then, counterfactual explanations for decision trees were explained as they are
able to exploit the structure of a tree-based model to determine how a process state needs to change for
the model to change its prediction to be more desirable. Chapter 5 then gave the contributions of this
research and the structure of the proposed methodology. We discussed how counterfactual explanations
can be used with random forests, and how the optimization of finding the counterfactual explanations
can be constrained with domain knowledge to increase their plausibility. We then covered what domain
knowledge constraints look like and how they can be applied. The last element of the methodology,

60
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process forecasting, is introduced as a way to determine the impact of the proposed process parameter
changes. We rounded of the contributions by formulating hypotheses and expectations before applying
the methodology to the available data. We hypothesized that the explanations should highlight lower
temperatures and higher pressures to increase CO2 in bottles, but also that it may be possible that the
counterfactual explanations only suggest changes to a small number of variables that are important to
the random forest. In Chapter 6 we then started off with discussing how the data was cleaned and
prepared for use, after which we went over the different constraints that could be determined from the
known facts about the process. We continued with covering the exact structure of the random forest
and neural networks used in the methodology and how their hyperparameters were determined. We
then first discussed the results when applying the methodology on the artificial dataset and concluded
that the methodology was able to correctly identify how the artificial process could be improved, but
also that features not important to the random forest model were not considered in the counterfactual
explanations, which is misleading. In the results on the real data, we concluded that the methodology
was able to identify problems with the current process state and provide changes that were forecast to
improve the process state such that it produced bottles with a more desired amount of CO2. We then
discussed some of the problems with the methodology, including that the random forest only suggests
changes to variables it splits the data on and that the process state forecasting sometimes gives unrealistic
results, probably due to unrealistic generated forecasting input and collinearity in the process state
forecasting model. Nevertheless we were able to confirm the hypotheses stated in Section 5.4.

7.2. Conclusions
We can answer the first research question Can random forests be used to indicate what variables influence
product quality? positively as we have demonstrated that random forests are able to show through feature
importance and counterfactual explanations what variables one can use to determine the product quality
in a bottle filling machine setting. With respect to the second research question Can counterfactual
explanations be used to suggest a better production process state?, we can state that it is indeed possible
for counterfactual explanations to suggest better production process states. The suggested states show
which changes need to be made to the process for the target prediction model to improve its prediction.
However, it should be noted that counterfactual explanations generated using the structure of a random
forest only suggest changes to variables on which the random forest has split its training data, meaning
that the other variables are ignored. This may result in unrealistic process states as some variables
change while other, possibly correlated, variables do not change with them. Having trained a neural
network on the large amount of time series data available of the bottle filling machine, and having used
it to forecast the impact of the process parameters obtained by generating counterfactual explanations,
we can answer the third research question, Can time series forecasting be used to forecast the influence
of process parameter changes?. It is indeed possible to forecast the impact and the results are in line
with our hypotheses, but the results are not always realistic, possibly due to multicollinearity and lack
of constraints on flows and tank levels in the specific case of the bottle filling machine. By formulating a
number of constraints based on factual knowledge about the bottle filling machine and enforcing those
constraints in the generation of counterfactual explanations we are able to confirm our last research
question, Can domain knowledge be used to make counterfactual explanations more plausible with respect
to production processes?, as well, as we have shown that these constraints remove implausible process
states from the search space of counterfactual explanations and forecast input generation.

7.3. Contributions
The contributions of this thesis are then as follows:

1. A novel methodology for providing domain knowledge driven explainable product quality predic-
tion, making use of process state time series data, as well as the limited number of samples of the
target variable.

2. A guideline for working with production process data.
3. Insights into the creation and use of domain knowledge constraints to improve explanation plausi-

bility.
4. Recommendations to the thesis company based on findings obtained by applying the methodology

to data of their bottle filling machine.
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7.4. Limitations & Recommendations for Future Work
The limitations of this project of this project can be divided into problems with the target problem itself
and the limitations of the proposed methodology.

7.4.1. Data
Even though this research has shown that it is possible to predict the CO2 in filled bottles there was
first of all a limitation in data available to the problem which prevented greater predictive accuracy. As
discussed in Section 2.2.1, the amount of CO2 in a bottle is determined by a function of temperature
and pressure. However, for the filler tank only a temperature sensor was available, which means that
the model needs to use data further away from the filler to determine the pressure and CO2 contents
of filled lemonade, making the problem harder. Furthermore, the available bottle samples are skewed
as operators enter the results manually. Values which are too low or too high trigger alarms which
operators are personally held accountable for, meaning that operators may, for instance, enter slightly
higher values if it means that alarms are not triggered. This means that the model now has a harder time
when training on the sample data, as there are less out-of-bounds samples and some of the in-bounds
samples now have inaccurate values. An important takeaway from these issues is that applying artificial
intelligence to industrial processes requires a lot of data whose sources are close to the target and is
not subject to human biases which muddy the relation between the target and other variables. Biases
within the sensors should be made clear to the model developer as a simple upwards linear trend within
reported sensor values due to calibration issues may render its values useless for use in machine learning
prediction. With respect to the target bottle filling machine of this project, a recommendation would
be to place additional pressure, level, and CO2 sensors in the filler tank, which are expected to greatly
improve the predictive quality of this model. Furthermore, automation in the taking of bottle samples
could make sure that the sample values entered in the database are actually accurate and not skewed.

7.4.2. Target Prediction
When considering limitations to the quality prediction methods used in this research, the first limitation
is the fact that time-related information is only partially considered when predicting the target value.
Only aggregation variables are considered which denote the sum over a fixed window of past data. An
interesting direction for research is to extend the model input by explicitly adding past values of variables
or considering entire time series. Counterfactual explanations can then reveal the importance of past
variables and what they should have been, or they can be locked to observed past values to ensure a
new process state is generated which can follow from the current state. This research should also point
out whether the increase in complexity of the random forest, and thus increase the time complexity of
finding counterfactual explanations, does not make the methodology too slow to be used in a live setting.

7.4.3. Counterfactual Explanations
Although the counterfactual explanations are able to indicate what changes need to be done to the
original process state, the counterfactuals will only suggest changes to variables which are important (i.e.
used) by the random forest model. It is important to note, however, that domain knowledge can (and
should) be used to enforce changes in the other variables as well, as this increases the plausibility of the
resulting counterfactual explanations. A very interesting research direction is to use this methodology on
other variables in the process than the target variable, e.g. the filler tank temperature or the inline CO2

measurement. This may better uncover how the target variable is influenced by the variables important to
its prediction. Furthermore, no variable weights were specified when determining the distance between
two process states in an optimization setting. As the data was standardized before distance calculation,
this means that each variable effectively contributes equally to distance. In the future domain knowledge
could be used to determine which variables are allowed to change more than others.

7.4.4. Process State Forecasting
Although the neural network model used for the forecasting of the process state was able to forecast
with accuracy, sometimes the results were unrealistic as the resulting forecast showed great fluctuation
or changes which were too great in a short amount of time. An interesting research direction is to take the
domain knowledge constraints used in the counterfactual generation and forecasting input generation
and enforce them in the forecasting of the process state, resulting in amore realistic process state forecast.
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Furthermore, as more complicated explainable time series-based process forecasting models were out of
the scope of this research, future work should aim at determining whether such models are able to better
explain what variables are of influence on the process forecast. Also, no feature selection was done to
increase the performance of the forecasting model as it considers exactly those features also used by the
target prediction model.

7.4.5. Miscellaneous
With respect to the proposed methodology as a whole there is also more general future work to be con-
sidered. A major element left out of this research is the incorporation of the results of process state
forecasting into the generation of counterfactual explanations. It was theorized that instead of optimiz-
ing over vector distance to determine the optimal counterfactual explanation, that the time-based cost
predicted by the process state forecasting model could be used. However, this would mean that either
these costs are determined beforehand, or that one actually optimizes over the output of a machine learn-
ing model, which would be computationally much harder compared to optimizing over a vector distance.
Another important direction for future work is to further improve the way explanations are provided to
the user. Currently, the output of the methodology still requires the user to make the conclusions to
obtain qualitative results. Ideally, this is automated and aggregated over the entire dataset so that the
user can quickly obtain all needed information about a process. Furthermore, this research has focused
on local explanations (i.e. the explaining of single process states). This could be extended to also incor-
porate global explanations, for instance, using SHAP for random forests or the aggregation of decision
paths. With respect to the domain knowledge integration, all constraints added to the explanation and
parameter optimization processes are considered to be fact and thus if conflicting constraints are added
the optimization may fail to find a solution. Z3 offers the ability to specify constraints to be soft, allowing
the optimizer to drop them if this allows for ‘better’ solutions. It is important to note that, with an eye
on explainability, this dropping of constraints should be made clear to the user as they may not be aware
of the fact that their domain knowledge is not being used anymore. Additionally, the impact of domain
knowledge constraints could be determined by comparing results with and without them enabled.

7.4.6. Recommendations to the Thesis Company
Finally, we conclude with discussing recommendations to the thesis company based on the findings of
this research. First of all, it seems that we can confirm nearly all of the hypotheses formulated in Section
5.4, which should prove a great starting point for the company to investigate further the reason for the
great fluctuations in bottle CO2. The CFEs have shown that the relation between incoming lemonade
and CO2 flow (Hypothesis 1) do indeed attribute to the final bottle CO2, but it is also clear that the inline
CO2 measurement does not always reflect the actual bottle CO2. The CO2 is also greatly influenced by
temperature (Hypothesis 2), which in turn is influenced by filling speeds which influences the flow of
lemonade through the process (Hypothesis 3). Therefore, to improve the stability of CO2 in the produced
bottles the amount of stops of the filler should first of all be minimized. Furthermore, it seems that a
slower, not stopping filler should bemore desirable than a filler working in short, high output bursts as this
would result in great fluctuations in temperature and thus unpredictable bottle CO2 changes. The effect
of pressure (Hypothesis 5) was confirmed by the model, but as pressure can be more easily regulated this
should not be the focus starting off. If the company desires to apply data-driven methods in the future, a
focus should also be put on improving the amount and quality of bottle sample data. The fact that there
are only a couple thousand samples available, coupled with the fact that the individual samples do not
reflect the actual output of the bottle filling machine at that given point severely bottlenecks the quality
of predictive models. Nevertheless, the results of this project should give a good direction for further
investigation of the bottle filling machine.

7.5. Reflection
The experience of writing this thesis has been on an entirely new level for me when compared to the
previous projects I have attended up until this point. The past ten months featured many ups and downs,
but in the end, I feel that I not only contributed to the three major fields this research bridges, but that
I also learned a lot as well.

With respect to what I have gained, I want to start off with saying that this research has showed me
that I want to continue working with explainable artificial intelligence as I feel that the insights these
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kinds of methods give are really interesting compared to non-explainable methods which usually only
provide basic predictions. I knew little about explainable artificial intelligence when starting off, and
this thesis has opened many doors for me, while also showing me that the industry still needs to pick up
in this area. Furthermore, the knowledge I gained about applying all kinds of methods in a real world
setting was exactly what I hoped to achieve during this project, as the real world is not something you
come in contact with a lot within the doors of the university, and I believe this has also prepared me for
what lies beyond my studies. I want to add that this project has also showed me that there is still much
to learn even specific to this project, as I continuously wanted to explore additional ways of solving the
problems I encountered, even though towards the end of the project I had to settle on the progress I had
made. I am looking forward to continue on this quest of learning after this project.

While I have learned many things in this project, it has also been one of, if not the hardest, projects
in my career. First of all, due to the distance between me and the company, and the fact my project
started off still in the middle of the COVID-crisis, made it hard for me to always be on location to get to
meet the people important to this project. This may also be the cause of the fact that I started off with
struggling with pinpointing what would be a good subject for the thesis and finding a balance between
the goals of the company and scientific contributions. During this process while I explored existing re-
search I sometimes decided on too complex subjects and made it too hard for myself. I would have
put more emphasis on gathering all the knowledge about the bottle filling machine, which I ended up
doing that in the later stages of the project any way, as I believe that would have better guided me to
a suitable topic. This would have also helped me see that the initial dataset I was working on did not
represent the target variable, which lead me to spend time on methods for noisy datasets while this was
not necessary for the problem. Furthermore, I learned that it is important to fully consider the compat-
ibility of theorized extensions to the project. Initially, the time-series process state forecasting method
was meant to serve for the calculation of a time-based cost function for the counterfactual explanation
generation, but I eventually learned that this was too complex and I had to resort to using the forecast
and cost as explanations only, while the time put into these methods could also have been spent on other
domain-knowledge-based or explanation methods. Nevertheless, the many topics that I worked on led
to great opportunities for future work and I believe that may be even more important.

I want to end on a high note and say that even though this project has definitely been difficult, I am
happy with the result and I hope that the knowledge I gained during the last ten months will serve me
well in the years to come.
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A
Data Plots

These plots represent the data taken from a single batch.
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Figure A.1: The four bottle samples for the selected batch.
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Figure A.2: The amount of filling done by the bottle filler during the selected batch. The values fluctuate greatly, indicating a
need for an aggregation variable.
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Figure A.3: Values for the pressure sensors in the carbonation (upper) and filing (lower) sections.
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Figure A.6: Values for the two tanks in the process.
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B
Counterfactual Explanations

This chapter contains the counterfactual explanations and differences to the old process state for the
results on both the artificial and real world dataset.

B.1. Artificial Data
Table B.1: The difference between the old and suggested process state. Cost indicates how long it takes for the changes to take

effect.

P_cur P_alt Diff Cost
bottle_co2 (pred) 3.984609 3.070194 -0.914415 7.000000
inc_lem_T 14 14.000000 0.000000 23.000000
inc_lem_p 4.500000 4.500000 0.000000 23.000000
inc_co2_gl 4.216527 3.836640 -0.379887 23.000000
tank_T 18.257002 18.263106 0.006103 0.000000
tank_p 4.876343 4.882446 0.006103 0.000000
tank_co2_gl 4.200494 4.206598 0.006103 nan
filler_T 21.361955 25.878398 4.516443 7.000000
filler_p 7.065151 7.071254 0.006103 nan
filler_co2_gl 4.198920 4.205024 0.006103 nan
filling 0.850000 0.157122 -0.692878 23.000000
last_bottle_co2 3.009920 3.009920 -0.000000 23.000000
room_T 28.467281 28.473385 0.006103 23.000000
filling_50_sum 7.850000 7.856103 0.006103 23.000000
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Table B.2: The difference between the old and suggested process state. Cost indicates how long it takes for the changes to take
effect.

P_cur P_alt Diff Cost
bottle_co2 (pred) 2.767138 4.191789 1.424650 nan
inc_lem_T 14 14.000000 0.000000 49.000000
inc_lem_p 4.500000 4.500000 0.000000 49.000000
inc_co2_gl 4.121436 4.092623 -0.028813 49.000000
tank_T 18.275703 18.275707 0.000004 0.000000
tank_p 4.887308 4.887308 -0.000000 0.000000
tank_co2_gl 4.092079 4.140775 0.048696 nan
filler_T 27.103899 19.100785 -8.003113 nan
filler_p 8.791627 8.791631 0.000004 nan
filler_co2_gl 4.091811 4.038814 -0.052997 nan
filling 0.000000 0.500000 0.500000 49.000000
last_bottle_co2 4.327898 4.327898 -0.000000 49.000000
room_T 28.092729 27.781183 -0.311546 49.000000
filling_50_sum 23.000000 25.000000 2.000000 49.000000

Table B.3: The difference between the old and suggested process state. Cost indicates how long it takes for the changes to take
effect.

P_cur P_alt Diff Cost
bottle_co2 (pred) 4.180580 4.161622 -0.018958 0.000000
inc_lem_T 14 14.000000 0.000000 25.000000
inc_lem_p 4.500000 4.500000 0.000000 25.000000
inc_co2_gl 4.100047 4.079961 -0.020085 25.000000
tank_T 16.193222 16.193415 0.000193 0.000000
tank_p 4.319735 4.319928 0.000193 0.000000
tank_co2_gl 4.051118 4.051311 0.000193 4.000000
filler_T 18.941511 19.148892 0.207380 0.000000
filler_p 5.512781 5.512974 0.000193 0.000000
filler_co2_gl 4.050836 4.051669 0.000833 0.000000
filling 0.900000 0.500000 -0.400000 25.000000
last_bottle_co2 4.296629 4.296629 -0.000000 25.000000
room_T 29.503941 29.504134 0.000193 25.000000
filling_50_sum 15.700000 25.000000 9.300000 25.000000
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Table B.4: The difference between the old and suggested process state. Cost indicates how long it takes for the changes to take
effect.

P_cur P_alt Diff Cost
bottle_co2 (pred) 3.360744 4.068923 0.708179 nan
inc_lem_T 14 14.000000 0.000000 48.000000
inc_lem_p 4.500000 4.500000 0.000000 48.000000
inc_co2_gl 3.919997 3.575490 -0.344507 48.000000
tank_T 19.597759 19.603087 0.005328 0.000000
tank_p 5.204486 5.209814 0.005328 nan
tank_co2_gl 3.959561 3.964889 0.005328 nan
filler_T 23.775057 18.275818 -5.499239 nan
filler_p 8.448919 8.454247 0.005328 0.000000
filler_co2_gl 3.962494 3.907715 -0.054779 4.000000
filling 0.950000 0.035106 -0.914893 48.000000
last_bottle_co2 3.418333 3.418333 -0.000000 48.000000
room_T 27.287861 27.293189 0.005328 48.000000
filling_50_sum 1.750000 1.755328 0.005328 48.000000

Table B.5: The difference between the old and suggested process state. Cost indicates how long it takes for the changes to take
effect.

P_cur P_alt Diff Cost
bottle_co2 (pred) 4.063641 4.067449 0.003808 0.000000
inc_lem_T 14 14.000000 0.000000 0.000000
inc_lem_p 4.500000 4.500000 0.000000 0.000000
inc_co2_gl 3.879086 3.570274 -0.308812 0.000000
tank_T 15.162072 15.162184 0.000112 0.000000
tank_p 4.028523 4.028635 0.000112 1.000000
tank_co2_gl 3.859511 3.894394 0.034883 nan
filler_T 17.555392 18.227176 0.671784 nan
filler_p 4.719361 4.719473 0.000112 0.000000
filler_co2_gl 3.858517 3.915612 0.057095 nan
filling 0.800000 0.895002 0.095002 0.000000
last_bottle_co2 3.249847 3.249847 -0.000000 0.000000
room_T 27.914868 27.914980 0.000112 0.000000
filling_50_sum 44.750000 44.750112 0.000112 0.000000
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B.2. Real Data
Table B.6: The difference between the old and suggested process state. Cost indicates how long it takes for the changes to take

effect.

P_cur P_alt Diff Cost
bottle_co2 (pred) 4.232639 3.962990 -0.269649 nan
FC_031_140_010 91.666664 27362.500099 27270.833435 49.000000
FT_031_130_001 39739.582000 20821.758888 -18917.823112 49.000000
FT_031_140_037 4.550000 3.424037 -1.125963 49.000000
FT_031_160_041 0.000000 75.000000 75.000000 49.000000
FT_031_135_041 91.666664 39794.789161 39703.122497 49.000000
QT_031_140_083_bar 6.035161 6.035161 -0.000000 4.000000
QT_031_140_083_DegC 16.491929 16.492027 0.000099 0.000000
QT_031_140_083_PV 4.858758 4.816518 -0.042240 4.000000
PT_031_130_031 3.326389 3.326488 0.000099 2.000000
PT_031_140_004 6.774884 6.774983 0.000099 1.000000
PT_051_100_130 7.202071 7.202170 0.000099 0.000000
PT_051_100_120 5.296347 5.296446 0.000099 0.000000
PT_051_100_121 0.980582 0.980681 0.000099 0.000000
vuller_snelheid_per_uur 51.386000 1645.434208 1594.048208 49.000000
LT_031_160_016 6200.293500 6470.061866 269.768366 nan
LT_031_140_016 1602.430500 1599.999901 -2.430599 nan
TT_031_130_033 14.062500 14.062500 0.000000 49.000000
TT_031_140_021 15.885416 15.885515 0.000099 0.000000
TT_051_100_100 16.000000 16.000099 0.000099 0.000000
TX_031_160_901 19.000000 24.450099 5.450099 nan
TX_031_135_901 20.600000 20.850098 0.250098 0.000000
TX_031_135_902 17.000000 17.000099 0.000099 0.000000
TX_031_140_901 22.600000 22.950099 0.350099 4.000000
TX_031_140_904 17.200000 17.200099 0.000099 0.000000
TX_031_140_905 17.500000 24.850098 7.350098 nan
TX_031_140_907 21.600000 21.600099 0.000099 0.000000
TX_031_140_911 16.800000 16.800099 0.000099 0.000000
TX_031_140_914 18.300000 18.313156 0.013156 0.000000
TX_051_100_901 16.300000 16.300099 0.000099 0.000000
TX_051_100_902 20.400000 29.350099 8.950099 nan
TX_051_100_905 17.100000 18.400098 1.300098 20.000000
TX_051_100_906 21.000000 21.000099 0.000099 0.000000
TX_051_100_907 18.100000 18.100099 0.000099 0.000000
TX_051_100_908 17.200000 18.650099 1.450099 nan
TX_051_100_910 15.500000 15.950099 0.450099 0.000000
TX_051_100_913 17.300000 25.050099 7.750099 nan
vuller_20m_sum 13439.190150 89552.832031 76113.641881 49.000000
FT_031_140_037_20m_sum 546.078328 489.857254 -56.221074 49.000000
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Table B.7: The difference between the old and suggested process state. Cost indicates how long it takes for the changes to take
effect.

P_cur P_alt Diff Cost
bottle_co2 (pred) 4.183358 4.165700 -0.017658 0.000000
FC_031_140_010 36666.668000 0.000349 -36666.667651 49.000000
FT_031_130_001 29956.598000 21004.051758 -8952.546242 49.000000
FT_031_140_037 4.739412 4.910928 0.171516 49.000000
FT_031_160_041 95.000000 97.500349 2.500349 49.000000
FT_031_135_041 36666.668000 37778.125349 1111.457349 49.000000
QT_031_140_083_bar 5.931780 5.931780 -0.000000 nan
QT_031_140_083_DegC 16.367477 16.367826 0.000349 0.000000
QT_031_140_083_PV 4.815911 4.857508 0.041598 0.000000
PT_031_130_031 3.338541 3.338541 0.000000 1.000000
PT_031_140_004 6.526042 6.526391 0.000349 nan
PT_051_100_130 0.000000 0.000349 0.000349 4.000000
PT_051_100_120 4.780526 4.780875 0.000349 0.000000
PT_051_100_121 0.988828 0.988828 -0.000000 2.000000
vuller_snelheid_per_uur 0.000000 81.894999 81.894999 49.000000
LT_031_160_016 10194.520500 10204.520849 10.000349 nan
LT_031_140_016 669.560200 671.560549 2.000349 2.000000
TT_031_130_033 14.800347 14.800696 0.000349 49.000000
TT_031_140_021 16.102430 16.102779 0.000349 0.000000
TT_051_100_100 16.000000 16.500349 0.500349 0.000000
TX_031_160_901 20.200000 20.200000 0.000000 0.000000
TX_031_135_901 21.200000 21.200349 0.000349 0.000000
TX_031_135_902 16.700000 16.700349 0.000349 0.000000
TX_031_140_901 22.400000 22.400349 0.000349 0.000000
TX_031_140_904 17.000000 17.000349 0.000349 0.000000
TX_031_140_905 15.000000 15.000349 0.000349 0.000000
TX_031_140_907 22.200000 22.200349 0.000349 0.000000
TX_031_140_911 17.000000 17.250349 0.250349 0.000000
TX_031_140_914 17.900000 17.900349 0.000349 0.000000
TX_051_100_901 16.500000 16.500349 0.000349 0.000000
TX_051_100_902 20.300000 20.300349 0.000349 0.000000
TX_051_100_905 14.600000 14.600349 0.000349 0.000000
TX_051_100_906 19.200000 19.200000 0.000000 0.000000
TX_051_100_907 18.800000 23.350349 4.550349 nan
TX_051_100_908 17.300000 19.850349 2.550349 nan
TX_051_100_910 16.100000 16.100349 0.000349 0.000000
TX_051_100_913 16.900000 17.750349 0.850349 nan
vuller_20m_sum 47277.600120 30421.255364 -16856.344756 49.000000
FT_031_140_037_20m_sum 571.151996 578.698396 7.546401 49.000000
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Table B.8: The difference between the old and suggested process state. Cost indicates how long it takes for the changes to take
effect.

P_cur P_alt Diff Cost
bottle_co2 (pred) 4.217660 4.212158 -0.005502 0.000000
FC_031_140_010 17164.582000 57.292983 -17107.289017 49.000000
FT_031_130_001 39638.312000 20912.906592 -18725.405408 49.000000
FT_031_140_037 4.800278 5.157154 0.356876 49.000000
FT_031_160_041 45.000000 75.000000 30.000000 49.000000
FT_031_135_041 17164.582000 37778.126318 20613.544318 49.000000
QT_031_140_083_bar 6.033312 6.033312 -0.000000 nan
QT_031_140_083_DegC 16.784092 16.861022 0.076930 0.000000
QT_031_140_083_PV 4.901725 4.936425 0.034699 nan
PT_031_130_031 3.296007 3.297325 0.001318 3.000000
PT_031_140_004 7.203125 7.204443 0.001318 15.000000
PT_051_100_130 0.000000 0.001318 0.001318 nan
PT_051_100_120 4.671137 4.843919 0.172782 nan
PT_051_100_121 1.004881 1.006199 0.001318 nan
vuller_snelheid_per_uur 0.000000 468.060644 468.060644 49.000000
LT_031_160_016 8387.879000 8387.879000 0.000000 nan
LT_031_140_016 1206.597200 1206.598518 0.001318 nan
TT_031_130_033 14.973958 14.975276 0.001318 49.000000
TT_031_140_021 16.796875 16.798193 0.001318 0.000000
TT_051_100_100 16.000000 17.001318 1.001318 5.000000
TX_031_160_901 21.100000 21.101318 0.001318 0.000000
TX_031_135_901 22.000000 23.251318 1.251318 15.000000
TX_031_135_902 17.400000 17.401318 0.001318 0.000000
TX_031_140_901 24.000000 24.001318 0.001318 0.000000
TX_031_140_904 17.700000 17.650000 -0.050000 0.000000
TX_031_140_905 16.200000 16.200000 0.000000 0.000000
TX_031_140_907 23.700000 23.751318 0.051318 0.000000
TX_031_140_911 17.500000 17.951318 0.451318 0.000000
TX_031_140_914 18.900000 18.900000 0.000000 0.000000
TX_051_100_901 17.000000 17.001318 0.001318 0.000000
TX_051_100_902 21.600000 21.601318 0.001318 0.000000
TX_051_100_905 18.900000 18.901318 0.001318 0.000000
TX_051_100_906 19.600000 19.601318 0.001318 0.000000
TX_051_100_907 20.300000 20.951318 0.651318 nan
TX_051_100_908 19.000000 22.651319 3.651319 nan
TX_051_100_910 16.800000 17.651319 0.851319 nan
TX_051_100_913 18.600000 19.351318 0.751318 nan
vuller_20m_sum 74114.562098 66946.391943 -7168.170155 49.000000
FT_031_140_037_20m_sum 575.984618 593.879486 17.894868 49.000000
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Table B.9: The difference between the old and suggested process state. Cost indicates how long it takes for the changes to take
effect.

P_cur P_alt Diff Cost
bottle_co2 (pred) 4.177146 4.218222 0.041076 0.000000
FC_031_140_010 34397.918000 0.000048 -34397.917952 49.000000
FT_031_130_001 39780.090000 26746.239258 -13033.850742 49.000000
FT_031_140_037 4.552155 0.198381 -4.353774 49.000000
FT_031_160_041 100.000000 82.500048 -17.499952 49.000000
FT_031_135_041 34397.918000 68.749998 -34329.168002 49.000000
QT_031_140_083_bar 5.833068 6.082417 0.249349 25.000000
QT_031_140_083_DegC 16.477550 17.214059 0.736509 5.000000
QT_031_140_083_PV 4.658160 4.658208 0.000048 30.000000
PT_031_130_031 3.344618 3.344618 0.000000 2.000000
PT_031_140_004 6.523148 6.523196 0.000048 4.000000
PT_051_100_130 6.707789 6.707837 0.000048 nan
PT_051_100_120 5.637896 5.637944 0.000048 nan
PT_051_100_121 0.999029 0.999077 0.000048 0.000000
vuller_snelheid_per_uur 0.000000 0.000048 0.000048 49.000000
LT_031_160_016 5374.400000 6000.000000 625.600000 20.000000
LT_031_140_016 662.037000 662.037000 0.000000 1.000000
TT_031_130_033 14.496528 14.605083 0.108555 49.000000
TT_031_140_021 15.842013 15.972270 0.130257 0.000000
TT_051_100_100 16.000000 16.000048 0.000048 0.000000
TX_031_160_901 20.800000 20.800048 0.000048 0.000000
TX_031_135_901 22.900000 22.900048 0.000048 0.000000
TX_031_135_902 17.000000 17.000048 0.000048 0.000000
TX_031_140_901 25.000000 25.005394 0.005394 nan
TX_031_140_904 17.000000 17.000048 0.000048 0.000000
TX_031_140_905 18.100000 18.100048 0.000048 25.000000
TX_031_140_907 24.400000 24.400048 0.000048 0.000000
TX_031_140_911 17.800000 17.800048 0.000048 0.000000
TX_031_140_914 18.900000 18.900048 0.000048 0.000000
TX_051_100_901 16.700000 16.700000 0.000000 0.000000
TX_051_100_902 21.800000 21.800048 0.000048 0.000000
TX_051_100_905 19.200000 19.200048 0.000048 0.000000
TX_051_100_906 22.200000 22.200048 0.000048 0.000000
TX_051_100_907 19.600000 19.600000 0.000000 0.000000
TX_051_100_908 18.700000 19.950048 1.250048 nan
TX_051_100_910 16.100000 16.100048 0.000048 0.000000
TX_051_100_913 18.400000 18.400048 0.000048 0.000000
vuller_20m_sum 37371.229400 27724.932305 -9646.297095 49.000000
FT_031_140_037_20m_sum 535.082791 325.111679 -209.971112 49.000000
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Table B.10: The difference between the old and suggested process state. Cost indicates how long it takes for the changes to take
effect.

P_cur P_alt Diff Cost
bottle_co2 (pred) 4.177800 4.231006 0.053206 0.000000
FC_031_140_010 22664.584000 26823.959008 4159.375008 49.000000
FT_031_130_001 29693.287000 38109.087891 8415.800891 49.000000
FT_031_140_037 4.805851 2.159022 -2.646829 49.000000
FT_031_160_041 60.000000 75.000023 15.000023 49.000000
FT_031_135_041 22710.418000 68.749998 -22641.668002 49.000000
QT_031_140_083_bar 6.071759 6.293732 0.221972 nan
QT_031_140_083_DegC 16.650813 16.650836 0.000023 0.000000
QT_031_140_083_PV 4.911516 5.126567 0.215051 nan
PT_031_130_031 3.320312 3.320336 0.000023 2.000000
PT_031_140_004 6.803819 6.803842 0.000023 39.000000
PT_051_100_130 0.000000 0.000023 0.000023 nan
PT_051_100_120 5.157947 5.157947 0.000000 nan
PT_051_100_121 0.991430 0.991430 0.000000 0.000000
vuller_snelheid_per_uur 0.000000 75.763351 75.763351 49.000000
LT_031_160_016 9825.967000 9821.967000 -4.000000 nan
LT_031_140_016 726.851870 726.851893 0.000023 1.000000
TT_031_130_033 14.800347 14.800370 0.000023 49.000000
TT_031_140_021 16.362848 16.362871 0.000023 0.000000
TT_051_100_100 16.000000 16.000023 0.000023 0.000000
TX_031_160_901 20.900000 20.900000 0.000000 0.000000
TX_031_135_901 24.300000 24.300023 0.000023 nan
TX_031_135_902 17.400000 17.400023 0.000023 0.000000
TX_031_140_901 25.400000 25.400023 0.000023 nan
TX_031_140_904 17.100000 17.103205 0.003205 0.000000
TX_031_140_905 18.400000 18.800023 0.400023 nan
TX_031_140_907 24.400000 24.400023 0.000023 0.000000
TX_031_140_911 17.500000 17.500023 0.000023 0.000000
TX_031_140_914 19.000000 19.000023 0.000023 0.000000
TX_051_100_901 16.800000 16.800023 0.000023 0.000000
TX_051_100_902 23.000000 23.000023 0.000023 0.000000
TX_051_100_905 22.000000 22.000023 0.000023 nan
TX_051_100_906 20.700000 23.600024 2.900024 nan
TX_051_100_907 21.700000 21.700023 0.000023 0.000000
TX_051_100_908 20.700000 22.650024 1.950024 nan
TX_051_100_910 16.800000 16.800023 0.000023 0.000000
TX_051_100_913 20.300000 20.300023 0.000023 0.000000
vuller_20m_sum 37965.283700 40083.147772 2117.864072 49.000000
FT_031_140_037_20m_sum 575.889639 443.923218 -131.966422 49.000000
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Table B.11: The difference between the old and suggested process state. Cost indicates how long it takes for the changes to take
effect.

P_cur P_alt Diff Cost
bottle_co2 (pred) 4.158316 3.934201 -0.224115 nan
FC_031_140_010 18218.750000 34650.000000 16431.250000 49.000000
FT_031_130_001 29592.014000 27252.604550 -2339.409450 49.000000
FT_031_140_037 4.514945 2.503692 -2.011252 49.000000
FT_031_160_041 55.000000 72.500058 17.500058 49.000000
FT_031_135_041 18218.750000 40596.873105 22378.123105 49.000000
QT_031_140_083_bar 5.680339 5.680339 -0.000000 nan
QT_031_140_083_DegC 16.474509 16.474509 -0.000000 0.000000
QT_031_140_083_PV 4.534034 4.534034 -0.000000 nan
PT_031_130_031 3.296007 3.296064 0.000058 0.000000
PT_031_140_004 7.234954 7.235012 0.000058 nan
PT_051_100_130 7.699259 7.699317 0.000058 15.000000
PT_051_100_120 4.832255 4.832313 0.000058 0.000000
PT_051_100_121 0.992734 0.992792 0.000058 0.000000
vuller_snelheid_per_uur 116.069000 376.228970 260.159970 49.000000
LT_031_160_016 11185.285000 11194.285058 9.000058 nan
LT_031_140_016 1160.301000 1160.301058 0.000058 nan
TT_031_130_033 14.322917 14.995718 0.672801 49.000000
TT_031_140_021 16.059029 17.534779 1.475750 nan
TT_051_100_100 16.000000 16.000058 0.000058 0.000000
TX_031_160_901 20.900000 20.900058 0.000058 0.000000
TX_031_135_901 24.200000 25.250058 1.050058 nan
TX_031_135_902 17.300000 17.300058 0.000058 0.000000
TX_031_140_901 26.400000 32.450057 6.050057 nan
TX_031_140_904 17.100000 17.100058 0.000058 0.000000
TX_031_140_905 19.500000 19.500058 0.000058 0.000000
TX_031_140_907 25.700000 25.700000 0.000000 0.000000
TX_031_140_911 17.700000 17.700058 0.000058 0.000000
TX_031_140_914 19.400000 19.400058 0.000058 0.000000
TX_051_100_901 16.800000 16.800058 0.000058 0.000000
TX_051_100_902 24.100000 24.100058 0.000058 0.000000
TX_051_100_905 19.700000 25.950059 6.250059 nan
TX_051_100_906 24.200000 24.200058 0.000058 0.000000
TX_051_100_907 21.900000 25.700058 3.800058 nan
TX_051_100_908 20.000000 24.100058 4.100058 nan
TX_051_100_910 16.200000 16.200058 0.000058 0.000000
TX_051_100_913 19.500000 25.450058 5.950058 nan
vuller_20m_sum 91349.910200 81322.460938 -10027.449262 49.000000
FT_031_140_037_20m_sum 540.027632 440.217712 -99.809920 49.000000
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