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Abstract

In this study we introduce a different approach to
the primer selection problem in the AmpliDiff [12]
algorithm. Two different metrics, being the Ham-
ming distance [2], and the Levenshtein distance [4],
are used to compute sets of similar primers. This
is done such that locations where mismatches be-
tween the primers and the target sequence can occur
are determined by the locations of similar primers.
The impact that said mismatches have on the solu-
tion set of amplicons and their respective primers
is outlined. With this we show potential benefits
of allowing mismatches to occur, as well as their
drawbacks.

1 Introduction

With the vast advancements in the field of computer science,
and the increase in the computing power, target sequencing of
genomes has become more accessible. Being able to extract
genetic information and analyze it through the use of com-
puters has allowed breakthroughs in the field of medicine in
regards to genetic sequencing [13].

The significance of this research lies in the ability to clearly
distinguish between different lineages solely based on the se-
lected sequence regions. Swift and efficient differentiation
between common ancestors is important when dealing with
microbial communities, such as viruses which are prone to
frequent mutations. The importance of this became evident
during the Covid-19 global pandemic, during which the virus
mutated several times within just two years. In such scenar-
ios, the ability to rapidly distinguish between various com-
mon ancestors is crucial, as it allows for earlier detection and
treatment of symptoms, as well as potential cures. [7].

Amplicon or a target sequence is a part of the genomic se-
quence which is replicated, usually through the means of a
PCR (Polymerase Chain Reaction) [12]. The way that they
are replicated is by having primers bind to certain parts of the
sequence [8]. A primer is defined as a “short single-stranded
DNA fragment” that is used in DNA synthesis [6]. The im-
portance of amplicons lies in the fact that they allow us to
discriminate between different common ancestors. However,
this is only possible if those amplicons can be replicated (am-
plified) through the use of primers.

The AmpliDiff [12] algorithm is a tool used to sequence
whole genomes and find highly discriminatory regions, as
well as the primers needed to amplify them, i.e. a primer
binds to a particular part of the genetic sequence and repli-
cates it. However, one of its limitations is the fact that it
relies solely on primers which exactly bind to the target se-
quence. In real life this is not always the case, as mismatches
between the primer and the sequence may occur [1]. With
this in mind, a possible improvement to the algorithm would
be including a relaxation which would allow for primers that
have a mismatch with the sequence to bind as well.

The said relaxation deals with the primer selection part of
the algorithm. Potential benefits of allowing mismatches be-
tween the primer and the sequence is that it could enable cer-
tain amplicons to be used in the differentiation process. For

example, due to infeasibilites of certain primers, it might not
be possible to amplify a target region of the sequence. Despite
this, inexact matching would increase the number of primers
which could be used in the amplification process.

Possible advantages of this approach might be that the time
it takes to find a set of amplicons needed to discriminate be-
tween all the sequences is reduced. This is because finding
amplicons which can be replicated should become easier, as
the set of feasible primers increases. Under this assumption,
it would make sense to consider that with an increase in the
size of the primer set, more regions can be amplified.

The possible impacts of this relaxation could be reflected
on the set of feasible amplicons, as well as on the size of the
primer set used to amplify them. One of the main focus of
this research revolves around the impact of inexact matching
on the amplicons selected. This is important as it might show
a the difference in the solution set of amplicons compared to
the original algorithms output. This in turn begs the question
of how are the previously selected amplicons impacted. For
example, if an amplicon is in both solution sets is it amplified
by the same primers?

Another important aspect which should be considered is
the difference in the run-time of the algorithms. The partic-
ular example that we need to consider is the one where re-
laxation indeed does produce a better solution, but it takes
significantly more time. This is because it raises the question
of how much of a better solution does it give, and is it worth
the extra time.

2 Background

During the implementation of the relaxation, numerous things
were important to consider. This includes physio-chemical
properties of primers, as well as similar attempts at solving
the same or similar problem.

Firstly, the paper by Kwok, at al. [3] outlines the criteria
such as nucleotides between which the mismatch takes place,
optimal annealing temperatures, as well as the regions of the
primer where the mismatch occurs. All of these are consid-
ered, and have to be satisfied in order for the mismatched
primer to bind to the target sequence.

Work by Linhard and Shamir on developing the HYDEN-
program [5] lays out the important definitions and constraints
in regards to the degenerate primer design problem. In turn, it
also delves into the difficulties of inexact matching between
degenerate primers and the target sequence, and shows that it
is a NP-Hard problem. It presents a thorough description of a
dynamic programming approach which could be taken when
designing degenerate primers which allow for mismatches.

Development of Primer3 [11] further emphasized the im-
portance of integrating comprehensive thermodynamic mod-
els and user-defined constraints to generate primers tailored
for specific experimental conditions. When considering mis-
matches, Primer3 focuses on the stability of neighboring
pairs, as well as the thermodynamic aspects caused by the
mismatch.

Primer-BLAST [15] is another tool used to design primers
which allows for primer mismatches. It focuses on mis-
matches happening on the 3° end of the target and enforces



that a primer pair must have at least two mismatches, by de-
fault. In addition to this it considers other details such as the
number and the positions of matched bases, the primer orien-
tations and distance between forward and reverse primers.

3 Methodology

This section aims to introduce the steps taken in order to im-
plement the inexact matching relaxation. Given that this pa-
per focuses on a specific part of the AmpliDiff algorithm, a
general overview is first presented. This is followed by the
explanation of the inexact matching implementation.

3.1 The original algorithm

The original AmpliDiff algorithm consists of four steps. The
first step of the algorithm focuses on pre-processing the ge-
nomic sequences obtained from a database (e.g. NCBI [14]).
Multiple sequence alignment is then applied to these se-
quences. This is done in order to “identify the evolution-
ary relationships and common patterns between genes” [9].
These aligned sequences are then stored for use in latter steps.

In the second step, a set of feasible primers is built, where
the feasibility of a primer depends on physicochemical con-
straints (annealing temperature, GC-content, etc.). The set of
primers is computed by iterating over all the sequences with
a given window size - representing the length of the primer -
and then taking the reverse complement of the forward primer
to get the reverse primer. It is important to note that all the
primers are of the same length.

The third step determines which amplicons from the ini-
tial set are feasible. A pair of differentiable genomes is then
stored for each amplicon. This is done since in the last step,
amplicons are selected using a greedy algorithm such that the
ones which have the highest discrimination are considered
first. During the greedy selection, a set of feasible primers
is computed such that a certain percent of the amplicon can
be replicated. This percentage is also referred to as ampli-
con coverage or just coverage. In a case where such a set of
primers is found, the amplicon is added to the final solution
set, otherwise, the next best amplicon is considered. Once all
the amplicons which allow for complete differentiation be-
tween the sequences are selected, the algorithm terminates
and returns the set of said amplicons with their primers.

3.2 Implementation of the inexact matching

This relaxation concerns the second step of the above de-
scribed algorithm. During the process where primers are
found for each amplicon, we now also have to consider sim-
ilar primers. In other words, the set of feasible primers for
each amplicon is increased. This is done by computing a set
of similar primers for each respective primer. Two primers are
said to be similar if their respective similarity score is higher
than some parameter e which is provided by the user. Sim-
ilarity here is defined using two distance metrics, first being
the Hamming distance [2], and the Levenshtein distance [4].
The decision to opt out for two metrics is due to the different
types of mismatches which can occur.

The first type of mismatch is a replacement mismatch,
which occurs when there is a difference between the two

nucleotides, a trivial example of this can be seen in Figure
1. There is a mismatch occurring on the 2"¢ position since
nucleotides A and A are not complementary to each other.
The other type of mismatch is an insertion/deletion mismatch
which can be seen in Figure 2. In this case, on the 4*" po-
sition there is an insertion mismatch, where if there was a G
nucleotide, it would be possible for the two sequences to bind.

The Hamming distance is faster to compute, and while
it does not consider all the types of mismatches, it is still
a slight improvement over only considering exact matches.
That is why we also use the Levenshtein distance which takes
into account all the possible mismatches between the primer
and the sequence. This algorithm however relies on dynamic
programming, and is hence computationally heavier than the
Hamming distance algorithm. The main reason why the Lev-
enshtein distance is not the only similarity metric that we use,
is due to its high computational requirements.

5 - TAGGCTAATG -3’
3" - AACCGATTAC -5

Figure 1: Replacement mismatch occurring on the 2nd position. Nu-
cleotides A-A are not complementary to each other.

5 -TTG-CTAATG - 3’
3 - AACCGATTAC -5

Figure 2: Insertion/deletion mismatch occurring on the 4th position.

It is important to explain the reasoning behind doing a
primer to primer similarity. This is done as it is more efficient
than the generative approach, where all the possible primers
for an amplicon would be considered. This yields O(4™) time
complexity, where n represents the length of the primer, and
at every position there are four possible nucleotides to con-
sider. Another approach would be to iterate over all the se-
quences and try to find similar primers. However, since there
is already a set of all feasible primers, it is simpler to consider
only those feasible primers.

If we define a primer P of length n as P = pyps...p, Where
p; represents one of the four possible nucleotides (A, C, G, T).
It is important to note that in order for a primer to bind to the
region of the sequence, it has to be composed of complemen-
tary nucleotides. Then we know that if there is no mismatch
between a primer P = pips...p,, and a sequence, then if there
is a similar primer P* = p#1 p*a, , , P*,, the mismatches that
happen between P and P occur on the same primer index as
the mismatches between Px and the sequence. This is be-
cause the complementarity of nucleotides can be expressed
as a bijective function. With this in mind, the size of the
primer set for each amplicon has either been increased or has
remained the same.

In spite of this relaxation, there is an underlying issue. This
allows for one primer to reoccur on two different locations in
the sequence which seen in Figure 3. The problem which
arises from this is that it might lead to non-specific bindings,



where a primer binds to an unwanted region. The way this is
solved is by checking whether the difference between regions
enclose by the reoccurring primer are sufficiently different.
In Figure 3 these regions are represented by R/ and R2. This
is because if one of the two regions is much larger, there is
high likelihood that it will not actually be amplified. In this
case it is safe to select the primer, otherwise the primer is dis-
carded from the set of feasible primers for that amplicon. The
different values used to define the region enclosed are 100bp,
400bp, and 1000bp. The justification for using these is that
prior to LAMP [10] during PCR on the SARS-CoV-19 the
feasible enclosed region by a primer pair is less than 150bp.
However, the same paper states that when using LAMP the
primer pair can amplify regions of up to 945bp, however, this
we decided to round this value to 1000bp in order to allow for
some leeway.

R1 R2

Figure 3: Figure depicting a reoccurring primer bind to the se-
quence. The red part represents the primer, and the grey part rep-
resents the sequence. The figure is an adaptation of a similar one
found in “Diagnostic Molecular Biology™ by Shen, et al. [8]

4 Experimental Setup and Results

The experiment is set up such that the original version of the
algorithm, as well as the two implementations using Ham-
ming and Levenshtein Distance are ran on the SARS-CoV-2
dataset. The original sample set included 480 genome se-
quences, however, it is reduced to in order to get feasible
results after 24 hours of runtime. Two data sets were pro-
duced, one containing 75 sequences, and a larger one con-
taining 150 sequences. It is important to note that the dataset
containing the 75 sequences, corresponds to the first 75 in
the larger dataset. In regards to the metadata file, the num-
ber of multiple aligned sequences should be set. This data
is contained within the metadata file, in correspondence with
the previously multiple aligned sequences which serve as an-
other input parameter. This data is publicly available through
the https://www.ncbi.nlm.nih.gov/ [14] website. The meta-
data file containing the lineages used can be see in the GitHub
Repository'.

The reasoning behind using the SARS-CoV-19 is that we
have a good benchmark with which we can compare the per-
formance of the inexact matching algorithm. This is because
the original AmpliDiff algorithm was also tested on SARS-
CoV-19 data. With this in mind, it is easier to draw conclu-
sions, as well as compare performance when using the same
dataset, since our goal is to determine whether introducing
this relaxation would yield any improvements. As mentioned
before, these improvements are in regards to the number of
amplicons selected, the run-time, and whether there is a dif-
ference in the primers used in the amplification process.

"https://github.com/Dexytron/AmpliDiff
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Figure 4: Number of amplicons considered during the optimization
step for 75 sequences.
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Figure 5: Number of amplicons selected, and the number of primers
used in their amplification for 75 sequences.

The experiment is run on the TUDelft super-cluster “Delft-
Blue” using 180GB of RAM and 12 CPU cores. Further in-
formation regarding the specifications of the cluster can be
found here?. It is important to note that since the results of the
algorithm were deterministic, each experiment is ran once. It
is set up in such a way that we test for inexact matching using
both the Hamming and Levenshtein distance, and we consider
amplicons of width 400bp, and with full amplicon coverage.
The only variable is the aforementioned distance constraint
which ensures that the region enclosed by two same primer
pairs is larger than some variable D which we set to 100bp,
400bp and 1000bp, as previously mentioned. Lastly, the num-
ber of allowed mismatches that is allowed is set to two.

The results can be seen in Figures 4 through 10.

5 Responsible Research

The algorithm uses data that is publicly accessible, with the
main objective of differentiating lineages of common ances-
tors in microbial organisms. With this in mind, it is safe to
assume that there are no underlying ethical concerns regard-
ing the research done.

Zhttps://doc.dhpc.tudelft.nl/delftblue/
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Figure 6: Size of the feasible primer set for 75 sequences.



Amplicons Considered for 150 Sequences
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Figure 7: Number of amplicons considered for 150 sequences.
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Figure 8: Number of amplicons selected, and the number of primers
used in their amplification for 150 sequences.
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Figure 9: Size of the feasible primer set for 150 sequences.
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Figure 10: Representation of the algorithms runtime for 25, 50, 75,
and 150 sequences.

In regards to the extent to which the research could be re-
produced, all major methods and changes which are made to
the original code have been outlined. Given that the original
code is open source and can be found on GitHub, the ability
to replicate and verify the study should be sufficiently facili-
tated. The specifications of hardware used during the exper-
iments, as well as the source of the data is readily available
online and is also presented in this paper. All of the changes
made to the code have been listed in the Methodology sec-
tion, as well as the metrics and parameters used. In addition
to this, the implementation to inexact matching can be found
at this GitHub Repository’ on the main branch.

6 Discussion

Firstly, we will discuss the results of running the three differ-
ent versions of the algorithm on the dataset of 150 sequences,
when allowing for two mismatches and an enclosed region of
100bp.

It is important to note that running the inexact matching al-
gorithm with the Levenshtein distance could not produce any
results within the 24h of allowed run-time. The most straight-
forward explanation for this is that the distance metric is too
computationally heavy as it relies on constructing a matrix of
size O(n?) where n represents the length of the primer. Since
this is done for all possible primers, the computation of the
feasible primer set introduces a large overhead. Considering
that no complete results were obtained using the Levenshtein
distance, only partial results are discussed.

Figure 7 depicts the number of amplicons which were con-
sidered during the model optimization step of the greedy al-
gorithm. Here it can be seen that there is a slight differ-
ence between running the original algorithm and the inexact
matching using Hamming Distance. More so, using inexact
matching in combination with the Hamming distance finds
the optimal solution sooner. This is somewhat intuitive since
we introduce a relaxation which should increase the number
of feasible primers that can be used to amplify the target re-
gions. Some of the amplicons which were previously rejected
due to a lack of primers, could now be sufficiently amplified
due to the inexact matching relaxation.

However, Figure 9 suggests that despite the decrease in
the number of amplicons needed discriminate between the
sequences, the size of the primer set is smaller than that of
the original algorithm. One of the possible explanations for
this is that the enclosed region constraint shown in Figure 3
causes certain primers to get rejected. In the original version
of the algorithm, we only need to care about whether a primer
occurs more than once, if so it is rejected. However, here it is
more probable for a primer to occur on other locations if we
allow for mismatches.

Interestingly enough, Figure 8 shows that when using in-
exact matching in combination with the Hamming distance, a
fewer number of primers is selected. It also happens to be the
case that the two versions of the algorithm select completely
different amplicons.

In regards to the Levenshtein distance variation of the al-
gorithm, Figure 9 suggests that only a fraction of the feasible

*https://github.com/Dexytron/ AmpliDiff



primers is computed within the 24h window. These primers
also happen to appear in the other two primer sets. This im-
plies that using the Levenshtein distance is sub-optimal, as it
is too time consuming without a solid guarantee that it will
find a better solution compared to the other two variations.

The difference in runtime of the three versions of the algo-
rithm can be seen in Figure 10. Given that the runtime per-
formance of the algorithms was sampled from four different
data-sets, it is hard to make any solid conclusions. However,
based on this data, we can assume that the runtime overhead
of both the Levenshtein and Hamming distance distance re-
semble an exponential function. On the contrary, the original
algorithm displays a linear increase with respect to the num-
ber of sequences.

When running the three different variations of the algo-
rithm on 75 sequences, with two mismatches and an enclos-
ing region of 100bp, the results are identical. Figures 4, 5,
and 5 illustrate that all three variations find the same solu-
tions. In this case, the only difference is the time it took to
find the optimal solution. One possible explanation for this is
that the Hamming and Levenshtein distance take more time
to generate the primer set, which makes up for the difference
in overall time. In addition to this, it could be possible that
the optimal solution is found by the original algorithm, hence
allowing for mismatches does not yield any improvements.

Lastly, running the two variations of inexact matching with
the enclosed region constraint set to 400bp and 1000bp, feasi-
ble solution is found. When running both variations on the set
of 150 sequences, both timed out, i.e. did not find a solution
within 24 hours. In the case where more than 25 sequences
are used, no feasible solution is found. When analyzing the
data for the sample of 25 sequences, it is shown that most
primers enclose a region between 150bp and 300bp. This
also coincides with the conclusions drawn from the LAMP
[10] paper. Given that this constraint is not satisfied for the
first 25 sequences of the dataset, it is also not satisfied for the
larger dataset. This is because the 25 sequences are a sub-
set of the larger dataset, and since if at any point there are
two primer pairs which enclose a region of less than 400bp or
1000bp, the pair cannot be considered in the solution.

7 Conclusions and Future Work

7.1 Conclusion

In this paper we have introduced two different variations of
inexact matching. The original algorithm relying on exact
matching is introduced, and the differences between it and
the Hamming and Levenshtein distance variations are out-
lined. The results obtained show that for 150 sequences there
is indeed a difference between the amplicons selected when
using Hamming distance based inexact matching, compared
to exact matching. However, given that the set of amplicons
selected does not intersect, we cannot reason about the differ-
ence between primers selected for the mutual amplicons. In
addition to this, it is shown that using Levenshtein distance
proves to be rather computationally heavy, as no results were
obtained for 150 sequences.

When considering 75 sequences, all three versions of the
algorithm seem to have found the optimal solution containing

the same amplicons and primers. However, due to the primer-
to-primer comparison when using inexact matching, it takes
significantly more time to find the same solution. Lastly, we
show that the additional constraint regarding the enclosed re-
gion of a primer pair proves to be overly stringent, and in
cases of 400bp and 1000bp, no feasible solution is found.

7.2 Future Improvements

There are a few possible improvements which could be made,
in regards to the run-time of the algorithm, the way the simi-
larity metrics are computed, and potential changes to the ex-
periment set up.

An example of an improvement for the run-time could
be relying on a trie structures to store the set of similar
primers, given that in the current implementation it takes
O(n?) time do this computation, where 7 is the number of
feasible primers. In addition to this, the computation of the
Levenshtein distance [4] could possibly be optimized such
that it does not use O(n?) space, but instead O(n) space,
where n is the length of the primer.

In regards to the similarity score, a possible improvement
would be to have a weighted score, where the nucleotides be-
tween which the mismatch happens are taken into considera-
tion. Considering the parts of the primer where the mismatch
happens, such as Primer-BLAST [15] does, could be a possi-
ble improvement.

Taking the into consideration the annealing temperatures
as suggested in the Primer3 [11] paper might prove to give
better results, as it could have an impact on the feasibility
of primers. This would most likely cause the algorithm to
consider different primers, which might yield different, and
perhaps better results.

Running the algorithm on a different dataset, perhaps with
differently aligned sequences, or on a dataset where similar
primers occur less frequently, would cause the inexact match-
ing variation to have a better performance.

A more lenient way of enforcing the enclosed region con-
straint based on a better theoretical background could prove
to be a potential improvement. Lastly, varying the number of
mismatches allowed is something that should also be consid-
ered.
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